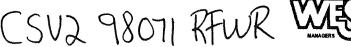


U.S. Army Corps of Engineers

New England District Concord, Massachusetts

CONTAMINATED SOIL REMOVAL- PHASE II

STUDY AREA 57, AREA 1
STORM DRAIN SYSTEM No. 6 OUTFALL


REMOVAL ACTION REPORT

Contract/Purchase Order No.
DACW33-95-D-0004
Delivery Order No. 0004
DCN: VRA-072498-AALE

July 1998

Printed on recycled paper

97P-1189

STUDY AREA 57, AREA 1 STORM DRAIN SYSTEM No. 6 OUTFALL DEVENS, MASSACHUSETTS

REMOVAL ACTION REPORT

Contract/Purchase Order No. DACW33-95-D-0004 Delivery Order No. 0004 DCN: VRA-072498-AALE

Prepared for

U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DISTRICT

696 Virginia Road Concord, Massachusetts

Prepared by

ROY F. WESTON, INC. Devens, Massachusetts 01433

July 1998

W.O. No. 03886-118-004-4900

TABLE OF CONTENTS

Section	Page
EXECUTIVE SUMMARY	ES-1
1. PURPOSE	1-1
2. BACKGROUND AND PHYSICAL SETTING	2-1
2.1 SITE DESCRIPTION AND HISTORY	2-1
2.2 REGIONAL GEOLOGY	2-1
2.3 REGIONAL HYDROGEOLOGY	2-3
2.4 PREVIOUS INVESTIGATIONS	2-3
3. FIELD ACTIVITIES	3-1
3.1 REMOVAL ACTION	3-1
3.2 FIELD SCREENING ANALYSIS	3-1
3.3 CONFIRMATORY LABORATORY ANALYSIS	3-3
3.4 WASTE CHARACTERIZATION ANALYSIS	3-9
4. COMPARISON TO BACKGROUND STUDIES	4-1
5. CONCLUSIONS	5-1
6. REFERENCES	6-1
ATTACHMENT A CONFIRMATORY SOIL ANALYTICAL RESUL	TS
ATTACHMENT B WASTE CHARACTERIZATION ANALYTICAL	RESULTS

LIST OF FIGURES

Title		Page
Figure 2-1	Location Map	2-2
Figure 2-2	Sampling locations	2-4
Figure 3-1	Field Screen Sampling Locations.	3-2
Figure 3-2	February 13, 1997 Confirmatory Soil Sample Locations	3-4
Figure 3-3	March 17, 1997 Confirmatory Soil Sample Locations	3-8
Figure 4-1	Sediment Sample Locations from Previous Investigations	4-2

LIST OF TABLES

Title Pa	age
Table 3-1 NDIR Field Screen Results Composite Samples Collected by WESTON on February 11, 1997	. 3-3
Table 3-2 Sample Summary Composite Soil Samples Collected by WESTON on February 13, 1997	3-5
Table 3-3 Summary of Analytical Results Above Regulatory Levels Composite Soil Samples Collected by WESTON on February 11, 1997	3-6
Table 3-4 Sample Summary Composite Soil Samples Collected by WESTON on March 17, 1997	3-7
Table 3-5 Summary of Analytical Results Above Regulatory Levels Composite Soil Samples Collected by WESTON on March 17, 1997	3-9
Table 3-6 Summary of Waste Characterization Analytical Results Stockpile Soil Samples Collected by WESTON on June 16, 1997	-10
Table 4-1 Comparison of PAH Concentrations in Sediment Samples in Storm Drain Pathways along Cold Spring Brook	

EXECUTIVE SUMMARY

This document presents the removal actions conducted at the Storm Drain No. 6 Outfall at Devens, Massachusetts, in accordance with the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) of 1980, as amended.

The Storm Drain No. 6 Outfall is located in the northeast portion of the North Post of Fort Devens and collects runoff from the area around buildings 3712 and 3713, which includes a former commissary, vehicle storage/maintenance facility, and an unpaved area of railroad track. The site is located in a heavily wooded and vegetated low lying area located immediately downgradient of three storm sewer outfall pipes which make up the outfall. The drainage swale ultimately leads to Lower Cold Spring Brook, located 800 feet southeast of the outfall area.

In 1978, an undetermined amount of No. 4 fuel oil was released from an overfilled underground storage tank (UST) at one of the buildings that ultimately drain into the System No. 6 outfall. Investigation after the occurrence of the release indicated that the System No. 6 outfall had received an estimated 3,000-gallons of fuel oil, as a result of the release. It is unknown whether contaminated soil was removed during initial remedial actions conducted at the time of the release.

The Site Investigation (SI) conducted by ABB Environmental Services, Inc. (ABB-ES) for the U.S. Army Environmental Center (USAEC) included documentation of five surface soil/sediment samples which were collected in June 1992 and June 1993 during previous investigations. These samples were collected from ground surface to a maximum depth of one foot below ground surface (bgs) in the vicinity and downstream of the outfall. A total of three soil/sediment samples were collected in the June 1992 sampling round and were submitted for laboratory analyses for total petroleum hydrocarbons (TPH) and semi-volatile organic compounds (SVOCs). One soil/sediment sample and a duplicate sample were collected in June 1993 and were submitted for laboratory analyses for TPH, SVOCs, volatile organic compounds (VOCs), and metals.

Analytical results indicated TPH concentrations ranging from 1,410 to 3,500 parts per million (ppm) in the soil/sediment samples, which exceeded the then current Massachusetts Contingency

ES-1

Plan (MCP) Method 1 S-1/GW-1 clean-up standard of 500 ppm. In addition, several SVOCs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and chrysene, were detected in the two samples collected during the June 1993 sampling round. Detected concentrations exceeded the applicable MCP S-1/GW-1 standard of 0.7 ppm for all four compounds, the highest SVOC concentration being benzo(b)fluoranthene at 4.9 ppm. These contaminants may not have been detected in soil/sediment samples collected during the June 1992 sampling round since analytical detection limits for this event exceeded the June 1993 concentrations. An elevated lead concentration of 420 ppm was detected in the June 1993 duplicate soil/sediment sample which exceeded the MCP S-1/GW-1 clean-up standard of 300 ppm. No VOCs were detected in soil/sediment samples collected during the June 1993 sampling round. The soil/sediment in the drainage path was characterized as well-graded sand to a silty sand.

Based on the known history of the site and the surrounding area, as well as on limited analytical results from soil/sediment sampling in the area during previous investigations, a soil removal action was recommended to address contamination resulting from releases of petroleum oil to the storm drain outfall as per the document *Contaminated Soil Removal - Phase II, Action Memorandum for Study Area 57, Area 1, Storm Drain No. 6 Outfall, Devens, Massachusetts*, dated October 1996.

Roy F. Weston, Inc. (WESTON) conducted the time-critical removal actions during February 1997. Initial removal operations conducted by WESTON included excavation of a 15' x 15' area, to a maximum depth of 2 feet below ground surface (bgs), at the outfall location; field analytical screening of the excavation limits; and collection of soil samples from the excavation limits for confirmatory laboratory analyses, respectively.

After excavation of the initial limits, WESTON collected a total of four composite samples from the sidewalls and floor of the excavation area. The sidewall samples were collected at depths between 1 to 2 feet bgs. The floor sample was collected at 2 feet bgs. All field screen samples were compared to the removal objective clean-up goal of 500 ppm for TPH, as specified in the WESTON *Action Memorandum*. Field screen results indicated TPH concentrations ranging from 66 to 271 ppm.

C:\VRA\SD#6\EXECSUM.DOC2 ES-2

On February 13, 1997, WESTON collected a total of six confirmatory soil samples, including a duplicate, from the sidewalls and bottom of the excavation. The soil samples were submitted to an offsite laboratory for analysis for Volatile Petroleum Hydrocarbons (VPH) and Extractable Petroleum Hydrocarbons (EPH) using the Massachusetts Department of Environmental Protection (MADEP) method. Soil samples were also sent to an offsite laboratory for Priority Pollutant Metals. Analytical results were compared to the MADEP MCP S-1/GW-2 regulatory action levels.

Laboratory analysis indicated elevated concentrations of polyaromatic hydrocarbons (PAHs) above the S-1/GW-1 standards in composite samples collected from three of the sidewalls of the excavation.

Based on confirmatory results from the initial sampling round, it was decided to perform additional excavation along the contaminated sidewalls. An additional three feet was removed from the sidewalls perpendicular to the outfall pipes. Approximately seven feet was further excavated from the wall opposite the outfall pipes. The maximum depth of excavation was three feet bgs.

After additional excavation, WESTON collected three additional confirmatory composite samples from the three sidewalls. Two samples were sent to an offsite laboratory for SVOCs using EPA Method 8270. The third sample was sent to an offsite laboratory for EPH analysis based on the elevated C_{10} - C_{22} aromatic fraction detected along the sidewall during the initial sampling round.

Confirmatory analytical results for the second round of sampling indicated elevated PAH concentrations in two sidewalls. A total of ten PAH contaminants exceeded the applicable MCP S-1/GW-1 standards in each of the two sample locations. The highest concentrations were detected in the sample located downstream of the outfall pipes. No SVOCs or EPH fractions were detected above the MCP S-1/GW-1 cleanup standards in the third sample.

To assess the nature and regulatory context of the elevated PAH concentrations at the System No. 6 Outfall, a comparison has been made in this document with concentrations of PAHs

C:\VRA\SD#6\EXECSUM.DOC3 ES-3

detected in sediment samples at the System No. 6 outfall with sediment samples collected at eight other storm drain outfalls which also drain into Cold Spring Brook at Devens, MA. The objective of this comparison is to provide sufficient evidence that PAHs detected in soil samples collected at the System No. 6 Outfall are consistent with the past uses of properties which formerly and/or currently drain into the outfall, and are not the result of the documented fuel oil spill. The conclusion made by this comparison is that the types and concentrations of PAHs in sediments at the Storm Drain No. 6 Outfall are consistent with concentrations at various outfalls along Cold Spring Brook. The current analytical data therefore strongly indicates that fuel oil-related contamination at this outfall was successfully removed, and that what remain in soil/sediment at the outfall are PAHs that are likely related to runoff from paved, trafficked areas along Barnum Road. Based on the information provided, this type of PAH contamination which cannot feasibly be eliminated from runoff from asphalt paved areas, is specifically exempted from MCP requirements due to its relative ubiquity at these types of outfalls.

1. PURPOSE

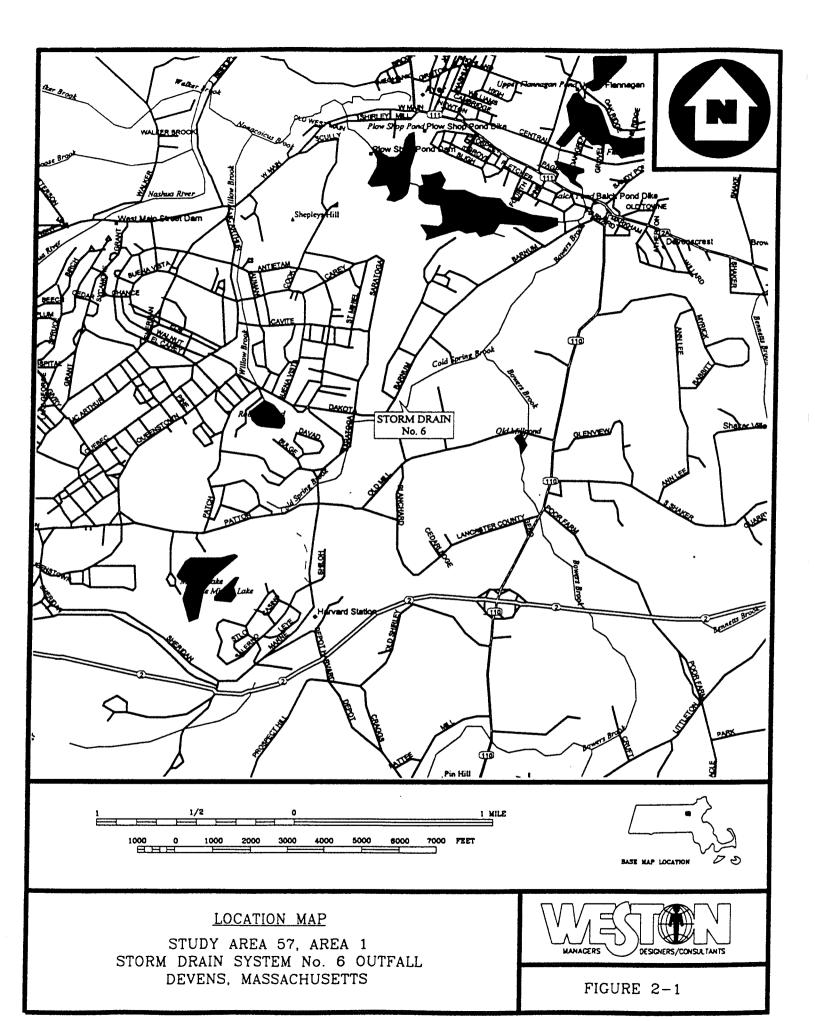
The purpose of this report is to document the removal action activities conducted at the Storm Drain System No. 6 Outfall, located within Study Area 57, Area 1 at Devens, Massachusetts, in accordance with the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) of 1980, as amended. The time-critical removal action at the System No. 6 Outfall included the excavation of approximately 25 cubic yards of semi-volatile organic compound (SVOC) contaminated soil along the drainage pathway associated with the outfall.

This *Removal Action Report* was prepared for the U.S. Army Corps of Engineers, New England District (CENAE), in accordance with the Roy F. Weston, Inc. (WESTON®) *Contaminated Soil Removal - Phase II, Action Memorandum for Study Area 57, Area 1, Storm Drain No. 6 Outfall, Devens, Massachusetts*, dated October 1996, and the references incorporated within.

2. BACKGROUND AND PHYSICAL SETTING

2.1 SITE DESCRIPTION AND HISTORY

On December 21, 1989, Devens (formerly Fort Devens) was placed on the National Priorities List pursuant to the CERCLA as amended. Devens is located within the towns of Ayer, Harvard, Lancaster, and Shirley, Massachusetts and consists of approximately 9,280 acres (Figure 2-1). Fort Devens was used for a variety of U.S. military training missions from 1917 until 1996. In 1991 the installation was selected for cessation of operations and closure under Public Law 101-50, the Base Realignment and Closure (BRAC) Act of 1990.


The Storm Drain No. 6 Outfall is located in the northeast portion of the North Post of Fort Devens and collects runoff from the area around buildings 3712 and 3713, which includes a former commissary, vehicle storage/maintenance facility, and an unpaved area of railroad track. The site is located in a heavily wooded and vegetated low lying area located immediately downgradient of three storm sewer outfall pipes which make up the outfall. The drainage swale ultimately leads to Lower Cold Spring Brook, located 800 feet southeast of the outfall area.

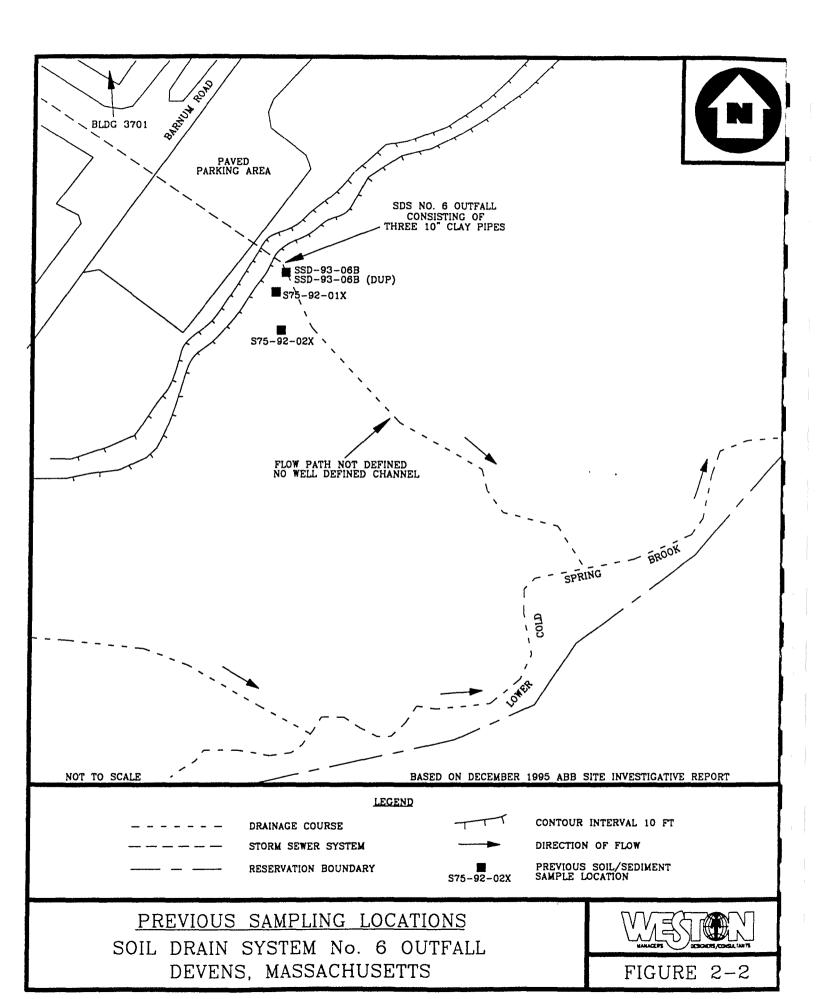
In 1978, an undetermined amount of No. 4 fuel oil was released from an overfilled underground storage tank (UST) at one of the buildings that ultimately drain into the System No. 6 outfall. Investigation after the occurrence of the release indicated that the System No. 6 outfall had received an estimated 3,000-gallons of fuel oil, as a result of the release. It is unknown whether contaminated soil was removed during initial remedial actions conducted at the time of the release.

2.2 REGIONAL GEOLOGY

Devens is near the western boundary of the Seaboard Lowland Section of the New England Maritime Physiographic province. It is adjacent to the Worcester County Plateau of the Central Uplands province, and part of the installation lies within the province. The land surface is almost completely covered with unconsolidated glacial outwash deposits, resulting in few bedrock outcrops. The surficial deposits are underlain by a highly complex assemblage of intensely folded

07/30/98

and faulted metsedimentary rocks and occasional igneous intrusions. The geomorphology of the region is dominated by glacial features such as outwash plains, kames, kame terraces, drumlins, and eskers.


2.3 REGIONAL HYDROGEOLOGY

Groundwater at Devens occurs largely in the permeable glacial-deltaic outwash deposits of sand, gravel, and boulders. Well yields within these sediments are dependent upon hydraulic characteristics of the aquifer and can range from 2 to over 300 gallons per minute (gpm). Small amounts of groundwater can be obtained from fractured bedrock with yields ranging from 2 to 10 gpm. Minor amounts of groundwater may be found in thin, permeable glacial lenses elsewhere on the installation. The primary hydrogeologic feature at Devens is the Nashua River, which flows adjacent to the northern portion of the Moore Army Air Field, in a south to north direction, with an average discharge rate of 55 cubic feet per second (ft³/s). In addition to the Nashua River, numerous brooks that are associated with attendant wetlands dissect the terrain.

2.4 PREVIOUS INVESTIGATIONS

The Site Investigation (SI) conducted by ABB Environmental Services, Inc. (ABB-ES) for the U.S. Army Environmental Center (USAEC) included documentation of five surface soil/sediment samples which were collected in June 1992 and June 1993 during previous investigations. Figure 2-2 depicts the sampling locations. These samples were collected from ground surface to a maximum depth of one foot below ground surface (bgs) in the vicinity and downstream of the outfall. A total of three soil/sediment samples were collected in the June 1992 sampling round and were submitted for laboratory analyses for total petroleum hydrocarbons (TPH) and semi-volatile organic compounds (SVOCs). One soil/sediment sample and a duplicate sample were collected in June 1993 and were submitted for laboratory analyses for TPH, SVOCs, volatile organic compounds (VOCs), and metals.

Analytical results indicated TPH concentrations ranging from 1,410 to 3,500 parts per million (ppm) in the soil/sediment samples, which exceeded the then current Massachusetts Contingency Plan (MCP) Method 1 S-1/GW-1 clean-up standard of 500 ppm. In addition, several SVOCs,

including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and chrysene, were detected in the two samples collected during the June 1993 sampling round. Detected concentrations exceeded the applicable MCP S-1/GW-1 standard of 0.7 ppm for all four compounds, the highest SVOC concentration being benzo(b)fluoranthene at 4.9 ppm. These contaminants may not have been detected in soil/sediment samples collected during the June 1992 sampling round since analytical detection limits for this event exceeded the June 1993 concentrations. An elevated lead concentration of 420 ppm was detected in the June 1993 duplicate soil/sediment sample which exceeded the MCP S-1/GW-1 clean-up standard of 300 ppm. No VOCs were detected in soil/sediment samples collected during the June 1993 sampling round. The soil/sediment in the drainage path was characterized as well-graded sand to a silty sand.

Based on the known history of the site and the surrounding area, as well as on limited analytical results from soil/sediment sampling in the area during previous investigations, a soil removal action was recommended to address contamination resulting from releases of petroleum oil to the storm drain outfall.

3. FIELD ACTIVITIES

3.1 REMOVAL ACTION

Based on findings identified during the ABB-ES SI and previous investigations, WESTON arrived at the System No. 6 Outfall in February 1997 to perform a time-critical removal action of associated contaminated soils. Initial removal operations conducted by WESTON included excavation of a 15' x 15' area, to a maximum depth of 2 feet below ground surface (bgs), at the outfall location; field analytical screening of the excavation limits; and collection of soil samples from the excavation limits for confirmatory laboratory analyses, respectively.

3.2 FIELD SCREENING ANALYSIS

After excavation of the initial limits, WESTON collected a total of four composite samples from the sidewalls and floor of the excavation area (FS-1, FS-2, FS-3, and FS-4) for field screen analysis using non-dispersive infra-red (NDIR) analysis (Figure 3-1). The sidewall samples were collected at depths between 1 to 2 feet bgs. The floor sample was collected at 2 feet bgs.

All field screen samples were screened with a photoionization detector (PID) prior to being screened by NDIR analysis. All headspace readings are presented as concentrations above ambient background concentrations which were determined using statistical calculations from readings collected at various locations in the vicinity of the site. None of the samples exhibited headspace readings above the background concentration.

All field screen samples were compared to the removal objective clean-up goal of 500 ppm for TPH, as specified in the WESTON *Action Memorandum*. Field screen results indicated TPH concentrations ranging from 66 to 271 ppm. Table 3-1 presents the sample locations, the depths at which they were collected and NDIR field screen results.

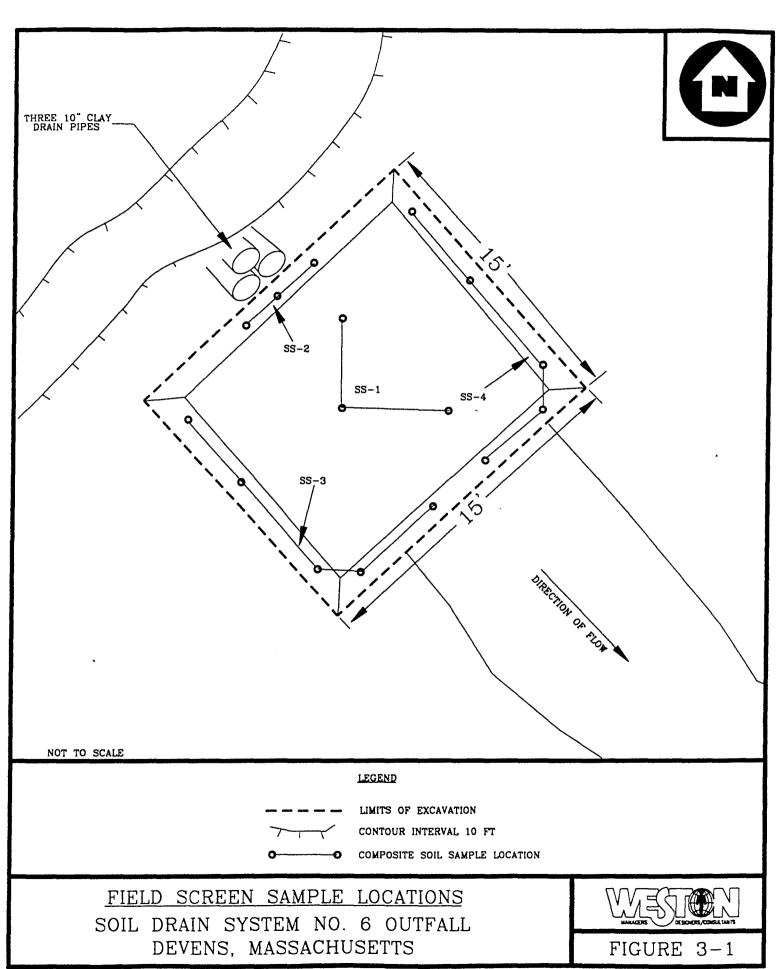


Table 3-1

NDIR Field Screen Results

Composite Samples Collected by WESTON on February 11, 1997

Sample Identification	Composite Sample Locations	Depth (feet bgs)	TPH Concentration (ppm)
FS-1	floor	2	166
FS-2	beneath outfall	1-2	66
FS-3	northeast and southwest walls	1-2	271
FS-4	northeast and southeast walls	1-2	94

TPH = total petroleum hydrocarbons

bgs = below ground surface

ppm = parts per million

3.3 CONFIRMATORY LABORATORY ANALYSIS

On February 13, 1997, WESTON collected a total of six confirmatory soil samples, including a duplicate, from the sidewalls and bottom of the excavation (AOC57-A1-SW1; SW2; SW3; SW4; FL1; and DUP) (Figure 3-2). The soil samples were submitted to Alpha Analytical Laboratories for analysis for standard Volatile Petroleum Hydrocarbons (VPH) and Extractable Petroleum Hydrocarbons (EPH) using the Massachusetts Department of Environmental Protection (MADEP) method. The soil samples were also sent to Katahdin Analytical Services for Priority Pollutant Metals. Analytical results were compared to the MADEP MCP S-1/GW-2 regulatory action levels. A summary of confirmatory samples collected is presented in Table 3-2.

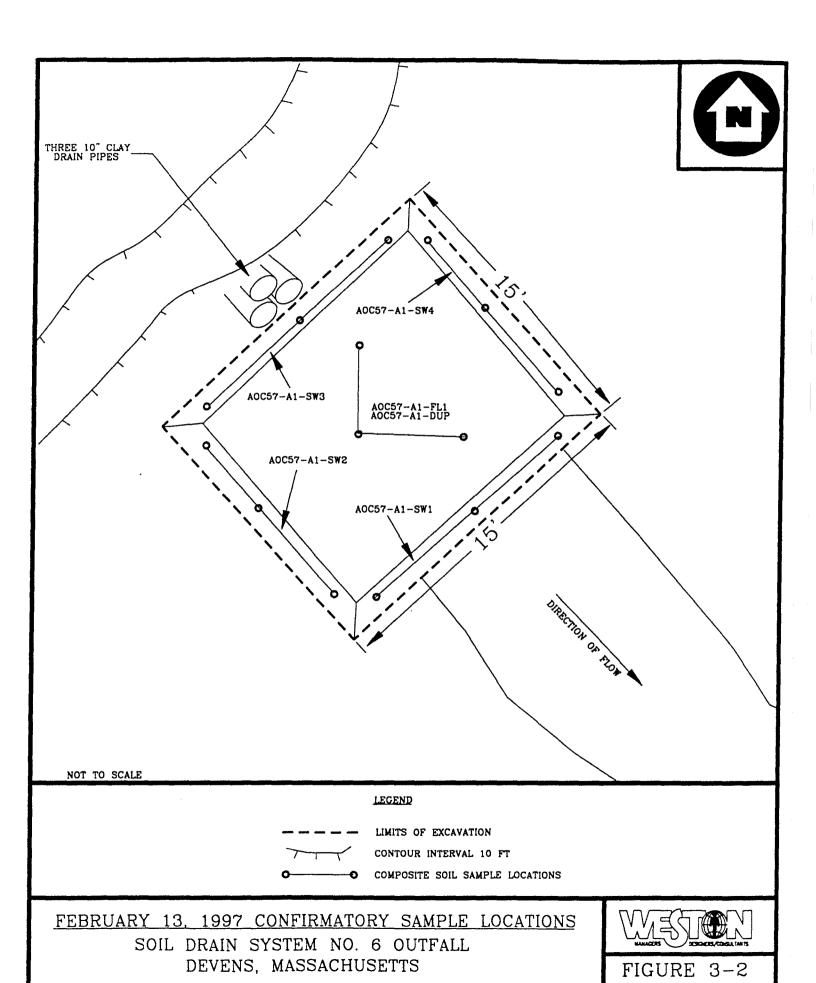


Table 3-2

Sample Summary

Composite Soil Samples Collected by WESTON on February 13, 1997

Sample Identification	Sample Location	Depth (feet bgs)
AOC57-A1-SW1	east wall of excavation	1 - 2
AOC57-A1-SW2	south wall of excavation	1 - 2
AOC57-A1-SW3	west wall of excavation beneath drain pipes	1 - 2
AOC57-A1-SW4	north wall of excavation	1 - 2
AOC57-A1-FL1	floor of excavation	2
AOC57-A1-DUP	duplicate of AOC57-A1-FL1	2

bgs = below ground surface

Laboratory analysis indicated elevated concentrations of polyaromatic hydrocarbons (PAHs) above the S-1/GW-1 standards in composite samples collected from three of the sidewalls; AOC57-A1-SW1; SW2; and SW4. The highest PAH ratio of concentration detected to applicable action level (MCP S-1/GW-1 standard) was benzo(a)pyrene. The concentration and action level were 8.15 ppm and 0.7 ppm, respectively. In addition an elevated EPH concentration of the C₁₀ - C₂₂ aromatic fraction was detected at 532 ppm to exceed the MCP S-1/GW-1 standard of 200 ppm in sidewall sample AOC57-A1-SW2. No concentrations were detected above MCP S-1/GW-1 action levels in either of the floor samples. Table 3-3 is a summary of compounds and elements detected through confirmatory laboratory analyses of WESTON soil samples which are compared to current MCP Method 1 S-1/GW-1 regulatory guidelines.

Table 3-3

Summary of Analytical Results Above Regulatory Levels
Composite Soil Samples Collected by WESTON on February 11, 1997

Sample Identification	Compound	Concentration (ppm)	MCP S-1/GW-1 Regulatory Level (ppm)
AOC57-A1-SW1	PAHs		
Ti.	Benzo(a)anthracene	2.36	0.7
	Benzo(b)fluoranthene	4.4	0.7
	Benzo(a)pyrene	2.11	0.7
	Indeno(1,2,3-cd)pyrene	1.75	0.7
AOC57-A1-SW2	ЕРН		
	C ₁₀ -C ₂₂ Aromatics	532	200
	PAHs		
	Benzo(a)anthracene	7.53	0.7
	Benzo(a)pyrene	8.15	0.7
	Chrysene	10.7	7
	Dibenzo(a,h)anthracene	2.47	0.7
Indeno(1,2,3-cd)pyrene		6.0	0.7
AOC57-A1-SW4	C57-A1-SW4 PAHs		
	Benzo(a)anthracene	3.07	0.7
	Benzo(b)fluoranthene	6.69	0.7
	Benzo(a)pyrene	3.44	0.7
	Dibenzo(a,h)anthracene	1.13	0.7
	Indeno(1,2,3-cd)pyrene	3.02	0.7

ppm = parts per million

MCP = Massachusetts Contingency Plan

PAHs = polyaromatic hydrocarbons

EPH = extractable petroleum hydrocarbons

Based on confirmatory results from the initial sampling round, which indicated elevated PAH and EPH concentrations in excess of the allowable MCP S-1/GW-1 standards, it was decided to perform additional excavation along the contaminated sidewalls. An additional three feet was

removed from the sidewalls perpendicular to the outfall pipes. Approximately seven feet was further excavated from the wall opposite the outfall pipes. The maximum depth of excavation was three feet bgs.

On March 17, 1997, WESTON collected three additional confirmatory composite samples (AOC57-A1-SW1/B; SW2/B; and SW4/B) from the sidewalls (Figure 3-3). Samples AOC57-A1-SW1/B and SW4/B were submitted to OHM Analytical Services for SVOCs using EPA Method 8270. Sample AOC57-A1-SW2/B was submitted to Alpha Analytical Laboratories for EPH analysis based on the elevated C_{10} - C_{22} aromatic fraction detected along the sidewall during the initial sampling round. A summary of confirmatory samples collected is presented in Table 3-4.

Table 3-4

Sample Summary

Composite Soil Samples Collected by WESTON on March 17, 1997

Sample Identification	Sample Location	Depth (feet bgs)
AOC57-A1-SW1/B	east wall of excavation	0 - 3
AOC57-A1-SW2/B	south wall of excavation	3
AOC57-A1-SW4/B	north wall of excavation	0 - 3

bgs = below ground surface

Confirmatory analytical results for the second round of sampling indicated elevated PAH concentrations in sidewalls AOC57-A1-SW1/B and SW4/B. A total of ten PAH contaminants exceeded the applicable MCP S-1/GW-1 standards in each of the two sample locations. The highest concentrations were detected in sample AOC57-A1-SW1/B, located downstream of the outfall pipes. No SVOCs or EPH fractions were detected above the MCP S-1/GW-1 cleanup standards in sample AOC57-A1-SW2/B. Table 3-5 is a summary of compounds and elements detected through confirmatory laboratory analyses of WESTON soil samples which are compared to current MCP Method 1 S-1/GW-1 regulatory guidelines.

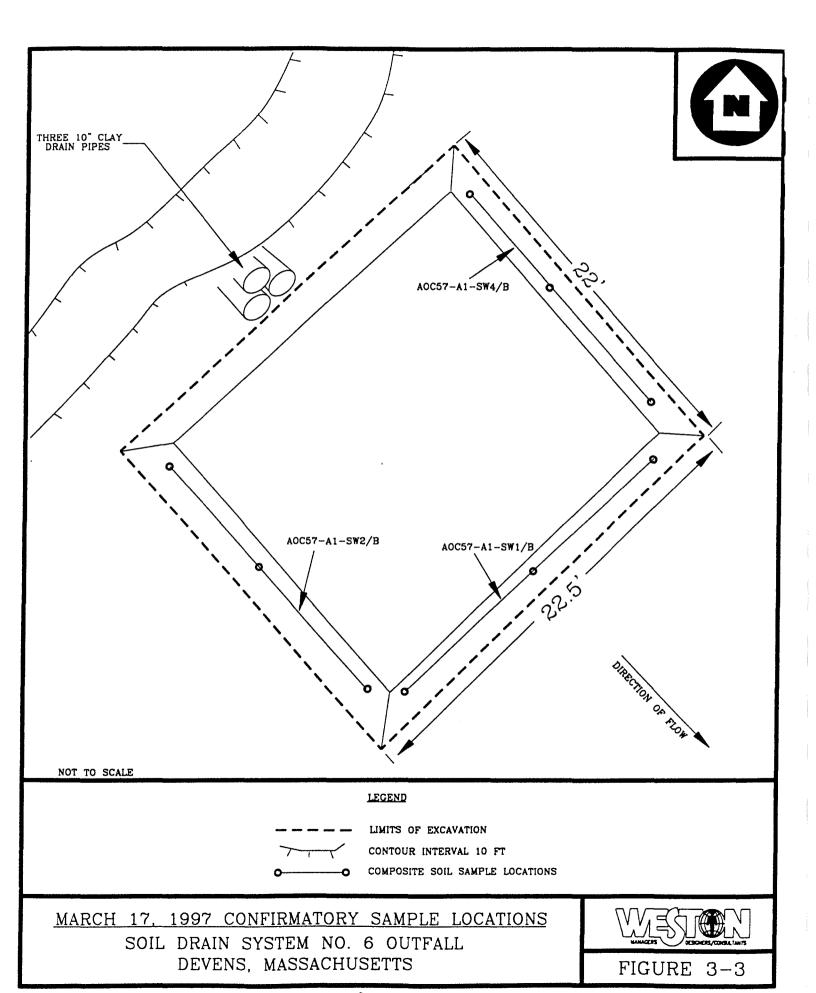


Table 3-5

Summary of Analytical Results Above Regulatory Levels
Composite Soil Samples Collected by WESTON on March 17, 1997

Sample Identification	Compound	Concentration (ppm)	MCP S-1/GW-1 Regulatory Level (ppm)
AOC57-A1-SW1	PAHs		
	Benzo(a)anthracene	2.0	0.7
	Benzo(b)fluoranthene	2.8	0.7
	Benzo(a)pyrene	2.4	0.7
	Indeno(1,2,3-cd)pyrene	1.8	0.7
AOC57-A1-SW4	PAHs		
	Benzo(a)anthracene	5.1	0.7
	Benzo(a)pyrene	6.1	0.7
	Benzo(b)fluoranthene	6.1	0.7
	Indeno(1,2,3-cd)pyrene	4.7	0.7

ppm = parts per million

MCP = Massachusetts Contingency Plan

PAHs = polyaromatic hydrocarbons

3.4 WASTE CHARACTERIZATION ANALYSIS

In all, approximately 25 cubic yards of suspect contaminated soils were generated during the WESTON time-critical removal action. As specified in the WESTON FSAP, one composite sample was to be collected per 100 cubic yards of contaminated stockpiled soil generated. One composite waste characterization sample was submitted to OHM Remediation Services Corporation for analysis for VOCs using EPA Method 8260; SVOCs using EPA Method 8100; PCBs using EPA Method 8080; TPH using EPA Method 418.1; total RCRA metals using EPA Methods 6010A and 7471A; total RCRA characteristics.

Analytical waste characterization results indicated individual elevated SVOC concentrations of PAHs above regulatory actions levels. However, all total concentrations detected are below the allowable contaminant levels for soil reuse at lined landfills, as specified in the MADEP, Bureau

of Waste Site Cleanup, Interim Policy #BWP-94-037. These soils are currently stockpiled at the Soil Storage Facility at Building 202 and will be disposed and/or treated with petroleum contaminated soils currently stockpiled in Cell D of the Soil Storage Facility. Table 3-1 is a summary of total contaminant concentrations, detected through waste characterization analyses of stockpiled soils generated at the System No. 6 Outfall, in comparison to MADEP landfill reuse and disposal criteria.

Table 3-6

Summary of Waste Characterization Analytical Results
Stockpile Soil Samples Collected by WESTON on June 16, 1997

Contaminant	Reuse Levels (ppm)	Stockpile Soil Results (ppm)
Total Arsenic	40	14.2
Total Cadmium	80	0.84
Total Chromium	1,000	21.1
Total Lead	2,000	75.7
Total Mercury	10	<0.009
ТРН	5,000	220
Total PCBs	<2	<0.18
Total SVOCs	100	18.77
Total VOCs	10	0.323
TCLP	None	ND*

ppm = parts per million

TPH = total petroleum hydrocarbons

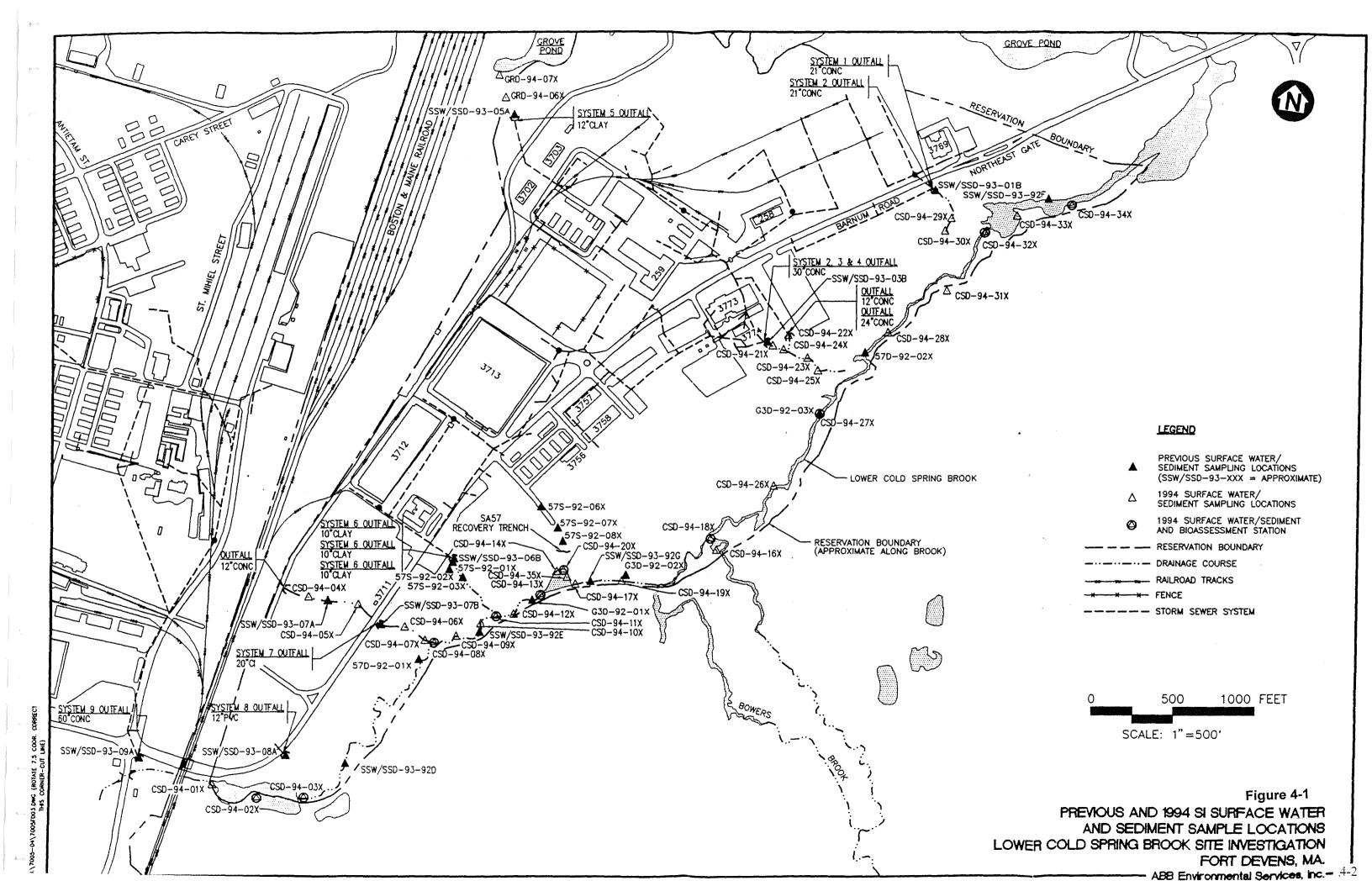
PCBs = polychlorinated biphenyls

PAHs = polyaromatic hydrocarbons

VOCs = volatile organic oompunds

TCLP = toxicity characteristic leachate procedure

^{* =} below TCLP regulated toxicants and hazardous concentrations.


4. COMPARISON TO BACKGROUND STUDIES

To assess the nature and regulatory context of the elevated PAH concentrations at the System No. 6 Outfall, a comparison has been made with concentrations of PAHs detected in sediment samples at the System No. 6 outfall with sediment samples collected at eight other storm drain outfalls which also drain into Cold Spring Brook. The objective of this comparison is to provide sufficient evidence that PAHs detected in soil samples collected at the System No. 6 Outfall are consistent with the past uses of properties which formerly and/or currently drain into the outfall, and are not the result of the documented fuel oil spill. Figure 4-1 presents the locations of sediment samples collected at the eight other storm drain outfalls in addition to sample locations along Cold Spring Brook.

In general, elevated PAH concentrations, above the MCP S-1/GW-1 regulatory action levels, exist along the drainage pathway downstream of the System No. 6 Outfall. As mentioned previously, the background history of this outfall includes a fuel oil spill that was released to the outfall in 1978; however, it should be noted that PAHs are also byproducts of combustion and are common constituents in runoff from paved, trafficked areas. Other sources of PAHs consist of coal tar and wood treating residues (Bradley et al). As indicated in the background history of the site, the System No. 6 Outfall collects runoff from Buildings 3712 and 3713, an area that includes paved vehicle storage and parking areas and a portion of unpaved railroad track. These areas would be considered likely sources of PAHs in runoff to Storm Drain 6. The other Storm Drain outfalls along Barnum Road areas also accept similar types of runoff. Given these potential sources at the site, it is reasonable to compare the concentrations detected at the System No. 6 Outfall with background concentrations at other outfalls at Devens.

Between 1992 and 1994, a total of 26 sediment samples were collected from the nine outfall locations and downstream pathways associated with Cold Spring Brook, including the System No. 6 Outfall. Because PAHs are generally found in groups, it was conservatively assumed that if one PAH was detected in a sample, other compounds in that class might also be present in that sample. Therefore, if one PAH was detected in a sample, all undetected PAHs were assigned a proxy concentration equal to one half the standard quantitation limit (SQL). If a sample had no

detected PAH, no PAH was assumed to be present in the sample, and a concentration of zero was used for all non-detects (Bradley et al).

Table 4-1

Comparison of PAH Concentrations in Sediment Samples in Storm Drain

Pathways along Cold Spring Brook

Analyte	System No 6 MeanConc. (mg/kg)	Combined Outfall Mean Conc. (mg/kg)
Naphthalene	ND	0.25*
Acenaphthylene	ND	3.43
Acenaphthene	ND	0.9*
Fluorene	ND	0.67
Phenanthrene	5.9	15.76
Anthracene	ND	0.73
Fluoranthene	9.85	11.08
Pyrene	7.75	13.83
Benzo(a)anthracene	3.55	4.67
Chrysene	4.85	7.05
Benzo(b)fluoranthene	4.45	5.11
Benzo(k)fluoranthene	4.1	4.46
Benzo(a)pyrene	4.25	3.95
Indeno(1,2,3-cd)pyrene	3.25	5.63*
Dibenzo(a,h)anthracene	ND	3.62*
Benzo(g,h,i)perylene	3.05	2.41
2-Methylnaphthalene	NA	2.52*
Total PAH	51.0	86.07
Total cPAH	24.45	34.49

mg/kg = milligrams per kilogram, analogous to parts per million (ppm). ND = Not Detected

^{*} Analyte was not reported at all outfall locations and given arithmetic mean is the total concentration for that analyte divided by the number of storm drains at which the analyte was reported.

Based on the data presented in Table 4-1, a comparison of the arithmetic mean concentration of the PAHs, and more specifically the carcinogenic PAHs (cPAHs), indicates that the concentrations in sediments at the System No. 6 Outfall are consistent with concentrations at various outfalls along Cold Spring Brook at Devens.

The current analytical data strongly indicates that fuel oil related contamination at the outfall was successfully removed, and that what soil/sediment at the outfall are PAHs that are likely related to runoff from paved, trafficked areas. Based on the information provided, this type of PAH contamination which cannot feasibly be eliminated from runoff from asphalt paved areas, is specifically exempted from MCP requirements due to its relative ubiquity at these types of outfalls.

5. CONCLUSIONS

Elevated PAH concentrations, above the MCP S-1/GW-1 Method 1 Standards, exist along the drainage pathway downstream of the Storm Drain No. 6 Outfall. Background history of this outfall indicates that a fuel oil spill was released to the outfall in 1978; however, the PAHs observed are also byproducts of combustion and are commonly observed in runoff from paved areas which are heavily trafficked and/or used for vehicle storage. Other sources of PAHs consist of coal tar and wood treating residues. As indicated in the background history of the site, the Storm Drain No. 6 Outfall collects runoff from Buildings 3712 and 3713, an area that includes paved vehicle storage areas and a portion of unpaved railroad track. Both of these areas would be considered likely sources of PAHs in runoff.

Based on the data presented in Table 4-1, a comparison of the arithmetic mean concentration of the PAHs, and more specifically the cPAHs, indicates that the types and concentrations of PAHs in sediments at the Storm Drain No. 6 Outfall are consistent with concentrations at various outfalls along Cold Spring Brook. The current analytical data therefore strongly indicates that fuel oil related contamination at the outfall was successfully removed, and that what remain in soil/sediment at the outfall are PAHs that are likely related to runoff from paved, trafficked areas along Barnum Road. Based on the information provided, this type of PAH contamination which cannot feasibly be eliminated from runoff from asphalt paved areas, is specifically exempted from MCP requirements due to its relative ubiquity at these types of outfalls.

Based on the data provided in this report from the removal action and the conclusions derived from comparison of PAH data as discussed above, no further action is recommended for Study Area 57, Area 1, Storm Drain System No. 6 Outfall. This Removal Action Report will be incorporated into the Record of Decision for Study Area 57, Areas 2 & 3.

6. REFERENCES

WESTON (Roy F. Weston, Inc.). 1996. Contaminated Soil Removal - Phase II, Study Area 57, Area 1, Storm Drain System No. 6 Outfall, Scope of Work. September.

WESTON (Roy F. Weston, Inc.). 1996. Contaminated Soil Removal - Phase II, Study Area 57, Area 1, Storm Drain System No. 6 Outfall, Action Memorandum. October.

WESTON (Roy F. Weston, Inc.). 1996. Contaminated Soil Removal - Phase II, Study Area 57, Area 1, Storm Drain System No. 6 Outfall, Field Sampling and Analysis Plan Addendum. October.

MADEP (Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup). 1997. *The Massachusetts Contingency Plan, 310 CMR 40.000*. Revised May 8.

ABB (ABB Environmental Services, Inc.). 1995. Lower Cold Spring Brook Site Investigation. April.

ADL (Arthur D. Little, Inc.). 1994. Final Storm Sewer System Evaluation (AREE 70) Report. June.

Bradley et al. Background Levels of Polycyclic Aromatic Hydrocarbons (PAH) and Selected Metals in New England Urban Soils. 1994.

ATTACHMENT A

CONFIRMATORY SOIL ANALYTICAL RESULTS

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

CERTIFICATE OF ANALYSIS

Client: Roy F. Weston, Inc.

Laboratory Job Number: L9701107

Address: 88 Pine Street

Invoice Number: 2173

Fort Devens, MA 01433

Date Received: 13-FEB-97

Attn:

Tom Abdella

Date Reported: 19-FEB-97

Project Number: 03886-118-004

Delivery Method: Alpha

Site: Fort Devens, MA

CLIENT IDENTIFICATION	SAMPLE LOCATION
AOC57-A1-SW1	Storm Drain #6
AOC57-A1-SW2	Storm Drain #6
AOCS7-A1-SW3	Storm Drain #6
AOC57-A1-SW4	Storm Drain #6
AOC57-A1-FL1	Storm Drain #6
AOC57-Al-DUP	Storm Drain #6
AOC57-TB1	Storm Drain #6
	AOC57-A1-SW1 AOC57-A1-SW2 AOC57-A1-SW3 AOC57-A1-SW4 AOC57-A1-FL1 AOC57-A1-DUP

Authorized by: James & Rollo

James R. Roth, PhD - Laboratory Manager

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701107-01

AOC57-A1-SW1

Date Collected: 13-FEB-97

Date Received: 13-FEB-97

Sample Matrix:

SOIL

Date Reported: 19-FEB-97

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 1 Vial,1 Glass

PARAMETER	RESULT	UNITS	RDL.	REF	METHOD	DATES PREP ANALYSIS	ID
Solids, Total	87.	å	0.10	3	2540B	14-Feb	ST
Volatile Petroleum Hydrocarbon	Only			39	Draft 1.0	14-Feb	DB
C5-C8 Aliphatics	11500	ug/kg	200.				
C9-C12 Aliphatics	1380	ug/kg	200.				
C9-C10 Aromatics	575.	ug/kg	200.				
VPH, Total	13800	ug/kg	200.				
SURROGATE RECOVERY						•	
2,5-Dibromotoluene	102.	% -					

Laboratory Sample Number: L9701107-01

AOC57-A1-SW1

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES PREP ANALYSI:	ID S
Extractable Petroleum Hydroc	arbon			40	Draft 1.0	14-Feb 15-Fel	b DB
C9-C18 Aliphatics	ND	ug/kg	5000				
C19-C36 Aliphatics	ND	ug/kg	5000				
Clo-C22 Aromatics	96100	ug/kg	5000				
EPH, Total	96100	ug/kg	5000				
Acenaphthene	• ND	ug/kg	700.				
Acenaphthylene	ND	ug/kg	700.				
Anthracene	985.	ug/kg	700.				
Benzo (a) anthracene	2360	ug/kg	700.	/ J			
Benzo(a)pyrene	2110	ug/kg	700.	/			
Benzo(b) fluoranthene	4400	ug/kg	700. ✓				
Benzo(ghi) perylene	1860	ug/kg	700.				
Benzo(k) fluoranthene	ND	ug/kg	700.				
Chrysene	3150	ug/kg	700.				
Dibenzo(a,h)anthracene	ND	ug/kg	700.				
Fluoranthene	8240	ug/kg	700.				
Fluorene	ND	ug/kg	700.	i			
Indeno(1,2,3-c,d)pyrene	1750	ug/kg	700. J	' J			
Naphthalene	ND	ug/kg	700.			•	
Phenanthrene	5290	ug/kg	700.				
Pyrene	5840	ug/kg	700.				
2-Methylnaphthalene	ND	ug/kg	700.				
SURROGATE RECOVERY							
Chloro-octadecane	91.0	8)0					
o-Terphenyl	236.	2					

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701107-02

AOC57-A1-SW2

Satisfactory

Date Collected: 13-FEB-97
Date Received: 13-FEB-97

Sample Matrix:

SOIL

Date Reported : 19-FEB-97

Condition of Sample:

Field Prep: N

None

Number & Type of Containers: 1 Vial,1 Glass

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES PREP ANALYSI	
Solids, Total	86.	ક	0.10	3	2540B	14-Feb	rz
Volatile Petroleum Hydrocarbon	Only			39	Draft 1.0	14-Feb	DE
C5-C8 Aliphatics	15100	ug/kg	200.				
C9-C12 Aliphatics	3020	ug/kg	200.				
C9-C10 Aromatics	965.	ug/kg	200.				
VPH, Total	18600	ug/kg	200.				
SURROGATE RECOVERY						•	
2,5-Dibromotoluene	100.	%					

Laboratory Sample Number: L9701107-02

AOC57-A1-SW2

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DAT PREP	es Analysis	IL
Extractable Petroleum Hydro	carbon			40	Draft 1.0	14-Fe	eb 15-Feb	DF
		and the second		; = T ₂₀₀ ;	. 	i compresse i		-
C9-C18 Aliphatics	MD	ug/kg	5000		1			
C19-C36 Aliphatics	29300	ug/kg	5000		/			
C10-C22 Aromatics	532000	ug/kg	5000	200	•			
EPH, Total	561000	ug/kg	5000					
Acenaphthene	- 879.	ug/kg	700.					
Acenaphthylene	1080	ug/kg	700.					
Anthracene	3200	ug/kg	700.					
Benzo (a) anthracene	7530	ug/kg	700.	/ /				
Benzo(a) pyrene	8150	ug/kg	700.					
Benzo (b) fluoranthene	15600	ug/kg	700.					
Benzo (ghi) perylene	5620	ug/kg	700.					
Benzo(k) fluoranthene	1670	ug/kg	700.					
Chrysene	10700	ug/kg	700.	1)				
Dibenzo (a, h) anthracene	2470	ug/kg	700.					
Fluoranthene	27100	ug/kg	700.					
Fluorene	1730	ug/kg	700.					
Indeno(1,2,3-c,d)pyrene	6000	ug/kg	700.	13				
Naphthalene	814.	ug/kg	700.					
Phenanthrene	19100	ug/kg	700.					
Pyrene	23500	ug/kg	700.					
2-Methylnaphthalene	ND	ug/kg	700.					
SURROGATE RECOVERY								
Chloro-octadecane	82.0	9,						
o-Terphenyl	315.	d o						

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701107-03

AOCS7-A1-SW3

Date Collected: 13-FEB-97

Date Received: 13-FEB-97

Sample Matrix:

SOIL

Date Reported: 19-FEB-97

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 1 Vial,1 Glass

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE PREP A	s Nalysis	ID
Solids, Total	95.	*	0.10	3	25408		14-Feb	ST
Volatile Petroleum Hydrocarbon	Only			39	Draft 1.0		14-Feb	DE
C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics VPH, Total	10100 211. 295. 10500	ug/kg ug/kg ug/kg ug/kg	200. 200. 200. 200.					
SURROGATE RECOVERY								
2,5-Dibromotoluene	95.0	&						

Laboratory Sample Number: L9701107-03

AOC57-A1-SW3

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATE: PREP AL		Œ
Extractable Petroleum F	lydrocarbon			40	Draft 1.0	14-Feb	15-Feb I	ЭB
C9-C18 Aliphatics	ND	ug/kg	5000					
C19-C36 Aliphatics	^ND	ug/kg	5000					
C10-C22 Aromatics	ND	ug/kg	5000					
EPH, Total	ND	ug/kg	5000					
****	_							
Acenaphthene	~ ND	ug/kg	700.					
Acenaphthylene	ND	ug/kg	700.					
Anthracene	ND	ug/kg	700.					
Benzo (a) anthracene	ND	ug/kg	700.					
Benzo (a) pyrene	CM	ug/kg	700.					
Benzo (b) fluoranthene	ND	ug/kg	700.					
Benzo (ghi) perylene	ND	ug/kg	700.					
Benzo(k) fluoranthene	ND	ug/kg	700.					
Chrysene	ND	ug/kg	700.					
Dibenzo(a,h)anthracene	ND	ug/kg	700.					
Fluoranthene	ND	ug/kg	700.					
Fluorene	ND	ug/kg	700.					
Indeno(1,2,3-c,d)pyrene	: ND	ug/kg	700.					
Naphthalene	ND	ug/kg	700.			-		
Phenanthrene	ND	ug/kg	700.					
Pyrene	ND	ug/kg	700.					
2-Methylnaphthalene	ND	ug/kg	700.					
SURROGATE RECOVERY								
Chloro-octadecane	86.0	&						
o-Terphenyl	141.	8						

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

CERTIFICATE OF ANALYSIS

Client: Roy F. Weston, Inc.

Laboratory Job Number: L9701277

Address: 88 Pine Street

Invoice Number: 2371

Fort Devens, MA 01433

Date Received: 19-FEB-97

Attn: Dave Crispo

ta.

Date Reported: 26-FEB-97

Project Number:

Delivery Method: Alpha

Site: Fort Devens

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L9701277-01	ADC57-A1-FL1	Storm Drain #6
L9701277-02	ADC57-A1-DUP	Storm Drain #6

Authorized by (1965)

Scott McLean - Laboratory Director

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701107-04

AOC57-A1-SW4

SOIL

Date Collected: 13-FEB-97

Date Received: 13-FEB-97
Date Reported: 19-FEB-97

None

Duto Reported . 19 1111

Field Prep:

Condition of Sample:

2,5-Dibromotoluene

Sample Matrix:

Satisfactory

Number & Type of Containers: 1 Vial, 1 Glass

105.

PARAMETER DATES RESULT UNITS RDL METHOD REF ID PREP ANALYSIS Solids, Total 88. ž 0.10 3 2540B 14-Feb ST Volatile Petroleum Hydrocarbon Only 39 Draft 1.0 14-Feb DB C5-C8 Aliphatics 14800 ug/kg 200. C9-C12 Aliphatics 3640 ug/kg 200. C9-C10 Aromatics 807_ ug/kg 200. ug/kg VPH, Total. 19300 200. SURROGATE RECOVERY

Laboratory Sample Number: L9701107-04
AOC57-Al-SW4

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES PREP ANALYSIS	ID
Extractable Petroleum Hydro	carbon			40	Draft 1.0	14-Feb 15-Feb	DB
C9-C18 Aliphatics	ND	ug/kg	5000				
C19-C36 Aliphatics	ND	ug/kg	5000				
C10-C22 Aromatics	148000	ug/kg	50 00				
EPH, Total	148000	ug/kg	5000				
	-						
Acenaphthene	ND	ug/kg	700.				
Acenaphthylene	ND	ug/kg	700.				
Anthracene	951.	ug/kg	700.	,			
Benzo(a) anthracene	3070	ug/kg	700.				
Benzo(a)pyrene	3440	ug/kg	700. J	/ _/			
Benzo(b) fluoranthene	6690	ug/kg	700. 🗸	/			
Benzo(ghi)perylene	3160	ug/kg	700.				
Benzo(k) fluoranthene	ND	ug/kg	700.				
Chrysene	4610	ug/kg	700.	7			
Dibenzo(a,h)anthracene	1130	ug/kg	700.	\int			
Fluoranthene	9940	ug/kg	700.				
Fluorene	ND	ug/kg	700.				
Indeno(1,2,3-c,d)pyrene	3020	ug/kg	700.	V			
Naphthalene	ND	ug/kg	700.				
Phenanthrene	5090	ug/kg	700.				
Pyrene	7560	ug/kg	700.				
2-Methylnaphthalene	ND	ug/kg	700.				
SURROGATE RECOVERY							
Chloro-octadecane	76.0	8					
o-Terphenyl	232.	8-					

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701277-01

ADC57-A1-FL1

Date Collected: 13-FEB-97
Date Received: 19-FEB-97

Sample Matrix:

SOIL

Date Reported : 26-FEB-97

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 1 Vial

PARAMETER	RESULT	UNITS	RDL	REP	METHOD	res Analysis	ID
Solids, Total	83.	9-	0.10	3	2540B	14-Feb	ST
Volatile Petroleum Hydrocarbon	Only			39	Draft 1.0	20-Feb	DB
C5-C8 Aliphatics	3860	ug/kg	200_				
C9-C12 Aliphatics	2410	ug/kg	200.				
C9-C10 Aromatics	386.	ug/kg	200.				
VPH, Total	6630	ug/kg	200.				
SURROGATE RECOVERY							
2,5-Dibromotoluene	106.	*					

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701107-05

AOC57-A1-FL1

Date Collected: 13-FEB-97 Date Received: 13-FEB-97

Sample Matrix:

SOIL

Date Reported: 19-FEB-97

Condition of Sample:

Satisfactory

Field Prep: None

Number & Type of Containers: 1 Vial,1 Glass

PARAMETER	RESULT	UNITS	RDL	ref	METHOD	DATES II PREP ANALYSIS
Solids, Total	83.	8	0.10	3	2540B	14-Feb ST
Extractable Petroleum Hydro	ocarbon			40	Draft 1.0	14-Feb 15-Feb DE
C9-C18 Aliphatics	ND	ug/kg	5000			
C19-C36 Aliphatics	ND	ug/kg	5000			
C10-C22 Aromatics	ND	ug/kg	5000			
EPH, Total	ND	ug/kg	5000			
Acenaphthene	- ND	ug/kg	700.			
Acenaphthylene	ND	ug/kg	700.			
Anthracene	ND	ug/kg	700 -			
Benzo (a) anthracene	ND	ug/kg	700.			
Benzo (a) pyrene	ND	ug/kg	700.			
Benzo(b) fluoranthene	ND	ug/kg	700.			
Benzo(ghi)perylene	ND	ug/kg	700.			-
Benzo(k) fluoranthene	ND	ug/kg	700.			
Chrysene	ND	ug/kg	700.			
Dibenzo(a,h)anthracene	ďИ	ug/kg	700.			
Fluoranthene	NĎ	ug/kg	700.			
Fluorene	ND	ug/kg	700.			
Indeno(1,2,3-c,d)pyrene	ND	ug/kg	700.			
Naphthalene	ND	ug/kg	700.			
Phenanthrene	ND	ug/kg	70 0 .			
Pyrene	ND	ug/kg	700.			
2-Methylnaphthalene	ND	ug/kg	700.			
SURROGATE RECOVERY						
Chloro-octadecane	75.0	લ ે				
o-Terphenyl	165.	રું				

Comments: Complete list of References and Glossary of Terms found in Addendum I

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701277-02

ADC57-A1-DUP

Date Collected: 13-FEB-97

Date Received: 19-FEB-97

Sample Matrix:

SOIL

Date Reported: 26-FEB-97

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 1 Vial

RESULT	UNITS	RDL	REF	METHOD	DATES PREP ANALYSIS	ID:
83.	*	0.10	3	2540B	14-Feb	ST
n Only			39	Draft 1.0	20-Feb	DB
3370	ug/kg	200.				
711.	ug/kg	200.				
ND	ug/kg	200.				
4100	ug/kg	200.				
97.0	ઝ					
	83. n Only 3370 711. ND 4100	83. % n Only 3370 ug/kg 711. ug/kg ND ug/kg 4100 ug/kg	83. % 0.10 n Only 3370 ug/kg 200. 711. ug/kg 200. ND ug/kg 200. 4100 ug/kg 200.	83. % 0.10 3 n Only 39 3370 ug/kg 200. 711. ug/kg 200. ND ug/kg 200. 4100 ug/kg 200.	83. % 0.10 3 2540B n Only 39 Draft 1.0 3370 ug/kg 200. 711. ug/kg 200. ND ug/kg 200. 4100 ug/kg 200.	83. % 0.10 3 2540B 14-Feb 39 Draft 1.0 20-Feb 370 ug/kg 200. 711. ug/kg 200. ND ug/kg 200. 4100 ug/kg 200.

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701107-06

AOC57-A1-DUP

Date Collected: 13-FEB-97 Date Received : 13-FEB-97

Sample Matrix:

SOIL

Date Reported : 19-FEB-97

Condition of Sample:

Satisfactory

Field Prep: None

Number & Type of Containers: 1 Vial, 1 Glass

PARAMETER	- RESULT	UNITS	RDL	REF	METHOD	DAT PREP	ES ANALYSIS	ID
Solids, Total	83.	8	0.10	3	25 40B		14~Feb	ST
Extractable Petroleum Hydr	cocarbon			40	Draft 1.0	14-F6	b 15-Feb	DB
C9-C18 Aliphatics	ND	ug/kg	5000					
C19-C36 Aliphatics	ND	ug/kg	5000					
C10-C22 Aromatics	ND	ug/kg	5000					
EPH, Total	ND	ug/kg	5000					
	-	0	700					
Acenaphthene	ND	ug/kg	700.			-		
Acenaphthylene Anthracene	MD	ug/kg	700.					
Benzo (a) anthracene	ND ND	ug/kg	700. 700.					
Benzo (a) pyrene	ND	ug/kg	700.					
Benzo (b) fluoranthene	ND	ug/kg	700.					
Benzo(ghi) perylene	ND	ug/kg	700.					
Benzo(k) fluoranthene	ND ND	ug/kg ug/kg	700.					
Chrysene	ND		700.					
Dibenzo(a,h)anthracene	ND	ug/kg	700.					
Fluoranthene	ND	ug/kg	700.					
Fluorene	ND	ug/kg ug/kg	700.					
Indeno(1,2,3-c,d)pyrene	ND	ug/kg	700.					
Naphthalene	ND	ug/kg ug/kg	700.					
Phenanthrene	ND	ug/kg	700.					
Pyrene	ND	ug/kg ug/kg	700.					
2-Methylnaphthalene	ND	ug/kg	700.					
SURROGATE RECOVERY								
Chloro-octadecane	79.0	ક ્						
o-Terphenyl	131_	٠ ١						

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701107-07

Date Collected: 12-FEB-97 Date Received: 13-FEB-97

AOC57-TB1

Sample Matrix:

SOIL

Date Reported : 19-FEB-97

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 1 Vial

PARAMETER	RESULT	UNITS	RDL	RZY	METHOD	DATES PREP ANALYSIS	ID
Volatile Petroleum Hydrocarbon	Only			39	Draft 1.0	14~Feb	DB
C5-C8 Aliphatics	10000	ug/kg	200.				
C9-C12 Aliphatics	ND	ug/kg	200.				
C9-C10 Aromatics	300.	ug/kg	200.				
VPH, Total	10000	ug/kg	200.				
SURROGATE RECOVERY							
2,5-Dibromotoluene	97.0	¥					

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH DUPLICATE ANALYSIS

Laboratory Job Number: L9701107

Parameter	Value 1	Value 2	RPD	Units	
Solids, Total	DUPLICAT	E for samp	ole(s) 01-0	6	
	95.	95.	0	*	

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH MS/MSD ANALYSIS

Laboratory Job Number: L9701107

Parameter	MS %	MSD %	RPD
Volatile Petroleum Hydroc	carbon-Spike Re	covery MS/N	ISD for sample(s) 01-04,07
2-Methylpentane	80	83	4
Toluene	120	104	14
1,2,4-Trimethylbenzene	115	112	3
SURROGATE RECOVERY			
2,5-Dibromotoluene	121	122	1

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- 3. Standard Methods for Examination of Water and Waste Water. APHA-AWWA-WPCF. 17th Edition. 1989.
- 39. Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), Draft 1.0, Massachusetts Department of Environmental Protection, 1995.
- 40. Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), Draft 1.0, Massachusetts Department of Environmental Protection, 1995.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and oplitting of samples in the field.

ALPHA	Eight Walku Westborougl	-		01 1	010		C	HA	IN (OF CUSTODY RECORD No.69563		
Analytical Laboratories, Inc.						93	and ANALYSIS REQUEST RECORD					
Company Name:	Project Number:						Project Name/Location: Date Received in Lab: Date Die: 1/1/5/					
	03886-118	3 -004.	440	U ~)	1						
ROY F. WESTON, INC.	P.O. Number:									#6 13 1101770//9		
Company Address:	- 1	Phone Null SOB - 7	77 -	710	90		-	ect Mana	-	Alpha Job Number: (Lab use only)		
BLdy 3701, BARNUM ROAD	DENENZ	500 TAX No.)72 - :	725	51		٦	DM.	ABDE	ELLA DAUECRESPO 970 1107		
	P = Plastic V = Vial	8	Meth							MATRIX / SOURCE CODES		
	C = Cuber G = Gless A = Amber Gless	~ 3	(sumb	er of c	ontase	iers)	F.F			MW = Monitoring Well RO = Runoff O = Outfall W = Well L F = Landfill L = Lake/Pond/Ocean I = Influent E = Effluent DW = Drinking Water		
ALPHA	B = Bacteria Contain O = Other	er S/x	83		.일		- sa	Same	nlina	R = River Stream S = Soil SG = Sludge B = Botton Sediment		
	Containers	atrī	Unpres.	i	릨 5	i ii	lubl	Jaili	pling Time	X1 = Other X2 = Other		
(Lab Use Oaly) Sampic I.D.	(number/type) ∑	기의	Ż	ञ्	10	8	Date	Time	Analysis Requested		
1107. / ACLS7-AI-SWI	I A	S	X			X		9.13	0931	EPH DELUXE, STANDARD UPH (75)		
2 ACC 57-A1-SWZ	IA 16	S	X			X		2-13	0940	EPH DELUXE, STANDARD VPH		
3 AOLS7-A1- SU3	IA IG	S	X			×		2 12	O957	EPH DELUXE, STANDARD UPH		
Y ADC57-A1-SU4	iA iG	5	X			X		2-13 97	1008	EPH DELUXE, STANDARD UPH		
5 NOL57-A1-FLI	IA IG	Ş	×			X		1 . 12		1		
6 ADCS7-A1-DUP	IA IG	5	X			×	} 22	2.13	[013	EPH DELVXE		
7 AOC57 TBI	JA	_	×				杰			STANDARD UPH N/C		
Sampler's Signature	Affiliation D	asto	Trne	NUL	ABER	 ,	HAN	SFERS	RELINC	DUISHED BY TRANSFERS ACCEPTED BY DATE TIME		
	WESTON 2.	13.97 1	200	1		1	Jdi	hi P	Del	Justane 3/13/97 1033		
ADDITIONAL COMMENTS:				2	2	5	3/2	969	Ghra	1- 12-13-57 1230		
:					3		Luc	H		- Soldo 2/13/97 1510		
	-			4	1							

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH MS/MSD ANALYSIS

Laboratory Job Number: L9701277

Parameter	MS %	MSD %	RPD	
Volatile Petroleum Hydroca	rbon-Spike Re	covery M	/MSD for sample(s) 01-02	
2-Methylpentane	101	94	7	
Toluene	97	97	0	
1,2,4-Trimethylbenzene	100	98	2	
SURROGATE RECOVERY				
2,5-Dibromotoluene	. 110	90	20	

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- Standard Methods for Examination of Water and Waste Water. APHA-AWWA-WPCF.
 17th Edition. 1989.
- 39. Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), Draft 1.0, Massachusetts Department of Environmental Protection, 1995.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

LIMITATION OF LIABILITIES

Aipha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

=
IR-03-97
ىب
-
ب
7
3
N M M
Z
_
\simeq
09:09
\mathbb{R}

AL	PHA	Westborou	•		81-101	9	C	HA	IN	OF CUS	STODY	RECORE	No.691	1/11
Analytical	Laboratories, Inc.	508-898-922	•					and	ANA	ALYSIS R	EQUES	T RECORD	Sheetof	
Company Name:	f weston	0388	Project Number: 03886-118-004-4430-00 P.O. Number:				FOTT STRUM 18000 # 6 0 0 0 0 0 0 0 0							
Company Address:		Phone Number:					Project Maniger: Appra 100 Numbers, (Lab use only)							
		TA::::	FAX No	~	····			Dar	re (rispo	•	9701	<i>}</i>	
		Container Codes: P = Plastic V = VI C = Cube G = G A = Amber Glass B = Sectaria Conta	less in O	(aumb	nod Pres	iners)	<u>н</u>			MW = Monitoring L = Lake/Pone R = River Street	g Well RO = d/Ocean I =		W = Well LF = L DW = Drinking Wate B = Bottom Sedim	r 🖠
ALPHA Lab#		Container	(s. s. Matrix,	Unpres.	Nitric Sulfuric	Cl	uble	Sam	oling	X1 = Other		X2 = Othe	1	
(Lab Use Only)	Sample I.D.	(number/tyr	ж) 🕺	5 3	Z S	ΗÖ	S	Date	Time		<u> </u>	nalysis Reque	sted	
1277.1	ADC 57-A1- FLI	16	15					4,3	1012	VPH	75 =	} 3		
.2	ADC57-A1-FLI ADC57-A1 Dux		1			1]	1		1	1.		
		,												
]										İ
Sampler's Signature	,	Unlacion	Date	Time	NUMBE	R T	RAN	ISFERS	RELING	DUISHED BY	TRANSFE	RS ACCEPTED BY	DATE	TIME
ADDITIONAL CO	MMENTS:				1			Cy	Vn ∕	18VM			2/19/97	5
	4				2									
	Relog of	1107.5	4.(٥	3	_								
	0 1				4									

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

CERTIFICATE OF ANALYSIS

Client: Roy F. Weston, Inc.

Laboratory Job Number: L9701277

Address: 88 Pine Street

Invoice Number: 2371

Fort Devens, MA 01433

Date Received: 19-FEB-97

Attn: Dave Crispo

Date Reported: 26-FEB-97

Project Number:

Delivery Method: Alpha

Site: Fort Devens

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L9701277-01	ADC57-A1-FL1	Storm Drain #6
L9701277-02	ADC57-A1-DUP	Storm Drain #6

Authorized by

Scott McLean - Laboratory Director

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701277-01

ADC57-A1-FL1

Date Collected: 13-FEB-97 Date Received: 19-FEB-97

Sample Matrix:

SOIL

Date Reported: 26-FEB-97

Condition of Sample: Satisfactory

Field Prep: None

Number & Type of Containers: 1 Vial

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES PREP ANALYSIS	I:
Solids, Total	83.	ુ	0.10	3	2540B	14-Feb	s.
Volatile Petroleum Hydrocarbon	Only			39	Draft 1.0	20-Feb	DB
C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics VPH, Total	3860 2410 386. 6630	ug/kg ug/kg ug/kg ug/kg	200. 200. 200. 200.				
SURROGATE RECOVERY							
2,5-Dibromotoluene	106.	&					

Comments: Complete list of References and Glossary of Terms found in Addendum I

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701277-02

ADC57-A1-DUP

Satisfactory

Date Collected: 13-FEB-97 Date Received: 19-FEB-97

Sample Matrix:

Condition of Sample:

Date Reported: 26-FEB-97

None

Field Prep:

SOIL

Number & Type of Containers: 1 Vial

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES PREP ANALYSIS	ID
Solids, Total	83.	્ર	0.10	3	2540B	14-Feb	 ST
Volatile Petroleum Hydrocarbon	Only			39	Draft 1.0	20-Feb	DB
C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics VPH, Total	3370 711. ND 4100	ug/kg ug/kg ug/kg ug/kg	200. 200. 200. 200.				
SURROGATE RECOVERY							
2,5-Dibromotoluene	97.0	ુ					

Comments: Complete list of References and Glossary of Terms found in Addendum I

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH MS/MSD ANALYSIS

Laboratory Job Number: L9701277

Parameter	MS %	MSD %	RPD	
Volatile Petroleum Hydro	carbon-Spike	Recovery MS/M	SD for sample(s) 01-02	
2-Methylpentane	101	94	7	
Toluene	97	97	0	
1,2,4-Trimethylbenzene	100	98	2	
SURROGATE RECOVERY				
2,5-Dibromotoluene	110	90	20	

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- 3. Standard Methods for Examination of Water and Waste Water. APHA-AWWA-WPCF. 17th Edition. 1989.
- 39. Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), Draft 1.0, Massachusetts Department of Environmental Protection, 1995.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

Eight Walkup Drive CHAIN OF CUSTODY RECORD Westborough, MA 01581-1019 and ANALYSIS REQUEST RECORD 508-898-9220 FAX 508-898-9193 Analytical Laboratories, Inc. Company Name: Project Name / Location : Date Received in Lab; 03886-118-004-4430-00 fort storm israin + 6 Roy & weston 2/26 2/27 Alpha Job Number: (Lab use only) Company Address: Phone Number: 9701277 Dane Crispo. FAX No.: Container Codes: Method Preserve Source MATRIX / SOURCE CODES P = Plastic V = Vial RO = Runoff O = Outfall (number of containers) Ц MW = Monitoring Well W = Well LF = Landfill C = Cube G = GlassA = Amber Glass L = Lake/Pond/Ocean 1 = Influent E = Effluent DW = Drinking Water B = Bacteria Container R = River Stream SG = Sludge B = Bottom Sediment Sampling Solubles Date Time ALPHA O = OtherContainers X1 = Other___ X2 = Other. Lab# Sample I.D. Analysis Requested (number/type) (Lab Use Only) 13/10/2 VPH 75= 83 1277. / ADC 57-A1- FLI .2 ADC 57-A1 DUP Sampler's Signature Date TRANSFERS RELINQUISHED BY NUMBER TRANSFERS ACCEPTED BY Cronnsun ADDITIONAL COMMENTS: Kelog of 1107.5 +.6 3

ŧ															<u> </u>	\bigcirc	
ALPHA Eight Walkup Drive Westborough, MA 0158								ł						RECORD	No.611		
Analytical Laboratories, Inc. 508-898-9220 FAX 508-							9193 and ANALYSIS REQUEST RECO						RECORD	Sheet Lo	12/		
Project Number: 02886-118-004-7490 POY F. WESTON, INC. P.O. Number:) ~6	6	Project Name/Location: FORT DEVENS, MA/STORM DRAIN #6							Date Duc:	12051+ 12 2/19	
Company Address: Blog 3701 BARNUM ROAD DEVENS MA 61433 Phone Number: 508-772- 508-772- FAX No.:					^										Number: (Lab use only) 970 1107		
ALPHA	Container Codes: P = Plastic V = Vial C = Cube G = Glass A = Amber Glass B = Bacteria Container				mbe	od P	ntair	ners)	1			MATRIX / SOURCECODES MW = Monitoring Well RO = Runoff O = Outfall W = Well LF = Landfill L = Lake/Pond/Ocean I = Influent E = Effluent DW = Drinking Water R = River Stream S = Soil SG = Sludge B = Bottom Sediment X1 = Other					
Lab# (Lab Use Only)	Sample I.D.	(number/type	ਰ	Unpres.	<u>8</u>	Nitr	Nitric Sulfuric H C I Other			Date	Time	Analysis Requested					
1107. 1	A0657-A1-SWI	1 A 1 G	S		×			×	1	12.13	0431	ł	DELUXE,	STANDARD U	PH ((TS)	
2	A0257-A1- SWZ	1A	S		X			×		2-13	0940	EDH C	ELUXE ,	STANDARD V	PH		
3	AOC57-A1-5U3	IA IG	S		X			×		2-13	0450	EDH E	ELUXE ,	STANDARD UP	PH		
Ý	AOC57-11-SU4	IA IG	S		X			X		2-13	1008	EPH D	ELUXE	STANDARD	JPM		
_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				×			X	(0.13 101) EPH DELUXE								
6	AOC57-A1-DUP	1A 5 X						×	120 07 1012 EPH DELVXE					····			
7	AOCS7TBI	1A - ×					1	X	XX2.12 - STANDARD UPH							NC	
							1	_	L	<u> </u>							
Sampler's Signature Affiliation Date Time							BEF	1	RA	NSFERS	RELING	QUISHED BY	TRANSFERS	S ACCEPTED BY	DATE	TIME	
Additional comments:								1	Willie P. Del She B					Kanc	2/13/97	1935	
* 3DAY TAT							2	\ <u></u>	<u> </u>	SE BY	ypin	u/- /-	Vints	4	2-13-77	1230	
									Je.	O	<u> </u>		5-	Soldo	2/13/97	1510	

ALPHA ANALYTICAL LABORATORIES

Right Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

CERTIFICATE OF ANALYSIS

Client: Roy F. Weston, Inc.

Laboratory Job Number: L9701555

Address: 88 Pine Street

Invoice Number: 2547

Fort Devens, MA 01433

Date Received: 03-MAR-97

Attn: Tom Abdella

Date Reported: 04-MAR-97

Project Number: 03886-118-004

Delivery Method: Alpha

Site: Storm Drain #6

ALPHA SAMPLE NUMBER CLIENT IDENTIFICATION SAMPLE LOCATION
L9701555-01 AOC57-A1-SW1 Fort Devens, MA
L9701555-02 AOC57-A1-SW4 Fort Devens, MA

Authorized by:

Scott McLean - Laboratory Director

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701555-01

A0C57-A1-SW1

Date Collected: 13-FEB-97 Date Received: 03-MAR-97

Sample Matrix:

SOIL

Date Reported: 04-MAR-97

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 1J

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES II PREP ANALYSIS
Solids, Total	87.	9,	0.10	3	2540B	14-Feb ST
Polynuclear Aromatics by GO	C/MS			1	8270	03-Mar 04-Mar DE
Acenaphthene	440	ug/kg	280			
2-Chloronaphthalene	ND	ug/kg	300			
Fluoranthene	9500	ug/kg	280			
Naphthalene	240	ug/kg	200 , ,			
Benzo (a) anthracene	3000	ug/kg	320 //			
Benzo(a) pyrene	700	ug/kg	380 , ,			
Benzo(b) fluoranthene	2700	ug/kg	360 J J			•
Benzo(k) fluoranthene	3400	ug/kg	360			
Chrysene	3600	ug/kg	320			
Acenaphthylene	430	ug/kg	260			
Anthracene	1400	ug/kg	240			
Benzo(ghi)perylene	1400	ug/kg	500			
Fluorene	ND	ug/kg	280			•
Phenanthrene	5800	ug/kg	260			
Dibenzo(a,h)anthracene	5 30	ug/kg	400			
Indeno(1,2,3-cd)pyrene	1800	ug/kg	480 V J			
Pyrene	6500	ug/kg	280			
1-Methylnaphthalene	ND	ug/kg	700			
2-Methylnaphthalene	250	ug/kg	180			
SURROGATE RECOVERY						
Nitrobenzene-d5	115.	٠.				
2-Fluorobiphenyl	103.	a.				
4-Terphenyl-dl4	120.	ક				

Comments: Complete list of References and Glossary of Terms found in Addendum I

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701555-02

AOC57-A1-SW4

Date Collected: 13-FEB-97
Date Received: 03-MAR-97

Sample Matrix:

SOIL

Date Reported: 04-MAR-97

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 1J

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES ID PREP ANALYSIS
Solids, Total	88 .	8	0.10	3	2540B	14-Feb ST
Polynuclear Aromatics by GC,	/MS			10	8270	03-Mar 04-Mar DB
Acenaphthene	ND	ug/kg	280			
2-Chloronaphthalene	ND	ug/kg	300			
Fluoranthene	13000	ug/kg	280			
Naphthalene	290	ug/kg	220 /			
Benzo (a) anthracene	5400	ug/kg	320			
Benzo(a)pyrene	1600	ug/kg	380 /			
Benzo(b) fluoranthene	5800	ug/kg	360 J J			•
Benzo(k)fluoranthene	6200	ug/kg	360			
Chrysene	650 0	ug/kg	320			
Acenaphthylene	1100	ug/kg	260			
Anthracene	1600	ug/kg	240			
Benzo(ghi)perylene	3100	ug/kg	500			
Fluorene	αи	ug/kg	280			
Phenanthrene	5200	ug/kg	260 , /			
Dibenzo(a,h)anthracene	1200	ug/kg	480 JJ,			
Indeno(1,2,3-cd)pyrene	4100	ug/kg	480 JJ			
Pyrene	10000	ug/kg	280			
1-Methylnaphthalene	ND	ug/kg	700			
2-Methylnaphthalene	ND	ug/kg	180			
SURROGATE RECOVERY						
Nitrobenzene-d5	110.	٠.				
2-Fluorobiphenyl	96.0	¥				
4-Terphenyl-dl4	109.	<u>s</u>				

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. 1986.
- 3. Standard Methods for Examination of Water and Waste Water. APHA-AWWA-WPCF. 17th Edition. 1989.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

LIMITATION OF LIABILITIES

Aipha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

AL		Eight Walkup Drive Westborough, MA 01581-1019							CHAIN OF CUSTODY					RECORI	No. 7	4390	
Analytical			-	FAX 508-898-9193					and ANALYSIS REQUEST					RECORD	Sheet	_of	
Company Name: ROY F. Weston - FD Project Number: PO. Number:									Project Name/Location: Date Received in Lab: Date Due: 3/3 3/4							b	
Company Address: Phone Number: FAX No.:										TOP		bdella	2	Alpha Job Number: (Lab use only) Q\(\cap 0\) 555			
ALPHA Lab#		Container Codes: P = Plestic V = V C = Cubel G = C A = Armber Class B = Bacteria Cont C = Other Containe		Source T	Meth Sumbo	101	contai	ners)	됴	Sam,	oling	MW = Monitoring L = Lake/Pone	d/Ocean I = inf	noff 0 = Outfall livent E = Efficient	W≃Well LF: DW = Drinking W 8 = Bottom Sec	ter	
(Lab Use Only)	Sample I.D.	(number/ty	pe)	Ma	3	ž	Sul	ijō	8	Date	Time	Analysis Requested					
1555 1	A0057-A1-SW	1	2	5						1	C(31	1	enfirm	<u> </u>	87 %		
1555.7	A0C57-A1-SW ACC57-A1-SW	V		V						3/13	10'.01	ال			88 %		
		·															
										<u> </u>							
Sampler's Signature	A	Uffiation	Date	Ti	me	NU	MBER	Ţ	RAN	NSFERS	RELING	DUISHED BY		ACCEPTED BY	DATE	TIME	
ADDITIONAL COMMENTS:						}	1	+					C. Br	AS	3/3/20	12,52	
Re109 06 1104. 1							2 3	+	·····						 		
·· ¬							4	\dagger	·	·					-		
Tarm No. 000/06 02															<u> </u>		

was the transfer of the state of the same in the same

ATT	DIIA	Eight Walkup	Driv	e					\overline{C}		INI (OF CUSTODY RECORD No.50566
	PHA	Westborough,	MA	01	58	1-10	19					
Analytical	Laboratories, Inc.	508-898-9220	FAX	X 50	8-8	398-9	193	3	i	and	ANA	ALYSIS REQUEST RECORD Sheet Join A
Company Nime:	L	Project Number:		• • • •				1		ect Name		
02.51	record rule	03889-11R -	-W4	. 17	90	~00)	-	FO	XT C	だいと	NS, MA/STORM DRATH 2/12 2/12 / 2/12
Company Address:	DESTUN, INC.	P.O. Number:	ne Nu					+	Denie	ct Mana		Alpha Job Number: (Lab use only)
, ,	DI BARRIM PART		13-7	172	- 7				-		-	2.
MA MA	DI BARNUM ROAD	/ LULN 3 SO	X No.))z	- '7	725			7	DAA I	1BDE	ELLA DAUE (RISTO 970 1107 =
		Containor Codes: P = Plastic V = VAV	ន			d Pro			, .			MATRIX / SOURCE CODES
		C = Outre : Climes A = Arrither Climes	OUI	5	n per	olcon	13116	<u>'''</u>				MW = Monitoring Well RO = Runoff O = Outfall W = Well L F = Landfill L = Lake/Pond/Ocean L = Inflicent E = Efficient DW = Drinking Water
ALPHA		D ≈ Bactoria Coutoiner O = Other	s/3	8	- }	၂မှ	{		ន	C	. 12 . s . m	R = fiver Stream S = Solt SG = Studge B = Bottom Sediment
Lab#		Containers	Matrix,	Unpres.		Nitric Sulfuric	15	her	g	Sam	oung	X1 = Other X2 = Other
(Lab Use Coly)	Sample I.D.	(number/type)	X.	5	8	SS	田	ŏ	\overline{S}	Samp Date	Time	Analysis Requested
1107.1	NOC57-A1-SW1	I A	5		X			X		3-13	0431	EPH DELUXE, STANDARD UPH (75)
	A-(*3 S112	1A	S		X	7		X		0.13	~	
	ACC 57-11- SW2	16	C.	 -	7		-	_	لـــا		0940	EDH DELUXE, STANDARD VPH
3	10057-A1-503	16	S		X			X		2.13 47	O157	EPH DELUXE, STANDARD UPH
	AOC57-M-SHY	1A 1G	5		X			X		2.13 97	യദ	EPH DELUXE STANDARD UPH
	/OC347/II	1			_	+	1-1			D. 13		
5	NOLST-NI-FLI	IA IG	S		X			X		97	(101)	EDH DELINE
6	10057-11-DUP	IA IG	S		1			X	عواد	2.13 47	1012	EPH DELVXE
^			_			_		1	i i		1	/ 1
<i></i>	AOCS7 TBI	A			7		_	_	*	97		STANDARD UPH MIC
											}	
					1	1						
								-	-	 	 	
											}	
Sampler's Signifure		Villation Date	- (12110	- 1	NUME	BER	7	NAN	SFERS	RELING	OUISHED BY THANSFERS ACCEPTED BY DATE TIME
William	P. D. P.T.	MESTON 3-13	47	1900	<u> </u>	1		1	1,1	1.0	NI	11Blank - 3/13/97 1033
ADDITIONAL CO					1			-	4	<u></u>	<u>. Uul</u> 121	ACT AND TO SO TO S
* 3DAY T	. TA					2			راذ	261	fra	VIV 7 12.15-1/12.50
						3		_	Line	Of	<u></u>	5-2000 2/13/97 1510
]						4					/	

Form No. QOP/06-03

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

CERTIFICATE OF ANALYSIS

Client: Roy F. Weston, Inc. Laboratory Job Number: L9701987

Address: 88 Pine Street Invoice Number: 3041

Fort Devens, MA 01433 Date Received: 17-MAR-97

Attn: Tom Abdella Date Reported: 21-MAR-97

Project Number: Delivery Method: Alpha

Site: Ft. Devens

ALPHA SAMPLE NUMBER CLIENT IDENTIFICATION SAMPLE LOCATION

L9701987-01 AOC-57-A1-SW2/B Storm Drain #6

Authorized by:

James R. Roth, PhD - Laboratory Manager .

03219712:44 Page 1

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA:M-MA-086 NH:200395-B/C CT:PH-0574 ME:MA086 RI:65

Laboratory Sample Number: L9701987-01

AOC-57-A1-SW2/B

Date Collected: 17-MAR-97
Date Received : 17-MAR-97

Sample Matrix:

SOIL

Date Reported: 21-MAR-97

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 1 Glass

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DATES PREP ANALYSI	ID S
Solids, Total	81.	ક	0.10	3	2540B	19-Ma	r ST
Extractable Petroleum Hydro	ocarbon			40	Draft 1.0	18-Mar 21-Ma	r DB
C9-C18 Aliphatics	10200	ug/kg	5000				
C19-C36 Aliphatics	ND	ug/kg	5000				
C10-C22 Aromatics	ND	ug/kg	5000				
EPH, Total	10200	ug/kg	5000				
	_						
Acenaphthene	5420	ug/kg	700.				
Acenaphthylene	ND	ug/kg	700.				
Anthracene	ND	ug/kg	700.				
Benzo(a)anthracene	ND	ug/kg	700.				
Benzo(a)pyrene	ND	ug/kg	700.				
Benzo(b)fluoranthene	ND	ug/kg	700.				
Benzo(ghi)perylene	ND	ug/kg	700.				
Benzo(k)fluoranthene	ND	ug/kg	700.				
Chrysene	ND	ug/kg	700.				
Dibenzo(a,h)anthracene	ND	ug/kg	700.				
Fluoranthene	ND	ug/kg	700.				
Fluorene	ND	ug/kg	700.				
Indeno(1,2,3-c,d)pyrene	ND	ug/kg	700.				
Naphthalene	ND	ug/kg	700.				
Phenanthrene	ND	ug/kg	700.				
Pyrene	ND	ug/kg	700.				
2-Methylnaphthalene	ND	ug/kg	700.				
SURROGATE RECOVERY							
Chloro-octadecane	69.0	ષ્ટ					
o-Terphenyl	71.0	ે					

Comments: Complete list of References and Glossary of Terms found in Addendum I

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH DUPLICATE ANALYSIS

Laboratory Job Number: L9701987

Parameter	Parameter		Value 2	RPD	Units	
Solids, Total		DUPLICATE	for samp	ole(s) 01		
		92.	90.	2	%	

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- 3. Standard Methods for Examination of Water and Waste Water. APHA-AWWA-WPCF. 17th Edition. 1989.
- 40. Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), Draft 1.0, Massachusetts Department of Environmental Protection, 1995.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

ALPHA Eight Walkup Drive CHAIN OF CUSTODY RECORD Westborough, MA 01581-1019 and ANALYSIS REQUEST RECORD 508-898-9220 FAX 508-898-9193 Analytical Laboratories, Inc. Company Name: Project Name/Location: Ft Dewis Store Date Received in Lab: Project Number: (75556-118-004)-41/100 Dicon 46 P.O. Number: Project Manager: Tem Abdella Phone Number (505) 7/2-1190 Alpha Job Number: (Lab use only) Contact Dave Crisie 9701987 Devens MA 01433 FAX No.:505-772-7751 Container Codes: Method Preserve Source MATRIX / SOURCE CODES P = Plastic V = Vial (number of containers) MW = Monitoring Well RO = Runoff O = Outfall C = Cube G = Glass A = Amber Glass L = Lake/Pond/Ocean I = Influent E = Effluent DW = Drinking Water B = Bacteria Container R = River Stream SG = Sludge B = Bottom Sediment Sampling

Date Time ALPHA O = Other Ice Nitric Sulfuric Containers X1 = Other X2 = Other_ Lab# Sample I.D. Analysis Requested (number/type) (Lab Use Only) 2/17/17/1490 1987.1 1 402 G ACC 57-A1-SW2/B NUMBER TRANSFERS RELINQUISHED BY TRANSFERS ACCEPTED BY 3/17/77 1000 RF4/ 5 day Tuin 3

DATA SUMMARY REPORT

DATE: 03/20/97

PAGE: 1

Company: ROY F. WESTON, INC. Sample Point ID: 57-A1-SW4B 57-A1-SW1B Lab Sample Number: JQ8536 JQ8537 ANALYTICAL 03/17/97 Sample Date: 03/17/97 Facility Code: 300595C 300595C CV10 Wet Chemistry Solids, Total 79.8 86.4 ۷Id MS17 GCMS PP PAH Acenaphthene Acenaphthylene mg/kg <1.2 <1.9 mg/kg <1.2 <1.9 Anthracene mg/kg <1.2 <1.9 mg/kg Benzo (a) anthracene 2.0 3-20-97 Benzo (b) fluoranthene mg/kg 6.1 Benzo(k) fluoranthene mg/kg 5.8 4.4 6.1 Benzo (ghi) perylene mg/kg 1.7 Benzo (a) pyrene mg/kg mg/kg mg/kg 2.4 72 Chrysene Dibenzo(a,h)anthracene 7671 16.9 13:09 <1.2 <1.9 Fluoranthene mg/kg 5.7 Fluorene mg/kg <1.2 <1.9 Indeno(1,2,3-cd)pyrene Naphthalene mg/kg 1.8 mg/kg <1.2 <1.9 Phenanthrene mg/kg 13.6 8.2 mg/kg Pyrene 4.5 11 D0 / (,0.3 4194244998→ 508 772 7251;#

SENT BY:0HM

BLANK SUMMARY REPORT

Company: ROY F. WESTON, INC.

DATE: 03/20/97

PAGE: 1

OHM ANALYTICAL Q2C70421 QC Batch #: MS17 GCMS PP PAH mg/kg mg/kg mg/kg mg/kg <.33 <.33 <.33 Acenaphthene DIV Acenaphthylene Anthracene Benzo (a) anthracene < .33 Benzo (b) fluoranthene mg/kg <.33 Benzo(k) fluoranthene mg/kg <.33 Benzo (ghi) perylene
Benzo (a) pyrene
Chrysene
Dibenzo (a,h) anthracene mg/kg <.33 mg/kg <.33 3-20-97 mg/kg mg/kg <.33 < .33 mg/kg Fluoranthene < .33 mg/kg < .33 Fluorene mg/kg mg/kg Indeno(1,2,3-cd)pyrene < .33 ω Naphthalene < .33 Phenanthrene mg/kg < .33 0 mg/kg < .33 Pyrene 4194244998-508 772 7251;#

SENT BY:

SAMPLE INFORMATION SUMMARY

		Matrix	Method	QC Batch #	Prep Date	Analysis Date	Met	Dry Wgt	Run #	Analyst
Q8536	03/17/97	Solid Solid	8270 D2216	Q2C70421	03/18/97	03/19/97 03/18/97	Yes N/A	Yes N/A	B05912	Bigelow K. Powell J.
Q8537	03/17/97	Solid Solid	8270 D2216	Q2C70421	03/18/97	03/19/97 03/18/97	Yes N/A	Yes N/A	B05915	Bigelow K. Powell J.
PACIFIC TO THE PACIFI										
	,									
Q	8537	8537 03/17/97	8537 03/17/97 Solid	8537 03/17/97 Solid 8270	8537 03/17/97 Solid 8270 02C70421	8537 03/17/97 Solid 8270 02C70421 03/18/97	8537 03/17/97 Solid 8270 Q2C70421 03/18/97 03/19/97	8537 03/17/97 Solid 8270 Q2C70421 03/18/97 03/19/97 Yes	8537 03/17/97 Solid 8270 Q2C70421 03/18/97 03/19/97 Yes Yes	8537 03/17/97 Solid 8270 Q2C70421 03/18/97 03/19/97 Yes Yes B05915

SUMMARY OF ANALYTICAL METHODOLOGY

Joblink # 622324

	REFERENCE	TITLE
8270	SW-846	GC/MS for Semivolatile Organics

QUALITY ASSURANCE REPORT

Joblink: 622324

JODIINK: 622324			MET	HOD SI	IKE			MA	TRIX	SPIKE			SI	IKE D	UPLI	CAT	E	% COMPL	ETE
Compound(s)		Blank Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Spiked Sample Id.	Unspk Conc.	Added Conc.	Spiked	% Rec.	Rec. Limits	Added Conc.	Spiked Conc.	₹ Rec.	RPD	RPD Limit	Batch #	96
1,2,4,5-Tetrachlorobenzene	mg/kg	0	3.67	2.37	65	63-110L	57-A1-SW4B	0	4.58	3.48	76	30-130L	4.52	3.71	82	8	0-20L	Q2C70421	98L
1,2,4-Trichlorobenzene	mg/kg	0	3.33	2.38	71	53-110L 44-142M	57-A1-SW4B	0	4.16	3.41	82	37-115L 44-142M	4.11	3.61	88	7	0-25L		100M
1,2-Dichlorobenzene	mg/kg	0	3.33	2.42	73		57-A1-SW4B	0	4.16	3.43	82	21-1171,	4.11	3.64	89	8	0-36L		
1,3-Dichlorobenzene	mg/kg	0	3.33	2.38	71.	32-129M 49-110L 1-172M	57-A1-SW4B	o	4.16	3.16	76	32-129M 20-114L 1-172M	4.11	3.38	82	8	0-28L		
1,4-Dichlorobenzene	mg/kg	0	3.33	2.39	72	51-110L 20-124M	57-A1-SW4B	0	4.16	3.23	78	32-112L 20-124M	4.11	3.45	84	7	0-28L		
1-Methylnaphthalene	mg/kg	o	3.37	2.65	79		57-A1-SW4B	.113	4.20	3.95	91	30-130L	4.15	4.23	99	8	0-20L		
2,4,5-Trichlorophenol	mg/kg	0	3.33	2.64	79	62-110L	57-A1-SW4B	0	4.16	3.63	87	46-115L	4.11	3.91	95	9	0-29L		
2,4,6-Trichlorophenol	mg/kg	0	5.00	3.73	75	54-110L 37-144M	57-A1-SW4B	0	6.24	5.30	85	38-110L 37-144M	6.16	5.62	91	7	0-37L		
2,4-Dichlorophenol	mg/kg	0	5.00	3,70	74	50-110L	57-A1-SW4B	0	6.24	5.50	88	49-110L	6.16	5.87	95	8	0-29L		
2,4-Dimethylphenol	mg/kg	0	5.00	3.14	63	40-110L 32-119M	57-A1-SW4B	0	6.24	5.67	91	37-116L 32-119M	6.16	5.94	96	5	0-26L		
2,4-Dinitrophenol	mg/kg	0	5.00	2.77	55	23-130L 1-191M	57-A1-SW4B	0	6.24	4.38	70	16-140L 1-191M	6.16	4.30	70	D	0-42L		
2,4-Dinitrotoluene	mg/kg	o	3.33	2.71	81		57-A1-SW4B	0	4.16	3.40	82	44-110L 39-139M	4.11	3.59	87	6	0~24L		
2,6-Dinitrotoluene	mg/kg	C	3.33	2.79	84	62-110L 50-158M	57-A1-SW4B	0	4.16	3.71	89	50-110L 50-158M	4.11	3.94	96	8	0-26L		
2-Chloronaphthalene	mg/kg	0	3.33	2.53	76	_	57-A1-SW4B	0	4.16	3.68	88	49-110L 60-118M	4.11	3.87	94	7	0-29L		
2-Chlorophenol	mg/kg	0	5.00	3.23	65	48-110L 23-134M	57-A1-SW4B	0	6.24	5.43	87	37-110L 23-134M	6.16	5.69	92	6	0-29L		
2-Ethoxyethanol	mg/kg	0	3.33	2.46	74	1	57-A1-SW4B	0	4.16	2.60	63	30-130L	4.11	2.67	65	3	0-20L		
2-Methylnaphthalene	mg/kg	0	3.33	2.45	74	51-110L	57-A1~SW4B	.119	4.16	3.72	87	31-123L	4.11	3.99	94	В	0-30L		
2-Methylphenol	mg/kg	0	3.33	2.57	77	50-110L	57-A1-SW4B	0	4.16	3.82	92	46-119L	4.11	3.87	94	2	0-27L		
2-Nitroaniline	mg/kg	0	3.33	2.67	80	30-130L	57-A1-SW4B	0	4.16	3.72	89	30-130L	4.11	3.89	95	7	0-20L		
2-Nitrophenol	mg/kg	0	5.00	3.60	72	46-110L 29-182M	57-A1-SW4B	0	6.24	5.28	85	25-110L 29-182M	6.16	5.72	93	9	0-34L		
3,3'-Dichlorobenzidine	mg/kg	0	3.33	1.47	44	33-110L 1-262M	57-A1-SW4B	0	4.16	.455	11 L	14-110L 1-262M	4.11	.725	18	48 L	0-29L		
3-Nitroaniline	mg/kg	0	3.33	1.40	42		57-A1-SW4B	0	4.16	2.02	49	23-110L	4.11	2.40	58	17	0-30L		
4,6-Dinitro-o-cresol	mg/kg	0	5.00	3.67	73	39-128L	57-A1-SW4B	0	6.24	4.32	69	19-127L	6.16	4.40	71	3	0-32L		
4-Bromophenyl phenyl ether	mg/kg	0	3.33	2.91	87	60-110L 53-127M	57-A1-SW4B	0	4.15	3.85	93	55-110L 53-127M	4.11	4.04	98	5	0-28L		
1-Chloroaniline	mg/kg	0	3.33	.977	29	17-110L	57-A1-SW4B	0	4.16	1.20	29	10-116L	4.11	1.47	36	22	0-42L		
1-Chlorophenyl phenyl ether	mg/kg	0	3.33	2.62	79	58-110L 25-158M	57-A1-SW4B	0	4.16	3.73	90	54-110L 25-158M	4.11	3.92	95	5	0-28L		
								<u></u>		<u> </u>		1		<u></u>					

QUALITY ASSURANCE REPORT

Joblink: 622324			_ ~																
			MET	HOD S	PIKE		MATRIX SPIKE SPIKE DUPLICA						ICAT	E	% COMPL	ETE			
Compound(s)		Blank Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Spiked Sample Id.	Unspk Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Added Conc.	Spiked Conc.	% Rec.	RPD	RPD Limit	Batch #	윰
4-Methylphenol	mg/kg	0	3.33	2.57	77	52-110L	57-A1-SW4B	0	4.16	3.85	93	47-116L	4.11	4.06	99	6	0-22L		
4-Nitroaniline	mg/kg	0	3.33	2.45	74	55-123L	57-A1-SW4B	o	4.16	2.32	56	31-123L	4.11	2.90	71	24	0-32L		
4-Nitrophenol	mg/kg	0	5.00	4.40	88		57-A1-SW4B	0	6.24	5.96	96	45-131L	6.16	6.26	102	6	0-26L		
Acenaphthene	mg/kg	0	3.33	2.53	76	1-132M 56-110L 47-145M	57-A1-SW4B	.0970	4.16	3.67	86	1-132M 44-119L 47-145M	4.11	3.87	92	7	0-21L		
Acenaphthylene	mg/kg	0	3.33	2.51	75		57-A1-SW4B	.442	4.16	4.15	89	47-114L 33-145M	4.11	4.41	97	9	0-30L		
Aniline	mg/kg	0	3.33	1.95	59		57-A1-SW4B	0	4.16	1.56	38	11-110L	4.11	1.85	45	17	0-35L		
Anthracene	mg/kg	0	3.33	2.71	81		57-A1-SW4B	.467	4.16	4.21	90	53-110L	4.11	4.33	94	4	0-33L		
Benzidine	mg/kg	0	3.33	. 597	18	27-133M 10-110L	57-A1-SW4B	o	4.16	0	0 L	27-133M 30-130L					ļ		
Benzo(a)anthracene	mg/kg	0	3.33	2.68	BO	1	57-A1-SW4B	1.97	4.16	5.68	89	49-113L	4.11	5.74	92	3	0-37L		
Benzo(a)pyrene	mg/kg	0	3.33	2.74	82	33-143M 56-110L 17-163M	57-A1-SW4B	2.41	4.16	6.13	89	33-143M 47-110L 17-163M	4.11	6.21	92	3	0-30L		}
Benzo(b) fluoranthene	mg/kg	0	3.33	2.77	83	62-110L	57-A1-SW4B	2.79	4.16	6.34	85	56-111L	4.11	6.40	88	3	0-34L		
Benzo(ghi)perylene	mg/kg	0	3.33	2.75	83	24-159M 47-110L 1-219M	57-A1-SW4B	1.73	4.16	4.95	77	24-159M 13-110L 1-219M	4.11	5.14	83	7	0-28L		
Benzo(k)fluoranthene	mg/kg	0	3.33	2.66	80	58-110L	57-A1-SW4B	2.39	4.16	6.34	95	45-119L	4.11	6.43	98	3	0-35L		
Benzoic acid	mg/kg	0	3.33	2.70	81	11-162M 16-118L	57-A1-SW4B	o	4.16	4.27	103	11-162M 14-148L	4.11	4.52	110	7	0-35L		
Benzyl alcohol	mg/kg	0	3.33	2.59	78	45-110L	57-A1-SW4B	Ö	4.16	3.72	89	35-110L	4.11	3.96	96	8	0-35L		
Butyl benzyl phthalate	mg/kg	0	3.33	2.73	82	62-110L 1-152M	57-A1-SW4B	0	4.16	3.53	85	60-110L 1-152M	4.11	3.80	92	8	0-25L		
Carbazole	mg/kg	0	3.33	2.78	83		57-A1-SW4B	.507	4.16	4.20	89	51-126L	4.11	4.39	94	5	C-25L	1	
Chrysene	mg/kg	0	3.33	2.65	80	62-110L 17-168M	57-A1-SW4B	2.84	4.16	6.49	88	44-114L 17-168M	4.11	6.53	90	2	0-30L		
Cyclohexanone	mg/kg	0	3.33	2.07	62		57-A1-SW4B	Ö	4.16	2.79	67	10-110L	4.11	2.96	72	7	0-35L		
Di-n-butyl phthalate	mg/kg	0	3.33	2.82	85	53-110L 1-118M	57-A1-SW4B	o	4.16	3.78	91	38-119L 1-118M	4.11	4.02	98	7	0-33L		
Di-n-octyl phthalate	mg/kg	0	3.33	2.71	81	60-110L	57-A1-SW4B	0	4.16	3.77	91	49-138L	4.11	4.10	100	9	0-23L		
Dibenzo(a,h)anthracene	mg/kg	o	3.33	2.58	77	4-146M 54-110L 1-227M	57-A1-SW4B	.503	4.16	3.73	78	4-146M 18-113L 1-227M	4.11	4.03	86	10	0-28L		
Dibenzofuran	mg/kg	0.	3.33	2.52	76		57-A1-SW4B	.163	4.16	3.83	88	47-116L	4.11	3.98	93	6	0-30L		
Diethyl phthalate	mg/kg	0	3.33	2.80	84	62-110L 1-114M	57-A1-SW4B	0	4.16	3.76	90	59-110L 1-114M	4.11	3.94	96	6	0-22L		
Dimethyl phthalate	mg/kg	0	3.33	2.77	83	63-110L	57-A1-SW4B	0	4.16	3.61	87	55-110L	4.11	3.82	93	7	0-24L		
Fluoranthene	mg/kg	0	3.33	2.64	79	1-112M 59-110L 26-137M	57-A1-SW4B	5.70	4.16	9.88	100	1-112M 45-112L 26-137M	4.11	9.42	91	9	0-29L		
																	1		

QUALITY ASSURANCE REPORT

Joblink: 622324			~	<u> </u>									<u> </u>						
			MET	HOD S	PIKE			MA	TRIX	SPIKE			SI	PIKE D		ICAT	E	% COMPL	ETE
Compound(s)		Blank Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Spiked Sample Id.	Unspk Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec.	Added Conc.	Spiked Conc.	₹ Rec.	RPD	RPD Limit	Batch #	95
Fluorene	mg/kg	0	3.33	2.60	78	ŧ	57-A1-SW4B	. 322	4.16	4.17	93	50-110L	4.11	4.29	97	4	0-30L		
Hexachlorobenzene	mg/kg	0	3.33	2.72	82	59-121M 61-110L 1-152M	57-A1-SW4B	o	4.16	3.41	82	59-121M 47-110L 1-152M	4.11	3.75	91	10	0-18L		
Hexachlorobutadiene	mg/kg	0	3.33	2.15	65	49-110L	57-A1-SW4B	0	4.16	3.15	76	27-110L	4.11	3.33	81	6	0-321,		
Hexachlorocyclopentadiene	mg/kg	0	3.33	1.78	53	24-116M 10-110L	57-A1-SW4B	0	4.16	1.34	32	24-116M 30-130L	4.11	1.28	31	3	0-20L		
Hexachloroethane	mg/kg	0	3.33	2.32	70	T .	57-A1-SW4B	0	4.16	3.25	78	30-110L	4.11	3.35	82	5	0-30L		
Indeno(1,2,3-cd)pyrene	mg/kg	0	3.33	2.78	83	40-113M 54-110L 1-171M	57-A1-SW4B	1.84	4.16	5.76	94	40-113M 20-110L 1-171M	4.11	5.87	98	4	0-32L		
Isophorone	mg/kg	0	3.33	2.47	74	59-110L	57-A1-SW4B	0	4.16	3.57	86	51-110L	4.11	3.75	91	6	0-23L		
N-Nitrosodi-n-butylamine	mg/kg	0	3.37	2.77	82	21-196M 30-130L	57-A1-SW4B	0	4.20	3.91	93	30-130L	4.15	4.13	100	7	0-20L		
N-Nitrosodi-n-propylamine	mg/kg	0	3.33	3.02	91	58-110L 1-230M	57-A1-SW4B	0	4.16	3.65	88	50-110L 1-230M	4.11	4.03	98	11	0-26L		
N-Nitrosodiethylamine	mg/kg	0	3.40	2.67	79		57-A1-SW4B	0	4.25	3.51	83	30-130L	4.19	3.67	88	6	0-20L		
N-Nitrosodimethylamine	mg/kg	0	3.33	2.31	69	44-110L	57-A1-SW4B	0	4.16	2.80	67	27-110L	4.11	3.08	75	11	0-291,		
N-Nitrosodiphenylamine	mg/kg	0	3.33	2.64	79	60-110L	57-A1-SW4B	0	4.16	3.38	81	52-116L	4.11	3.61	88	8	0-22L		
N-Nitrosopyrrolidine	mg/kg	, 0	3.40	2.68	79	30-130L	57-A1-SW4B	0	4.25	3.96	93	30-130L	4.19	4.18	100	7	0-20L		
Naphthalene	mg/kg	0	3.33	2.38	71	51-110L 21-133M	57-A1-SW4B	.189	4.16	3.85	88	30-120L 21-133M	4.11	4.03	93	6	0-30L	1	
Nitrobenzene	mg/kg	ō	3.33	2.45	74	49-110L	57-A1-SW4B	0	4.16	3.67	88	38-110L	4.11	3.87	94	7	0-29L		
Pentachlorophenol	mg/kg	0	5.00	4.67	93	35-180M 47-128L 14-176M	57-A1-SW4B	0	6.24	5.58	89	35-180M 30-133L 14-176M	6.16	5.97	97	9	0-31L	!	
Phenanthrene	mg/kg	0	3.33	2.68	80		57-A1-SW4B	3.65	4.16	7.58	94	36-127L 54-120M	4.11	7.01	82	14	0-25L		
Phenol	mg/kg	0	5.00	3.21	64	3	57-A1-SW4B	0	6.24	5.56	89	36-114L 5-112M	6.16	5.84	95	7	0-25L		
Pyrene	mg/kg	0	3.33	2.67	80		57-A1-SW4B	4.52	4.16	8.41	94	50-124L 52-115M	4.11	8.22	90	4	0-28L		
Pyridine	mg/kg	0	3.40	1.93	57		57-A1-SW4B	0	4.25	2.51	59	18-110L	4.19	2.63	63	7	0-32L		
ois (2-Chloroethoxy) methane	mg/kg	0	3.33	2.41	72		57-A1-SW4B	0	4.16	3.61	87	45-110L	4.11	3.78	92	6	0-30L		
ois(2-Chloroethyl) ether	mg/kg	0	3.33	2.46	74	33-184M 42-110L 12-158M	57-A1-SW4B	0	4.16	3.45	83	33-184M 15-110L 12-158M	4.11	3.69	90	8	0-24L		
ois(2-Chloroisopropyl)ether	mg/kg	0	3.33	2.53	76	48-110L	57-A1-SW4B	0	4.16	3.63	87	37-110L	4.11	3.87	94	8	0-35L		
ois(2-Ethylhexyl)phthalate	mg/kg	0	3.33	2.74	82	36-166M 50-115L 8-158M	57-A1-SW4B	0	4.16	3.70	89	36-166M 46-130L 8-158M	4.11	3.92	95	7	0-29L		
)-Toluidine	mg/kg	0	3.33	1.85	56		57-A1-SW4B	0	4.16	.974	23 I		4.11	1.48	36	44 L	0-20L		
)-Chloro-m-cresol	mg/kg	0	5.00	3.90	78	57-110L 22-147M	57-A1-SW4B	0	6.24	5.61	90	52-110L 22-147M	6.16	5.93	96	6	0-22L		
		1																	

4194244998→ 508 772 7251;# 8 SEMT BY: OHM ANALYTICAL DIV ; 3-20-97 ; 13:14 ;

QUALITY ASSURANCE DATA

SURROGATE SUMMARY REPORT

SURROGATE ID	A159	B732	A121	A884	A158	B142	B449	F076
QC BATCH: Q2C70421	Solid (Ser	mi-Volatil	e organio	s by MS)				
SAMPLE ID								
57-A1-SW1B	84	98	90	89	88	110	89	83
57-A1-SW4B	79	90	85	83	83	101	84	80
57-A1-SW4B MD	88	95	92	93	92	109	90	88
57-A1-SW4B MS	82	90	86	88	85	101	86	82
METHOD BLK	71	76	81	79	76	98	73	82
METHOD SPK	71	68	86	76	73	96	66	74
QC LIMITS	(25-121)	(24-113)	(19-122)	(23-120)	(30-115)	(18-137)	(20-130)	(20-130)

SURROGATE ID

A159 = 2-Fluorophenol

B732 = Phenol-D6 A121 = 2,4,6-Tribromophenol A884 = Nitrobenzene-D5

Historian Histor

* Values outside of method quality control limits D Sample was diluted, however, some surrogates may be reported if results were observed.

It is laboratory policy to allow one surrogate per sample fraction (acid, base-neutral or pesticide) to exceed the stated QC limits. This policy is based upon the USEPA SOW for the Contract Laboratory Program (CLP).

CHAIN-OF-CUSTODY RECORD

LAB COPY Form 0019 Field Technical Services Rev. 08/89

187312

	H. MATERIALS CORP. • P.O. BOX 551 • FINDLAY, OH 45839-0551 • 419-423-3526																
CLIENT		ve (PROJECT TELEPHONE NO. (508) 772-7190 AGER/SUPERVISOR	o1433	NUMBER OF CONTAINERS	(INDI	CATE	S DES	IRED	*/			
ITEM NO.	SAMPLE NUMBER	DATE	TIME	COMP	GRAB	(SAMPLE DESCRIPTION INCLUDE MATRIX AND POINT OF SAMPLE)		<u>.</u>	i	10°	<u>/</u>	//		/	/	REMARKS
	-57-AI -SW4(1	3/17/97 B	1220	V		Soil 40	oz glass		l	X							
	C-57-A1-SW1B	3/17/47	1500	V		50.1 40.	2 g lass		١	Χ							
3																	
4																	
5																	
6													\dashv	1			
7				 	-					 			-	+	-		
				ऻ	-					_					1	<u> </u>	
8																	
9																	
10								······································					\top			 	
			<u> </u>	<u> </u>	<u> </u>				Т		BEM	ARKS				<u> </u>	
TRANSFER	ITEM NUMBEI	R	!			FERS SHED BY	TRANSFERS ACCEPTED BY		DATE	TIME		*	PA	++1	Cor T	1pou	nd List round
1	1	Y.	elst C	Ne	ua		Fed EX	-	3(17A7	1600			3 dk	ay	lu	ma	IUUNA
2																	
3					-												
4										SAM	PLE R'S	SIGNAT	URE				

March 4, 1997

Mr. Dave Crispo Roy F. Weston PO Box 425 Ayer, Ma. 01432

Katahdin Lab Number: WN0370

Project ID:

Ft. Devens

Project Manager:

Ms. Lil Pepin

Sample Receipt Date:

February 17, 1997

Dear Mr. Crispo:

Please find enclosed the following information:

- * Report of Analysis
- * Quality Control Data Summary
- * Confirmation
- * Chain of Custody

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. This cover letter is an integral part of the ROA.

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Sincerely,

KATAHDIN ANALYTICAL SERVICES

<u>Licborah</u> J. Nacleau

Authorized Signature

3.4.97 Date

ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WN-0370-1 Report Date: 03/03/97

PO No. : 03886-118-004-4420-00

Project : FT DEVONS

REPORT OF ANALYTICAL RESULTS

Page 1 of 12

SAMPLE DESCRIPTION		MATRIX		SAMPLE	D BY	SAMPLED I	ETAC	RECEIVED
AOC57-A1-SW1		Solid		CLIENT		02/13/9	7	02/17/97
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Antimony, Total	<0.8	mg/kgdrywt	1.0	0.8	6010/200.7	02/18/97	EM	1
Arsenic, Total	16.4	mg/kgdrywt	1.0	0.8	6010/200.7	02/18/97	EM	1
Beryllium, Total	<0.50	mg/kgdrywt	1.0	0.50	6010/200.7	02/18/97	EM	1
Cadmium, Total	<1.00	mg/kgdrywt	1.0	1.00	6010/200.7	02/18/97	EM	1
Chromium, Total	15.2	mg/kgdrywt	1.0	1.50	6010/200.7	02/18/97	EM	1
Copper, Total	110.	mg/kgdrywt	1.0	2.50	6010/200.7	02/18/97	EM	1
Lead, Total	140.	mg/kgdrywt	1.0	0.5	6010/200.7	02/18/97	EM	1
Mercury, Total	<0.1	μg/gdrywt	1.0	0.1	7471	02/18/97	PC	2
Nickel, Total	11.4	mg/kgdrywt	1.0	4.00	6010/200.7	02/18/97	EM	1
Selenium, Total	<1.0	mg/kgdrywt	1.0	1.0	6010/200.7	02/18/97	EM	1
Silver, Total	<1.5	mg/kgdrywt	1.0	1.5	6010/200.7	02/18/97	EM	1
Thallium, Total	<1.5	mg/kgdrywt	1.0	1.5	6010/200.7	02/18/97	EM	1
Zinc, Total	34.4	mg/kgdrywt	1.0	2.50	6010/200.7	02/18/97	EM	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

03/03/97

LJO/ejnajc(dw) NB17ICS1

⁽¹⁾ Sample Preparation on 02/17/97 by MB using 3050

⁽²⁾ Sample Preparation on 02/18/97 by PLC using 7471

ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WN-0370-1 Report Date: 03/03/97

PO No.

: 03886-118-004-4420-00

Project

: FT DEVONS

REPORT OF ANALYTICAL RESULTS

Page 2 of 12

SAMPLE DESCRIPTION		MATRIX		SAMPI	ED BY	SAMPLED I	ATE	RECEIVED
AOC57-A1-SW1		Solid		CITE	T	02/13/9	7	02/17/97
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	84.	wt %	1.0	0.10	CLP/CIP	SOW 02/18/97	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 02/17/97 by JF

03/03/97

LJO/ejnajc(dw)

ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WN-0370-2 Report Date: 03/03/97

PO No. : 03886-118-004-4420-00

Project : FT DEVONS

REPORT OF ANALYTICAL RESULTS

Page 3 of 12

SAMPLE DESCRIPTION		MATRIX		SAMPLE	D BY	SAMPLED D	ATE	RECEIVED
AOC57-A1-SW2		Solid		CLIENT		02/13/9	7	02/17/97
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Antimony, Total	<0.8	mg/kgdrywt	1.0	0.8	6010/200.7	02/18/97	EM	1
Arsenic, Total	13.0	mg/kgdrywt	1.0	0.8	6010/200.7	02/18/97	EM	1
Beryllium, Total	<0.50	mg/kgdrywt	1.0	0.50	6010/200.7	02/18/97	EM	1
Cadmium, Total	<1.00	mg/kgdrywt	1.0	1.00	6010/200.7	02/18/97	EM	1
Chromium, Total	30.5	mg/kgdrywt	1.0	1.50	6010/200.7	02/18/97	EM	1
Copper, Total	87.3	mg/kgdrywt	1.0	2.50	6010/200.7	02/18/97	EM	1
Lead, Total	258.	mg/kgdrywt	1.0	0.5	6010/200.7	02/18/97	EM	1
Mercury, Total	<0.1	μg/gdrywt	1.0	0.1	7471	02/18/97	PC	2
Nickel, Total	12.4	mg/kgdrywt	1.0	4.00	6010/200.7	02/18/97	EM	1
Selenium, Total	<1.0	mg/kgdrywt	1.0	1.0	6010/200.7	02/18/97	EM	1
Silver, Total	<1.5	mg/kgdrywt	1.0	1.5	6010/200.7	02/18/97	ΕM	1
Thallium, Total	<1.5	mg/kgdrywt	1.0	1.5	6010/200.7	02/18/97	EM	1
Zinc, Total	55.9	mg/kgdrywt	1.0	2.50	6010/200.7	02/18/97	EM	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

03/03/97

LJO/ejnajc(dw) NB17ICS1

⁽¹⁾ Sample Preparation on 02/17/97 by MB using 3050

⁽²⁾ Sample Preparation on 02/18/97 by PLC using 7471

ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WN-0370-2 Report Date: 03/03/97

PO No.

: 03886-118-004-4420-00

Project

: FT DEVONS

REPORT OF ANALYTICAL RESULTS

Page 4 of 12

SAMPLE DESCRIPTION	MATRIX S.			SAMPL	ED BY	SAMPLED I	SAMPLED DATE RECE		
AOC57-A1-SW2		Solid		CTTEM	T	02/13/9	7	02/17/97	
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES	
Solids-Total Residue (TS)	86.	wt %	1.0	0.10	CLP/CIP	SOW 02/18/97	JF	1	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 02/17/97 by JF

03/03/97

LJO/ejnajc(dw)

ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WN-0370-3
Report Date: 03/03/97

PO No. : 03886-118-004-4420-00

Project : FT DEVONS

REPORT OF ANALYTICAL RESULTS

Page 5 of 12

SAMPLE DESCRIPTION		MATRIX		SAMPLE	SAMPLED BY		SAMPLED DATE R		
AOC57-A1-SW3		Solid		CLIENT		02/13/9	7	02/17/97	
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES	
Antimony, Total	<0.8	mg/kgdrywt	1.0	0.8	6010/200.7	02/18/97	EM	1	
Arsenic, Total	17.0	mg/kgdrywt	1.0	0.8	6010/200.7	02/18/97	EM	1	
Beryllium, Total	<0.50	mg/kgdrywt	1.0	0.50	6010/200.7	02/18/97	EM	1	
Cadmium, Total	<1.00	mg/kgdrywt	1.0	1.00	6010/200.7	02/18/97	EM	1	
Chromium, Total	19.8	mg/kgdrywt	1.0	1.50	6010/200.7	02/18/97	EM	1	
Copper, Total	19.1	mg/kgdrywt	1.0	2.50	6010/200.7	02/18/97	EM	1	
Lead, Total	10.1	mg/kgdrywt	1.0	0.5	6010/200.7	02/18/97	EM	1	
Mercury, Total	<0.1	μg/gdrywt	1.0	0.1	7471	02/18/97	PC	2	
Nickeľ, Total	25.6	mg/kgdrywt	1.0	4.00	6010/200.7	02/18/97	EM	1	
Selenium, Total	<1.0	mg/kgdrywt	1.0	1.0	6010/200.7	02/18/97	EM	1	
Silver, Total	<1.5	mg/kgdrywt	1.0	1.5	6010/200.7	02/18/97	EM	1	
Thallium, Total	<1.5	mg/kgdrywt	1.0	1.5	6010/200.7	02/18/97	EM	1	
Zinc, Total	29.8	mg/kgdrywt	1.0	2.50	6010/200.7	02/18/97	EM	1	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

03/03/97

LJO/ejnajc(dw) NB17ICS1

⁽¹⁾ Sample Preparation on 02/17/97 by MB using 3050

⁽²⁾ Sample Preparation on 02/18/97 by PLC using 7471

ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WN-0370-3 Report Date: 03/03/97

PO No. : 03886-118-004-4420-00

Project : FT DEVONS

REPORT OF ANALYTICAL RESULTS

Page 6 of 12

SAMPLE DESCRIPTION		MATRIX SAMPLED BY			SAMPLED DATE RECEIVED			
AOC57-A1-SW3		Solid		CLIEN	т	02/13/9		02/17/97
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	94.	wt %	1.0	0.10	CLP/CIP	SOW 02/18/97	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 02/17/97 by JF

03/03/97

LJO/ejnajc(dw)

ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WN-0370-4 Report Date: 03/03/97

PO No. : 03886-118-004-4420-00

Project : FT DEVONS

REPORT OF ANALYTICAL RESULTS

Page 7 of 12

SAMPLE DESCRIPTION		MATRIX		SAMPLE	D BY	SAMPLED D	DATE	RECEIVED
AOC57-A1-SW4		Solid		CLIENI		02/13/9	7	02/17/97
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Antimony, Total	<0.8	mg/kgdrywt	1.0	0.8	6010/200.7	02/18/97	EM	1
Arsenic, Total	10.3	mg/kgdrywt	1.0	0.8	6010/200.7	02/18/97	EM	1
Beryllium, Total	<0.50	mg/kgdrywt	1.0	0.50	6010/200.7	02/18/97	EM	1
Cadmium, Total	<1.00	mg/kgdrywt	1.0	1.00	6010/200.7	02/18/97	EM	1
Chromium, Total	13.2	mg/kgdrywt	1.0	1.50	6010/200.7	02/18/97	EM	1
Copper, Total	24.2	mg/kgdrywt	1.0	2.50	6010/200.7	02/18/97	EM	1
Lead, Total	60.3	mg/kgdrywt	1.0	0.5	6010/200.7	02/18/97	EM	1
Mercury, Total	<0.1	μg/gdrywt	1.0	0.1	7471	02/18/97	PC	2
Nickel, Total	13.9	mg/kgdrywt	1.0	4.00	6010/200.7	02/18/97	EM	1
Selenium, Total	<1.0	mg/kgdrywt	1.0	1.0	6010/200.7	02/18/97	EM	1
Silver, Total	<1.5	mg/kgdrywt	1.0	1.5	6010/200.7	02/18/97	EM	1
Thallium, Total	<1.5	mg/kgdrywt	1.0	1.5	6010/200.7	02/18/97	EM	1
Zinc, Total	34.2	mg/kgdrywt	1.0	2.50	6010/200.7	02/18/97	EM	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

03/03/97

LJO/ejnajc(dw) NB17ICS1

⁽¹⁾ Sample Preparation on 02/17/97 by MB using 3050

⁽²⁾ Sample Preparation on 02/18/97 by PLC using 7471

ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WN-0370-4
Report Date: 03/03/97

PO No.

: 03886-118-004-4420-00

Project

: FT DEVONS

REPORT OF ANALYTICAL RESULTS

Page 8 of 12

SAMPLE DESCRIPTION		MATRIX SAMPLED BY			SA	SAMPLED DATE RECEIVED			
AOC57-A1-SW4		Solid		CLIEN	Г		02/13/9		02/17/97
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	MA	ALYZED	BY	NOTES
Solids-Total Residue (TS)	88.	wt %	1.0	0.10	CLP/CIP	SOW 02,	/18/97	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 02/17/97 by JF

03/03/97

LJO/ejnajc(dw)

ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number: WN-0370-5 Report Date: 03/03/97

PO No. :

: 03886-118-004-4420-00

Project

: FT DEVONS

REPORT OF ANALYTICAL RESULTS

Page 9 of 12

SAMPLE DESCRIPTION		MATRIX		SAMPLE	D BY	SAMPLED D	ATE	RECEIVED
AOC57-A1-FI.1		Solid		CLIENT		02/13/9	7	02/17/97
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Antimony, Total	<0.8	mg/kgdrywt	1.0	0.8	6010/200.7	02/18/97	EM	1
Arsenic, Total	16.3	mg/kgdrywt	1.0	0.8	6010/200.7	02/18/97	EM	1
Beryllium, Total	<0.50	mg/kgdrywt	1.0	0.50	6010/200.7	02/18/97	EM	1
Cadmium, Total	<1.00	mg/kgdrywt	1.0	1.00	6010/200.7	02/18/97	EM	1
Chromium, Total	12.0	mg/kgdrywt	1.0	1.50	6010/200.7	02/18/97	EM	1
Copper, Total	39.5	mg/kgdrywt	1.0	2.50	6010/200.7	02/18/97	EM	1
Lead, Total	12.5	mg/kgdrywt	1.0	0.5	6010/200.7	02/18/97	EM	1
Mercury, Total	<0.1	μg/gdrywt	1.0	0.1	7471	02/18/97	PC	2
Nickel, Total	7.49	mg/kgdrywt	1.0	4.00	6010/200.7	02/18/97	EM	1
Selenium, Total	<1.0	mg/kgdrywt	1.0	1.0	6010/200.7	02/18/97	EM	1
Silver, Total	<1.5	mg/kgdrywt	1.0	1.5	6010/200.7	02/18/97	$\mathbf{E}\mathbf{M}$	1
Thallium, Total	<1.5	mg/kgdrywt	1.0	1.5	6010/200.7	02/18/97	EM	1
Zinc, Total	21.0	mg/kgdrywt	1.0	2.50	6010/200.7	02/18/97	EM	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

03/03/97

LJO/ejnajc(dw) NB17ICS1

⁽¹⁾ Sample Preparation on 02/17/97 by MB using 3050

⁽²⁾ Sample Preparation on 02/18/97 by PLC using 7471

ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WN-0370-5 Report Date: 03/03/97

PO No.

: 03886-118-004-4420-00

Project

: FT DEVONS

REPORT OF ANALYTICAL RESULTS

Page 10 of 12

SAMPLE DESCRIPTION		MATRIX SAMPLED BY				SAMPLED DATE RECEIVED		
AOC57-A1-FL1		Solid		CLIEN	r	02/13/9	7	02/17/97
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	ву	NOTES
Solids-Total Residue (TS)	84.	wt %	1.0	0.10	CLP/CIP	SOW 02/18/97	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 02/17/97 by JF

03/03/97

LJO/ejnajc(dw)

ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WN-0370-6 Report Date: 03/03/97

PO No. : 0

: 03886-118-004-4420-00

Project

: FT DEVONS

REPORT OF ANALYTICAL RESULTS

Page 11 of 12

SAMPLE DESCRIPTION		MATRIX		SAMPLE	D BY	SAMPLED	DATE	RECEIVED
AOCS7-A1-DUP		Solid		CLIENT		02/13/	97	02/17/97
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Antimony, Total <0	0.8	mg/kgdrywt	1.0	0.8	6010/200.7	02/18/97	EM	1
Arsenic, Total	9.4	mg/kgdrywt	1.0	0.8	6010/200.7	02/18/97	EM	1
Beryllium, Total <0	0.50	mg/kgdrywt	1.0	0.50	6010/200.7	02/18/97	EM	1
Cadmium, Total <1	L.00	mg/kgdrywt	1.0	1.00	6010/200.7	02/18/97	EM	1
Chromium, Total	3.1	mg/kgdrywt	1.0	1.50	6010/200.7	02/18/97	EM	1
Copper, Total 34	1.3	mg/kgdrywt	1.0	2.50	6010/200.7	02/18/97	EM	1
Lead, Total 9	3.17	mg/kgdrywt	1.0	0.5	6010/200.7	02/18/97	EM	1
Mercury, Total <0	0.1	μg/gdrywt	1.0	0.1	7471	02/18/97	PC	2
Nickel, Total).2	mg/kgdrywt	1.0	4.00	6010/200.7	02/18/97	EM	1
Selenium, Total <1	1.0	mg/kgdrywt	1.0	1.0	6010/200.7	02/18/97	EM	1
Silver, Total <1	1.5	mg/kgdrywt	1.0	1.5	6010/200.7	02/18/97	EM	1
Thallium, Total <1	5	mg/kgdrywt	1.0	1.5	6010/200.7	02/18/97	EM	1
Zinc, Total 22	2.8	mg/kgdrywt	1.0	2.50	6010/200.7	02/18/97	EM	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

03/03/97

LJO/ejnajc(dw) NB17ICS1

⁽¹⁾ Sample Preparation on 02/17/97 by MB using 3050

⁽²⁾ Sample Preparation on 02/18/97 by PLC using 7471

ROY F WESTON P.O. BOX 425 AYER, MA 01432 Lab Number : WN-0370-6 Report Date: 03/03/97

PO No.

: 03886-118-004-4420-00

Project

: FT DEVONS

REPORT OF ANALYTICAL RESULTS

Page 12 of 12

SAMPLE DESCRIPTION		MATRIX SAMPLED BY			SAMPLED DATE RECEIVED			
AOCS7-A1-DUP		Solid		CLLIEN	r	02/13/9	7	02/17/97
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	84.	wt %	1.0	0.10	CLP/CIP	SOW 02/18/97	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 02/17/97 by JF

03/03/97

LJO/ejnajc(dw)

PREPARATION BLANK REPORT

Sample ID: PBSNB17ICS1

Batch ID: NB17ICS1

Units: mg/kgdrywt

Client: Tour Allerster

Work Order: 1-11370

,				
Element Name	Result	Flag	PQL	File
ALUMINUM	4	J	10.0	A021897
ANTIMONY	0.2	U	0.800	A021897
ARSENIC	0.2	U	0.800	A021897
BARIUM	0.06	J	0.500	A021897
BERYLLIUM	0.01	U	0.500	A021897
BORON	0.7	J	10.0	A021897
CADMIUM	0.03	U	1.00	A021897
CALCIUM	0.8	U	5.00	A021897
CHROMIUM	0.09	J	1.50	A021897
COBALT	0.08	U	3.00	A021897
COPPER	0.1	U	2.50	A021897
LEAD	0.1	U	0.500	A021897
MAGNESIUM	0.6	U	5.00	A021897
MANGANESE	0.03	J	0.500	A021897
MOLYBDENUM	0.08	U	10.0	A021897
NICKEL	0.08	U	4.00	A021897
SELENIUM	0.3	U	1.00	A021897
SILVER	0.1	U	1.50	A021897
STRONTIUM	0.007	U	10.0	A021897
THALLIUM	0.4	U	1.50	A021897
TIN	1.8	J	10.0	A021897
TITANIUM	0.07	J	1.50	A021897
VANADIUM	0.06	U	2.50	A021897
ZINC	0.34	J	2.50	A021897

U The analyte was not detected in the sample at a level greater than the instrument detection limit.

J The analyte was detected in the sample at a concentration greater than the instrument detection limit, but less than the laboratory's Practical Quantitation Level.

H The analyte was detected in the sample at a concentration greater than the laboratory's acceptance limit.

LABORATORY CONTROL SAMPLE REPORT

Sample ID: LCSSNB17ICS1

Batch ID: NB17ICS1

Units: mg/kgdrywt

Sample ID: LCSSNB17ICS1

Client: Land Martin

Work Order: 11-11-13-10

-							
Element Name	True Value	Result	% REC	Flag	Lim	nits	File
ALUMINUM	6990	7960	113.9%		4150	9830	A021897
ANTIMONY	35.0	42.3	120.9%		3.20	66.8	A021897
ARSENIC	164	173	105.5%		115	212	A021897
BARIUM	439	469	106.8%		321	557	A021897
BERYLLIUM	97.8	102	104.3%		75.1	121	A021897
BORON	82.5	79.8	96.7%		53.0	112	A021897
CADMIUM	112	118	105.4%		82.1	143	A021897
CALCIUM	2620	2790	106.5%		1880	3360	A021897
CHROMIUM	96.2	108	112.3%		73.5	119	A021897
COBALT	83.6	95.0	113.6%		63.6	104	A021897
COPPER	140	148	105.7%		110	169	A021897
IRON	17000	20400	120.0%		6940	27100	A021897
LEAD	96.1	101	105.1%		70.6	122	A021897
MAGNESIUM	1750	1940	110.9%		1240	2260	A021897
MANGANESE	314	354	112.7%		250	379	A021897
MOLYBDENUM	84.7	97.3	114.9%		62.1	107	A021897
NICKEL	72.0	80.4	111.7%		53.6	90.3	A021897
SELENIUM	68.9	66.2	96.1%		49.2	88.6	A021897
SILVER	82.5	88.1	106.8%		60.9	104	A021897
STRONTIUM	133	138	103.8%		74.7	190	A021897
THALLIUM	86.0	89.6	104.2%		40.9	131	A021897
TIN	86.3	102	118.2%		52.6	120	A021897
TITANIUM	350	560	160.0%	H	179	521	A021897
VANADIUM	96.7	113	116.9%		60.7	133	A021897
ZINC	276	296	107.2%		204	349	A021897

Katahdin Analytical Services, Inc. Elements Section

MERCURY

Client:	Roy F Weston
Method:	7470
Work Order:	WN0370

		Preparation B	Blank Soil (P B S	5)	
Prep. Date	Analysis Date	QC Batch ID	Measured Conc. (ug/Kg)	Acceptance Limit (ug/Kg)	Notes
18-Feb-97	18-Feb-97	NB18HGS1	<0.100	0.100	

		Labo	oratory Control	Sample Soil (LO	CSS)	
Prep. Date	Analysis Date	QC Batch ID	Measured	Ref. Value	Calculated	Control
			Conc. (ug/g)	(ug/g)	Rec. %	Limits (%)
18-Feb-97	18-Feb-97	NB18HGS1	2.58	2.60	99%	1.19-4.00

Notes:

- 1) Blank acceptance limits are equivalent of PQL's unless otherwise indicated.
- 2) Random low level contamination is indicated for this parameter. (if notated)
- 3) See cover letter for additional information. (if notated)

MATRIX SPIKE / DUPLICATE QC SUMMARY

Sample ID: WN0370-005

Symbol	Sample Result	Duplicate Result	RPD %	Spike True Value	Spike Result	Percent Recovery	Notes
Ag	<1.5	<1.5	NC	4.1	3.3	80.5 %	
As	16.3	17.7	8.24	164	170	93.7 %	
Be	< 0.50	< 0.50	NC	4.10	3.92	88.8 %	
Cd	<1.00	<1.00	NC	4.10	4.13	95.4 %	
Cr	12.0	11.0	8.70	16.4	37.0	152 % H	ı
Cu	39.5	40.6	2.75	20.5	56.5	82.9 %	
Ni	7.49	7.52	0.400	41.0	48.2	99.3 %	
Pb	12.5	12.0	4.08	41.0	50.6	92.9 %	
Sb	<0.8	<0.8	NC	41.0	21.6	52.7 % L	1
Se	<1.0	<1.0	NC	164	138	84.0 %	
Tl	<1.5	<1.5	NC	164	152	92.7 %	
Zn	21.0	22.4	6.45	41.0	62.6	101 %	

0000018

Katahdin Analytical Services, Inc. Quality Control Report

Duplicate & Matrix Spike Footnotes

RPD = Relative percent difference, which is the absolute value of the difference between two duplicate results divided by the mean concentration then multiplied by 100%.

NA = Not applicable.

NC = Relative percent difference cannot be calculated for sample results less than the PQL.

DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory or contract specified acceptance range except as noted. The acceptance range for RPD measurements is 0-20%. The acceptance range for matrix spike recoveries is 75-125%). The laboratory does not use the sample duplicate and matrix spike acceptance ranges as acceptance criteria for a specific analysis. Sample duplicate and matrix spike data are used to evaluate method performance in the environmental sample matrix only. Please refer to LCS data for assessment of quality control for each parameter.

- 1. Matrix spike recovery is outside the laboratory's specified acceptance range indicating potential sample matrix interference and potential bias of reported value for this parameter.
- 2. Matrix spike recovery is outside the laboratory specified acceptance range. The spike concentration for this parameter is significantly below the sample concentration and cannot be distinguished from the sample's analytical signal.
- 3. Matrix spike analysis cannot be quantified due to severe matrix interferences.
- 4. Precision of replicate analysis as measured by RPD is outside the laboratory's acceptance range for this parameter. Sample homogeneity may be a factor.
- 5. Because of the large uncertainty (i.e., 33% or greater) associated with measurements made near the detection level, There is no acceptance range for relative percent difference.

KATAHDIN ANALYTICAL SERVICES, INCORPORATED New England-ME Laboratory (207) 874-2400 CONFIRMATION

Page 1

ORDER NO WN-0370 Project Manager: Lil Pepin

ORDER DATE: 02/17/97

REPORT TO: DAVE CRISPO

PHONE: 508/772-7190

ROY F WESTON

FAX: 508/772-7251

P.O. BOX 425 AYER, MA 01432 DUE: 20 FEB

ACCOUNTS PAYABLE ROY F. WESTON, INC.

PO: 03886-118-004-4420-00

1 WESTON WAY

WEST CHESTER, PA 19380-1499 PROJECT: FT DEVONS

SAMPLED BY: CLIENT

INVOICE:

DELIVERED BY: FED EX

DISPOSE: AFTER 19 MAR

ITEM LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED DAT	E/TIME	RECEIVED	MATRIX
1 WN0370-1	AOC57-A1-SW1	13 FE	B 0931	17 FEB	SL
WN0370-2	AOC57-A1-SW2	13 FE	B 0940		
WN0370-3	AOC57-A1-SW3	13 FE	B 0952		
WN0370-4	AOC57-A1-SW4	13 FE	B 1008		
WN0370-5	AOC57-A1-FL1	13 FE	B 1012		
WN0370-6	AOC57-A1-DUP	13 FE	B 1012		
DEMEDMENTANT	ON .	MEDUIOD	Omv	DDICE	A MCCTINIO

DETERMINATION	METHOD	QTY	PRICE	AMOUNT
Solids-Total Residue (TS)	CLP/CIP SO	6	0.00	0.00
Priority Pollutant Metals, Total		6	225.00	1350.00
TOTALS		6	225.00	1350.00

ORDER NOTE: QC-II

3DY TAT

Prices include RUSH surcharges

REPORT COPY: 603/228-1334*JOHN LOVELY

ROY F. WESTON, INC.

7 EAGLE SQUARE

CONCORD, NH 03301-4991 PHONE: 603/228-1334 FAX: 603/228-3440

INVOICE: With Report

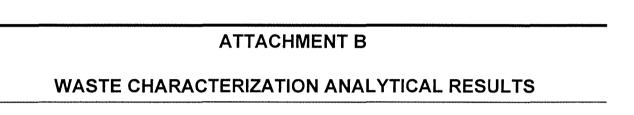
TOTAL ORDER AMOUNT \$1,350.00 This is NOT an Invoice

AJC/LP/SM/WEST.AJC(dw)

02-19Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

MEST	IAOT	Analytics	e Hea	Only
VVES	UN	Anaivuc	s use	OHIO

Custody Transfer Record/Lab Work Request


W.		·ø
MANAGEF	DESIGNERS CONSULTANTS	

																			Pag	<u> </u>	01 _	<u> </u>
Client Coy	. W	I Vor	۸٤			Fifrigera	ator#															
Ect Final Proj	Sampl	ing Date -				#/lipe C	ontainer	Liquid							1							
Work Order #	03	826 118	004 4	430 00				Solid Liquid							╂	+	1/6		1			
Project Contact	t/Phon	e# Drive	11500 /5	8-772-	7140	Voline		Solid							+	+	907					
AD Project Mar	nager	TOM AS	DELLA			Presire	itives															
QC _I				24		ANALY				ORG	ANIC					ORG	\$					
Date Rec'd						REQUE	:15D	-	VOA	BNA	Pest/ PCB	Herb		l	Metal	7	म् इ.स.					
Account #									>	â	9,9	Ĭ				N N						
MATRIX CODES: S - Soil SE - Sediment SO - Solid	Lab ID	Clie	ent ID/Descri	ption	Matrix QC Chosen (√) MS MSD	Matrix	lite Colbted (•	WES	TON Ana	lytics	Use O	nly					Page 100 100 100 100 100 100 100 100 100 10
SL - Sludge W - Water		AOC57-1	11 - Sun			S	2-137	0931									×					
O - Oil A - Air		AOC 57-1				5	2-13-4	CG40							†	1	4					
DS - Drum Solids		A0657 -				5	2-13-4								T	1	×					
DL - Drum						5	2.13 4								╅	1	×					
Liquids L - EP/TCLP		40657 -1						1-2-2-						_	+	 						
Leachate WI - Wipe		AOC57 -1	41-FL1			S	Z-13-47								 		^					
X - Other		ACC 57 -	A1-D			5	2-13-4	1 1012									メ					
F - Fish						<u> </u>			! 						1							<u> </u>
									1					ĺ								
							1		7		<u> </u>				\top							
	<u> </u>						 	†	╅		-				+	+						
FIELD DEDOO	1000	COMPLETE ON	UVCHADED	ADEAC	 	DATE/BE	VISIONS:	<u> </u>				L			ᆣᆖ	<u> </u>						<u></u>
FIELD PERSOI		OWPLE IE ON	ILT SHAVED	MUENS			1									WE	STON	Analy	tics U	se Or	ly	
* Preserv	ed @ whre	vi blank in problems	لمعادل				2 3 4 5 6	,								Samples 1) Shipport Hand De Airbill # 2) Ambie 3) Receit Condition 4) Labels	ede ent or Cl ved in C n Y o	hilled Good r N	1) P Pacl 2) U Pacl 3) P	C Tape resent kage 'nbroke kage 'resent 'nbroke	on Out Y or n on O Y or on San Y or	N Puter N mple
Relinquished by		Received by	Date	Time	Relinquis by	hed .	Receive	ed	Date	in	ne			s Betweer		Properly	Υo	r N	Sam	ple '	Y or	
Will Del	Fe	d ex	2114147	19:55	Бу	1	Mazerel	1c 2	0/9	7 /	<i>C</i> -			els and ? Y or I		5) Receit Holding	Times	hin r N		n Sam		c't
RFW 21-21-001/	-7/91		<u> </u>	L372		L373		_375		 L377		L37	78	Ref#		Cor	oler#				38	31-596

KATAHDIN ANALYTICAL SERVICES, INC. SAMPLE RECEIPT CONDITION REPORT Tel. (207)874-2400 FAX (207)775-4029

LAB#	11/0370		/
PAGE:	/	OF	
COOLER:		OF	
COC#		_	
SDG#	-	_	
CASE#	_		
	-		,

PROJECT:			DATE/TIME RECEIVED: DELIVERED BY: RECEIVED BY: LIMS ENTRY BY: LIMS REVIEW BY/PM:	2/17/97/010 Fed Ex SM - 3711 - 3C	
	YES NO	EXCEPTIONS	COMMENTS .	RESOLUTION	
1. CUSTODY SEALS PRESENTANTACT					•
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER			•		
3. CHAIN OF CUSTODY SIGNED BY CLIENT					
4. CHAIN OF CUSTODY MATCHES SAMPLES			C	·	
6. SAMPLES RECEIVED AT 2 *- 6 ° C Ice/Ice Packs Present? Y or N			-28°C		
6. TEMPATURE BLANKS PRESENT			•	• . ————————————————————————————————————	
7. VOLATILES FREE OF HEAD SPACE		V	NA		
8. TRIP BLANK PRESENT IN THIS COOLER			<u> </u>		
9. PROPER SAMPLE CONTAINERS AND VOLUME			·	***	
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT		·			
11. SAMPLES PROPERLY PRESERVED				•••	
12. CORRECTIVE ACTION REPORT FILED					
13. ANALYTICAL PROGRAMS (circle one)		LP EPA-CLP NYAS	P NJISRA HAZWRAP NEESA AFCEE OTHER: _		
LOG-IN NOTES:		3		<u>``</u>	

ANALYTICAL DIVISION

Laboratory Analysis Report(s) #622799

Client:

Roy F. Weston, Inc.

Devens, MA

Attn:

David Crispo

Project:

300595C (sample No. 57-WC-01)

Date Samples Received:

June 17, 1997

Date Data Due: June 23, 1997

Date Order Received:

June 17, 1997

Date Data Reported: June 25, 1997

This report is "<u>PROPRIETARY AND CONFIDENTIAL</u>" and delivered to, and intended for the exclusive use of the above named client only. OHM Remediation Services Corp., Analytical Division, assumes no responsibility or liability for the reliance hereon or use hereof by anyone other than the above named client.

Reviewed and Approved by:

loseph A. Hnatow, Laboratory Manager

419-423-3526

Date: July 8, 1997

PROJECT NARRATIVE

The following items relate to the samples and analytical data contained in this report.

- The sample temperature upon receipt (4°C) was within the temperature acceptability range of 2°C to 6°C.
- All solid sample results are reported on a "dry weight" basis except RCRA Characteristics. The RCRA Characteristics results are reported on an as received basis.
- J values reported for all samples in batch #Q2C70846 (Semi-volatiles) as per client request. Reported results below stated detection limit should be viewed as semi-quantitative only.
- Note any comments at the bottom of the tables in appendices B and C.
- Sample #57-WC-01 was analyzed by GC/MS method 8270B due to severe matrix interferences with the FID.
- Matrix spike and duplicate recoveries for batch #Q2C70846 (Semi-volatiles) are not available
 due to matrix interferences. Batch acceptance is based on method spike recoveries that are
 within QC limits.
- Some method spike and matrix spike recoveries were outside laboratory QC limits for batches #D1V6147 (Volatiles) and #Q2D6138 (Volatiles). However, method QC limits were not exceeded. This should be considered when evaluating the data.
- Two matrix spike recoveries were outside method QC limits for batch #D2M9810 (Metals). However, laboratory QC limits were not exceeded. This should be considered when evaluating the data.
- Due to high levels of target analytes present in the unspiked sample, matrix spike recoveries are not available and/or outside QC limits for batch #Q2T70848 (TPH). Batch acceptance is based on method spike recoveries that are within QC limits.

The following relate to the timeliness and completeness of the analytical data reported:

• Data was reported to Mr. David Crispo on Wednesday, June 25, 1997, at Roy F. Weston, Inc., Devens, Massachusetts. The following parameters were not reported within the required time frame:

PARAMETER	REASON FOR DELAY
Semivolatile Organics GC/MS	Matrix and laboratory capacity.

SAMPLE INFORMATION SUMMARY

0 1	- ,				<u> </u>	T					
Sample Id	Lab Id	Sample Date	Matrix	Method	QC Batch #	Prep Date	Analysis Date	Hold Met	Dry Wgt	Run #	Analyst
57-WC-01	 	06/16/97		8270B 8270B 1020A 418.1 6010A 7471A 8080A 8260A 9010A/7.3 9030A/7.3 9045C D2216	Q2C70846 Q2C70846 Q2T70848 Q2M9810 Q2G9813 Q2P70847 Q2D6138 Q2I6251 Q2I6252	06/18/97 06/18/97 06/19/97 06/18/97 06/18/97 06/17/97 06/22/97 06/19/97	06/24/97 06/25/97 06/19/97 06/24/97 06/18/97 06/18/97 06/18/97 06/23/97	Yes Yes Yes Yes Yes Yes Yes N/A N/A	Yes Yes N/A Yes Yes Yes Yes Yes Yos	B07412 B07422 IR9870 IM3600 I85046 UF6018 C15725 I85079	Bigelow K. Bigelow K. Klopp L. Lucy R. DeLong W. Smith D. Knapke J. Lucy R. Klopp L. Klopp L. Crawford M.

SAMPLE INFORMATION SUMMARY

Sample Id	Lab Id	Sample Date	Matrix	Method	QC Batch #	Prep Date	Analysis Date	Hold Met	Dry Wgt	Run #	Analyst
TB-01/1	JR3760	06/16/97	Aqueous	8260A	Q1V6147	06/23/97	06/23/97	Yes	N/A	C15741	Lucy R.
1											

APPENDIX A DATA SUMMARY REPORT

Company: ROY F. WESTON, INC.

DATE: 07/07/97

PAGE: 1

57-WC-01 Sample Point ID: Lab Sample Number: JR3759 06/16/97 Sample Date: Facility Code: 1300595 CV10 Wet Chemistry Flash Point, Seta Flash Deg C >93 Solids, Total ક 92.6 std pH (Electrode) 5.78 Reactive Cyanide mg/kg <10.0 Reactive Sulfide <25.0 mg/kg GS13 GC PP PCB's Aroclor 1016 mg/kg < .18 Aroclor 1221 mg/kg <.18 Aroclor 1232 mg/kg < .18 Aroclor 1242 mg/kg < .18 Aroclor 1248 mg/kg < .18 mg/kg < .18 Aroclor 1254 Aroclor 1260 mg/kg < .18 IROO TPHC by IR mg/kg 220 Petroleum Hydrocarbons (IR) ME50 Total RCRA Metals mg/kg 14.2 Arsenic mg/kg mg/kg Barium 19.2 .84 Cadmium 21.1 Chromium mg/kg 75.7 mg/kg Lead mg/kg < .009 Mercury Selenium mg/kg <7.9 .61 J Silver mg/kg MS17 GCMS PP PAH mg/kg .078 J Acenaphthene Acenaphthylene mg/kg .33 J mg/kg .34 J Anthracene Benzo(a) anthracene 1.3 mg/kg Benzo(b) fluoranthene 11.7 mg/kg Benzo(k) fluoranthene mg/kg 11.8 Benzo(ghi)perylene 1.6 mg/kg Benzo (a) pyrene mg/kg 1.8 Chrysene mg/kg Dibenzo (a, h) anthracene .19 J mg/kg

Company: ROY F. WESTON, INC.

DATE: 07/07/97

PAGE: 2

Sample Po Lab Sample I Sample Facility	Number: e Date:	57-WC-01 JR3759 06/16/97 300595				
MS17 GCMS PP PAH					 	
Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	mg/kg mg/kg mg/kg mg/kg mg/kg	3.4 .18 J .60 .13 J				
Pyrene 1-Methylnaphthalene 2-Methylnaphthalene	mg/kg mg/kg mg/kg	2.8 .070 J .082 J				
MV25 GCMS 8260 Volatiles						
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	mg/kg mg/kg mg/kg mg/kg mg/kg	<.65 <.65 <.65 <.65				
1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg	<.65 <.65 <.65 <.65				
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethene (total)	mg/kg mg/kg mg/kg mg/kg mg/kg	<.65 <.65 <.65 <.65				
1,2-Dichloropropane 1,2-Trans-dichloroethylene 1,2-cis-Dichloroethylene 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg	<65 <65 <65 <65				
1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 4-Isopropyltoluene Acetone	mg/kg mg/kg mg/kg mg/kg mg/kg	<.65 <.65 <.65 <.65 <1.3				
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	mg/kg mg/kg mg/kg mg/kg mg/kg	<.65 <.65 <.65 <.65 <.65				

DATE: 07/07/97

PAGE: 3

Company: ROY F. WESTON, INC.

Lab Sampl Sam	Point ID: le Number: nple Date: lity Code:	57-WC-01 JR3759 06/16/97 300595				
MV25 GCMS 8260 Volatiles			 			
Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	mg/kg mg/kg mg/kg mg/kg mg/kg	<.65 <.65 <.65 <.65 <.65				
Chloromethane Dibromochloromethane Dibromomethane Dichlorodifluoromethane Ethylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg	<.65 <.65 <.65 <.65 <.65				
Ethylene dibromide Hexachlorobutadiene Isopropylbenzene Methylene chloride Naphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg	<.65 <.65 <.65 .15 J .096 J				
Styrene Tetrachloroethene Toluene Trichloroethene Trichlorofluoromethane	mg/kg mg/kg mg/kg mg/kg mg/kg	<.65 <.65 <.65 .077 J <.65				
Vinyl chloride Xylenes n-Butylbenzene n-Propylbenzene o-Chlorotoluene	mg/kg mg/kg mg/kg mg/kg mg/kg	<.65 <.65 <.65 <.65 <.65				
p-Chlorotoluene sec-Butylbenzene tert-Butylbenzene	mg/kg mg/kg mg/kg	<.65 <.65 <.65				

Company: ROY F. WESTON, INC.

DATE: 07/07/97

PAGE: 1

			,	 		 	
Sample Poi Lab Sample N Sample Facility	Number: Date:	TB-01/1 JR3760 06/16/97 300595					
MV25 GCMS 8260 Volatiles					VP-1		
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	mg/L mg/L mg/L mg/L mg/L	<.005 <.005 <.005 <.005 <.005					
1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	mg/L mg/L mg/L mg/L mg/L	<.005 <.005 <.005 <.005 <.005					
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethene (total)	mg/L mg/L mg/L mg/L mg/L	<.005 <.005 <.005 <.005 <.005					
1,2-Dichloropropane 1,2-Trans-dichloroethylene 1,2-cis-Dichloroethylene 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	mg/L mg/L mg/L mg/L mg/L	<.005 <.005 <.005 <.005 <.005					
1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 4-Isopropyltoluene Acetone	mg/L mg/L mg/L mg/L mg/L	<.005 <.005 <.005 <.005 <.010					
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	mg/L mg/L mg/L mg/L mg/L	<.005 <.005 <.005 <.005 <.005					
Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	mg/L mg/L mg/L mg/L mg/L	<.005 <.005 <.005 <.005 <.005					
Chloromethane Dibromochloromethane Dibromomethane Dichlorodifluoromethane Ethylbenzene	mg/L mg/L mg/L mg/L mg/L	<.005 <.005 <.005 <.005 <.005					

DATE: 07/07/97

PAGE: 2 Company: ROY F. WESTON, INC. TB-01/1 Sample Point ID: Lab Sample Number: JR3760 Sample Date: Facility Code: 06/16/97 MV25 GCMS 8260 Volatiles Ethylene dibromide mg/L < .005 Hexachlorobutadiene Isopropylbenzene Methylene chloride mg/L < .005 mg/L < .005 mg/L < .005 Naphthalene < .005 Styrene Tetrachloroethene mg/L < .005 < .005 mg/L < .005 Toluene mg/L Trichloroethene mg/L < .005 Trichlorofluoromethane < .005 mg/L Vinyl chloride mg/L < .005 Xylenes mg/L < .005 n-Butylbenzene mg/L < .005 n-Propylbenzene mg/L < .005 o-Chlorotoluene mg/L < .005 mg/L p-Chlorotoluene < .005 sec-Butylbenzene tert-Butylbenzene < .005 < .005 mg/L

APPENDIX B QUANTITATIVE RESULTS

CV10 Wet Chemistry

Company Name

Facility Sample Point Lab Sample No. 300595 57-WC-01 JR3759

ROY F. WESTON, INC.

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
Reactive Cyanide Reactive Sulfide Solids, Total pH (Electrode) Flash Point, Seta Flash	mg/kg mg/kg % std Deg C	ND ND 92.6 5.78 >93	Detection Limits 10.0 25.0 .100	Blank Results ND ND	Batch Number Q216251 Q216252

ME50 Total RCRA Metals

Company Name

Facility Sample Point Lab Sample No.

ROY F. WESTON, INC.

300595 57-WC-01 JR3759

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Arsenic Barium Cadmium Chromium Lead	14.2 19.2 .841 21.1 75.7	7.94 1.06 .529 1.06 7.94	ND ND ND ND ND	Q2M9810 Q2M9810 Q2M9810 Q2M9810 Q2M9810
Mercury Selenium Silver	ND ND ND	.009 7.94 1.06	ND ND ND	Q2G9813 Q2M9810 Q2M9810

GS13 GC PP PCB's

Company Name

Facility Sample Point Lab Sample No. 300595 57-WC-01 JR3759

ROY F. WESTON, INC.

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	ND ND ND ND ND	.179 .179 .179 .179 .179	ND ND ND ND	Q2P70847 Q2P70847 Q2P70847 Q2P70847 Q2P70847
Aroclor 1254 Aroclor 1260	ND ND	.179 .179	ND ND	Q2P70847 Q2P70847
				Ī

IR00 TPHC by IR

Company Name

Facility Sample Point Lab Sample No.

ROY F. WESTON, INC.

300595

57-WC-01 JR3759

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Petroleum Hydrocarbons (IR)	218	35.5	ND	Q2T70848
				,

MS17 GCMS PP PAH

Company Name

Facility Sample Point Lab Sample No.

ROY F. WESTON, INC.

300595 57-WC-01 JR3759

	I			
Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene	.078 .331 .339 1.31 1.68	.356 .356 .356 .356 .356	ND ND ND ND	Q2C70846 Q2C70846 Q2C70846 Q2C70846 Q2C70846
Benzo(k) fluoranthene Benzo(ghi) perylene Benzo(a) pyrene Chrysene Dibenzo(a,h) anthracene	1.83 .470 1.59 1.83 .191	1.07 .356 .356 .356 .356	ND ND ND ND	Q2C70846 Q2C70846 Q2C70846 Q2C70846 Q2C70846
Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	3.40 .184 .602 .127 1.86	.356 .356 .356 .356 .356	ND ND ND ND ND	Q2C70846 Q2C70846 Q2C70846 Q2C70846 Q2C70846
Pyrene 2-Methylnaphthalene 1-Methylnaphthalene	2.84 .082 .070	.356 .356 .356	ND ND ND	Q2C70846 Q2C70846 Q2C70846

Company Name

Facility Sample Point Lab Sample No.

ROY F. WESTON, INC.

300595 57-WC-01 JR3759

		<u> </u>	<u> </u>	
Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	ND ND ND ND ND	.654 .654 .654 .654 .654	ND ND ND ND ND	Q2D6138 Q2D6138 Q2D6138 Q2D6138 Q2D6138
1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ND ND ND ND	.654 .654 .654 .654 .654	ND ND ND ND ND	Q2D6138 Q2D6138 Q2D6138 Q2D6138 Q2D6138
1,2-cis-Dichloroethylene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	ND ND ND ND ND	.654 .654 .654 .654	ND ND ND ND ND	Q2D6138 Q2D6138 Q2D6138 Q2D6138 Q2D6138
1,2-Trans-dichloroethylene 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene	ND ND ND ND ND	.654 .654 .654 .654	ND ND ND ND ND	Q2D6138 Q2D6138 Q2D6138 Q2D6138 Q2D6138
Acetone Benzene Bromobenzene Bromochloromethane Bromoform	ND ND ND ND ND	1.31 .654 .654 .654 .654	ND ND ND ND ND	Q2D6138 Q2D6138 Q2D6138 Q2D6138 Q2D6138
Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	ND ND ND ND ND	.654 .654 .654 .654	ND ND ND ND ND	Q2D6138 Q2D6138 Q2D6138 Q2D6138 Q2D6138
Chloromethane Dibromochloromethane Dibromomethane Dichlorodifluoromethane Ethylbenzene	ND ND ND ND ND	.654 .654 .654 .654	ND ND ND ND ND	Q2D6138 Q2D6138 Q2D6138 Q2D6138 Q2D6138
Ethylene dibromide Hexachlorobutadiene Isopropylbenzene Methylene chloride n-Butylbenzene	ND ND ND .145 ND	.654 .654 .654 .654 .654	ND ND ND . 235 ND	Q2D6138 Q2D6138 Q2D6138 Q2D6138 Q2D6138
n-Propylbenzene Naphthalene o-Chlorotoluene p-Chlorotoluene sec-Butylbenzene	ND .096 ND ND ND	.654 .654 .654 .654 .654	ND ND ND ND ND	Q2D6138 Q2D6138 Q2D6138 Q2D6138 Q2D6138
Styrene tert-Butylbenzene Tetrachloroethene Toluene Trichloroethene	ND ND ND ND . 077	.654 .654 .654 .654 .654	ND ND ND ND ND	Q2D6138 Q2D6138 Q2D6138 Q2D6138 Q2D6138

Company Name

Facility Sample Point Lab Sample No.

ROY F. WESTON, INC.

300595

57-WC-01

JR3759

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Trichlorofluoromethane Vinyl chloride Xylenes 1,1-Dichloropropene 2,2-Dichloropropane	ND ND ND ND ND	.654 .654 .654 .654 .654	ND ND ND ND ND	Q2D6138 Q2D6138 Q2D6138 Q2D6138 Q2D6138
Bromodichloromethane 1,2-Dichloroethene (total) 4-Isopropyltoluene	ND ND ND	.654 .654 .654	ND ND ND	Q2D6138 Q2D6138 Q2D6138
				1

These reporting limits are higher than usual due to matrix interferences.

Company Name

Facility Sample Point Lab Sample No.

ROY F. WESTON, INC.

300595 TB-01/1 JR3760

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane	ND ND ND ND ND ND	.005 .005 .005 .005 .005	ND ND ND ND	Q1V61±7 Q1V61±7 Q1V61±7 Q1V61±7 Q1V61±7
1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ND ND ND ND ND	.005 .005 .005 .005	ND ND ND ND	Q1V6147 Q1V6147 Q1V6147 Q1V6147 Q1V6147
1,2-cis-Dichloroethylene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	ND ND ND ND	.005 .005 .005 .005	ND ND ND ND	Q1V6147 Q1V6147 Q1V6147 Q1V6147 Q1V6147
1,2-Trans-dichloroethylene 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene	ND ND ND ND	.005 .005 .005 .005	ND ND ND ND	Q1V6147 Q1V6147 Q1V6147 Q1V6147 Q1V6147
Acetone Benzene Bromobenzene Bromochloromethane Bromoform	ND ND ND ND	.010 .005 .005 .005	ND ND ND ND	Q1V6147 Q1V6147 Q1V6147 Q1V6147 Q1V6147
Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	ND ND ND ND ND	.005 .005 .005 .005	ND ND ND ND	Q1V6147 Q1V6147 Q1V6147 Q1V6147 Q1V6147
Chloromethane Dibromochloromethane Dibromomethane Dichlorodifluoromethane Ethylbenzene	ND ND ND ND ND	.005 .005 .005 .005	ND ND ND ND	Q1V6147 Q1V6147 Q1V6147 Q1V6147 Q1V6147
Ethylene dibromide Hexachlorobutadiene Isopropylbenzene Methylene chloride n-Butylbenzene	ND ND ND ND ND	.005 .005 .005 .005	ND ND ND ND	Q1V6147 Q1V6147 Q1V6147 Q1V6147 Q1V6147
n-Propylbenzene Naphthalene o-Chlorotoluene p-Chlorotoluene sec-Butylbenzene	ND ND ND ND ND	.005 .005 .005 .005 .005	ND ND ND ND	Q1V6147 Q1V6147 Q1V6147 Q1V6147 Q1V6147
Styrene tert-Butylbenzene Tetrachloroethene Toluene Trichloroethene	ND ND ND ND ND	.005 .005 .005 .005 .005	ND ND ND ND ND	Q1V6147 Q1V6147 Q1V6147 Q1V6147 Q1V6147

Company Name

Facility Sample Point Lab Sample No.

ROY F. WESTON, INC.

300595

TB-01/1 JR3760

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Trichlorofluoromethane Vinyl chloride Xylenes 1,1-Dichloropropene 2,2-Dichloropropane	ND ND ND ND ND	.005 .005 .005 .005 .005	ND ND ND ND ND	Q1V6147 Q1V6147 Q1V6147 Q1V6147 Q1V6147
Bromodichloromethane 1,2-Dichloroethene (total) 4-Isopropyltoluene	ND ND ND	.005 .005 .005	ND ND	Q1V6147 Q1V6147 Q1V6147
•				

APPENDIX C QUALITY ASSURANCE DATA

			METI	IOD SI	PIKE			MA	TRIX	SPIKE			SI	ike d	UPLI	CAT	E	% COMP	LETE
Compound(s)		Blank Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Spiked Sample Id.	Unspk Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Added Conc.	Spiked Conc.	% Rec.	RPD	RPD Limit	Batch #	*
1,1,1,2-Tetrachloroethane	mg/l	0	.0500	.0574	115L	87-114L	TB-002	0	.0500	.0602	120L	89-113L	.0500	.0601	120L	0	0-10L	Q1V6147	71L
1,1,1-Trichloroethane	mg/l	0	.0500	.0535	107	83-116L 52-162M	TB-002	0	.0500	.0555	111	85-113L 52-162M	.0500	.0546	109	2	0-14L		100M
1,1,2,2-Tetrachloroethane	mg/l	0	.0500	.0484	97	78-121L	TB-002	0	.0500	.0490	98	82-123L	.0500	.0487	97	1	0-11L		1
1,1,2-Trichloroethane	mg/l	0	.0500	.0512	102	46-157M 90-112L 52-150M	TB-002	0	.0500	.0532	106	46-157M 86-113L 52-150M	.0500	.0540	108	2	0-10L		
1,1,2-Trichlorotrifluoroethan	e mg/l	0	.0502	.0515	103	78-117L	TB-002	0	.0502	.0565	113L	82-111L	.0502	.0539	107	5	0-13L		
1,1-Dichloroethane	mg/l	0	.0500	.0555	111L	88-110L 59-155M	TB-002	o	.0500	.0582	116L	83-110L 59-155M	.0500	.0571	114L	2	0-10L		
1,1-Dichloroethene	mg/l	0	.0500	.0485	97	84-115L 1-234M	TB-002	0	.0500	.0514	103	84-114L 1-234M	.0500	.0502	100	3	0-10L		
1,1-Dichloropropene	mg/l	0	.0500	.0544	109	84-113L	TB-002	0	.0500	.0564	113	85-114L	.0500	.0564	113	0	0-18L		
1,2,3-Trichlorobenzene	mg/l	0	.0500	.0519	104	87-115L	TB-002	0	.0500	.0580	116L	85-115L	.0500	.0594	119L	3	0-13L		
1,2,3-Trichloropropane	mg/l	0	.0500	.0541	108	85-115L	TB-002	0	.0500	.0540	108	83-119L 84-120M	.0500	.0545	109	. 9	0-11L		
1,2,4-Trichlorobenzene	mg/l	0	.0500	.0546	109	90-113L	TB-002	0	.0500	.0590	118L	85-114L	.0500	.0600	120L	2	0-15L		
1,2,4-Trimethylbenzene	mg/l	0	.0500	.0535	107	91-113L	TB-002	0	.0500	.0557	111	87-114L	.0500	.0550	110	. 9	0-10L		
1,2-Dibromo-3-chloropropane	mg/l	0	.0500	.0518	104	82-117L	TB-002	0	.0500	.0529	106	79-125L	.0500	.0533	107	. 9	0-19L		
1,2-Dichlorobenzene	mg/l	0	.0500	.0519	104	90-111L 18-190M	TB-002	0	.0500	.0532	106	86-114L 18-190M	.0500	.0537	107	. 9	0-10L		
1,2-Dichloroethane	mg/l	0	.0500	.0515	103	80-117L 49-155M	TB-002	0	.0500	.0516	103	86-115L 49-155M	.0500	.0531	106	3	0-10L		
1,2-Dichloroethene (total)	mg/l	0	.100	.106	106	88-110L 54-156M	TB-002	0	.100	.109	109	87-110L 54-156M	.100	.107	107	2	0-10L		
1,2-Dichloropropane	mg/l	0	.0500	.0538	108	89-110L 1-210M	TB-002	0	.0500	.0556	111L	88-110L 1-210M	.0500	.0559	112L	. 9	0-10L		
1,2-Trans-dichloroethylene	mg/l	0	.0500	.0544	109	86-112L 54-156M	TB-002	0	.0500	.0564	113L		.0500	.0546	109	4	0-10L		
1,2-cis-Dichloroethylene	mg/l	0	.0500	.0512	102	90-110L	TB-002	0	.0500	.0530	106	86-111L	.0500	.0528	106	0	0-10L		
1,3,5-Trimethylbenzene	mg/l	0	.0500	.0527	105	91-111L	TB-002	0	.0500	.0555	111	86-114L	.0500	.0546	109	2	0-10L		
1,3-Dichlorobenzene	mg/l	0	.0500	.0535	107	92-111L 59-156M	TB-002	0	.0500	.0552	110	86-113L 59-156M	.0500	.0552	110	0	0-10L		
1,3-Dichloropropane	mg/l	0	.0500	.0548	110	88-111L	TB-002	0	.0500	.0563	113L	89-110L	.0500	.0565	113L	0	0-10L		
1,4-Dichlorobenzene	mg/l	0	.0500	.0568	114L	91-110L	TB-002	0	.0500	.0586	117L	86-115L	.0500	.0586	117L	0	0-10L		
2,2-Dichloropropane	mg/l	0	.0500	.0536	107	18-190M 75-110L	TB-002	0	.0500	.0560	112	18-190M 72-112L	.0500	.0557	111	. 9	0-12L		
2-Butanone	mg/l	0	.0500	.0478	96	72-116L	TB-002	0	.0500	.0484	97	75-119L	.0500	.0481	96	1	0-15L		
2-Chloroethylvinyl ether	mg/l	0	.0500	.0502	100	74-117L 1-305M	TB-002	0	.0500	.00158	3 L	68-110L 1-305M	.0500	.00105	2 L	40 L	0-19L		

Joblink: 622799													,						
			METI	HOD SI					TRIX	SPIKE			SI	PIKE D	,	CAT	E	% COMPL	ETE
Compound(s)		Blank Conc.	Added Conc.	Spiked Conc.	₹ Rec.	Rec. Limits	Spiked Sample Id.	Unspk Conc.	Added Conc.	Spiked Conc.	₹ Rec.	Rec. Limits	Added Conc.	Spiked Conc.	% Rec.	RPD	RPD Limit	Batch #	8
2-Hexanone	mg/l	0	.0500	.0457	91	75-116L	TB-002	0	.0500	.0482	96	75-126L	.0500	.0471	94	2	0-19L		
4-Isopropyltoluene	mg/l	o	.0500	.0538	108	89-114L	TB-002	o	.0500	.0565	113	85-114L	.0500	.0567	113	0	0-10L		
4-Methyl-2-pentanone	mg/l	0	.0500	.0508	102	84-113L	TB-002	0	.0500	.0526	105	79-121L	.0500	.0522	104	1	0-17L		
Acetone	mg/l	О	.0500	.0471	94	51-125L	TB-002	0	.0500	.0471	94	61-115L	.0500	.0507	101	7	0-17L		
Acrolein	mg/l	0	.255	.218	85	10-135L	TB-002	0	. 255	.237	93	10-150L	.255	.209	82	13	0-17L		
Acrylonitrile	mg/l	0	.0500	.0511	102	85-116L	TB-002	0	.0500	.0514	103	86-122L	.0500	.0496	99	4	0-17L		
Benzene	mg/l	0	.0500	.0569	114L	85-113L 37-151M	TB-002	0	.0500	.0566	113L	90-110L 37-151M	.0500	.0582	116L	3	0-10L		
Bromobenzene	mg/l	0	.0500	.0520	104	91-110L	TB-002	0	.0500	.0538	108	90-110L	.0500	.0534	107	. 9	0-10L		!
Bromodichloromethane	mg/l	0	.0500	.0536	107	82-115L 35-155M	TB-002	0	.0500	.0566	113	85-113L 35-155M	.0500	.0552	110	3	0-10L		
Bromoform	mg/l	0	.0500	.0578	116	83-119L 45-169M	TB-002	0	.0500	.0604	121	80-121L 45-169M	.0500	.0593	119	2	0-14L		
Bromomethane	mg/l	0	.0500	.0587	117	88-119L 1-242M	TB-002	0	.0500	.0580	116	84-119L	.0500	.0593	119	3	0-14L		
Carbon disulfide	mg/l	0	.0500	.0624	125L	84-110L	TB-002	0	.0500	.0652	130L	1-242M 79-110L	.0500	.0640	128L	2	0-11L		
Carbon tetrachloride	mg/l	0	.0500	.0557	111	82-118L 70-140M	TB-002	0	.0500	.0655	131L	82-117L 70-140M	.0500	.0591	118L	10	0-23L		
Chlorobenzene	mg/l	o	.0500	.0545	109	70-140M 88-110L 37-160M	TB-002	0	.0500	.0572	114L	70-140M 86-113L 37-160M	.0500	.0565	113	. 9	0-18L		
Chloroethane	mg/l	0	.0500	.0772	154L	83-119L	TB-002	0	.0500	.0726	145L	79-119L	.0500	.0822	164L	12	0-13L		
Chloroform	mg/l	0	.0500	.0520	104	89-110L 51-138M	TB-002	0	.0500	.0537	107	89-110L 51-138M	.0500	.0538	108	. 9	0-10L		
Chloromethane	mg/l	0	.0500	.0577	115L	71-112L 1-273M	TB-002	0	.0500	.0617	123L	69-114L 1-273M	.0500	.0587	117L	5	0-14L		
Dibromochloromethane	mg/l	0	.0500	.0556	111	83-118L 53-149M	TB-002	0	.0500	.0583	117	83-117L 53-149M	.0500	.0582	116	. 9	0-11L		
Dibromomethane	mg/l	0	.0500	.0514	103	90-113L	TB-002	0	.0500	.0530	106	86-115L	.0500	.0532	106	0	0-10L		
Dichlorodifluoromethane	mg/l	0	.0500	.0594	119L	70-113L	TB-002	0	.0500	.0632	126L	74-110L	.0500	.0604	121L	4	0-13L		
Ethyl acetate	mg/l	0	.100	.0894	89	38-110L	TB-002	0	.100	.0926	93	36-110L	.100	.0825	83	11	0-11L		
Ethyl ether	mg/l	0	.0501	.0522	104	78-116L	TB-002	0	.0501	.0536	107	82-121L	.0501	.0525	105	2	0-12L		
Ethylbenzene	mg/l	0	.0500	.0577	115L	92-110L 37-162M	TB-002	0	.0500	.0604	121L	85-113L 37-162M	.0500	.0598	120L	. 8	0-10L		
Ethylene dibromide	mg/l	0	.0500	.0513	103	87-113L	TB-002	0	.0500	.0529	106	87-115L	.0500	.0535	107	. 9	0-11L		
Hexachlorobutadiene	mg/l	0	.0500	.0567	113	86-1201,	TB-002	0	.0500	.0588	1181	81-1171	.0500	.0612	122L	3	0-11L		
Isobutanol	mg/l	0	.506	.579	114	30-130L	TB-002	0	.506	. 549	108	30-130L	.506	.598	118	9	0-20L		
		<u></u>	1	<u> </u>	1			1		<u> </u>	<u> </u>	<u> </u>	<u></u>		1	<u></u>	<u> </u>	<u> </u>	<u></u>

Joblink: 622799			~										<u> </u>						
			METI	HOD SI	PIKE			M	TRIX	SPIKE			SI	PIKE D		CAT	Έ	% COMPI	ETE
Compound(s)		Blank Conc.	Added Conc.	Spiked Conc.	₹ Rec.	Rec. Limits	Spiked Sample Id.	Unspk Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Added Conc.	Spiked Conc.	% Rec.	RPD	RPD Limit	Batch #	8
Isopropylbenzene	mg/l	0	.0500	.0590	118L	88-115L	TB-002	0	.0500	.0620	124L	86-115L	.0500	.0606	121L	2	0-10L		<u> </u>
Methylene chloride	mg/l	.00158	.0500	.0539	105	74-112L 1-221M	TB-002	.00161	.0500	.0575	112L	74-110L 1-221M	.0500	.0556	108	4	0-11L		
Naphthalene	mg/l	704	.0500	.0504	99	82-117L	TB-002	0	.0500	.0549	110	80-120L	.0500	.0556	111	. 9	0-19L		
Styrene	mg/l	0	.0500	.0583	117L	92-110L	TB-002	0	.0500	.0608	122L	89-110L	.0500	.0603	121L	. 8	0-10L		
Tetrachloroethene	mg/l	0	.0500	.0540	108	90-110L 64-148M	TB-002	0	.0500	.0574	115L	87-112L	.0500	.0574	115L	0	0-10L		
Toluene	mg/l	0	.0500	.0578	116L	85-112L 47-150M	TB-002	0	.0500	.0605	121L	64-148M 84-115L 47-150M	.0500	.0604	121L	0	0-15L		
Trichloroethene	mg/l	0	.0500	.0527	105	84-118L 71-157M	TB-002	0	.0500	.0557	111L	88-110L 71-157M	.0500	.0553	111L	0	0-10L		
Trichlorofluoromethane	mg/l	0	.0500	.0570	114	81-121L 17-181M	TB-002	0	.0500	.0585	117	81-118L 17-181M	.0500	.0594	119L	2	0-11L		
Vinyl chloride	mg/l	0	.0500	.0579	116L	78-111L 1-251M	TB-002	0	.0500	.0616	123L	73-116L 1-251M	.0500	.0572	114	8	0-12L		
Xylenes	mg/l	0	.150	.174	116L	93-110L	TB-002	0	.150	.183	122L	90-110L	.150	.182	121L	. 8	0-10L		
cis-1,3-Dichloropropene	mg/l	0	.0500	.0573	115L	84-113L 1-227M	TB-002	0	.0500	.0603	121L	82-110L 1-227M	.0500	.0598	120L	. 8	0-10L		1
n-Butylbenzene	mg/l	0	.0500	.0537	107	90-111L	TB-002	0	.0500	.0566	113L	83-112L	.0500	.0569	114L	.9	0-10L		
n-Propylbenzene	mg/l	0	.0500	.0530	106	89-110L	TB-002	0	.0500	.0557	111	87-111L	.0500	.0550	110	. 9	0-10L		
o-Chlorotoluene	mg/l	0	.0500	.0554	111	88-111L	TB-002	0	.0500	.0578	116L	85-112L	.0500	.0571	114L	2	0-10L		
o-Xylene	mg/l	0	.0500	.0569	114L	92-110L	TB-002	0	.0500	.0597	119L	90-110L	.0500	.0596	119L	0	0-10L	A STATE OF S	1
p-Chlorotoluene	mg/l	0	.0500	.0543	109	91-110L	TB-002	0	.0500	.0568	114L	87-110L	.0500	.0559	112L	2	0-10L		
sec-Butylbenzene	mg/l	0	.0500	.0544	109	89-111L	TB-002	0	.0500	.0571	114L	86-112L	.0500	.0569	114L	0	0-10L		
tert-Butylbenzene	mg/l	0	.0500	.0528	106	91-112L	TB-002	0	.0500	.0548	110	88-114L	.0500	.0548	110	0	0-10L		
trans-1,3-Dichloropropene	mg/l	0	.0500	.0553	111	85-113L 17-183M	TB-002	0	.0500	.0581	116L	83-110L 17-183M	.0500	.0579	116L	0	0-10L		
	, was a second																		

Joblink: 622799			· ·							. – –									
			MET	HOD SI	PIKE			M	ATRIX	SPIKE			SI	PIKE D	UPLI	CATI	E	% COMPI	LETE
Compound(s)		Blank Conc.	Added Conc.	Spiked Conc.	₹ Rec.	Rec. Limits	Spiked Sample Id.	Unspk Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Added Conc.	Spiked Conc.	% Rec.	RPD	RPD Limit	Batch #	95
1-Methylnaphthalene	mg/kg	0	.667	. 573		52-110L						24,112,00		-				Q2C70846	100L
2-Methylnaphthalene	mg/kg	0	.707	.567	80	56-110L								<u> </u>					100M
Acenaphthene	mg/kg	0	.667	.513	77	65-110L		 	 										+
Acenaphthylene	mg/kg	o	.667	.537	81	47-145M 52-110L 33-145M													
Anthracene	mg/kg	0	.667	.537	81	65-110L		1	1	-	1								1
Benzo(a)anthracene	mg/kg	0	.667	.533	80	27-133M 65-110L 33-143M				ļ Ē									
Benzo(a)pyrene	mg/kg	0	.667	.507	76	61-110L	 												
Benzo(b)fluoranthene	mg/kg	0	.667	.507	76	17-163M 66-110L 24-159M	ļ												
Benzo(ghi)perylene	mg/kg	0	.667	.483	72	68-110L 1-219M													
Benzo(k)fluoranthene	mg/kg	0	.667	.563	84	66-110L 11-162M					ļ								
Chrysene	mg/kg	0	.667	.580	87	76-110L 17-168M													
Dibenzo(a,h)anthracene	mg/kg	0	.667	.507	76	69-110L 1-227M													
Fluoranthene	mg/kg	0	.667	.567	85	67-110L													
Fluorene	mg/kg	0	.667	.557	84	26-137M 62-110L 59-121M		474		Į.									
Indeno(1,2,3-cd)pyrene	mg/kg	0	.667	.483	72	66-110L 1-171M													
Naphthalene	mg/kg	0	.667	.567	85	53-110L 21-133M													
Phenanthrene	mg/kg	0	.667	.560	84	66-110L 54-120M	i .												1
Pyrene	mg/kg	0	.667	. 553	83	72-110L 52-115M	1												
1,1,1,2-Tetrachloroethane	mg/kg	0	6.25	7.09	113	84-113L	18-WW-001	0	7.70	8.33	108	89-112L	7.42	7.84	106	2	0-11L	Q2D6138	76L 100M
1,1,1-Trichloroethane	mg/kg	0	6.25	6.23	100	85-111L 52-162M	18-WW-001	0	7.70	6.71	87	85-117L 52-162M	7.42	6.71	90	3	0-11L		1001
1,1,2,2-Tetrachloroethane	mg/kg	0	6.25	6.19	99	78-115L 46-157M		0	7.70	6.87	89	68-143L 46-157M	7.42	8.01	108	19	0-25L		
1,1,2-Trichloroethane	mg/kg	0	6.25	6.23	100	84-113L 52-150M	18-WW-001	0	7.70	7.57	98	84-110L 52-150M	7.42	7.06	95	3	0-15L		
1,1,2-Trichlorotrifluoroethane	mg/kg	0	6.28	5.56	89	77-120L	18-WW-001	0	7.73	4.03	52 L	70-129L	7.45	4.57	61 L	16	0-16L		
1,1-Dichloroethane	mg/kg	0	6.25	6.33	101	86-114L 59-155M	1	0	7.70	6.68	87 L	91-118L 59-155M	7.42	6.62	89 L	2	0-13L		
1,1-Dichloroethene	mg/kg	0	6.25	5.21	. 83 I	85-114L 1-234M		0	7.70	3.80	49 L	89-118L 1-234M	7.42	4.42	60 L	20 L	0-151		
1,1-Dichloropropene	mg/kg	0	6.25	6.01	96	80-113L	1	0	7.70	6.37	83	73-117L	7.42	6.53	88	6	0-14L		
						<u> </u>	<u>L</u>			<u></u>			L				<u> </u>		

Joblink: 622799			METE	IOD SI	HVE			M	ATDIV	CDIVE		<u></u>	CI	HAE D	rinr r	CAT	7.2	of COMPI	12/12/2
		Blank	Added	Spiked		Rec.	Spiked	Unspk	ATRIX Added	Spiked	8	Rec.	Added	PIKE D		CAI	RPD	% COMPL	EIE
Compound(s)		Conc.	Conc.	Conc.	Rec.	Limits	Sample Id.		Conc.	Conc.	Rec.		Conc.		Rec.	RPD	Limit	Batch #	*
1,2,3-Trichlorobenzene	mg/kg	0	6.25	6.76	108	81-112L	18-WW-001	0	7.70	6.90	90	27-114L	7.42	8.50	115L	24	0-28L		
1,2,3-Trichloropropane	mg/kg	0	6.25	6.28	100	76-120L	18-WW-001	0	7.70	7.03	91	74-140L	7.42	8.22	111	20	0-26L		
1,2,4-Trichlorobenzene	mg/kg	0	6.25	7.00	112	82-112L	18-WW-001	0	7.70	7.39	96	30-114L	7.42	8.95	121L	23	0-24L		
1,2,4-Trimethylbenzene	mg/kg	0	6.25	6.63	106	87-110L	18-WW-001	3.51	7.70	11.0	97	68-132L	7.42	12.8	125	25 L	0-16L		
1,2-Dibromo-3-chloropropane	mg/kg	0	6.25	5.95	95	72-116L	18-WW-001	0	7.70	6.45	84	59-134L	7.42	7.76	105	22	0-351		
1,2-Dichlorobenzene	mg/kg	0	6.25	6.55	105	87-112L 18-190M	18-WW-001	0	7.70	7.27	94	62-120L 18-190M	7.42	8.83	119	23 L	0-16L		
1,2-Dichloroethane	mg/kg	0	6.25	5.83	93	82-116L 49-155M	18-WW-001	0	7.70	6.60	86	85-114L 49-155M	7.42	6.63	89	3	0-15L		
1,2-Dichloroethene (total)	mg/kg	0	12.5	11.9	95	86-110L 54-156M	18-WW-001	0	15.4	12.0	78 L	82-110L	14.8	12.5	84	7	0-10L		
1,2-Dichloropropane	mg/kg	0	6.25	6.61	106	84-116L 1-210M	18-WW-001	0	7.70	7.68	100	91-112L 1-210M	7.42	7.36	99	1	0-13L		
1,2-Trans-dichloroethylene	mg/kg	0	6.25	5.96	95	86-112L 54-156M	18-WW-001	0	7.70	5.48	71 L	87-117L 54-156M	7.42	5.79	78 L	9	0-13L		
1,2-cis-Dichloroethylene	mg/kg	0	6.25	5.98	96	85-112L	18-WW-001	0	7.70	6.56	85 L	87-115L	7.42	6.69	90	6	0-12L		
1,3,5-Trimethylbenzene	mg/kg	0	6.25	6.63	106	87-111L	18-WW-001	2.13	7.70	8.62	84	74-127L	7.42	10.1	107	24 L	0-16L		
1,3-Dichlorobenzene	mg/kg	0	6.25	6.65	106	88-110L 59-156M	18-WW-001	0	7.70	7.43	96	64-118L 59-156M	7.42	8.76	118	21 L	0-16L		
1,3-Dichloropropane	mg/kg	o	6.25	6.49	104	86-110L	18-WW-001	0	7.70	7.60	99	82-132L	7.42	7.24	98	1	0-15L		
1,4-Dichlorobenzene	mg/kg	0	6.25	6.78	108	87-110L 18-190M	18-WW-001	0	7.70	7.54	98	64-117L 18-190M	7.42	8.89	120L	20 L	0-14L		
2,2-Dichloropropane	mg/kg	0	6.25	6.35	102	82-113L	18-WW-001	0	7.70	6.51	85	81-125L	7.42	6.60	89	5	0-18L		
2-Butanone	mg/kg	0	6.25	6.33	101	56-120L	18-WW-001	0	7.70	7.19	93	62-142L	7.42	6.31	85	9	0-28L		
2-Chloroethylvinyl ether	mg/kg	0	6.25	6.39	102	71-118L 1-305M	18-WW-001	0	7.70	7.53	98	72-118L 1-305M	7.42	7.18	97	1	0-19L		
2-Hexanone	mg/kg	0	6.25	5.63	90	53-132L	18-WW-001	0	7.70	6.63	86	55-150L	7.42	6.34	85	1	0-30L		
4-Isopropyltoluene	mg/kg	0	6.25	6.79	109	83-115L	18-WW-001	.649	7.70	8.28	99	57-130L	7.42	9.69	122	21 L	0-15L		
4-Methy1-2-pentanone	mg/kg	0	6.25	6.05	97	76-118L	18-WW-001	0	7.70	7.00	91	74-128L	7.42	6.50	88	3	0-23L		
Acetone	mg/kg	0	6.25	5.21	83	47-141L	18-WW-001	0	7.70	6.53	85	41-150L	7.42	5.94	80	6	0-35L		
Acrolein	mg/kg	0	31.9	1.57	5 L	64-130L	18-WW-001	0	39.3	2.26	6 L	17-150L	37.8	2.15	6 L	0	0-37L		
Acrylonitrile	mg/kg	0	6.25	5.81	93	78-117L	18-WW-001	0	7.70	6.23	81	78-126L	7.42	6.19	83	2	0-19L		- Andread - Andr
Benzene	mg/kg	0	6.25	6.00	96	81-117L 37-151M	18-WW-001	0	7.70	6.71	87	81-119L 37-151M	7.42	6.89	93	7	0-14L		
Bromobenzene	mg/kg	0	6.25	6.53	104	87-110L	18~WW-001	0	7.70	7.31	95	74-135L	7.42	8.59	116	20 L	0-11L		
			1				<u> </u>		<u> </u>				L						

Joblink: 622799

QUALITY ASSURANCE REPORT

00D1111K: 022759			METI	IOD SI	ΊΚΕ			MA	ATRIX	SPIKE		, , , , , , , , , , , , , , , , , , ,	SI	PIKE D	UPLI	CAT	E	% COMPI	ETF
Compound(s)		Blank Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Spiked Sample Id.	Unspk Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Added Conc.	Spiked Conc.	% Rec.	RPD	RPD Limit	Batch #	*
Bromodichloromethane	mg/kg	0	6.25	6.61	106	84-111L 35-155M	18-WW-001	0	7.70	7.73	100	85-110L 35-155M	7.42	7.27	98	2	0-13L		
Bromoform	mg/kg	0	6.25	6.65	106	73-114L 45-169M	18-WW-001	0	7.70	7.79	101	67-110L 45-169M	7.42	7.03	95	6	0-20L		
Bromomethane	mg/kg	0	6.25	2.70	43 L	87-115L 1-242M	18-WW-001	0	7.70	1.32	17 L	86-126L 1-242M	7.42	1.80	24 L	34 L	0-16L		
Carbon disulfide	mg/kg	0	6.25	4.67	75 L	80-111L	18-WW-001	0	7.70	2.62	34 L	65-125L	7.42	3.53	48 L	34 L	0-21L		
Carbon tetrachloride	mg/kg	0	6.25	7.04	113	77-117L 70-140M	18-WW-001	0	7.70	7.57	98	74-116L 70-140M	7.42	6.89	93	5	0-15L		
Chlorobenzene	mg/kg	0	6.25	6.79	109	89-110L 37-160M	18-WW-001	0	7.70	7.96	103	89-110L 37-160M	7.42	7.42	100	3	0-9 L		
Chloroethane	mg/kg	0	6.25	2.13	34 L	82-117L	18-WW-001	0	7.70	.511	7 L	88-128L	7.42	.276	4 L	55 L	0-17L		1
Chloroform	mg/kg	0	6.25	6.08	97	86-113L 51-138M	18-WW-001	0	7.70	6.96	90	88-117L 51-138M	7.42	6.86	92	2	0-13L		
Chloromethane	mg/kg	0	6.25	1.73	28 L	75-121L 1-273M	18-WW-001	0	7.70	.269	3 L	81-142L 1-273M	7.42	.650	9 L	100L	0-25L		
Dibromochloromethane	mg/kg	0	6.25	6.61	106	79-113L 53-149M	18-WW-001	0	7.70	7.79	101	76-112L 53-149M	7.42	7.17	97	4	0-14L		
Dibromomethane	mg/kg	0	6.25	6.23	100	86-115L	18-WW-001	0	7.70	7.31	95	87-112L	7.42	6.87	93	2	0-15L		1
Dichlorodifluoromethane	mg/kg	0	6.25	.383	6 L	78-117L	18-WW-001	0	7.70	.0229	NVR*	87-123L	7.42	.0567	NVR*		0-15L		
Ethyl acetate	mg/kg	0	13.0	11.1	85	71-113L	18-WW-001	0	16.0	12.7	79	26-136L	15.4	12.3	80	1	0-35L		
Ethyl ether	mg/kg	0	6.26	5.28	84	81-116L	18-WW-001	0	7.71	5.54	72 L	89-121L	7.44	5.49	74 L	3	0-18L		
Ethylbenzene	mg/kg	0	6.25	6.78	108	88-110L	18-WW-001	.207	7.70	8.13	103	84-112L	7.42	7.70	101	2	0-8 L		1
Ethylene dibromide	mg/kg	0	6.25	6.44	103	37-162M 83-113L	18-WW-001	0	7.70	7.54	98	37-162M 77-111L	7.42	7.02	95	3	0-15L		
Hexachlorobutadiene	mg/kg	0	6.25	7.44	119	75-121L	18-WW-001	0	7.70	8.16	106	20-122L	7.42	9.50	128L	19	0-33L		
Isobutanol	mg/kg	0	62.7	60.5	96	30-130L	18-WW-001	0	77.3	73.0	94	30-130L	74.5	76.6	103	9	0-20L		
Isopropylbenzene	mg/kg	0	6.25	6.53	104	86-112L	18-WW-001	.200	7.70	7.50	95	70-140L	7.42	8.92	118	22 L	0-12L		
Methylene chloride	mg/kg	.235	6.25	5.84	90	81-119L 1-221M	18-WW-001	. 378	7.70	5.85	71 L	82-123L 1-221M	7.42	5.91	75 L	5	0-14L		
Naphthalene	mg/kg	0	6.25	6.25	100	82-112L	18-WW-001	3.32	7.70	9.84	85	40-119L	7.42	11.7	113	28	0-29L		1
Styrene	mg/kg	0	6.25	6.80	109	85-114L	18-WW-001	0	7.70	8.04	104	77-110L	7.42	8.21	111L	7	0-11L		
Tetrachloroethene	mg/kg	0	6.25	6.54	105	86-112L	18-WW-001	0	7.70	7.50	97	77-116L	7.42	7.27	98	1	0-14L		1
Toluene	mg/kg	0	6.25	6.59	105	64-148M 85-110L 47-150M	18-WW-001	0	7.70	7.54	98	64-148M 84-115L 47-150M	7.42	7.41	100	2	0-12L		
Trichloroethene	mg/kg	0	6.25	6.45	103	85-114L	18-WW-001	.120	7.70	7.34	94	84-1111	7.42	6.95	92	2	0-13L	-	1
Trichlorofluoromethane	mg/kg	0	6.25	2.93	47 L	71-157M 87-114L 17-181M	18-WW-001	0	7.70	1.60	21 1	71-157M 84-124L 17-181M	7.42	2.17	29 L	32 L	0-16L		
									<u> </u>										

Joblink: 622799			~					<u> </u>			_		-						
			МЕТІ	IOD SI				MA	TRIX	SPIKE			SI	IKE D	UPLI	CAT	E	% COMPI	ETE
Compound(s)		Blank Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Spiked Sample Id.	Unspk Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Added Conc.	Spiked Conc.	% Rec.	RPD	RPD Limit	Batch #	ક
Vinyl chloride	mg/kg	0	6.25	2.42	39 L	80-115L	18-WW-001	0	7.70	.460	6 L	87-124L	7.42	.938	13 L	74 L	0-15L		
Xylenes	mg/kg	0	18.8	20.5	109	1-251M 89-110L	18-WW-001	1.06	23.1	25.2	105	1-251M 83-115L	22.3	23.3	100	5	0-10L		
cis-1,3-Dichloropropene	mg/kg	0	6.25	6.55	105	83-112L	18-WW-001	0	7.70	7.64	99	78-110L	7.42	7.14	96	3	0-11L		
n-Butylbenzene	mg/kg	О	6.25	6.85	110	1-227M 80-117L	18-WW-001	0	7.70	8.97	116	1-227M 51-121L	7.42	10.7	144L	22 L	0-20L		
n-Propylbenzene	mg/kg	0	6.25	6.69	107	84-113L	18-WW-001	.448	7.70	7.94	97	68-132L	7.42	9.26	119	20 L	0-15L		
o-Chlorotoluene	mg/kg	0	6.25	6.59	105	86-111L	18-WW-001	0	7.70	7.60	99	71-134L	7.42	9.01	121	20 L	0-11L		
p-Chlorotoluene	mg/kg	0	6.25	6.75	108	86-112L	18-WW-001	0	7.70	7.65	99	74-126L	7.42	9.20	124	22 L	0-16L		
sec-Butylbenzene	mg/kg	0	6.25	6.76	108	81-116L	18-WW-001	.515	7.70	8.30	101	58-128L	7.42	9.62	123	20 L	0-15L		
tert-Butylbenzene	mg/kg	0	6.25	6.75	108	61-125L	18-WW-001	0	7.70	7.96	103	47-139L	7.42	9.36	126	20 L	0-13L		
trans-1,3-Dichloropropene	mg/kg	o	6.25	6.40	102	77-113L 17-183M	18-WW-001	0	7.70	7.45	97	69-110L 17-183M	7.42	7.17	97	О	0-16L		
Aroclor 1260	mg/kg	0	.865	.810	94	74-110L 8-127M	3539-WC-02	0	.874	.851	97	48-110L 8-127M	.883	.903	102	5	0-39L	Q2P70847	100L 100M
Petroleum Hydrocarbons (IR)	mg/kg	1.88	66.8	65.3	95	77-106L	3539-WC-01	524	68.9	306	0 L	60-111L	69.6	301	0 L	2	0-20C	Q2T70848	50L
													ļ 			-			<u> </u>
									į										
											<u> </u>					-			
							İ												
					-														
															-	-			-
							-			§									

Joblink: 622799										. – –									
			METI	IOD SI				MA	TRIX	SPIKE			SI	ike d	UPLI	CAT	E	% COMPL	ETE
Compound(s)		Blank Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Spiked Sample Id.	Unspk Conc.	Added Conc.	Spiked Conc.	% Rec.	Rec. Limits	Added Conc.	Spiked Conc.	% Rec.	RPD	RPD Limit	Batch #	ક
Mercury	mg/kg	0	.250	. 264	106	79-117L	57-WC-01	0	.270	.288	107	63-116L	.267	.280	105	3	0-13C 0-20M	Q2G9813	100L 100M
Reactive Cyanide	mg/kg	0	956	41.0	4	85-115M 1-10 L						75-125M					0-20M	Q216251	100M
Reactive Sulfide	mg/kg	0	1310	400	31	17-60 L												Q216252	100L
Arsenic	mg/kg	0	202	192	95	90-110L 75-125M	57-WC-01	14.2	214	217	95	84-109L 80-120M	216	215	93	. 9	0-17C 0-20M	Q2M9810	96L 85M
Barium	mg/kg	0	201	189	94	90-110L 75-125M	57-WC-01	19.2	213	220	94	62-120L 80-120M	215	216	92	2	0-17C 0-20M		
Cadmium	mg/kg	0	5.02	4.76	95	90-110L 75-125M	57-WC-01	.841	5.31	5.92	96	63-120L 80-120M	5.36	5.88	1	. 7	0-22C 0-20M		
Chromium	mg/kg	0	20.1	18.9	94	90-110L 75-125M	57-WC-01	21.1	21.3	34.1	61 M	61-123L 80-120M		33.0	55 M	3	0-32C 0-20M		
Lead	mg/kg	0	49.9	47.9	96	90-110L 75-125M	57-WC-01	75.7	52.8	114	73 M	56-122L 80-120M	53.4	115	74 M	. 9	0-20C 0-20M		
Selenium	mg/kg	0	200	188	94	88-110L 75-125M	57-WC-01	0	212	204	96	73-105L 80-120M		201	94	1	0-17C 0-20M		
Silver	mg/kg	0	5.04	5.39	107	85-110L 75-125M	57-WC-01	.611	5.33	5.70	95	58-114L 80-120M		5.74	95	. 7	0-31C 0-20M		
													·						
			ļ			ļ		-					-		-				
	The second secon	-	 					 	ļ.		-	ļ	ļ		-				
			-		-			-			-			 	1	-	<u> </u>		+
					ļ						-		-		-				
		-	-	-				-	-	-	-				-	-	-		-
L				1	ــــــــــــــــــــــــــــــــــــــ		1		_L			1	1			ш			ــــــا

Joblink: 622799		SAN	IPLE D	UPLIC	ATE			PC	OST SP	IKE	·		ICP S	SERIAL	DILU'	FION		
Compound(s)		Sample Id.	Sample Conc.			RPD Limit	Spiked Sample Id.		Added	Spiked Conc. mg/l	1 %	Rec. Limits	Sample Id.	Sample Conc. mg/l	Dil. Conc. mg/l	¥	Limit	Batch
Mercury	mg/kg	57-WC-01	0126	-803														Q2G9813
Arsenic	ma/ka	57-WC-01	14.2			7.9M			•				57-WC-01	.134	.212	58		Q2M9810
Barium	ma/ka	57-WC-01	19.2			0-20M							57-WC-01	.181				Q2M9810
Cadmium	mg/kg	57-WC-01	.841		.060					1		1	57-WC-01	.00794		12	Ì	
	mg/kg	57-WC-01				. 5314									.00790	. 5		Q2M9810
Chromium	mg/kg	57-WC-01	21.1			0-20M				!			57-WC-01	.199				Q2M9810
lead	mg/kg	57-WC-01	75.7			0-20M			\		1	ſ	57-WC-01	.715		3	1	Q2M9810
Selenium	mg/kg	57-WC-01	988			1							57-WC-01	-903				Q2M9810
Silver	mg/kg	57-WC-01	.611	.426	.61								57-WC-01	.00577	.0131	100		Q2M9810
	······································																	
	· · · · · · · · · · · · · · · · · · ·																	
							ĺ						ļ					ĺ
														ļ				
													<u> </u>					[
										ļ								
		 	 											 				
		1				1					1		1	1				\
				1		1								1			1	
						İ			l				[
	·		ļ	ļ		<u> </u>												
			1				1											1

QUALITY ASSURANCE DATA SURROGATE SUMMARY REPORT

```
SURROGATE ID
                               # OUT
                      A158
QC BATCH: Q2C70846 Solid (Semi-Volatile organics by MS)
  SAMPLE ID
  3539-WC-01
                        109
                                 0
  3539-WC-02
                        105
                                 0
  57-WC-01
                                 0
                         98
  METHOD BLK
                         83
                                 0
  METHOD SPK
                         88
    QC LIMITS
                      (43 - 116)
SURROGATE ID
                      A047
                                B185
                                          B668
                                                   # OUT
QC BATCH: Q2D6138 Solid (Volatile organics by MS)
  SAMPLE ID
  18-WW-001 MD
                         94
                                  97
                                           113
                                                     0
  18-WW-001 MS
                                            93
                         86
                                  98
                                                     0
                                  99
  3539-WC-01
                         82
                                           106
                                                     0
  3539-WC-02
                         87
                                 100
                                           107
  57-WC-01
                         92
                                  99
                                            98
                                                     0
                                            99
  METHOD BLK
                         83
                                  97
                                                     0
  METHOD SPK
                         91
                                 105
                                           103
    OC LIMITS
                      (80-120) (81-117) (74-121)
SURROGATE ID
                      F048
                                F096
                                         # OUT
QC BATCH: Q2P70847 Solid (Pesticide compounds by GC)
  SAMPLE ID
  3539-WC-01
                         81
                                  67
                                           0
  3539-WC-02
                         85
                                  81
                                           0
                                           0
  3539-WC-02 MD
                        88
                                  83
  3539-WC-02 MS
                         83
                                  80
                                           0
  57-WC-01
                        89
                                  91
                                           0
  METHOD BLK
                         79
                                  88
                                           0
  METHOD SPK
                        81
                                  84
    QC LIMITS
                     (46-131) (43-125)
                                     SURROGATE ID
A047 = 1,2-Dichloroethane-D4
B185 = Toluene-D8
B668 = Bromofluorobenzene
A158 = 2-Fluorobiphenyl
F048 = Decachlorobiphenyl (PCB)
A047 = 1,2-Dichloroethane-D4
B185 = Toluene-D8
B668 = Bromofluorobenzene
F096 = 2,4,5,6-TCMX (PCB)
* Values outside of method quality control limits
D Sample was diluted, however, some surrogates may be reported if results were observed.
```

It is laboratory policy to allow one surrogate per sample fraction (acid, base-neutral or pesticide) to exceed the stated QC limits. This policy is based upon the USEPA SOW for the Contract Laboratory Program (CLP).

QUALITY ASSURANCE DATA SURROGATE SUMMARY REPORT

SURROGATE ID	A047	B185	B668	# OUT		
QC BATCH: Q1V6	5147 Aqueous	(Volatile	organics	by MS)	1100	
SAMPLE ID						
METHOD BLK	91	102	102	0		
METHOD SPK	106	107	99	0		
TB-002 MD	108	108	103	0		
TB-002 MS	102	108	102	0		
TB-01/1	97	107	107	0		
TB-01/2	102	106	107	0		
QC LIMITS	(80-12	20) (88-110	0) (86-11	5)		

SURROGATE ID

A047 = 1,2-Dichloroethane-D4

B185 = Toluene-D8

B668 = Bromofluorobenzene

A158 = 2-Fluorobiphenyl

F048 = Decachlorobiphenyl (PCB) A047 = 1,2-Dichloroethane-D4

B185 = Toluene-D8

B668 = Bromofluorobenzene F096 = 2,4,5,6-TCMX (PCB)

* Values outside of method quality control limits

D Sample was diluted, however, some surrogates may be reported if results were observed.

It is laboratory policy to allow one surrogate per sample fraction (acid, base-neutral or pesticide) to exceed the stated QC limits. This policy is based upon the USEPA SOW for the Contract Laboratory Program (CLP).

SUMMARY OF ANALYTICAL METHODOLOGY

Reference		Title				
1020A	SW-846	Setaflash Closed-Cup Method for Determining Ignitability				
418.1	MCAWW	Petroleum Hydrocarbons, Total Recoverable				
6010A	SW-846	Inductively Coupled Plasma Atomic Emission Spectroscopy				
7471A	SW-846	Mercury in Solid Waste (Manual Cold-Vapor Technique)				
8080A	SW-846	Organochlorine Pesticides and/or PCBs				
8270B	SW-846	Polynuclear Aromatic Hydrocarbons				
8260A	SW-846	GC/MS for Volatile Organics				
9010/7.3	SW-846	Test Method to Determine HCN Released from Wastes				
9030A/7.3	SW-846	Test Method to Determine HS Released from Wastes				
9045C	SW-846	Soil and Waste pH				

METHODOLOGY REFERENCES

ASTM	American Society for Testing and Materials, 1985, edition.
MCAWW	Methods for Chemical Analysis of Water and Wastes, April 1979 and Update #1 March 1983.
CLP	USEPA Contract Laboratory Program, Document #OLMO3.0, update August 1994 #OLMO3.1 and Document #ILMO4.0.
EPA-500	USEPA Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039 July 1991 and Supplement II (EPA/600/R-92-129) August 1992.
EPA-600	USEPA Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, 40CFR, 136, APP.A. July 1992.
NIOSH	National Institute for Occupational Safety and Health, 3rd edition, 1984.
SMEWW	Standard Methods for the Examination of Water and Wastewater, 18th edition, 1992.
STOA	Spot Tests In Organic Analysis, 7th edition, 1966.
SW-846	Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, 3rd edition, Updates I and II, September 1986 to January 1995.
(1)	This method was modified to incorporate the use of Boron Trifluoride (BF3) as the derivatizing reagent according to Method 6640 in <i>SMEWW</i> , 18th edition, 1992.
Title 22	Waste Extraction Test, Title 22, Section 66261.126 Appendix 2 of the California Administrative Code, May 1991.
LUFT	California Leaking Underground Fuel Tank Field Manual, October 1989.

LABORATORY CERTIFICATIONS

STATE	AGENCY	NUMBER
Alabama	ADEM	40830
Alaska	AKDEC	N/A
California	CADOH	1178
Colorado	СОДОН	OH113
Connecticut	CTDPH & AS	PH-0154
Delaware	DEHSS	OH113
Florida	FLHRS	E87537
Iowa	IADNR	129
Kansas	KSDHE	E-10202
Louisiana	LADOHH	92-10
Maryland	MDDHMH	210
Massachusetts	MADEP	M-OHII3
New Hampshire	NHDES	2490
New Jersey	NJDEP	74603
New York	NYDOH	10712
North Carolina	NCDEM	392
Ohio	ОНЕРА	OH113
Oklahoma	OKDEQ	9216
Pennsylvania	PADER	68-450
Rhode Island	RIDOH	214/142
South Carolina	SCDEHNR	92002
Tennessee	TNDOH/TNDEC	2978
Utah	UTDOH	E-288
Virginia	VADGS	00011
Washington	WADOE	C154
Wisconsin	WIDNR	999037160

Validated by:

o US Army Corps of Engineers	Chemical Analysis in Various Matrices
Approvals:	
o USDA o Florida DEP o Naval Facilities Engineering Service Center	Permit for Importing Soils Quality Assurance Plan #930034 Chemical Analysis in Various Matrices

REPORT KEY

Percent < Less than Greater than MicroMho per centimeter μm/cm Microgram per kilogram (ppb) μg/kg Microgram per liter (ppb) μg/L μg/SMP Microgram per sample (Tedlar Bag) Microgram per sample µg/smp це/W Microgram per wipe British Thermal Units per pound втиль

CV = Conventionals

Deg. C = Degrees Celsius

DRO = Diesel Range Organics

EP TOX = Extraction Procedure Toxicity

GC = Gas Chromatography Instrument

GC/MS = Gas Chromatography/Mass Spectrometer Instrument

gm'cc = Grams per cubic centimeter
GRO = Gasoline Range Organics
IR = Infrared Spectrophotometric

J = Estimated value due to calculated result < detection limit or result is from GC/MS library search

L = Laboratory M = Method

mg kg = Milligram per kilogram (ppm)
mg/L = Milligram per liter (ppm)
mg/m³ = Milligram per cubic meter
mg/SMP = Milligram per sample
mg/W = Milligram per wipe
n/a = Not applicable

ND = Not detected at or above stated detection limit

ng/SMP = Nanogram per sample NVR = Not a valid recovery

PCB = Polychlorinated Biphenyls (PCBs)

pCiA = Picocurie per liter
ppb = Parts per billion
ppm = Parts per million

RCRA = Resource Conservation and Recovery Act

SOW = Statement of Work

std = Result is relative to standard pH units

TCLP = Toxicity Characteristic Leaching Procedure

Unk = Unknown

APPENDIX D SAMPLE RECEIPT DOCUMENTATION

340 County Road No. 5 P.O. Box 720 Westbrook, ME 04098 Tel: (207) 874-2400

CHAIN of CUSTODY

* PLEASE PRINT IN PEN												Pag	ge <u>/</u>	of _2_
Client 20y F. WESTON, 7	N(.	D	ontact AVID	C.P.	15/0	PH (_	none # 5081	<i>- ג</i> ַרַר	7193	>	Fax 1	# ジタ1 フ	ר - גר	<i>⊋51</i>
Address	City	AYER				State	MA	-		Zip	Code	0143	32-0	415
P.O. # 425	Proj. Name/No					-								
Bill (if different than above)			Addre	ss										
Sample (Print/Sign) 0_3886-118-	004-0710-0	,0							Copi	es To:				
ANALYSIS AND CONTAINER TYPE LAR LISE ONLY WORK ORDER #: - PRESERVATIVES														
LAB USE ONLY														
				-		TOTAL REMA METALS	L RCRA C	<u>ئ</u>	-	0				
SHIPPING INFO: FED EX AIRBILL NO: 4262 9057 05	UPS CLIE			-	0108			5 8050	1.81 HOL	8/00				
TEMP°C 4 TEMP	BLANK INTACT	I NO	OT INTAC	Т	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					2	-			
* Sample Description	Date/Time coll'd	Matrix	Filt. Y/N	No. of Cntrs.	707	101/101	707	P(Bs	TOH	SULKS				
57-W(-01	6/16/97/1300	5	~	4	2-40m	1-402	14	11	16	11				
TB-01	6/16/47/	A	7	2	2-40+	f								
TEMP BLANK	6/16/97/			1										
	/													
	/													
	/													
	/													
	/													
	/													
	/													
	/													
	/													
	/													
	/													
	/													
	/													
COMMENTS 5-DAY TA	- T													
	ate / Time Rece	eived By: (Signatura	gnature)	!	Relinqui	shed By:	(Signati	ure)	Date	/ Time	Red	ceived B	y: (Signo	iture)
						Relinquished By: (Signature) Date / Time Received By: (Signature)					sture)			
			August 1										A	

"SAMPLE RECEIPT FORM"

0	Veston	Tote	_ Вох	Bucket_	COC #	i:			
Projec	=:: 3xx595	Cooler #:	/	_	 COC	i:			
		Coolet #:		_					
		Cooler #:		_	COC #	· .			
Use out problet	ner side of this form to note for n(s).	ther details cor	ncerning check-i	n problems a	nd to specify and des	eribe any astic	in(s) regarding (he resolution(s) of	
1):	Have designated person i	nitial here t	o acknowied <u>s</u>	ge receipt (of sample(s):) (date) _	6/17/97		
	Were sample custody se								_ . o
	[2] front [] t	oack [_] right side	[] !	eft side <u>3</u>	0: <u>3</u> in:20	:		
	sezi date: 6/1697 nan	ne: Davio	CRISPO						
3)	Were custody papers sea	aled in a pla	istic bag & ta	ped inside	to the lid?			yes	_ =:0
4)	Were custody papers fill	led out prop	erly (ink, sig	ned, etc.)?				%53	_ ::0
5)	Samples came via: [] A/B	FED FED	EXP (_] other		
	Attach & enter air bill o	t invoice nu	ımber here: _	4262	985705				
و)	Describe packing: [] vermiculite [_] sorbent _] foam _(peanut	ble pk [] paper] c] cardbo: rther:	n:: []	rags (in:	ine
7)	Temperature = 4 [Bik w/ Probe Smp] no ic	e (Lab Acce Cooler w/ P	ptance Rai robe	ige = 2 to 6°C)			<u> </u>	_ 7.0
3)	Were all bottles sealed is	n separate p	lastic bags?					yes	<u>_</u> :
9)	Did all bonies arrive unb	oroken & in	good conditi	ion?					_ ::0
	Were Custody Seals on s			•	•	rai?		yes $ u$	-
					•				
11)	Labels complete?								
	Samples/Labels agree with	·		O, list on o	other side.			i.sz	_ 7.0
	Matrix on COC and	d jar don't a	gree					,	
13)	Confect containers?								_ ::0
(4)	Were preservatives used	when requi	red?						_ ::0
15)	Was a sufficient amount	of sample s	ent for tests i	indicated?					_
15)	Bubbles in VOA vials? I	f YES, list s	samples on o	ther side.		-	N/A	yes	
17)	Result of residual chloris	ne test perio	onned.					NEG :	209
pH Ra									
] M	letals 0 to 2		ıliidə > 9] COD < 2		<u></u>		
	il & Grease 0 to 2 yanide > 12		ardness < 2 nenols < 2] TOC < 2] Residual Chlor	rine Test	Health	Warnings Liste	eć.