COPY

## DEBRIS REMOVAL CLOSURE REPORT STUDY AREA BB AND BG LAKE GEORGE STREET DEVENS, MASSACHUSETTS

Contract/Purchase Order No. DACW33-95-D-0004 Delivery Order No. 0004 DCN: VRA-022497-AAGJ

Prepared for

#### U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION

424 Trapelo Road Waltham, Massachusetts 02554-9149

Prepared by

ROY F. WESTON, INC.

3701 Barnum Road Devens, Massachusetts 01433

February 1997

Work Order No. 03886-118-004-4300-00

CSV2 97021 RFWR

#### LIST OF FIGURES

| Figure No. | <u>Title</u>                                                                                            | Page |
|------------|---------------------------------------------------------------------------------------------------------|------|
| 1          | Location Map                                                                                            | 2-2  |
| 2          | Site Sketch                                                                                             | 2-3  |
| 3          | Field Analytical Screening Locations                                                                    | 3-4  |
|            | LIST OF TABLES                                                                                          |      |
| Table No.  | <u>Title</u>                                                                                            | Page |
| 3-1        | Debris Removed from Study Areas BB and BG                                                               | 3-2  |
| 3-2        | TPH Field Screening Results Composite Soil Samples Collected by WESTON on November 5, 1996              | 3-3  |
| 3-3        | TPH Field Screening Results Composite Soil Samples Collected by WESTON on November 13, 1996             | 3-4  |
| 3-4        | Confirmation Soil Sample Locations Composite Soil Samples Collected by WESTON on November 14, 1996      | 3-7  |
| 3-5        | Summary of Analytical Results for Excavated Soil Soil Samples Collected by WESTON on November 14, 1996. | 3-8  |

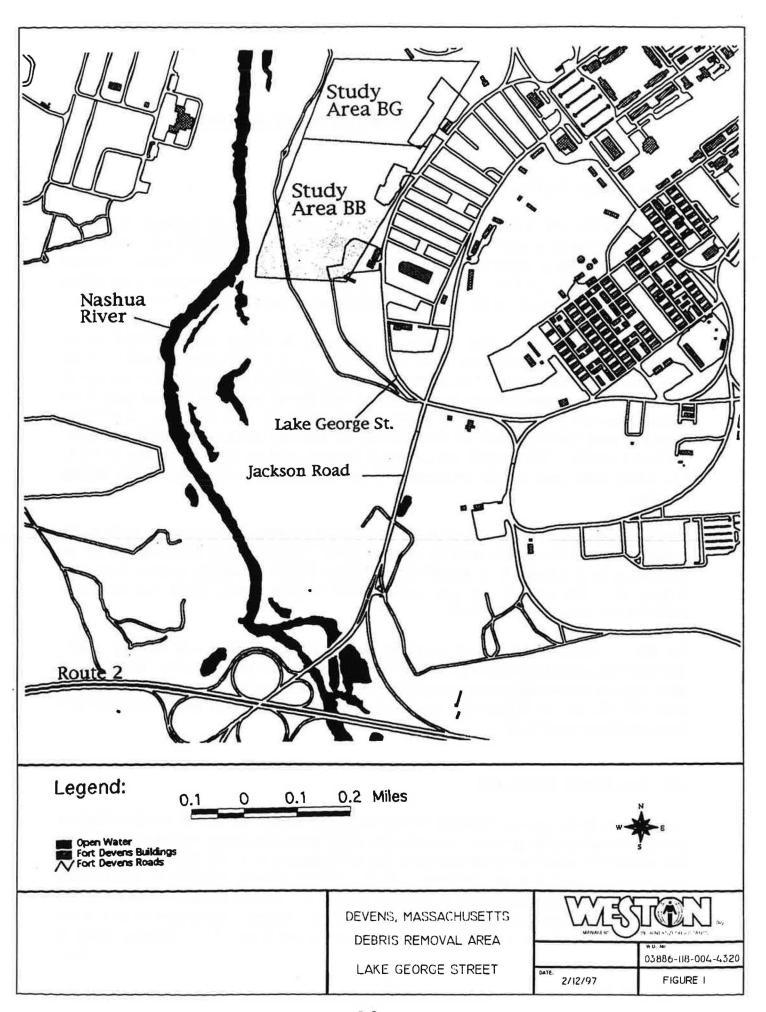
#### 1. PURPOSE

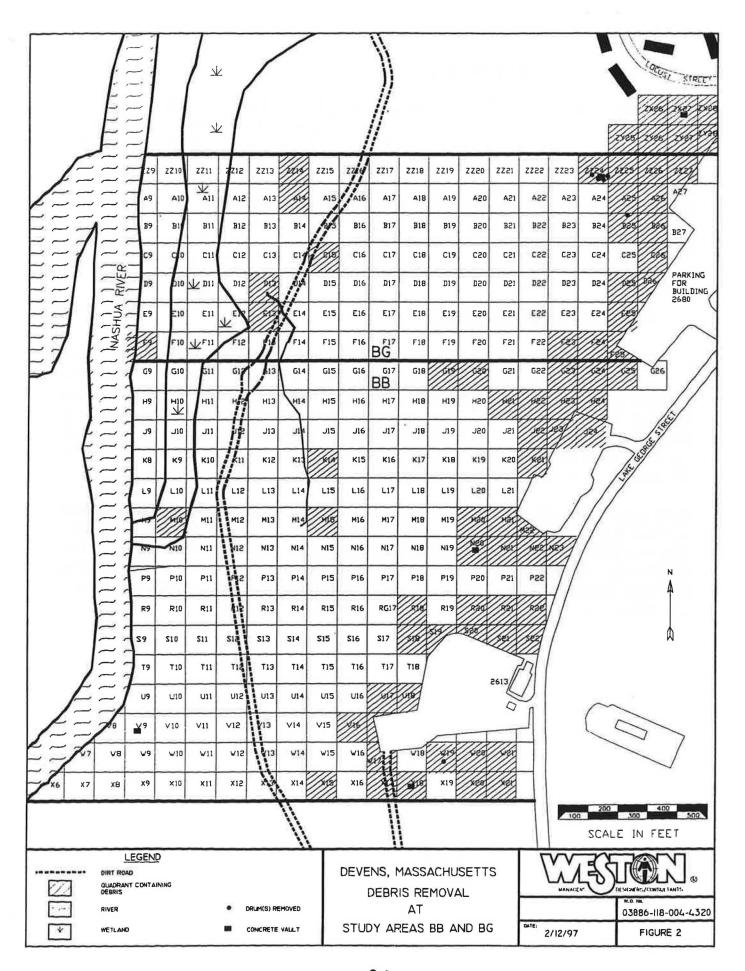
The purpose of this document is to record the activities at Study Areas (SAs) BB and BG located along Lake George Street, Devens, Massachusetts. The activities included the removal of various metal debris, abandoned drums, and the excavation of approximately 18 cubic yards of contaminated soil. This *Debris Removal Closure Report* was prepared in accordance with the Roy F. Weston, Inc. (WESTON®) Work Plan dated October 1996 and the references incorporated within.

#### 2. BACKGROUND AND PHYSICAL SETTING

#### 2.1 SITE DESCRIPTION AND HISTORY

On December 21, 1989, Devens (formerly Fort Devens) was placed on the National Priority List (NPL) pursuant to the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) of 1980, as amended. Fort Devens was used for a variety of U. S military training missions from 1917 until 1996. In 1991, the installation was selected for cessation of operations and closure under Public Law 101-510, the Base Realignment and Closure (BRAC) Act of 1990.


As part of the closure of Fort Devens an evaluation of photos was conducted by the Environmental Photographic Interpretation Center (EPIC). Two sites were identified by the Massachusetts Department of Environmental Protection (MADEP) that required debris removal. The two sites are located between the west side of Lake George Street and the east bank of the Nashua River and are referred to as SAs BB and BG (Figure 1). The area along Lake George Street was once used extensively for field training, and was once occupied by a military hospital and boiler building. The hospital was constructed around 1919 and demolished prior to 1943. The debris in this area is likely associated with the demolished buildings, and former training activities.


SA BB is generally located west of the fenced area of building 2613 extending north to the southern edge of the parking area for building 2680. WESTON has identified SA BB as quadrant rows G through X as defined on the Human Factors Applications, Inc. (HFA) plan (Figure 2). The area is primarily wooded with varying terrain which includes steep embankments, streams, and wetlands.

SA BG is located to the west of the paved parking areas associated with building 2680. WESTON has identified SA BG as quadrant rows A through F as defined on the HFA plan and additional rows were added north of existing row A. These additional rows are identified as rows ZX, ZY, and ZZ (Figure 2). The area is primarily wooded with areas overgrown with heavy brush and small trees.

#### 2.2 REGIONAL GEOLOGY

Devens is near the western boundary of the Seaboard Lowland Section of the New England Maritime Physiographic province. It is adjacent to the Worcester County Plateau of the Central Uplands province, and part of the installation lies within the province. The land surface is almost completely covered with unconsolidated glacial outwash deposits, resulting in few bedrock outcrops. The surficial deposits are underlain by a highly complex assemblage of intensely folded and faulted metsedimentary rocks and occasional igneous intrusions. The geomorphology of the region is dominated by glacial features such as outwash plains, kames, kames terraces, drumlins, and





#### 2.3 REGIONAL HYDROGEOLOGY

Groundwater at Devens occurs largely in the permeable glacial-deltaic outwash deposits of sand, gravel, and boulders. Well yields within these sediments are dependent upon hydraulic characteristics of the aquifer and can range from 2 to over 300 gallons per minute (gpm). Small amounts of groundwater can be obtained from fractured bedrock with yields ranging from 2 to 10 gpm. Minor amounts of groundwater may be found in thin, permeable glacial lenses elsewhere on the installation. The primary hydrogeologic feature at Devens is the Nashua River, which flows through the installation in a south to north direction with an average discharge rate of 55 cubic feet per second (ft³/s). In addition to the Nashua River, numerous brooks that are associated with attendant wetlands dissect the terrain. There are also several kettle ponds and one kettle lake located within the installation.

#### 2.4 PREVIOUS INVESTIGATIONS

Site visits were conducted by MADEP and BRAC Cleanup Team in March 1995. During the visit a variety of debris was identified including wire, metal stack, bricks, automobile and helicopter parts, spent coal, metal pipe, cans, dishwasher, and a metal locker. In addition, seven drums were located west of the parking area associated with building 2680. The drums are described as crushed and scattered in an area with barbed wire and demolition debris. One drum was located near a dishwasher and a metal paint storage locker; this drum was labeled as "Fog Oil" and appeared to have some contents remaining.

In November 1995, HFA conducted an unexploded ordnance (UXO) survey of the Lake George area including SAs BB and BG. HFA established 100 feet (ft) by 100 ft grids extending from the edge of Lake George Street to the bank of the Nashua River (Figure 2). HFA personnel then traversed the grids identifying potential UXO, miscellaneous debris, and other features. The UXO personnel identified no UXO at the site, however, they did locate one practice (plastic) anti-tank mine at grid location D-14.

#### 3. FIELD ACTIVITIES

#### 3.1 DEBRIS REMOVAL

On September 30, 1995, WESTON conducted a site walk to visually confirm the location of the study areas and to locate the debris identified by HFA and BRAC. Several items were located in the areas defined on the HFA plan, including several piles of wire, 5 gallon cans, and the seven drums previously identified. One additional drum was located in SA BB quadrant W19. The items removed from SAs BB and BG were defined in the scope of work as surficial drums and significant metal debris. This included metal items larger than a bread box and hazardous waste containers, automobile parts, steel cable, barbed wire, and 5-gallon cans. Concrete, brick, and asphalt material were not removed. Table 3-1 identifies the debris which was located and removed by WESTON and the corresponding grid quadrants location (Figure 2). Metal debris collected from SAs BB and BG was stockpiled on-site prior to off-site disposal. Two 30 cubic yard trailers were filled with the metal debris and transported off-site for recycling.

Four concrete vaults were identified during the debris removal activities. The vault appeared to be associated with a storm drainage system based on the observation of water flowing through three of the four vaults. The vaults are approximately four feet square and approximately 5 feet deep. No covers or grating to prevent pedestrian access were observed at any of the vaults. To eliminate the potential hazard of people falling into the vaults, WESTON filled three of the four vaults with crushed stone; crushed stone will allow water to continue to flow out of the structure. The vault not filled with stone is located at grid V9 and could not be accessed because it is located near a large wetland area.

Table 3-1

Debris Removed from SAs BB and BG

| Grid | Items Removed                                                    | Grid   | Items Removed                                                              |
|------|------------------------------------------------------------------|--------|----------------------------------------------------------------------------|
| A14  | bicycle, barbed wire                                             | N22    | steel cable                                                                |
| A25  | barbed wire                                                      | N23    | car hood                                                                   |
| A26  | barbed wire                                                      | P21    | 5 gallon pail                                                              |
| B25  | barbed wire, 55 gallon drum, gas stove                           | R18    | drum                                                                       |
| B26  | barbed wire                                                      | R20    | barbed wire                                                                |
| C15  | Truck parts, metal doors, linseed oil can                        | R21    | misc. metal                                                                |
| C26  | steel cable                                                      | R22    | pipe, wire                                                                 |
| D13  | fencing, duct work                                               | S18    | pipe, trash can                                                            |
| D25  | steel cable                                                      | S19    | tire with rim                                                              |
| D26  | steel cable                                                      | S20    | barbed wire, copper wire                                                   |
| E13  | fencing, duct work                                               | S21    | car parts, engine block                                                    |
| E25  | steel cable                                                      | S22    | car parts, barbed wire                                                     |
| F23  | barbed wire                                                      | U15    | Steel gutter w/downspout                                                   |
| F24  | 5 gallon pail                                                    | U17    | bumper, I-beam                                                             |
| F9   | sheet metal                                                      | U18    | car parts, barbed wire                                                     |
| G19  | car seat                                                         | V16    | paint can, 5 gallon pail, pipe, car parts, large<br>metal object           |
| G20  | sheet metal                                                      | V17    | fencing                                                                    |
| G23  | I-beam, sheet metal, steel cable, ammo box, play slide           | V20    | Electrical parts, paint cans                                               |
| G24  | pipe                                                             | W17    | crushed culvert pipe                                                       |
| G25  | fencing                                                          | W19    | 55 gallon drum (with liquid contents)                                      |
| H21  | 5 gallon pail                                                    | W20    | muffler, pipes, air filters                                                |
| H22  | 5 gallon pail, oil filter                                        | W21    | pipe, 5 gallon pails, pipe, steel cable, paint cans                        |
| H23  | barbed wire, steel cable, car seat, 5 gallon pail,<br>guard rail | X15    | 5 gallon pail                                                              |
| H24  | barbed wire, fencing, guard rail                                 | X17    | 5 gallon pail                                                              |
| J22  | Car parts, pipes                                                 | X18    | Barbed wire, folding chair, helicopter parts, fencing                      |
| J23  | barbed wire, fencing, steel cable                                | X20    | pipe, steel cable, paint cans, wire mesh                                   |
| J24  | radiator                                                         | X21    | pipe, steel cables, wire mesh, paint cans, barbed<br>wire, car seat, pipes |
| K14  | vegetable peeler                                                 | ZX26   | barbed wire                                                                |
| K21  | barbed wire, steel cable                                         | ZX27   | barbed wire, pipes                                                         |
| K22  | barbed wire, steel cable                                         | ZX28   | barbed wire, pipes, I-beam, bicycle rack                                   |
| L20  | ammo box                                                         | ZY25   | barbed wire                                                                |
| L21  | ammo box                                                         | ZY26   | barbed wire                                                                |
| L22  | fencing, barbed wire, paint cans                                 | ZY27   | barbed wire, pipe                                                          |
| M10  | tire                                                             | ZY28   | barbed wire, pipe                                                          |
| M15  | Metal scrap                                                      | ZZ14   | barbed wire                                                                |
| M20  | 5 gallon pails, pipe, paint can                                  | ZZ24   | crushed 55 gallon drums, barbed wire                                       |
| M21  | fence posts, barbed wire, pipe                                   | Z.Z.25 | barbed wire                                                                |
| M22  | pipe, fence posts                                                | ZZ26   | barbed wire                                                                |
| N20  | 5 gallon pail, metal column                                      | ZZ27   | barbed wire                                                                |
| N21  | steel cable                                                      |        |                                                                            |

#### 3.2 FIELD ANALYTICAL SCREENING

Prior to excavating soil from the area of the abandoned drums, WESTON collected eight composite field screening samples, one sample from each drum location (Figure 3). The samples were collected from directly under each drum as grab samples, just under the layer of organic matter. The eight soil samples were field screened for TPH using a DEXSIL® PetroFlag Hydrocarbon Test Kit (PetroFlag). TPH was detected above the cleanup action level of 250 parts per million (ppm) in seven of the eight samples; with concentration ranging from 282 to greater than 2000 ppm. Table 3-2 presents the sample location, sample depth, and the field screen TPH concentrations.

Table 3-2

TPH Field Screening Results

Soil Samples Collected by WESTON on November 5, 1996

| Sample Location | Depth<br>(feet) | TPH Concentration (ppm) |
|-----------------|-----------------|-------------------------|
| SABG-D1         | Surface         | >2000                   |
| SABG-D2         | Surface         | 1078                    |
| SABG-D3         | Surface         | 1287                    |
| SABG-D4         | Surface         | 535                     |
| SABG-D5         | Surface         | 576                     |
| SABG-D6         | Surface         | 282                     |
| SABG-D7         | Surface         | ND                      |
| SABB-D8         | Surface         | >2000                   |

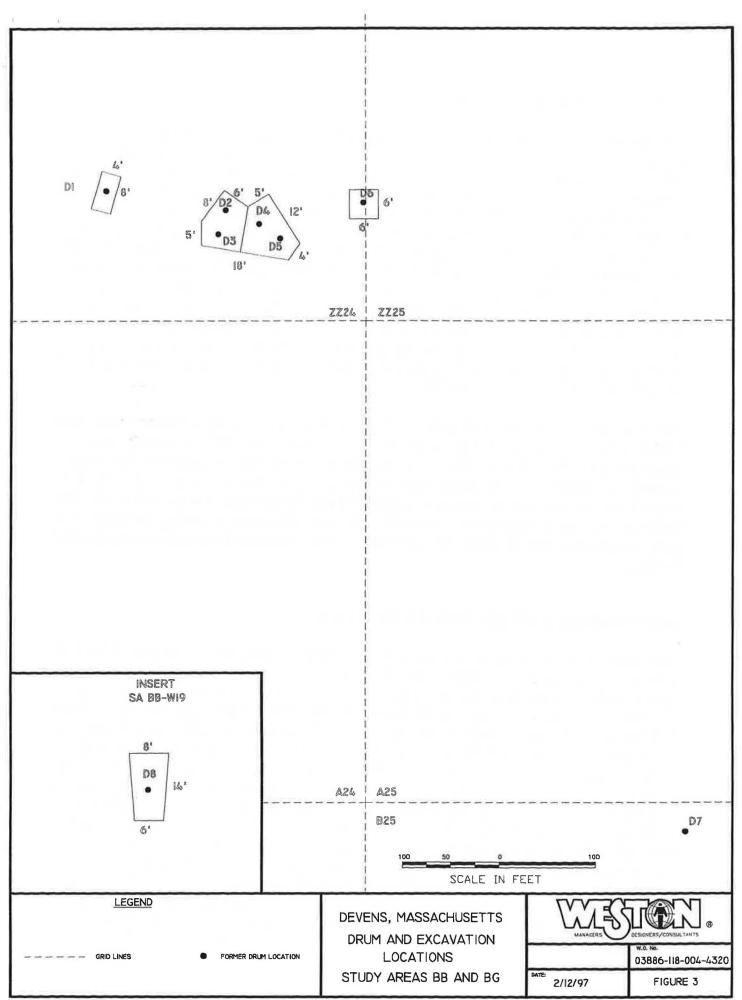
ppm = parts per million ND = Non-detect

As a result of the elevated TPH concentrations, soil was excavated from under the seven drum locations (SABG-D1 through SABG-D6, and SABB-D8) to a depth of approximately one foot. Composite field screening samples were collected from the floor of the excavations to confirm cleanup goals. The samples were composited from four locations and homogenized prior to placement into sample containers. Due to the small size and close proximity of the excavations, field screening sample FS-2 was a composite from drum locations SABG-D2 and D-3, and sample FS-3 from drum location SABG-D4 and D-5. The composite samples were analyzed using the PetroFlag test kits and by field laboratory EPA Method 418.1 non-dispersive infrared (NDIR).

Sample results indicated TPH concentrations ranging from 168 to 1688 ppm by PetroFlag, and 167 to 1701 ppm by NDIR. The highest concentrations were at sample location FS-5 (SABB-D8) with 1688 ppm by PetroFlag and 1701 ppm by NDIR. PetroFlag results from sample locations FS-2 and FS-3 were at concentration of 869 and 770 ppm, respectively. Sample analysis at sample locations FS-2 and FS-3 using NDIR detected TPH concentrations at much lower levels, 167 and 197 ppm, respectively. The elevated PetroFlag results can be attributed to organic root matter which was noted in the sample locations.

Based on the elevated TPH concentration excavation activities were continued in the area of field screening sample FS-5 (grid quadrant BB-V25). In order achieve the cleanup goal of 250 ppm, the floor was excavated an additional 1.5 to 2.5 feet depth. After the additional excavation, one composite field screening sample (FS-6) was collected and analyzed by NDIR. Field screening analysis indicated a concentration of 55 ppm.

TABLE 3-3
TPH Field Screening Results
Composite Soil Samples Collected by WESTON on November 13, 1996


| Sample Number (Location) | Depth<br>(feet) | TPH Concentration (ppm) | NDIR results (ppm) |
|--------------------------|-----------------|-------------------------|--------------------|
| FS-1 (SABG-D1)           | 1-1.5 feet      | 168                     | n.a.               |
| FS-2 (SABG-D2 and D3)    | 1-1.5 feet      | 869*                    | 167                |
| FS-3 (SABG-D4 and D5)    | 1-1.5 feet      | 779*                    | 197                |
| FS-4 (SABG-D6)           | 1-1.5 feet      | 115                     | n.a.               |
| FS-5 (SABB-D8)           | 1-1.5 feet      | 1688                    | 1701               |
| FS-6(SABB-D8)            | 3-4 feet        | n.a.                    | 55                 |

ppm = parts per million

ND = non-detect

n.a. = not analyzed

\* = possible organic matter interference.



#### 3.3 SOIL AND DRUM REMOVAL

Eight drums were identified during various stages of work at SAs BB and BG. Seven drums were located in SA BG and one drum in SA BB (Figure 2). Field screening of the soil directly under each of the abandoned drums was conducted using the PetroFlag test kits. The soil was determined to be contaminated with petroleum at seven of the eight drum locations (SABG-D1 through SABG-D6, and SABB-D8). The soil from the seven areas was excavated using a backhoe to a initial depth of approximately 1 to 1.5 feet. The soil at the bottom of each excavation was then sampled to determine if the cleanup goal of 250 ppm was achieved. TPH concentration were detected below 250 ppm at all but one location FS-5 (SA BB-D8). WESTON returned to SA BB and excavated an additional 1.5 to 2.5 feet of soil. One additional field screening sample was collected from SABB-D8, TPH was detected at 55 ppm. The final volume of contaminated soil excavated from SAs BB and BG were approximately 12.5 and 5.5 cubic yards, respectively. The excavated soil was transported to the Soil Storage Facility (SSF) at Building 202. These soils will be disposed of with the other petroleum contaminated soil currently stockpiled in Cell B of the SSF.

Two intact drums were removed from the SAs during debris removal activities. One drum located in SA BG was previously identified by the MADEP and BRAC clean-up team, the second drum was located during debris removal activities in SA BB. Both drums were opened, sampled for disposal purposes, and overpacked into appropriate shipping containers. The drum from SA BB was composed of primarily a heavy weight oil with a small amount of water. The drum from SA BG was composed of primarily oily water with some sludge type material. The drums were transported off-site by General Chemical Corporation and the contents used for fuel blending.

#### 3.4 CONFIRMATORY LABORATORY ANALYSES

Once field analytical screening indicated TPH concentrations were below 250 ppm, WESTON collected three composite soil samples, from the floors of the excavation (Figure 3). The three soil samples, including one field duplicate sample, were submitted for confirmatory laboratory analyses to Katahdin Analytical Services, Inc. (Katahdin) for MADEP Volatile Petroleum Hydrocarbon (VPH) and Extractable Petroleum Hydrocarbon (EPH). Confirmatory samples were collected from two locations, SA BB grid W19 (BB-W19-01) and SA BG grid ZZ24 (BG-ZZ24-01 and BG-Sample location BB-W19-01 was a composite sample from a single excavation, the soil was collected from five floor locations and homogenized prior to filling the sample containers. Samples BG-ZZ24-01 and BG-ZZ24-02 (duplicate) were collected from three small excavations located adjacent to one another, the soil was collected from four floor location from each of the excavation and homogenized to form a singe sample. The sample was then split to Laboratory analytical results did not detect the presence of VPH form a field duplicate. contamination above the respective Katahdin practical quantitation limits (POLs). contamination ranged from 15 to 56 ppm, which are below the applicable MCP S-1/GW-1 action levels (Attachment D). Table 3-4 presents the locations and depths at which each of the samples were collected.

Table 3-4

Confirmation Soil Sample Locations

Composite Soil Samples Collected by WESTON on November 14, 1996

| Sample ID  | Sample Location     | Depth (feet) | VPH   |        | EPH     |         |
|------------|---------------------|--------------|-------|--------|---------|---------|
|            | -                   |              |       | C9-C18 | C19-C36 | C10-C22 |
| BB-W19-01  | floor of excavation | 1 to 1.5     | 0 ppm | 12 ppm | 19 ppm  | 14 ppm  |
| BG-ZZ24-01 | floor of excavation | 3 to 4       | 0 ppm | 15 ppm | 158 ppm | 53 ppm  |
| BG-ZZ24-02 | floor of excavation | 3 to 4       | 0 ppm | 15 ppm | 182 ppm | 54 ppm  |

#### 3.4 DRUM AND CONTAMINATED SOIL CHARACTERIZATION

The two drums located in SAs BB and BG were sampled for waste characterization on 11 and 12 November 1996. Liquid drum samples were collected from both drums using a glass drum thief inserted slowly into the liquid. The samples were submitted to Katahdin Analytical Services for VOCs by EPA Method 8260, RCRA metals by EPA Method 8010/7000, TPH by EPA Method 418.1; and Ignitability, Reactivity, and Corrosivity analyses. The oil samples could not be analyzed for TPH by EPA Method 418.1 due to its insolubility in freon, a supplemental analysis for Diesel range organics (DRO) by SW846 Method 8015 Modified was agreed to and performed. Laboratory analyses indicates several VOCs above specific sample detection limits. DRO analysis indicates concentration of 34,000,000 micrograms per liter (µg/L) and 130,000 milligrams per kilogram (mg/kg) dry weight for samples BG-B25-D1 and BB-W19-D1, respectively. Hazardous waste characterization results identified the liquid as having a pH ranging from 4.7 to 4.9, reactivity less than 20 and 27 milligram per liter (mg/l) (cyanide and sulfide, respectively), and a flash point greater than 65 degrees Celsius. No metals were detected above lab PQLs.

Contaminated soil excavated from the former drum locations was sampled using stainless steel sampling equipment. One composite sample was taken to represent the approximate 18 cubic yards of petroleum contaminated soil that was removed. The sample was submitted to Katahdin Analytical Services for VOCs by EPA Method 8260, SVOC by EPA Method 8270, RCRA metals by EPA Method 8010/7000, TPH by EPA Method 418.1, and Ignitability, Reactivity, and Corrosivity analyses. The composite sample was collected from five locations within the pile. The composite sample, with the exception of VOCs, was homogenized prior to filling sample jars. The VOCs sample was collected by filling a single jar with approximately equal amounts from the five locations.

Laboratory analyses indicated a total of nine VOC, seven SVOC, and four metals contaminants above laboratory detection. In addition, TPH was detected at 1,300 ppm, and sulfide reactivity was detected at 27 ppm. Table 3-5 represents the sample results for concentrations detected above sample PQLs.

Excavated soils concentration as determined by off-site laboratory analyses are below the MCP limits for reuse in lined landfills in Massachusetts.

Table 3-5
Summary of Analytical Results for Excavated Soil
Samples collected by WESTON on November 14, 1996

| Parameter                    | Sample Result | Sample Detection Limit |
|------------------------------|---------------|------------------------|
| VOCs                         |               |                        |
| Ethylbenzene                 | 2.0 μg/kg     | 1.0μg/kg               |
| o-Xylene                     | 5.0 μg/kg     | 1.0µg/kg               |
| Isopropylbenzene             | 3.0µg/kg      | 1.0µg/kg               |
| n-Propylbenzene              | 6.0 μg/kg     | 1.0µg/kg               |
| 1,3,5-Trimethylbenzene       | 12.0 μg/kg    | 1.0µg/kg               |
| 1,2,4-Trimethylbenzene       | 4.0 μg/kg     | 1.0µg/kg               |
| sec-Butylbenzene             | 6.0µg/kg      | 1.0μg/kg               |
| 4-Isopropyltoluene           | 13.0µg/kg     | 1.0µg/kg               |
| n-Butylbenzene               | 7.0µg/kg      | 1.0μg/kg               |
| SVOCs                        |               |                        |
| Phenanthrene                 | 890 μg/kg     | 330 μg/kg              |
| Flouranthene                 | 860 μg/kg     | 330 μg/kg              |
| Pyrene                       | 970 μg/kg     | 330 μg/kg              |
| Benzo (a) anthracene         | 540 μg/kg     | 330 μg/kg              |
| Chrysene                     | 510 μg/kg     | 330 μg/kg              |
| Benzo (b) flouranthene       | 710 μg/kg     | 330 μg/kg              |
| Benzo (a) pyrene             | 420 μg/kg     | 330 μg/kg              |
| Metals                       |               |                        |
| Arsenic                      | 18.5 mg/kg    | 0.8 mg/kg              |
| Barium                       | 34.3 mg/kg    | 0.5 mg/kg              |
| Chromium                     | 23.4 mg/kg    | 1.5 mg/kg              |
| Lead                         | 44.5 mg/kg    | 0.5 mg/kg              |
| Hazard Waste Characteristics |               |                        |
| Corrosivity                  | 6.6 pH units  | 0.1 pH units           |
| Ignitability                 | >65° Celsius  | 25° Celsius            |
| Sulfide. Reactive            | 27 mg/kg      | 27 mg/kg               |
| Total Petroleum Hydrocarbon  | 1,300 mg/kg   | 25 mg/kg               |

3-8

VOCs = Volatile Organic Compounds

SVOCs = Semi Volatile Organic Compounds

μg/kg = Microgram per kilogram mg/kg = Milligram per kilogram

#### 4. CONCLUSION

No further action is recommended for the SAs BB and BG, Lake George Street. This recommendation is based on laboratory analytical results of confirmatory soil samples which indicate VPH and EPH concentrations at SAs BB and BG to be less than the applicable EPA SSG and MCP Method 1 S-1/GW-1 standards. The removal action provided a permanent, long term solution for the site and eliminated the threat to public welfare that was proposed by the presence of the metal debris, crushed drums and petroleum contaminated soils.

#### REFERENCES

WESTON (Roy F. Weston, Inc.). 1996. Work Plan Debris Removal at Study Areas BB and BG, Lake George October 1996

Johns, R. H. 1953. Surficial Geology of the Ayer Quadrangle, Massachusetts; Scale 1:31, 680; U.S. Geological Survey.

Koteff, C. 1966. Surficial Geologic Map of the Clinton Quadrangle, Worcester County, Massachusetts; U.S. Geologic Survey Map GQ-567.

KATAHDIN (Katahdin Analytical Services, Inc.). 1996. Preliminary Report of Analytical Results. December 6.

USGS (U.S. Geological Survey). 1966. Ayer, Massachusetts Quadrangle, 7.5-Minute Series Topographic Map. Photorevised 1979.

WESTON (Roy F. Weston, Inc.). 1996. Field Sampling and Analysis Plan, Various Sites - Phase II, Fort Devens, Massachusetts. April.

EPA (U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response). 1994. Soil Screening Guidance. December.

MADEP (Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup). 1996. Massachusetts Contingency Plan . September.

# ATTACHMENT A STUDY AREA BB AND BG HAZARDOUS WASTE MANIFESTS

#### ATTACHMENT B

#### STUDY AREA BB AND BG

#### CONFIRMATORY SOIL SAMPLE ANALYTICAL RESULTS KATAHDIN ANALYTICAL SERVICES



December 6, 1996

Mr. Mike Wagner Roy F. Weston PO Box 425 Ayer, Ma. 01432

Katahdin Lab Number: WM2580

Project ID:

Ft. Devens

Project Manager:

Ms. Andrea J. Colby

Sample Receipt Date: November 15, 1996

Dear Mr. Wagner:

Please find enclosed the following information:

- \* Report of Analysis
- \* Quality Control Data Summary
- \* Confirmation
- \* Chain of Custody

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. This cover letter is an integral part of the ROA.

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Sincerely,

KATAHDIN ANALYTICAL SERVICES

nadeau

Authorized Signature

12.6.96 Date



#### TECHNICAL NARRATIVE

Client: Roy F. Weston
Work Order #: WM2580

#### GC Laboratory:

Samples WM2580-1 through 3 and 7 were received on 11/15/96. The samples were analyzed for extractable petroleum hydrocarbons and volatile petroleum hydrocarbons using the Massachusetts DEP methods EPH and VPH, respectively. All of the samples were extracted and analyzed within hold time.

#### **EPH Analysis**

Phthalate contamination was introduced to the samples from the solid phase extraction cartridges (SPE). The level of phthalate contamination is inconsistent from sample to sample. In the aliphatic fraction the phthalate contamination is primarily seen as one peak in the  $C_9$ -  $C_{18}$  aliphatic range, between tetradecane and hexadecane. This major peak in the aliphatic fraction was factored out of the  $C_9$ - $C_{18}$  aliphatic range. In the aromatic fraction the phthalate contamination is primarily seen as three to six peaks. One phthalate peak coelutes with chyrsene. The major phthalate contaminant peaks in the aromatic fractions were factored out of the  $C_{10}$ - $C_{22}$  Aromatic range results. It is important to note that the phthalate contamination in the blanks and samples is not limited to the major peaks, but includes many minor peaks. Taking into account all of the phthalate contamination would reduce the Aliphatic and the Aromatic ranges of all extraction blanks to below their respective practical quantitation limits.

The recoveries of the following analytes were outside of the method criteria in the fractionation check: dodecane and chrysene. Dodecane had a recovery of 156%. The recovery of chrysene was high, 218%, due to phthalate contamination.

Recovery of the targeted analytes and ranges in the laboratory control samples (LCS) are within the accepted range of 60 to 140%, with the following exceptions: The recovery of hydrocarbons in the  $C_{9}$ - $C_{18}$  and the  $C_{19}$ - $C_{36}$  aliphatic ranges were high due to phthalate contamination.

The following two pairs of targeted PAH analytes could not be resolved by the GC-FID analysis: benzo(b)fluoranthene and benzo(k)fluoranthene, as well as, indeno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene. These coeluting analytes were analyzed and reported as one peak for each set of coeluting analytes. The one major phthalate contaminant peak was factored out of the C<sub>9</sub>-C<sub>18</sub> aliphatic range. Also, the major phthalate contaminant peaks were factored out of the C<sub>10</sub>-C<sub>22</sub> Aromatic range. Any results for the Aliphatic and Aromatic ranges should be considered to have a high bias due to background phthalate contamination. Any reported results for chrysene have to be considered to have a high bias due to phthalate contamination.

All of the EPH extracts were analyzed by HPLC for confirmation of targeted PAH analytes based on the GC-FID analysis. Some of the GC-FID raw results are elevated due to the presence of a petroleum type



product envelope. Note the HPLC confirmation analysis is qualitative only. The final report contains the values for the targeted PAH analytes that were obtained from the GC-FID analysis and qualitatively confirmed by the HPLC analysis.

#### **VPH Analysis**

All quality control parameters were met. There were no deviations or observations made by the GC laboratory staff during the VPH analysis. The equivalent concentration values of zero denote that the actual equivalent concentrations were below their respective equivalent practical quantitation limits.

#### **DRO Analysis**

Samples WM2580-4 and 5 were originally logged in for TPH by 418.1. However, the material was insoluable in freon. After discussions between Mike Wagner and John Burton, it was decided to analyze these samples for Diesel Range Organics according to SW846 Method 8015 Modified. Sample -4 was treated as a free product and prepared by diluting 1g to 10 ml with Methylene chloride. Sample -5 was extracted as a water according to SW846 Method 3510. An aliquot from each was then analyzed for DRO. Both samples required dilutions in order to quantitate the high concentration within the calibration range. From observation of the sample chromatograms, neither of the two samples resemble any of the typical petroleum hydrocarbons that are calibrated with the instrument. Both samples contain a heavy petroleum product similar to motor oil. The product in sample -4 elutes much later than that from sample -5. There were no further deviations or observations made by the GC laboratory staff.

#### **Summary Sheet**

Client: Roy F. Weston

Client Sample ID: BB-W19-01

KAS Sample ID: WM2580 - 1

Matrix: Soil

#### **Analytical Results**

| Parameter                                                       | Results | PQL    | Units |
|-----------------------------------------------------------------|---------|--------|-------|
| Volatile Petroleum Hydrocarbons (VPH)                           | 000     | 6.555  | mg/Kg |
| Extractable Petroleum Hydrocarbons (EPH)                        | 15.0    | 8.67   | mg/Kg |
| Equivalent TPH (E-TPH) [If both VPH and EPH Analyses Performed] | 15.0    | 15.225 | mg/Kg |

#### Comments

#### Extractable Petroleum Hydrocarbon (EPH) Analysis

Client: Roy F. Weston

Date Collected: 11/14/96

Client Sample ID: BB-W19-01

Date Recieved: 11/15/96

KAS Sample ID: WM2580 - 1

Date Extracted: 11/11/96

Matrix: Soil

Date Aliphatics Analyzed: 11/24/96

6 % Percent Moisture:

Date Aromatics Analyzed: 11/24/96

Date Reported: 12/2/96

#### Extractable Petroleum Hydrocarbon (EPH)

| Parameter           | Results | PQL  | Toxicity<br>Multiplier | Equivalent<br>Concentration | Equivalent<br>PQL | Units |
|---------------------|---------|------|------------------------|-----------------------------|-------------------|-------|
| C9-C18 Aliphatics   | 12      | 3    | 0.05                   | 0.6                         | 0.15              | mg/Kg |
| C19-C36 Aliphatics  | 19      | 4    | 0.005                  | 0.1                         | 0.02              | mg/Kg |
| C10-C22 Aromatics** | 14      | 8.5  | 1                      | 14.3                        | 8.5               | mg/Kg |
| Extractable Petrol  | 15.0    | 8.67 | mg/Kg                  |                             |                   |       |

<sup>\*\*</sup> Excludes Targeted PAH Analytes

#### Surrogate Recoveries

| Surrogate         | % Recovery | Acceptance Range |
|-------------------|------------|------------------|
| Chloro-octadecane | 109        | 60% - 140%       |
| Para-terphenyl    | 86         | 60% - 140%       |

#### **Targeted PAH Analytes**

| Analyte                    | Results | PQL | Units |
|----------------------------|---------|-----|-------|
| Acenaphthene               | <1      | 0.5 | mg/Kg |
| Acenaphthylene             | <1      | 0.5 | mg/Kg |
| Anthracene                 | <1      | 0.5 | mg/Kg |
| Benzo(a)Anthracene         | <1      | 0.5 | mg/Kg |
| Benzo(a)Pyrene             | <1      | 0.5 | mg/Kg |
| Benzo(b)Fluoranthene (1)   | <1      | 1   | mg/Kg |
| Benzo(g,h,i)Perylene       | <1      | 0.5 | mg/Kg |
| Benzo(k)Fluoranthene (1)   | <1      | 1   | mg/Kg |
| Chrysene                   | <1      | 0.5 | mg/Kg |
| Dibenzo(a,h)Anthracene (2) | <1      | 1   | mg/Kg |
| Fluoranthene               | <1      | 0.5 | mg/Kg |
| Fluorene                   | <1      | 0.5 | mg/Kg |
| Indeno(1,2,3-cd)Pyrene (2) | <1      | 1   | mg/Kg |
| Naphthalene                | <1      | 0.5 | mg/Kg |
| Phenanthrene               | <1      | 0.5 | mg/Kg |
| Pyrene                     | <1      | 0.5 | mg/Kg |
| 2-Methylnaphthalene        | <1      | 0.5 | mg/Kg |

<sup>(1) (2) -</sup> Individual concentrations for these coeluting analytes were not confirmed and therefore could not be determined. The reported concentrations for coeluting compounds are the results for the combined analytes in a given window.

#### Volatile Petroleum Hydrocarbon (VPH) Analysis

Client: Roy F. Weston

6 %

Date Collected: 11/14/96

Client Sample ID: BB-W19-01

Date Recieved: 11/15/96

KAS Sample ID: WM2580 - 1

Date Extracted: 11/22/96

Matrix: Soil

Date Aliphatics Analyzed: 11/22/96

Percent Moisture:

Date Aromatics Analyzed: 11/22/96

Date Reported: 12/5/96

#### **VPH Results**

| Parameter           | Results    | PQL        | Toxicity<br>Multiplier | Equivalent Concentration | Equivalent PQL | Units |
|---------------------|------------|------------|------------------------|--------------------------|----------------|-------|
| C5-C8 Aliphatics*   | <11        | 10.7       | 0.5                    | 0                        | 5.35           | mg/Kg |
| C9-C12 Aliphatics** | < 3        | 2.7        | 0.05                   | 0                        | 0.135          | mg/Kg |
| C9-C10 Aromatics    | < 6        | 5.35       | 1                      | 0                        | 5.35           | mg/Kg |
| Volatile Petrole    | um Hydroca | rbons (VPH | ) Conc.                | 000                      | 10.835         | mg/Kg |

<sup>\*</sup> Excludes BTEX and MTBE

#### **Surrogate Recovery**

| Surrogate                | % Recovery | Acceptance Range (%) |
|--------------------------|------------|----------------------|
| 2,5-dibromotoluene (FID) | 100        | 80 - 120             |
| 2,5-dibromotoluene (PID) | 110        | 80 - 120             |

#### Targeted VPH Analytes

| Analyte                | Results | PQL   | Units |
|------------------------|---------|-------|-------|
| Methyl-tert-butylether | < 4     | 4     | mg/Kg |
| Benzene                | < 1     | 1.3   | mg/Kg |
| Toluene                | < 4     | 4     | mg/Kg |
| Ethylbenzene           | < 1     | 1.3   | mg/Kg |
| m,p-Xylene             | < 6     | 5.4   | mg/Kg |
| o-Xylene               | < 3     | 2.7   | mg/Kg |
| Naphthalene            | < 3     | 2.7 · | mg/Kg |

<sup>\*\*</sup> Excludes Naphthalene and 1,2,4-Trimethylbenzene

#### **Summary Sheet**

Client: Roy F. Weston

Client Sample ID: BG-ZZ24-02

KAS Sample ID: WM2580 - 2

Matrix: Soil

#### **Analytical Results**

| Parameter                                                       | Results | PQL    | Units |
|-----------------------------------------------------------------|---------|--------|-------|
| Volatile Petroleum Hydrocarbons (VPH)                           | 000     | 6.555  | mg/Kg |
| Extractable Petroleum Hydrocarbons (EPH)                        | 55.0    | 8.67   | mg/Kg |
| Equivalent TPH (E-TPH) [If both VPH and EPH Analyses Performed] | 55.0    | 15.225 | mg/Kg |

#### **Comments**

#### Extractable Petroleum Hydrocarbon (EPH) Analysis

Client: Roy F. Weston

Date Collected: 11/14/96

Client Sample ID: BG-ZZ24-02

Date Recieved: 11/15/96

KAS Sample ID:

WM2580 - 2

Date Extracted: 11/11/96

Matrix: Soil

Date Aliphatics Analyzed: 11/24/96

Percent Moisture: 14 %

Date Aromatics Analyzed: 11/24/96

Date Reported: 12/2/96

#### Extractable Petroleum Hydrocarbon (EPH)

| Parameter           | Results      | PQL        | Toxicity<br>Multiplier | Equivalent<br>Concentration | Equivalent PQL | Units |
|---------------------|--------------|------------|------------------------|-----------------------------|----------------|-------|
| C9-C18 Aliphatics   | 15           | 3          | 0.05                   | 0.7                         | 0.15           | mg/Kg |
| C19-C36 Aliphatics  | 158          | 4          | 0.005                  | 0.8                         | 0.02           | mg/Kg |
| C10-C22 Aromatics** | 53           | 8.5        | 1                      | 53.5                        | 8.5            | mg/Kg |
| Extractable Petrol  | leum Hydroca | rbons (EPI | H) Conc.               | 55.0                        | 8.67           | mg/Kg |

<sup>\*\*</sup> Excludes Targeted PAH Analytes

#### Surrogate Recoveries

| Surrogate         | % Recovery | Acceptance Range |
|-------------------|------------|------------------|
| Chloro-octadecane | 156        | 60% - 140%       |
| Para-terphenyl    | 105        | 60% - 140%       |

#### **Targeted PAH Analytes**

| Analyte                    | Results | PQL | Units |
|----------------------------|---------|-----|-------|
| Acenaphthene               | <1      | 0.5 | mg/Kg |
| Acenaphthylene             | <1      | 0.5 | mg/Kg |
| Anthracene                 | <1      | 0.5 | mg/Kg |
| Benzo(a)Anthracene         | <1      | 0.5 | mg/Kg |
| Benzo(a)Pyrene             | <1      | 0.5 | mg/Kg |
| Benzo(b)Fluoranthene (1)   | <1      | 1   | mg/Kg |
| Benzo(g,h,i)Perylene       | <1      | 0.5 | mg/Kg |
| Benzo(k)Fluoranthene (1)   | <1      | 1   | mg/Kg |
| Chrysene                   | <1      | 0.5 | mg/Kg |
| Dibenzo(a,h)Anthracene (2) | <1      | 1   | mg/Kg |
| Fluoranthene               | <1      | 0.5 | mg/Kg |
| Fluorene                   | <1      | 0.5 | mg/Kg |
| Indeno(1,2,3-cd)Pyrene (2) | <1      | 1   | mg/Kg |
| Naphthalene                | <1      | 0.5 | mg/Kg |
| Phenanthrene               | <1      | 0.5 | mg/Kg |
| Pyrene                     | <1      | 0.5 | mg/Kg |
| 2-Methylnaphthalene        | <1      | 0.5 | mg/Kg |

<sup>(1) (2) -</sup> Individual concentrations for these coeluting analytes were not confirmed and therefore could not be determined. The reported concentrations for coeluting compounds are the results for the combined analytes in a given window.

#### Volatile Petroleum Hydrocarbon (VPH) Analysis

Client: Roy F. Weston

Date Collected: 11/14/96

Client Sample ID: BG-ZZ24-02

Date Recieved: 11/15/96

KAS Sample ID: WM2580 - 2

Date Extracted: 11/22/96

Matrix: Soil

Date Aliphatics Analyzed: 11/22/96

Percent Moisture: 14 %

Date Aromatics Analyzed: 11/22/96

Date Reported: 12/5/96

#### **VPH Results**

| Parameter           | Results    | PQL        | Toxicity<br>Multiplier | Equivalent<br>Concentration | Equivalent PQL | Units |
|---------------------|------------|------------|------------------------|-----------------------------|----------------|-------|
| C5-C8 Aliphatics*   | < 12       | 10.7       | 0.5                    | 0                           | 5.35           | mg/Kg |
| C9-C12 Aliphatics** | < 3        | 2.7        | 0.05                   | 0                           | 0.135          | mg/Kg |
| C9-C10 Aromatics    | < 6        | 5.35       | 1                      | 0                           | 5.35           | mg/Kg |
| Volatile Petrole    | um Hydroca | rbons (VPH | Conc.                  | 000                         | 10.835         | mg/Kg |

<sup>\*</sup> Excludes BTEX and MTBE

#### Surrogate Recovery

| Surrogate                | % Recovery | Acceptance Range (%) |
|--------------------------|------------|----------------------|
| 2,5-dibromotoluene (FID) | 96         | 80 - 120             |
| 2,5-dibromotoluene (PID) | 106        | 80 - 120             |

#### **Targeted VPH Analytes**

| Analyte                | Results | PQL | Units |
|------------------------|---------|-----|-------|
| Methyl-tert-butylether | < 5     | 4   | mg/Kg |
| Benzene                | < 2     | 1.3 | mg/Kg |
| Toluene                | < 5     | 4   | mg/Kg |
| Ethylbenzene           | < 2     | 1.3 | mg/Kg |
| m,p-Xylene             | < 6     | 5.4 | mg/Kg |
| o-Xylene               | < 3     | 2.7 | mg/Kg |
| Naphthalene            | < 3     | 2.7 | mg/Kg |

<sup>\*\*</sup> Excludes Naphthalene and 1,2,4-Trimethylbenzene

#### **Summary Sheet**

Client: Roy F. Weston

Client Sample ID: BG-ZZ24-01

KAS Sample ID: WM2580 - 3

Matrix: Soil

#### **Analytical Results**

| Parameter                                                       | Results | PQL    | Units |
|-----------------------------------------------------------------|---------|--------|-------|
| Volatile Petroleum Hydrocarbons (VPH)                           | 000     | 6.555  | mg/Kg |
| Extractable Petroleum Hydrocarbons (EPH)                        | 56.0    | 8.67   | mg/Kg |
| Equivalent TPH (E-TPH) [If both VPH and EPH Analyses Performed] | 56.0    | 15.225 | mg/Kg |

#### Comments

#### Extractable Petroleum Hydrocarbon (EPH) Analysis

Client: Roy F. Weston

Date Collected: 11/14/96

Client Sample ID: BG-ZZ24-01

Date Recieved: 11/15/96

KAS Sample ID: WM2580 - 3

Date Extracted: 11/11/96

Matrix: Soil

Date Aliphatics Analyzed: 11/27/96

Percent Moisture:

13 %

Date Aromatics Analyzed: 11/24/96

Date Reported: 12/3/96

#### Extractable Petroleum Hydrocarbon (EPH)

| Parameter           | Results     | PQL        | Toxicity<br>Multiplier | Equivalent<br>Concentration | Equivalent PQL | Units |
|---------------------|-------------|------------|------------------------|-----------------------------|----------------|-------|
| C9-C18 Aliphatics   | 15          | 3          | 0.05                   | 0.7                         | 0.15           | mg/Kg |
| C19-C36 Aliphatics  | 182         | 4          | 0.005                  | 0.9                         | 0.02           | mg/Kg |
| C10-C22 Aromatics** | 54          | 8.5        | 1                      | 54.3                        | 8.5            | mg/Kg |
| Extractable Petrol  | eum Hydroca | rbons (EPI | H) Conc.               | 56.0                        | 8.67           | mg/Kg |

<sup>\*\*</sup> Excludes Targeted PAH Analytes

#### Surrogate Recoveries

| Surrogate         | % Recovery | Acceptance Range |
|-------------------|------------|------------------|
| Chloro-octadecane | 84         | 60% - 140%       |
| Para-terphenyl    | 99         | 60% - 140%       |

#### **Targeted PAH Analytes**

| Analyte                    | Results | PQL | Units |
|----------------------------|---------|-----|-------|
| Acenaphthene               | <1      | 0.5 | mg/Kg |
| Acenaphthylene             | <1      | 0.5 | mg/Kg |
| Anthracene                 | <1      | 0.5 | mg/Kg |
| Benzo(a)Anthracene         | <1      | 0.5 | mg/Kg |
| Benzo(a)Pyrene             | <1      | 0.5 | mg/Kg |
| Benzo(b)Fluoranthene (1)   | <1      | 1   | mg/Kg |
| Benzo(g,h,i)Perylene       | <1      | 0.5 | mg/Kg |
| Benzo(k)Fluoranthene (1)   | <1      | 1   | mg/Kg |
| Chrysene                   | <1      | 0.5 | mg/Kg |
| Dibenzo(a,h)Anthracene (2) | <1      | 1   | mg/Kg |
| Fluoranthene               | <1      | 0.5 | mg/Kg |
| Fluorene                   | <1      | 0.5 | mg/Kg |
| Indeno(1,2,3-cd)Pyrene (2) | <1      | 1   | mg/Kg |
| Naphthalene                | <1      | 0.5 | mg/Kg |
| Phenanthrene               | <1      | 0.5 | mg/Kg |
| Pyrene                     | <1      | 0.5 | mg/Kg |
| 2-Methylnaphthalene        | <1      | 0.5 | mg/Kg |

<sup>(1) (2) -</sup> Individual concentrations for these coeluting analytes were not confirmed and therefore could not be determined. The reported concentrations for coeluting compounds are the results for the combined analytes in a given window.

#### Volatile Petroleum Hydrocarbon (VPH) Analysis

Client: Roy F. Weston

Date Collected: 11/14/96

Client Sample ID: BG-ZZ24-01

Date Recieved: 11/15/96

KAS Sample ID: WM2580 - 3

Date Extracted: 11/22/96

Matrix: Soil

Date Aliphatics Analyzed: 11/22/96

Percent Moisture:

13 %

Date Aromatics Analyzed: 11/22/96

Date Reported: 12/5/96

#### **VPH** Results

| Parameter           | arameter Results PQL Toxicity Multiplier |        | Equivalent<br>Concentration | Equivalent PQL | Units |       |
|---------------------|------------------------------------------|--------|-----------------------------|----------------|-------|-------|
| C5-C8 Aliphatics*   | < 12                                     | 10.7   | 0.5                         | 0              | 5.35  | mg/Kg |
| C9-C12 Aliphatics** | < 3                                      | 2.7    | 0.05                        | 0              | 0.135 | mg/Kg |
| C9-C10 Aromatics    | < 6                                      | 5.35   | 1                           | 0              | 5.35  | mg/Kg |
| Volatile Petrole    | 000                                      | 10.835 | mg/Kg                       |                |       |       |

<sup>\*</sup> Excludes BTEX and MTBE

#### **Surrogate Recovery**

| Surrogate                | % Recovery | Acceptance Range (%) |  |  |  |  |  |
|--------------------------|------------|----------------------|--|--|--|--|--|
| 2,5-dibromotoluene (FID) | 91         | 80 - 120             |  |  |  |  |  |
| 2,5-dibromotoluene (PID) | 102        | 80 - 120             |  |  |  |  |  |

#### **Targeted VPH Analytes**

| Analyte                | Results | PQL | Units |
|------------------------|---------|-----|-------|
| Methyl-tert-butylether | < 5     | 4   | mg/Kg |
| Benzene                | < 1     | 1.3 | mg/Kg |
| Toluene                | < 5     | 4   | mg/Kg |
| Ethylbenzene           | <1      | 1.3 | mg/Kg |
| m,p-Xylene             | < 6     | 5.4 | mg/Kg |
| o-Xylene               | < 3     | 2.7 | mg/Kg |
| Naphthalene            | < 3     | 2.7 | mg/Kg |

<sup>\*\*</sup> Excludes Naphthalene and 1,2,4-Trimethylbenzene



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-1 Report Date: 12/06/96 PO No. : 03886-118-004

PO No. Project

: 03886-118-0

REPORT OF ANALYTICAL RESULTS

Page 1 of 40

| SAMPLE DESCRIPTION        |        | MATRIX |     |      | SAMPLED BY |     | SAMPLED DATE RECEIVED |    |          |  |
|---------------------------|--------|--------|-----|------|------------|-----|-----------------------|----|----------|--|
| BB-W19-01                 |        |        |     |      | CLIENT     |     |                       | 6  | 11/15/96 |  |
| PARAMETER                 | RESULT | UNITS  | DF  | *PQL | METHOD     |     | ANALYZED              | BY | NOTES    |  |
| Solids-Total Residue (TS) | 94.    | wt %   | 1.0 | 0.10 | CLP/CIP    | SOW | 11/20/96              | JF | 1        |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 11/19/96 by JF

12/06/96

WO/ejnajc(dw)



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-2

Report Date: 12/06/96

PO No.

: 03886-118-004

Project

: FT DEVENS

#### REPORT OF ANALYTICAL RESULTS

Page 2 of 40

| SAMPLE DESCRIPTION        | 4      | MATRIX |     |       | ED BY   | SAMPLED DATE RECEIVED |    |          |
|---------------------------|--------|--------|-----|-------|---------|-----------------------|----|----------|
| BG-ZZ24-02                |        | Solid  |     | CLIEN | T       | 11/14/9               | 6  | 11/15/96 |
| PARAMETER                 | RESULT | UNITS  | DF  | *PQL  | METHOD  | ANALYZED              | BY | NOTES    |
| Solids-Total Residue (TS) | 87.    | wt %   | 1.0 | 0.10  | CLP/CIP | SOW 11/20/96          | JF | 1        |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 11/19/96 by JF

12/06/96

LJO/ejnajc(dw)



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-3 Report Date: 12/06/96

PO No.

: 03886-118-004

Project

: FT DEVENS

#### REPORT OF ANALYTICAL RESULTS

Page 3 of 40

| SAMPLE DESCRIPTION MATRIX |        |       |     | SAMPL | SAMPLED D | SAMPLED DATE RECEIVED |    |          |
|---------------------------|--------|-------|-----|-------|-----------|-----------------------|----|----------|
| BG-ZZ24-01                |        | Solid |     | CLIEN | T         | 11/14/9               | 6  | 11/15/96 |
| PARAMETER                 | RESULT | UNITS | DF  | *PQL  | METHOD    | ANALYZED              | BY | NOTES    |
| Solids-Total Residue (TS) | 87.    | wt %  | 1.0 | 0.10  | CLP/CIP   | SOW 11/20/96          | JF | 1        |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 11/19/96 by JF

12/06/96

LJO/ejnajc(dw)



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-4

Report Date: 12/06/96

PO No.

: 03886-118-004

Project

: FT DEVENS

#### REPORT OF ANALYTICAL RESULTS

Page 4 of 40

| SAMPLE DESCRIPTION | MATRIX |                         | SAMPLED BY |        | SAMPLED D | RECEIVED |    |          |  |
|--------------------|--------|-------------------------|------------|--------|-----------|----------|----|----------|--|
| EB-W19-D1          |        | Free Product/<br>Liquid |            | CLIENT |           | 11/11/96 |    | 11/15/96 |  |
| PARAMETER          | RESULT | UNITS                   | DF         | *PQL   | METHOD    | ANALYZED | BY | NOTES    |  |
| Arsenic, Total     | <0.5   | mg/kgwetwt              | 1.0        | 0.5    | 6010      | 12/03/96 | EM | 1        |  |
| Barium, Total      | <0.50  | mg/kgwetwt              | 1.0        | 0.50   | 6010      | 12/03/96 | EM | 1        |  |
| Cadmium, Total     | <1.00  | mg/kgwetwt              | 1.0        | 1.00   | 6010      | 12/03/96 | EM | 1        |  |
| Chromium, Total    | <1.50  | mg/kgwetwt              | 1.0        | 1.50   | 6010      | 12/03/96 | EM | . 1      |  |
| Lead, Total        | <0.5   | mg/kgwetwt              | 1.0        | 0.5    | 6010      | 12/03/96 | EM | 1        |  |
| Mercury, Total     | <0.100 | μg/gwetwt               | 1.0        | 0.100  | 7471      | 11/21/96 | GB | 2        |  |
| Selenium, Total    | <0.5   | mg/kgwetwt              | 1.0        | 0.5    | 6010      | 12/03/96 | EM | 1        |  |
| Silver, Total      | <1.5   | mg/kgwetwt              | 1.0        | 1.5    | 6010      | 12/03/96 | EM | 1        |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/kdwajc(dw)/rh ML03ICS1

<sup>(1)</sup> Sample Preparation on 12/03/96 by PLC using 3050

<sup>(2)</sup> Sample Preparation on 11/21/96 by GFB using 7471



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-4

Report Date: 12/06/96

PO No.

: 03886-118-004

Project

: FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 5 of 40

| SAMPLE DESCRIPTION       |        | MATRIX                  |       | SAMPLED | вұ     | SAMPLED DATE RECEIVE |    |          |  |
|--------------------------|--------|-------------------------|-------|---------|--------|----------------------|----|----------|--|
| BB-W19-D1                |        | Free Product/<br>Liquid |       |         |        | 11/11/9              | 6  | 11/15/96 |  |
| PARAMETER                | RESULT | UNITS                   | DF    | *PQL    | METHOD | ANALYZED             | BY | NOTES    |  |
| Corrosivity as pH        | 4.7    | pH unit                 | s 1.0 | 0.10    | SW9045 | 11/19/96             | JF | 1        |  |
| Cyanide, Reactive        | <20    | mg/L                    | 1.0   | 20      | SW7.3  | 11/20/96             | WL | 2        |  |
| Ignitability-Flash Point | >65    | degrees                 | C 1.0 | 25      | SW1010 | 11/18/96             | WL |          |  |
| Sulfide, Reactive        | <27    | mg/L                    | 1.0   | 27      | SW7.3  | 11/18/96             | CM | 2        |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/ejnajc(dw)/pph

<sup>(1)</sup> Sample Preparation on 11/19/96 by JF

<sup>(2)</sup> Sample Preparation on 11/18/96 by CLM



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-4

Report Date: 12/06/96

PO No. : 03886-118-004

Project

: FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 6 of 40

| SAMPLE DESCRIPTION  EB-W19-D1                  |         | MATRIX                  |       | SAMPLET | BY        | SAMPLED I | RECEIVED |          |
|------------------------------------------------|---------|-------------------------|-------|---------|-----------|-----------|----------|----------|
|                                                |         | Free Product/<br>Liquid |       | CLIENT  |           | 11/11/96  |          | 11/15/96 |
| PARAMETER                                      | RESULT  | UNITS                   | DF    | *PQL    | METHOD    | ANALYZED  | BY       | NOTES    |
| Diesel Range Organics<br>Diesel Range Organics | 130000. | mg/kgdry                | wt 10 | 5.0     | 8015M-DRO | 12/03/96  | PL       | 1,2      |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/pdl

<sup>(1)</sup> Sample Preparation on 11/27/96 by KGT using METHOD

<sup>(2)</sup> Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WM-2580-4
Report Date: 12/06/96
PO No. : 03886-118-004

PO No. Project

: FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 7 of 40

| SAMPLE DESCRIPTION       |        | MATRIX                |     | SAMPLED | BY       | SAMPLED I | ETAC | RECEIVED |
|--------------------------|--------|-----------------------|-----|---------|----------|-----------|------|----------|
| BB-W19-D1                |        | Free Produc<br>Liquid | ct/ | CLIENT  |          | 11/11/9   | 6    | 11/15/96 |
| PARAMETER                | RESULT | UNITS                 | DF  | *PQL    | METHOD   | ANALYZED  | BY   | NOTES    |
| VOAs (8260)              |        |                       |     |         |          |           |      | 1,2,3    |
| Dichlorodifluoromethane  | <250.  | μg/kgwetwt            | 125 | 2       | EPA 8260 | 11/19/96  | IM   |          |
| Chloromethane            | <250.  | μg/kgwetwt            | 125 | 2       | EPA 8260 | 11/19/96  | IM   |          |
| Vinyl chloride           | <250.  | μg/kgwetwt            | 125 | 2       | EPA 8260 | 11/19/96  | LM   |          |
| Bromomethane             | <250.  | μg/kgwetwt            | 125 | 2       | EPA 8260 | 11/19/96  | LM   |          |
| Chloroethane             | <250.  | μg/kgwetwt            | 125 | 2       | EPA 8260 | 11/19/96  | IM   |          |
| Trichlorofluoromethane   | <250.  | μg/kgwetwt            | 125 | 2       | EPA 8260 | 11/19/96  | LM   |          |
| 1,1-Dichloroethene       | <130.  | μg/kgwetwt            | 125 | 1       | EPA 8260 | 11/19/96  | LM   |          |
| Methylene chloride       | B150   | μg/kgwetwt            | 125 | 1       | EPA 8260 | 11/19/96  | IM   |          |
| trans-1,2-Dichloroethene | <130.  | μg/kgwetwt            | 125 | 1       | EPA 8260 | 11/19/96  | LM   |          |
| 1,1-Dichloroethane       | <130.  | μg/kgwetwt            | 125 | 1       | EPA 8260 | 11/19/96  | IM   |          |
| cis-1,2-Dichloroethene   | <130.  | μg/kgwetwt            | 125 | 1       | EPA 8260 | 11/19/96  | LM   |          |
| 2,2-Dichloropropane      | <130.  | μg/kgwetwt            | 125 | 1       | EPA 8260 | 11/19/96  | IM   |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc (dw) /kwh

<sup>(1) &</sup>quot;J" flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.

<sup>(2) &</sup>quot;B" flag denotes detection of this analyte in the laboratory method blank analyzed concurrently with the sample.

<sup>(3)</sup> Sample dilution required due to matrix interference, sample viscosity or other matrix-related problem; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WM-2580-4 Report Date: 12/06/96

PO No. Project : 03886-118-004 : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 8 of 40

| SAMPLE DESCRIPTION      |        | MATRIX                  | SAMPLED BY  | SAMPLED DATE RECE | RECEIVED |  |
|-------------------------|--------|-------------------------|-------------|-------------------|----------|--|
| BB-W19-D1               |        | Free Product/<br>Liquid | CLIENT      | 11/11/96 11/1     | 15/96    |  |
| PARAMETER               | RESULT | UNITS DE                | *PQL METHOD | ANALYZED BY       | NOTES    |  |
| Bromochloromethane      | <130.  | μg/kgwetwt 125          | 1 EPA 8260  | 11/19/96 IM       |          |  |
| Chloroform              | <130.  | μg/kgwetwt 125          | 1 EPA 8260  | 11/19/96 IM       |          |  |
| 1,1,1-Trichloroethane   | <130.  | μg/kgwetwt 125          | 1 EPA 8260  | ) 11/19/96 IM     |          |  |
| 1,2-Dichloroethane      | <130.  | μg/kgwetwt 125          | 1 EPA 8260  | ) 11/19/96 IM     |          |  |
| 1,1-Dichloropropene     | <130.  | μg/kgwetwt 125          | 1 EPA 8260  | ) 11/19/96 IM     |          |  |
| Carbon tetrachloride    | <130.  | μg/kgwetwt 125          | 1 EPA 8260  | ) 11/19/96 IM     |          |  |
| Benzene                 | <130.  | μg/kgwetwt 125          | 1 EPA 8260  | ) 11/19/96 IM     |          |  |
| 1,2-Dichloropropane     | <130.  | μg/kgwetwt 125          | 1 EPA 8260  | ) 11/19/96 IM     |          |  |
| Trichloroethene         | <130.  | μg/kgwetwt 125          | 1 EPA 8260  | 11/19/96 LM       |          |  |
| cis-1,3-Dichloropropene | <130.  | μg/kgwetwt 125          | 1 EPA 8260  | 11/19/96 IM       |          |  |
| Dibramamethane          | <130.  | μg/kgwetwt 125          | 1 EPA 8260  | 11/19/96 LM       |          |  |
| Bromodichloromethane    | <130.  | μg/kgwetwt 125          | 1 EPA 8260  | 11/19/96 IM       |          |  |
| Toluene                 | 410.   | μg/kgwetwt 125          | 1 EPA 8260  | ) 11/19/96 IM     |          |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WM-2580-4

Report Date: 12/06/96 PO No. : 03886-118-004

Project : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 9 of 40

| SAMPLE DESCRIPTION        |        | MATRIX      |     | SAMPLED BY |          | SAMPLED DATE |    | RECEIVED |  |
|---------------------------|--------|-------------|-----|------------|----------|--------------|----|----------|--|
| BB-W19-D1                 |        | Free Produc | t/  | CLIENT     |          | 11/11/9      | 6  | 11/15/96 |  |
| PARAMETER                 | RESULT | UNITS       | DF  | *PQL       | METHOD   | ANALYZED     | BY | NOTES    |  |
| trans-1,3-Dichloropropene | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | LM |          |  |
| 1,1,2-Trichloroethane     | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | IM |          |  |
| 1,3-Dichloropropane       | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | LM |          |  |
| Dibromochloromethane      | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | LM |          |  |
| Tetrachloroethene         | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | LM |          |  |
| 1,2-Dibromoethane         | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | LM |          |  |
| Chlorobenzene             | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | IM |          |  |
| 1,1,1,2-tetrachloroethane | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | LM |          |  |
| Ethylbenzene              | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | LM | <b>.</b> |  |
| m-Xylene/p-Xylene         | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | IM |          |  |
| Bromoform                 | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | LM | 1.67-    |  |
| o-Xylene                  | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | LM |          |  |
| Styrene                   | <130.  | μg/kgwetwt  | 125 | 1          | EPA 8260 | 11/19/96     | IM |          |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-4

Report Date: 12/06/96 PO No. : 03886-118-004

Project : FT DEVENS

# REPORT OF ANALYTICAL RESULTS

Page 10 of 40

| SAMPLE DESCRIPTION        |        | MATRIX                  | SAMPLED  | BY       | SAMPLED I | DATE | RECEIVED |
|---------------------------|--------|-------------------------|----------|----------|-----------|------|----------|
| BB-W19-D1                 |        | Free Product,<br>Liquid | / CLIENT |          | 11/11/9   | 6    | 11/15/96 |
| PARAMETER                 | RESULT | UNITS I                 | F *PQL   | METHOD   | ANALYZED  | BY   | NOTES    |
| 1,1,2,2-Tetrachloroethane | <130.  | μg/kgwetwt 12           | 25 1     | EPA 8260 | 11/19/96  | IM   |          |
| 1,2,3-Trichloropropane    | <130.  | μg/kgwetwt 12           | 25 1     | EPA 8260 | 11/19/96  | IM   |          |
| Isopropylbenzene          | <130.  | μg/kgwetwt 12           | 25 1     | EPA 8260 | 11/19/96  | IM   |          |
| Bromobenzene              | <130.  | μg/kgwetwt 12           | 25 1     | EPA 8260 | 11/19/96  | IM   |          |
| 2-Chlorotoluene           | <130.  | μg/kgwetwt 12           | 25 1     | EPA 8260 | 11/19/96  | IM   |          |
| n-Propylbenzene           | <130.  | μg/kgwetwt 12           | .5 1     | EPA 8260 | 11/19/96  | IM   |          |
| 4-Chlorotoluene           | <130.  | μg/kgwetwt 12           | .5 1     | EPA 8260 | 11/19/96  | IM   |          |
| 1,3,5-Trimethylbenzene    | <130.  | μg/kgwetwt 12           | .5 1     | EPA 8260 | 11/19/96  | IM   |          |
| tert-Butylbenzene         | <130.  | μg/kgwetwt 12           | .5 1     | EPA 8260 | 11/19/96  | IM   |          |
| 1,2,4-Trimethylbenzene    | <130.  | μg/kgwetwt 12           | :5 1     | EPA 8260 | 11/19/96  | IM   |          |
| sec-Butylbenzene          | <130.  | μg/kgwetwt 12           | 5 1      | EPA 8260 | 11/19/96  | IM   |          |
| 1,3-Dichlorobenzene       | <130.  | μg/kgwetwt 12           | 5 1      | EPA 8260 | 11/19/96  | IM   |          |
| 4-Isopropyltoluene        | J97    | μg/kgwetwt 12           | 5 1      | EPA 8260 | 11/19/96  | IM   |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WM-2580-4
Report Date: 12/06/96
PO No. : 03886-118-004

PO No. : 03886-118 Project : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 11 of 40

| SAMPLE DESCRIPTION           |        | MATRIX      |     | SAMPLED I | BY       | SAMPLED D | ATE | RECEIVED |  |
|------------------------------|--------|-------------|-----|-----------|----------|-----------|-----|----------|--|
| BB-W19-D1                    |        | Free Produc | t/  | CLIENT    |          | 11/11/9   | 6   | 11/15/96 |  |
| PARAMETER                    | RESULT | UNITS       | DF  | *PQL      | METHOD   | ANALYZED  | BY  | NOTES    |  |
| 1,4-Dichlorobenzene          | <130.  | μg/kgwetwt  | 125 | 1         | EPA 8260 | 11/19/96  | IM  |          |  |
| 1,2-Dichlorobenzene          | <130.  | μg/kgwetwt  | 125 | 1         | EPA 8260 | 11/19/96  | IM  |          |  |
| n-Butylbenzene               | <130.  | μg/kgwetwt  | 125 | 1         | EPA 8260 | 11/19/96  | IM  |          |  |
| 1,2-Dibromo-3-chloropropane  | <130.  | μg/kgwetwt  | 125 | 1         | EPA 8260 | 11/19/96  | IM  |          |  |
| 1,2,4-Trichlorobenzene       | <130.  | μg/kgwetwt  | 125 | 1         | EPA 8260 | 11/19/96  | IM  |          |  |
| Naphthalene                  | 300.   | μg/kgwetwt  | 125 | 1         | EPA 8260 | 11/19/96  | IM  |          |  |
| Hexachlorobutadiene          | <130.  | μg/kgwetwt  | 125 | 1         | EPA 8260 | 11/19/96  | IM  |          |  |
| 1,2,3-Trichlorobenzene       | <130.  | μg/kgwetwt  | 125 | 1         | EPA 8260 | 11/19/96  | IM  |          |  |
| Dibromofluoromethane (Surr.) | 102.   | 8           | 125 |           | EPA 8260 | 11/19/96  | IM  |          |  |
| Toluene-d8 (%)               | 101.   | 8           | 125 |           | EPA 8260 | 11/19/96  | IM  |          |  |
| p-Bromofluorobenzene (%)     | 103.   | ક           | 125 |           | EPA 8260 | 11/19/96  | IM  |          |  |
| Acetone                      | J500.  | μg/kgwetwt  | 125 | 5.0       | EPA 8260 | 11/19/96  | IM  |          |  |
| 2-Butanone                   | <630.  | μg/kgwetwt  | 125 | 5.0       | EPA 8260 | 11/19/96  | IM  |          |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-4

Report Date: 12/06/96

PO No. Project : 03886-118-004

: FT DEVENS

## REPORT OF ANALYTICAL RESULTS

Page 12 of 40

| SAMPLE DESCRIPTION                 |                | MATRIX                   |    | SAMPLED | BY       | SAMPLED I            | RECEIVED |          |  |
|------------------------------------|----------------|--------------------------|----|---------|----------|----------------------|----------|----------|--|
| BB-W19-D1                          |                | Free Product/<br>Liquid  |    | CLIENT  |          | 11/11/96             |          | 11/15/96 |  |
| PARAMETER                          | RESULT         | UNITS                    | DF | *PQL    | METHOD   | ANALYZED             | BY       | NOTES    |  |
| 4-Methyl-2-pentanone<br>2-Hexanone | <380.<br><500. | μg/kgwetwt<br>μg/kgwetwt |    |         | EPA 8260 | 11/19/96<br>11/19/96 | LM       |          |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-5 Report Date: 12/06/96

PO No. : 03886-118-004 Project : FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 13 of 40

| SAMPLE DESCRIPTION |        | MATRIX                  | SAMPLED | BY     | SAMPLED DATE RECEIV |    |          |  |  |  |
|--------------------|--------|-------------------------|---------|--------|---------------------|----|----------|--|--|--|
| BG-B25-D1          |        | Free Product/<br>Liquid | CLIENT  | CLIENT |                     | 96 | 11/15/96 |  |  |  |
| PARAMETER          | RESULT | UNITS D                 | F *PQL  | METHOD | ANALYZED            | BY | NOTES    |  |  |  |
| Arsenic, Total     | <0.8   | mg/kgwetwt 1.           | 0 0.8   | 6010   | 11/22/96            | EM | 1        |  |  |  |
| Barium, Total      | <0.50  | mg/kgwetwt 1.           | 0 0.50  | 6010   | 11/22/96            | EM | 1        |  |  |  |
| Cadmium, Total     | <1.00  | mg/kgwetwt 1.           | 0 1.00  | 6010   | 11/22/96            | EM | 1        |  |  |  |
| Chromium, Total    | <1.50  | mg/kgwetwt 1.           | 0 1.50  | 6010   | 11/22/96            | EM | 1        |  |  |  |
| Lead, Total        | <0.5   | mg/kgwetwt 1.           | 0 0.5   | 6010   | 11/22/96            | EM | 1        |  |  |  |
| Mercury, Total     | <0.100 | μg/gwetwt 1.            | 0.100   | 7471   | 11/21/96            | GB | 2        |  |  |  |
| Selenium, Total    | <1.0   | mg/kgwetwt 1.           | 0 1.0   | 6010   | 11/22/96            | EM | 1        |  |  |  |
| Silver, Total      | <1.5   | mg/kgwetwt 1.           | 0 1.5   | 6010   | 11/22/96            | EM | 1        |  |  |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/kdwajc (dw) MK22ICS1

<sup>(1)</sup> Sample Preparation on 11/22/96 by PLC using 3050

<sup>(2)</sup> Sample Preparation on 11/21/96 by GFB using 7471



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-5

Report Date: 12/06/96

PO No.

: 03886-118-004

Project

: FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 14 of 40

| SAMPLE DESCRIPTION       |        | MATRIX SAMPLED BY       |       |        |        | SAMPLED DATE RECEIVED |    |          |  |  |
|--------------------------|--------|-------------------------|-------|--------|--------|-----------------------|----|----------|--|--|
| BG-B25-D1                |        | Free Product/<br>Liquid |       | CLIENT |        | 11/12/96              |    | 11/15/96 |  |  |
| PARAMETER                | RESULT | UNITS                   | DF    | *PQL   | METHOD | ANALYZED              | ву | NOTES    |  |  |
| Corrosivity as pH        | 4.9    | pH unit                 | s 1.0 | 0.10   | SW9045 | 11/19/96              | JF | 1        |  |  |
| Cyanide, Reactive        | <20    | mg/L                    | 1.0   | 20     | SW7.3  | 11/20/96              | WL | 2        |  |  |
| Ignitability-Flash Point | >65    | degrees                 | C 1.0 | 25     | SW1010 | 11/18/96              | WL |          |  |  |
| Sulfide, Reactive        | <27    | mg/L                    | 1.0   | 27     | SW7.3  | 11/18/96              | CM | 2        |  |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/ejnajc(dw)/pph

<sup>(1)</sup> Sample Preparation on 11/19/96 by JF

<sup>(2)</sup> Sample Preparation on 11/18/96 by CLM



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-5 Report Date: 12/06/96

PO No.

: 03886-118-004

Project

: FT DEVENS

## REPORT OF ANALYTICAL RESULTS

Page 15 of 40

| SAMPLE DESCRIPTION                                            | MZ                     | TRIX                    |              | SAMPLED | BY                     | SAMPLED I | RECEIVED |          |  |
|---------------------------------------------------------------|------------------------|-------------------------|--------------|---------|------------------------|-----------|----------|----------|--|
| BG-B25-D1                                                     |                        | Free Product/<br>Liquid |              |         |                        | 11/12/96  |          | 11/15/96 |  |
| PARAMETER                                                     | RESULT                 | UNITS                   | DF           | *PQL    | METHOD ·               | ANALYZED  | BY       | NOTES    |  |
| Diesel Range Organics<br>Diesel Range Organics<br>o-Terphenyl | 3400000 <b>0</b><br>DL | μg/L<br>%               | 2900<br>2900 | 50      | 8015M-DRO<br>8015M-DRO |           |          |          |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/djn/pdl

<sup>(1)</sup> Sample Preparation on 12/02/96 by KGT using METHOD

<sup>(2) &</sup>quot;DL" flag denotes inability to calculate surrogate recovery due to sample dilution.

<sup>(3)</sup> Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-5

Report Date: 12/06/96

PO No. : 03886-118-004 Project

: FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 16 of 40

| SAMPLE DESCRIPTION       |        | MATRIX     |     | SAMPLED | BY    |       | SAMPLED I | ATE | REC | EIVED |
|--------------------------|--------|------------|-----|---------|-------|-------|-----------|-----|-----|-------|
| BG-B25-D1                |        | Free Produ | ct/ | CLIENT  |       |       | 11/12/9   | 6   | 11/ | 15/96 |
| PARAMETER                | RESULT | UNITS      | DF  | *PQL    | METHO | Ď I   | ANALYZED  | BY  |     | NOTES |
| VOAs (8260)              |        |            |     |         |       |       |           |     |     | 1,2   |
| Dichlorodifluoromethane  | <250.  | μg/kgwetwt | 125 | 2       | EPA 8 | 260 1 | 1/19/96   | IM  |     |       |
| Chloromethane            | <250.  | μg/kgwetwt | 125 | 2       | EPA 8 | 260 1 | 1/19/96   | IM  |     |       |
| Vinyl chloride           | <250.  | μg/kgwetwt | 125 | 2       | EPA 8 | 260 1 | 1/19/96   | IM  |     |       |
| Bronomethane             | <250.  | μg/kgwetwt | 125 | 2       | EPA 8 | 260 1 | L1/19/96  | IM  |     |       |
| Chloroethane             | <250.  | μg/kgwetwt | 125 | 2       | EPA 8 | 260 1 | 1/19/96   | IM  |     |       |
| Trichlorofluoromethane   | <250.  | μg/kgwetwt | 125 | 2       | EPA 8 | 260 1 | 1/19/96   | IM  |     |       |
| 1,1-Dichloroethene       | <130.  | μg/kgwetwt | 125 | 1       | EPA 8 | 260 1 | 1/19/96   | IM  |     |       |
| Methylene chloride       | B190   | μg/kgwetwt | 125 | 1       | EPA 8 | 260 1 | 1/19/96   | IM  |     |       |
| trans-1,2-Dichloroethene | <130.  | μg/kgwetwt | 125 | 1       | EPA 8 | 260 1 | 1/19/96   | IM  |     |       |
| 1,1-Dichloroethane       | <130.  | μg/kgwetwt | 125 | 1       | EPA 8 | 260 1 | 1/19/96   | IM  |     |       |
| cis-1,2-Dichloroethene   | <130.  | μg/kgwetwt | 125 | 1       | EPA 8 | 260 1 | 1/19/96   | IM  |     |       |
| 2,2-Dichloropropane      | <130.  | μg/kgwetwt |     | 1       | EPA 8 | 260 1 | 1/19/96   | IM  |     |       |
| Bromochloromethane       | <130.  | μg/kgwetwt |     |         |       |       | 1/19/96   | IM  |     |       |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh

<sup>(1) &</sup>quot;J" flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.

<sup>(2) &</sup>quot;B" flag denotes detection of this analyte in the laboratory method blank analyzed concurrently with the sample.



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WM-2580-5

Report Date: 12/06/96

PO No.

: 03886-118-004

Project

: FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 17 of 40

| SAMPLE DESCRIPTION        | PLE DESCRIPTION MATRIX SAMPLED BY |                                                                                                                                                                                                                                                                                                                 |     |        | BY       | SAMPLED D | ATE | RECEIVED |
|---------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|----------|-----------|-----|----------|
| BG-B25-D1                 |                                   | Free Product/ Liquid  I UNITS DI  µg/kgwetwt 12: | et/ | CLIENT |          | 11/12/9   | 6   | 11/15/96 |
| PARAMETER                 | RESULT                            | UNITS                                                                                                                                                                                                                                                                                                           | DF  | *PQL   | METHOD   | ANALYZED  | BY  | NOTES    |
| Chloroform                | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      | 125 | 1      | EPA 8260 | 11/19/96  | LM  |          |
| 1,1,1-Trichloroethane     | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      | 125 | 1      | EPA 8260 | 11/19/96  | IM  |          |
| 1,2-Dichloroethane        | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      | 125 | 1      | EPA 8260 | 11/19/96  | LM  |          |
| 1,1-Dichloropropene       | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      | 125 | 1      | EPA 8260 | 11/19/96  | IM  |          |
| Carbon tetrachloride      | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      | 125 | 1      | EPA 8260 | 11/19/96  | LM  |          |
| Benzene                   | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      | 125 | 1      | EPA 8260 | 11/19/96  | IM  | - 12     |
| 1,2-Dichloropropane       | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      | 125 | 1      | EPA 8260 | 11/19/96  | IM  |          |
| Trichloroethene           | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      | 125 | 1      | EPA 8260 | 11/19/96  | IM  |          |
| cis-1,3-Dichloropropene   | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      | 125 | 1      | EPA 8260 | 11/19/96  | IM  |          |
| Dibromomethane            | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      | 125 | 1      | EPA 8260 | 11/19/96  | IM  |          |
| Bromodichloromethane      | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      | 125 | 1      | EPA 8260 | 11/19/96  | IM  |          |
| Toluene                   | 200.                              | μg/kgwetwt                                                                                                                                                                                                                                                                                                      | 125 | 1      | EPA 8260 | 11/19/96  | IM  |          |
| trans-1,3-Dichloropropene | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      |     | 1      | EPA 8260 | 11/19/96  | IM  |          |
| 1,1,2-Trichloroethane     | <130.                             | μg/kgwetwt                                                                                                                                                                                                                                                                                                      |     | 1      | EPA 8260 | 11/19/96  | IM  |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WM-2580-5 Report Date: 12/06/96

PO No. Project : 03886-118-004 : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 18 of 40

| SAMPLE DESCRIPTION        |        | MATRIX     |     | SAMPLED | BY   |      | SAMPLED I | 1/19/96 LM<br>1/19/96 LM<br>1/19/96 LM<br>1/19/96 LM<br>1/19/96 LM<br>1/19/96 LM<br>1/19/96 LM |          |  |  |
|---------------------------|--------|------------|-----|---------|------|------|-----------|------------------------------------------------------------------------------------------------|----------|--|--|
| BG-B25-D1                 |        | Free Produ | ct/ | CLIENT  |      |      | 11/12/9   | 6                                                                                              | 11/15/96 |  |  |
| PARAMETER                 | RESULT | UNITS      | DF  | *PQL    | METI | ĐĐ   | ANALYZED  | BY                                                                                             | NOTES    |  |  |
| 1,3-Dichloropropane       | <130.  | μg/kgwetwt | 125 | 1       | EPA  | 8260 | 11/19/96  | LM                                                                                             |          |  |  |
| Dibromochloromethane      | <130.  | μg/kgwetwt | 125 | 1       | EPA  | 8260 | 11/19/96  | LM                                                                                             |          |  |  |
| Tetrachloroethene         | <130.  | μg/kgwetwt | 125 | 1       | EPA  | 8260 | 11/19/96  | LM                                                                                             |          |  |  |
| 1,2-Dibromoethane         | <130.  | μg/kgwetwt | 125 | 1       | EPA  | 8260 | 11/19/96  | IM                                                                                             |          |  |  |
| Chlorobenzene             | <130.  | μg/kgwetwt | 125 | 1       | EPA  | 8260 | 11/19/96  | LM                                                                                             |          |  |  |
| 1,1,1,2-tetrachloroethane | <130.  | μg/kgwetwt | 125 | 1       | EPA  | 8260 | 11/19/96  | LM                                                                                             |          |  |  |
| Ethylbenzene              | J110   | μg/kgwetwt | 125 | 1       | EPA  | 8260 | 11/19/96  | IM                                                                                             |          |  |  |
| m-Xylene/p-Xylene         | 600.   | μg/kgwetwt |     | 1       | EPA  | 8260 | 11/19/96  | LM                                                                                             |          |  |  |
| Bramoform                 | <130.  | μg/kgwetwt | 125 | 1       | EPA  | 8260 | 11/19/96  | IM                                                                                             |          |  |  |
| o-Xylene                  | 350.   | μg/kgwetwt | 125 | 1       | EPA  | 8260 | 11/19/96  | LM                                                                                             |          |  |  |
| Styrene                   | <130.  | μg/kgwetwt | 125 | 1       | EPA  | 8260 | 11/19/96  | LM                                                                                             |          |  |  |
| 1,1,2,2-Tetrachloroethane | <130.  | μg/kgwetwt | 125 | 1       | EPA  | 8260 | 11/19/96  | IM                                                                                             |          |  |  |
| 1,2,3-Trichloropropane    | <130.  | μg/kgwetwt |     | 1       | EPA  | 8260 | 11/19/96  | IM                                                                                             |          |  |  |
| Isopropylbenzene          | <130.  | μg/kgwetwt |     | 1       | EPA  | 8260 | 11/19/96  | LM                                                                                             |          |  |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON
P.O. BOX 425
AYER, MA 01432

Lab Number: WM-2580-5 Report Date: 12/06/96

PO No. Project : 03886-118-004 : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 19 of 40

| SAMPLE DESCRIPTION          |        | MATRIX     |     | SAMPLED        | BY   |      | SAMPLED D | ATE                                            | RECEIVED |
|-----------------------------|--------|------------|-----|----------------|------|------|-----------|------------------------------------------------|----------|
| BG-B25-D1                   |        | Free Produ | ct/ | CLIENT         |      |      | 11/12/9   | BY NOTE  IM  IM  IM  IM  IM  IM  IM  IM  IM  I | 11/15/96 |
| PARAMETER                   | RESULT | UNITS      | DF  | *PQL           | METH | EOD  | ANALYZED  | BY                                             | NOTES    |
| Bromobenzene                | <130.  | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |
| 2-Chlorotoluene             | <130.  | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |
| n-Propylbenzene             | 190.   | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |
| 4-Chlorotoluene             | <130.  | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |
| 1,3,5-Trimethylbenzene      | 1700.  | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |
| tert-Butylbenzene           | <130.  | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |
| 1,2,4-Trimethylbenzene      | 1400.  | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |
| sec-Butylbenzene            | <130.  | µg/kgwetwt | 125 | <sub>2</sub> 1 | EPA  | 8260 | 11/19/96  | IM                                             |          |
| 1,3-Dichlorobenzene         | <130.  | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |
| 4-Isopropyltoluene          | J120   | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |
| 1,4-Dichlorobenzene         | <130.  | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |
| 1,2-Dichlorobenzene         | <130.  | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |
| n-Butylbenzene              | 200.   | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |
| 1,2-Dibromo-3-chloropropane | <130.  | μg/kgwetwt | 125 | 1              | EPA  | 8260 | 11/19/96  | IM                                             |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-5 Report Date: 12/06/96

PO No.

: 03886-118-004

Project : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 20 of 40

| SAMPLE DESCRIPTION           |        | MATRIX     |     | SAMPLED | BY       | SAMPLED I | ATE | RECEIVED |
|------------------------------|--------|------------|-----|---------|----------|-----------|-----|----------|
| BG-B25-D1                    |        | Free Produ |     |         | CLIENT   |           | 96  | 11/15/96 |
| PARAMETER                    | RESULT | UNITS      | DF  | *PQL    | METHOD   | ANALYZED  | ву  | NOTES    |
| 1,2,4-Trichlorobenzene       | <130.  | μg/kgwetwt | 125 | 1       | EPA 8260 | 11/19/96  | LM  |          |
| Naphthalene                  | 630.   | μg/kgwetwt | 125 | 1       | EPA 8260 | 11/19/96  | IM  |          |
| Hexachlorobutadiene          | <130.  | μg/kgwetwt | 125 | 1       | EPA 8260 | 11/19/96  | IM  |          |
| 1,2,3-Trichlorobenzene       | <130.  | μg/kgwetwt | 125 | 1       | EPA 8260 | 11/19/96  | IM  |          |
| Dibromofluoromethane (Surr.) | 100.   | 8          | 125 |         | EPA 8260 | 11/19/96  | IM  |          |
| Toluene-d8 (%)               | 101.   | ક          | 125 |         | EPA 8260 | 11/19/96  | IM  |          |
| p-Bromofluorobenzene (%)     | 103.   | 8          | 125 |         | EPA 8260 | 11/19/96  | IM  |          |
| Acetone                      | <630.  | μg/kgwetwt | 125 | 5.0     | EPA 8260 | 11/19/96  | IM  |          |
| 2-Butanone                   | <630.  | μg/kgwetwt | 125 | 5.0     | EPA 8260 | 11/19/96  | IM  |          |
| 4-Methyl-2-pentanone         | <380.  | μg/kgwetwt | 125 | 3.0     | EPA 8260 | 11/19/96  | IM  |          |
| 2-Hexanone                   | <500.  | μg/kgwetwt | 125 | 4.0     | EPA 8260 | 11/19/96  | IM  |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-6 Report Date: 12/06/96

PO No.

: 03886-118-004

Project

: FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 21 of 40

| SAMPLE DESCRIPTION |        | MATRIX     |     | SAMPLED | BY     | SAMPLED D | ATE | RECEIVED |
|--------------------|--------|------------|-----|---------|--------|-----------|-----|----------|
| BBBG-WC01          |        | Solid      |     | CLIENT  |        | 11/14/9   | 6   | 11/15/96 |
| PARAMETER          | RESULT | UNITS      | DF  | *PQL    | METHOD | ANALYZED  | BY  | NOTES    |
| Arsenic, Total     | 18.5   | mg/kgdrywt | 1.0 | 0.8     | 6010   | 12/03/96  | EM  | 1        |
| Barium, Total      | 34.3   | mg/kgdrywt | 1.0 | 0.50    | 6010   | 12/03/96  | EM  | 1        |
| Cadmium, Total     | <1.00  | mg/kgdrywt | 1.0 | 1.00    | 6010   | 12/03/96  | EM  | 1        |
| Chromium, Total    | 23.4   | mg/kgdrywt | 1.0 | 1.50    | 6010   | 12/03/96  | EM  | 1        |
| Lead, Total        | 44.5   | mg/kgdrywt | 1.0 | 0.5     | 6010   | 12/03/96  | EM  | 1        |
| Mercury, Total     | <0.100 | μg/gdrywt  | 1.0 | 0.100   | 7471   | 11/21/96  | GB  | 2        |
| Selenium, Total    | <1.0   | mg/kgdrywt | 1.0 | 1.0     | 6010   | 12/03/96  | EM  | 1        |
| Silver, Total      | <1.5   | mg/kgdrywt | 1.0 | 1.5     | 6010   | 12/03/96  | EM  | 1        |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/kdwajc(dw) ML03ICS1

<sup>(1)</sup> Sample Preparation on 12/03/96 by PLC using 3050

<sup>(2)</sup> Sample Preparation on 11/21/96 by GFB using 7471



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-6

Report Date: 12/06/96

PO No.

: 03886-118-004

Project

: FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 22 of 40

| SAMPLE DESCRIPTION        | MATRIX |           | SAMPL | ED BY |         | SAMPLED I | SAMPLED DATE RECEIVE |    |          |  |  |
|---------------------------|--------|-----------|-------|-------|---------|-----------|----------------------|----|----------|--|--|
| BBBG-WC01                 |        | Solid     |       | CLIEN | r       |           | 11/14/9              | 96 | 11/15/96 |  |  |
| PARAMETER                 | RESULT | UNITS     | DF    | *PQL  | METHOD  |           | ANALYZED             | BY | NOTES    |  |  |
| Corrosivity as pH         | 6.6    | pH units  | 1.0   | 0.10  | SW9045  |           | 11/19/96             | JF | 1        |  |  |
| Cyanide, Reactive         | <2.0   | mg/kg     | 1.0   | 2.0   | SW7.3   |           | 11/20/96             | WL | - 2      |  |  |
| Ignitability-Flash Point  | >65    | degrees C | 1.0   | 25    | SW1010  |           | 11/18/96             | WL |          |  |  |
| Solids-Total Residue (TS) | 86.    | wt %      | 1.0   | 0.10  | CLP/CIP | SOW       | 11/20/96             | JF | 1        |  |  |
| Sulfide, Reactive         | 27.    | mg/kg     | 1.0   | 27    | SW7.3   |           | 11/18/96             | CM | . 2      |  |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/ejnajc(dw)

<sup>(1)</sup> Sample Preparation on 11/19/96 by JF

<sup>(2)</sup> Sample Preparation on 11/18/96 by CLM



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-6

Report Date: 12/06/96

PO No.

: 03886-118-004

Project

: FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 23 of 40

| SAMPLE DESCRIPTION                 |        |          |       | SAMPLED | BY      | SAMPLED I | ATE | RECEIVED |  |
|------------------------------------|--------|----------|-------|---------|---------|-----------|-----|----------|--|
| BBBG-WC01                          |        |          | Solid |         |         | 11/14/96  |     | 11/15/96 |  |
| PARAMETER                          | RESULT | UNITS    | DF    | *PQL    | METHOD  | ANALYZED  | BY  | NOTES    |  |
| Total Petroleum Hydrocarbons (TPH) | 1300   | mg/kgdry | wt 10 | 2       | 5 418.1 | 11/26/96  | BG  | 1        |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. (1) Sample Preparation on 11/22/96 by KGT

12/06/96

LJO/ejnajc(dw)/bwg/pph



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WM-2580-6 Report Date: 12/06/96 PO No. : 03886-118-004

Project

: FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 24 of 40

| SAMPLE DESCRIPTION                          | MATRIX SAMPLED BY |            |     |        | BY        | SAMPLED I | ATE | RECEIVED |
|---------------------------------------------|-------------------|------------|-----|--------|-----------|-----------|-----|----------|
| BBBG-WC01                                   |                   | Solid      |     | CLIENT |           | 11/14/9   | 6   | 11/15/96 |
| PARAMETER                                   | RESULT            | UNITS      | DF  | *PQL   | METHOD    | ANALYZED  | BY  | NOTES    |
| TCL Semivolatile Organics by<br>USEPA 8270B |                   |            |     |        |           |           |     | 1,2,3    |
| Phenol                                      | <400.             | μg/kgdrywt | 1.2 | 330    | EPA 8270B | 11/25/96  | IN  |          |
| bis(2-Chloroethyl)ether                     | <400.             | μg/kgdrywt | 1.2 | 330    | EPA 8270B | 11/25/96  | TN  |          |
| 2-Chlorophenol                              | <400.             | μg/kgdrywt | 1.2 | 330    | EPA 8270B | 11/25/96  | TN  |          |
| 1,3-Dichlorobenzene                         | <400.             | μg/kgdrywt | 1.2 | 330    | EPA 8270B | 11/25/96  | TN  |          |
| 1,4-Dichlorobenzene                         | <400.             | μg/kgdrywt | 1.2 | 330    | EPA 8270B | 11/25/96  | IN  |          |
| 1,2-Dichlorobenzene                         | <400.             | μg/kgdrywt | 1.2 | 330    | EPA 8270B | 11/25/96  | TN  |          |
| 2-Methylphenol                              | <400.             | μg/kgdrywt | 1.2 | 330    | EPA 8270B | 11/25/96  | 'IN |          |
| bis (2-Chloroisopropyl) ether               | <400.             | μg/kgdrywt | 1.2 | 330    | EPA 8270B | 11/25/96  | IN  |          |
| 4-Methylphenol                              | <400.             | μg/kgdrywt | 1.2 | 330    | EPA 8270B | 11/25/96  | IN  |          |
| n-Nitroso-dipropylamine                     | <400.             | μg/kgdrywt | 1.2 | 330    | EPA 8270B | 11/25/96  | IN  |          |
| Hexachloroethane                            | <400.             | µg/kgdrywt | 1.2 | 330    | EPA 8270B | 11/25/96  | IN  |          |
| Nitrobenzene                                | <400.             | µg/kgdrywt |     | 330    | EPA 8270B | 11/25/96  | IN  |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/jjc/kwh

<sup>(1)</sup> Sample Preparation on 11/21/96 by KGT using EPA 3550A

<sup>(2) &</sup>quot;J" flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.

<sup>(3)</sup> Internal standard area(s) are out of criteria. Reanalysis confirmed matrix interference.



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-6
Report Date: 12/06/96
PO No. : 03886-118-004

Project : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 25 of 40

| SAMPLE DESCRIPTION         | RIPITION MATRIX SAMPLED BY |            |     |        | MATRIX SAMPLED BY |          |     |       | SAMPLED D | RECEIVED |  |
|----------------------------|----------------------------|------------|-----|--------|-------------------|----------|-----|-------|-----------|----------|--|
| BBBG-WC01                  |                            | Solid      |     | CLIENT |                   | 11/15/96 |     |       |           |          |  |
| PARAMETER                  | RESULT                     | UNITS      | DF  | *PQL   | METHOD            | ANALYZED | BY  | NOTES |           |          |  |
| Isophorone                 | <400.                      | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | IN  |       |           |          |  |
| 2-Nitrophenol              | <400.                      | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | TN  |       |           |          |  |
| 2,4-Dimethylphenol         | <400.                      | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | 'IN |       |           |          |  |
| bis(2-Chloroethoxy)methane | <400.                      | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | IN  |       |           |          |  |
| 2,4-Dichlorophenol         | <400.                      | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | IN  | 2     |           |          |  |
| 1,2,4-Trichlorobenzene     | <400.                      | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | IN  |       |           |          |  |
| Naphthalene                | <400.                      | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | TN  |       |           |          |  |
| 4-Chloroaniline            | <400.                      | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | TŊ  |       |           |          |  |
| Hexachlorobutadiene        | <400.                      | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | TN  |       |           |          |  |
| 4-Chloro-3-methylphenol    | <400.                      | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | IN  |       |           |          |  |
| 2-Methylnaphthalene        | J230                       | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | IN  |       |           |          |  |
| Hexachlorocyclopentadiene  | <400.                      | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | IN  |       |           |          |  |
| 2,4,6-Trichlorophenol      | <400.                      | μg/kgdrywt | 1.2 | 330    | EPA 8270B         | 11/25/96 | 'IN |       |           |          |  |
| 2,4,5-Trichlorophenol      | <980.                      | μg/kgdrywt |     | 820    | EPA 8270B         | 11/25/96 | IN  |       |           |          |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/jjc/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-6 Report Date: 12/06/96

PO No.

: 03886-118-004

Project

: FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 26 of 40

| MATRIX SAMPLED BY |                                                       |        |                                                                        | SAMPLED I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RECEIVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|-------------------------------------------------------|--------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solid             |                                                       | CLIENT |                                                                        | DD ANALYZED BY  2270B 11/25/96 TN                                                                                                                                                                                                                                                                 | 11/15/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T UNITS           | DF                                                    | *PQL   | METHOD                                                                 | ANALYZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| μg/kgdrywt        | 1.2                                                   | 330    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgdrywt        | 1.2                                                   | 820    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgdrywt        | 1.2                                                   | 330    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgdrywt        | 1.2                                                   | 330    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgdrywt        | 1.2                                                   | 330    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgdrywt        | 1.2                                                   | 820    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgdrywt        | 1.2                                                   | 330    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgđrywt        | 1.2                                                   | 820    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgdrywt        | 1.2                                                   | 820    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgdrywt        | 1.2                                                   | 330    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgdrywt        | 1.2                                                   | 330    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgdrywt        | 1.2                                                   | 330    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgdrywt        | 1.2                                                   | 330    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| μg/kgdrywt        | 1.2                                                   | 330    | EPA 8270B                                                              | 11/25/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | Solid  ### UNITS  ################################### | Solid  | Solid CLIENT  ### FOIL  #### FOIL  ################################### | Solid CLIENT  IT UNITS DF *PQL METHOD  µg/kgdrywt 1.2 330 EPA 8270B  µg/kgdrywt 1.2 820 EPA 8270B  µg/kgdrywt 1.2 330 EPA 8270B  µg/kgdrywt 1.2 330 EPA 8270B  µg/kgdrywt 1.2 330 EPA 8270B  µg/kgdrywt 1.2 820 EPA 8270B  µg/kgdrywt 1.2 330 EPA 8270B | Solid CLIENT 11/14/9  IT UNITS DF *PQL METHOD ANALYZED  µg/kgdrywt 1.2 330 EPA 8270B 11/25/96  µg/kgdrywt 1.2 820 EPA 8270B 11/25/96  µg/kgdrywt 1.2 330 EPA 8270B 11/25/96  µg/kgdrywt 1.2 330 EPA 8270B 11/25/96  µg/kgdrywt 1.2 330 EPA 8270B 11/25/96  µg/kgdrywt 1.2 820 EPA 8270B 11/25/96  µg/kgdrywt 1.2 820 EPA 8270B 11/25/96  µg/kgdrywt 1.2 330 EPA 8270B 11/25/96  µg/kgdrywt 1.2 820 EPA 8270B 11/25/96  µg/kgdrywt 1.2 820 EPA 8270B 11/25/96  µg/kgdrywt 1.2 330 EPA 8270B 11/25/96 | Solid CLIENT 11/14/96  IT UNITS DF *PQL METHOD ANALYZED BY  µg/kgdrywt 1.2 330 EPA 8270B 11/25/96 TN  µg/kgdrywt 1.2 820 EPA 8270B 11/25/96 TN  µg/kgdrywt 1.2 820 EPA 8270B 11/25/96 TN  µg/kgdrywt 1.2 330 EPA 8270B 11/25/96 TN  µg/kgdrywt 1.2 820 EPA 8270B 11/25/96 TN  µg/kgdrywt 1.2 820 EPA 8270B 11/25/96 TN  µg/kgdrywt 1.2 330 EPA 8270B 11/25/96 TN |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/jjc/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-6 Report Date: 12/06/96

PO No.

: 03886-118-004

Project : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 27 of 40

| SAMPLE DESCRIPTION         | MATRIX | SAMPLED        | BY     | SAMPLED I | DATE     | RECEIVED               |          |
|----------------------------|--------|----------------|--------|-----------|----------|------------------------|----------|
| BBBG-WC01                  |        | Solid          | CLIENT |           | 11/14/9  | 96                     | 11/15/96 |
| PARAMETER                  | RESULT | UNITS DF       | *PQL   | METHOD    | ANALYZED | BY                     | NOTES    |
| 4-Nitroaniline             | <980.  | μg/kgdrywt 1.2 | 820    | EPA 8270B | 11/25/96 | TN                     |          |
| 4,6-Dinitro-2-methylphenol | <980.  | μg/kgdrywt 1.2 | 820    | EPA 8270B | 11/25/96 | 'TN                    |          |
| n-Nitrosodiphenylamine     | <400.  | μg/kgdrywt 1.2 | 330    | EPA 8270B | 11/25/96 | TN                     |          |
| 4-Bromophenyl phenyl ether | <400.  | μg/kgdrywt 1.2 | 330    | EPA 8270B | 11/25/96 | $\mathbf{T}\mathbf{N}$ |          |
| Hexachlorobenzene          | <400.  | μg/kgdrywt 1.2 | 330    | EPA 8270B | 11/25/96 | TN                     |          |
| Pentachlorophenol          | <980.  | μg/kgdrywt 1.2 | 820    | EPA 8270B | 11/25/96 | TN                     |          |
| Phenanthrene               | 890.   | μg/kgdrywt 1.2 | 330    | EPA 8270B | 11/25/96 | $\mathbf{T}\mathbf{N}$ |          |
| Anthracene                 | J230   | μg/kgdrywt 1.2 | 330    | EPA 8270B | 11/25/96 | TN                     |          |
| Carbazole                  | J55    | μg/kgdrywt 1.2 | 330    | EPA 8270B | 11/25/96 | IN                     |          |
| Di-n-butylphthalate        | J52    | μg/kgdrywt 1.2 | 330    | EPA 8270B | 11/25/96 | TN                     |          |
| Fluoranthene               | 860.   | μg/kgdrywt 1.2 | 330    | EPA 8270B | 11/25/96 | IN                     |          |
| Pyrene                     | 970.   | μg/kgdrywt 1.2 | 330    | EPA 8270B | 11/25/96 | IN                     |          |
| Butyl benzylphthalate      | <400.  | μg/kgdrywt 1.2 | 330    | EPA 8270B | 11/25/96 | 'IN                    |          |
| 3,3'-Dichlorobenzidine     | <400.  | μg/kgdrywt 1.2 | 330    | EPA 8270B | 11/25/96 | IN                     |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/jjc/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-6

Report Date: 12/06/96

PO No.

: 03886-118-004

Project

: FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 28 of 40

| SAMPLE DESCRIPTION            |        | MATRIX     |     | SAMPLED | BY        | SAMPLED  | DATE | RECEIVED |
|-------------------------------|--------|------------|-----|---------|-----------|----------|------|----------|
| BBBG-WC01                     |        | Solid      |     | CLIENT  |           | 11/14/   | /96  | 11/15/96 |
| PARAMETER                     | RESULT | UNITS      | DF  | *PQL    | METHOD    | ANALYZEI | ) BY | NOTES    |
| Benzo (a) anthracene          | 540.   | μg/kgdrywt | 1.2 | 330     | EPA 8270B | 11/25/96 | IN   |          |
| Chrysene                      | 510.   | μg/kgdrywt | 1.2 | 330     | EPA 8270B | 11/25/96 | IN   |          |
| bis (2-Ethylhexyl) phthalate  | <400.  | μg/kgdrywt | 1.2 | 330     | EPA 8270B | 11/25/96 | TN   |          |
| Di-n-octylphthalate           | <400.  | μg/kgdrywt | 1.2 | 330     | EPA 8270B | 11/25/96 | TN   |          |
| Benzo (b) fluoranthene        | 710.   | μg/kgdrywt | 1.2 | 330     | EPA 8270B | 11/25/96 | TN   |          |
| Benzo(k) fluoranthene         | J160   | μg/kgdrywt | 1.2 | 330     | EPA 8270B | 11/25/96 | IN   |          |
| Benzo (a) pyrene              | 420.   | μg/kgdrywt | 1.2 | 330     | EPA 8270B | 11/25/96 | TN   |          |
| Indeno(1,2,3-cd)pyrene        | J290   | μg/kgdrywt | 1.2 | 330     | EPA 8270B | 11/25/96 | TN   |          |
| Dibenzo (a,h) anthracene      | J68    | μg/kgdrywt | 1.2 | 330     | EPA 8270B | 11/25/96 | TN   |          |
| Benzo(g,h,i)perylene          | J260   | μg/kgdrywt | 1.2 | 330     | EPA 8270B | 11/25/96 | IN   | 9        |
| 2-Fluorophenol (% Recovery)   | 74.    | ક          | 1.2 | 4       | EPA 8270B | 11/25/96 | TN   |          |
| Phenol-d5 (% Recovery)        | 79.    | 8          | 1.2 |         | EPA 8270B | 11/25/96 | TN   |          |
| Nitrobenzene-d5 (% Recovery)  | 83.    | ક          | 1.2 |         | EPA 8270B | 11/25/96 | TN   |          |
| 2-Fluorobiphenyl (% Recovery) | 86.    | 용          | 1.2 |         | EPA 8270B | 11/25/96 | TN   |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/jjc/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WM-2580-6 Report Date: 12/06/96

PO No. Project : 03886-118-004 : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 29 of 40

| SAMPLE DESCRIPTION                |        | MATRIX |     | SAMPLE | D BY      | SAMPLED I | RECEIVED |          |
|-----------------------------------|--------|--------|-----|--------|-----------|-----------|----------|----------|
| BBBG-WC01                         |        | Solid  |     | CLIENT |           | 11/14/9   | 6        | 11/15/96 |
| PARAMETER                         | RESULT | UNITS  | DF  | *PQL   | METHOD    | ANALYZED  | BY       | NOTES    |
| 2,4,6-Tribramophenol (% Recovery) | 69.    | ક      | 1.2 |        | EPA 8270B | 11/25/96  | TN       |          |
| Terphenyl-d14 (% Recovery)        | 84.    | ક      | 1.2 |        | EPA 8270B | 11/25/96  | TN       |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/jjc/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WM-2580-6 Report Date: 12/06/96

PO No. Project : 03886-118-004 : FT DEVENS

# REPORT OF ANALYTICAL RESULTS

Page 30 of 40

| SAMPLE DESCRIPTION       | MATRIX | SAMPLED    | BY  | SAMPLED I | 11/15/96 |          |    |          |
|--------------------------|--------|------------|-----|-----------|----------|----------|----|----------|
| BBBG-WC01                |        | Solid      |     |           |          |          |    | 11/14/96 |
| PARAMETER                | RESULT | UNITS      | DF  | *PQL      | METHOD   | ANALYZED | BY | NOTES    |
| VOAs (8260)              |        |            |     |           |          |          |    | 1,2,3,4  |
| Dichlorodifluoromethane  | <2.4   | μg/kgdrywt | 1.2 | 2         | EPA 8260 | 11/19/96 | DP |          |
| Chloromethane            | <2.4   | μg/kgdrywt | 1.2 | 2         | EPA 8260 | 11/19/96 | DΡ |          |
| Vinyl chloride           | <2.4   | μg/kgdrywt | 1.2 | 2         | EPA 8260 | 11/19/96 | DP |          |
| Bromomethane             | <2.4   | μg/kgdrywt | 1.2 | 2         | EPA 8260 | 11/19/96 | DP |          |
| Chloroethane             | <2.4   | μg/kgdrywt | 1.2 | 2         | EPA 8260 | 11/19/96 | DP |          |
| Trichlorofluoromethane   | <2.4   | μg/kgdrywt | 1.2 | 2         | EPA 8260 | 11/19/96 | DP |          |
| 1,1-Dichloroethene       | <1.2   | μg/kgdrywt | 1.2 | 1         | EPA 8260 | 11/19/96 | DP |          |
| Methylene chloride       | B7     | μg/kgdrywt | 1.2 | 1         | EPA 8260 | 11/19/96 | DP |          |
| trans-1,2-Dichloroethene | <1.2   | μg/kgdrywt | 1.2 | 1         | EPA 8260 | 11/19/96 | DP |          |
| 1,1-Dichloroethane       | <1.2   | μg/kgdrywt | 1.2 | 1         | EPA 8260 | 11/19/96 | DP |          |
| cis-1,2-Dichlorcethene   | <1.2   | μg/kgdrywt | 1.2 | 1         | EPA 8260 | 11/19/96 | DP |          |
| 2,2-Dichloropropane      | <1.2   | μg/kgdrywt | 1.2 | 1         | EPA 8260 | 11/19/96 | DP |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh

<sup>(1) &</sup>quot;J" flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.

<sup>(2) &</sup>quot;B" flag denotes detection of this analyte in the laboratory method blank analyzed concurrently with the sample.

<sup>(3) &</sup>quot;\$" flag denotes surrogate compound recovery is out of criteria. Re-extraction or re-analysis confirmed matrix interference.

<sup>(4)</sup> Internal standard area(s) are out of criteria. Reanalysis confirmed matrix interference.



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-6 Report Date: 12/06/96

PO No.

: 03886-118-004

Project : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 31 of 40

| SAMPLE DESCRIPTION      |        | MATRIX              | SAMPLED BY  | SAMPLED DATE | RECEIVED |  |
|-------------------------|--------|---------------------|-------------|--------------|----------|--|
| BBBG-WC01               |        | Solid               | CLIENT      | 11/14/96     | 11/15/96 |  |
| PARAMETER               | RESULT | UNITS DF            | *PQL METHOD | ANALYZED BY  | NOTES    |  |
| Bromochloromethane      | <1.2   | μg/kgdrywt 1.2      | 1 EPA 8260  | 11/19/96 DP  |          |  |
| Chloroform              | <1.2   | μg/kgdrywt 1.2      | 1 EPA 8260  | 11/19/96 DP  |          |  |
| 1,1,1-Trichloroethane   | <1.2   | μg/kgdrywt 1.2      | 1 EPA 8260  | 11/19/96 DP  |          |  |
| 1,2-Dichlorcethane      | <1.2   | $\mu$ g/kgdrywt 1.2 | 1 EPA 8260  | 11/19/96 DP  |          |  |
| 1,1-Dichloropropene     | <1.2   | μg/kgdrywt 1.2      | 1 EPA 8260  | 11/19/96 DP  |          |  |
| Carbon tetrachloride    | <1.2   | μg/kgdrywt 1.2      | 1 EPA 8260  | 11/19/96 DP  | ×.       |  |
| Benzene                 | <1.2   | μg/kgdrywt 1.2      | 1 EPA 8260  | 11/19/96 DP  |          |  |
| 1,2-Dichloropropane     | <1.2   | μg/kgdrywt 1.2      | 1 EPA 8260  | 11/19/96 DP  |          |  |
| Trichloroethene         | <1.2   | μg/kgdrywt 1.2      | 1 EPA 8260  | 11/19/96 DP  |          |  |
| cis-1,3-Dichloropropene | <1.2   | μg/kgdrywt 1.2      | 1 EPA 8260  | 11/19/96 DP  |          |  |
| Dibromomethane          | <1.2   | μg/kgdrywt 1.2      | 1 EPA 8260  | 11/19/96 DP  |          |  |
| Bromodichloromethane    | <1.2   | μg/kgdrywt 1.2      | 1 EPA 8260  | 11/19/96 DP  |          |  |
| Toluene                 | J0.8   | μg/kgdrywt 1.2      | 1 EPA 8260  | 11/19/96 DP  |          |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WM-2580-6 Report Date: 12/06/96 PO No. : 03886-118-004

PO No. Project

: FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 32 of 40

| SAMPLE DESCRIPTION        | MATRIX |            | SAMPLED | BY     | SAMPLED D | 11/15/96 |    |         |
|---------------------------|--------|------------|---------|--------|-----------|----------|----|---------|
| BBBG-WC01                 | Solid  |            |         | CLIENT |           |          |    | 11/14/9 |
| PARAMETER                 | RESULT | UNITS      | DF      | *PQL   | METHOD    | ANALYZED | BY | NOTES   |
| trans-1,3-Dichloropropene | <1.2   | μg/kgdrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |
| 1,1,2-Trichloroethane     | <1.2   | μg/kgdrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |
| 1,3-Dichloropropane       | <1.2   | μg/kgdrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |
| Dibromochloromethane      | <1.2   | μg/kgđrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |
| Tetrachloroethene         | <1.2   | μg/kgdrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |
| 1,2-Dibromoethane         | <1.2   | μg/kgdrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |
| Chlorobenzene             | <1.2   | μg/kgdrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |
| 1,1,1,2-tetrachloroethane | <1.2   | μg/kgdrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |
| Ethylbenzene              | 2.     | μg/kgdrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |
| m-Xylene/p-Xylene         | J0.8   | μg/kgdrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |
| Bromoform                 | <1.2   | μg/kgdrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |
| o-Xylene                  | 5.     | μg/kgdrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |
| Styrene                   | <1.2   | μg/kgdrywt | 1.2     | 1      | EPA 8260  | 11/19/96 | DP |         |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-6 Report Date: 12/06/96

PO No. Project : 03886-118-004 : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 33 of 40

| SAMPLE DESCRIPTION        |        | MATRIX     |     | SAMPLED | BY       | SAMPLED DATE RECEIV |    |          |
|---------------------------|--------|------------|-----|---------|----------|---------------------|----|----------|
| BBBG-WC01                 |        | Solid      |     | CLIENT  |          | 11/14/9             | 6  | 11/15/96 |
| PARAMETER                 | RESULT | UNITS      | DF  | *PQL    | METHOD   | ANALYZED            | BY | NOTES    |
| 1,1,2,2-Tetrachloroethane | <1.2   | μg/kgdrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |
| 1,2,3-Trichloropropane    | <1.2   | μg/kgđrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |
| Isopropylbenzene          | 3.     | μg/kgdrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |
| Bromobenzene              | <1.2   | μg/kgdrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |
| 2-Chlorotoluene           | <1.2   | μg/kgdrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |
| n-Propylbenzene           | 6.     | μg/kgđrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |
| 4-Chlorotoluene           | <1.2   | μg/kgdrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |
| 1,3,5-Trimethylbenzene    | 12.    | μg/kgdrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |
| tert-Butylbenzene         | <1.2   | μg/kgđrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |
| 1,2,4-Trimethylbenzene    | 4.     | μg/kgdrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |
| sec-Butylbenzene          | 6.     | μg/kgdrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |
| 1,3-Dichlorobenzene       | <1.2   | μg/kgdrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |
| 4-Isopropyltoluene        | 13.    | μg/kgdrywt | 1.2 | 1       | EPA 8260 | 11/19/96            | DP |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-6
Report Date: 12/06/96
PO No. : 03886-118-004

Project

: FT DEVENS

# REPORT OF ANALYTICAL RESULTS

Page 34 of 40

| SAMPLE DESCRIPTION           |        | MATRIX     |     | SAMPLED BY | SAMPLED D | RECEIVED |    |          |
|------------------------------|--------|------------|-----|------------|-----------|----------|----|----------|
| BBBG-WC01                    | Solid  |            |     | CLIENT     | CLIENT    |          |    | 11/15/96 |
| PARAMETER                    | RESULT | UNITS      | DF  | *PQL ME    | IHOD      | ANALYZED | BY | NOTES    |
| 1,4-Dichlorobenzene          | <1.2   | μg/kgdrywt | 1.2 | 1 EP.      | A 8260    | 11/19/96 | DP |          |
| 1,2-Dichlorobenzene          | <1.2   | μg/kgdrywt | 1.2 | 1 EP.      | A 8260    | 11/19/96 | DP |          |
| n-Butylbenzene               | 7.     | μg/kgdrywt | 1.2 | 1 EP       | A 8260    | 11/19/96 | DP |          |
| 1,2-Dibromo-3-chloropropane  | <1.2   | μg/kgdrywt | 1.2 | 1 EP       | A 8260    | 11/19/96 | DP |          |
| 1,2,4-Trichlorobenzene       | <1.2   | μg/kgdrywt | 1.2 | 1 EP       | A 8260    | 11/19/96 | DP |          |
| Naphthalene                  | B12    | μg/kgdrywt | 1.2 | 1 EP       | A 8260    | 11/19/96 | DP | •        |
| Hexachlorobutadiene          | <1.2   | μg/kgdrywt | 1.2 | 1 EP       | A 8260    | 11/19/96 | DP |          |
| 1,2,3-Trichlorobenzene       | <1.2   | μg/kgdrywt | 1.2 | 1 EP       | A 8260    | 11/19/96 | DP |          |
| Dibromofluoromethane (Surr.) | 118.   | *          | 1.2 | EP         | A 8260    | 11/19/96 | DP |          |
| Toluene-d8 (%)               | 95.    | ક          | 1.2 | EP         | A 8260    | 11/19/96 | DP |          |
| p-Bromofluorobenzene (%)     | \$65   | *          | 1.2 | EPA        | A 8260    | 11/19/96 | DP |          |
| Acetone                      | JB5    | μg/kgdrywt | 1.2 | 5.0 EP     | A 8260    | 11/19/96 | DP |          |
| 2-Butanone                   | <6.    | μg/kgdrywt | 1.2 | 5.0 EPA    | A 8260    | 11/19/96 | DP |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WM-2580-6 Report Date: 12/06/96

PO No. Project : 03886-118-004 : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 35 of 40

| SAMPLE DESCRIPTION                 | MATRIX       |                      | SAMPLED | BY     | SAMPLED I | RECEIVED             |    |          |
|------------------------------------|--------------|----------------------|---------|--------|-----------|----------------------|----|----------|
| BBBG-WC01                          |              | Solid                |         | CLIENT |           | 11/14/9              | 96 | 11/15/96 |
| PARAMETER                          | RESULT       | UNITS                | DF      | *PQL   | METHOD    | ANALYZED             | BY | NOTES    |
| 4-Methyl-2-pentanone<br>2-Hexanone | <3.6<br><4.8 | μg/kgđry<br>μg/kgđry |         |        |           | 11/19/96<br>11/19/96 |    |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-7

Report Date: 12/06/96

PO No. : 03886-118-004

Project : FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 36 of 40

| AMPLE DESCRIPTION MATRIX SAMPLED BY |         |      |        | N MATRIX SAMPLED BY SAMP |     |      |          | SAMPLED I | ATE      | RECEIVED |  |
|-------------------------------------|---------|------|--------|--------------------------|-----|------|----------|-----------|----------|----------|--|
| TRIP BLANK                          | Aqueous |      | eous   | CLIENT                   |     |      | 11/14/96 |           | 11/15/96 |          |  |
| PARAMETER                           |         |      | RESULT | UNITS                    | DF  | *PQL | METHOD   | ANALYZED  | BY       | NOTES    |  |
| VOAs (8260)                         |         |      |        |                          |     |      |          |           |          | 1,2      |  |
| Dichlorodifluoromethane             |         |      | <2.    | μg/L                     | 1.0 | 2    | EPA 8260 | 11/20/96  | DP       |          |  |
| Chloromethane                       | 0.4     |      | <2.    | μg/L                     | 1.0 | 2    | EPA 8260 | 11/20/96  | DP       |          |  |
| Vinyl chloride                      |         |      | <2.    | μg/L                     | 1.0 | 2    | EPA 8260 | 11/20/96  | DP       |          |  |
| Bromomethane                        |         |      | <2.    | μg/L                     | 1.0 | 2    | EPA 8260 | 11/20/96  | DP       |          |  |
| Chloroethane                        |         |      | <2.    | μg/L                     | 1.0 | 2    | EPA 8260 | 11/20/96  | DP       |          |  |
| Trichlorofluoromethane              |         |      | <2.    | μg/L                     | 1.0 | 2    | EPA 8260 | 11/20/96  | DP       |          |  |
| 1,1-Dichloroethene                  |         |      | <1.    | μg/L                     | 1.0 | 1    | EPA 8260 | 11/20/96  | DP       |          |  |
| Methylene chloride                  |         |      | B1     | μg/L                     | 1.0 | 1    | EPA 8260 | 11/20/96  | DP       |          |  |
| trans-1,2-Dichloroethene            |         |      | <1.    | μg/L                     | 1.0 | 1    | EPA 8260 | 11/20/96  | DP       |          |  |
| 1,1-Dichloroethane                  |         |      | <1.    | μg/L                     | 1.0 | 1    | EPA 8260 | 11/20/96  | DP       |          |  |
| cis-1,2-Dichloroethene              |         |      | <1.    | μg/L                     | 1.0 | 1    | EPA 8260 | 11/20/96  | DP       |          |  |
| 2,2-Dichloropropane                 |         | 1.41 | <1.    | μg/L                     | 1.0 | 1    | EPA 8260 | 11/20/96  | DP       |          |  |
| Bromochloromethane                  |         |      | <1.    | μg/L                     | 1.0 | 1    | EPA 8260 | 11/20/96  | DP       |          |  |
| Chloroform                          |         |      | <1.    | μg/L                     | 1.0 | 1    | EPA 8260 | 11/20/96  | DP       |          |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc (dw) /kwh

<sup>(1) &</sup>quot;J" flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.

<sup>(2) &</sup>quot;B" flag denotes detection of this analyte in the laboratory method blank analyzed concurrently with the sample.



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-7 Report Date: 12/06/96

PO No. : 03886-118-004 Project

: FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 37 of 40

| MATRIX SAMPLED BY         |         |           |     |        | BY       | SAMPLED I | ATE      | RECEIVED |
|---------------------------|---------|-----------|-----|--------|----------|-----------|----------|----------|
| TRIP BLANK                | Aqueous |           |     | CLIENT | 11/14/96 |           | 11/15/96 |          |
| PARAMETER                 | RESULT  | UNITS     | DF  | *PQL   | METHOD   | ANALYZED  | BY       | NOTES    |
| 1,1,1-Trichloroethane     | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| 1,2-Dichloroethane        | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| 1,1-Dichloropropene       | <1.     | $\mu$ g/L | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| Carbon tetrachloride      | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| Benzene                   | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| 1,2-Dichloropropane       | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       | •        |
| Trichloroethene           | JO.8    | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| cis-1,3-Dichloropropene   | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| Dibromomethane            | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| Bramodichloromethane      | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| Toluene                   | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| trans-1,3-Dichloropropene | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| 1,1,2-Trichloroethane     | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| 1,3-Dichloropropane       | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |
| Dibramodhloramethane      | <1.     | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96  | DP       |          |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-7 Report Date: 12/06/96

PO No.

: 03886-118-004

Project : FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 38 of 40

| SAMPLE DESCRIPTION        |      | MATRIX SAMPLED BY |           |     |        |          |          | SAMPLED DATE F |          |  |
|---------------------------|------|-------------------|-----------|-----|--------|----------|----------|----------------|----------|--|
| TRIP BLANK                |      | Aqu               | ieous     |     | CLIENT |          | 11/14/96 |                | 11/15/96 |  |
| PARAMETER                 |      | RESULT            | UNITS     | DF  | *PQL   | METHOD   | ANALYZED | BY             | NOTES    |  |
| Tetrachloroethene         |      | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| 1,2-Dibromoethane         |      | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| Chlorobenzene             |      | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| 1,1,1,2-tetrachloroethane |      | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| Ethylbenzene              |      | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| m-Xylene/p-Xylene         |      | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| Bromoform                 |      | <1.               | $\mu$ g/L | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| o-Xylene                  |      | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| Styrene                   |      | <1.               | $\mu$ g/L | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| 1,1,2,2-Tetrachloroethane |      | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| 1,2,3-Trichloropropane    |      | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| Isopropylbenzene          |      | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| Bromobenzene              | 1.00 | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| 2-Chlorotoluene           |      | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
| n-Propylbenzene           |      | <1.               | μg/L      | 1.0 | 1      | EPA 8260 | 11/20/96 | DP             |          |  |
|                           |      |                   |           |     |        |          |          |                |          |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-7 Report Date: 12/06/96

PO No. Project : 03886-118-004 : FT DEVENS

REPORT OF ANALYTICAL RESULTS

Page 39 of 40

| SAMPLE DESCRIPTION          | MATRIX SAMPLED BY |         |     |      |          | SAMPLED D | ATE | RECEIVED |  |
|-----------------------------|-------------------|---------|-----|------|----------|-----------|-----|----------|--|
| TRIP BLANK                  | Aqu               | Aqueous |     |      | CLIENT   |           |     | 11/15/96 |  |
| PARAMETER                   | RESULT            | UNITS   | DF  | *PQL | METHOD   | ANALYZED  | BY  | NOTES    |  |
| 4-Chlorotoluene             | <1                | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| 1,3,5-Trimethylbenzene      | <1.               | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| tert-Butylbenzene           | <1.               | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| 1,2,4-Trimethylbenzene      | <1.               | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| sec-Butylbenzene            | <1.               | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| 1,3-Dichlorobenzene         | <1.               | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| 4-Isopropyltoluene          | <1.               | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| 1,4-Dichlorobenzene         | <1.               | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| 1,2-Dichlorobenzene         | <1.               | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| n-Butylbenzene              | <1.               | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| 1,2-Dibromo-3-chloropropane | <1.               | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| 1,2,4-Trichlorobenzene      | <1.               | μg/L    | 1.0 | . 1  | EPA 8260 | 11/20/96  | DP  |          |  |
| Naphthalene                 | B1                | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| Hexachlorobutadiene         | <1.               | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |
| 1,2,3-Trichlorobenzene      | <1.               | μg/L    | 1.0 | 1    | EPA 8260 | 11/20/96  | DP  |          |  |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh



ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WM-2580-7 Report Date: 12/06/96

PO No.

: 03886-118-004

Project : FT DEVENS

### REPORT OF ANALYTICAL RESULTS

Page 40 of 40

| SAMPLE DESCRIPTION     |         |        |       | SAMPLED | SAMPLED D | RECEIVED |          |          |       |
|------------------------|---------|--------|-------|---------|-----------|----------|----------|----------|-------|
| TRIP BLANK             |         |        |       | CLIENT  |           | 11/14/96 |          | 11/15/96 |       |
| PARAMETER              |         | RESULT | UNITS | DF      | *PQL      | METHOD   | ANALYZED | BY       | NOTES |
| Dibromofluoromethane ( | (Surr.) | 99.    | *     | 1.0     |           | EPA 8260 | 11/20/96 | DP       |       |
| Toluene-d8 (%)         |         | 99.    | ક     | 1.0     |           | EPA 8260 | 11/20/96 | DP       |       |
| p-Bromofluorobenzene   | (왕)     | 101.   | ક     | 1.0     |           | EPA 8260 | 11/20/96 | DP       |       |
| Acetone                |         | <5.    | μg/L  | 1.0     | 5.0       | EPA 8260 | 11/20/96 | DP       |       |
| 2-Butanone             |         | <5.    | μg/L  | 1.0     | 5.0       | EPA 8260 | 11/20/96 | DP       |       |
| 4-Methyl-2-pentanone   |         | J2     | μg/L  | 1.0     | 3.0       | EPA 8260 | 11/20/96 | DP       | •     |
| 2-Hexanone             |         | <4.    | μg/L  | 1.0     | 4.0       | EPA 8260 | 11/20/96 | DP       |       |

<sup>\*</sup> PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

12/06/96

LJO/jcbajc(dw)/kwh

# **Katahdin Analytical Services**

# Volatile Petroleum Hydrocarbon (VPH) Analysis

Client: Roy F. Weston

Date Collected: 11/14/96

Client Sample ID: Trip Blank

Date Recieved: 11/15/96

KAS Sample ID: WM2580 - 7

Date Extracted: NA

Matrix: Water

Date Aliphatics Analyzed: 11/22/96

Percent Moisture: 0 %

Date Aromatics Analyzed: 11/22/96

Date Reported: 12/2/96

### **VPH** Results

| Parameter           | Results    | PQL | Toxicity<br>Multiplier | Equivalent Concentration | Equivalent PQL | Units |
|---------------------|------------|-----|------------------------|--------------------------|----------------|-------|
| C5-C8 Aliphatics*   | < 40       | 40  | 0.5                    | 0                        | 20             | ug/L  |
| C9-C12 Aliphatics** | < 10       | 10  | 0.05                   | 0                        | 0.5            | ug/L  |
| C9-C10 Aromatics    | < 20       | 20  | 1                      | 0                        | 20             | ug/L  |
| Volatile Petrole    | um Hydroca | 000 | 40.5                   | ug/L                     |                |       |

<sup>\*</sup> Excludes BTEX and MTBE

## Surrogate Recovery

| Surrogate                | % Recovery | Acceptance Range (%) |  |
|--------------------------|------------|----------------------|--|
| 2,5-dibromotoluene (FID) | 100        | 80 - 120             |  |
| 2,5-dibromotoluene (PID) | 114        | 80 - 120             |  |

## Targeted VPH Analytes

| Analyte                | Results | PQL | Units |
|------------------------|---------|-----|-------|
| Methyl-tert-butylether | < 15    | 15  | ug/L  |
| Benzene                | < 5     | 5   | ug/L  |
| Toluene                | < 15    | 15  | ug/L  |
| Ethylbenzene           | < 5     | 5   | ug/L  |
| m,p-Xylene             | < 20    | 20  | ug/L  |
| o-Xylene               | < 10    | 10  | ug/L  |
| Naphthalene            | < 10    | 10  | ug/L  |

<sup>\*\*</sup> Excludes Naphthalene and 1,2,4-Trimethylbenzene

# Katanum Analytical Services, Inc.

# Elements Section

Solid Preparation Blank (P B S)

| Client:      | Roy F. Weston |  |
|--------------|---------------|--|
| Work Order:  | WM2580        |  |
| Prep. Date:  | 11/22/96      |  |
| QC Batch ID: | MK22ICS1      |  |

| Method 3010 (HCl) | Method     | Measured           | Analysis  | Acceptance    | Notes |
|-------------------|------------|--------------------|-----------|---------------|-------|
| Elements:         |            | Conc. (mg/Kg) Date |           | Limit (mg/Kg) |       |
| Arsenic           | 200.7/6010 | <0.8               | 22-Nov-96 | 0.8           |       |
| Barium            | 200.7/6010 | <0.50              | 22-Nov-96 | 0.50          |       |
| Cadmium           | 200.7/6010 | <1.00              | 22-Nov-96 | 1.00          |       |
| Chromium          | 200.7/6010 | <1.50              | 22-Nov-96 | 1.50          |       |
| Lead              | 200.7/6010 | <0.5               | 22-Nov-96 | 0.5           |       |
| Selenium          | 200.7/6010 | <1.0               | 22-Nov-96 | 1.0           |       |
| Silver            | 200.7/6010 | <1.5               | 22-Nov-96 | 1.5           |       |

- 1) Blank acceptance limits are equivalent to PQLs unless otherwise indicated.
- 2) Random low level contamination is indicated for this parameter. (if notated)

# Katahdin Analytical Services, Inc. Elements Section

Solid Laboratory Control Sample (LCSS)

| Client: R    | oy F. Weston |
|--------------|--------------|
| Work Order:  | WM2580       |
| Prep. Date:  | 11/22/96     |
| QC Batch ID: | MK22ICS1     |

| Method 3010 (HCI) | Sample<br>Weight (g): |                           |                  |                                        | 100                 | Calculation Facto        | r<br>196 |
|-------------------|-----------------------|---------------------------|------------------|----------------------------------------|---------------------|--------------------------|----------|
| Element:          | Measured Conc. (mg/L) | Measured<br>Conc. (mg/kg) | Analysis<br>Date | Volume, FV(m  Reference  Value (mg/kg) | PERCENT<br>RECOVERY | Control<br>Limits(mg/Kg) | Notes    |
| Arsenic           | 1.18                  | 231                       | 22-Nov-96        | 228                                    | 101%                | 7.44-109                 |          |
| Barium            | 1.64                  | 322                       | 22-Nov-96        | 320                                    | 100%                | 112-340                  |          |
| Cadmium           | 0.270                 | 52.9                      | 22-Nov-96        | 51.4                                   | 103%                | 41.3-90.8                |          |
| Chromium          | 0.506                 | 99.2                      | 22-Nov-96        | 91.3                                   | 109%                | 29.1-74.1                |          |
| Lead              | 0.934                 | 183                       | 22-Nov-96        | 176                                    | 104%                | 48.8-129                 |          |
| Selenium          | 0.346                 | 67.8                      | 22-Nov-96        | 75.5                                   | 90%                 | 51.3-137                 |          |
| Silver            | 0.898                 | 176                       | 22-Nov-96        | 170                                    | 104%                | 48.8-129                 |          |

- 1) The laboratory uses the published certified value and advisory range, respectively, as the true value and acceptance range for this commercially available solid reference material (trace metals in soil).
- 2) See cover letter for additional information. (if notated)
- 3) Analysis methods are the same as the analysis methods for the prep blank.
- 4) Lot 226 received 10-19-95

# Katandin Analytical Services, Inc.

# **Elements Section**

Solid Preparation Blank (P B S)

Client: Roy F. Weston
Work Order: WM2580
Prep. Date: 12/03/96
QC Batch ID: ML03ICS1

| Method 3010 (HCl) | Method     | Measured      | Analysis | Acceptance    | Notes |
|-------------------|------------|---------------|----------|---------------|-------|
| Elements:         |            | Conc. (mg/Kg) |          | Limit (mg/Kg) |       |
| Arsenic           | 200.7/6010 | <0.8          | 3-Dec-96 | 0.8           |       |
| Barium            | 200.7/6010 | <0.50         | 3-Dec-96 | 0.50          |       |
| Cadmium           | 200.7/6010 | <1.00         | 3-Dec-96 | 1.00          |       |
| Chromium          | 200.7/6010 | <1.50         | 3-Dec-96 | 1.50          |       |
| Lead              | 200.7/6010 | <0.5          | 3-Dec-96 | 0.5           |       |
| Selenium          | 200.7/6010 | <1.0          | 3-Dec-96 | 1.0           |       |
| Silver            | 200.7/6010 | <1.5          | 3-Dec-96 | 1.5           |       |

- 1) Blank acceptance limits are equivalent to PQLs unless otherwise indicated.
- 2) Random low level contamination is indicated for this parameter. (if notated)

# Katahdin Analytical Services, Inc. Elements Section

Solid Laboratory Control Sample (LCSS)

| Client: R    | oy F. Weston |
|--------------|--------------|
| Work Order:  | WM2580       |
| Prep. Date:  | 12/03/96     |
| QC Batch ID: | ML03ICS1     |

| Method 3010 (HCl) Element: | Sample<br>Weight (g):    |                           | 0.52             |                            | al Calculation Fac  | Calculation Factor       | 192   |
|----------------------------|--------------------------|---------------------------|------------------|----------------------------|---------------------|--------------------------|-------|
|                            | Measured<br>Conc. (mg/L) | Measured<br>Conc. (mg/kg) | Analysis<br>Date | Reference<br>Value (mg/kg) | PERCENT<br>RECOVERY | Control<br>Limits(mg/Kg) | Notes |
| Arsenic                    | 1.22                     | 235                       | 3-Dec-96         | 228                        | 103%                | 7.44-109                 |       |
| Barium                     | 1.69                     | 325                       | 3-Dec-96         | 320                        | 102%                | 112-340                  |       |
| Cadmium                    | 0.279                    | 53.7                      | 3-Dec-96         | 51.4                       | 104%                | 41.3-90.8                |       |
| Chromium                   | 0.484                    | 93.1                      | 3-Dec-96         | 91.3                       | 102%                | 29.1-74.1                |       |
| Lead                       | 0.953                    | 183                       | 3-Dec-96         | 176                        | 104%                | 48.8-129                 |       |
| Selenium                   | 0.362                    | 69.6                      | 3-Dec-96         | 75.5                       | 92%                 | 51.3-137                 |       |
| Silver                     | 0.911                    | 175                       | 3-Dec-96         | 170                        | 103%                | 48.8-129                 | ,     |

- 1) The laboratory uses the published certified value and advisory range, respectively, as the true value and acceptance range for this commercially available solid reference material (trace metals in soil).
- 2) See cover letter for additional information. (if notated)
- 3) Analysis methods are the same as the analysis methods for the prep blank.
- 4) Lot 226 received 10-19-95

# Katahdin Analytical Services, Inc. Elements Section

## Mercury

|            | Client:       | Roy l             | F. Weston                |                            |
|------------|---------------|-------------------|--------------------------|----------------------------|
|            | Method:       | 74                | 71                       |                            |
|            | Work Order:   | WN                | 12580                    |                            |
|            | Prepa         | ration Blank Soil | (P B S)                  |                            |
| Prep. Date | Analysis Date | QC Batch ID       | Measured<br>Conc. (ug/g) | Acceptance<br>Limit (ug/g) |
| 21-Nov-96  | 21-Nov-96     | MK21HGS1          | < 0.100                  | 0.100                      |

| ä, |            |               | Laborator   | ry Control Sample | e Soil (LCSS). |            | £          |
|----|------------|---------------|-------------|-------------------|----------------|------------|------------|
|    | Prep. Date | Analysis Date | QC Batch ID | Measured          | Ref. Value     | Calculated | Control    |
|    |            |               |             | Conc. (ug/g)      | (ug/g)         | Rec. %     | Limits (%) |
| :  | 21-Nov-96  | 21-Nov-96     | MK21HGS1    | 3.40              | 3.30           | 103%       | 1.47-5,15  |

- 1) Blank acceptance limits are equivalent of PQL's unless otherwise indicated.
- 2) Random low level contamination is indicated for this parameter. (if notated)
- 3) See cover letter for additional information. (if notated)
- 4) The laboratory uses the published certified value and advisory range, respectively, as the true value and acceptance range for this commercially available solid reference material (trace metals in soil).

Client: Roy F. Weston
Work Order: WM2580

Method Blank and Laboratory Control Sample Results

#### METHOD BLANK RESULTS

### LABORATORY CONTROL SAMPLE RESULTS

|                            |           |           |          |         |        | JIII III III III |              |          |       |          | TITLE BILL |            |            |
|----------------------------|-----------|-----------|----------|---------|--------|------------------|--------------|----------|-------|----------|------------|------------|------------|
|                            | Date      | Date      |          | Concent | ration |                  | Practical    |          | True  | Measured | Percent    | Acceptance | Acceptance |
| į.                         | of        | of        | Units    | Measu   | red    | Acceptance       | Quantitation | Units    | Value | Value    | Recovered  | Range      | Range      |
| Parameter                  | Prep      | Analysis  |          | in Bla  | nk     | Range            | Level**      |          |       |          |            | (%)        | (mg/kg)    |
| Corrosivity - pH           | 19-Nov-96 | 19-Nov-96 | pH units |         | NA     | NA               | NA           | pH units | 7.00  | 6.98     | 99.7       | 80-120     |            |
| Reactivity - Cyanide       | 18-Nov-96 | 20-Nov-96 | mg/kg    | <       | 2.0 <  | 2.0              | 2.0          | mg       | 0.200 | 0.028    | 14.0       | 10-100     |            |
| Ignitability (Flash Point) | 18-Nov-96 | 18-Nov-96 | С        |         | NA     | NA               | 25           | С        | 27.0  | 26.0     | 96         | 80-120     |            |
| TS -Total Residue          | 19-Nov-96 | 20-Nov-96 | wt %     | < 0     | 10 <   | 0.10             | 0.10         |          |       |          |            |            |            |
| Reactivity - Sulfide       | 18-Nov-96 | 18-Nov-96 | mg/kg    | <       | 27 <   | 27               | 27           | mg       | 7.10  | 5.62     | 79.2       | 50-150     |            |
| TPH-Soils                  | 22-Nov-96 | 26-Nov-96 | mg/kg    | <       | 25 <   | 25               | 25           | mg       | 2.51  | 2.97     | 118        | 57-137     | @          |

<sup>\*\*</sup> Practical quantitation level is the lowest concentration measurable for samples with normal chemical and physical composition during routine laboratory operations.

### DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory and method specified acceptance range except as noted.

@ The laboratory uses the internally established statistical 99% confidence range as the acceptance range for this LCS.

# Maine Laboratory Quality Control Report

Methods, Chronology of Analysis and Method Blank Results

Client: Roy F. Weston Work Order #: WM2580

DRO by GC Method: SW846 8015M

| BLANK:         | NA  |
|----------------|-----|
| RESULT FILE :  | NA  |
| DATE ANALYZED. | NIA |

Free Product

CHRONOLOGY

| KAS<br>Sample Nos | Date<br>Extracted | Date<br>Analyzed | DF |
|-------------------|-------------------|------------------|----|
| WM2580-4          | 11/27/96          | 12/03/96         | 10 |
|                   |                   |                  |    |
|                   |                   |                  |    |
|                   |                   |                  |    |
|                   |                   |                  |    |
|                   |                   |                  |    |
|                   |                   |                  |    |
|                   |                   |                  |    |
|                   |                   |                  |    |
|                   |                   |                  |    |
|                   |                   |                  |    |
|                   |                   |                  |    |

| KAS<br>Sample Nos. | Date<br>Extracted | Date<br>Analyzed | <b>用的复数使用的</b> 用数据图 |
|--------------------|-------------------|------------------|---------------------|
|                    |                   |                  |                     |
|                    |                   |                  |                     |
|                    |                   |                  |                     |
|                    |                   |                  |                     |
|                    |                   |                  |                     |
|                    |                   |                  |                     |
|                    |                   |                  |                     |
|                    |                   |                  |                     |
|                    |                   |                  |                     |
|                    |                   |                  |                     |
|                    |                   |                  |                     |
|                    |                   |                  |                     |
|                    |                   |                  |                     |
|                    |                   |                  |                     |

### METHOD BLANK RESULTS\*

| Compound | Conc. (mg/kg) |
|----------|---------------|
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |
|          |               |

- \* Blank results listed correspond to the extraction blank prepared with the above samples on date of extraction. Only positive hits have been included. The remaining compounds were below the laboratory Practical Quantitation Levels.
- ~ The Dilution Factor (DF) indicates whether a sample, prepared in accordance with the analytical method protocol, was diluted prior to analysis. The Dilution Factor could also indicate that a smaller aliquot than specified in the method was utilized for sample preparation and analysis. DF does include the correction factor for conversion to dry weight.

# Maine Laboratory Quality Control Report

Methods, Chronology of Analysis and Method Blank Results

Client: Roy F. Weston
Work Order #: WM2580

DRO by GC Method: SW846 8015M

Water

**BLANK:** 

BF0227

RESULT FILE :

CNV2355

DATE ANALYZED:

12/03/96

### CHRONOLOGY

| KAS         | Date      | Date     | 1 × × 7 | KAS         | Date      | Date     |     |
|-------------|-----------|----------|---------|-------------|-----------|----------|-----|
| Sample Nos. | Extracted | Analyzed | DF~     | Sample Nos. | Extracted | Analyzed | DF~ |
| LCF0227     | 12/02/96  | 12/03/96 | 1       |             |           |          |     |
| WM2580-5    | 12/02/96  | 12/03/96 | 29000   |             |           |          |     |
|             |           |          |         |             |           |          |     |
|             |           |          | -       |             |           |          |     |
|             |           |          |         |             |           |          |     |
|             |           |          |         |             |           |          | _   |
|             | -         |          | -       |             |           |          |     |
|             |           |          |         |             |           |          |     |
|             |           |          |         |             |           |          |     |
|             |           |          | -       |             |           |          | -   |
|             |           |          | +       |             |           |          |     |
|             |           |          |         |             |           |          |     |
|             |           |          |         |             |           |          |     |
|             |           |          |         |             |           |          |     |

### METHOD BLANK RESULTS\*

| Compound | Conc. (ug/L) |
|----------|--------------|
| DRO      | 75           |
|          |              |
|          |              |
|          |              |
|          |              |

<sup>\*</sup> Blank results listed correspond to the extraction blank prepared with the above samples on date of extraction.

Only positive hits have been included. The remaining compounds were below the laboratory Practical Quantitation Levels.

<sup>~</sup> The Dilution Factor (DF) indicates whether a sample, prepared in accordance with the analytical method protocol, was diluted prior to analysis. The Dilution Factor could also indicate that a smaller aliquot than specified in the method was utilized for sample preparation and analysis.

DF does include the correction factor for conversion to dry weight.

Client: Roy F. Weston W.O. #: WM2580

Laboratory Control Sample Results

DRO by GC Method: SW846 8015M

Water Matrix

Date of Extraction:

12/02/96

LCS number:

LCF0227

Date of Analysis:

12/03/96

|                |       | Spike | LCS<br>Measured | LCS Dup. | LCS %    | LCS Dup. | Recovery<br>Acceptance | Relative<br>Percent | RPD Acceptance |
|----------------|-------|-------|-----------------|----------|----------|----------|------------------------|---------------------|----------------|
| Compound       | Units | Conc  | Conc.           | Cone     | Recovery | Recovery | Range (%)              | Difference          | Range (%)      |
| DRO Components | ug/L  | 500   | 493             | NA       | 99       | NA       | 60-140                 | NA                  | 0-20           |
| O-terphenyl    | ug/ml | 20.0  | 18.2            | NA       | 91       | NA       | 52-124                 | NA                  | 0-20           |

NA = Not Applicable

Client: Roy F. Weston
Work Order: WM2580

Methods, Chronology of Analysis and Method Blank Results

Volatile Petroleum Hydrocarbons by GC Method: MA DEP VPH

Instrument: GC09

Soil/Solid Matrix

File: 9NV3055.RST

11/22/96

CHRONOLOGY

|            |                       | CHRONO              |             |                  |                     |
|------------|-----------------------|---------------------|-------------|------------------|---------------------|
|            | le Nos. Date Analyzed | Dilution<br>Factor~ | Sample Nos. | Date<br>Analyzed | Dilution<br>Factor~ |
| 80-1 11/22 | 2580-1 11/22/96       | 1                   |             |                  |                     |
| 80-2 11/22 | 2580-2 11/22/96       | 1                   |             |                  |                     |
| 80-3 11/22 | 580-3 11/22/96        | 1                   |             |                  |                     |
|            |                       |                     |             |                  |                     |
|            |                       | 3                   |             |                  |                     |
|            |                       |                     |             |                  |                     |
|            |                       |                     |             |                  |                     |
|            |                       |                     | 14          |                  |                     |
|            |                       |                     |             |                  |                     |
|            |                       |                     |             |                  |                     |

#### METHOD BLANK RESULTS\*

| Compound * * | Conc. (ug/kg) |
|--------------|---------------|
|              |               |
|              |               |
|              |               |
|              |               |
|              |               |

- \* Only positive hits have been included. The remaining compounds were below the laboratory Practical Quantitation Levels.
- ~ The Dilution Factor (DF) indicates whether a sample, prepared in accordance with the analytical method protocol, was diluted prior to analysis. The Dilution Factor could also indicate that a smaller aliquot than specified in the method was utilized for sample preparation and analysis. For example, a dilution factor of 5 means that the sample was effectivel diluted by a factor of 5 prior to analysis, i.e., the sample was analyzed at 20% its reported concentration. DF does not include the correction factor for conversion to dry weight.

# Katahdin Analytical Services **Maine Laboratory Quality Control Report**

# Methods, Chronology of Analysis and Method Blank Results

EPH by GC Method: MADEP EPH

Soil

Client: Roy F. Weston

BLANK: BF0218

**CHRONOLOGY** 

| Aliphatics             |                     |           |        |  |  |  |
|------------------------|---------------------|-----------|--------|--|--|--|
| 18-495<br>Shanjih Piro | Deire<br>Lagranical | 11.094000 | 1917 - |  |  |  |
| WM2580 - 1             | 11/11/96            | 11/24/96  | 1      |  |  |  |
| WM2580 -2              | 11/11/96            | 11/24/96  | 1      |  |  |  |
| WM2580 -3              | 11/11/96            | 11/27/96  | 2      |  |  |  |
|                        |                     |           |        |  |  |  |
|                        | 1                   |           |        |  |  |  |
|                        |                     |           |        |  |  |  |
|                        |                     |           |        |  |  |  |

### Aromatics

| 1848<br>Samilte Sus |          | Date<br>Santyvei | n<br>Difi |
|---------------------|----------|------------------|-----------|
| WM2580 -1           | 11/11/96 | . 11/24/96       | 1         |
| WM2580 -2           | 11/11/96 | 11/24/96         | 1         |
| WM2580 -3           | 11/11/96 | 11/24/96         | 1         |
|                     |          |                  |           |
|                     |          | 5                |           |
|                     |          |                  |           |
|                     |          |                  |           |
|                     |          |                  |           |
|                     |          |                  |           |
| ,                   |          |                  |           |
|                     |          |                  |           |

### METHOD BLANK RESULTS\*

| (interpretation) |
|------------------|
|                  |
|                  |
|                  |
|                  |
| ֡                |

- \* Blank results listed correspond to the extraction blank prepared with the above sample on date of extraction. Only positive hits have been included. The remaining compounds were below the laboratory Practical Quantitation Levels.
- ~ The Dilution Factor (DF) indicates whether a sample, prepared in accordance with the analytical method protocol, was diluted prior to analysis. The Dilution Factor could also indicate that a smaller aliquot than specified in the method was utilized for sample preparation and analysis. For example, a dilution factor of 5 means that the sample was effectively diluted by a factor of 5 prior to analysis, i.e., the sample was analyzed at 20% its reported concentration. DF does not include the correction factor for conversion to dry weight.

# Katahdin Analytical Services Quality Control Report Laboratory Control Sample Results

| Client:               | Roy F. Weston |
|-----------------------|---------------|
| Client Sample ID:     | NA            |
| Laboratory Sample ID: | LCS           |
| Matrix:               | Soil          |
| Percent Moisture:     | NA            |

| 11/22/96  |
|-----------|
| 11/22/96  |
| 11/22/96  |
| 5-Dec-96  |
| MADEP VPH |
|           |

# SURROGATE RECOVERY

| Surrogate                | Raw    | %        | Acceptance |
|--------------------------|--------|----------|------------|
|                          | Amount | Recovery | Range      |
| 2,5-dibromotoluene (FID) | 83.6   | 106      | 80-120     |
| 2,5-dibromotoluene (PID) | 94.4   | 119      | 80-120     |

# TARGETED VPH ANALYTES

| Analyte                | Spike<br>Amount | Results | Percent<br>Recovery | Recovery<br>Limits | Units |
|------------------------|-----------------|---------|---------------------|--------------------|-------|
| Methyl-tert-butylether | 19.2            | 21.6    | 112                 | 80 - 120           | mg/Kg |
| Benzene                | 6.2             | 7.1     | 115                 | 80 - 120           | mg/Kg |
| Toluene                | 19.2            | 21.1    | 110                 | 80 - 120           | mg/Kg |
| Ethylbenzene           | 6.2             | 7.1     | 114                 | 80 - 120           | mg/Kg |
| m,p-Xylene             | 25.6            | 29.0    | 113                 | 80 - 120           | mg/Kg |
| o-Xylene               | 12.8            | 14.2    | 111                 | 80 - 120           | mg/Kg |
| Napthalene             | 12.8            | 15.3    | 120                 | 80 - 120           | mg/Kg |

# **Laboratory Control Sample Results Sheet**

Soil

Client: Roy F. Weston

Work Order #: WM2580

KAS LCS ID: LCF 0218

Date Extracted: 11/11/96

Date Aliphatics Analyzed: 11/24/96

Date Aromatics Analyzed: 11/24/96

| (сотроний)          | Unte  | Results   | ECSD<br>Resides | ILES<br>Revoyany (%) | Recovery (%) | LCS/D Recovery<br>Range (%) | RPD<br>(%) | RPD Recovery<br>Range (%) |
|---------------------|-------|-----------|-----------------|----------------------|--------------|-----------------------------|------------|---------------------------|
| C9-C18 Aliphatics   | mg/Kg | 12.80619  | NA              | 256                  | NA           | 60 - 140                    | NA         | 0 - 25                    |
| C19-C36 Aliphatics  | mg/Kg | 14.354309 | NA              | 191                  | NA           | 60 - 140                    | NA         | 0 - 25                    |
| 1-Chloro-octadecane | mg/Kg | 2.41534   | NA              | 121                  | NA           | 60 - 140                    | NA         | 0 - 25                    |
| Acenaphthene        | mg/Kg | 1.7229    | NA              | 69                   | NA           | 60 - 140                    | NA         | 0 - 25                    |
| Anthracene          | mg/Kg | 2.16433   | NA              | 87                   | NA           | 60 - 140                    | NA         | 0 - 25                    |
| Chrysene            | mg/Kg | 2.90644   | NA              | 116                  | NA           | 60 - 140                    | NA         | 0 - 25                    |
| Naphthalene         | mg/Kg | 1.60368   | NA              | 64                   | NA           | 60 - 140                    | NA         | 0 - 25                    |
| Pyrene              | mg/Kg | 2.05027   | NA              | 82                   | NA           | 60 - 140                    | NA         | 0 - 25                    |
| para-Terphenyl      | mg/Kg | 1.79718   | NA              | 90                   | NA           | 60 - 140                    | NA         | 0 - 25                    |

Client: Roy F. Weston
Work Order: WM2580

Methods, Chronology of Analysis and Method Blank Results

Semivolatile Organics by GC/MS Method: 8270B
Sample Preparation Technique: 3550

Soil/Solid Matrix

### CHRONOLOGY

| Sample Nos.   | Date      | Date      | LCS   | Dilution |              | Sample Nos. | Date      | Date:    | LCS  | Dilution |
|---------------|-----------|-----------|-------|----------|--------------|-------------|-----------|----------|------|----------|
| <b>一点,这些种</b> | Extracted | Analyzed  | File  | Factor ~ | THE STATE OF |             | Extracted | Analyzed | File | Factor ~ |
| WM2580-6      | 21-Nov-96 | 25-Nov-96 | K1990 | 1.0      |              |             |           |          |      |          |
| WM2580-6RE    | 21-Nov-96 | 25-Nov-96 | K1990 | 1.0      | 100          |             |           |          |      |          |
|               |           |           |       |          | 臺            |             |           |          |      |          |
|               |           |           |       |          | 1            |             | Parameter |          |      |          |
|               |           |           | l l   |          | 1            |             |           |          |      |          |
|               |           |           |       |          |              |             |           |          |      |          |
|               |           |           |       |          | 8            | •           |           |          |      |          |
|               |           |           |       |          |              |             |           |          |      |          |

### METHOD BLANK RESULTS\*

| Compound | Conc. (ug/kg) |
|----------|---------------|
|          |               |
|          |               |
|          |               |
|          |               |

- \* Only positive hits have been included. The remaining compounds were not detected in the method blank.
- ~ The Dilution Factor (DF) indicates whether a sample, prepared in accordance with the analytical method protocol, was diluted prior to The Dilution Factor could also indicate that a smaller aliquot than specified in the method was utilized for sample preparation and ana For example, a dilution factor of 5 means that the sample was effectively diluted by a factor of 5 prior to analysis, i.e., the sample was at 20% its reported concentration. DF does not include the correction factor for conversion to dry weight.

Client: Roy F. Weston Work Order: WM2580

# Laboratory Control Sample Results

TCL Semivolatile Organics by GC/MS Method: 8270B Soil/Solid Matrix

Date of Extraction:

21-Nov-96

Date of Analysis: 21-Nov-96

File: K1990.D

|                             | 1. 图 4 图 5 | <b>建筑线线</b> | LCS      | LCS      | Recovery   |
|-----------------------------|------------|-------------|----------|----------|------------|
|                             | 古州-白州大学    | Spike       | Measured | %        | Acceptance |
| Compound                    | Units      | Conc.       | Conc.    | Recovery | Range (%)* |
| Phenol                      | ug/kg      | 3333        | 2400     | 72.0     | 5-112      |
| bis(2-Chloroethyl)ether     | ug/kg      | 1667        | 1200     | 72.0     | 12-158     |
| 2-Chlorophenol              | ug/kg      | 3333        | 2500     | 75.0     | 23-134     |
| 1,3-Dichlorobenzene         | ug/kg      | 1667        | 1200     | 72.0     | 0-172      |
| 1,4-Dichlorobenzene         | ug/kg      | 1667        | 1200     | 72.0     | 20-124     |
| 1,2-Dichlorobenzene         | ug/kg      | 1667        | 1200     | 72.0     | 32-129     |
| 2-Methylphenol              | ug/kg      | 3333        | 2400     | 72.0     | *          |
| bis(2-Chloroisopropyl)ether | ug/kg      | 1667        | 1100     | 66.0     | 36-166     |
| 4-Methylphenol              | ug/kg      | 3333        | 2400     | 72.0     | *          |
| n-Nitroso-dipropylamine     | ug/kg      | 1667        | 1200     | 72.0     | 0-230      |
| Hexachloroethane            | ug/kg      | 1667        | 1200     | 72.0     | 40-113     |
| Nitrobenzene                | ug/kg      | 1667        | 1200     | 72.0     | 35-180     |
| Isophorone                  | ug/kg      | 1667        | 1200     | 72.0     | 21-196     |
| 2-Nitrophenol               | ug/kg      | 3333        | 2400     | 72.0     | 29-182     |
| 2,4-Dimethylphenol          | ug/kg      | 3333        | 2500     | 75.0     | 32-119     |
| bis(2-Chloroethoxy)methane  | ug/kg      | 1667        | 1200     | 72.0     | 33-184     |
| 2,4-Dichlorophenol          | ug/kg      | 3333        | 2400     | 72.0     | 39-135     |
| 1,2,4-Trichlorobenzene      | ug/kg      | 1667        | 1200     | 72.0     | 44-142     |
| Naphthalene                 | ug/kg      | 1667        | 1200     | 72.0     | 21-133     |
| 4-Chloroaniline             | ug/kg      | 1667        | 130      | 7.8      | *          |
| Hexachlorobutadiene         | ug/kg      | 1667        | 1200     | 72.0     | 24-116     |
| 4-Chloro-3-methylphenol     | ug/kg      | 3333        | 2400     | 72.0     | 22-147     |
| 2-Methylnaphthalene         | ug/kg      | 1667        | 1100     | 66.0     | *          |
| Hexachlorocyclopentadiene   | ug/kg      | 1667        | 1200     | 72.0     | *          |
| 2,4,6-Trichlorophenol       | ug/kg      | 3333        | 2400     | 72.0     | 37-144     |
| 2,4,5-Trichlorophenol       | ug/kg      | 3333        | 2400     | 72.0     | *          |
| 2-Chloronaphthalene         | ug/kg      | 1667        | 1300     | 78.0     | 60-118     |
| 2-Nitroaniline              | ug/kg      | 1667        | 1100     | 66.0     | *          |
| Dimethylphthalate           | ug/kg      | 1667        | 1200     | 72.0     | 0-112      |
| Acenaphthylene              | ug/kg      | 1667        | 1200     | 72.0     | 33-145     |
| 2,6-Dinitrotoluene          | ug/kg      | 1667        | 1300     | 78.0     | 50-158     |
| 3-Nitroaniline              | ug/kg      | 1667        | 460      | 27.6     | *          |
| Acenaphthene                | ug/kg      | 1667        | 1200     | 72.0     | 47-145     |
| 2,4-Dinitrophenol           | ug/kg      | 3333        | 2100     | 63.0     | 0-191      |
| 4-Nitrophenol               | ug/kg      | 3333        | 2500     | 75.0     | 0-132      |

Client: Roy F. Weston

Work Order: WM2580

## Laboratory Control Sample Results

TCL Semivolatile Organics by GC/MS Method: 8270B Soil/Solid Matrix

Date of Extraction:

21-Nov-96

Date of Analysis: 21-Nov-96

File: K1990.D

|                             | <b>公司总计划</b> 高铁 | 145 Table 1 | LCS      | LCS      | Recovery   |
|-----------------------------|-----------------|-------------|----------|----------|------------|
|                             |                 | Spike       | Measured | %        | Acceptance |
| Compound                    | Units           | Conc.       | Conc.    | Recovery | Range (%)* |
| Dibenzofuran                | ug/kg           | 1667        | 1100     | 66.0     | *          |
| 2,4-Dinitrotoluene          | ug/kg           | 1667        | 1200     | 72.0     | 39-139     |
| Diethylphthalate            | ug/kg           | 1667        | 1200     | 72.0     | 0-114      |
| 4-Chlorophenyl phenyl ether | ug/kg           | 1667        | 1200     | 72.0     | 25-158     |
| Fluorene                    | ug/kg           | 1667        | 1200     | 72.0     | 59-121     |
| 4-Nitroaniline              | ug/kg           | 1667        | 1100     | 66.0     | *          |
| 4,6-Dinitro-2-methylphenol  | ug/kg           | 3333        | 2400     | 72.0     | 0-181      |
| n-Nitrosodiphenylamine      | ug/kg           | 1667        | 1300     | 78.0     | *          |
| 4-Bromophenyl phenyl ether  | ug/kg           | 1667        | 1300     | 78.0     | 53-127     |
| Hexachlorobenzene           | ug/kg           | 1667        | 1300     | 78.0     | 0-152      |
| Pentachlorophenol           | ug/kg           | 3333        | 2500     | 75.0     | 14-176     |
| Phenanthrene                | ug/kg           | 1667        | 1200     | 72.0     | 54-120     |
| Anthracene                  | ug/kg           | 1667        | 1200     | 72.0     | 27-133     |
| Carbazole                   | ug/kg           | 1667        | 1500     | 90.0     | *          |
| Di-n-butylphthalate         | ug/kg           | 1667        | 1300     | 78.0     | 1-118      |
| Fluoranthene                | ug/kg           | 1667        | 1300     | 78.0     | 26-137     |
| Pyrene                      | ug/kg           | 1667        | 1200     | 72.0     | 52-115     |
| Butyl benzylphthalate       | ug/kg           | 1667        | 1300     | 78.0     | 0-152      |
| 3,3'-Dichlorobenzidine      | ug/kg           | 1667        | 550      | 33.0     | 0-262      |
| Benzo(a)anthracene          | ug/kg           | 1667        | 1200     | 72.0     | 33-143     |
| Chrysene                    | ug/kg           | 1667        | 1200     | 72.0     | 17-168     |
| bis(2-Ethylhexyl)phthalate  | ug/kg           | 1667        | 1300     | 78.0     | 8-158      |
| Di-n-octylphthalate         | ug/kg           | 1667        | 1400     | 84.0     | 4-146      |
| Benzo(b)fluoranthene        | ug/kg           | 1667        | 1200     | 72.0     | 24-159     |
| Benzo(k)fluoranthene        | ug/kg           | 1667        | 1300     | 78.0     | 11-162     |
| Benzo(a)pyrene              | ug/kg           | 1667        | 1300     | 78.0     | 17-163     |
| Indeno(1,2,3-cd)pyrene      | ug/kg           | 1667        | 1200     | 72.0     | 0-171      |
| Dibenzo(a,h)anthracene      | ug/kg           | 1667        | 1300     | 78.0     | 0-227      |
| Benzo(g,h,i)perylene        | ug/kg           | 1667        | 1200     | 72.0     | 0-219      |

Accuracy criteria derived from data specified in Table 6, Method 8270 unless otherwise noted. The % recovery measure accuracy windows are method specified. Compounds with a \* have no method specified recovery windows.

| Client: Roy F. Weston |  |
|-----------------------|--|
| Work Order: WM2580    |  |

Methods, Chronology of Analysis and Method Blank Results

Volatile Analysis by GC/MS Method: 8260

Free Product - Medium Level

### **CHRONOLOGY**

| Sample Nos. | Date      | Date      | Instrument | LCS     | 2000年 | Sample Nos.         | Date -    | Date     | Instrument | LCS  | Name of |
|-------------|-----------|-----------|------------|---------|-------|---------------------|-----------|----------|------------|------|---------|
| <b>水型基础</b> | Extracted | Analyzed  | Blank^     | File    | DF~   | Charles of the same | Extracted | Analyzed | Blank^     | File | DF~     |
| WM2580-4    | 19-Nov-96 | 19-Nov-96 | I5664.D    | I5661.D | 1.0   |                     |           |          |            |      |         |
| WM2580-5    | 19-Nov-96 | 19-Nov-96 | I5664.D    | I5661.D | 1.0   |                     |           |          |            |      |         |
|             |           |           |            |         |       |                     |           |          |            |      |         |
|             |           |           |            |         |       |                     |           |          |            |      |         |
|             |           |           |            |         |       |                     |           | *        |            |      |         |
|             |           |           |            |         |       |                     |           |          |            |      |         |
|             |           |           |            |         |       |                     |           |          |            |      |         |
|             |           |           |            |         |       |                     |           |          |            |      |         |

### **EXTRACTION BLANK RESULTS\***

Date of Analysis: 11-Nov-96

| Compound           | Cone (ug/kg) |
|--------------------|--------------|
| Methylene Chloride | 310          |
|                    |              |
|                    |              |

- \* Blank results listed correspond to the extraction blank prepared with the above samples on date of extraction. Only positive hits have been included; the remaining compounds were not detected in the extraction blank.
- ^ Instrument blank results are tabulated on a separate form immediately following the volatile soil chronology of analyses.
- The Dilution Factor (DF) indicates whether a sample, prepared in accordance with the analytical method protocol, was diluted prior to analysis. The Dilution Factor could also indicate that a smaller aliquot than specified in the method was utilized for sample preparation and analysis. For example, a dilution factor of 5 means that the sample was effectively diluted by a factor of 5 prior to analysis, i.e., the sample was analyzed at 20% its reported concentration. DF does not include the correction factor for conversion to dry weight.

NOTE: All "B" notations on the Report of Analysis correspond to either the extraction method blank results listed above or the instrument blank results listed separately.

# QUALITY CONTROL REPORT

Laboratory Control Sample (LCS) Results

Volatile Organics by GC/MS Method 8260A

Work Order: Wm2580

Client: Roy F. Weston

Data File:

15661.D

Water Matrix

Date of Analysis:

11/18/96 11:05:00 PM

|                            |       | Spike         | LCS           | %        | Acceptance |  |
|----------------------------|-------|---------------|---------------|----------|------------|--|
| Compound:                  | Units | Concentration | Concentration | Recovery | Range      |  |
| Ethylbenzene               | UG/L  | 50            | 36.41         | 73       | 60-140     |  |
| Styrene                    | UG/L  | 50            | 36.44         | 73       | 60-140     |  |
| n+p-Xylene                 | UG/L  | 100           | 72.19         | 72       | 60-140     |  |
| >-Xylene                   | UG/L  | 50            | 35.13         | 70       | 60-140     |  |
| Bromoform                  | UG/L  | 50            | 36,53         | 73       | 60-140     |  |
| sopropylbenzene            | UG/L  | 50            | 34.01         | 68       | 60-140     |  |
| ,1,2,2-Tetrachloroethane   | UG/L  | 50            | 39.90         | 80       | 60-140     |  |
| ,2,3-Trichloropropane      | UG/L  | 50            | 46.54         | 93       | 60-140     |  |
| Bromobenzene               | UG/L  | 50            | 38.98         | 78       | 60-140     |  |
| -Chlorotoluene             | UG/L  | 50            | 36.47         | 73       | 60-140     |  |
| -Propylbenzene             | UG/L  | 50            | 34.44         | 69       | 60-140     |  |
| -Chlorotoluene             | UG/L  | 50            | 36,69         | 73       | 60-140     |  |
| ,3,5-Trimethylbenzene      | UG/L  | 50            | 36.21         | 72       | 60-140     |  |
| ert-Butylbenzene           | UG/L  | 50            | 33.72         | 67       | 60-140     |  |
| ,2,4-Trimethylbenzene      | UG/L  | 50            | 36.06         | 72       | 60-140     |  |
| Sec-Butylbenzene           | UG/L  | 50            | 32.26         | 65       | 60-140     |  |
| ,3-Dichlorobenzene         | UG/L  | 50            | 32.62         | 65       | 60-140     |  |
| -Isopropyltoluene          | UG/L  | 50            | 32.24         | 64       | 60-140     |  |
| ,4-Dichlorobenzene         | UG/L  | 50            | 32.63         | 65       | 60-140     |  |
| -Butylbenzene              | UG/L  | 50            | 32.77         | 66       | 60-140     |  |
| ,2-Dichlorobenzene         | UG/L  | 50            | 32.87         | 66       | 60-140     |  |
| ,2-Dibromo-3-Chloropropane | UG/L  | 50            | 40.40         | 81       | 60-140     |  |
| ,2,4-Trichlorobenzene      | UG/L  | 50            | 33.98         | 68       | 60-140     |  |
| lexachlorobutadiene        | UG/L  | 50            | 34.69         | 69       | 60-140     |  |
| laphthalene                | UG/L  | 50            | 37.07         | 74       | 60-140     |  |
| ,2,3-Trichiorobenzene      | UG/L  | 50            | 34.18         | 68       | 60-140     |  |

| Client: Roy F. Weston |  |
|-----------------------|--|
| Work Order: WM2580    |  |

## Method Blank Results

| Volatile Analysis by GC/MS Method | 8260 |
|-----------------------------------|------|
|                                   |      |

Soil/Solid Matrix

| Instrument Blank:  | I5664.D      | Instrument Blank:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Date of Analysis:  | 19-Nov-96    | Date of Analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| Compound           | Conc. (ug/L) | Compound Conc. (ug/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L)        |
| Methylene Chloride | J0.7         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Instrument Blank:  |              | Instrument Blank:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| Date of Analysis:  |              | Date of Analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| Compound           | Conc (ug/L)  | Compound Conc. (ug/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D) 11 1 1 |
|                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Instrument Blank:  | 9            | Instrument Blank:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| Date of Analysis:  |              | Date of Analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| Compound           | Conc. (ug/L) | Compound Conc. (ug/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| instrument Blank:  |              | Instrument Blank:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                    |              | Date of Analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| Date of Analysis:  |              | The state of the s | AND MARKS |
| Date of Analysis:  | Conc. (ug/L) | Compound Conc. (ug/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                    | Conc. (ug/L) | Compound Conc. (ug/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                    | Conc (ug/L)  | Compound Conc. (ug/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>5)</b> |
|                    | Conc (ug/L)  | Compound Conc. (ug/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |

<sup>\*\*</sup> Blank results listed correspond to the instrument blanks analyzed concurrently with the samples listed on the soil chronology forms. Only positive hits have been included; the remaining compounds were not detected in the instrument blank.

VOABLKS

Client: Roy F. Weston Work Order: WM2580

Methods, Chronology of Analysis and Method Blank Results

Volatile Analysis by GC/MS Method: 8260

Soil Matrix

### CHRONOLOGY

| Sample Nos. | Date      | LCS     | Dilution | 编    | Sample Nos. | Date     | LCS  | Dilution |
|-------------|-----------|---------|----------|------|-------------|----------|------|----------|
| "一点是是这种     | Analyzed  | File,   | Factor ~ | 99   |             | Analyzed | File | Factor   |
| WM2580-6    | 19-Nov-96 | Q4153.D | 1.0      |      |             |          |      |          |
| WM2580-6RE  | 19-Nov-96 | Q4153.D | 1.0      |      |             |          |      |          |
|             |           |         |          |      |             |          |      |          |
|             |           |         |          |      |             |          |      |          |
|             |           |         |          |      | •           |          |      | +        |
|             |           |         |          | 0.14 |             |          |      |          |
|             |           | -       |          | -    |             |          |      | -        |
|             |           |         |          | 後漢   |             |          |      |          |
|             |           |         |          | 1000 |             |          |      |          |
|             |           |         |          | 経済   |             |          |      |          |
|             |           |         |          | 1000 |             |          |      |          |
|             |           |         |          | 譜    |             |          |      |          |

### METHOD BLANK RESULTS\*

| Compound Compound  | Conc. (ug/Kg) |
|--------------------|---------------|
| Acetone            | J3            |
| Methylene Chloride | 2             |
| Naphthalene        | J0.6          |
|                    |               |
|                    |               |

- \* Only positive hits have been included. The remaining compounds were not detected in the method blank.
- ~ The Dilution Factor (DF) indicates whether a sample, prepared in accordance with the analytical method protocol, diluted prior to analysis. The Dilution Factor could also indicate that a smaller aliquot than specified in the method was utilized for sample preparation and analysis. For example, a dilution factor of 5 means that the sample was effectively diluted by a factor of 5 prior to analysis, i.e., the sample was analyzed at 20% its reported concentration. DF does not include the correction factor for conversion to dry weight.

F1-VOA-W

## QUALITY CONTROL REPORT

Laboratory Control Sample (LCS) Results

Volatile Organics by GC/MS Method 8260A

Work Order: Wm2580

Client: Roy F. Weston

Data File:

Q4153.D

Water Matrix

Date of Analysis:

11/19/96 8:13:00 AM

|                           |       | Spike |               | %        | Acceptan |
|---------------------------|-------|-------|---------------|----------|----------|
| Compound:                 | Units |       | Concentration | Recovery | Range    |
| Dichlorodifluoromethane   | UG/L  | 50    | 49.59         | 99       | 60-140   |
| Chioromethane             | UG/L  | 50    | 44.33         | 89       | 60-140   |
| Bromomethane              | UG/L  | 50    | 52.88         | 106      | 60-140   |
| Vinyl Chloride            | UG/L  | 50    | 49.69         | 99       | 60-140   |
| Chloroethane              | UG/L  | 50    | 49.32         | 99       | 60-140   |
| Trichlorofluoromethane    | UG/L  | 50    | 55.65         | 111      | 60-140   |
| Acetone                   | UG/L  | 50    | 38.92         | 78       | 60-200   |
| Methylene Chloride        | UG/L  | 50    | 50.36         | 101      | 60-200   |
| ,1-Dichloroethene         | UG/L  | 50    | 51.50         | 103      | 60-140   |
| ATBE .                    | UG/L  | 50    | 49.08         | 98       | 60-140   |
| ,2-Dichloroethene (trans) | UG/L  | 50    | 51.81         | 104      | 60-140   |
| ,1-Dichloroethane         | UG/L  | 50    | 52.85         | 106      | 60-140   |
| ,2-Dichloroethene (cis)   | UG/L  | 50    | 50.62         | 101      | 60-140   |
| ,2-Dichloropropane        | UG/L  | 50    | 51.10         | 102      | 60-140   |
| 2-Butanone                | UG/L  | 50    | 40.51         | 81       | 60-200   |
| Iromochloromethane        | UG/L  | 50    | 49.18         | 98       | 60-140   |
| etrahydrofuran            | UG/L  | 50    | 51.56         | 103      | 60-140   |
| Chloroform                | UG/L  | 50    | 50.58         | 101      | 60-140   |
| ,1,1-Trichloroethane      | UG/L  | 50    | 50.72         | 101      | 60-140   |
| ,1-Dichloropropene        | UG/L  | 50    | 50.72         | 101      | 60-140   |
| Carbon Tetrachloride      | UG/L  | 50    | 49.01         | 98       | 60-140   |
| ,2-Dichloroethane         | UG/L  | 50    | 49.84         | 100      | 60-140   |
| Bromodichloromethane      | UG/L  | 50    | 48.63         | 97       | 60-140   |
| ,2-Dichloropropane        | UG/L  | 50    | 50.36         | 101      | 60-140   |
| Olbromomethane            | UG/L  | 50    | 49.70         | 99       | 60-140   |
| ls-1,3-Dichloropropene    | UG/L  | 50    | 50.66         | 101      | 60-140   |
| richloroethene            | UG/L  | 50    | 50.95         | 102      | 60-140   |
| enzene                    | UG/L  | 50    | 52.22         | 104      | 60-140   |
| ans-1,3-Dichloropropene   | UG/L  | 50    | 48.56         | 97       | 60-140   |
| ,1,2-Trichtoroethane      | UG/L  | 50    | 49.13         | 98       | 60-140   |
| -methyl-2-pentanone       | UG/L  | 50    | 36.65         | 73       | 60-140   |
| oluene                    | UG/L  | 50    | 50.68         | 101      | 60-140   |
| 2-Dibromoethane           | UG/L  | 50    | 44.47         | 89       | 60-140   |
| -Hexanone                 | UG/L  | 50    | 47.00         | 94       | 60-140   |
| 3-Dichloropropane         | UG/L  | 50    | 52.17         | 104      | 60-140   |
| etrachloroethene          | UG/L  | 50    | 50.58         | 101      | 60-140   |
| ibromochloromethane       | UG/L  | 50    | 49.30         | 99       | 60-140   |
| Chlorobenzene             | UG/L  | 50    | 50.16         | 100      | 60-140   |
| .1.1.2-Tetrachloroethane  | UG/L  | 50    | 51.07         | 102      | 60-140   |

# QUALITY CONTROL REPORT

Laboratory Control Sample (LCS) Results
Volatile Organics by GC/MS Method 8260A

Work Order: Wm2580

Client: Roy F. Weston

Data File:

Q4153.D

Water Matrix

Date of Analysis:

11/19/96 8:13:00 AM

|                             |       | Spike         | LCS           | %        | Acceptance |  |
|-----------------------------|-------|---------------|---------------|----------|------------|--|
| Compound:                   | Units | Concentration | Concentration | Recovery | Range      |  |
| Ethylbenzene                | UG/L  | 50            | 50.68         | 101      | 60-140     |  |
| Styrene                     | UG/L  | 50            | 49.72         | 99       | 60-140     |  |
| m+p-Xylene                  | UG/L  | 100           | 101.72        | 102      | 60-140     |  |
| o-Xylene                    | UG/L  | 50            | 49.05         | 98       | 60-140     |  |
| Bromoform                   | UG/L  | 50            | 47.88         | 96       | 60-140     |  |
| Isopropylbenzene            | UG/L  | 50            | 44.70         | 89       | 60-140     |  |
| 1,1,2,2-Tetrachloroethane   | UG/L  | 50            | 47.46         | 95       | 60-140     |  |
| 1,2,3-Trichloropropane      | UG/L  | 50            | 50.15         | 100      | 60-140     |  |
| Bromobenzene                | UG/L  | 50            | 48.31         | 97       | 60-140     |  |
| 2-Chlorotoluene             | UG/L  | 50            | 51.64         | 103      | 60-140     |  |
| n-Propylbenzene             | UG/L  | 50            | 47.87         | 96       | 60-140 .   |  |
| 4-Chlorotoluene             | UG/L  | 50            | 46.38         | 93       | 60-140     |  |
| 1,3,5-Trimethylbenzene      | UG/L  | 50            | 49.30         | 99       | 60-140     |  |
| tert-Butylbenzene           | UG/L  | 50            | 49.39         | 99       | 60-140     |  |
| 1,2,4-Trimethylbenzene      | UG/L  | 50            | 49.49         | 99       | 60-140     |  |
| Sec-Butylbenzene            | UG/L  | 50            | 48.01         | 96       | 60-140     |  |
| 1,3-Dichlorobenzene         | UG/L  | 50            | 50.13         | 100      | 60-140     |  |
| p-isopropyttoluene          | UG/L  | 50            | 49.22         | 98       | 60-140     |  |
| 1,4-Dichlorobenzene         | UG/L  | 50            | 50.06         | 100      | 60-140     |  |
| n-Butylbenzene              | UG/L  | 50            | 51.72         | 103      | 60-140     |  |
| 1,2-Dichlorobenzene         | UG/L  | 50            | 50,51         | 101      | 60-140     |  |
| 1,2-Dibromo-3-Chloropropane | UG/L  | 50            | 49.98         | 100      | 60-140     |  |
| 1,2,4-Trichlorobenzene      | UG/L  | 50            | 51.62         | 103      | 60-140     |  |
| Hexachlorobutadiene         | UG/L  | 50            | 50.63         | 101      | 60-140     |  |
| Naphthalene                 | UG/L  | 50            | 51.76         | 104      | 60-140     |  |
| 1,2,3-Trichlorobenzene      | UG/L  | 50            | 49.06         | 98       | 60-140     |  |
| Carbon Disulfide            | UG/L  | 50            | 108.69        | 217      | 60-140     |  |

Client: Roy F. Weston Work Order: WM2580

Methods, Chronology of Analysis and Method Blank Results

Volatile Analysis by GC/MS Method: 8260

Soil Matrix

### **CHRONOLOGY**

| Sample Nos. | Date<br>Analyzed | LCS<br>File | Dilution<br>Factor ~ | Sample Nos. | Date<br>Analyzed         | LCS<br>File | Dilution<br>Factor |
|-------------|------------------|-------------|----------------------|-------------|--------------------------|-------------|--------------------|
| WM2580-7    | 20-Nov-96        | I5696.D     | 1.0                  |             | On Control of Assessment |             |                    |
|             |                  |             |                      |             |                          |             |                    |
|             |                  |             |                      |             |                          |             |                    |
|             |                  |             |                      |             |                          |             |                    |
|             |                  |             | 1                    |             |                          |             |                    |
|             |                  |             |                      |             |                          |             |                    |
| 181         |                  |             |                      |             |                          |             |                    |
|             |                  |             |                      |             |                          |             |                    |
|             |                  |             | 18                   |             |                          |             |                    |
|             |                  |             |                      |             |                          |             |                    |
|             |                  |             | E.                   |             |                          |             |                    |

### METHOD BLANK RESULTS\*

| Compound a +       | Conc. (ug/Kg) |
|--------------------|---------------|
| Acetone            | J3            |
| Methylene Chloride | 2             |
| Naphthalene        | J0.8          |
|                    |               |
|                    |               |

- \* Only positive hits have been included. The remaining compounds were not detected in the method blank.
- ~ The Dilution Factor (DF) indicates whether a sample, prepared in accordance with the analytical method protocol, diluted prior to analysis. The Dilution Factor could also indicate that a smaller aliquot than specified in the method was utilized for sample preparation and analysis. For example, a dilution factor of 5 means that the sample was effectively diluted by a factor of 5 prior to analysis, i.e., the sample was analyzed at 20% its reported concentration. DF does not include the correction factor for conversion to dry weight.

F1-VOA-W

## QUALITY CONTROL REPORT

Laboratory Control Sample (LCS) Results

Volatile Organics by GC/MS Method 8260A

Work Order: Wm2580

Client: Roy F. Weston

Data File:

15696.D

Water Matrix

Date of Analysis:

11/20/96 7:29:00 AM

|                           |       | Spike | LCS           | %        | Acceptant |
|---------------------------|-------|-------|---------------|----------|-----------|
| Compound:                 | Units |       | Concentration | Recovery | Range     |
| Dichlorodifluoromethane   | UG/L  | 50    | 20.45         | 41       | 60-140    |
| nloromethane UG/L         |       | 50    | 31.84         | 64       | 60-140    |
| Promomethane              | UG/L  | 50    | 43,14         | 86       | 60-140    |
| /inyl Chloride            | UG/L  | 50    | 36.67         | 73       | 60-140    |
| Chloroethane              | UG/L  | 50    | 40,58         | 81       | 60-140    |
| richlorofluoromethane     | UG/L  | 50    | 48,17         | 96       | 60-140    |
| cetone                    | UG/L  | 50    | 37.07         | 74       | 60-200    |
| lethylene Chloride        | UG/L  | 50    | 44.57         | 89       | 60-200    |
| ,1-Dichloroethene         | UG/L  | 50    | 43,31         | 87       | 60-140    |
| ITBE                      | UG/L  | 50    | 45.59         | 91       | 60-140    |
| ,2-Dichloroethene (trans) | UG/L  | 50    | 45.76         | 92       | 60-140    |
| 1-Dichloroethane          | UG/L  | 50    | 45.56         | 91       | 60-140    |
| ,2-Dichloroethene (cis)   | UG/L  | 50    | 42.88         | 86       | 60-140    |
| 2-Dichloropropane         | UG/L  | 50    | 45.63         | 91       | 60-140    |
| -Butanone                 | UG/L  | 50    | 49,41         | 99       | 60-200    |
| romochloromethane         | UG/L  | 50    | 46.73         | 93       | 60-140    |
| etrahydrofuran            | UG/L  | 50    | 36.17         | 72       | 60-140    |
| hloroform                 | UG/L  | 50    | 45.81         | 92       | 60-140    |
| 1,1-Trichloroethane       | UG/L  | 50    | 46.25         | 93       | 60-140    |
| ,1-Dichloropropene        | UG/L  | 50    | 43.63         | 87       | 60-140    |
| arbon Tetrachloride       | UG/L  | 50    | 44.70         | 89       | 60-140    |
| 2-Dichloroethane          | UG/L  | 50    | 47.45         | 95       | 60-140    |
| romodichloromethane       | UG/L  | 50    | 44.88         | 90       | 60-140    |
| ,2-Dichloropropane        | UG/L  | 50    | 45.50         | 91       | 60-140    |
| ibromomethane             | UG/L  | 50    | 45.33         | 91       | 60-140    |
| is-1,3-Dichloropropene    | UG/L  | 50    | 45.02         | 90       | 60-140    |
| richloroethene            | UG/L  | 50    | 44.30         | 89       | 60-140    |
| enzene                    | UG/L  | 50    | 45.60         | 91       | 60-140    |
| ans-1,3-Dichloropropene   | UG/L  | 50    | 46.56         | 93       | 60-140    |
| 1,2-Trichloroethane       | UG/L  | 50    | 45.98         | 92       | 60-140    |
| -methyl-2-pentanone       | UG/L  | 50    | 35.17         | 70       | 60-140    |
| oluene                    | UG/L  | 50    | 44.46         | 89       | 60-140    |
| 2-Dibromoethane           | UG/L  | 50    | 46,45         | 93       | 60-140    |
| Hexanone                  | UG/L  | 50    | 42.29         | 85       | 60-140    |
| 3-Dichloropropane         | UG/L  | 50    | 46.44         | 93       | 60-140    |
| etrachloroethene          | UG/L  | 50    | 44.24         | 88       | 60-140    |
| ibromochloromethane       | UG/L  | 50    | 46.50         | 93       | 60-140    |
| hlorobenzene              | UG/L  | 50    | 45.18         | 90       | 60-140    |
| ,1,1,2-Tetrachloroethane  | UG/L  | 50    | 47.54         | 95       | 60-140    |

# QUALITY CONTROL REPORT

Laboratory Control Sample (LCS) Results

Volatile Organics by GC/MS Method 8260A

Work Order: Wm2580

Client: Roy F. Weston

Data File:

15696.D

Water Matrix

Date of Analysis:

11/20/96 7:29:00 AM

|                            |        | Spike         | LCS           | %        | Acceptance |  |
|----------------------------|--------|---------------|---------------|----------|------------|--|
| Compound:                  | Units  | Concentration | Concentration | Recovery | Range      |  |
| Ethylbenzene               | UG/L   | 50            | 47.38         | 95       | 60-140     |  |
| Styrene                    | UG/L   | 50            | 46.35         | 93       | 60-140     |  |
| m+p-Xylene                 | UG/L   | 100           | 91.01         | 91       | 60-140     |  |
| o-Xylene                   | UG/L   | 50            | 46.04         | 92       | 60-140     |  |
| Bromoform                  | UG/L   | 50            | 46.75         | 94       | 60-140     |  |
| Isopropylbenzene           | · UG/L | 50            | 43.61         | 87       | 60-140     |  |
| 1,1,2,2-Tetrachloroethane  | UG/L   | 50            | 48.37         | 97       | 60-140     |  |
| 1,2,3-Trichloropropane     | UG/L   | 50            | 52.04         | 104      | 60-140     |  |
| Bromobenzene               | UG/L   | 50            | 46.78         | 94       | 60-140     |  |
| 2-Chlorotoluene            | UG/L   | 50            | 52.02         | 104      | 60-140     |  |
| n-Propylbenzene            | UG/L   | 50            | 45.67         | 91       | 60-140     |  |
| 4-Chlorotoluene            | UG/L   | 50            | 38.64         | 77       | 60-140     |  |
| 1,3,5-Trimethylbenzene     | UG/L   | 50            | 46.12         | 92       | 60-140     |  |
| lert-Butylbenzene          | UG/L   | 50            | 44.58         | 89       | 60-140     |  |
| 1,2,4-Trimethylbenzene     | UG/L   | 50            | 46.83         | 94       | 60-140     |  |
| Sec-Butylbenzene           | UG/L   | 50            | 43.69         | 87       | 60-140     |  |
| 1,3-Dichlorobenzene        | UG/L   | 50            | 44.05         | 88       | 60-140     |  |
| p-Isopropyttoluene         | UG/L   | 50            | 43.76         | 88       | 60-140     |  |
| ,4-Dichlorobenzene         | UG/L   | 50            | 44.62         | 89       | 60-140     |  |
| n-Butylbenzene             | UG/L   | 50            | 44.03         | 88       | 60-140     |  |
| 1,2-Dichlorobenzene        | UG/L   | 50            | 44.29         | 89       | 60-140     |  |
| ,2-Dibromo-3-Chloropropane | UG/L   | 50            | 49.06         | 98       | 60-140     |  |
| 1,2,4-Trichlorobenzene     | UG/L   | 50            | 43,91         | 88       | 60-140     |  |
| Hexachlorobutadiene        | UG/L   | 50            | 45.69         | 91       | 60-140     |  |
| Naphthalene                | UG/L   | 50            | 46.02         | 92       | 60-140     |  |
| 1,2,3-Trichlorobenzene     | UG/L   | 50            | 45.75         | 92       | 60-140     |  |

### KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 1

ORDER NO WM-2580

INVOICE:

Project Manager: Andrea J. Colby

ORDER DATE: 11/15/96 PHONE: 508/772-7190

REPORT TO: MIKE WAGNER

ROY F WESTON

FAX: 508/772-7251

P.O. BOX 425 AYER, MA 01432 DUE: 02 DEC

ACCOUNTS PAYABLE

ROY F. WESTON, INC. PO: 03886-118-004

1 WESTON WAY

WEST CHESTER, PA 19380-1499

PROJECT: FT DEVENS

SAMPLED BY: CLIENT

DELIVERED BY: FED EX DISPOSE: AFTER 15 DEC

| HIDD DI. CHIMI                   | <b>-</b> |              | DIOL  | 002     | DIC 13 DEC |
|----------------------------------|----------|--------------|-------|---------|------------|
| EM LOG NUMBER SAMPLE DESCRIPTION |          | SAMPLED DATE | /TIME | RECEIVE | D MATRIX   |
| L WM2580-1 BB-W19-01             |          | 14 NOV       | 1330  | 15 NO   |            |
| WM2580-2 BG-ZZ24-02              |          | 14 NOV       | 1320  |         |            |
| WM2580-3 BG-ZZ24-01              |          | 14 NOV       | 1320  |         |            |
| DETERMINATION                    |          | METHOD       | QTY   | PRICE   | AMOUNT     |
| Extractable Petroleum HC         |          | MADEP EPH    | 3     | 265.00  | 795.00     |
| Volatile Petroleum Hydrocarbons  |          | MADEP VPH    | 3     | 110.00  | 330.00     |
| Solids-Total Residue (TS)        |          | CLP/CIP SO   | 3     | 0.00    | 0.00       |
| TOTALS                           |          |              | 3     | 375.00  | 1125.00    |
| LOG NUMBER SAMPLE DESCRIPTION    |          | SAMPLED DATE |       |         |            |
| 2 WM2580-4 BB-W19-D1             |          | 11 NOV       |       | 15 NO   | V F        |
| WM2580-5 BG-B25-D1               |          | 12 NOV       | 1200  |         |            |
| DETERMINATION                    |          | METHOD       | QTY   | PRICE   | AMOUNT     |
| VOAs (8260)                      |          | EPA 8260     | 2     | 105.00  | 210.00     |
| RCRA Metals, Total               |          |              | 2     | 75.00   | 150.00     |
| Diesel Range Organics            |          | 8015M-DRO    | 2     | 45.00   | 90.00      |
| Ignitability-Flash Point         |          | SW1010       | 2     | 70.00   | 140.00     |
| Corrosivity as pH                |          | SW9045       | 2     | 0.00    | 0.00       |
| Cyanide, Reactive                |          | SW7.3        | 2     | 0.00    | 0.00       |
| Sulfide, Reactive                |          | SW7.3        | 2     | 0.00    | 0.00       |
| TOTALS                           |          |              | 2     | 295.00  | 590.00     |

### KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 2

ORDER NO WM-2580

Project Manager: Andrea J. Colby

ORDER DATE: 11/15/96

REPORT TO: MIKE WAGNER

PHONE: 508/772-7190

ROY F WESTON P.O. BOX 425

FAX: 508/772-7251

AYER, MA 01432

DUE: 02 DEC

INVOICE:

ACCOUNTS PAYABLE

ROY F. WESTON, INC.

PO: 03886-118-004

1 WESTON WAY

WEST CHESTER, PA 19380-1499

PROJECT: FT DEVENS

SAMPLED BY: CLIENT

DELIVERED BY: FED EX

DISPOSE: AFTER 15 DEC

| LOG NI   | LOG NUMBER SAMPLE DESCRIPTION S |              | /TIME | RECEIVED | MATRIX |
|----------|---------------------------------|--------------|-------|----------|--------|
| 3 WM2580 | -6 BBBG-WC01                    | 14 NOV       | 1400  | 15 NOV   | SL     |
| DETERM   | NATION                          | METHOD       | QTY   | PRICE    | AMOUNT |
| VOAs (8  | 260)                            | EPA 8260     | 1     | 105.00   | 105.00 |
| RCRA Me  | tals, Total                     |              | 1     | 75.00    | 75.00  |
| Total I  | etroleum Hydrocarbons (TPH)     | E418.1       | 1     | 45.00    | 45.00  |
| Corrosi  | vity as pH                      | SW9045       | 1     | 70.00    | 70.00  |
| Ignital  | ility-Flash Point               | SW1010       | 1     | 0.00     | 0.00   |
| TCL Ser  | ivolatile Organics by USEPA 827 | OB EPA 8270B | 1     | 260.00   | 260.00 |
| Solids-  | Total Residue (TS)              | CLP/CIP SO   | 1     | 0.00     | 0.00   |
| Cyanide  | , Reactive                      | SW7.3        | 1     | 0.00     | 0.00   |
| Sulfide  | , Reactive                      | SW7.3        | 1     | 0.00     | 0.00   |
| TOTALS   | ·                               |              | 1     | 555.00   | 555.00 |

| LOG NUMBER SAMPLE DESCRIPTION   |           | SAMPLED DATE/TIME |        |        |  |  |  |
|---------------------------------|-----------|-------------------|--------|--------|--|--|--|
| 4 WM2580-7 TRIP BLANK           | 14 NOV    | 14 NOV            |        |        |  |  |  |
| DETERMINATION                   | METHOD    | QTY               | PRICE  | AMOUNT |  |  |  |
| Volatile Petroleum Hydrocarbons | MADEP VPH | 1                 | 110.00 | 110.00 |  |  |  |
| VOAs (8260)                     | EPA 8260  | 1                 | 0.00   | 0.00   |  |  |  |
| TOTALS                          |           | 1                 | 110.00 | 110.00 |  |  |  |

ORDER NOTE: QC-II

REPORT COPY: 603/228-1334\*JOHN LOVELY

ROY F. WESTON, INC. 7 EAGLE SQUARE

CONCORD, NH 03301-4991

PHONE: 603/228-1334 FAX: 603/228-3440

INVOICE: With Report

TOTAL ORDER AMOUNT \$2,380.00

This is NOT an Invoice

AJC/RLW/SM/WEST.AJC(dw)/WEST.RLW(dw)

12-02Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi



340 County Road No. 5 P.O. Box 720 Westbrook, ME 04098 Tel: (207) 874-2400

# **CHAIN of CUSTODY**

| * PLEASE PRINT IN PEN                                       |                                                    |              |              |                                              |      |           |                 |               |            |            |        | Pa       | ge /       | of 1             |
|-------------------------------------------------------------|----------------------------------------------------|--------------|--------------|----------------------------------------------|------|-----------|-----------------|---------------|------------|------------|--------|----------|------------|------------------|
| Roy F. Weston In                                            | Weston Inc. / ACOE Milke Wagner din 3701 City Ager |              |              | Phone # 1772 -7190                           |      |           | fax # 1772 7290 |               |            |            |        |          |            |                  |
| Address Brilding 3707 City Ager State A                     |                                                    |              |              |                                              | M    | 4         |                 | Z             | p Code     | 019        | 133    |          |            |                  |
| P.O. # 425 Ayer, MA                                         | Proj. Name/t                                       | No.          |              |                                              |      |           |                 |               |            |            |        |          |            |                  |
| Bill (if different than above)                              |                                                    |              | Addre        | 355                                          |      |           |                 |               |            |            |        |          |            |                  |
| Sample (Print/Sign)                                         |                                                    | 8            |              |                                              |      |           |                 |               | Сор        | ies To:    |        |          |            |                  |
| WORK OFFER #. (LIMING &A                                    |                                                    |              |              | ANALYSIS AND CONTAINER TYPE<br>PRESERVATIVES |      |           |                 |               |            |            |        |          |            |                  |
| LAB USE ONLY WORK ORDER #: WW2580  KATAHDIN PROJECT MANAGER |                                                    |              |              |                                              |      | .4        |                 |               |            |            |        |          |            |                  |
| REMARKS:                                                    |                                                    |              |              | _                                            |      | ÷.        | 5               |               | :          |            | +      |          | 3.00       |                  |
| SHIPPING INFO:                                              |                                                    |              | -            | 8360                                         | 1000 | 800       | Qces            | ž             | DELVEE     | Cer, Ignit |        |          |            |                  |
| TEMP°C □ TE                                                 | IMP BLANK   INTAK                                  | T 🗆 T        | NOT INTAC    | т                                            |      | 8 A.      | 7               |               | EPH Delixe | 1 DE       | 3      |          |            | 1 14<br>14<br>52 |
| * Sample Description                                        | Date/Time<br>coll'd                                | Matrix       | Filt.<br>Y/N | No. of<br>Cntrs.                             | 104  | RUPA 1    | 101             | SVOC          | EP         | HAN        | Peace, |          |            | 14               |
| 1 88-425-01                                                 | 11/14/94/1330                                      | soil         | N            | 3                                            |      |           |                 |               | 1          | 2          |        |          |            |                  |
| 3 BG- ZZ 24-01                                              | 11/14/96/1320                                      | soil         | N            | 3                                            |      |           |                 |               | 1          | 2          |        |          |            |                  |
| 2 BG-ZZ24-02                                                | 11/14/96/1320                                      | 5.1          | N            | 3                                            |      |           |                 |               | 1          | 2          |        |          |            |                  |
| 6 BBBG-WCOI                                                 | 11/14/90/1400                                      | 1:02         | N            | 5                                            | 1    | 1         | 1               |               |            |            | L      |          |            |                  |
| 4 BB-W19-D1                                                 | 11/1/96/1340                                       | 0:1          | N            | 4                                            | 1    | 1         | 1               |               |            |            |        |          |            |                  |
| 5 BG-825-DI                                                 | 11/12/96/1200                                      | liquid       | N            | 5                                            | 2    | 1         | 1               |               |            |            | 1      |          |            |                  |
| 7 Trip Blank                                                |                                                    | water        | - ~          | 4                                            | 2    |           |                 |               |            | 2          |        |          |            |                  |
| Tamp. Black                                                 | <del></del>                                        | water        | . ~          | 1                                            |      |           |                 |               |            |            |        |          |            |                  |
|                                                             | /                                                  |              |              |                                              |      |           |                 |               |            |            |        |          |            |                  |
|                                                             | /                                                  |              |              |                                              |      |           |                 | - 12          |            |            |        |          |            |                  |
|                                                             | /                                                  |              |              |                                              |      |           |                 |               |            |            |        |          |            |                  |
|                                                             | /                                                  |              |              |                                              |      |           |                 |               |            |            |        |          |            |                  |
|                                                             | /                                                  |              |              |                                              |      |           |                 |               |            |            |        |          |            |                  |
|                                                             | /                                                  |              |              |                                              |      |           |                 |               |            |            |        |          |            |                  |
|                                                             | /                                                  |              |              |                                              |      |           |                 |               |            |            |        |          |            |                  |
|                                                             | /                                                  |              |              |                                              |      |           |                 |               |            |            |        |          |            |                  |
| COMMENTS Sample B4-                                         | BAS-DI Should                                      | l be L       | omo          | geni                                         | zed  | Prid      | r to            | Maa           | <b>175</b> | NA         |        | PA       | GE         | 3                |
| Relinquished By: (Signature)                                | 11 1 1 1                                           | eived By: (S | 1.0          | lasol                                        |      | ished By: | 100             | uro)<br>1/157 |            | / Time     | Rec    | eived By | y: (Signa  | ture)            |
| Relinquished By: (Signature)                                |                                                    | eived By: (S |              |                                              |      | ished By: |                 | , ,           |            | / Time     | Rec    | eived By | y: (Signat | ture}            |
|                                                             |                                                    |              |              |                                              |      |           |                 |               |            |            | 0000   | 02       |            |                  |