

51te# 7.

CLOSURE REPORT QUEENSTOWN STREET FUEL OIL SPILL SITE FORT DEVENS, MASSACHUSETTS

431

Prepared for:

U.S. Army Corps of Engineers
New England Division
Waltham, Massachusetts
Contract Number DACW45-89-D-0506

Prepared by:

OHM Remediation Services Corp. Hopkinton, Massachusetts

Kewin J Mack Project Manager

May 14, 1996

CSVS 960510HMC

LIST OF ACRONYMS AND ABBREVIATIONS

AENI American Environmental Network, Inc.

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

CQAR Chemical-Quality Assurance Report

CY Cubic Yards

IR Infrared Spectrometer

LRA Limited Removal Action

MADEP Massachusetts Department of Environmental Protection

MCP Massachusetts Contingency Plan

MEP Master Environmental Plan

MSR Material Shipping Record

NED US Army Corps of Engineers New England Division

NPL National Priorities List

PAH Polycyclic Aromatic Hydrocarbon

PCB Polychlorinated Biphenyl

PQL Practical Quantitation Limit

QA/QC Quality Assurance/Quality Control

QSFO Queenstown Street Fuel Oil

SA Study Area

SARA Superfund Amendments and Reauthorization Act

SSI Supplemental Site Investigation

TPH Total Petroleum Hydrocarbons

USAEC U.S. Army Environmental Center

USACE United States Army Corps of Engineers

VOC Volatile Organic Compound

EXECUTIVE SUMMARY

Fort Devens was placed on the National Priority List (NPL) on December 21, 1989, under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA, Superfund Act) as amended by the Superfund Amendments and Reauthorization Act (SARA). Subsequently, under Public Law 101-510, the Defense Base Realignment and Closure Act of 1990, Fort Devens was selected for cessation of operations and closure. In accordance with these acts, a study was conducted at the Queenstown Street fuel oil (QSFO) spill area, which was identified in the Federal Facilities Agreement between the U.S. Environmental Protection Agency and the U.S. Department of Defense as a potential site of contamination. The information gathered through this study indicated petroleum contamination in the subsurface soils. This closure report documents the historical information and investigation results leading to the recommendation to remove soil, and the remedial actions taken at the QSFO spill site.

The QSFO spill site is located within a portion, identified as Area 4, of Study Areas (SAs) 43H and 43I in the central portion of the Main Post. In October 1992, 10 to 15 gallons of diesel fuel were estimated to have leaked from an armored vehicle onto the unpaved ground within the fenced vehicle storage yard adjacent to SA 43H. The spill was located approximately 300 feet southeast of Building 601. Contaminated soil was removed from a 20 X 28 foot area to a maximum depth of six feet. Although samples collected from the excavated area indicated that residual petroleum contamination still remained, the extent of the contamination exceeded the capabilities of the excavation equipment. Therefore, the excavated area was lined with plastic and was backfilled.

The New England Division (NED) of the United States Army Corps of Engineers (USACE) contracted OHM Remediation Services Corporation (OHM) to conduct a Limited Removal Action (LRA), in accordance with the Massachusetts Contingency Plan (MCP), to remove the petroleum-contaminated soil. A LRA is restricted to sites with less than 100 cubic yards (cy) of oil-contaminated soil. OHM removed 143 tons (approximately 95 cy) of soil from the former spill site. Confirmation soil samples were collected and analyzed for the total petroleum hydrocarbons (TPH) to document that the site action level of 500 mg/kg had been met. Stockpiled soils were characterized for disposal and transported to a temporary storage facility on Post for eventual use as cover material in the Consolidation Landfill proposed for construction at Fort Devens. Based on the results of the confirmation samples and the activities described herein, no further action is recommended at this site.

SECTION 1.0 INTRODUCTION

Fort Devens was placed on the National Priority List (NPL) on December 21, 1989, under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA; Superfund) as amended by the Superfund Amendments and Reauthorization Act (SARA). Subsequently, under Public Law 101-510, the Defense Base Realignment and Closure Act of 1990, Fort Devens was selected for cessation of operations and closure. This closure report has been prepared as part of the U.S. Department of Defense Base Realignment and Closure program to assess the nature and extent of contamination associated with site operations at Fort Devens. This report contains a summary of the Limited Removal Action (LRA) activities conducted in accordance with the Massachusetts Contingency Plan (MCP) at the Queenstown Street fuel oil spill site.

In conjunction with the Army's Installation Restoration Program, Fort Devens and the U.S. Army Environmental Center (USAEC; formerly the U.S. Army Toxic and Hazardous Materials Agency) developed a Master Environmental Plan (MEP) in 1988. The MEP consisted of assessments of the environmental status of Study Areas (SAs), specified necessary investigations, and provided recommendations for response actions with the objective of identifying priorities for environmental restoration at Fort Devens. The New England Division of the U.S. Army Corps of Engineers (NED) was tasked with removal efforts at the base. This closure report documents the historical findings leading to the LRA recommendation and describes the measures taken at the Queenstown Street fuel oil spill site.

1.1 Site History and Background

The Queenstown Street fuel oil (QSFO) spill site is located within a portion, identified as Area 4, of SAs 43H and 43I in the central portion of the Main Post (Figure 1-1). SAs 43H and 43I were part of an installation-wide fuel distribution and motor pool system that was discontinued in the early 1950s. The former spill area is located approximately 300 feet southeast of Building 601 (Figure 1-2). In October 1992, 10 to 25 gallons of diesel fuel was estimated to have leaked from an armored vehicle onto the unpaved ground within the fenced vehicle storage yard adjacent to SA 43H. Contaminated soil was removed from a 20 X 28 foot area to a depth of six feet at the spill point and an average depth of four feet from the remainder of the excavation area. Although soil samples collected from the excavation area indicated the presence of total petroleum hydrocarbons (TPH), the extent of the contamination exceeded the capabilities of the excavation equipment. Therefore, the excavation was lined with plastic and was backfilled.

1.2 Site Conditions

The soil below the spill site is comprised of well graded sands and some silty sand layers. Refusal, apparently due to bedrock, was reached at 26 feet below ground surface (bgs) in the vicinity of the spill area while soil borings were being drilled during previous investigations of SA 43H. Groundwater was not encountered.

1.3 Previous Investigation Activities

Figure 1-2 shows the location of the excavation area. Following the removal of contaminated soil to a depth of four feet, samples were collected for analysis. TPH was present in a grab sample collected from the point of the spill at a concentration of 1,500 mg/kg. A composite sample was also collected from areas adjacent to the spill area and the TPH concentration of this sample was 2,400 mg/kg. Additional soil was then excavated from the area, to a maximum depth of six feet, and additional samples were collected for analysis. A TPH concentration of 3,200 mg/kg was detected in the grab sample collected at the spill point. A composite sample

was also collected from the excavation area and the TPH concentration of this sample was 590 mg/kg. Although petroleum contamination still remained, additional soil was not removed due to equipment limitations. Instead, the 20 X 28 foot excavation area was lined with plastic and was backfilled. ABB conducted a Supplemental Site Investigation (SSI) of the area adjacent to the excavated area and found no significant contamination surrounding the spill site.

CORPS OF ENGINEERS WALTHAM, MASS

COMPREHENSIVE SITE LOCATION MAP

WALTHAM, MASS

Site Location Map

SECTION 2.0 PETROLEUM-CONTAMINATED SOIL REMOVAL

OHM was contracted by the USACE NED to conduct a LRA to remove the petroleum-contaminated soil at the QSFO spill site, coordinate disposal of the excavated material and restore the site by backfilling. The MCP restricts LRAs to sites with less than 100 cubic yards (cy) of oil-contaminated soil.

2.1 Site Preparation Activities

Pre-excavation activities were conducted to ensure that contaminants would be contained at the site and to prevent the general population from coming into contact with contaminants exposed through excavation activities. An exclusion zone was demarcated using orange fencing, and staging cells were constructed for temporary storage of contaminated soils. Sand berms were constructed at the perimeter of each staging cell and the cells were double lined with polyethylene sheeting.

2.2 Excavation and Soil Screening Activities

Excavation activities to remove the petroleum-contaminated soil began on June 29, 1995. Clean soil previously used to backfill the excavation had to be removed before reaching the plastic liner. Headspace samples were collected from the material being removed to verify that it did not contain petroleum contamination. Clean soil was staged separately from the petroleum-contaminated soil. Soil beneath the plastic liner was excavated to a depth of approximately five feet. Fourteen screening samples were then collected from the bottom and sidewalls of the excavation area on June 30. Soil samples were screened at the on-site laboratory for TPH. Excavation would only continue in areas where screening results indicated concentrations of TPH in excess of the site action level of 500 mg/kg. A summary of soil sample screening results is presented in Table 2-1 and on-site laboratory data are provided in Appendix A.

TPH concentrations of these initial screening samples ranged from non-detect to 41 mg/kg. Although screening sample concentrations did not exceed 500 mg/kg, these samples were collected from depths of less than five feet and previous data indicated the presence of petroleum contamination at depths of up to six feet. Consequently, seven one-foot deep test pits were dug in the bottom of the excavation area and screening samples were collected on July 10 from each pit to verify that no residual contamination remained. The TPH concentration at one location (672 mg/kg) exceeded the 500 mg/kg action level. Therefore, additional soil was removed from the bottom of the excavation area. Seven additional samples were collected on July 25 from the bottom and sidewalls of the excavation and were screened on site for TPH. A TPH concentration of 895 mg/kg at one bottom sample location led to the removal of additional soil and the re-collection of screening samples on July 26. Again, concentrations exceeded the action level and additional soil was removed and samples re-collected on July 28. The TPH concentration of the bottom sample (548 mg/kg) slightly exceeded the action level. Consequently, more soil was removed and an additional set of screening samples (B16 - B19) were collected from the bottom of the excavation on this same day from depths of approximately 12 feet. TPH concentrations of these four bottom samples ranged from 14 to 189 mg/kg. Confirmation sampling was initiated after screening results indicated that all contaminated material had been removed. Confirmation sampling procedures and analytical results are discussed in the following Section.

Table 2-1 Soil Sample Screening Results Closure Report - QSFO Spill Site

Sample ID	Sample Location	Sample Date	Sample Depth (ft)	TPH Result (mg/kg)
SBQUEENWI	North sidewall	30-Jun-95	3.5	ND (42)
SBQUEENW2	North sidewall	30-Jun-95	3.6	11 J
SBQUEENW3	North sidewall	30-Jun-95	3.4	8 J
SBQUEENW4	East sidewall	30-Jun-95	3.9	ND (42)
SBQUEENW5	East sidewall	30-Jun-95	4.0	ND (42)
SBQUEENW6	South sidewall	30-Jun-95	3.3	13 J
SBQUEENW7	South sidewall	30-Jun-95	3.7	15 J
SBQUEENW8	South sidewall	30-Jun-95	3.0	41 J
SBQUEENW9	West sidewall	30-Jun-95	3.0	10 J
SBQUEENW10	West sidewall	30-Jun-95	3.9	40 J
SBQUEENB1	Northeast bottom	30-Jun-95	4.5	11 J
SBQUEENB2	Southeast bottom	30-Jun-95	4.4	31 J
SBQUEENB3	Northwest bottom	30-Jun-95	4.8	ND (42)
SBQUEENB4	Southwest bottom	30-Jun-95	4.6	6 J
SBQUEENB5	Northeast bottom	10-Jul-95	5.0 - 5.5	19 J
SBQUEENB6	Southeast bottom	10-Jul-95	5.0 - 5.5	ND (42)
SBQUEENB7	South bottom	10-Jนl-95	5.0 - 5.5	10 J
SBQUEENB8	Center bottom	10-Jul-95	5.0 - 5.5	672
SBQUEENB9	North bottom	10-Jul-95	5.0 - 5.5	17 J
SBQUEENB10	Northwest bottom	10-Jul-95	5.0 - 5.5	ND (42)
SBQUEENB11	Southwest bottom	10-Jul-95	5.0 - 5.5	ND (42)
SBQUEENB12	West bottom	25-Jul-95	7.0	9 J
SBQUEENB13	Center bottom	25-Jul-95	7.0	102
SBQUEENB14	East bottom	25-Jul-95	7.0	ND (42)
SBQUEENW11	South sidewall	25-Jul-95	6.0	31 J

Table 2-1 (continued) Soil Sample Screening Results Closure Report - QSFO Spill Site

Sample ID	Sample Location	Sample Date	Sample Depth (ft)	TPH Result (mg/kg)
SBQUEENW12	West sidewall	25-Jul-95	6.0	10 J
SBQUEENW13	North sidewall	25-Jul-95	6.0	895
SBQUEENW14	East sidewall	25-Jul-95	6.0	ND (42)
SBQUEENW15	North sidewall	26-Jul-95	6.0	10 J
SBQUEENW16	East sidewall	26-Jul-95	6.0	1369
SBQUEENW17	North sidewall	26-Jul-95	6.0	11 J
SBQUEENB15	Center bottom	28-Jul-95	11.0	548
SBQUEENW18	North sidewall	28-Jul-95	10.5	ND (42)
SBQUEENW19	East sidewall	28-Jul-95	10.5	ND (42)
SBQUEENB16	Southwest bottom	28-Jul-95	11.9	130
SBQUEENB17	Northwest bottom	28-Jul-95	11.7	14 J
SBQUEENB18	Northeast bottom	28-Jul-95	12.2	16 J
SBQUEENB19	Southeast bottom	28-Jul-95	12.3	189

NOTES:

TPH = total petroleum hydrocarbons by infrared spectrometry

mg/kg = milligram per kilogram

ND () = indicates TPH was not detected at specified practical quantitation limit (PQL)

J = Qualifier indicating estimated concentration below the practical quantitation limit

2.3 Confirmation Sample Results

Confirmation composite samples were collected from the bottom and sidewalls of the excavation on July 31, 1996. The samples were screened on site prior to shipment to the off-site laboratory to minimize unnecessary testing. The samples were shipped to American Environmental Network, Inc. (AENI) Laboratory located in Columbia, Maryland for TPH analysis by EPA Method 418.1 and semivolatiles analysis by Method 8270. Figure 2-1 provides the confirmation sample locations. The composite sample collected from the south sidewall of the excavation (SBQUEENSCA) was collected in triplicate. Two of the split samples (primary and duplicate) were sent to AENI laboratory and the third split was submitted to the USACE QA laboratory in Hubbardston, Massachusetts.

The results of the TPH confirmation sample analyses are summarized in Table 2-2 and the AENI laboratory analytical report for the TPH and semivolatile analyses is presented in Appendix B. Bis(2-ethylhexyl)phthalate, which is a common laboratory contaminant, was detected in all the five composite samples, and the field duplicate, at concentrations ranging from 0.21 to 0.45 mg/kg. N-Nitroso-di-n-propylamine was detected in the sample collected from the north sidewall at a concentration of 0.51 mg/kg. No other semivolatile compounds were detected. TPH concentrations ranged from non-detect to 150 mg/kg. The results of the confirmation sampling indicated that the 500 mg/kg cleanup goal for TPH had been achieved.

Table 2-2 Confirmation Soil Sample Results Composite Samples Closure Report - QSFO Spill Site

Sample ID	Sample Date	Sample Location	Sample Depth (ft)	AENI Laboratory TPH Result (mg/kg)
SBQUEENNCA	31-Jul-95	North sidewall	6.5 - 9.1	ND (15)
SBQUEENSCA	31-Jul-95	South sidewall	7.4 - 9.5	ND (16)
SBQUEENECA	31-Jul-95	East sidewall	8.3 - 9.2	ND (16)
SBQUEENWCA	31-Jul-95	West sidewall	7.3 - 9.7	ND (16)
SBQUEENBCA	31-Jul-95	Bottom	11.8	150
SBQUEENDUPA	31-Jul-95	South sidewall	7.4 - 9.5	ND (16)

NOTES:

TPH = total petroleum hydrocarbons

mg/kg = milligram per kilogram

ND () = indicates TPH was not detected at specified practical quantification limit (PQL)

2.4 Backfilling and Site Restoration

The excavation was backfilled with clean material removed from the surface of the excavation area and with fill material taken from the North Post of Fort Devens. This fill material was sampled and screened for TPH, BTEX, pesticides and PCBs prior to its use on site. Gravel was placed over the surface of the backfill material to complete the site restoration.

2.5 Waste Characterization & Disposal

A sample was collected from the stockpile of excavated soil in order to characterize the material for disposal. The sample was analyzed for TCLP organics, TCLP inorganics, RCRA characteristics (ignitability, corrosivity, & reactivity), RCRA metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and volatile organic compounds (VOCs). The sample was collected in triplicate. The primary and duplicate samples were submitted to AENI and the third split was sent to the USACE QA

laboratory. The analytical reports for the waste characterization sample are located in Appendix C. All TCLP results were below regulatory levels and the RCRA characteristics test results were negative indicating that the soil was non-hazardous. The characterization sample data indicated that the soils could be reused as cover material at lined landfills in the State of Massachusetts.

The 143 tons (approximately 95 cubic yards (cy)) of soil removed from the QSFO spill site have been transferred to a temporary soil storage facility located adjacent to Building 202 in the northeast portion of the Main Post, pending reuse as cover material in the proposed Consolidation Landfill. The shipment was documented using a Material Shipping Record & Log (MSR) which is provided as Appendix D of this report.

2.6 Quality Assurance/Quality Control

Appropriate quality assurance/quality control (QA/QC) measures were taken to ensure the collection of representative soil samples and the generation of accurate and reproducible analytical data.

2.6.1 Sample Collection Quality Control

Soil samples were collected using either a stainless steel trowel or disposable polyethylene scoops. Composite samples were thoroughly homogenized in stainless steel sampling buckets. The sampling equipment was decontaminated using the following procedure:

- 1) Non-phosphate soap & water rinse;
- 2) tap water rinse;
- 3) distilled water rinse;
- 4) 10% nitric acid rinse;
- 5) distilled water rinse;
- 6) methanol rinse; and
- 7) distilled water rinse.

Sample integrity was also maintained by changing gloves between each sample location. The confirmation composite samples from the south sidewall and the characterization sample were both collected in triplicate for QA/QC purposes. A comparison of the results of samples SBAR69KBC and EXQUEEN01 with their respective duplicate samples indicates a good correlation. A comparison of on-site screening results with offsite analytical results for the confirmation samples also indicates a good correlation.

All samples collected on site were entered on a chain of custody and documented on a sample collection log and a permanent logbook. Samples sent off-site were properly preserved, packaged and overnight shipped to the proper laboratory.

2.6.2 Laboratory Quality Control

Quality control measures were taken in the on-site laboratory to ensure the accuracy and precision of the analytical data. TPH concentrations were determined using an infrared spectrometer (IR). A calibration curve was developed for the IR, prior to the start up of sampling activities, to establish detection limits and document linearity of the instrument response. A single calibration point was run in triplicate to demonstrate measurement precision. Continuing calibrations were also performed on a daily basis thereafter to provide a check on instrument response.

The off-site laboratory took the proper quality control measures as specified in the methods used. Samples were properly preserved upon receipt by the laboratory and sample extraction and analysis were performed within the holding times specified in the methods. Blank and spike samples associated with the QSFO spill site samples were within acceptable QC limits. Refer to the analytical reports for more specific QC information.

The USACE Environmental Laboratory prepared a Chemical Quality Assurance Report (CQAR) to compare their data with the results generated by the contractor laboratory (AENI). The report indicates that the results of the primary (contractor lab) and QA samples agreed overall in 160 (100%) of the 160 comparisons. Refer to Appendix E for the CQAR.

SECTION 3.0 CONCLUSIONS

The Queenstown Street fuel oil (QSFO) spill site is located within a portion, identified as Area 4, of SAs 43H and 43I in the central portion of the Main Post. In October 1992, 10 to 25 gallons of diesel fuel was estimated to have leaked from an armored vehicle onto the unpaved ground within the fenced vehicle storage yard adjacent to SA 43H. The spill occurred approximately 300 feet southeast of Building 601. Contaminated soil was removed from a 20 X 28 foot area to a maximum depth of six feet. Although samples collected from the excavation area indicated the presence of residual petroleum contamination, the extent of the contamination exceeded the capabilities of the excavation equipment. Therefore, the excavation was lined with plastic and was backfilled. A Supplemental Site Investigation (SSI) of the area adjacent to the excavated area conducted by ABB found no significant contamination to be present in the areas adjacent to the spill site.

The NED contracted OHM to remove the petroleum-contaminated soil from the former spill area. OHM removed 143 tons (approximately 95 cy) of soil from the QSFO spill site based on TPH screening performed on-site. Photographs of the removal are provided in Appendix F. Confirmation soil samples were collected and analyzed for TPH to document attainment of the 500 mg/kg action level. The confirmation samples were also analyzed for semivolatile organic compounds. Proper QA/QC measures were observed to ensure the collection of accurate and reproducible data. The excavated soil was transported to the temporary soil storage facility adjacent to Building 202 for eventual disposal at the Consolidation Landfill at Fort Devens. Based on the results of the confirmation samples, no further action is recommended at this site.

Appendix A
On-site Laboratory Soil Screening Data

Pg. 1 of 3

Jate: 6/30/95

Site Name: Queenstown Oil spill

Weather: Sunny, some clouds

Samplers: BD/GG

Sample ID Number	Time	Comp/ Grab	Sample Depth (ft)		inates Ref. Pt.b	Desc	nple cription	# of Bottles
SBQVEEN'WI	OE24	G	36"	769"	69/10"	Browns	andy soil w/ heavy	/x40ml VcA
٧٦	८ इ ऋ		3'7"	655	630"		Coble	
W3.	0832		3'5"	673	67'6"			
WH	0837		311"	612	620			
W5	0839		40	54'9"	555			
WG	C342		33"	493	495			l.
W7	0845	Ī	39"	50'3	500			
wo	C347	V	3'0"	526"	510	1		V
Ref. Pt. A:		1	ele six next	to menito	rine well	(see map)		
Ref. Pt. B:			· · ·		ν, ΄ · · ·			
Map Attache	ed: (Y	es 1	V 0					
Sample Typ _aboratory [Destina	tion: (Onsite La		N - coc # _	osal/Characteriz	USACE- coc #_	
	On-si	te Labo	ratory Ch	ain of Cu	stody/Re	quest for Analy	rsis	
Requested :	Testing	: (TPI	-) вт	EX	Other			
Datiensiales		1411	44.	() (1	20/0:		5511 BI	0;3

Requested Testing:	TPH)	BTEX	Other_		(5:3)
Relinquished by(dd/tt):	Humand	6/30/95	Received by (dd/tt):	SUB1-6-30-95
elinquished by(dd/tt):	- Copyright Copy		Received by (dd/tt):_	

Pg. 2 of 3

Date: 6/30/95

Site Name: Queenstown

Weather Sunny, some clouds

elinquished by(dd/tt):_

Samplers: BD/GG

Sample ID Number	Time	Comp/ Grab	The second of th		linates Ref. Pt.ß	Sample Description	# of Bottles
SBQUEEN W9		G	3'0	60'9"	587"	Brown sindy so I w/heavy cobble	1×4cmL VOA
WIC	6852		3,11,	60"	641"		
81.	0354		4'6"	59'9"	5911"		
82	0856		4'5"	50'9"	57'0"		İ
B 3	0858		410'	644	G3'11"	r :	ř.
84	C900	\vee	4'7"	696	Gl'o	V	V
						Å.	
Ref. Pt. A :		Pole Box	next To	Meniterine	Well	(see map)	
Ref. Pt. B:		()	()	7	1		
Map Attache	ed: Y	es	No				
Sample Typ	e: 🤄	Creenir	ng) Co	onfirmation	n Disp	osal/Characterization	
Laboratory [À AE	N - coc #	USACE- coc #	
P			en: Yes			nsate Taken: Yes No	
	On-si	te Labo	oratory Ch	ain of Cu	ıstody/Re	quest for Analysis	
Requested ¹	Testing	: (TP	H) B	ΓEX	Other		
Relinquishe	d by(dd	I/tt):	J. Jum	and 6	<u>/30/95</u> Re	eceived by (dd/tt):	

Received by (dd/tt):_____

Date: 06-30-95

Site Name: Warrstown oil spill

Comments/Observations:

- all samples have the attached prefix sources

Prepared by: S.II N.J.

TPH Results On-site Laboratory - Modified Method 418.1 Fort Devens - Project #16208

Pg.<u>1_</u>of__(

Date: 30 June 1995

Site(s): Bldg 2527 , Queenstown Signal

Analyst MRB

Sample ID #	Instrument Response TPH (ppm)	Calibration Adjusted TPH (ppm)	Sample Weight (g)	Extract Vol. (ml)	Dilution	Final Result TPH(ppm)	Qaulifie
Campie ID #	ΤΤΤΑΡΡΙΙΙΙ	17 17 (55/11)	Troigin (g)	VOI. (IIII)	Dilladori	тифриц	
SBQUEENB1	18	11	20.1	20.4	1	11	J
SBQUEENB2	46	30	20.2	20.9	1	31	J
SBQUEENB3	ND				1	ND	
SBQUEENB4	10	6	20.3	20.5	1	6	J
SBQUEENW1	ND				1	ND	į
SBQUEENW2	18	11	20.0	20.5	1	11	J
SBQUEENW3	13	8	20.3	20.4	1	8	
SBQUEENW4	ND				1	ND	
SBQUEENW5	ND				1	ND	
SBQUEENW6	21	13	20.3	20.8	1	13	J
SBQUEENW7	23	14	20.2	20.3	1	15	J
SBQUEENW8	55	36	20.0	22.8	1	41	J
SBQUEENW9	16	10	20.4	21.1	1	10	J
SBQUEENW10	57	37	20.0	21.3	1	40	J
SB2527TP13A	29	18	20.2	21.0	1	19	J
SB2527TP13B	ND				1	ND	
SB2527TP14A	ND				1	ND	
SB2527TP14B	ND				1	ND	

TPH - Total Petroluem Hydrocarbons

^{&#}x27;ID - Indicates non detect

Indicates estimated concentration below practical quantitation limit

Pg./ofa

of

Date: 7-10-95

Sample

Site Name: Queenstown Spill Site

Sample

Weather. Sunny, some clouds

Comp/ Sample

Samplers: BD/GG

Coordinates

ID Number	Time	Grab		Ref. Pt. Ref. Pt.	Description	Bottles
SBGVEEN B5	1435	G	5-56"		Brown sand, soil Wheavy cobble	1×40mL VCA
B6	1437	1	!	500		ļ
87	1440			266		
88	1442	1		MEP	ţ	*
89	1445	1		V		
BKO	1447					
Bij	1450	V	\ \		V	Ÿ
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Map Attach			No g Co	onfirmation Dis	posal/Characterization	
Laboratory	Destina	ition: 🤇	Onsite La	D AEN - coc #	# USACE- coc #_	
	Duplic	ate Tak	en: Yes	₩o R	tinsate Taken: Yes No	
	On-si	te Labo	ratory Ch	ain of Custody/R	equest for Analysis	Tolian - No
Requested	Testing	: (TP	H) B	TEX Other_		
Relinquishe	ed by(do	i/tt):	4 Human)500 27-10-95 F	Received by (dd/tt):	
Relinquishe	ed by(do	i/tt):	***************************************	F	Received by (dd/tt):	

Pg. 2 of 2

Date: 7-10-95

Site Name: Queenstown Spill Site.

Comments/Observations:

x- sample location

□- test pit

- sample labelled w/ prefix SBQUEEN

Prepared by: Greg Guiman

TPH Results On-site Laboratory - Modified Method 418.1 Fort Devens - Project #16208

Pg. 1of 1

Date: 10 July 1995

Site(s): Bldg 3628,

Analyst GG

Queenstown Spill Site

Sample ID#	Instrument Response TPH (ppm)	Calibration Adjusted TPH (ppm)	Sample Weight (g)	Extract Vol. (ml)	Dilution	Final Result TPH(ppm)	Qaulifier
SB3628W9	N.D.				1	N.D.	
SB3628W10	113	74	19.1	21.3	1	83	
SB3628W11	1048	698	20.2	21.1	10	7289	
S3628W12	422	280	20.1	21.3	50	14859	
SBQUEENB5	30	19	20.4	21.0	1	19	J
SBQUEENB6	N.D.				1	N.D.	
SBQUEENB7	14	9	20.4	22.1	1	10	J
SBQUEENB8	976	650	20.4	21.1	1	672	
SBQUEENB9	25	16	20.0	21.5	1	17	J
SBQUEENB10	N.D.				1	N.D.	
SBQUEENB11	N.D.					N.D.	
					•		

TPH - Total Petroluem Hydrocarbons

ND - Indicates non detect

J - Indicates estimated concentration below practical quantitation limit

				ort Deve	.113 - 1 10]	GCC # 10200			4
Date: 07-2	5-95	5		Site Nar	ne: Q	peenstown	Rd.		Pg. lof Z
Weather: O	verca	st ? }	Humid	Sampler	rs: MG	Q			
Sample ID Number	Time	Comp/ Grab	Sample Depth (ft)		dinates Ref. Pt.		Sample escription		# of Bottles
SBQUEEN BIZ	1415	G	~ 7			Bown wars.	end 4 J	ravel	1 x 40,01
BI3	1447		7		ř E		1		
Bi4	المرك		7'		1				-
	1452		6′		:				
	1454		۷΄		2				
	1257		6				\$ \$		
→ MI4	1500	+	G '		1	1	_		~
4					<u> </u>				
Ref. Pt:	-								
Ref. Pt:					- Pre-				
Map Attache	ed: Y	es 1	No						*
Sample Type	e: (S	creening	Co	nfirmatio	on Dis	sposal/Character	rization		
Laboratory [Destina	tion:	Onsite Lal	b Al	EN - coc	#	USA	CE- coc #_	
	Duplic	ate Take	en: Yes	No	F	Rinsate Taken:	Yes	No	
On-site Laboratory Chain of Custody/Request for Analysis									
Requested 7	resting	: [P]	BJ	EX	other 275	/a:=		117.	11
Relinquished	d by(dd	1/tt): <u>/</u> /	hekail	Tomik	//	Received by (dd/	/tt): <u>///</u>	Hamb	1500 38/16/50
Relinquished	d by(da	I/tt):				Received by (dd.	/tt):		

Sample Location Map Fort Devens - Project #16208

Date: 07.25. 95

Site Name: Queen stown Rd. Oil Spill

Pg. 2 of 2

Comments/Observations:

Prepared by: M. Quinlan

TPH Results On-site Laboratory - Modified Method 418.1 Fort Devens - Project #16208

Pg. 1 of 1

Date: 25 July 1995

Site(s): Bldg T217, Queenstown Rd

Analyst MRB/MGQ

	Instrument Response	Calibration Adjusted	Sample	Extract		Final Result	+:
Sample ID #	TPH (ppm)	TPH (ppm)	Weight (g)	Vol. (ml)	Dilution	TPH(ppm)	Qaulifie
SBT217C1	13	8	20.1	19.4	1	7	J
SBQUEENB12	15	9	21.6	21.5	1	9	J
SBQUEENB13	148	98	20.8	21.7	1	102	
SBQUEENB14	ND				1	ND	
SBQUEENW11	47	30	21.3	21.6	1	31	J
SBQUEENW12	16	10	21.0	21.7	1	10	J
SBQUEENW13	1252	834	20.5	22.0	1	895	
SBQUEENW14	ND				1	ND	
					1 1		
						20,000	
						1000	

TPH - Total Petroluem Hydrocarbons

ND - Indicates non detect

J - Indicates estimated concentration below practical quantitation limit

Pg. __ of____

Date: 7	7 G =	9 —		Site Name	<u>.</u> Q	2 neems to	un RO	Pg. of Z
Date. 7	- 20 -			Site Name	e.	oil s	spill	
Weather.	1 one) 7		Samplers	: M	GQ/MRB)	
Sample			Sample	Coordi			Sample	# of
ID Number	Time	Grab	Depth (ft)	Ref. Pt	Ref. Pt.	De De	escription	Bottles
5BQyeen W15	1626	G				(500)	esal, loss of obla	k 1x youl
W!6	1630	G						
W.7	1628	حس						
1			=					
Ref. Pt: Ref. Pt: Map Attache			<u>}^</u>	vep				
Sample Typ	e: S	creening	Co	nfirmation	n Dis	sposal/Characte	rization	
Laboratory [Destina	tion: 🤇	Onsite La	b AEI	N - coc ‡	#	USACE- coc #	
	Duplica	ate Take	n: Yes	No	F	Rinsate Taken:	Yes No	×
	On-sit	te Laboi	ratory Ch	ain of Cu	stody/R	Request for Ana	alysis	
Requested 1	Testing:	TPH	H B1	ΈX	Other_			
Relinquishe	d by(dd	/tt):	SMB	/w_ 7"	F	Received by (dd	l/tt):	
Relinquishe	d by(dd	/tt):		1 10 1	F	Received by (dd	l/tt):	

Date: 7.76.95

Site Name: Queenstown Rd oil spill Pg. 1 of 2

Con:ments/Observations:

not to scall

Prepared by: MRB

TPH Results On-site Laboratory - Modified Method 418.1 Fort Devens - Project #16208

Pg. I of Z

Date: 26 July 1995

Site(s): Bldg 1434, 1611,

3701, 1421, Queenstown

Analyst MRB

Sample ID #	Instrument Response TPH (ppm)	Calibration Adjusted TPH (ppm)	Sample Weight (g)	Extract Vol. (ml)	Dilution	Final Result TPH(ppm)	Qaulifie
SB1434B1	509	338	19.7	19.9	1	342	
SB1434W1	483	321	19.7	20.1	1	328	
SB1421AB1	47	30	20.1	20.1	1	30	J
SB1421AB2	30	19	19.9	19.6	1	19	J
SB1421AB3	16	10	20.0	19.8	1	10	JJ_
SB1421AB4	25	16	20.1	20.4	1	16	J
SB1421AB5	17	10	19.7	20.2	1	11	J
SB1611B1	56	36	20.3	22.9	1	41	J
SB1611W1	39	25	19.7	21.7	1	28	J
SB1611W2	113	74	20.1	20.6	1	76	
SB1611W3	78	51	20.1	20.9	1	53	
SB3701B1	26	16	20.3	20.4	1	17	J
SB3701B2	83	54	20.0	22.5	1	61	
SB3701B3	64	42	19.9	19.5	1	41	J
SB3701B4	67	44	19.9	21.8	1	48	
SB3701B5	82	54	20.1	20.6	1	55	
SBQUEENW15	16	10	19.9	20.6	1	10	J
SBQUEENW16	410	272	20.1	20.2	5	1369	
SBQUEENW17	16	10	20.1	21.7	1	11	J

TPH - Total Petroluem Hydrocarbons

ND - Indicates non detect

J - Indicates estimated concentration below practical quantitation limit

Pg. / of 2

of

Date:

Sample

7-23-95

Site Name:

Queenstown

Sample

Weather. Sunny

Coordinates

Comp/ Sample

Samplers: BD/GG

ID Number	Time	Grab	Depth (ft)	Ref. Pt.A	Ref. Pt.B		Descri	otion ··	Bottles
SBQUEEN B15	0950	G	11'	66'4"	66'2"	Brown	sand	Wheavy cobble	1 x 40 mL Vot
wi8	C953	6	10'6"	69'9"	(A'9"		İ	,	
MA	0156	6	10'6"	65'9"	65'0"		V		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	•								-
	E								
Ref. Pt. A		Pest	near mi	miterim	well (s	ec map	_		
Ref. Pt. <u>B</u> :		Ÿ.)	٠, ٦		١,	_		
Map Attache	ed: Y	es	No					,	
Sample Typ	0: 6	crooning		anfirmation	n Disn	osal/Charac	torizati	ion	
			_					USACE- coc#_	
Laboratory									200
	Duplic	ate Take	en: Yes	(No)	Rii	nsate Taken	: Ye	es (No)	
	On-si	te Labo	ratory Ch	ain of Cu	ıstody/Re	quest for A	nalysi	s	
Requested ¹	Testing	: (PI	F) B)	ŒX (A	Other				
Relinquishe	d by(dd	//tt):	Human	7-2	8-95 R	eceived by (dd/tt):_		
Relinquishe	d by(da	!/tt):			R	eceived by (dd/tt):_		

Sample Location Map Fort Devens - Project #16208

Pg. 2 of 2

Date: 7-28-95

Site Name: Queenstown

Comments/Observations:

-interior fence line

· - Fixed point x - sample location Samples labelled w/prefix SBQVEEN

Prepared by: Grea Guimon

TPH Results On-site Laboratory - Modified Method 418.1 Fort Devens - Project #16208

Pg.__of__

Date: 28 July 1995

Site(s): Bldg 2013,

Analyst: MRB/BD

Queenstown Rd spill

Sample ID #	Instrument Response TPH (ppm)	Calibration Adjusted TPH (ppm)	Sample Weight (g)	Extract Vol. (ml)	Dilution	Final Result TPH(ppm)	Qaulifier
Sample 10 #	: 1711 (ppin)	тен (ррпі)	vveignt (g)	VOI. (1111)	Diludon	тті(рріп)	i Qadiillei
SBQUEENB15	880	586	20.1	18.8	11	548	1
SBQUEENW18	ND				1	ND	
SBQUEENW19	ND			1	1	ND	. 1
SBQUEENB16	183	121	20.1	21.6	1 1	130	-
SBQUEENB17	20	12	19.7	22.7	1	14	J
SBQUEENB18	24	15	19.7	21.1	1	16	J
SBQUEENB19	266	176	20.3	21.8	1	189	
SB2013AB1	29	18	20.6	21.8	1	20	J
SB2013AB2	13	8	20.2	21.3	1	8	J
SB2013AW1	ND			1	1	ND	
SB2013AB3	13	8	19.7	22.9	1	9	J
SB2013AW2	18	11	20.1	20.4	1	11	J
SB2013BB1	ND				1	ND	
SB2013BB2	37	24	20.3	21.5	1	25	J
				**			1
				1			
				Ì			1 1 2 1 1 1
							1

TPH - Total Petroluem Hydrocarbons

ND - Indicates non detect

J - Indicates estimated concentration below practical quantitation limit

Pg. 1 of 2

	-	0
Date:	7-29	6-43

Site Name: Queenstown

Weather. Cloudy, muggy

Samplers: GG

Sample ID Number	Time	Comp/ Grab		Coord	Ref. Pt.A	Sam	iption ·	# of Bottles
SECUENBIP		G	II' II"	e4 2"	64'10"		w/heavy cobble	1×8cz
p.	1344		11.8.1 12.14et	'ct 7"	665"		1 - 1	
	1347				6510"			
BĄ	1350	4	12'3"	62.8.,	63 91	<u> </u>		V
							10 Hz 75 TU	
		+1						
Ref. Pt. A		Pas	T near m	nenitorina	well (See map)		
Ref. Pt. B		Pos	t near	monitorin	e well			
Map Attach		_	No		J			
Sample Typ	e: छ	Screenin	g Co	onfirmatio	n Dispo	sal/Characteriza	ition	
Laboratory !	Destina	ition: <	Onsite La	AE	EN - coc # _		USACE- coc #_	
	Duplic	ate Tak	en: Yes	No	Rin	sate Taken: Y	es No	
	On-si	te Labo	ratory Ch	ain of C	ustody/Red	quest for Analys	sis	
Requested	Testing	: TP	В.	TEX	Other			
Relinquishe	d by(do	d/tt):/	1- Junes	7-2	100 8-95 Re	ceived by (dd/tt):		
4					_			

Relinquished by(dd/tt):_____

Received by (dd/tt):_____

Sample Location Map Fort Devens - Project #16208

Date: 7-28-95

Site Name:

Queenstown

Pg. <u>2</u> of <u>3</u>

Comments/Observations:

· fixed point x sample location

Samples labelled with posix SBQUEEN

Prepared by: Grey Gurnard

TPH Results On-site Laboratory - Modified Method 418.1 Fort Devens - Project #16208

Pg.__of__

Date: 28 July 1995

Site(s): Bldg 2013,

Analyst MRB/BD

Queenstown Rd spill

Sample ID #	Instrument Response TPH (ppm)	Calibration Adjusted TPH (ppm)	Sample Weight (g)	Extract Vol. (ml)	Dilution	Final Result TPH(ppm)	Qaulifier
SBQUEENB15	880	586	20.1	18.8	1	548	
SBQUEENW18	ND				1	ND	
SBQUEENW19	ND				1	ND	
SBQUEENB16	183	121	20.1	21.6	1	130	
SBQUEENB17	20	12	19.7	22.7	1	14	J
SBQUEENB18	24	15	19.7	21.1	1	16	J
SBQUEENB19	266	176	20.3	21.8	1	189	
SB2013AB1	29	18	20.6	21.8	1	20	J
SB2013AB2	13	8	20.2	21.3	1	8	J
SB2013AW1	ND				1	ND	
SB2013AB3	13	8	19.7	22.9	1	9	J
SB2013AW2	18	11	20.1	20.4	1	11	J
SB2013BB1	ND		1		1	ND	
SB2013BB2	37	24	20.3	21.5	1	25	J

TPH - Total Petroluem Hydrocarbons

ND - Indicates non detect

 ${f J}$ - Indicates estimated concentration below practical quantitation limit

Pg./_of_3

Date: 7-31-45

Site Name: Queenstown

Weather Sunny, warm

Samplers: 80,66

Sample ID Number	Time	Comp/ Grab	Sample Depth (ft)F		dinates Ref. Pt.	Sample Description	# of Bottles
SOVEENNCA	1135	С	10/4	NA	11/4	Brown sandy soil w/heavy cobb	1×800
5CA	1140	C					
WLA	115,	د		-			
ELA	1156	<u></u>					
Bia	1222	<u></u>		August 1997 (1997)	1		
DPA	1140	c		•			
TPA	1140	C	0	~	-	₩	P
Ref. Pt. <u>b</u> Map Attach			B No	17			
	Destina	Screenin ation: ate Take	Onsite Lab	_	N - coc #	USACE- coc #	<u> </u>
Sample Typ Laboratory [Destina Duplic	ation: ate Take	Onsite Lab)No	EN - coc #	7998 USACE- coc#	<u> </u>
	Destina Duplic On-si	ation: eate Take	Onsite Lab	No AE	Ristody/Re	USACE-coc# nsate Taken: Yes No quest for Analysis Semivolatiles (TCL)	
Laboratory [Destina Duplic On-si Testing	ation: eate Take ite Labo	Onsite Lab	No AE	Ristody/Re	USACE- coc #	7-31-95

Sample Collection Log Supplemental Form Composite Sample Data Fort Devens - Project #16208

 $Pg.\underline{\lambda}of\underline{3}$

Date: 7-31-95

Site: Queenstown

Sampler: PD/GG

Composite	Discrete	Sample	Coor	dinates	
	Sample ID	Depth (ft)	Ref. Pt. A	Ref. Pt. R	Sample Description
SBQUZENNCA	NAI	6'4"	69'9"	70'0"	Brown sandy soil wheavy cobble
- 1 1 - MACh	NAQ	7'9'	69'5"	69'4"	
	NA3	7'8	697"	69'2.	<u> </u>
	NA4	9'1"	68'	G8'7"	
		1	1		
			4		
			1		
CPOUSSING	SAL	8,8,	60'0"	600	
SBQVEENSCA	SAD	9'6"	59'9"	59'8'	
DUPA	502	95"	609"	24:2	
TRPA	5A3	7'5"	(cc'4"	60'4"	
	SAY		(d: 7	59'11"	
			•		
		1	Y		
SBQUEKNECA	EAI	7′11"	65'3	65.4.	
• • • • • • • • • • • • • • • • • • • •	EAD	8.4.	64'2"	64'9"	
	EA3	9'3 -	626"	62'6"	
	EAH	8'4'	61'2"	61.8"	
		*	ì		
		1	4		
SEQUEENWO	WAI	7'4"	641"	631"	
	WAZ	8'7"	6411	64'4"	
	WA3	198	666"	65'8	
	WAY	7'4'	િ (ગં)ાં	67'4"	
				:	
SBQUEEN BCA	BAI	1119	64'11'	64'10"	
->	BAS	1119"	64	641"	1,
	ВАЗ	1) '4''	65'4"	65'	V
			İ		
		į		8	

Pg.3of3

Date: 7-31-95

Site Name: Queens town

Comments/Observations:

Fence line

· fixed point x sample location

Samples labelled with petix SBQUEEN

Prepared by: B.II Duk

TPH Results On-site Laboratory - Modified Method 418.1 Fort Devens - Project #16208

Pg. 1 of 2

Date: 31 July 1995

Site(s): Bldg P223,

Analyst: MRB/GG

Queenstown Rd

Sample ID #	Instrument Response	strument Response Calibration Adjusted Sample TPH (ppm) TPH (ppm) Weight (g)				Final Result TPH(ppm)	Qaulifier	
	1				Dilution			
SBQUEENBCA	174	115	20.0	21.4	1	123	-	
SBQUEENECA	13	8	19.7	21.5	1	8	J	
SBQUEENNCA	15	9	19.8	21.1	1_1_	10	J	
SBQUEENSCA	18	11	19.6	21.1	1	12	J	
SBQUEENWCA	18	11	20.1	21.1	1	12	J	
SBQUEENDPA	16	10	20.2	21.1	1	10	i J	
SBQUEENTPA	15	9	20.4	20.6	1	9	j J	
SBP14B2	82	54	20.0	16.4	1	1 44		
SBP14B3	83	54	18.9	20.9	1	60	1	
SBP14B4	71	46	19.9	20.5	1	48		
SB7223W10	66	43	19.4	20.6	1	46	J	
SB7223W11	45	29	20.1	20.5	1	30	J	
SB7223W12	79	52	19.7	21.0	1	55		
SBT223W13	21	13	20,4	20.9	1	13	J	
SBP223W14	17	10	19.9	21.5	1	11	J	
SB7223W15	16	10	19.5	21.0	1	11	j	
SBP223B8	288	191	20.3	21.1	1	199		
SB7223B9	643	428	21.0	20.6	5	2098		
SBP223B10	54	35	19.7	20.6	1	37	J	
SBP223B11	23	14	19.9	22.1	1	16	J	

TPH - Total Petroluem Hydrocarbons

ND - Indicates non detect

J - Indicates estimated concentration below practical quantitation limit

Soil Sample Collection Log Fort Devens - Project #16208

_	1
Pq. 1	of 2
_	

ate:	9-	15-95
ato.	ı	10 10

Site Name:

Queenstown

Weather: Sunny, 70°C

Samplers:

GG/MJ

Sample		Comp/	Sample	Coor	dinates	Samp	e .	# of
D Number	Time	Grab	Depth (ft)F	Ref. Pt.	Ref. Pt.	Descrip		Bottles
XOVEENOI	<i>उच्च</i>	C	16-2			Brown sandy so	il w/ cobble	1x1L 3x86z
EXQUEENDA	1203	6	16"					2x40mL
ex Queen dup	1210	C	16-21					1x12 3x8x2
ex gueendura ex	1203	G	1'6"					2x40mL
ex QUEENTRP	1210	С	16-2		i i			3x80Z
exaveen trap	1203	G	16"		li .	\downarrow		2×40mL
1.40-11-0-11					1			
-					1	<u> </u>		
Ref. Pt:								
Ref. Pt:	-							
Map Attache	ed: K	es	No			240.		
			-					
Sample Typ	e: S	Screenin	g kkCo	nfirmatio	on Dis	posal/Characterizati	<u>nc</u>	
Laboratory (estina	ition:	Onsite Lat			158326	JSACE- coc #	15833 9
	4		, C. S. W. 1911 (1914)					
	Duplic	ate Tak	en: Yes	No	F	insate Taken: Ye	s 🕠	
	0= =:	40 04	water: Ob	nin of C		aguage for Amalus		
	Un-si	te Labo				equest for Analysi		. 0/
Requested						TCLP, RCRA CHAR, F		
Relinquishe	d by(da	d/tt):	4 Huma	9-	3.95 F	Received by (dd/tt):_		
elinquishe	d by(do	d/tt):			F	Received by (dd/tt):_		

Date:0/15/95

Site Name: Queenstown

Comments/Observations:

X denotes unique sample locations for composite * grab sample taken for VOC's

Prepared by: M. Jones

Soil Sample Collection Log Fort Devens - Project #16208

Pg. Lofa

Date: 10-31-95

Site Name: Queenstown

Weather: Cloudy, 50°

Samplers: MT, GG

Sample		Comp/	Sample	Coor	dinates	Sample	# of
ID Number	Time		Depth (ft)			Description	Bottles
B2651M OtomP1	0941	G	0-6"	NIA	MIA	Brown Soil w I coloble	12802 W
PP2	04 40	G	0-6"	N/A	N/A	Brown Soil WI Coloble	1240ml
							*
		K					
Ref. Pt Map Attach			No				
Sample Typ	ne: (S	creenin	g) Co	onfirmatio	on Disp	oosal/Characterization	
. ,				- A.	=N1 coc #	1104.05	
Laboratory	Destina	tion:	Onsite La	b) A	=14 - 606 #	USACE- coc	#
		_	Onsite La en: Yes	ノ〜		insate Taken: Yes No	#
	Duplica	ate Take	en: Yes	No	R	_	#
Laboratory I	Duplica On-si Testing	ate Take	ratory Ch	ain of C	R ustody/R Other_	equest for Analysis	
Laboratory I	Duplica On-si Testing	ate Take	ratory Ch	ain of C	R ustody/R Other_	insate Taken: Yes No	

Sample Location Map Fort Devens - Project #16208

Pg. 2 of 2

Date: 10 - 31-95

Site Name: Queenstown Oil Spill

Comments/Observations:

X - indicates location of post pile grab sample

Fenceline

Prepared by G. Guimond

Appendix B
AENI Analytical Report - Confirmation Soil Sample Results

AMERICAN ENVIRONMENTAL NETWORK INC.

9151 Rumsey Road Suite 150, Columbia, MD 21045-1992 (410) 730-8525 Fax (410) 997-2586

Report Number:

9508005

Report To:

OHM Corporation

Project:

Fort Devens #16208

Date:

August 04, 1995

Analysis:

Total Petroleum Hydrocarbons, EPA 418.1M

Client ID	AENI ID	Date Sampled	Date Received
SBQUEENNCA	9508005-001	07/31/95	08/01/95
SBQUEENSCA	9508005-002	07/31/95	08/01/95
SBQUEENWCA	9508005-003	07/31/95	08/01/95
SBQUEENWCA	9508005-003	07/31/95	08/01/95
SBQUEENECA	9508005-004	07/31/95	08/01/95
SBQUEENBCA	9508005-005	07/31/95	08/01/95
SBQUEENDPA	9508005-006	07/31/95	08/01/95

Six soil samples were received and analyzed for Total Petroleum Hydrocarbons.

The samples were extracted on 08/03/95 and analyzed on 08/04/95.

All quality control met standard laboratory criteria.

This report consists of tabulated sample results.

Report Released By:

Rhonda Green-Barron

General Chemistry Labdratory Manager

AMERICAN ENVIRONMENTAL NETWORK, INC.

9151 Rumsey Road Suite 150, Columbia, MD 21045-1992 (410) 730-8525 Fax (410) 997-2586

Report Number:

9508005

Report To:

OHM Corporation Ft Devens #16208 August 04, 1995

Project: Date:

Analysis:

Total Petroleum Hydrocarbons, (EPA 418.1M)

Client ID	AENI ID	%Solids	Result, mg/Kg
SBQUEENNCA	9508005-001	97.4	<15
SBQUEENSCA	9508005-002	95.8	<16
SBQUEENWCA	9508005-003	95.8	<16
SBQUEENECA	9508005-004	95.4	<16
SBQUEENBCA	9508005-005	96.6	150
SBQUEENDPA	9508005-006	96.2	<16
	Method Blank	100	<15

(1) Results reported on a dry weight basis.

AMERICAN ENVIRONMENTAL NETWORK, INC.

9151 RUMSEY ROAD COLUMBIA, MD. 21045 (410) 730-8525

Project Number: 9508-005

Client Name: Project Title:

OH Materials Fort Devens

Ayer, MA

Six soil samples were analyzed for the semivolatile organic compounds in the TCL list by method 8270.

The analyses followed the standard AENI QA/QC and holding time requirements.

This package consists of tabulated results of the sample and the method blanks, along with the QC forms II, III, and IV.

Data Released

/Minh-Thuy L. Nguyen GC/MS Lab Manager

Semivolatiles Section:

Client ID	AENI ID	Matrix	Date Sampled	Date Received	Date Ex	tracted BNA	Date Analyzed
SBQUEENNCA SBQUEENWCA SBQUEENECA SBQUEENBCA SBQUEENBCA SBQUEENDPA	005-001 005-002 005-003 005-004 005-005	Soil Soil Soil	07/31/95 07/31/95 07/31/95 07/31/95 07/31/95 07/31/95	08/01/95 08/01/95 08/01/95 08/01/95 08/01/95 08/01/95	N.A. N.A. N.A. N.A. N.A.	08/03 08/03 08/03 08/03 08/03	08/09/95 08/09/95 08/09/95 08/09/95 08/10/95

Form I (Tabulated Results)

All sample extraction and analyses were performed within the holding time requirement. All sample results are reported on the basis of dry weights.

Form II (Surrogate Recoveries)

The surrogate recoveries for the samples, QC, and method blank were within the method specified limits.

Form III (LCS Recoveries)

A LCS analysis was reported. All spike recoveries were within criteria.

Form IV (Method Blank Results)

The method blank was free of target analytes.

2D SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name:	AENI MD		Contract: OHM	
Project No.:	9508005	Site:	Location:	Group:
Level: (low/m	ed) LOW			

		S1	S2	S		\$4		S5		S6				TOT
L	SAMPLE NO.	(2FP) #		# (NE	_	(FBP)	#	(TBP)	#	(TPH)	#	#	#	וטס
01	SBLK01	63	78		78	82		72		111				
02	SBLK01 MS	73	82		84	87		93		118				
03	SBQUEENNCA	56	65		75	81		24		96		Yellow 19		
04	SBQUEENSCA	53	63		74	81		24		99				
05	SBQUEENWCA	60	71		83	86		27		96				
06	SBQUEENECA	58	74		87	93		30		108				
07[SBQUEENBCA	61	76	ľ	87	92		31		97				
08	SBQUEENDPA	61	73		84	91		29		103				
09														
10														
11														
12														
13														
14											T			
15											T			
16														
17														
18								1						
19														
20														
21										,				
22														
23														
24										1				
25											1			
26											1	1040		
27			1			T					1			T
28											1		-	
29											1			
30			1		_	1					1			T

	ac limits
S1 (2FP) - 2-Fluorophenol	(25-121)
S2 (PHL) - Phenol-d5	(24-113)
S3 (NBZ) - Nitrobenzene-d5	(23-120)
S4 (FBP) - 2-Fluorobiphenyl	(30-115)
S5 (TBP) = 2,4,6-Tribromophenol	(19-122)
S6 (TPH) - Terphenyl-d14	(18-137)

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D Surrogate diluted out

3D SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: AENI MD		Contract: OHM		
Project No.: 9508005	Site:	Location:	Group:	
Matrix Spike - Sample No.:	SBLK01	Level: (low/med) LOW		

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC	QC. LIMITS # REC.
Phenol	6700	0	4800	72	(26-90)
2-Chlorophenol	6700	0	4800	72	(25-102)
1,4-Dichlorobenzene	3300	0	2300	70	(28-104)
N-Nitroso-di-n-propylamine	3300	0	2900	88	(41-126)
1,2,4-Trichlorobenzene	3300	0	2700	82	(38-107)
4-Chloro-3-methylphenol	6700	0	5500	82	(26-103)
Acenaphthene	3300	0	2800	85	(31-137)
2,4-Dinitrotoluene	3300	0	2500	76	(28-89)
4-Nitrophenol	6700	0	5300	79	(11-114)
Pentachlorophenol	6700	0	5600	84	(17-109)
Pyrene	3300	0	3100	94	(35-142)

	SPIKE ADDED	MSD CONCENTRATION	MSD %		%		QC LI	IMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC	#	RPD	#	RPD	REC.
Phenol	li .						35	(26-90)
2-Chlorophenol							50	(25-102)
1,4-Dichlorobenzene							27	(28-104)
N-Nitroso-di-n-propylamine							38	(41-126)
1,2,4-Trichlorobenzene							23	(38-107)
4-Chloro-3-methylphenol							33	(26-103)
Acenaphthene							19	(31-137)
2,4-Dinitrotoluene							47	(28-89)
4-Nitrophenol							50	(11-114)
Pentachlorophenol							47	(17-109)
Pyrene							36	(35-142)

-		1					
•	Va	2911	outside	nt	1111	limit	2

Comments:		

48

SEMIVOLATILE METHOD BLANK SUMMARY

SAMPLE NO.

SBLK01

Lab Name:	AENI M	ID		Contract: OHM	052.115
Project No.:	95080	05	Site:	Location:	Group:
Lab File ID:	DH063	.D		Lab Sample ID:	0803-JA
Instrument ID	:	MSD 1		Date Extracted	8/3/95
Matrix: (soil/v	water)	SOIL		Date Analyzed:	8/8/95
Level: (low/mi	ed)	LOW		Time Analyzed:	1823

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	LAB	LAB	DATE
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
1 SBLK01 MS	0803-JA BS	DH064.D	08/08/95
2 SBQUEENNCA	#001	DH078.D	08/09/95
3 SBQUEENSCA	#002	DH079.D	08/09/95
4 SBQUEENWCA	#003	DH080.D	08/09/95
5 SBQUEENECA	#004	DH081.D	08/09/95
6 SBQUEENBCA	#005	DH082.D	08/10/95
7 SBQUEENDPA	#006	DH083.D	08/10/95
8			
9			
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			
0			
1			
2			
3			
4			
5			
6		7	
7	200		
8			
9		-	
0			

COMMENTS:

SAMPLE NO.

ab Name:	AENI MD		Contract:	ОНМ	SBUDEENICA	1
	9508005	Site:	Location:		Group:	
Matrix: (soil		SOIL		Lab Sample ID:		-
Sample wt/v	ol:	30.2 (g/mL) G		Lab File ID:	DH078.D	
Level: (lov	v/med)	LOW		Date Received:	8/1/95	
% Moisture:	3	decanted: (Y/I	N): N	Date Extracted:	8/3/95	
Concentrate	d Extract Volu	ume: 1000 (uL)		Date Analyzed:	8/9/95	
Injection Vol	ume:	1.0 (uL)		Dilution Factor:	1.0	
GPC Cleanup	p: (Y/N)	Np	H:			
			Concentr	ration Units:		
CA	AS No.	Compound	(ug/L or ug/Kg)	ug/Kg	۵	
[11	1-44-4	bis(2-Chloroethyl)ether		340	U	
_	08-95-2	Phenoi		340	U	
_	5-57-8	2-Chlorophenol		340	U	
-	11-73-1	1,3-Dichlorobenzene		340	U	
_	06-46-7	1,4-Dichlorobenzene		340	U	
	5-50-1	1,2-Dichlorobenzene		340	U	
-	08-60-1	bis(2-chloroisopropyl)ether		340	U	
-	-48-7	2-Methylphenol		340	U	
	7-72-1	Hexachloroethane		340	U	
_	21-64-7	N-Nitroso-di-n-propylamine		340	U	
-	06-44-5	4-Methylphenol		340	U	
-	3-95-3	Nitrobenzene		340	U	
-	3-59-1	Isophorone		340	U	
-	3-75-5	2-Nitrophenol		340	U	
_	15-67-9	2,4-Dimethylphenol		340	U	
	1-91-1	bis(2-Chloroethoxy)methane		340	U	
-	20-83-2	2,4-Dichlorophenol		340	U	
_	20-82-1	1,2,4-Trichlorobenzene	_	340	U	
-	1-20-3	Naphthalene		340	U	
	06-47-8	4-Chloroaniline		340	U	
_	7-68-3	Hexachlorobutadiene	_	340		
_	3-50-7				U	
_		4-Chloro-3-methylphenol		340		
	1-57-6	2-Methylnaphthalene		340	U	
_	7-47-4	Hexachlorocyclopentadiene		340	U	
-	3-06-2	2,4,6-Trichlorophenol	-	340	U	
_	5-95-4	2,4,5-Trichlorophenol		850	U	
_	1-58-7	2-Chloronaphthalene		340	U	
	3-74-4	2-Nitroaniline		850	U	
_	08-96-8	Acenaphthylene		340	U	
-	31-11-3	Dimethylphthalate		340	U	
	06-20-2	2,6-Dinitrotoluene		340	U	
183	3-32-9	Acenanhthene		340	u	

99-09-2

3-Nitroaniline

850

SAMPLE NO.

			15	SBQUEENNC
Lab Name:	AENI MD	Contract:	OHM	

Project No.: 9508005	Site:	Location:	Group:
Matrix: (soil/water)	SOIL	L	ab Sample ID: #001
Sample wt/vol:	30.2 (g/mL) G		Lab File ID: DH078.D
Level: (low/med)	LOW		late Received: 8/1/95
% Moisture: 3	decanted: (Y/N):	N D	ate Extracted: 8/3/95

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 8/9/95 Dilution Factor: 1.0

Injection Volume: 1.0 (uL) GPC Cleanup: (Y/N) N pH: ___

	Concentration Units:						
CAS No.	Compound	(ug/L or ug/Kg)	ug/Kg	Q			
51-28-5	2,4-Dinitrophenol	85	0	U			
132-64-9	Dibenzofuran	34	0	U			
121-14-2	2,4-Dinitrotoluene	34	0	U			
100-02-7	4-Nitrophenol	85	0	U			
86-73-7	Fluorene	34	0	U			
7005-72-3	4-Chlorophenyl-phenylether	34	0	U			
84-66-2	Diethylphthalate	34	0	U			
100-01-6	4-Nitroaniline	85	0	U			
534-52-1	4,6-Dinitro-2-methylphenol	85	0	U			
86-30-6	n-Nitrosodiphenylamine	34	0	U			
101-55-3	4-Bromophenyl-phenylether	34	0	U			
118-74-1	Hexachlorobenzene	34	0	U			
87-86-5	Pentachlorophenol	85	0	U			
85-01-8	Phenanthrene	34	0	U			
120-12-7	Anthracene	34	0	U			
84-74-2	Di-n-butylphthalate	34	0	U			
86-74-8	Carbazole	34	0	U			
206-44-0	Fluoranthene	34	0	U			
129-00-0	Pyrene	34	0	U			
85-68-7	Butylbenzylphthalate	34	0	U			
91-94-1	3,3'-Dichlorobenzidine	34	0	U			
56-55-3	Benzo(a)anthracene	34	0	U			
218-01-9	Chrysene	34	0	U			
117-81-7	bis(2-Ethylhexyl)phthalate	43	0				
117-84-0	Di-n-octylphthalate	34	0	U			
205-99-2	Benzo(b)fluoranthene	34	0	U			
207-08-9	Benzo(k)fluoranthene	34	0	U			
50-32-8	Benzo[a]pyrene	34	0	U			
193-39-5	Indeno[1,2,3-cd]pyrene	34	0	U			
53-70-3	Dibenz(a,h)anthracene	34	0	U			
191-24-2	Benzo(g,h,i)perylene	34	0	U			
				,			

SAMPLE NU.

Lab Nam	ne: AENIMO			Contract:	ОНМ	SBQUEENSCA
	No.: 9508005		Site:	Location:	OTHE	Group:
-			-	_	Lab Cample ID.	#002
matrix:	(soil/water)	SOIL			Lab Sample ID:	#002
Sample	wt/vol:	30.0	g/mL) G		Lab File ID:	DH079.D
Level:	(low/med)	LDW			Date Received:	8/1/95
% Moist	ture:4		decanted:	(Y/N):N	Date Extracted:	8/3/95
Concent	rated Extract V	olume:	1000 (uL)		Date Analyzed:	8/9/95
Injection	volume:	1.0 (ıL)		Dilution Factor:	1.0
GPC Cle	anup: (Y/N)	N		рН:		
				Concen	tration Units:	
	CAS No.	Compound		(ug/L or ug/Kg		Q
	111-44-4	bis(2-Chloroet	hyllether	T	350	U
	108-95-2	Phenol	nyije titoi		350	u
	95-57-8	2-Chloropheno	ol .		350	U
	541-73-1	1,3-Dichlorob			350	U
	106-46-7	1,4-Dichlorob			350	U
	95-50-1	1,2-Dichlorob			350	U
	108-60-1	bis(2-chlorois			350	U
	95-48-7	2-Methylphen			350	U
	67-72-1	Hexachloroeth			350	U
	621-64-7	N-Nitroso-di-n			350	U
	106-44-5	4-Methylphen			350	U
	98-95-3	Nitrobenzene			350	U
	78-59-1	Isophorone			350	U
	88-75-5	2-Nitrophenol			350	U
	105-67-9	2,4-Dimethylp	henoi		350	Ü
	111-91-1		hoxy)methane		350	U
	120-83-2	2,4-Dichlorop			350	U
	120-82-1	1,2,4-Trichlor	obenzene		350	U
	91-20-3	Naphthalene			350	U
	106-47-8	4-Chioroaniin	е		350	U
	87-68-3	Hexachloroau	tadiene		350	U
	59-50-7	4-Chloro-3-me	thylphenol		350	U
	91-57-6	2-Methylnaph	thalene		350	U
	77-47-4	Hexachlorocy	clopentadiene		350	U
	88-06-2	2,4,6-Trichlor	ophenol		350	U
	95-95-4	2,4,5-Trichlor	aphenol		870	U
	91-58-7	2-Chloronaph	thalene		350	U
	88-74-4	2-Nitroaniline			870	U
	208-96-8	Acenaphthyle	ne		350	U

131-11-3

606-20-2

83-32-9

99-09-2

U

U

IJ

U

Dimethylphthalate

2,6-Dinitrotoluene

Acenaphthene

3-Nitroaniline

350

350

350

870

SAMPLE NO.

SBQUEENDPA

ab Name:	AENI MD			Contract:	ОНМ	SBROCEIDIA
Project No.:	9508005		Site:	Location:		Group:
Matrix: (soil/v	water)	SOIL			Lab Sample ID:	#006
Sample wt/vo	l:	30.9	(g/mL) G	_	Lab File ID:	DH083.D
Level: (low/	(med)	LOW			Date Received:	8/1/95
% Moisture:	4		decanted: (Y	/N):N	Date Extracted:	8/3/95
Concentrated	Extract Volum	ne:	1000 (uL)		Date Analyzed:	8/10/95
Injection Volu	me:	1.0	(uL)		Dilution Factor:	1.0
GPC Cleanup:	(Y/N)	N		рН:		
	ž.			Concenti	ration Units:	
CAS	S No.	Compound	1	(ug/L or ug/Kg)	ug/Kg	<u>a</u>

		Concentration Units:	
CAS No.	Compound	(ug/L or ug/Kg) ug/Kg	Q
111-44-4	bis(2-Chloroethyl)ether	340	U
108-95-2	Phenol	340	U
95-57-8	2-Chlorophenol	340	U
541-73-1	1,3-Dichlorobenzene	340	U
106-46-7	1,4-Dichlorobenzene	340	U
95-50-1	1,2-Dichlorobenzene	340	U
108-60-1	bis(2-chloroisopropyllether	340	U
95-48-7	2-Methylphenol	340	- บ
67-72-1	Hexachloroethane	340	U
621-64-7	N-Nitroso-di-n-propylamine	340	U
106-44-5	4-Methylphenol	340	U
98-95-3	Nitrobenzene	340	U
78-59-1	Isophorone	340	U
88-75-5	2-Nitrophenol	340	U
105-67-9	2,4-Dimethylphenol	340	U
111-91-1	bis(2-Chloroethoxy)methane	340	U
120-83-2	2,4-Dichlorophenol	340	U
120-82-1	1,2,4-Trichlorobenzene	340	U
91-20-3	Naphthalene	340	U
106-47-8	4-Chloroaniline	340	U
87-68-3	Hexachlorobutadiene	340	U
59-50-7	4-Chioro-3-methylphenol	340	U
91-57-6	2-Methylnaphthalene	340	U
77-47-4	Hexachlorocyclopentadiene	340	U
88-06-2	2,4,6-Trichlorophenol	340	U
95-95-4	2,4,5-Trichlorophenol	840	U
91-58-7	2-Chloronaphthalene	340	U
88-74-4	2-Nitroaniline	840	U
208-96-8	Acenaphthylene	340	U
131-11-3	Dimethylphthalate	340	U
606-20-2	2,6-Dinitrotoluene	340	U
83-32-9	Acenaphthene	340	U
99-09-2	3-Nitroaniline	840	U

SAMPLE NO.

SBOUEENSCA

ab Name:	AENI MD		Contract: OH!	M	Specialox
roject No.:	9508005	Site:	Location:		Group:
Matrix: (soil)	(water)	SOIL	,	Lab Sample ID:	#002
Sample wt/vi	ol:	30.0 (g/mL) G		Lab File ID:	DH079.D
_evel: (low	rimed)	LOW		Date Received:	8/1/95
Moisture:	4	decanted: (Y)	N):N	Date Extracted:	8/3/95
Concentrated	d Extract Vol	ume: 1000 (uL)		Date Analyzed:	8/9/95
njection Vol	ume:	1.0(uL)		Dilution Factor:	1.0
GPC Cleanup	o: (Y/N)	N	pH:		
			Concentration	n Units:	
CA	AS No.	Compound	(ug/L or ug/Kg)	ug/Kg	Q
51	-28-5	2,4-Dinitrophenol		870	U
	12-64-9	Dibenzofuran		350	U
	1-14-2	2.4-Dinitrotoluene		350	U
	10-02-7	4-Nitrophenol		870	U
-	5-73-7	Fluorene		350	U
	05.72.3	4-Chlorophenyl-phenylether		350	U
	-66-2	Diethylphthalate	1	350	U
-	0-01-6	4-Nitroaniline		870	U
-	34-52-1	4,6-Dinitro-2-methylphenol		870	U
1	6-30-6	n-Nitrosodiphenylamine		350	U
-	1.55.3	4-Bromophenyl-phenylether		350	U
-	8-74-1	Hexachiorobenzene		350	U
87	7-86-5	Pentachlorophenol		870	U
85	5-01-8	Phenanthrene		350	U
12	20-12-7	Anthracene		350	U
84	1-74-2	Di-n-butylphthalate		350	U
86	5-74-8	Carbazole		350	U
20	06-44-0	Fluoranthene		350	U
12	29-00-0	Pyrene		350	U
85	5-68-7	Butylbenzylphthalate		350	U
91	-94-1	3,3'-Dichlorobenzidine		350	U
56	6-55-3	Benzo[a]anthracene		350	U
21	8-01-9	Chrysene		350	U
11	7-81-7	bis(2-Ethylhexyl)phthalate		420	
11	7-84-0	Di-n-octylphthalate		350	U
20	5-99-2	Benzo[b]fluoranthene		350	U
20	7-08-9	Benzo(k)fluoranthene		350	U
50)-32-8	Benzo(a)pyrene		350	U
19	33-39-5	Indeno(1,2,3-cd)pyrene		350	U
53	3-70-3	Dibenz(a,h)anthracene		350	U
19	1-24-2	Benzo(g,h,i)perylene		350	U

SAMPLE NU.

ah Name	: AENI MD			Contract:	ОНМ	SBQUEENWCA
	o.: 9508005		Site:			Group:
•	soil/water)	- SOIL			Lab Sample ID:	#003
			Inless. C		·	
Sample w	(t/voi:	30.1	(g/mL) G		Lab File ID:	UNUOU.D
.evel: (low/med)	LOW	4		Date Received:	8/1/95
% Moistu	re:4	_	decanted: (Y/N)	: <u>N</u>	Date Extracted:	8/3/95
Concentra	ated Extract Vol	ume:	1000 (uL)		Date Analyzed:	8/9/95
njection \	Volume:	1.0	(uL)		Dilution Factor:	1.0
GPC Clea	nup: (Y/N)	N	рН			
	. 9 300 0			Concent	ration Units:	
	CAS No.	Compound		(ug/L or ug/Kg		۵
li.	111-44-4	bis(2-Chloro	ethyl)ether		350	U
	108-95-2	Phenol			350	U
	95-57-8	2-Chlorophe	nol		350	U
	541-73-1	1,3-Dichloro			350	U
	106-46-7	1,4-Dichloro			350	U
	95-50-1	1,2-Dichloro			350	U
	108-60-1		sopropyllether	1	350	U
	95-48-7	2-Methylphe			350	U
	67-72-1	Hexachloroe			350	U
	621-64-7		-n-propylamine		350	u
	106-44-5	4-Methylphe			350	U
	98-95-3	Nitrobenzen		-	350	1 0
	78-59-1		E	-	350	1 0
	-	Isophorone		-	350	l u
	88-75-5	2-Nitrophen				
	105-67-9	2,4-Dimethy	-	-	350	U
	111-91-1		ethoxy)methane	-	350	U
	120-83-2	2,4-Dichloro			350	U
	120-82-1	1,2,4-Trichl			350	U
	91-20-3	Naphthalene			350	U
	106-47-8	4-Chloroanil			350	U
	87-68-3	Hexachlorob			350	U
	59-50-7		nethylphenol		350	U
	91-57-6	2-Methylnar			350	U
	77-47-4		cyclopentadiene		350	U
	88-06-2	2,4,6-Trichl			350	U
	95-95-4	2,4,5-Trichl	orophenol		870	U
	91-58-7	2-Chloronap	hthalene		350	U
	88-74-4	2-Nitroanilir	10		870	U
	208-96-8	Acenaphthy	lene		350	U
	131-11-3	Dimethylpht	halate		97	J

606-20-2

83-32-9

99-09-2

2,6-Dinitrotoluene

Acenaphthene

3-Nitroaniline

350

350

870

U

U

U

SAMPLE NO.

SRQUEENWCA

ab Name:	AENI MD			Contract:	ОНМ	Spubernica	
Project No.:	9508005		Site:	Location:		Group:	
Matrix: (soil/	water)	SOIL			Lab Sample ID:	#003	
Sample wt/vo	oi:	30.1	(g/mL) G		Lab File ID:	DH080.D	
Level: (low	(med)	LOW			Date Received:	8/1/95	
% Moisture:	4		decanted: (Y/N	l): N	Date Extracted:	8/3/95	
Concentrated	d Extract Volu	me:	1000 (uL)		Date Analyzed:	8/9/95	
Injection Volu	ıme:	1.0	(uL)		Dilution Factor:	1.0	
GPC Cleanup	: (Y/N)	N	_ pi	H:			
				Concent	ration Units:		
CA	S No.	Compound		(ug/L or ug/Kg) ug/Kg	۵	
51-	-28-5	2,4-Dinitrop	henol	T	870	U	
	2.64-9	Dibenzofura			350	U	
	1-14-2	2,4-Dinitrot			350	U	
-	0-02-7	4-Nitrophen			870	U	
_	-73-7	Fluorene			350	U	
	05-72-3	4-Chlorophe	enyl-phenylether		350	U	
_	-66-2	Diethylphth			350	U	
_	0-01-6	4-Nitroanili			870	U	
53	4-52-1	4,6-Dinitro-	2-methylphenol		870	U	
86	-30-6		henylamine		350	U	
10	1-55-3	4-Bromophe	enyl-phenylether		350	U	
11	8-74-1	Hexachlorol	penzene		350	U	
87	-86-5	Pentachloro	phenol		870	U	
85	-01-8	Phenanthre	ne		350	U	
12	0-12-7	Anthracene			350	U	
84	-74-2	Di-n-butylph	ithalate		350	U	
86	-74-8	Carbazole			350	U	
20	6-44-0	Fluoranthen	e		350	U	
12	9-00-0	Pyrene			350	U	
85	-68-7	Butylbenzyl	phthalate		350	U	
91	-94-1	3,3'-Dichlor	obenzidine		350	U	
56	-55-3	Benzo(a)ant	hracene		350	U	
21	8-01-9	Chrysene			350	U	
11	7-81-7	bis(2-Ethylh	exyl)phthalate		210	J	
	7-84-0	Di-n-octylpr	thalate		350	U	
	5-99-2	Benzo(b)flue	oranthene		350,	U	
	7-08-9	Benzo(k)flu	oranthene		350	U	
	-32-8	Benzo(a)pyr			350	U	
_	3-39-5		3-cd]pyrene		350	U	
	-70-3	Dibenz(a,h)a			350	U	
19	1-24-2	Benzo(g,h,i)	perylene		350	U	
4.							

SAMPLE NO.

ab Name:	AENI MD			Contract:	OHM	SRUDEENE	CA
Project No.:	9508005		Site:	Location:		Group:	
Matrix: (soil/	water)	SOIL			Lab Sample ID:	#004	
Sample wt/vo	ol:	30.3	(g/mL) G		Lab File ID:	DH081.D	
Level: (low	(med)	LOW			Date Received:	8/1/95	
% Moisture:	. 5	- 0	decanted: (Y/N)	. <u>N</u>	Date Extracted:	8/3/95	
Concentrated	Extract Volu	me:	1000 (uL)		Date Analyzed:	8/9/95	
Injection Volu	ime:	1.0	(uL)		Dilution Factor:	1.0	
GPC Cleanup	: (Y/N)	N	рН				
				Concen	tration Units:		
CA	S No.	Compound		lug/L or ug/K	g) ug/Kg	Q	
11	1-44-4	bis(2-Chloro	ethyl)ether		350	U	
100	8-95-2	Phenol			350	U	
95-	·57·8	2-Chlorophe	nol		350	U	
54	1-73-1	1,3-Dichloro			350	U	
_	6-46-7	1,4-Dichloro			350	Ú	
95-	-50-1	1,2-Dichloro	benzene		350	U	
108	8-60-1	bis(2-chloroi	sopropyl)ether		350	U	
95-	48-7	2-Methylphe	enol		350	U	
67-	72-1	Hexachloroe	thane		350	U	
62	1-64-7	N-Nitroso-di	-n-propylamine		350	U	
10	6-44-5	4-Methylphe	enol		350	U	
98-	95-3	Nitrobenzen	e		350	U	
78-	-59-1	Isophorone			350	U	
88-	75-5	2-Nitrophen	ol		350	U	
10	5-67-9	2,4-Dimethy	Iphenol		350	U	
11	1-91-1	bis(2-Chloro	ethoxylmethane		350	U	
121	0-83-2	2,4-Dichloro	phenol		350	U	
121	0-82-1	1,2,4-Trichl	orobenzene		350	U	
91-	-20-3	Naphthalene			350	U	
10	6-47-8	4-Chloroanil	ine		350	U	
87-	-68-3	Hexachlorob	outadiene		350	U	
59	-50-7	4-Chloro-3-r	nethylphenol		350	U	
91-	57-6	2-Methylnar	hthalene		350	U	
77-	47-4	Hexachiorod	yclopentadiene		350	U	
88-	-06-2	2,4,6-Trichl	orophenol		350	U	
95	95-4	2,4,5-Trichl	orophenol		870	U	
91-	-58-7	2-Chloronap	hthalene		350	U	
-	74-4	2-Nitroanilir	le		870	U	
	8-96-8	Acenaphthy			350	U	
13	1-11-3	Dimethylpht	halate		350	U	
	6-20-2	2,6-Dinitrot			350	U	
83	32-9	Acenaphthe	ne		350	U	

99-09-2

3-Nitroaniline

870

Location:

SAMPLE NO.

Group:

SBQUEENECA Lab Name: AENI MD Contract: OHM Site:

SOIL Lab Sample ID: #004 Matrix: (soil/water)

Project No.: 9508005

30.3 Sample wt/vol: (g/mL) G Lab File ID: DH081.D

LOW Level: (low/med) Date Received: 8/1/95

% Moisture: 5 decanted: (Y/N): Date Extracted: 8/3/95 1000_(uL) Concentrated Extract Volume: Date Analyzed: 8/9/95

Injection Volume: 1.0 Dilution Factor: 1.0 (uL)

N GPC Cleanup: (Y/N)

Compound 2,4-Dinitrophenol Dibenzofuran 2,4-Dinitrotoluene 4-Nitrophenol Fluorene 4-Chlorophenyl-phenylether Diethylphthalate 4-Nitroaniline	(ug/L or ug/Kg) <u>ug/Kg</u> 870 350 350 870 350 350 350 350	0 U U U
Dibenzofuran 2,4-Dinitrotoluene 4-Nitrophenol Fluorene 4-Chlorophenyl-phenylether Diethylphthalate	350 350 870 350 350	U U U
2,4-Dinitrotoluene 4-Nitrophenol Fluorene 4-Chlorophenyl-phenylether Diethylphthalate	350 870 350 350	U U U
4-Nitrophenol Fluorene 4-Chlorophenyl-phenylether Diethylphthalate	870 350 350	U U
Fluorene 4-Chlorophenyl-phenylether Diethylphthalate	350 350	U
4-Chlorophenyl-phenylether Diethylphthalate	350	
Diethylphthalate		11
	מבח	U
4.Nitroaniline	350	U
T THE UNITED STATES	870	U
4,6-Dinitro-2-methylphenol	870	U
n-Nitrosodiphenylamine	350	U
4-Bromophenyl-phenylether	350	U
Hexachlorobenzene	350	U
Pentachlorophenol	870	U
Phenanthrene	350	U
Anthracene	350	U
Di-n-butylohthalate	350	U
Carbazole	350	U
Fluoranthene	350	U
Pyrene	350	U
Butylbenzylphthalate	350	U
3,3'-Dichlorobenzidine	350	U
Benzo(a)anthracene	350	U
Chrysene	350	U
bis(2-Ethylhexyl)phthalate	270	J
Di-n-octylphthalate	350	U
Benzo[b]fluoranthene	350	U
Benzo(k)fluoranthene	350	U
Benzo(a)pyrene	350	U
Indeno[1,2,3-cd]pyrene	350	Ü
Dibenz(a,h)anthracene	350	U
Benzo(g,h,i)perylene	350	U
	Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate Carbazole Fluoranthene Pyrene Butylbenzylphthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene Di-n-octylphthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene ndeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	Hexachlorobenzene 350 Pentachlorophenol 870 Phenanthrene 350 Anthracene 350 Di-n-butylphthalate 350 Carbazole 350 Fluoranthene 350 Pyrene 350 Butylbenzylphthalate 350 33°-Dichlorobenzidine 350 Benzo(a)anthracene 350 Chrysene 350 Dis(2-Ethylhexyl)phthalate 270 Di-n-octylphthalate 350 Benzo(b)fluoranthene 350 Benzo(k)fluoranthene 350 Benzo(a)pyrene 350 Dibenz(a,h)anthracene 350

SAMPLE NO.

SBQUEENBCA

Lab Name:	AENI MD			Contract:	DHM	
Project No.:	9508005		Site:	Location:		Group:
Matrix: (soil/	water)	SOIL	-		Lab Sample I	D: #005
Sample wt/vo	ol:	30.2	(g/mL) G		Lab File I	D: DH082.D
Level: (low	/med)	FOM	-		Date Receive	ed: 8/1/95
% Moisture:	3	•	decanted: (Y/N):	N	Date Extracte	ed: 8/3/95
Concentrated	Extract Volum	me:	1000 (uL)		Date Analyze	ed: <u>8/10/95</u>
Injection Volu	me:	1.0	(uL)		Dilution Factor	or:1.D
GPC Cleanup:	: (Y/N)	N	pH:			
				Concen	tration Units:	

CAS Na.	Compound	(ug/L or ug/Kg) ug/Kg	۵
111-44-4	bis(2-Chloroethyl)ether	340	U
108-95-2	Phenol	340	U
95-57-8	2-Chiorophenoi	340	U
541-73-1	1,3-Dichlorobenzene	340	U
106-46-7	1,4-Dichlorobenzene	340	U
95-50-1	1,2-Dichlorobenzene	340	U
108-60-1	bis(2-chloroisopropyl)ether	340	U
95-48-7	2-Methylphenoi	340	U
67-72-1	Hexachloroethane	340	U
621-64-7	N-Nitroso-di-n-propylamine	340	U
106-44-5	4-Methylphenol	340	U
98-95-3	Nitrobenzene	340	U
78-59-1	Isophorone	340	U
88-75-5	2-Nitrophenol	340	U
105-67-9	2,4-Dimethylphenol	340	U
111-91-1	bis(2-Chloroethoxy)methane	340	U
120-83-2	2,4-Dichlorophenol	340	U
120-82-1	1,2,4-Trichlorobenzene	340	U
91-20-3	Naphthalene	340	U
106-47-8	4-Chloroaniline	340	U
87-68-3	Hexachlorobutadiene	340	U
59-50-7	4-Chloro-3-methylphenol	340	U
91-57-6	2-Methylnaphthalene	340	U
77-47-4	Hexachlorocyclopentadiene	340	U
88-06-2	2,4,6-Trichlorophenol	340	U
95-95-4	2,4,5-Trichlorophenol	850	U
91-58-7	2-Chloronaphthalene	340	U
88-74-4	2-Nitroaniline	850	U
208-96-8	Acenaphthylene	340	U
131-11-3	Dimethylphthalate	340	U
606-20-2	2,6-Dinitrotoluene	340	U
83-32-9	Acenaphthene	340	U
99-09-2	3-Nitroanifine	850	U

SAMPLE NO.

SBQUEENBC

ab Name:	AENI MD			Contract:	OHM	SBUUL	LIIDUA
Project No.:	9508005	Site:		Location:		Group:	
Matrix: (soil)	(water)	SOIL			Lab Sample ID:	#005	
Sample wt/vo	ol:	30.2 (g/mL) G			Lab File ID:	DH082.D	
Level: (low	imed)	LOW			Date Received:	8/1/95	
% Moisture:	3	decante	d: (Y/N):	N	Date Extracted:	8/3/95	
Concentrated	d Extract Volu	me: <u>1000</u> (uL)			Date Analyzed:	8/10/95	
Injection Volu	ume:	1.0 (uL)			Dilution Factor:	1.0	
GPC Cleanup	o: (Y/ N)	N	pH:				
				Concent	ration Units:		
CA	IS No.	Compound	(1	ug/L or ug/Kg	ug/Kg	Q	
51	-28-5	2,4-Dinitrophenol			850	U	
13	2-64-9	Dibenzofuran			340	U	
12	1-14-2	2,4-Dinitrotoluene			340	U	
10	0-02-7	4-Nitrophenol			850	U	
86	-73-7	Fluorene			340	U	
70	05-72-3	4-Chlorophenyl-phenylethe	er		340	U	
84	-66-2	Diethylphthalate			340	U	
10	0-01-6	4-Nitroaniline			850	U	
53	4-52-1	4,6-Dinitro-2-methylpheno	l		850	U	
86	-30-6	n-Nitrosodiphenylamine			340	U	
10	11-55-3	4-Bromophenyl-phenylethe	er		340	U	
11	8-74-1	Hexachlorobenzene			340	U	
87	-86-5	Pentachlorophenol			850	U	
85	-01-8	Phenanthrene			340	U	
12	0-12-7	Anthracene			340	U	
84	-74-2	Di-n-butylphthalate			340	U	
86	-74-8	Carbazole			340	U	
20	16-44-0	Fluoranthene			340	U	
12	9-00-0	Pyrene			340	U	
85	-68-7	Butylbenzylphthalate			340	U	
91	-94-1	3,3'-Dichlorobenzidine			340	U	
56	3-55-3	Benzo(a)anthracene			340	U	
21	8-01-9	Chrysene			340	U	
11	7-81-7	bis(2-Ethylhexyl)phthalate			220	J	
11	7-84-0	Di-n-octylphthalate			340	U	
20	5-99-2	Benzo(b)fluoranthene			340	U	
20	17-08-9	Benzo(k)fluoranthene			340	U	
50	1-32-8	Benzo(a)pyrene			340	U	
19	3-39-5	Indeno[1,2,3-cd]pyrene			340	U	
53	3-70-3	Dibenz(a,h)anthracene			340	U	
19	11-24-2	Benzo(g,h,i)perylene			340	U	

SAMPLE NO.

ab Name:	AENI MD		Contract: 0	H M	SRUCEUDA
roject No.:	9508005	Site:	Location:		Group:
Matrix: (soil/	water)	SOIL		Lab Sample ID:	#006
Sample wt/vo	ol:	30.9 (g/mL) G		Lab File ID:	DH083.D
.evel: (low	(med)	LOW		Date Received:	8/1/95
Moisture:	4	decanted: (Y/	N): N	Date Extracted:	8/3/95
Concentrated	Extract Volu	ume: <u>1000</u> (uL)		Date Analyzed:	8/10/95
njection Volu	ıme:	1.0(uL)		Dilution Factor:	1.0
SPC Cleanup	: (Y/N)	N	pH:		
			Concentrat	ion Units:	
CA	S No.	Compound	(ug/L or ug/Kg)	ug/Kg	۵
51-	28-5	2,4-Dinitrophenol		840	U
133	2-64-9	Dibenzofuran		340	U
12	1-14-2	2,4-Dinitrotoluene		340	U
100	0-02-7	4-Nitrophenol		840	U
-	-73-7	Fluorene		340	U
700	05-72-3	4-Chlorophenyl-phenylether		340	U
	-66-2	Diethylphthalate		340	U
100	0-01-6	4-Nitroaniline		840	U
534	4-52-1	4,6-Dinitro-2-methylphenol		840	U
86-	-30-6	n-Nitrosodiphenylamine		340	U
10	1-55-3	4-Bromophenyl-phenylether		340	U
118	8-74-1	Hexachlorobenzene		340	U
87-	-86-5	Pentachlorophenol		840	U
85-	-01-8	Phenanthrene		340	U
120	0-12-7	Anthracene		340	U
84-	.74-2	Di-n-butylphthalate		340	U
86-	-74-8	Carbazole		340	U
201	6-44-0	Fluoranthene		340	U
129	9-00-0	Pyrene		340	U
85-	-68-7	Butylbenzylphthalate		340	U
91-	-94-1	3,3'-Dichlorobenzidine		340	U
56-	-55-3	Benzo(a)anthracene		340	U
218	8-01-9	Chrysene		340	U
111	7-81-7	bis(2-Ethylhexyl)phthalate		380	
11	7-84-0	Di-n-octylphthalate		340	U
20	5-99-2	Benzo(b)fluoranthene		340	U
20	7-08-9	Benzo[k]fluoranthene		340	U
50-	-32-8	Benzo(a)pyrene		340	U
19:	3-39-5	Indeno(1,2,3-cd)pyrene		340	U
53-	-70-3	Dibenz(a,h)anthracene		340	U
19	1-24-2	Benzo(g,h,i)perylene		340	U

SAMPLE NO.

Lab Name:	AENI MD				Contract:	ОНМ		SBLKI	31
Project No.:	9508005		Site	:	Location:			Group:	
Matrix: (soil	(water)	SOIL				Lab Sa	mple ID:	0803-JA	
Sample wt/v	ol:	30.0	(g/mL)	G		Lat	File ID:	DH063.D	
Level: (lov	v/med)	LOW				Date R	eceived:		
% Moisture:	0		ď	lecanted: (Y)	N): N	Date Ex	tracted:	8/3/95	
Concentrate	d Extract Volu	me:	1000	(uL)		Date A	nalyzed:	8/8/95	
Injection Vol	ume:	1.0	(uL)			Dilution	Factor:	1.0	
GPC Cleanup	o: (Y/N)	N		ţ	oH:				
					Concen	tration Units:			
CA	AS No.	Compound			(ug/L or ug/K		j/Kg	۵	
11	1-44-4	bis(2-Chloro	ethyllet	her		330		U	
	18-95-2	Phenol			1	330		U	
-	5-57-8	2-Chlorophe	nol			330		U	
	1-73-1	1,3-Dichlord		e		330		U	
_	6-46-7	1,4-Dichlord				330		U	
	5-50-1	1,2-Dichlord				330		U	
_	18-60-1	bis(2-chloro				330		U	
_	i-48-7	2-Methylphe				330		U	
67	7-72-1	Hexachloros				330		U	
62	1-64-7	N-Nitroso-di	-n-prop	ylamine		330		U	
10	6-44-5	4-Methylphe	nol			330		U	
98	3-95-3	Nitrobenzen	8			330		U	
78	3-59-1	Isophorone				330		U	
88	3-75-5	2-Nitrophen	ol			330		U	
10	5-67-9	2,4-Dimethy	Iphenol),		330		U	
11	1-91-1	bis(2-Chloro	ethoxy)	methane		330		U	
12	20-83-2	2,4-Dichlord	phenol			330		U	
12	20-82-1	1,2,4-Trichl	orobenz	ene		330		U	
91	1-20-3	Naphthalen	9			330		U	
10	06-47-8	4-Chloroani	ine			330		U	
87	7-68-3	Hexachiorot	utadier	ne		330		U	
59	9-50-7	4-Chloro-3-r	nethylp	henol		330		U	
91	-57-6	2-Methylna	hthale	ne		330		U	
77	7-47-4	Hexachloro	yclope	ntadiene		330		U	
88	3-06-2	2,4,6-Trichl	oropher	ıol		330		U	
95	-95-4	2,4,5-Trichl	oropher	10		830		U	
91	-58-7	2-Chloronap	hthaler	ie .		330		U	

88-74-4

208-96-8

131-11-3

606-20-2

83-32-9

99-09-2

2-Nitroaniline

Acenaphthylene

Dimethylphthalate

2,6-Dinitrotoluene

Acenaphthene

3-Nitroaniline

U

U

U

U

U

U

830

330

330

330

330

830

SAMPLE NO.

.ab Name:	AENI MD		Contract: OHM		SBLKO1
					2
roject No.:	9508005	Site:	Location:		Group:
Matrix: (soi	l/water)	SOIL		Lab Sample ID:	0803-JA
Sample wt/v	rol:	30.0 (g/mL) G		Lab File ID:	DH063.D
Level: (lov	vimed)	LOW		Date Received:	
% Moisture:	0	decanted: (Y/N):	N	Date Extracted:	8/3/95
Concentrate	d Extract Volu	me: <u>1000</u> (uL)		Date Analyzed:	8/8/95
njection Vol	lume:	1.0 (uL)		Dilution Factor:	1.0
GPC Cleanu	p: (Y/N)	N pH:			
	• ***		Concentration	Units:	
C	AS No.	Compound	ug/L or ug/Kg)	ug/Kg	۵
5	1-28-5	2,4-Dinitrophenol		830	Ü
13	32-64-9	Dibenzofuran		330	U
12	21-14-2	2,4-Dinitrotoluene		330	U
10	00-02-7	4-Nitrophenol		830	U
88	5-73-7	Fluorene		330	U
70	005-72-3	4-Chlorophenyl-phenylether		330	U
84	4-66-2	Diethylphthalate		330	U
10	00-01-6	4-Nitroaniline		830	U
53	34-52-1	4,6-Dinitro-2-methylphenol		830	U
86	6-30-6	n-Nitrosodiphenylamine		330	U
10	01-55-3	4-Bromophenyl-phenylether		330	U
	18-74-1	Hexachlorobenzene		330	U
8	7-86-5	Pentachlorophenol		830	U
8	5-01-8	Phenanthrene	1	330	U
-	20-12-7	Anthracene		330	U
84	4-74-2	Di-n-butylphthalate		330	U
81	6-74-8	Carbazole		330	U
-	06-44-0	Fluoranthene		330	U
-	29-00-0	Pyrene		330	U
_	5-68-7	Butylbenzylphthalate		330	U
_	1-94-1	3,3'-Dichlorobenzidine		330	U
-	6-55-3	Benzo(a)anthracene		330	U
_	18-01-9	Chrysene		330	U
_	17-81-7	bis(2-Ethylhexyl)phthalate		330	U
	17-84-0	Di-n-octylphthalate		330	U
-	05-99-2	Benzo(b)fluoranthene		330	U
_	07-08-9	Benzo[k]fluoranthene		330	U
-	0-32-8	Benzo(a)pyrene		330	U
-	93-39-5	Indeno[1,2,3-cd]pyrene		330	U
-	3-70-3	Dibenz[a,h]anthracene		330	U
1	91-24-2	Benzo(g,h,i)perylene		330	U

CHAIN-OF-CU CODY RECORD

Form 00 Freid Technical Service Rev. 08.

CHINE					4	1508005	T										No.	9999	8
О.Н.	MATERIALS	CORF	P. •		P.0	O. BOX 551	•	FINDLAY, OH 45839-0551	•	419	9-423-3	526		-					
PROJ NO	+ Dev	TCONT		(~	l>	PROJECT MAN	PROJE		NUMBER CONTAINERS	UNID	ALYSIS E HCATE ARATE ITAINERS)		165						
ITEM NO.	SAMPLE NUMBER	DATE	TIME	COMP	GRAB			E DESCRIPTION DE MATRIX AND OF SAMPLE)	OF CON		Se st					//	REMAI	aks	
1 5 B	RYBENNYA	7.31	1135	/		()	Va 1510	Soil whomy		1					-	- 0	501		
25 B	RY EENSCA	1	1140	/		Brun	5200	ex sil where		V	4				-		02		
35BC	RYFENLIXA		1151	/		130000	25	- of soil wheny		~	/					-00			
4 5 B	24 EENEY		1156	/		Brown	25-	-dy soilu		1	/				7	-00			
	LUGENBCA		1202	/		Brown	Szy	Dy Soil W		1	7						05		
	UEEN DPA		1140	/		Brown	52.	bble		V	1					Chitago W.	06		
7																			
8																			
9		5.40																	
10															-				
TRANSFER	ITEM NUMBER			RELIN	QUIS	FERS SHED BY		TRANSFERS ACCEPTED BY	DATE	TIME	REMAR	KS	1 0	ر. م ک	١.	k 1×	دارگھ	2	
1	1-6	-	50	11	312	r co	IZ.	26729752	7.3.	1530		' 1	سري.		17	, , ,			
2							*	26729752 3.Tuhi	8/1	1025		31) #1 —		1-1	_			
3																			Ġ.
4											SAMPLE	H'S SIGN	VATURE	50	1-1	3/es	to.	66	

Appendix C
AENI Analytical Report - Waste Characterization Soil Samples

AMERICAN ENVIRONMENTAL NETWORK, INC.

9151 RUMSEY ROAD COLUMBIA, MD. 21045 (410) 730-3525

Project Number: 9509-197

Client Name: O.H. Materials Project Title: Fort Devens Ayer, MA

Four soil samples were analyzed for the volatile organic compounds in

the priority pollutant list by method 8240.

Four soil samples were analyzed for the polynuclear aromatic

hydrocarbons by method 8270.

Five soil samples were TCLP leached according to the SW846 guidelines, and analyzed for the volatile and semivolatile organic compounds in the list of Toxic Characteristic Constituents, by methods 8240 and 8270, respectively.

The analyses followed the standard AENI QA/QC and holding time

requirements.

This package consists of tabulated results of the samples and the method blanks, along with the QC forms II, III and IV.

Data Released

GC/MS Lab Manager

VOLATILES Section:

.===========		=======	========			
client	AENI		Date	Date	Date TCLP	Date
ID	ID	Matrix	Sampled	Received	Leached	Analyzed
			=======		========	
PP Analysis:						
EXQUEEN02	197-002	Soil	09/15/95	09/16/95	N.A.	09/22/95
EXQUEENDUPA	197-004	Soil	09/15/95	09/16/95	N.A.	09/22/95
EX1302	197-007	Soil	09/15/95	09/16/95	N.A.	09/22/95
EX1302DUP	197-009	Soil	09/15/95	09/16/95	N.A.	09/22/95
TCLP Analysis:						
EX243201	197-005	Soil	09/15/95	09/16/95	09/25/95	09/26/95
EXQUEEN01	197-010	Soil	09/15/95	09/16/95	09/25/95	09/26/95
EXQUEENDUP	197-011	Soil	09/15/95	09/16/95	09/25/95	09/26/95
EX1301	197-012	Soil	09/15/95	09/16/95	09/25/95	09/26/95
EX1301DUP	197-013	Soil	09/15/95	09/16/95	09/25/95	09/26/95

Form I (Tabulated Results)

All sample preparation and analyses were performed within the holding time requirement.

The results of the PP analysis were reported on the basis of dry weight.

The leachates were analyzed at a 1:10 dilution to minimize background interference.

Form II (Surrogate Recoveries)

e surrogate recoveries for the samples and the method blanks were ...thin the method specified criteria.

Form III (MS/MSD Recoveries)

PP Analysis: A batch MS/MSD analysis was reported. All spike recoveries and all %RPD were within the method advisory limits.

TCLP Analysis: A batch MS analysis was reported. All spike recoveries were within the method advisory limits.

4. C. S. 1882

Form IV (Method Blank Summary)

322

The method blanks were free of target analytes.

SEMIVOLATILES Section:

,============						======	=====
Client	AENI	Matrix	Date	Date	Date Ex	tracted	Date
ID	ID		Sampl.	Recevd	TCLP	BNA	Analz
			=======				=====
PAH Analysis:							
EXQUEEN01	197-001	Soil	09/15	09/16	N.A.	09/19	09/21
EXQUEENDUP	197-003	Soil	09/15	09/16	N.A.	09/19	09/21
EX1301	197-006	Soil	09/15	09/16	N.A.	09/19	09/21
EX1301DUP	197-008	Soil	09/15	09/16	N.A.	09/19	09/21
TCLP Analysis	:						
EX243201	197-005	Soil	09/15	09/16	09/22	09/23	09/25
EXQUEEN01	197-010	Soil	09/15	09/16	09/22	09/23	09/25
EXQUEENDUP	197-011	Soil	09/15	09/16	09/22	09/23	09/25
EX1301	197-012	Soil	09/15	09/16	09/22	09/23	09/26
EX1301DUP	197-013	Soil	09/15	09/16	09/22	09/23	09/26

Form I (Tabulated Results)

All sample preparation and analyses were performed within the holding time requirement.

The results for the PAH analysis were reported on the basis of dry weight.

The leachates were analyzed at a 1:2 dilution to minimize background interference.

Form II (Surrogate Recoveries)

he surrogate recoveries for all samples, method blanks and LCS were within criteria. Note that the TCLP samples were flagged with 'D' due to the dilution.

Form III (MS Recoveries)

A LCS (PAH analysis) and a TCLP BLK LCS (TCLP analysis) analyses were reported. All spike recoveries were within the method advisory limits.

Form IV (Method Blank Summary)

The method blanks were free of target analytes.

A SAME

PP VOA Analysis

SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: AENI MD

Contract: OHM

Project No.:

9509197

Site: FT. DEVENS

Location: AYER, MA

Group:

Level: (low/med)

LOW

	0.1401.5.140	SMC1	SMC2	SMC3	OTHER	TOT
}	SAMPLE NO.	(DCE) #	(TOL) #	(BFB)		OUT
01	VBLK01	89	99	96		
02	EXQUEEN02	87	96	99		
03	EXQUEENDUPA	91	98	98		
04	EX1302	87	105	87		
05	EX1302DUP	89	108	86		
06						
07						
08						-
09						
10						
11	×					
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						-
30						

QC LIMITS

SMC1 (DCE) - 1,2-Dichloroethane-d4

(70-121)

SMC2 (TOL) - Toluene-d8

(81-117)

SMC3 (BFB) - Bromofluorobenzene

(74-121)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

3B SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: **AENI MD** Contract: OHM

Site: FT. DEVENS Location: AYER, MA

Group:

Matrix Spike - Sample No.:

Project No.: 9509197

BATCH QC 9509216-003 Level: (low/med) LOW

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC	#	QC. LIMITS REC.
1,1-Dichloroethene	50	0	35	70	- 1	(59-172)
Trichloroethene	50	0	40	80		(62-137)
Benzene	50	0	51	102		(66-142)
Toluene	50	0	54	108		(59-139)
Chlorobenzene	50	0	55	110		(60-133)

	SPIKE ADDED	MSD CONCENTRATION	MS %	*	ac L	IMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
1,1-Dichloroethene	50	33	66	6	22	(59-172)
Trichloroethene	50	37	74	8	24	(62-137)
Benzene	50	47	94	8	21	(66-142)
Toluene	50	50	100	8	21	(59-139)
Chlorobenzene	50	50	100	10	21	(60-133)

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

RPD: 0 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits

Comments:	

4A VOLATILE METHOD BLANK SUMMARY

SAMPLE NO.

VBLK01

<u>Y</u>

Contract: OHM **AENI MD** Lab Name: 9509197 Site: FT. DEVENS Location: AYER, MA Project No.: Group: Lab File ID: FI452.D Lab Sample ID: 0922VBLK Date Analyzed: 9/22/95 Time Analyzed: __ 1352 CAP (Y/N) GC Column: ID: 0.53 (mm) Heated Purge:

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

F7200

Instrument ID:

SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE
11 EXQUEENO2	#002	F1453.D	9/22/95
2 EXQUEENDUPA	#004	F1454.D	9/22/95
3 EX1302	#007	F1455.D	9/22/95
14 EX1302DUP	#009	FI456.D	9/22/95
5			
6			
7			
8			
9			
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			
0			

COMMENTS:	

SAMPLE NO.

EXQUEENO2

1 (uL)

Lab Name: AENI MD Contract: OHM Project No.: 9509197 Site: FT. DEVEN Location: AYER, MA Group: Matrix: (soil/water) SOIL Lab Sample ID: #002 5.0 Lab File ID: FI453.0 Sample wt/vol: (g/mL) G LOW 9/16/95 Date Received: Level: (law/med) 2 9/22/95 % Moisture: not dec. Date Analyzed: GC Column: CAP ID: 0.53 (mm) Dilution Factor: 1.0

1 (uL)

Soil Extract Volume:

Concentration Units:

Soil Aliquot Volume:

		Concentration Units:			
CAS No.	Compound	(ug/L or ug/Kg) ug/Kg	0		
74-87-3	Chloromethane	10	U		
74-83-9	Bromomethane	10	U		
75-01-4	Vinyl Chloride	10	U		
75-00-3	Chloroethane	10	U		
75-09-2	Methylene Chloride	5.1	U		
107-13-1	Acrylonitrile	100	U		
107-2-8	Acrolein	100	U		
75-69-4	Trichlorofluoromethane	5.1	U		
75-35-4	1,1-Dichloroethene	5.1	U		
75-34-4	1,1-Dichloroethane	5.1	U		
156-60-5	trans-1,2-Dichloroethene	5.1	U		
67-66-3	Chloroform	5.1	U		
107-06-2	1,2-Dichloroethane	5.1	U		
71-55-6	1,1,1-Trichloroethane	5.1	U		
56-23-5	Carbon Tetrachloride	5.1	U		
75-27-4	Bromodichloromethane	5.1	U		
78-87-5	1,2-Dichloropropane	5.1	U		
10061-01-5	cis-1,3-Dichloropropene	5.1	U		
79-01-6	Trichloroethene	5.1	U		
71-43-2	Benzene	5.1	U		
124-48-1	Dibromochloromethane	5.1	U		
10061-02-6	trans-1,3-Dichloropropene	5.1	U		
79-00-5	1,1,2-Trichloroethane	5.1	U		
110-75-8	2-Chloroethylvinylether	10	U		
75-25-2	Bromoform	5.1	U		
127-18-4	Tetrachloroethene	5.1	U		
79-34-5	1,1,2,2-Tetrachloroethane	5.1	U		
108-88-3	Toluene	7.7			
108-90-7	Chlorobenzene	5.1	U		
100-41-4	Ethylbenzene	5.1	U		
541-73-1	1,3-Dichlorobenzene	5.1	U		
106-46-7	1,4-Dichlorobenzens	5.1	U		
95-50-1	1,2-Dichlorobenzene	5.1	U		

SAMPLE NO.

EXQUEENDUPA Lab Name: **AENI MD** Contract: OHM Project No.: 9509197 Site: FT. DEVEN Location: AYER, MA Group: Matrix: (soil/water) SOIL Lab Sample ID: #004 Sample wt/vol: 5.0 (g/mL) G Lab File ID: FI454.D LOW Level: (low/med) Date Received: 9/16/95 3 Date Analyzed: 9/22/95 % Moisture: not dec. Dilution Factor: 1.0 GC Column: CAP 10: 0.53 (mm) Soil Aliquot Volume: 1 (uL) Soil Extract Volume: 1 (uL) **Concentration Units:** Q CAS No. Compound (ug/L or ug/Kg) ug/Kg 74-87-3 10 U Chloromethane 74-83-9 Bromomethane 10 U U 75-01-4 Vinyl Chloride 10 75-00-3 Chloroethane 10 U 75-09-2 5.1 U Methylene Chloride 107-13-1 Acrylonitrile 100 U U 107-2-8 100 Acrolein 75-69-4 5.1 U Trichlorofluoromethane 75-35-4 5.1 U 1,1-Dichloroethene 5.1 U 75-34-4 1,1-Dichloroethane trans-1,2-Dichloroethene 5.1 U 156-60-5 U 67-66-3 Chloroform 5.1 107-06-2 1,2-Dichloroethane 5.1 U U 71-55-6 1,1,1-Trichloroethane 5.1 U 56-23-5 5.1 Carbon Tetrachloride U 75-27-4 Bromodichloromethane 5.1 78-87-5 1,2-Dichloropropane 5.1 U 10061-01-5 cis-1,3-Dichloropropene 5.1 U 5.1 79-01-6 Trichloroethene U 71-43-2 5.1 Benzene U 124-48-1 Dibromochloromethane 5.1 U 10061-02-6 trans-1,3-Dichloropropene 5.1 U 79-00-5 1,1,2-Trichloroethane 5.1 U 110-75-8 2-Chloroethylvinylether 10 U 75-25-2 Bromoform 5.1 U 127-18-4 Tetrachloroethene 5.1 U 79-34-5 1,1,2,2-Tetrachloroethane U 5.1 108-88-3 Toluene 6.5 108-90-7 Chlorobenzene 5.1 U 100414 Ethylbenzene 5.1 U

5.1

5.1

5.1

541-73-1

106-46-7

95-50-1

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

U

U

U

WATER SURROGATE PERCENT RECOVERY SUMMARY

Case No.:

9509197

Laboratory Name: American Environmental Network Inc.

Client ID	AEN ID	DCAA DB-5	DB-608
BLANK	BLK 0920LA	55	86
TCLP BLANK	TCLP BLK 0920LA	97	88
BLANK SPIKE	TOLP LOS 0920LA	91	97
BLANK SPIKE DUP	TOUP LOSD 0920LA	89	97
E)(243201	9509197-005	91	92
EXQUEEN01	9509197-010	89	85
EXQUEENDUP	9509197-011	89	85
EX1301	9509197-012	95	94
EX1301DUP	9509197-013	85	87
		1	

CONTROL LIMITS = 50-150%

* - Values are outside	of contract required QC limits.
M-Matrix interference.	D-Surrogate diluted out.

0	out of	18	
autrida (C limite		

AMERICAN ENVIRONIMENTAL NETWORK INC. ORGANIC ANALYSIS DATA SHEET HERBICIDES METHOD 8150

Case No.:	9509197	Sample Number EXQUEEN01	
Client Name:	OHM CORPORATION	W	
Project Name:	FORT DEVENS	AENI # 9509197-010	
Concentration:	Low	GPC Cleanup	No
Date Sampled:	9/15/95	Separatory Funnel Ext.;	Yes
Date Received:	9/16/95	Continuous Liq-Liq Ext.: 1	No
Date Extract Prepared:	9/20/95	Percent Moisture (decanted)	NA
Date Analyzed:	9/22/95		
Conc/Dil Fector:	_1		
Matrix	LEACH		

Compound	Concentration ug/L	Reporting Limit	Qualifier
2,4 D		0.50	U
SILVEX		0.50	U

VI - Volume of extract injected (ul)	1
Vs - Volume of water extracted (ml)_	500
Ws - Mass of soil extracted (g)	NA
Vt- Volume of total extract (ul)	5000

AMERICAN ENVIRONMENTAL NETWORK INC. ORGANIC ANALYSIS DATA SHEET HERBICIDES METHOD 8150

•		Sample Number	
Case No.:	9509197	EXQUEENDUP	
Client Name:	OHM CORPORATION		
Project Name:	FORT DEVENS	AENI # 9509197-011	
Concentration:	Low	GPC Cleanup	₩0
Date Sampled:	9/15/95	Separatory Funnel Ext.:Y	100
Date Received:	9/16/95	Continuous Liq-Liq Ed.: N	40
Date Extract Prepared:	9/20/95	Percent Moisture (decanted) 1	WA
Date Analyzed:	9/22/95		
Conc/Dil Factor:	1		
Matrix	LEACH		

Compound	Concentration ug/L	Reporting Limit	Qualifier
2,4 D		0.50	U
SILVEX		0.50	U

Vi - Volume of extract injected (ui)	1
Vs - Volume of water extracted (ml)_	500
Ws - Mass of soil extracted (g)	NA
Vt- Volume of total extract (ui)	5000

AMERICAN ENVIRONMENTAL NETWORK INC. ORGANIC ANALYSIS DATA SHEET HERBICIDES METHOD 8150

Case No.:	9509197	Sample Number BLANK	
Client Name:	OHM CORPORATION	55411	
Project Name:	FORT DEVENS	AENI # BLK 0920LA	
Concentration:	Low	GPC Cleanup	No
Date Sampled:	N/A	Separatory Funnel Ext.:	Yes
Date Received:	N/A	Continuous Liq-Liq Ext.:	No
Date Extract Prepared:	9/20/95	Percent Moisture (decanted)	N/A
Date Analyzed:	9/21/95		
Conc/Dil Factor:	_1		
Metrix	WATER		

Compound	Concentration ug/L	Reporting Limit	Qualifier
2,4 D		0.25	U
SILVEX		0.25	υ

VI - Volume of extract injected (ul)	1
Vs - Volume of water extracted (ml)_	1000
Ws - Mass of soil extracted (g)	N/A
Vt- Volume of total extract (ul)	5000

AMERICAN ENVIRONMENTAL NETWORK INC. ORGANIC ANALYSIS DATA SHEET HERBICIDES METHOD 8150

Case No.:	9509197	TCLP BLANK
Client Name:	OHM CORPORATION	
Project Name:	FORT DEVENS	AENI # TCLP BLK 0920LA
Concentration:	Low	GPC Cleanup No
Date Sampled:	N/A	Separatory Funnel Ext.: Yes
Date Received:	N/A	Continuous Liq-Liq Ext.: No
Date Extract Prepared:	9/20/95	Percent Moisture (decanted) N/A
Date Analyzed:	9/21/96	_
Conc/Dil Factor:	1	
Matrix	LEACH	

Compound	Concentration ug/L	Reporting Limit	Qualifier
2.4 D		0.50	U
SILVEX		0.50	U

VI - Volume of extract injected (ul)	1
Vs - Volume of water extracted (mi)	500
Ws - Mass of soil extracted (g)	NA
Vt- Volume of total extract (ui)	5000

AMERICAN ENVIRONMENTAL NETWORK, INC. HERBICIDE MATRIX SPIKE RECOVERIES

Case No.:

9509197

Client Sample ID: LCS/LCSD 0920LA

Client Name:

OHM CORPORATION

Date of Analysis:

9/21/95

Project Name:

FORT DEVENS

Instrument ID:

GC-H

	SPIKE	SAMPLE	BS	BS	BSD	BSD	QC
COMPOUND	ADDED	CONCENTRATION	CONC	%	CONC	%	LIMITS
	(ug/L)	(ug/L)	(John)	REC	(nd/r)	REC	REC
.4-D	5.03	0.0	4.11	82	4.33	86	50-150
Silvex	5.29	0.0	4.74	90	4.53	86	50-150

Spike Recovery:

0 out of 4

outside QC limits.

AMERICAN ENVIRONMENTAL NETWORK, INC.

9151 Rumsey Road Suite 150, Columbia, MD 21045-1992 (410) 730-8525 Fax (410) 997-2586

September 28, 1995

Client:

OHM Corporation

Project: Ft. Devens

Case:

9509197

Analysis: Metals

Client ID	AENI ID	Date Sampled	Date Received	Date <u>Analyzed</u>
EXQUEEN01	9509197-001	09/15/95	09/16/95	09/19-27/95
EXQUEENDUP	9509197-003	09/15/95	09/16/95	09/19-27/95
EX243201	9509197-005	09/15/95	09/16/95	09/19-27/95
EX1301	9509197-006	09/15/95	09/16/95	09/19-27/95
X1301DUP	9509197-008	09/15/95	09/16/95	09/19-27/95
EXQUEEN01	9509197-010	09/15/95	09/16/95	09/19-27/95
EXQUEENDUP	9509197-011	09/15/95	09/16/95	09/19-27/95
EX1301	9509197-012	09/15/95	09/16/95	09/19-27/95
EX1301DUP	9509197-013	09/15/95	09/16/95	09/19-27/95

Four soil samples were received and analyzed for RCRA Metals and five soil samples were received and analyzed for TCLP Metals. Results are reported in units of mg/Kg dry weight for the RCRA metals and ug/L in the leachate for the TCLP Metals.

The RCRA Metals matrix spiked sample was outside control limits for Cd and Cr and the samples were post-spiked with acceptable recovery. All other QC data were within normal control limits.

Report Released By

Christopher Baggett Metals Laboratory Manager

AMERICAN ENVIRONMENTAL NETWORK OF MARYLAND HETALS DATA ANALYSIS

CLIENT: OHM Corporation ABNI ID #: 9509197-001

DATE: 25-Sep-95

SAMPLE ID #:	EXGRESO1	♦ sor	IDS: 97.7		UNITS: mg/Kg DRY WBIGHT
	ANALYTE	METHOD	REPORTING LINIT	Sample Result	
	ARSBNIC	6010	1.0	25	
	BARIUM	6010	10	29	
	CADMIUM	6010	0.41	< 0.41	
	CHROMIUM	6010	1.0	30	
	LEAD	6010	1.0	13	
	MERCURY	7471	0.10	< 0.10	9.6
	SELENIUM	6010	0.51	< 0.51	
	SILVER	6010	1.0	< 1.0	

AMERICAN ENVIRONMENTAL NETWORK OF MARYLAND RETALS DATA ANALYSIS

CLIENT:

OHM Corporation

9509197-003

DATE: 25-Sep-95

ARNI ID #: SAMPLE ID #: EXQUEENDUP

SOLIDS:

97.8

UNITS: mg/Kg DRY WEIGHT

*********	ANALYTE	METHOD	REPORTING LIMIT	SAMPLE RESULT	***************************************
	ARSENIC	6010	1.0	44	
	BARIUM	6010	10	24	
	CADMIUM	6010	0.41	< 0.41	
	CHROMIUM	6010	1.0	31	
	LEAD	6010	1.0	11	
	MERCURY	7471	0.10	< 0.10	
	SELENIUM	6010	0.51	< 0.51	
	SILVER	6010	1.0	< 1.0	

AMERICAN ENVIRONMENTAL NETWORK OF MARYLAND METHOD BLANK / LCS * RECOVERY

CLIENT:

OHM Corporation

DATE: 25-Sep-95

UNITS: mg/Kg DRY WEIGHT

********	********		******	*******	• • • • • • • • • • • • • • • • • • • •	*******
	ANALYTE	METHOD	MB	THOD	* RECOVERY	
			8	LANK	LCS	
	ARSENIC	6010	<	1	95	
	BARIUM	6010	<	10	103	
	CADMIUM	6010	<	0.4	100	
		601.0		1		
	CHRONIUM	6010	<	1	92	
	LEAD	6010	<	1	101	
				_		
	MERCURY	7471	<	0.1	87	
	SELENIUM	6010	<	0.5	95	
	SILVER	6010	<	1	96	

AMERICAN ENVIRONMENTAL NETWORK OF MARYLAND

REPLANA ATAO ELATEN

SPIKED SAMPLE RECOVERY

CLIENT:

OHM Corporation

DATE: 25-Sep-95

ABNI ID #:

9509197-001 (Hg) /9509192 (ICP) SAMPLE ID #: EX1301DUP/AENI

UNITS: mg/Kg DRY WEIGHT

ANALYTE		PLZ	SPIKED Results	SPIKE Added	*RECOVERY
ARSENIC		6.4	17	10	99
BARIUM	2	500	2680	210	NA
CADMIUM		1.2	8.5	5.2	140 OC
CHROMIUM		72	99	21	128 OC
LEAD	5	940	6590	52	NA
MERCURY	<	0.1	1.3	1	120
SELENIUM	< 0	. 52	8.6	10	8.2
SILVER	<	1	9.9	10	94

NA - NOT APPLICABLE BECAUSE SAMPLE CONCENTRATION > 4 TIMES SPIKE LEVEL

OC = OUT OF CONTROL LIMTS OF 75-125%

SAMPLE NO.

VBLK01

Lab Name: **AENI MD** Contract: OHM Site: FT. DEVEN Location: AYER, MA Project No.: 9509197 Group: Matrix: (soil/water) SOIL Lab Sample ID: 0922VBLK 5.0 (g/mL) Lab File ID: FI452.D Sample wt/vol: G LOW Level: (low/med) Date Received: 0 Date Analyzed: 9/22/95 % Moisture: not dec. Dilution Factor: 1.0 GC Column: CAP ID: 0.53 (mm) Soil Aliquot Volume: 1 (uL) Soil Extract Volume: 1 (uL) Concentration Units:

CAS No.	Compound	(ug/L or ug/Kg)	ug/Kg Q
74-87-3	Chloromethane	10	
74-83-9	Bromomethane	10	
75-01-4	Vinyl Chloride	10	
75-00-3	Chloroethane	16	
75-09-2	Methylene Chloride		5 U
107-13-1	Acrylonitrile	100	
107-2-8	Acrolein	100	U
75-69-4	Trichlorofluoromethane		5 U
75-35-4	1,1-Dichloroethene		5 U
75-34-4	1,1-Dichloroethane		5 U
156-60-5	trans-1,2-Dichloroethene		5 U
67-66-3	Chloroform		5 ป
107-06-2	1,2-Dichloroethane		5 U
71-55-6	1,1,1-Trichloroethane		5 ป
56-23-5	Carbon Tetrachloride		5 U
75-27-4	Bromodichloromethane		5 U
78-87-5	1,2-Dichloropropane		5 U
10061-01-5	cis-1,3-Dichloropropene		5 U
79-01-6	Trichloroethene		5 U
71-43-2	Benzene		5 U
124-48-1	Dipromochloromethane		5 U
10061-02-6	trans-1,3-Dichloropropene		5 U
79-00-5	1,1,2-Trichloroethane		5 U
110-75-8	2-Chloroethylvinylether		0 U
75-25-2	Bromoform		5 U
127-18-4	Tetrachloroethene		5 U
79-34-5	1,1,2,2-Tetrachloroethane		5 U
108-88-3	Toluene		5 U
108-90-7	Chlorobenzene		5 U
100-41-4	Ethylbenzene		5 U
541-73-1	1,3-Dichlorobenzene		5 U
106-46-7	1,4-Dichlorobenzene		5 U
95-50-1	1,2-Dichlorobenzene		5 U

TCLP VOA Analysis

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: AE

AENI MD

Contract: OHM

Project No.:

9509197

Site: FT DEVENS

Location: AYER

Group: MA

		SMC1	SMC2	SMC3	OTHER	TOT
	SAMPLE NO.	(DCE) #	(TOL) #	(BFB) #	#	OUT
01[VBLK01	88	101	100		
02	0925TCLP	84	98	98		
03[EX243201	83	101	100		
04	EXQUEEN01	86	101	102		
05	EXQUEENDUP	87	98	97		
06	EX1301	84	98	96		
07	EX1301DUP	81	96	95		
08[
09[
10						-
11[
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29[
30						

QC LIMITS

SMC1 (DCE) - 1,2-Dichloroethane-d4

(76-114)

SMC2 (TOL) - Toluene-d8

(88-110)

SMC3 (BFB) - Bromofluorobenzene

(86-115)

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

3A WATER VOLATILE MATRIX SPIKE RECOVERY

Lab Name: _	AENI MD		Contract: OHM	
Project No.: 9	9509197	Site: FT DEVENS	Location: AYER, MA	Group:
Matrix Spike	- Sample No.:	9509258-001		

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC	QC. LIMITS # REC.
1,1-Dichloroethene	50	0	42	84	(61-145)
Trichloroethene	50	0	47	94	(71-120)
Benzene	50	0	58	116	(76-127)
Toluene	50	0	59	118	(76-125)
Chlorobenzene	50	0	61	122	(75-130)

* Values outside of QC limits

SAMPLE NO.

		VOLKTICE METHOD BE	AIR SUIMMAN	VBLK01
Lab Name:	AENI MD	Contract	: <u>OHM</u>	
Project No.:	9509197	Site: FT DEVENS	Location: AYER	Group: MA
Lab File ID:	E1343.D		Lab Sample ID:	0926EBLK
Date Analyzed	9/26/95		Time Analyzed:	1342
GC Column:	CAP.	ID: 0.53 (mm)	Heated Purge:	(Y/N) <u>N</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

E7200

Instrument ID:

CAMBLE NO	LAB	LAB	DATE
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01 0925TCLP	0925TCLP	E1344.D	9/26/95
02 EX243201	#005	El347.D	9/26/95
03 EXQUEENO1	#010	E1348.D	9/26/95
04 EXQUEENDUP	#011	E1349.D	9/26/95
05 EX 1301	#012	E1350.D	9/26/95
06 EX1301DUP	#013	E1351.D	9/26/95
07			
08			
09			
10			
11			
12			
13			
14			
15		-	
16			
17			1
18		_	1
19			
20			1
21			-
22		_	
23		+	
24			
25			
26			-
27	-		
		-	
28			
29			-
30			

COMMENTS:			

EXQUEEN01

.ab Name:	AENI MD		Contract: 01	нм		
Project No.:	9509197	Site: FT DEVEN	IS Location: A	YER	Group: N	MA
Matrix: (soil)	(water)	SOIL		Lab Sample ID:	#010	
Sample wt/vo	oi:	5.0 (g/mL) ML		Lab File ID:	E1348.D	
_evel: (low	/med)	_		Date Received:	9/16/95	
Moisture:	not dec.			Date Analyzed:	9/26/95	
GC Column:	CAP.	ID: 0.53	(mm)	Dilution Factor:	10.0	
Soil Extract \	Volume:	(uL)		Soil Aliquot Volume:		(uL)
			Concentrati	ion Units:		
CA	S No.	Compound	(ugiL or ug/Kg)	ug/L of Leach	a	
75	-01-4	Vinyl Chloride		100	מט	
	35-4	1,1-Dichloroethene		50	UD	
	-66-3	Chloroform		50	מט	
10	7-06-2	1,2-Dichloroethane		50	UÐ	
78-	-93-3	2-Butanone		1000	UD	
56-	-23-5	Carbon Tetrachloride		50	QU	
79	-01-6	Trichloroethene		50	UD	
71-	-43-2	Benzene		50	QU	
12	7-18-4	Tetrachloroethene		50	מט	
10	8-90-7	Chlorobenzene		50	מט	
		The state of the s				
_						
_						
_						
_						
_						
-						
_			_			
_			-			
			-			
-						
			-			

SAMPLE NO.

EXQUEENDUP

Lab Name: AENI MD Contract: OHM Project No.: 9509197 Site: FT DEVENS Location: AYER Group: MA Lab Sample ID: #011 Matrix: (soil/water) SOIL Sample wt/vol: 5.0 __ (g/mL) ML Lab File ID: El349.D Date Received: 9/16/95 Level: (low/med) Date Analyzed: 9/26/95 % Moisture: not dec. ID: 0.53 (mm) Dilution Factor: 10.0 GC Column: CAP. Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Concentration Units: CAS No. Compound (ug/L or ug/Kg) ug/L 0 of Leach 75-01-4 100 QU Vinyl Chloride UD 75-35-4 1,1-Dichloroethene 50 50 UD 67-66-3 Chloroform UD 107-06-2 1,2-Dichloroethane 50 1000 UD 78-93-3 2-Butanone UD 56-23-5 Carbon Tetrachloride 50 79-01-6 50 QU Trichloroethene UD 71-43-2 50 Benzene UD 127-18-4 50 Tetrachloroethene UD 108-90-7 Chlorobenzene 50

SAMPLE NO.

VBLK01

					ABL	KUT
Lab Name:	AENI MD		Contract:	OHM		
Project No.:	9509197	Site: FT DEVE	NS Location:	AYER	Group: 1	AA
Matrix: (soil/	water)	WATER		Lab Sample ID:	0926EBLK	
Sample wt/vo	oi:	5.0(g/mL)ML	_	Lab File ID:	E1343.D	
Level: (low	(med)		,	Date Received:		
% Moisture:	not dec.			Date Analyzed:	9/26/95	
GC Calumn:	CAP.	ID: <u>0.53</u>	_(mm)	Dilution Factor:	1.0	
Soil Extract \	/olume:	(uL)		Soil Aliquot Volume:		(uL)
			Concent	ration Units:		
CA	S No.	Compaund	(ug/L or ug/Kç	g) ug/L of Leach	Q	
75-	01-4	Vinyl Chloride		10	U	
-	35-4	1,1-Dichloroethene		5	U	
-	-66-3	Chloroform		5	Ü	
10	7-06-2	1,2-Dichloroethane		5	U	
78-	93-3	2-Butanone		100	U	
56-	-23-5	Carbon Tetrachloride		5	U	
79-	-01-6	Trichloroethene		5	U	
71-	43-2	Benzene		5	U	
12	7-18-4	Tetrachloroethene		5	U	
10	8-90-7	Chlorobenzene		5	U	
1			-			
-						
_						
_						
-						
						i

SAMPLE NO.

0925TCLP Lab Name: **AENI MD** Contract: OHM Site: FT DEVENS Location: AYER Group: MA Project No.: 9509197 Matrix: (soil/water) WATER Lab Sample ID: 0925TCLP 5.0 (g/mL) Lab File ID: El344.D Sample wt/voi: ML Date Received: Level: (low/med) Date Analyzed: 9/26/95 % Maisture: not dec. Dilution Factor: 10.0 ID: 0.53 (mm) GC Column: CAP. Soil Aliquot Volume: (uL) Soil Extract Volume: (uL) Concentration Units: a ug/L CAS No. Compound (ug/L or ug/Kg) of Leach 75-01-4 100 UD Vinyl Chloride 50 UD 75-35-4 1,1-Dichloroethene 50 UD 67-66-3 Chloroform 107-06-2 1,2-Dichloroethane 50 UD 1000 UD 78-93-3 2-Butanone 56-23-5 Carbon Tetrachloride 50 υD 50 UD 79-01-6 Trichloroethene 50 UD 71-43-2 Benzene 127-18-4 50 UD Tetrachloroethene 50 UD 108-90-7 Chlorobenzene

PAH Analysis

2D SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name:	AENI MD		Contract: OHM	
Project No.:	9509197	Site:	Location:	Group:
Level: (low/m	ed) LOW			

Γ		S1	S2	S3						TOT
L	SAMPLE NO.	(NBZ) #	(FBP) #	(TPH) #	#	#	#	#	#	OUT
01	SBLK01	77	81	44						
02	SBLK01MS	68	71	39						
03	EXQUEEN01	72	76	38						
04	EXQUEENDUP	43	52	36						
05	EX1301	53	63	35						
06	EX1301DUP	59	64	30						
07[
08										
09										
10										
11[
12										
13[
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28					2					
29										
30		ľ								

 QC LIMITS

 S1 (NBZ) - Nitrobenzene-d5
 (23-120)

 S2 (FBP) - 2-Fluorobiphenyl
 (30-115)

 S3 (TPH) - Terphenyl-d14
 (18-137)

Column to be used to flag recovery values

D Surrogate diluted out

^{*} Values outside of contract required QC limits

30 SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	AENI MD	*	Contract: OHM	
Project No.:	9509197	Site:	Location:	Group:
Matrix Spike	- Sample No.:	0919LCS	Level: (low/med) LOW	

SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC. Limits Rec.
3300	0	2000	61	(28-104)
3300	0	2300	70	(41-126)
3300	0	2100	64	(41-126)
3300	0	2400	73	(31-137)
3300	0	2100	64	(28-89)
3300	0	2500	76	(35-142)
	ADDED (ug/Kg) 3300 3300 3300 3300 3300	ADDED (ug/Kg) (ug/Kg) 3300 0 3300 0 3300 0 3300 0 3300 0 3300 0	ADDED (ug/Kg) CONCENTRATION (ug/Kg) CONCENTRATION (ug/Kg) 3300 0 2000 3300 0 2300 3300 0 2100 3300 0 2400 3300 0 2100	ADDED (ug/Kg) CONCENTRATION (ug/Kg) CONCENTRATION (ug/Kg) % REC # 3300 0 2000 61 3300 0 2300 70 3300 0 2100 64 3300 0 2400 73 3300 0 2100 64

COMPOUND	SPIKE ADDED	MSD CONCENTRATION	MSD % REC	<u></u>	% RPD		QC LI RPD	MITS REC.
COMPOUND	(ug/Kg)	(ug/Kg)	חבט	#	KFU	#		-
1,4-Dichlorobenzene			1				27	(28-104)
N-Nitroso-di-n-propylamine							38	(41-126)
1,2,4-Trichlorobenzene							38	(41-126)
Acenaohthene					-		19	(31-137)
2,4-Dinitrataluene							47	(28-89)
Pyrene							36	(35-142)
				-		\dashv		+

•	Values	outside	of	αc	limits

Comments:			

. 48 SEMIVOLATILE METHOD BLANK SUMMARY

•				-	
-	Δ	м	PI	-	NO
•	~			-	140

Lab Name: AENI I	MD	Co	ontract: OHM	SBLK01
Project No.: 95091	97	Site:	Location:	Group:
Lab File ID: DI275	.D		Lab Sample IO:	0919-JA
Instrument ID:	MSD 1		Date Extracted:	9/19/94
Matrix: (soil/water)	SOIL		Date Analyzed:	9/21/95
Level: (low/med)	LOW		Time Analyzed:	1548

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
01	SBLK01MS	0919LCS	DI276.D	09/21/95
02	EXQUEEN01	#001	D1279.D	09/21/95
03	EXQUEENDUP	#002	D1280.D	09/21/95
04	EX1301	#006	DI281.D	09/21/95
05	EX1301DUP	#008	D1282.D	09/21/95
06				
07				
08				
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:				

SAMPLE NU.

.ab Name:	AENI MO		Contract: Of	нм	EXQUEENO	1
Project No.:	9509197	Site:	Location:		Group:	
Matrix: (soil/	water)	SOIL	_	Lab Sample ID:	#001	
Sample wt/vo	ol:	30.5(g/mL) G		Lab File ID:	DI279.D	
_evel: (low	imed)	LOW		Date Received:	9/16/95	
% Moisture:	2	decanted: (Y/	N):N	Date Extracted:	9/19/94	
Concentrated	Extract Volu	me: <u>1000</u> (uL)		Date Analyzed:	9/21/95	
njection Volu	ıme:	1.0 (uL)		Dilution Factor:	1.0	
GPC Cleanup	: (Y/N)	N	рН:			
			Concentrati			
CA	S No.	Compound	(ug/L or ug/Kg)	ug/Kg	<u> </u>	
91-	-20-3	Naphthalene		330	U	
91-	57-6	2-Methylnaphthalene		330	U	
91-	-58-7	2-Chloronaphthalene		330	U	
208	8-96-8	Acenaphthylene		330	U	
83-	32-9	Acenaphthene		330	U	
132	2-64-9	Dibenzofuran		330	U	
86-	73-7	Fluorene		330	U	
85-	01-8	Phenanthrene		330	U	
120	D-12-7	Anthracene		330	ט	
208	6-14-0	Fluoranthene		330	U	
129	9-00-0	Pyrene		330	U	
56-	·55·3	Benzo(a)anthracene		330	U	
218	8-01-9	Chrysene		330	U	
205	5-99-2	Benzo(b)fluoranthene		330	U	
207	7-08-9	Benzo(k)fluoranthene		330	U	
50-	32-8	Benzo(a)pyrane		330	U	
193	3-39-5	Indeno(1,2,3-cd)pyrene		330	U	
	70-3	Dibenz(a,h)anthracene		330	U	
19	1-24-2	Benzo(g,h,i)perylene		330	U	

_						
-						
			1		1	

SAMPLE NO.

6.						EXQUEEN	DUP
ab Name:	AENI MD			Contract:	ОНМ		
roject No.:	9509197		Site:	_ Location:		Group:	
Matrix: (soil/	water)	SOIL			Lab Sample ID:	#002	
Sample wt/vo	nt:	30.2	(g/mL) G	_	Lab File ID:	D1280.D	
.evel: (low	/med)	LOW			Date Received:	9/16/95	
Moisture:	2	_	decanted: (Y/N): N	Date Extracted:	9/19/94	
Concentrated	Extract Volu	me:	_1000_(uL)		Date Analyzed:	9/21/95	
njection Volu	me:	1.0	_(uL)		Dilution Factor:	1.0	
GPC Cleanup	: (Y/N)	N	•	рН:			
				Concent	ration Units:		
CA	S No.	Compound		(ug/L or ug/Kg	ug/Kg	Q	
91-	20-3	Naphthalen	9		340	U	
91-	57-6	2-Methylna	phthalene		340	U	
91-	58-7	2-Chloronat	hthalene		340	U	
208	3-96-8	Acenaphthy	lene		340	U	
83-	32-9	Acenaphthe	ne		340	U	
133	2-64-9	Dibenzofura	ın		340	U	
86-	73-7	Fluorene			340	U	
85-	01-8	Phenanthre	ne		340	U	
120	J-12-7	Anthracene			340	U	
206	6-44-0	Fluoranther	le		52	J	
129	9-00-0	Pyrene			41	J	
56-	55-3	Benzo[a]ant	hracene		340	U	
218	3-01-9	Chrysene			340	U	
208	5-99-2	Benzo[b]flu	oranthene		340	U	
207	7-08-9	Benzo(k)flui	oranthene		340	U	
50-	32-8	Benzo(a)pyr			340	U	
193	3-39-5	Indeno(1.2,	3-cd]pyrene		340	U	
53-	70-3	Dibenz(a,h)a			340	U	
19	1-24-2	Benzo(g,h,i)			340	U	
			,				
		-1.15					
		-11					
	-						
-			-	-			
_							

SAMPLE NO.

U

U

U

U

U

330

330

330

330

330

MIVULATILE URGANICS ANALYSIS DATA SHEET	
	SBLK01
Contract: OUL	1

		-				SBLK01
Lab Name:	AENI MO		2000	Contract:	OHM	
Project No	.: 9509197	_	Site:	Location:	(Group:
Matrix: (s	oil/water)	SOIL			Lab Sample ID:	0919-JA
Sample wt	/vol:	30.0	(g/mL) G		Lab File ID:	01275.0
Level: (le	ow/med)	LOW			Date Received:	
% Moistur	e: 0		decanted: (Y/N):	N	Date Extracted:	9/19/94
Concentra	ted Extract Volu	ime:	1000 (uL)		Date Analyzed:	9/21/95
Injection V	olume:	1.0	(uL)		Dilution Factor:	1.0
GPC Clean	iup: (Y/N)	N	рН;			
				Concen	tration Units:	
1	CAS No.	Compound	(ug/L or ug/K	g) ug/Kg	Q
[91-20-3	Naphthaiene			330	U
	91-57-6	2-Methylnap	hthalene		330	U
[91-58-7	2-Chloronap	hthalene		330	U
Ī	208-96-8	Acenaohthy	ene		330	U
	83-32-9	Acenaphthe	ne		330	U
Ī	132-64-9	Dibenzofura	n		330	U
Ī	86-73-7	Fluorene			330	U
Ī	85-01-8	Phenanthren	е		330	U
Ī	120-12-7	Anthracene			330	U
	206-44-0	Fluoranthen	9		330	U
Ī	129-00-0	Pyrene			330	U
Ī	56-55-3	Benzo(a)anti	racene		330	Ú
[218-01-9	Chrysene			330	U
	205-99-2	Benzo(b)fluo	ranthene		330	U

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Benzo(a)pyrene

207-08-9

50-32-8

193-39-5

191-24-2

53-70-3

TCLP BNA Analysis

2C WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name:	AENI MD		Contract: OHM	Contract: OHM		
Project No.:	9509197	Site:	Location:	Group:		

APLE NO. KO2 PBLK PBLKMS 243201 DUEENO1 DUEENDUP 301 301DUP	(2FP) 34 44 45 53 53 54 55 55	D	(PHL) 27 43 42 46 32	#	70 77 75	#	(FBP) 71 70	#	(TBP) 117	#	(TPH) 87	4	#	#	OUT
PBLK PBLKMS 243201 DUEENO1 DUEENOUP 301	44 45 53 53 54 55	D	43 42 46	0	77 75						87				
PBLKMS 243201 DUEENO1 DUEENDUP 301	45 53 53 54 55	D	42 46	0	75		70				0				
243201 1UEEN01 1UEENDUP 301	53 53 54 55	D	46	0					118		73				
IUEENO1 IUEENDUP 301	53 54 55	D		0			70		118		76				
OUEENDUP 301	54 55	_	32		83	D	101	D	115	0	91	D			
301	55	D		0	87	D	113	0	138	0	108	D			
			46	0	80	0	89	0	119	D	89	0			
301DUP	1 55	0	47	D	82	D	89	D	100	D	93	D			
	- 00	D	51	D	83	0	91	D	110	D	88	D			
												-			
	1											_			
	1											_			_
										_		_			_
	-			_											
	1			_								-			_
	-			_						_		-			-
	-			_		_				_					-
	-	-		_		-				-		+			-
								_		-		+			-
	+	_		_		-				-		_			-
	+			-		_		71		_		-			-
		-	-			_		_		-		+			-
		-								_		+			-
	-			-	-	_		_							-
	-	_				_			-			-			-

	UC LIMITS
S1 (2FP) - 2-Fluorophenol	(21-100)
S2 (PHL) - Phenol-d5	(10-94)
S3 (NBZ) - Nitrobenzene-d5	(34-114)
S4 (FBP) - 2-Fluorobiphenyl	(43-116)
S5 (TBP) - 2,4,6-Tribromophenol	(10-123)
S6 (TPH) - Terphenyl-d14	(33-141)

Column to be used to flag recovery values

D Surrogate diluted out

^{*} Values outside of contract required QC limits

3C WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	AENI MD		Contract: OHM		
Project No.:	9509197	Site:	Location:	Group:	
Matrix Spike	- Sample No.:	TCLPBLKLCS			

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC #	QC. LIMITS REC.
Phenoi	200	0	75	38	(12-89)
2-Chlorophenol	200	0	110	55	(27-123)
1,4-Dichlorobenzene	100	0	65	65	(36-97)
N-Nitroso-di-n-propylamine	100	0	69	69	(41-116)
1,2,4-Trichlorobenzene	100	0	86	86	(39-98)
4-Chloro-3-methylphenal	200	0	130	65	(23-97)
Acenaphthene	100	0	70	70	(46-118)
2,4-Dinitrotoluene	100	0	81	81	(24-96)
4-Nitrophenol	200	0	95	48	(10-80)
Pentachlorophenol	200	0	180	90	(9-103)
Pyrene	100	0	63	63	(26-127)

	SPIKE ADDED	MSD CONCENTRATION	MSD %		%		ac Li	MITS
COMPOUND	(ug/L)	(ug/L)	REC	#	RPD	#	RPD	REC.
Phenol							42	(12-89)
2-Chlorophenol							40	(27-123)
1,4-Dichlorobenzene							28	(36-97)
N-Nitroso-di-n-propylamine							38	(41-116)
1,2,4-Trichlorobenzene							28	(39-98)
4-Chioro-3-methylphenol							42	(23-97)
Acenaphthene							31	(46-118)
2.4-Dinitrotoluene							38	(24-96)
4-Nitrophenol		1	-				50	(10-80)
Pentachlorophenol							50	(9-103)
Pyrene							31	(26-127)

⁽¹⁾ N-Nitroso-di-n-propylamine

Comments:	

Values outside of QC limits

48 SEMIVOLATILE METHOD BLANK SUMMARY

SAMPLE NO.

SBLK02

Lab Name: A	ENI MD	Cc	ontract: OHM	JBLKU2
Project No.: 9!	509197	Site:	Location:	Group:
Lab File ID: C	1209.D		Lab Sample ID	: 0923-RA
Instrument ID:	MSD 2		Date Extracted	: 9/23/94
Matrix: (soil/wa	ter) WATER		Date Analyzed	: 9/25/95
Level: (low/med			Time Analyzed	: 1942

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
01 TCLPBLK	TBLK	C1210.D	09/25/95
02 TCLPBLKMS	TBLKLCS	C1211.D	09/25/95
03 EX243201	#005	C1212.D	09/25/95
04 EXQUEENO1	#010	C1213.D	09/25/95
05 EXQUEENDUP	#011	CI214.D	09/25/95
06 EX1301	#012	C1215.D	09/26/95
07 EX1301DUP	#013	C1216.D	09/26/95
08			
09			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24		1	
25	+		
26			
27	-		-
28		-	
29			
		_	-
30			

COMMENTS:		

SAMPLE NU.

EXQUEENO1

ab Name:	AENI MD				_ Contract:	OHM		
Project No.:	9509197		Site		Location:		Group: _	
Matrix: (soil)	(water)	SOIL	-:			Lab Sample ID:	#010	
Sample wt/vo	ol:	500.0	(g/mL)	ML	_	Lab File ID:	CI213.D	
evel: (low	(med)					Date Received:	9/16/95	
6 Moisture:		-	d	ecanted: (Y	((N): <u>N</u>	Date Extracted:	9/23/94	
Concentrated	d Extract Volu	me:	1000	_(uL)		Date Analyzed:	9/25/95	
njection Volu	ıme:	1.0	_(uL)			Dilution Factor:	2.0	
GPC Cleanup	: (Y/N)	N	-1		рН:			
					Concent	ration Units:		
CA	S No.	Compound			(ug/L or ug/Kg		Q	
11	0-86-1	Pyridine				40	QU	
-	6-46-7	1,4-Dichlor	obenzene			40	QU	
_	-48-7	2-Methylph				40	au	
-	8-39-4	3-Methylph		7		40	QU	
-	-72-1	Hexachicro				40	UD	
10	6-44-5	4-Methylph	enol			40	au	
-	-95-3	Nitrobenzer				40	UD	
87	-68-3	Hexachloro	butadien	8		40	מט	
	-06-2	2,4,6-Trich	lorophen	oi		40	au	
95	-95-4	2,4,5-Trich				200	QU	
-	1-14-2	2,4-Dinitro				40	UD	
-	8-74-1	Hexachloro				40	au	
87	-86-5	Pentachlor	phenol			200	OU .	
E								
	10.7							

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

EXQUEENOUP

Lab Name:	AENI MD				Contract:	OHM			
Project No.:	9509197		Site:_		Location:			Group: _	
Matrix: (soil/	(water)	SOIL					Lab Sample ID:	#011	
Sample wt/vo	ol:	500.0	(g/mL) N	ML			Lab File ID:	C1214.D	
Level: (low	(med)						Date Received:	9/16/95	
% Moisture:			dec	anted: (Y/N): <u>N</u>		Date Extracted:	9/23/94	
Concentrated	d Extract Volu	me:	1000 (uL)			Date Analyzed:	9/25/95	
Injection Volu	ume:	1.0	(uL)				Dilution Factor:	2.0	
GPC Cleanup	i: (Y/N)	N		рŀ	l:				
					Concent	tration U	nits:		
CA	AS No.	Compound			(ug/L or ug/Kg		ug/L of Leach	۵	
111	0-86-1	Pyridine			T		40	מט	
	6-46-7	1,4-Dichloro	benzene				40	QU	
	-48-7	2-Methylphe					40	מט	
	8-39-4	3-Methylphe					40	מט	
67	-72-1	Hexachloroe					40	au	
10	6-44-5	4-Methylphe	nal				40	au	
98-	-95-3	Nitrobenzeni	9				40	UD	
87	-68-3	Hexachlorob	utadiene				40	OU	
88-	-06-2	2,4,6-Trichlo	rophenol				40	UD	
95	-95-4	2,4,5-Trichle	rophenol				200	מט	
12	1-14-2	2,4-Dinitroto	luene				40	מט	
11	8-74-1	Hexachlorob	enzene				40	an	
87	-86-5	Pentachloro	phenol				200	UD	
_									
_									
-					_			-	
-						-			
_					-				
					-				
-					-				
-					1				
-					-				

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

SBLK02

_ab Name:	AENI MD		Contract: 0	нм	GOEN	
Project No.	9509197	Site:	Location:		Group:	
Matrix: (so	nil/water)	SOIL		Lab Sample ID:	0923-RA	
Sample wt	Ival:	1000.0 (g/mL) ML		Lab File ID:	C1209.D	
Level: (lo	ow/med)			Date Received:		
% Moisture	e:	decanted: (Y/M	N): N	Date Extracted:	9/23/94	
	ted Extract Volu	-		Date Analyzed:		
Injection V		1.0 (uL)		Dilution Factor:		
GPC Clean			Н:		7	
di C Cicali	up. (1)14)			ion Heiter		
(CAS No.	Compound	Concentrat (ug/L or ug/Kg)	ug/L of Leach	Q	
[·	110-86-1	Pyridine	1	10	U	
-	106-46-7	1,4-Dichlorobenzene		10	U	
3	95-48-7	2-Methylphenol		10	U	
	108-39-4	3-Methylphenol		10	U	
ē	57-72-1	Hexachloroethane		10	U	
	106-44-5	4-Methylphenol		10	U	
9	38-95-3	Nitrobenzene		10	U	
8	37-68-3	Hexachlorobutadiene		10	U	
18	38-06-2	2,4,6-Trichlorophenol		10	U	
1	95-95-4	2,4,5-Trichlorophenol		50	U	
1	121-14-2	2,4-Dinitrotoluene		10	U	
1	118-74-1	Hexachlorobenzene		10	U	
}	87-86-5	Pentachiorophenol		50	U	
				\		
E						
			-			
t						
F				- 11		
-						
				14		
		30000				
1						
1						

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

TCLPBLK

Lab Name: AEN	I MD	Contract: OHM		
Project No.: 950	9197 Site:	Location:		Group:
Matrix: (soil/water	SOIL		Lab Sample ID:	TBLK
Sample wt/vol:	500.0 (g/mL) ML		Lab File IO:	C1210.D
Level: (low/med)			Date Received:	
% Moisture:	decanted	: (Y/N):N	Date Extracted:	9/23/94
Concentrated Extra	act Volume: 1000 (uL)		Date Analyzed:	9/25/95
Injection Volume:	1.0 (uL)		Dilution Factor:	1.0
GPC Cleanup: (Y/N	N_	pH:		
		Concentration U	nits:	
CAS No.	Compound	(ug/L or ug/Kg)	ug/L of Leach	Q
110-86-	Pyridine		20	U
106-46-1	7 1,4-Dichlorobenzene		20	υ
95-48-7	2-Methylphenol		20	U
108-39-4	3-Methylphenol		20	U
67-72-1	Hexachloroethane		20	U
106-44-	4-Methylphenol		20	U
98-95-3	Nitrobenzene		20	U
87-68-3	Hexachlorobutadiene		20	U
88-06-2	2,4,6-Trichlorophenal		20	U
95-95-4	2,4,5·Trichlorophenol		100	U
121-14-	2 2,4-Dinitrotoluene		20	U
118-74-	1 Hexachlorobenzene		20	U
87-86-5	Pentachlorophenol		100	U

September 21, 1995

Client:

OHM CORPORATION

Case:

9509197

Project: FORT DEVENS

Analysis: PCBs by SW-846 Method 8080

lient ID	AENI#	Date <u>Sampled</u>	Date Received	Date Extracted	Date <u>Analyzed</u>
XQUEEN01	9509197-001	09/15/95	09/16/95	09/19/95	09/20/95
XQUEENDUP	9509197-003	, ,	•	09/19/95	
X1301	9509197-006	09/15/95	09/16/95	09/19/95	09/20/95
X1301DUP	9509197-008	09/15/95	09/16/95	09/19/95	09/20/95

our soil samples were extracted and analyzed for PCB's by SW-846 method 080.

he enclosed package consists specifically of tabulated results (Form I), urrogate spike recoveries (Form II), and lab control sample recovery (Form

orm I (Tabulated Results)

he qualifier "U" indicates that a compound was analyzed for but not etected at or above the detection limit. The samples were extracted and nalyzed within the method recommended holding time.

orm II (Surrogate Spike Recoveries)

ll recoveries are based on a single column analysis.

11 surrogate recoveries were within EPA CLP criteria (60-150%).

orm III (Matrix Spike Recoveries)

lab control sample (LCS) was prepared with this sample delivery group. IS recovery was within SW-846 method 8080 criteria (29-131%).

Data Released By Make Mangs

Noble Memiéboka

GC/LC Acting Laboratory Manager

AMERICAN ENVIRONMENTAL METWORK, INC. ORGANIC ANALYSIS DATA SHEET

Contract Number: ____9509197 PCBs BY 8080 Client Name: ___OHM CORPORATION Project:_____FORT DEVENS

..... CLIENT MUMBER: EXQUEENO1

AENI #: 9509197-001

Concentration: Low

Date Sampled : _____09/15/95 Date Received : _____09/16/95

Date Extract Prepared :09/19/95

Date Analyzed: 09/20/95 Conc/Dil Factor: 1

GPC Cleanup: Yes[] No[X]

Sonication Ext: [X]

Soxhlett Ext: [1

Matrix____SOIL Percent Moisture: 0

	ug/K	g	
COMPOUND	CONCENTRATION	DETECTION LIMIT	QUALIFIER
AR1016		19	U
AR1221		19	u
AR1232		19	u
AR1242		19	U
AR1248		19	U
AR1254		39	U
AR1260		39	u

U-Indicates that a compound was analyzed for but not detected at or above the detection limit.

Vi - Volume of extract injected (ul) - ____1

Vs - Volume of water extracted (ml) - ____N/A

Ws - Mass of soil extracted (g) - _____30.86

Vt - Volume of total extract (ul) - _____10000

AMERICAN ENVIRONMENTAL NETWORK, INC. ORGANIC ANALYSIS DATA SHEET

Contract Number:	9509197	PCBs BY 8080			••••
Client Name:	OHM CORPORATION		CLIENT MUMBER	: EXQUEENOUP	- 1
Project:	FORT DEVENS		***********		••••
		*	AENI #:	9509197-003	
Co	ncentration: Low				
Da	te Sampled :09/1	5/95	GPC Cleanup:	Yes[] No DX]	
Da	te Received :09/16	6/95	Sonic	ation Ext: DXI	
Da	te Extract Prepared :09/19	9/95	Soxh	lett Ext: []	
Da	te Analyzed:09/20	0/95	Metrix	_\$01L	
Co	nc/Dil Factor:1		Percent Moist	ture:0	

compositivate personal SA	ug/1	Kg	Ĭ.
COMPOUND	CONCENTRATION	DETECTION LIMIT	QUALIFIER
AR1016		20	υ
AR1221		20	U
AR1232		20	U
AR1242		20	U
AR1248		20	U
AR1254		40	U
AR1260		40	u

U-Indicates that a compound was analyzed for but not detected at or above the detection limit.

Vi - Volume of extract injected (ul) -	1
Vs - Volume of water extracted (ml)	N/A
Ws - Mass of soil extracted (g)	30.20
Vt - Volume of total extract (ul) -	1000

AMERICAN ENVIRONMENTAL NETWORK, INC. ORGANIC ANALYSIS DATA SHEET

ontract Number: 9509197 Lient Name: OHM CORPORATION roject: FORT DEVENS	PCBs BY 8080	CLIENT NUMBER: BLANK
- O) CC		AENI #: 0919VA
Concentration: Low		
Date Sampled :	_N/A	GPC Cleanup: Yes[] No[X]
Date Received :	_N/A	Sonication Ext: [X]
Date Extract Prepared	:09/19/95	Soxhlett Ext: []
Date Analyzed:	_09/21/95	MatrixSOIL
Conc/Dil Factor:	_1	Percent Moisture: 0

	ug/1	(g	1
COMPOUND	CONCENTRATION	DETECTION LIMIT	QUALIFIER
AR1016		20	u
AR1221		20	U
AR1232		20	U
AR1242		20	U
AR1248		20	U
AR1254		40	U
AR1260		40	u

J-Indicates that a compound was analyzed for but not d at or above the detection limit.	etected
Vi - Volume of extract injected (ul)	_1
Vs - Volume of water extracted (ml) -	_N/A
Ws - Mass of soil extracted (g) -	_30
Vt - Volume of total extract (ul) -	1000

SOIL SURROGATE PERCENT RECOVERY PCB'S BY SW-846 METHOD 8080

Case no: 9509197

Laboratory: American Environmental Network, Inc.

Client ID	AEN ID	% Rec DCB (60-150)
BLANK	BLK 0919VA	128
BLANK SPIKE	LCS 0919VA	124
EXQUEEN01	9509197-001	144
EXQUEENDUP	9509197-003	116
EX1301	9509197-006	112
EX1301DUP	9509197-008	94
		The state of the s
		7
		-
		1
		1

DCB - Decachlorobiphenyl

* - Surrogate outside control limits.

D - Surrogate diluted out.

M - Surrogate masked by interfering peaks

ORGANIC ANALYSIS DATA SHEET AMERICAN ENVIRONMENTAL NETWORK, Inc.

Case Number:	9509197
Method:	PC8 8080
Matrix:	Soil
Analysis Date:	9/21/95

Units of AR 1254 In ug/kg

CLIENT	AENI	Spike	Sample	Conc.	%
1D.	ID.	Added	Results	LCS	Rec.
LAB CONTROL SAMPLE	0919VA	170	0	170	100
		-			

September 27, 1995

lient: OHM CORPORATION

ase: 9509197

roject:

FORT DEVENS

nalysis: TCLP Pesticides by SW-846 Method 8080

alyzed
/26/95
/26/95
/26/95
/26/95
/26/95

ive soil samples were leached in accordance with 40 CFR 261, Appendix II. The leachates were analyzed for pesticides by SW-846 method 8080.

The enclosed package consists specifically of tabulated results (Form I), ogate spike recoveries (Form II), and matrix spike recoveries ... III).

orm I (Tabulated Results)

The qualifier "U" indicates that a compound was analyzed for but not detected above the reporting limit. The samples were prepared and analyzed within method specified holding time.

orm II (Surrogate Spike Recoveries)

All surrogate recoveries were within specified criteria (60-150%).

orm III (Matrix Spike Recoveries)

A lab control sample (LCS) was extracted with this sample set. All LCS recoveries were within specified criteria (see Form III).

Data Released By

NODIE MEMIEDOKA

GC/LC Acting Lab Manager

Organic Analysis Data Sheet

Case No.: 9509197	Sample Number		
Project Name: FORT DEVENS	EXQUEEN01		
Client Name: OHM CORPORATION			
	AENI ≠ 9	509197-010	
Concentration:——— Low			
Date Sampled: 9/15/95			
Date Received: 9/16/95	GPC Cleanup	'es	X No
Date Ext Prepared:— 9/22/95	Seperatory Funnel Extraction		X Yes
Date Analyzed: 9/26/95	Continuous Liquid - Liquid Ext	ration	Yes
Conc/Dil Factor:—— 1	Percent Moisture	N/A	
Method: 8080	Matric	LEACH	

CAS Number	Compound	Concentration ug/L	Detection Limit	Qualifier
58-89-9	gamma-BHC (Lindane)		0.20	U
75-44-8	Heptachlor		0.10	U
1024-57-3	Heptachlor epoxide		0.10	U
72-20-8	Endrin		0.20	u
72-43-5	Methoxychior		1.0	U
5103-71-9	alpha-Chlordane		0.10	U
5103-74-2	gamma-Chlordane		0.10	U
8001-35-2	Toxaphene		10	U

Vi - Volume of extract injected (ul)	1
Vs - Volume of Water extracted (ml)	500
Ws - Weight of sample extracted (g)	N/A
Vt - Volume of total extract (uf) -	10,000

Organic Analysis Data Sheet

Case No.: 9509197	Sample No	Sample Number		
Project Name: FORT DEVENS	EXQUEE	EXQUEENDUP		
Client Name: OHM CORPORATION				
	AENI ≢	9509197-011		
Concentration:——— Low				
Date Sampled: 9/15/95				
Date Received: 9/16/95	GPC Cleanup	Yes	X No	
Date Ext Prepared: — 9/22/95	Separatory Funnel Extraction		X Yes	
Date Analyzed: 9/26/95	Continuous Liquid - Liquid E	ctration	Yes	
Conc/Dil Factor:—— 1	Percent Moisture	N/A		
Method: 8080	Matrix:	LEACH		

CAS Number	Compound	Concentration	Detection	Qualifier
		ug/L	Limit	
58-89-9	gamma-BHC (Lindane)		0.20	U
75-44-8	Heptachlor		0.10	U
1024-57-3	Heptachlor epoxide		0.10	U
72-20-8	Endrin		0.20	υ
72-43-5	Methoxychlor		1.0	U
5103-71-9	alpha-Chiordane		0.10	U
5103-74-2	gamma-Chlordane		0.10	U
8001-35-2	Toxaphene		10	U

VI - Volume of extract injected (ui)	1
Vs - Volume of Water extracted (mil) -	490
Ws - Weight of sample extracted (g) -	N/A
Vt - Volume of total extract (ul) -	10,000

Organic Analysis Data Sheet

Case No.:	9509197	Sample Number			
Project Name:	FORT DEVENS	BL	ANK		
Client Name:	OHM CORPORATION				
		AENI	# BUK 0922RD		
Concentration:——	Low				
Date Sampled:	N/A				
Date Received:	N/A	GPC Cleanup	Yes	x	No
Date Ext Prepared:	9/22/95	Seperatory Funnel Extract	not	×	Yes
Date Analyzed:	9/26/95	Continuous Liquid - Liquid	d Extration		Yes
Conc/Dil Factor:	1	Percent Moisture	NA		
Method: ———	8080	Matric	LEACH		

CAS Number	Compound	Concentration	Detection	Qualifier
	J	ug/L	Umit	<u> </u>
58-89-9	gamma-BHC (Lindane)		0.10	U
75-44-8	Heptachlor		0.050	U
1024-57-3	Heptachlor epoxide		0.050	U
72-20-8	Endrin		0.10	U
72-43-5	Methoxychior		0.50	υ
5103-71-9	alpha-Chlordane		0.050	U
5103-74-2	gamma-Chlordane		0.050	U
8001-35-2	Toxaphene		5.0	u

VI - Volume of extract injected (ul)	1
Vs - Volume of Water extracted (mil)	1000
Ws - Weight of sample extracted (g) -	N/A
Vt - Volume of total extract (ui)	10,000

Organic Analysis Data Sheet

Case No.: 9509197		Sample Number			
Project Name: FORT DEVENS		TCLP BLANK			
Client Neme:OHM CORPORATION					
		A	NENI # TOLP BLK	09221	RD
Concentration: Low					
Date Sampled:—— N/A	1.0			1	
Date Received: N/A		GPC Cleanup	Yes	×	No
Date Ext Prepared: 9/22/95		Seperatory Funnel Ex	traction	×	Yes
Date Analyzed: 9/26/95		Continuous Liquid - L	Iquid Extration		Yes
Conc/Dil Factor:—— 1		Percent Moisture	N/A		
Method: 8080		Matrix:	LEACH	_	

CAS Number	Compound	Concentration	Detection	Qualifier
		ug/L	Umit	
58-89-9	gamma-BHC (Lindane)		0.20	U
75-44-8	Heptachlor		0.10	U
1024-57-3	Heptachlor epoxide		0.10	U
72-20-8	Endrin		0.20	U
72-43-5	Methoxychlor		1.0	U
5103-71-9	alpha-Chlordane		0.10	U
5103-74-2	gamma-Chlordane		0.10	U
8001-35-2	Toxaphene		10	U

Vi - Volume of extract injected (uf) -	1
Vs - Volume of Water extracted (mi)	500
Ws - Weight of sample extracted (g)	N/A
Vt - Volume of total extract (uf) -	10.00

Organic Analysis Data Sheet

Case No.: 9509197	Sample Number			
Project Name: FORT DEVENS	TCLP BLANK SPIKE			
Client Name: OHM CORPORATION				
	AENI	F TCLP LCS 0	322	RO
Concentration:—— Low				
Date Sampled:——— N/A		1	î	i
Date Received:——— N/A	GPC Cleanup	Yes	×	No
Date Ext Prepared: 9/22/95	Seperatory Funnel Extract	ion	×	Yes
Date Analyzed: 9/26/95	Continuous Liquid - Liquid	d Extration		Yes
Conc/Dil Factor:—— 1	Percent Moisture	N/A		
Method: 8080	Matrbc	LEACH		

CAS Number	Compound	Concentration	Detection	Qualifier
		ug/L	Limit	
58-89-9	gamma-BHC (Lindane)	0.30	0.20	
75-44-8	Heptachlor	0.33	0.10	
1024-57-3	Heptachlor epoxide		0.10	U
72-20-8	Endrin	0.87	0.20	
72-43-5	Methoxychior		1.0	U
5103-71-9	alpha-Chlordane		0.10	U
5103-74-2	gamma-Chlordane		0.10	U
8001-35-2	Toxaphene		10	U

Vi - Volume of extract injected (uf) -	1
Vs - Volume of Water extracted (mil)	500
Ws - Weight of sample extracted (g) -	N/A
Vt - Volume of total extract (uf) -	10.000

Œ. WATER PESTICIDE SURRUGATE RECOVERY

American Environmental Network, Inc. Lab Name:

Lab Code: NA Case No.:

Contract: 9509197 SAS No.:

Instrument ID: GC Column(1): GC-F

DB-5

8080

D: 0.53 mm

GC Column(2):

DB 608 ID: 0.53 mm

Dates of Analyses: Method:

9/26/95 9/26/95

EPA SAMPLE NO.	TCMX 1		TCMX 2 % REC		DC8 1 %REC		DC8 2 %REC		TOTAL
BUK 0922/RD	85	۳	71	Ť	89	۲	67	Ħ	0
TCLP BLANK	83	T	75		100		88	H	0
TCLP BLANK SPIKE	81	Т	78	Г	80	T	85	T	0
EX243201	84		75		92	T	89	H	0
EXQUEEN01	84		75		100	T	83	П	0
EXQUEENDUP	83	T	74		87	Т	92	П	0
EX1301	76	T	82		84	T	91	П	0
EX1301DUP	110		87		103		89	П	0
						I		П	
		L				1		Н	
		L		L		1		Н	
		L		_		1		H	
		+		-		+		Н	
		\perp		-		+		H	
	-	+		-		+		Н	
	-	1		-		+		Н	
		+		-		╀		H	
	-	+		-		+		H	
		+		-		+		Н	
	-	+		-		+		H	
	-	+		+		+	-	H	
	-	+		+		+		+	
		+		+		+		H	
	+	+	-	+	-	+		H	
	+	+		+		+	-	H	
	-	+	<u> </u>	+	-	+	-	H	
	+	+	-	+	-	+		\forall	
	1	+	-	+	-	+	-	H	

ADVISORY QC LIMITS

TCMX = Tetrachloro-m-xylene

(60-150)

DC8= Decachlorobiphenyl

(60-150)

- COLUMN TO BE USED TO FLAG RECOVERY VALUES
- VALUES OUTSIDE OF QC LIMITS
- SURROGATE DILUTED OUT

FORM II PEST-1

page 1 of 1

WATER BLANK SPIKE RECOVERY

Lab Name: American Environmental Network, Inc.

Contract: 9509197

Lab Code:

Case No.:

SAS No .:

NA

Matrix Spike - EPA Sample No.:

TCLP LCS 0922RD

Method:

8080

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	BS CONCENTRATION (ug/L)	BS % REC	•	QC LIMITS REC.
gamma-BHC (Lindane)	0.40	0.0	0.30	75	-	56 - 123
Heptachlor	0.40	0.0	0.33	83		40 - 131
Aldrin	0.40	0.0	0.30	75		40 - 120
Dieldrin	1.0	0.0	0.84	84		52 - 126
Endrin	1.0	0.0	0.87	87		56 - 121
4,4'-DDT	1,0	0.0	0.77	77		38 - 127

outside limits. Spike Recovery: 0 out of

FORM III PEST-1

[#] Column to be used to flag recovery values with an asterisk

^{*} Values outside of QC limits

September 25, 1995

lient: OHM CORPORATION

Case: 9509197

Project: FORT DEVENS

analysis: TCLP Herbicides by Method 8150

Client ID	AENI‡	Date <u>Sampled</u>	Date <u>Received</u>	Date Extracted	Date Analyzed
EX243201	9509197-005	09/15/95	09/16/95	09/20/95	09/22/95
EXQUEEN01	9509197-010	09/15/95	09/16/95	09/20/95	09/22/95
EXQUEENDUP	9509197-011	09/15/95	09/16/95	09/20/95	09/22/95
EX1301	9509197-012	09/15/95	09/16/95	09/20/95	09/22/95
EX1301DUP	9509197-013	09/15/95	09/16/95	09/20/95	09/22/95

Five soil samples were leached according to 40 CFR 261, Appendix II. The eachates were analyzed for 2,4-D and Silvex using SW-846 Method 8150.

enclosed package consists specifically of tabulated results (Form I), surrogate spike recoveries (Form II), and matrix spike recoveries (Form III).

form I (Tabulated Results)

The qualifier "U" indicates that a compound was analyzed for but not detected above the reporting limit. The samples were prepared and analyzed within method specified holding time.

'orm II (Surrogate Spike Recoveries)

All surrogate recoveries were within specified criteria (50-150%).

orm III (Matrix Spike Recoveries)

A lab control sample (LCS) and lab control sample duplicate (LCSD) were prepared with this sample delivery group. All recoveries and RPD's were within laboratory criteria.

Data Released By

Noble Gemiéboka

GC/LC Acting Lab Manager

APPENDIX B KEY TO COMMENTS ON DATA COMPARISON TABLES

- 0 Data agrees if any one of the following apply:
 - both values are less than respective detection limit (N<MDL)

- N₁<MDL₁ and N₂>MDL₂ but <MDL₁

- both values are above respective detection limit (N>MDL) and difference between two values satisfies conditions below

Metals <2x difference for waters, TCLP extracts

<3x difference for airs

<10x difference for solids and oils

Semivolatiles <5x difference for all matrices

Volatiles TPH, BTEX

Pesticides <5x difference for liquids Herbicides <10x difference for solids

PCB's

Alkalinity <2x difference for all matrices Hardness, Ammonia

(water quality, etc.)

1 - Minor contamination by laboratory contaminant

2 - Not tested by both laboratories

- 3 Minor data discrepancy, disagreement not serious, if any one of the following apply:
 - N₁<MDL₁ and N₂>MDL₂ and the difference between values N₂ and MDL₁ does not exceed the upper limit (described below) defining a minor data discrepancy
 - both values are above respective detection limit (N>MDL) and conditions described below apply to the difference between the two values

Metals 2x<difference<5x for waters,TCLP extracts

10x<difference<20x for solids, oils

3x<difference<5x for airs

Semivolatiles, 5x<difference<10x for all matrices

VOA, TPH, BTEX

Pesticide/PCB 5x<difference<10x for liquids Herbicides 10x<difference<20x for solids

Alkalinity 2x<difference<5x for all matrices

Hardness, Ammonia

(water quality, etc.)

- 4 Major data discrepancy, disagreement serious, if any one of the following apply:
 - N₁<MDL, and N₂>MDL, and the difference between values N₂ and MDL, exceeds the limit (described below) defining a major data discrepancy
 - both values are above respective detection limit (N>MDL) and conditions described below apply to the difference between the two values

Metals >5x difference for waters, TCLP extracts, airs

>20x difference for solids, oils

Semivolatiles, >10x difference for all matrices

VOA, TPH, BTEX

Pesticide/PCB >10x difference for liquids Herbicides >20x difference for solids

Alkalinity >5x difference for all matrices Hardness, Ammonia (water quality, etc.)

MDL = Method Detection Limit

N = Analytical result

Key to data qualifiers:

B - detected in method blank

J - estimated value, above MDL but below practical quantitation limit

NR - Not reported

7. Data comparison for TCLP Herbicides.

There were 2 determinations. In these determinations no herbicides were detected by the QA lab or contractor's laboratory. There was 100% agreement. No major or minor discrepancies were noted.

8. Data comparison for BNA.

There were 81 determinations. In 1 of these determinations BNA's were detected by both the QA lab and contractor's laboratory. There was 100% agreement. There were no major or minor discrepancies noted.

9. Data comparison for PCB.

There was 1 determination. In this determination PCB's were detected by the QA laboratory only. There was 100% agreement. No major or minor discrepancies were noted.

10. Data comparison for TPH.

There was 1 determination. TPH was not detected by either the QA lab or contractor's laboratory. There was 100% agreement. No major or minor discrepancies were noted.

12. Data comparison for Metals.

There were 8 determinations. In 5 of these determinations metals were detected by the QA lab or contractor's laboratory. There was 100% agreement. No major or minor discrepancies were noted.

13. Comments.

Contractor's data package was not in full compliance with Minimum Chemistry Data Reporting Requirements as sample receiving information was not provided.

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: PORT DEVENS Q-TOWN

QA SAMPLE NO.: QA FIELD ID: QA ANALYSIS DATE:

QA LABORATORY:

32790 EXQUEENTRPA 09/28/95

NED

CONTRACTOR'S SAMPLE NO.: 9509197-002
CONTRACTOR'S FIELD ID: EXQUEEN02
CONTRACTOR'S ANALYSIS DATE: 09/22/95
CONTRACTOR'S LABORATORY: AENI

MATERIAL DESCRIPTION: SOIL

DATE SAMPLED: 09/15/95

UNITS: ng/g

		RESULTS		RESULTS	
PARAMETER	QA LAB	QA LAB	CONTRACTOR	CONTRACTOR	COMPARISO
	MDL		CRQL		CODE
Dichlorodifluoromethane	< 6.5			NR	2
Chloromethane	< 1.9		< 10		0
Vinyl chloride	ē 1.2		< 10		0
9rcmomethane	¢ 2.3		< 10	*	0
Chloroethane	3 1.7		< 10		0
Trichlorofluoromethane	< 1.0		< 5.1		0
1.1-Dichloroethene	< 1.5		< 5.1		0
Dichloromethane (MeCl2)	< 1.7	B 20	< 5.1		1
trans-1,2-Dichloroethene	× 1.5		< 5.1		0
1.1-Dichloroethane	< 1.2		< 5.1		0
2,2-Dichloropropane	< 4.5		`	NR	2
cis 1.2-Dichloroethene	< 1.4			NR.	2
Chloroform	< 1.4		< 5.1	511.0	0
Bromochloromethane	< 1.9		` 3.1	NR	2
1.1.1-Trichloroethane	< 2.1		< 5.1	****	0
1,1-Dichloropropene	c 1.4			NR	2
Carbon Tetrachloride	< 1.9		< 5.1	BA.	0
1,2-Dichloroethane	< 2.7		< 5.1		0
Renzene	< 1.3		< 5.1		0
richloroethene	< 1.9		< 5.1		0
1.2-Dichloropropane	77.4.7		< 5.1		0
Promodichloromethane			< 5.1		a
			< 5.1	NR	2
Dibromomethane	< 2.5			NK	
cis 1,3-Dichloro,1-propene	< 2.2		< 5.1		0
Toluene	< 1.7			7.7	3
trans 1,3-Dichloro,1-propene	< 3.1		< 5.1		0
1,1,2-Trichloroethane	< 3.2		< 5.1	1.2	0
1,2-Dibromoethane	< 3.2			NR	2
1,3-Dichloropropane	< 2.3			NR	2
Tetrachloroethene	< 1.3		< 5.1		0
Dibromochloromethane	< 2.0		< 5.1		0
Chlorobenzene	< 1.2		< 5.1		0
1,1,1,2-Tetrachloroethane	< 1.3			NR	2
Ethylbenzene	< 1.2		< 5.1		0
m/p Xylene	< 1.7			NR	2
o-Xylene	< 1.3			NR	2
Styrene	< 1.2			NR	2
Bromoform	< 2.9		< 5.1		0
Isopropylbenzene	< 1.3			NR	2

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS Q-TOWN

QA SAMPLE NO.: 32793 QA FIELD ID: EXQUEENTRP CONTRACTOR'S SAMPLE NO.: 9509197-010

CONTRACTOR'S FIELD ID: EXQUEEN01

QA ANALYSIS DATE: 10/24/95 QA LABORATORY: E3I

CONTRACTOR'S ANALYSIS DATE: 09/25/95

CONTRACTOR'S LABORATORY: AENI

MATERIAL DESCRIPTION: TCLP EXTRACT

DATE SAMPLED: 09/15/95 UNITS: ug/L

	RESULTS	RESULTS	
PARAMETER	QA LAB QA LAB CRQL	CONTRACTOR CONTRACTOR	COMPARISON CODE
1,4-Dichlorobenzene	< 10	< 40	0
2-Methylphenol	< 10	< 40	0
4-Methylphenol	< 10	< 40	0
Hexachloroethane	< 10	< 40	0
Nitrobenzene	< 10	< 40	o
Hexachlorobutadiene	< 10	< 40	0
2,4,5-Trichlorophenol	< 10	< 40	0
2,4,5-Trichlorophenol	< 25	< 200	0
2,4-Dinitrotoluene	< 10	< 40	0
Hexchlorobenzene	< 10	< 40	0
Pentachlorophenol	< 25	< 200	0
Pyridine	< 10	< 40	0

SURROGATE RECOVERIES (%)

	QA	CONTRACTOR
2-Fluorophenol (21-110)	24	- 53
Phenol (10-110)	16	32
Nitrobenzene-d5 (35-114	87	97
2-Fluorobiphenyl (43-116)	70	113
2,4,6-Tribromophenol (10-123)	33	138
4-Terphenyl-d4 (33-141)	44	108

Quality Assurance Split Sample Data Comparison Summary

Project: Ft. Devens - Q-Town

Test	Overall Agreemen		Quantitati Agreement	
Parameter	Number	Percent	Number	Percent
BNA-TCLP	12/12	100	0/0	N/A
Metals-TCLP	8/8	100	3/3	100
Pest-TCLP	7/7	100	0/0	N/A
VOA-TCLP	10/10	100	0/0	N/A
Herb-TCLP	2/2	100	0/0	N/A
TPH	1/1	100	0/0	N/A
BNA	81/81	100	1/1	100
PCB	1/1	100	1/1	100
VOA	30/30	100	2/2	100
Metals	8/8	100	5/5	100
Total	160/160	100	12/12	100

NOTES:

- (1) Represents the number and percentage agreement of all determinations including analytes not detected by either laboratory.
- (2) Represents the number and percentage agreement of only those determinations where an analyte was detected by at least one laboratory.

APPENDIX A

Analytical Methods

Test Parameter	QA lab	Primary Lab
BNA-TCLP	1311/8270	1311/8270
Metals-TCLP	1311/7000/6010	1311/6010/7000
Pest-TCLP	1311/8081	1311/8080
VOA-TCLP	1311/8260	1311/8240
Herb-TCLP	1311/8150	1311/8150
TPH	418.1	418.1
BNA	8270	8270
VOA	8260	8240
METALS	7000/6010	7000/6010

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS Q-TOWN

QA SAMPLE NO.: 32790

CONTRACTOR'S SAMPLE NO.: 9509197-002

7%		RESULTS		RESULTS	
PARAMETER	QA LAB	GY TYR	CONTRACTOR	CONTRACTOR	COMPARISO
	MDL		CRQL		CODE
	•				
1,1,2.2-Tetrachloroethane	< 4.4		< 5.1		0
1,2,3-Trichloropropane	< 2.3			NR	2
n-Propylbenzene	< 1.2			NR	2
Bromobenzene	< 1.4			NR	2
1,3,5-Trimethylbenzene	< 1.3			NR	2
2-Chlorotoluene	< 1.5			NR.	2
4-Chlorotoluene	< 1.0			NR	2
tert-Butylbenzene	< 1.4			NR	2
1,2,4-Trimethylbenzene	< 1.2			NR	2
sec-Bucylbenzene	< 1.2			NR	2
p-Isopropyltoluene	< 1.2			NR	2
1,3-Dichlorobenzene	< 1.2		< 5.1		0
1,4-Dichlorobenzene	< 1.3		< 5.1		0
n-Butylbenzene	< 1.3			NR	2
1.2-Dichlorobenzene	< 1.4		< 5.1		0
1,2-Dibromo-3-chloropropane	< 3.0			NR.	2
1,2,4-Trichlorobenzene	< 1.7			NR	2
Hexachlorobutadiene	< 1.5			NR	2
Naphthalene	< 2.3			NR	2
1,2,3-Trichlorobenzene	< 2.1			NR	2

SURROGATE RECOVERIES (%)

	QA	CONTRACTOR
1,2-Dichloroethane D4 (76-114)	NR	87
Toluene D8 (81-117)	98	96
Dibromofluoromethane (80-120)	102	NR
4-Bromofluorobenzene (74-121)	96	99

^{- -} SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS Q-TOWN

QA SAMPLE NO.: 32793

CONTRACTOR'S SAMPLE NO.: 9509197-010

CONTRACTOR'S FIELD ID: EXQUEEN01

QA FIELD ID: EXQUEENTRP

QA LABORATORY: E31

CONTRACTOR'S LABORATORY: AENI

MATERIAL DESCRIPTION: TCLP EXTRACT

DATE SAMPLED: 09/15/95

UNITS: ug/L

		RESULTS		RESULTS	
PARAMETER	QA LAB	QA LAB	REPORTING	CONTRACTOR	COMPARISON
	CRQL		LIMIT		CODE
				*	
Silver	< 2.0		< 500		0
Arsenic	< 4.0		< 500		0
Barium		360	< 1000		0
Cadmium	< 1.0		< 40		0
Chromium		J 3.0	< 100		0
Mercury	< 0.20		< 1.0		0
Lead		27	< 100		0
Selenium	< 3.0		< 250	•	0

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: PORT DEVENS Q-TOWN

QA SAMPLE NO.: 32793

CONTRACTOR'S SAMPLE NO.: 9509197-010

QA FIELD ID: EXQUEENTRP

QA ANALYSIS DATE: 10/26/95

CONTRACTOR'S ANALYSIS DATE: 09/26/95

CONTRACTOR'S FIELD ID: EXQUEEN01

QA LABORATORY: E31

CONTRACTORY'S LABORATORY: AENI

MATERIAL DESCRIPTION: TCLP EXTRACT

DATE SAMPLED: 09/15/95

UNITS: ug/L

		RESULTS	14	RESULTS	
PARAMETER	QA LAB	BAL AD	DETECTION	CONTRACTOR	COMPARISON
	CROL		LIMIT		CODE
Gamma-BHC (Lindane)	< 0.050		< 0.20		0
Heptachlor	< 0.050		< 0.10		0
Heptachlor epoxide	< 0.050		< 0.10		0
Endrin	< 0.10		< 0.20		0
Methoxychlor	< 0.50		< 1.0		0
Chlordane	< 0.20		< 0.10		0
Toxaphene	< 5.0		< 10		0

SURROGATE RECOVERIES (%)

	QA	CONTRACTOR
TCMX (60-150)	₹5 C	34
DCB (60-150)	75	100

* - SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: PORT DEVENS Q-TOWN

QA SAMPLE NO.: 32793

CONTRACTOR'S SAMPLE NO.: 9509197-010

QA FIELD ID: EXQUEENTRP

CONTRACTOR'S FIELD ID: EXQUEEN01

QA ANALYSIS DATE: 10/11/95

CONTRACTOR'S ANALYSIS DATE: 09/26/95

QA LABORATORY: NED

CONTRACTOR'S LABORATORY: AENI

MATERIAL DESCRIPTION: TCLP EXTRACT

DATE SAMPLED: 09/15/95

UNITS: ug/L

	RE	SULTS RESULTS	
PARAMETER	QA LAB Q	A LAB CONTRACTOR CONTRACTOR	COMPARISON
	MDL	CfCr	CODE
Vinyl chloride	< 14	< 100	0
1,1-Dichloroethane	< 0.58	< 50	٥
Chloroform	< 0.59	< 50	0
1,2-Dichloroechane	< 0.41	< 50	0
2-Bucanone	< 50	< 1000	0
Carbon tetrachloride	< 0.36	< 50	0
Benzene	< 0.63	< 50	0
Trichloroethane	< 0.59	< 50	0
Petrachloroethane	< 0.46	< 50	0
Chlorobenzene	< 0.75	< 50	0

SURROGATE RECOVERIES (%)

	QA	CONTRACTOR
1,2-Dichloroethane D4 (76-114)	NR	86
Toluene D8 (88-110)	98	101
4-Bromofluorobenzene (86-115)	92	NR
Dibromofluoromethane (76-114)	99	102

- - SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS Q-TOWN

QA SAMPLE NO.: 32793

CONTRACTOR'S SAMPLE NO.: 9509197-010

QA FIELD ID: EXQUEENTRP

CONTRACTOR'S FIELD ID: EXQUEEN01

QA ANALYSIS DATE: 10/17/95

CONTRACTOR'S ANALYSIS DATE: 09/22/95

QA LABORATORY: GTEL

CONTRACTOR'S LABORATORY: AENI

MATERIAL DESCRIPTION: TCLP EXTRACT

DATE SAMPLED: 09/15/95

UNITS: ug/L

			RESULTS		RESULTS	
	PARAMETER	QA LAB CRQL	QA LAB	REPORTING LIMIT	CONTRACTOR	COMPARISON CODE
2,4-D		< 330		< 0.50		0
2,4,5-TP		< 33		< 0.50		0

SURROGATE RECOVERIES;

DCPAA (24-154)

Qà CONTRACTOR

61

89

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS Q-TOWN

QA SAMPLE NO.: 32789

CONTRACTOR'S SAMPLE NO.: 9509197-001

QA FIELD ID: EXQUEENTRP

CONTRACTOR'S FIELD ID: EXQUEEN01

QA ANALYSIS DATE: 10/13/95

CONTRACTOR'S ANALYSIS DATE: 09/21/95

QA LABORATORY: NED

CONTRACTOR'S LABORATORY: AENI

MATERIAL DESCRIPTION: SOIL

DATE SAMPLED: 09/15/95

UNITS: ug/g

		RESULTS		RESULTS	
PARAMETER	QA LAB	QA LAB	CONTRACTOR	CONTRACTOR	COMPARISO
	MDL		CROL		CODE
Napchalene	< 0.0059		< 0.33		0
2-Methylnapthalene	< 0.011		< 0.33		0
Acenaphthylene	< 0.0045		< 0.33		0
Acenaphthene	< 0.010		< 0.33		0
Fluorene	< 0.013		< 0.33		0
Phenanchrene	< 0.011		< 0.33		0
Anthracene	< 0.019		< 0.33		0
Fluoranthene	< 0.013		< 0.33		٥
Pyrane	< 0.011		< 0.33		0
Benzo (a) anchracene	< 0.010		< 0.33		0
Chrysene	< 0.010		< 0.33		0
Benzo (b) fluoranthene	< 0.029		< 0.33		0
Benzo(k) fluoranthene	< 0.050		< 0.33		. 0 .
Benzo (a) pyrene	< 0.032		< 0.33		0-
Indeno(1,2,3-cd)pyrene	< 0.010		< 0.33		O
Dibenz (a, h) anchracene	< 0.010		< 0.33		0
Benzo(g,h,i)perylene	< 0.010		< 0.33		0
Biphenyl		J 0.020		NR	2
Benzo (e) pyrene	< 0.015			NR.	2
2-6 Dimethylnaphthalene	< 0.015			NR	2
l-Methylphenanthrene	< 0.015			NR	2
l-Methylnaphthalene	< 0.015			NR	2
Perylene	< 0.015			NR	2
2,3,5-cri-methylnapthalene	< 0.015			NR	2

SURROGATE RECOVERIES (%)

	AQ	CONTRACTO
Nitrobenzene-d5 (23-120)	102	72
2-Fluorobiphenyl (30-115)	97	76
Terphenyl-d14 (18-137)	120	38

• - SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

QA SAMPLE NO.: 32108 QA FIELD ID: SBQUEENTPA

CONTRACTOR'S SAMPLE NO.: 9508005-002 CONTRACTOR'S FIELD ID: SEQUEENSCA

QA ANALYSIS DATE: 08/10/95

CONTRACTOR'S FIELD ID: SEQUEENSO CONTRACTOR'S ANALYSIS DATE: 08/09/95

QA LABORATORY: E3I

CONTRACTOR'S LABORATORY: AENI

MATERIAL DESCRIPTION: SOIL DATE SAMPLED: 07/31/95 UNITS: ug/kg

	RESULTS			RESULTS	
PARAMETER	BAL AD	QA LAB	CONTRACTOR	CONTRACTOR	COMPARISON
	CRQL		C₹QL		CODE
*	*				
Phenol	< 340		< 350		0
Bis(2-chloroethyl)ether	< 340		< 350		٥
2-Chlorophenol	< 340		< 350		0
1,3-Dichlorobenzene	< 340		< 350		0
1,4-Dichlorobenzene	< 340		< 350		0
1,2-Dichlorobenzene	< 340		< 350		0
2-Methylphenol	< 340		< 350		0
Bis(2-chloro:sopropyl)ether	< 340		< 350		0
4-Mechylphenol	< 340		< 350		0
N-Nitroso-di-n-propylamine	< 340		< 350		0
Hexachloroethane	< 340		< 350		0
Nitrobenzene	< 340		< 350		0
Isophorone	< 340		< 350		0
2-Nitrophenol	< 340		< 350		0
2,4-Dimethylphenol	< 340		< 350		0
Bis(2-chloroethoxy) methane	< 340		< 350		0
2,4-Dichlorophenol	< 860		< 870		0
1.2.4-Trichlorobenzene	< 340		< 350		0
Napchalene	< 340		< 350		0
4-Chloroaniline	< 340		< 350		0
Hexachloroputadiene	< 340		< 350		0
4-Chloro-3-methylphenol	< 340		< 350		0
2-Methylnapthalene	< 340		< 350		0
Hexachlorocyclopentadiene	< 340		< 350		0
2,4,6-Trichlorophenol	< 340		< 350		0
2,4,5-Trichlorophenol	< 860		< 870		0
2-Chloronaphthalene	< 340		< 350		0
2-Nitroaniline	< 860		< 870		0
	< 340		< 350		0
Dimethylphthalate			< 350		0
Acenaphthylene	< 340				_
3-Nitroaniline	< 860		< 870		0
Acenaphthene	< 340		< 350		0
2,4-Dinitrophenol	< 860		< 870		0
4-Nitrophenol	< 860		< 870		0
Dibenzofuran	< 340		< 350		0
2,6-Dinitrocoluene	< 340		< 350		0

QA SAMPLE NO.: 32108

CONTRACTOR'S SAMPLE NO.: 9508005-002

	RESULTS			RESULTS	
PARAMETER	QA LAB	QA LAB	CONTRACTOR	CONTRACTOR	COMPARISO
	CRQL		CRQL		CODE
2.4-Dinitrotoluene	< 340		< 350		0
Diethylphthalate	< 340		< 350		0
4-Chlorophenyl-phenylether			< 350		0
Fluorene	< 340		< 350		0
4-Nitroaniline	< 860		< 870		0
4,6-Dinitro-2-methylphenol			< 870		0
N-Nitrosodiphenylamine	< 340		< 350		0
4-Bromophenyl-phenylether	< 340		< 350		0
Hexachloropenzene	< 340		< 350		0
Pentachlorophenol	< 860		< 870		0
Phenanthrene	< 340		< 350		0
Anthracene	< 340		< 350		0
Di-n-butylphthalate	< 340		< 350		0
Fluoranchene	< 340		< 350		0
Pyrene	< 340		< 350		0
Bucylbenzylphchalace	< 340		< 350		Q
3.3-Dichlorobenzidine	< 340		< 350		0
Benzo (a) anthracene	< 340		< 350		0
Bis (2ethylhexyl) phthalate	< 340	380		420	0
Chrysene	< 340		< 350		0
Di-n-octyl phthalate	< 340		< 350	11	0
Benzo (b) fluoranthene	< 340		< 350	•,	0
Benzo (k) fluoranthene	< 340		< 350		ró
Benzo (a) pyrene	< 340		< 350		0
Indeno(1,2,3-cd)pyrene	< 340		< 350		0
Dibenz (a,h) anthracene	< 340		< 350		٥
Benzo (g, h, i) perylene	< 340		< 350		0
Carbazole	< 340		< 350	8	0

SURROGATE RECOVERIES (%)

	QA	CONTRACTOR
Nitrobenzene-d5 (23-120)	58	74
2-Fluorobiphenyl (30-115)	62	81
Terphenyl-d14 (18-137)	54	99
1,2-Dichlorobenzene-d4 (20-130)	5 9	NR
Phenol-d6 (24-113)	62	63
2-Fluorophenol (25-121)	59	53
2,4,6-Tribromophenol (19-122)	57	24
2-Chlorophenol-d4 (20-130)	59	NR

^{* =} SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS Q-TOWN

QA SAMPLE NO.: 31695

CONTRACTOR'S SAMPLE NO.: NR

QA FIELD ID: SEQUEENTRP QA ANALYSIS DATE: 07/21/95 CONTRACTOR'S FIELD ID: SEQUEENTRP

QA LABORATORY: E3I

CONTRACTOR'S ANALYSIS DATE: NA CONTRACTOR'S LABORATORY: AENI

MATERIAL DESCRIPTION: SOIL

DATE SAMPLED: 07/06/95

UNITS: ug/kg

		RESULTS		RESULTS		
PARAMETER	QA LAB	EAL AD	CONTRACTOR	CONTRACTOR	COMPARISO	
	CRQL		CRQL		CODE	
Phenol	< 350			NA.	2	
Bis (2-chloroethyl) ether	< 350			NA.	2	
2-Chlorophenol	< 350			NA	2	
1,3-Dichlorobenzene	< 350			NA	2	
1.4-Dichlorobenzene	< 350			NA	2	
1,2-Dichlorobenzene	< 350			NA	2	
2-Mechylphenol	< 350			NA	2	
Bis (2-chloroisopropyl) ether				NA	2	
4-Mechylphenol	< 350			NA	2	
N-Nitroso-di-n-propylamine	< 350			NА	2	
Hexachloroethane	< 350			NA.	2	
Nitrobenzene	< 350			NA	2	
Isophorone	< 350			NA	2	
2-Nitrophenol	< 350			NA	2	
2,4-Dimerhylphenol	< 350			NA	2	
Bis (2-chloroethoxy) methane	< 350			NA	2	
2,4-Dichlorophenol	< 880			NA	2	
1.2.4-Trichlorobenzene	< 350			NA	2	
Napthalene	< 350			NA	2	
4-Chloroaniline	< 350			NA	2	
Hexachlorobutadiene	< 350			NA	2	
4-Chloro-3-methylphenol	< 350			N/A	2	
2-Methylnapthalene	< 350			NA	2	
Hexachlorocyclopentadiene	< 350			NA.	2	
2,4,6-Trichlorophenol	< 350			NA	2	
2,4,5-Trichlorophenol	< 880			NA.	2	
2-Chloronaphthalene	< 350			NA	2	
2-Nitroaniline	< 880			NA	2	
Dimethylphthalate	< 350			NA.	2	
Acenaphchylene	< 350			NA	2	
3-Nitroaniline	< 880			NA.	2	
Acenaphthene	< 350			NA.	2	
2,4-Dinitrophenol	< 880			NA.	2	
	< 880			NA NA	2	
4-Nitrophenol Dibenzofuran	< 350			NA.	2	
					_	
2,6-Dinitrotoluene	< 350			NA	2	

QA SAMPLE NO.: 31695

CONTRACTOR'S SAMPLE NO.: NR

		RESULTS		RESULTS	
PARAMETER	QA LAB	QA LAB	CONTRACTOR	CONTRACTOR	COMPARISO
	CROL		CROL		CODE
2.4-Dimitrotoluene	< 350		3	NA.	2
Diethylphthalate	< 350			NA	2
4-Chlorophenyl-phenylether	< 350			NA	2
Fluorene	< 350			NA	2
4-Nitroaniline	< 880			NA	2
4,6-Dinitro-2-methylphenol	< 880			NA	2
N-Nitrosodiphenylamine	< 350			N/A	2
4-Bromophenyl-phenylether	< 350			NA	2
Hexachlorobenzene	< 350			NA	2
Pencachlorophenol	< 880			NA	2
Phenanchrene	< 350			NA	2
Anthracene	< 350			NA	2
Di-n-butylphthalate	< 350	J 75		NA	2
Fluoranthene	< 350			NA	2
Pyrene	< 350			NA	2
Butylbenzylphthalate	< 350			NA	2
3,3-Dichlorobenzidine	< 350			NA	2
Benzo(a) anthracene	< 350			NA	2
Bis(2ethylhexyl)phthalate	< 350	1130		NA	2
Curysene	< 350			NA	2
Di-n-octyl phthalate	< 350			NA	2
Benzo (b) fluoranthene	< 350			NA	2
Benzo(k) fluoranthene	< 350			NA	2
Senzo(a) pyrene	< 350			NA	2
Indeno (1,2,3-cd) pyrene	< 350			NA	2
Dibenz(a,h)anchracene	< 350			NA	2
Benzo(g,h,i)perylene	< 350			NA	2
Carbazole	< 350			" NA	2

SURROGATE RECOVERIES (%)

	QA	CONTRACTOR
Nitrobenzene-d5 (23-120)	64	NA
2-Fluorobiphenyl (30-115)	80	NA
Terphenyl-d14 (18-137)	75	NA
1,2-Dichlorobenzene-d4 (20-130)	63	NA
Phenol-d6 (24-113)	56	NA
2-Fluorophenol (25-121)	63	NA
2,4,5-Tribromophenol (19-122)	60 -	NA
2-Chlorophenol-d4 (20-130)	5 9	NA

⁻ SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS Q-TOWN

QA SAMPLE NO.: 32789

CONTRACTOR'S SAMPLE NO.: 9509197-001

QA FIELD ID: EXQUEENTRP QA ANALYSIS DATE: 11/13/95

CONTRACTOR'S FIELD ID: EXQUEEN01

QA LABORATORY: NED

CONTRACTOR'S ANALYSIS DATE: 09/20/95

CONTRACTOR'S LABORATORY: AENI

MATERIAL DESCRIPTION: SOIL

DATE SAMPLED: 09/15/95

UNITS: mg/kg

2	RESULTS		RESULTS		
PARAMETER	QA LAB	פא באם	DETECTION	CONTRACTOR	COMPARISON
	MDL		LIMIT		CODE
				*	
Total PCBs		0.3013	< 0.025		0
SURROGATE RECOVERIES (%)					
	QA	CONTRACTOR			
CMX (60-150)	97	NR			
Decachlorobiphenyl (60-150)	107				

^{* =} SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

COMPARISON OF QA AND CONTRACTOR RESULTS

PROJECT: FORT DEVENS Q-TOWN

ANALYSIS PERFORMED: TOTAL PETROLEUM HYDROCARBONS

QA LABORATORY: E31

CONTRACTOR'S LABORATORY: AENI

UNITS: mg/kg

SAMPLE DATE	SAMPLE MATRIX	CONTRACTOR SAMPLE NO.	CONTRACTOR FIELD ID	ENV. LAB NO.	QA FIELD ID	CONTRACTOR RESULTS	QA LAB RESULTS	c	•
09/15/95	SOIL	9509197	EXQUEEN01	32789	EXQUEENTRP	NR	< 26	2	•
07/06/95	SOIL	NR	SEQUEENTRP	31695	SBQUEENTRP	NA	< 26	2	
07/31/95	SOIL	9508005-002	SBQUEENSCA	32108	SBQUEENTPA	< 16	< 26	•	•

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: PORT DEVENS Q-TOWN

QA SAMPLE NO.: 32789

CONTRACTOR'S SAMPLE NO.: 9509197-001

QA FIELD ID: EXQUEENTRP

CONTRACTOR'S FIELD ID: EXQUEEN01

QA LABORATORY: NED

CONTRACTOR'S LABORATORY: AENI

MATERIAL DESCRIPTION: SOIL

DATE SAMPLED: 09/15/95

UNITS: ug/g

		RESULTS		RESULTS	
PARAMETER	QA LAB	GY TYB	REPORTING	CONTRACTOR	COMPARISON
	MDL		LIMIT		CODE
Silver	< 0.61		< 1.0		0
Arsenic		35		25	0
Barium		18		29	0
Cadmium	•	0.35	< 0.41		0
Ciromium		16		30	o
Mercury	< 0.10		< 0.10		0
Lead		9.1		13	0
Selenium	< 0.43		< 0.51		0

SEE APPENDIX B FOR KEY TO COMMENTS

iel influet Services Rev. 08/89 Fiel

No.

	.H. MATERIALS	CORP	. •		P.C	D. BOX 551		DLAY, OH 4583	9-0551	• .	419	-423	-3526					•
TO.	DOLLAR DOLLAR DOLLAR DOLLAR PROJECT	CT CONT	Övi <u>n</u>	lan		PROJECT MAN	IPROJECT T	A ELEPTIONE NO) — 77 Z — Z ISOR	2019	NUMBER	(INDI SEPA CON	CATE MATE TAINEI		/	//			
ī	NUMBER	DATE		COMP	GRAB		SAMPLE DES (INCLUDE MA POINT OF S			O		127	gray	1		//	/	REMARKS
is .	BOUEENTRP (AS	-95	1113	1		Gold Bro	LA 3011	w/cobble		18822	1	1						Ophule of SBQUEEN BUP
3	(AS																	-
3																	1	
1																		
5														1				
+														1			1	
+				_							-	-	-	+	-	-	+	
+											-	-		-	+	+	-	
8											_	_	_	-	-	_	- -	
)																	1	
0																		
TRANSFER	S ITEM NUMBER		F		ANSF QUISI	ERS HED BY		TRANSFERS ACCEPTED BY			ME	ПЕМ		k	Teny	peral	wc	at 42
	1 1	6	Wille	·	Da	اه.	Federal E	xpress Archill	<u>#</u>	95 6	130			*	Pre	servi	d	at 4%
	3						Hen	Langle		7-755	113-	65		*	30) 4 4′	7-6	80 Hold until notified Please!
-	4			-	-							SAMPI	LI JUL	GNA	TURE,			
				20.77									V	_	400			

CENED-ED-GL SAMPLE CONTAINER RECEIPT FORM

PROJECT: Fort Veine #1165 Project #: Foot Work Order #:	
container received on 7 2 2 and inspected on 7 7 4 5 by:	
1. Temperature CC °C. Temperature taken on 7-7-5-5 (date)	
2. Shipper # 577 0674784 (USM, UPS, DHL, FEDEX, P/C, AIR EXP, HAND-DELIVERED)	
(USM, UPS, DHL, (FEDEX, P/C, AIR EXP, HAND-DELIVERED)	
3. Container type (Cooler, box, envelope, etc.)	
4. Were custody seals on outside of container? How many & where:, seal date:, seal name:,	0
5. Were custody papers taped to lid inside container? N/A Yes N	io
6. Custody papers properly filled out? (ink, signed, etc.) (ies)	10
7. Was project and project # identifiable from custody papers? Yes 1	O.F
8. Did you sign custody papers in appropriate place?	10
9. Did you attach shipper's packing form to this form? N/A Yes	0.18
Packing material (peanuts, vermiculite, bubble wrap, paper, cans, other	=)
11. Were all samples sealed in separate plastic bags? N/A (Yes	No
12. Did all samples arrive in good condition?	ИО
13. Sample labels complete? (#, date, analysis, preservation, sign.) Yes	ИО
14. Were correct sample containers used for tests indicated? N/A (Yes	No
15. Were correct preservatives used? (TM pH, CN- pH) (N/A Yes (TOC pH, NUTRIENT pH, TOX pH, TPH pH, OTHER pH)	No
16. Were VOA vials bubble-free (H2O) or no headspace (soil)? N/A (Yes	No
17. Was sufficient amount of sample sent in each container? Yes	ИО
18. Did all sample labels agree with custody papers?	Ио
19. Were air volumes noted for air samples?	No
20. Were initial weights noted for pre-weighed filters? N/A Yes	No
niscrepancies:	

OHM Corporation

CHAIN-OF-CU., ODY RECORD

130251

Form 001 Fechnical Service Rev. 08/1

No.

	O.H. MA	TERIALS	CORP	. •		P.C	D. BOX 551	• F	INDLAY, OH 4583	9-0551	•	41	9-423	3-352	6					
100000000000000000000000000000000000000	CLIENT'S REP	PROJECT PROJEC	en!	S Vern	12m	1	M Blean PROJECT MAI	\\	MA THE EPHIONE NO. D8)772-2 RVISOR M2c/C	019	NUMBER CONTAINERS	DATE	ALYSI DICATE PAHATE NTAINE		/	, K				
	NUN NO SA	MPLE MBER		TIME		GRAB			ESCRIPTION MATRIX AND F SAMPLE)		Ö			79	<i>s</i> //	//	//	/	REMARKS	2000
2	SBT2	17729	7.25	0155			Triplicate	12 Du	ples SB7 217 ples SBQUE w DP A	<u> </u>	1240	X	X							
2	12 SBa	4 FENT	A 31	1140	1		Triplicat	Duff	Plot SBONE	EMSH	1780	15 X	*							
	3												_		_	_				
	4											_	-		_	_ _	-			
	5												-				-	-		
	6											_	-		-	-	-	-		_
	7											-	\vdash		+	-	-	-		
	8							1.					-		-	-	-			
	9											-			+	+	+			_
	TALVSFER NUMBER	ITEM NUMBER		11/			ERS HED BY	50 l	TRANSFERS ACCEPTED BY		DATE 7. 26	TIME		II	•	Pr	res in	ev D	red 4°C blank Included	
	1 2		-4	pelu	elX.	Za	Just	111	1198207	7	95	1530					(-	-
	3							Phin	A Noonal	•	8.1.95	120			·	An	/ - 	·	1	
	4												SAMP	1	che	LI ,	X	de	unk	-
														(LAB COP	1

CENED-ED-GL SAMPLE CONTAINER RECEIPT FORM

Project #: Fo. Work Order #: Intainer received on	
. Temperature 2 °C. Temperature taken on 7.1.95 (date)	
(USM, UPS, DHL, FEDEX, P/C, AIR EXP, HAND-DELIVERED)	
. Container type (Cooler, box, envelope, etc.)	
Were custody seals on outside of container? N/A Yes How many & where:, seal date:, seal name:	No
5. Were custody papers taped to lid inside container? N/A Yes	No
6. Custody papers properly filled out? (ink, signed, etc.) Yes) No
7. Was project and project # identifiable from custody papers? Yes	, No
8. Did you sign custody papers in appropriate place? Yes	No
9. Did you attach shipper's packing form to this form? N/A Yes	: No
. Packing material (peanuts, vermiculite, bubble wrap) paper, cans, ot	her)
11. Were all samples sealed in separate plastic bags? N/A Yes	י אס
12. Did all samples arrive in good condition?	No
13. Sample labels complete? (#, date, analysis, preservation, sign.) Yes	No
14. Were correct sample containers used for tests indicated? $\widehat{\mathbb{W}/\mathbb{A}}$. Yes	No.
15. Were correct preservatives used? (TM pH, CN- pH)	No.
16. Were VOA vials bubble-free (H_2O) or no headspace (soil)? N/A^2 Yes	, No
17. Was sufficient amount of sample sent in each container?	No X
18. Did all sample labels agree with custody papers?	No
19. Were air volumes noted for air samples?	s No
20. Were initial weights noted for pre-weighed filters?	s No
Discrepancies:	

Fleld Tec

I Services Aev. 08/89

158343

ATERIALS CO	RP.	•	P.O	. BOX 551		Y, OH 45839-0551	•	4	19-42	23-352	26		-,			, , ,		72-72-7-17-17-17-17-17-17-17-17-17-17-17-17-1
FORT Development D	ike Qu	امنا	an	PROJECT MA	PROJECT TELEPHINGSON VAGER/SUPERVISON EVIN Mack	ONE NO. 172-2019	NUMBER CONTAINERS	Lan	NALY: NDICAT EPAIIAT ONTAIN	E E	SIRE	D		1000				
SAMPLE CO NUMBER 18 DAT	TE TIME	COMP	GRAB	1	SAMPLE DESCRIPT (INCLUDE MATRIX POINT OF SAMPL	AND .E)	O		/		%		16	υ' <u>β</u>		F	EMARKS	
QUEENTAP 9:1		X			sandy soil w/		1X1L 3X6	12	$\langle \chi \rangle$	x	x	X	X		Tri	ALICATE A	DUP EXAU	ENOL AND
UE TROK	5 1203		X	Brow	r sandy soil v	1/heavy cobble	2×110	mL	1			19.8		X	F	riplicate XQUEED	of exam	EENOL and
		_						-	-	1 2.	- y	7.4					-	
	-	_						-	-	-	_		_	_				, n°
								\dashv	-	-								
	-																	
						•												
									nc nc	MARK:							7	
M3TI R3BMUN			ANSF QUIS	ERS IED BY	ACCE	NSFERS EPTED BY	DATE	TIME		WATE.	-	Re	ser	ve)	at 1,00 ank ind	\		
1-2	H	.4	uem	and	Federal 2716	Express Airbill# 797146	9,18	153	80		7	11	^e mr	o b	ank incl	uded -		
		,							_							l se		
					1/hul 11	men ?	188	-12	2 831	IPLEN'S	SIGN	ATURE			o He	. 0		
					-rungi /V/				_ _			111	10	-	1/20	ANG/	γ.	

CENED-ED-GL SAMPLE CONTAINER RECEIPT FORM

TECT: Cont Soil fort Deans Project 1: 10251
Work Order #: 94-35
entainer received on 9.19.95 and inspected on 9.19.95 by:
Temperature 24 °C. Temperature taken on 9,19.95 (date)
Shipper #Shipper #Shipper #Shipper #
. Container type (Cooler) box, envelope, etc.)
Were custody seals on outside of container? N/A (Yes) No How many & where: ///////////////////////////////////
. Were custody papers taped to lid inside container?
. Custody papers properly filled out? (ink, signed, etc.) (es No
. Was project and project # identifiable from custody papers? Yes No
. Did you sign custody papers in appropriate place? (es) No
. Did you attach shipper's packing form to this form? N/A (Yes) No
Packing material (peanuts, vermiculite; bubble wrap,)paper, cans, other)
1. Were all samples sealed in separate plastic bags? N/A (Tes) No
2. Did all samples arrive in good condition?
3. Sample labels complete? (#, date, analysis, preservation, sign.)
4. Were correct sample containers used for tests indicated? N/A (Yes) No
5. Were correct preservatives used? (TM pH, CN- pH)
5. Were VOA vials bubble-free (E ₂ O) or no headspace (soil)? N/A Yes No
7. Was sufficient amount of sample sent in each container? Yes No
8. Did all sample labels agree with custody papers? Yes No
9. Were air volumes noted for air samples?
0. Were initial weights noted for pre-weighed filters? N/A Yes No
iscrepancies:

Appendix D Material Shipping Record ORTANT: form is NOT e used for the ment of ediztion tes subject to Lagement er section 310 3 40.0035 of Massachu- Contingency nor is it to be in lieu of a irdous waste ifest for irdous waste cyclable erials subject e Massachu-Hazardous te Regula-310 CMR

www separanant or chenomical crossrum

(508) 796-3114

Telephone number and abordion

Bureau of Waste Prevention

2-0662

Material Shipping Record & Log

Tracking Number

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

Remasse same (acitiassi)			
Area 4 of SA-43H&I, along			
Fort Devens	Locaton a MA	01433	
City/Town	State	Zip code	
late Region of assessment	5 Lientaddiri	ional tracking documents associated with	this
late/Period of generation:	documen		UILL
6/29/95 07/28/95			
	-		
J.S. EPA ID number.			
MA7210025154			
15	-		_
1E release.			
_ yes ∑ no			
Generator Information rovide the following generator information: U.S. Army – Fort Deve:			
Generator Information Provide the following generator information: U.S. Army – Fort Deve: General organizator James C. Chambers		Environmental Office	r
Generator Information Provide the following generator information: U.S. Army – Fort Deve: General organizator James C. Chambers	BRAC	Environmental Office	r
Generator Information Provide the following generator information: U.S. Army - Fort Development or operation James C. Chambers Consideration AFZD-BEO-Box 1	BRAC	Environmental Office	r
Generator Information Provide the following generator information: U.S. Army - Fort Development of organization James C. Chambers Contact name AFZD-BEO-Box 1 Street 2007252 Fort Devens	BRAC ne		r
Generator Information Provide the following generator information: U.S. Army - Fort Development of James C. Chambers Consciount AFZD-BEO-Box 1 Street 2007252 Fort Devens Chyllown (508) 796-3114	BRAC me MA	01433	r
Generator Information Trovide the following generator information: U.S. Army - Fort Development of James C. Chambers Consonance AFZD-BEO-Box 1 Processores Fort Devens Chyllown (508) 796-3114	BRAC me MA	01433	r
Generator Information Trovide the following generator information: U.S. Army - Fort Development of James C. Chambers Consonance AFZD-BEO-Box 1 Processores Fort Devens Chyllown (508) 796-3114	BRAC nne MA Sare	01433 Zp coox	r
Generator Information Trovide the following generator information: U.S. Army - Fort Development of Opening a organization James C. Chambers Consideration AFZD-BEO-Box 1 Great sources Fort Devens Chyllowin (508) 796-3114	BRAC nne MA Sare	01433 Zp coox	r
Generator Information Trovide the following generator information: U.S. Army - Fort Development of James C. Chambers Contact name AFZD-BEO-Box 1 Great ADDRES Fort Devens ClayTown (508) 796-3114 Telephone name and esterion	BRAC MA Sare	01433 Zb cook	
Generator Information Trovide the following generator information: U.S. Army - Fort Development of James C. Chambers Construction AFZD-BEO-Box 1 Great actives: Fort Devens Chyllowin (508) 796-3114 [Section formation and exercise] Owner and/or Operator Information the generator is different from the generator in the ge	BRAC MA State ation	01433 Zb cook	
Generator Information Provide the following generator information: U.S. Army - Fort Development of Operator Information: James C. Chambers Consideration AFZD-BEO-Box 1 Check applicable: Owner and/or Operator Information: Check applicable: Owner Check applicable: Owner Consideration operator is different from the generation of the consideration of the con	BRAC MA State Attion Perator as indicated in perator	01433 Zb cook	
Generator Information Provide the following generator information: U.S. Army - Fort Development of Dames C. Chambers Dames C. Chambers Consumer Properties Fort Devens Chyflown (508) 796-3114 [Section Information and Section If the owner and/or Operator Information If the owner and/or operator is different from the gent Check applicable: Owner — Operator Deve	BRAC MA State Attion Perator as indicated in perator	01433 Zb cook	
Generator Information Provide the following generator information: U.S. Army - Fort Devel Name a organization James C. Chambers Contact name AFZD-BEO-Box 1 Street scores: Fort Devens City/Town (508) 796-3114 [Sections number and essention] Owner and/or Operator Information If the owner and/or operator is different from the gent Check applicable: Owner operator in owner operator in owner operator in owner operator in owner operator in owner operator operator in owner operator ope	BRAC MA State Milion Merator as indicated in the territor as indicated	01433 Zb cook	ation

Material Shipping Record & Log

Tracking Number SA.43H41

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

7.00	F.U.	Keating	Company		N/A			N/	A
(Saz boue	Mark	Nikitas		Hazardous en	ste formse ni	umour (1 applicati	te) Ua	ensing scan (il	appácaole)
omad pe		Reservoi	r Road		Fibe				
Ted	Lune	nberg			MA		0.1	462	
hy/Town) 582-99	3 1		State			axis	
weatone	number and a								
Re	ceivin	g Facility	Information						
		•	on the receiving f						
-			Fort Deve	•	ildir	na 202			
perator/f.	acility name	s C. Char						2 - 5 - 5	
Contact par	301				BRAC	Enviro	onmenta	I Off	ıcer
	AFZD-	-BEO-Box	1	Fort D		s, MA	01433		
बे च्ल	(508	796-31	i 4		Size		Δ ρ ασοε		
eiemme.	number and ex	terr ou							
Type of	facility:								
Type of	facility: asphalt to asphalt to other	patelycoid mix patelyhot Mix	Taken a	undfill/disposal undfill/daily cov Facili	rer	S-3	al processing Vetructural fil		
ype of	facility: asphalt to asphalt to other	patch/cold mix patch/hot Mix Temporary		undfill/daily cov	rer	S-3			
ype of	facility: asphalt t asphalt t cother:	patch/cold mix patch/hot Mix Temporary	Storage	undfill/daily cov	rer	S-3			
ype of	facility: asphalt t asphalt t cother:	patch/cold mix patch/hot Mix Temporary N/A	Storage	undfill/daily cov	rer	S-3	/structural fil		
ype of	facility: asphalt to asphalt to cother: number: SCripto at apply:	patch/cold mix patch/hot Mix Temporary N/A	Storage	Facili	ty	S-3	/structural fil		
Permit of De	facility: asphalt to asphalt to cother: number: SCripto at apply:	patch/cold mix patch/hot Mix Pemporary N/A ion of Mate	Storage erial	Facili	ty Type of (contamination	Vstructur⊒ fil	# [] <i>P</i> 2 o	il □ #4 oi □ jet fu
Permit of De	facility: asphalt to asphalt to cother: number: scription at apply:	patch/cold mix patch/hot Mix Pemporary N/A ion of Mate	Storage	Facili	Type of a	contamination	/structural fil	# [] <i>P</i> 2 o	îl □ #4 ci ⊡ jetfu
Permit of De	facility: asphalt to asphalt to cother: number: scription at apply:	patch/cold mix patch/hot Mix Pemporary N/A ion of Mate	Storage erial	Facili	Type of a	contamination gasoline)	on. ⊠ dieselfue waste oil □	d □ 12 oi kerosene	jetfu
De k all the	facility: asphalt to asphalt to cother: number: scription at apply:	patch/cold mix patch/hot Mix Pemporary N/A ion of Mata dredge material	Storage erial Cobbles	Facili	Type of (contamination gasoline } #6 oil Debris	on. ⊠ dieselfue waste oil □	d □ 12 oi kerosene	il □ #4 oi □ jet fu inorganic
De kall the	facility: asphalt to asphalt to cother: scription scription scription beachighted assification	patch/cold mix patch/hot Mix Temporary N/A ion of Mata dredge material STG U	Storage erial Cobbles	Facili 3.	Type of (contamination gasoline) #6 oil Debris demolition	on. ⊠ dieselfue waste oil □	d □ 12 oi kerosene	jetfu
Permit of De ck all the ck. Other	asphalt to asphalt to asphalt to cother: scription scription Scription Scription Scription Scription	patch/cold mix patch/hot Mix Temporary N/A ion of Mata dredge material STG U	Storage Fill Cobbles EC CO	Facili 3.	Type of (contamination gasoline) #6 oil Debris demolition	on. ⊠ dieselfue waste oil □	d □ 12 oi kerosene	jetfu

Massachusetts bepartinent of entroducental reduction

Bureau of Waste Prevention

submit information which I know to be faise, inaccurate, or

materially incomplete."

Material Shipping Record & Log

Z-066Z: Tracking Number SAY3 H-1I

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

-	Cabir 6 to Civil Telegode not maimesting ander 6 to	, ,,,,	
G	Description of Material (cont.)		
4.	Constituents of concern (check all that apply):	7.	Estimated volume of materials:
	TOSLAS C Cd 20 Cr 50 Pb C Hg C Na C PC8s		95 cubic yards
	☐ HVOCs ☐ PATH ☐ VOCs ☐ PAHS ☐ BNAs		Cable Yards 142 tone
	DA TPH CS-Other:		193 Tens
	Barium		2
	dustat be		Other
5.	Analyses performed (check all that apply):	8.	Contaminant source (check one/specify):
	SI As SI Cd SI Cr SI Pb SI Ho SI Na SI PCBs □ HVOC6 □ PATH SI VOC6 SI PAH6 □ BNA6		☐ transportation accident ☐ ust 🛭 other:
	TPH X TCLP (inorganic) X TCLP (organic)		dievel fuel spill
	☐ Other:		describe
	RCRA Characterization	_	
	describe	9.	Indicate which waste characterization support documentation is attached.
6.	Screening performed		
			site history information sampling and analytical methods/procedure
	hune		☐ haboratory data ☐ field screening data
			If supporting documentation is not appended, provide an
	instrum ~ Used		attachment stating the date and in connection with what
	Constituents		document such information was previously submitted to the facility.
			7
6	Qualified Environmental Profession	ial	Opinion
	T.S. Alving & Associates		
	Name of organization	_	in and a second
	Todd Alving	ىد	icensed Site Professional
	(508) 435-3679		
	Telephone number and extension		
			- 1 HT h
inf	"I have personally examined and am familiar with the ormation contained on and submitted with this form.		300
84	sed on this information, it is my opinion that the testing and		Signature
	sessment actions undertaken were adequate to characterize : waste, and that the facility or location can accept wastes		10.20.95
wi	th the characteristics described in this submittal. I am		Circ
	are that significant penalties including, but not fimited to,		4076

Seal

ALVING No. 4028

TODD

DUI VAU UI TTANE FIEVENUON

Material Shipping Record & Log

Tracking Number SA 43 H-17

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

H Certification of Generator

"I certify under penalties of law that I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this certification, and that, based on my inquiry of those individuals immediately responsible for obtaining the information contained herein is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties, including, but not limited to, possible fines and imprisonment, for willfully submitting false, inaccurate, or incomplete information."

Λ.	101	
Some		
1/2	4/96	
Martin (print)		

Acknowledgment of Receipt by Receiving Facility

U.S. Army - Fort Devens - Bldg 202

Ascaming Facility

James C. Chambers

Pagerasancal re (print)

BRAC Environmental Officer

Die

lake additional opies of this age as necesMassachusells Department of Environmental Protection Bureau of Waste Prevention

2-0662 - SA43H1I Tracking Number Querystown Rd

Material Shipping Record & Log

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

Load Information	
LOAD 0: 495	LOAD 0: 49 7
Jie The	Stews Develun
Someon of Star on Areal Coll	Spring of transport B 202 Scil Strunge Agree (610)
Auconyling leading (0 - 7.7.9 C	Receiving tacility (0.27.45
Date received	Det ricered
Tru manned	The somed
Dar of Stylpmoni	Date of Shapman
Time of shipment	Time of shipment
MAZZG85	TOURS PROSTERIOR
in 1447499	Ly 72080T
82 240 1bs / 41. 12 tous	85,960 1 WS/42.98 tows
oad size (cubic yards/hors)	Load sur (cuaic parcutaris)
LOAD 1: 499	LOAD 1. BOD Marcus Marc
B202 Soil Storage Area (coll)	B262 Soil Storage Bra (call H
Pacetining facility Lo. 27-95	Austring taility 10.27.95
Date received	Date received
Time received	Time received
10.27.95 Dire of shipment	0 , 27 . 95
Fine of chicrosoft A A	Day of religions
MA 22685	MA 32588
MA 4749	Inaclinate reportation MA27020
76420 Hos/38.21 tans	Trailed reportation 42, 250 / 65/21.13
Load size (cubic percenture)/	Lord star (autic yratisfors)
Lag Shoot Valuma Information	
Log Sheet Volume Information	
286,820 lbs/143.44 Toal volume this page large persons) 286,820 lbs	tons Page 1 of 1
286, 280 (b) / 143.44	tores
Total carried brigger and this page (quies perceivers)	10-2

Appendix E Chemical Quality Assurance Report

RECORD OF TRANSMITTAL

CENED-ED-GL

5 April 1996

FOR Project Engineer, Mr. Mark Applebee
U.S. Army Corps of Engineer,
New England Division
424 Trapelo Rd.
Waltham, MA 02254-9149

SUBJECT: Fort Devens - Queen Town, Chemical Quality
Assurance Report (CQAR)

1. References:

- a. Project No. E0251
- b. Contractor Data Report, Received January 19, 1996.
- c. Memorandum, CEMRD-ED-GC, 16 Aug 1989, Subject: Minimum Chemistry Data Reporting Requirements for DERP and Superfund HTW Projects.
- 2. Three QA samples were analyzed, resulting in a total of 160 target analyte determinations. Results from analysis of QA samples were compared with results from analysis of the corresponding primary samples (ref 1b). Results of the comparison are as follows:
- a. The contractor's laboratory was American Environmental Network, Inc., Columbia, MD.
- b. Results from the primary and QA samples agreed overall in 160 (100%) of the comparisons.
- c. Results from the primary and QA samples agreed quantitatively in 12 out of 12 (100%) of the comparisons.
- d. There were 0 (0%) major discrepancies between results from the primary and QA laboratory samples.
- e. There were 0 (0%) minor discrepancies between results from the primary and QA laboratory samples.

- 3. QA analyses were performed at the NED Environmental Laboratory. QA analyses were also performed at E3I, Somerville, MA; GTEL, Milford, NH.
- 4. The CENED-ED-GL POC is Gary S. Rogowski, 508-928-4238.

Encl

CF (w/encl):
CEMRO-HX-C Thomas Georgian

QA Findings

(Ft. Devens Q-Town)

1. QA sample shipping and chain-of-custody deficiencies.

Three shipments of QA samples were received on July 7, August 1, and September 19, 1995. Proper sample handling protocols were mostly followed with the following exception: 8/1/96; no custody seals were present on the outside of the cooler, 9/19/96; the VOA vials had a small headspace. The chain-of-custody documents and cooler receipt forms are appended to this report for reference. All shipment information was faxed to Mr. Mark Applebee within 24 hours of receipt. The contractor never analyzed the corresponding sample to QA 31695, thus no data comparison was generated. The QA data is appended to this report for reference.

Data comparison for VOA.

There were 30 determinations. In 2 of the determinations VOC's were detected by the QA lab or contractor's lab. There was an overall agreement of 29 (97%) and 1 (50%) quantitative agreement. Disagreement was due to 1 (3%) minor discrepancy between the QA and Contractor's laboratory. No major discrepancies were noted. Post analysis pH values were not reported by either the QA or contractor's laboratory.

3. Data comparison for TCLP BNA.

There were 12 determinations. In 0 of these determinations BNA's were detected by the QA lab or contractor's laboratory. There was 100% agreement. There were no major or minor discrepancies.

4. Data comparison for TCLP Metals.

There were 8 determinations. In 3 of these determinations metals were detected by the QA lab or contractor's laboratory. There was 100% agreement. No major or minor discrepancies were noted.

Data comparison for TCLP Pesticides.

There were 7 determinations. In 0 of these determinations pesticides were detected by the QA lab or contractor's laboratory. There was 100% agreement. There were no major or minor discrepancies noted.

6. Data comparison for TCLP VOA.

There were 10 determinations. VOA's were not detected by either the QA lab or contractor's laboratory. There was 100% agreement. No major or minor discrepancies were noted.

Appendix F Site Photographs

QSFO Excavation

Continuing QSFO Excavation

Backfilling of QSFO Excavation

Site Restoration at QSFO

AMERICAN ENVIRONMENTAL NETWORK OF MARYLAND

RIEYLANA ATAD SLATEN SPIKED SAMPLE RECOVERY

......

CLIENT: AENI ID #: OHM Corporation

DATE: 25-Sep-95

9509197-008 (Hg) /9509192 (ICP) MSD

SAMPLE ID #: EX1301DUP/ABNI

UNITS: mg/Kg DRY WEIGHT ANALYTE SAMPLE SPIKED SPIKE *RECOVERY RESULTS ADDED RESULT 17 10 ARSENIC 6.4 105 BARIUM 2500 2520 210 NA CADMIUM 1.2 6.5 5.2 102 72 CHROMIUM 125 21 254 OC LRAD 5940 5560 52 NA MERCURY < 0.1 1.3 1 121 SELENIUM < 0.52 8.8 10 84 92 SILVER 9.7 10

NA = NOT APPLICABLE BECAUSE SAMPLE CONCENTRATION > 4 TIMES SPIKE LEVEL

OC = OUT OF CONTROL LIMTS OF 75-125%

AMERICAN ENVIRONMENTAL NETWORK OF MARYLAND TCLP METALS

CLIENT:

OHM Corporation

DATE: 28-Sep-95

AENI SAMPLE #: 9509197-010

CLIENT SAMPLE #: EXQUEEN01 UNITS: ug/L in LEACHATE

	_				7/4 4001010111

	ANALYTE	METHOD	REPORT	SAMPLE	
			LIMIT	RESULT	
	ARSENIC	6010	500	<500	
	BARIUM	6010	1,000	<1000	
	CADMIUN	6010	40	<40	
	CHRONIUM	6010	100	<100	
	LEAD	6010	100	<100	
	LLAND	9010	100	<100	
	MERCURY	7470	1	<1	
			_		
	SELENIUM	6010	250	<250	
	SILVER	6010	500	<500	

AMERICAN ENVIRONMENTAL NETWORK OF MARYLAND TCLP METALS

.....

CLIENT:

OHM Corporation

DATE: 28-Sep-95

ARNI SAMPLE #: 9509197-011

CLIENT SAMPLE #: EXQUEENDUP

UNITS: ug/L in LEACHATE

CDIENT SARPDE #: BAQUEENDOP				UNIIS: Ug	/L IN LEACHAIS
***************************************	ANALYTE	METHOD	REPORT LIMIT	Sample Result	*************
	ARSENIC	6010	500	<500	
	BARIUM	6010	1,000	<1000	
	CADMIUM	6010	40	<40	
	CHROMIUM	6010	100	<100	
	LEAD	6010	100	<100	
	MERCURY	7470	1	<1	9
	SELENIUM	6010	250	<250	
	SILVER	6010	500	<500	

AMERICAN ENVIRONMENTAL NETWORK OF MARYLAND METHOD BLANK AND TRECOVERY LCS

CLIENT:

OHM Corporation

DATE: 28-Sep-95

UNITS:	uq/L	IN	LEACHATE
--------	------	----	----------

*********	ANALYTE	METHOD	•	METHOD BLANK	RECOVERY LABORATORY CONTROL SAMPLE	
	ARSENIC	6010		<500	97	
	BARIUM	6010		<1000	103	
	CADMIUM	6010		<40	103	
	CHROMIUM	6010		<100	94	
	LRAD	6010		<100	105	
	MERCURY	7470		<1.0	92	
	SELENIUM	6010		<250	97	
	SILVER	6010		<500	95	

AMERICAN ENVIRONMENTAL NETWORK OF MARYLAND METALS DATA ANALYSIS

TCLP SPIKED SAMPLE RECOVERY -----

CLIENT:

OHM Corporation

DATE: 28-Sep-95

AENI SAMPLE #: 9509197-005(ICP)9509197-010(Ag)/9509214-001(Hg)

CLIENT SAMPLE #: EX243201/EXQUEEN01/AENI

UNITS: ug/L IN LEACHATE

	**************		************	**********	********
	ANALYTE	SAMPLE RESULT	SPIKED SAMPLE RESULT	SPIKE	*RBCOVBRY

	ARSENIC	<500	2690	2500	108
				4	
	BARIUM	<1000	5900	5000	118
	CADMIUM	<40	538	500	108
	CHROMIUM	<100	2320	2500	93
	44.0.120.1	1200	0000		
	LEAD	154	5510	5000	107
	MERCURY	<1	2.1	2	105
	SELENIUM	<250	1370	1250	110
	SILVER	<500	2310	2500	92

NA = NOT APPLICABLE BECAUSE SAMPLE CONCENTRATION > 4 TIMES SPIKE LEVEL

OC = OUT OF CONTROL LIMITS 75-125%.

9151 Rumsey Road Suite 150, Columbia, MD 21045-1992 (410) 730-8525 Fax (410) 997-2586

Report Number:

9509197

Report To:

OHM Corporation

Project:

Fort Devens #16208

Date:

September 29, 1995

Analysis:

General Chemistry Parameters

Client ID	AENI ID	Date Sampled	Date Received
EXQUEEN01	9509197-001	09/15/95	09/16/95
EXQUEENDUP	9509197-003	09/15/95	09/16/95
EX243201	9509197-005	09/15/95	09/16/95
EX1301	9509197-006	09/15/95	09/16/95
EX1301DUP	9509197-008	09/15/95	09/16/95

Five soil samples were received and analyzed for General Chemistry Parameters.

The samples were extracted for Total Petroleum Hydrocarbons on 09/20/95 and analyzed on 09/29/95.

All quality control met standard laboratory criteria.

This report consists of tabulated sample results.

Report Released By:

Rhonda Green-Barron

General Chemistry Laboratory Manager

51 Rumsey Road Suite 150, Columbia, MD 21045-1992)) 730-8525 Fax (410) 997-2586

Report Number:

9509197

Report To:

OHM Corporation

Project:

Ft. Devens #16208

Date:

September 29, 1995

Sample ID:

EXQUEEN01, dated 09/15/95

Parameter	Method	Result	Date Analyzed
Corrosivity (as pH)	SW846 9045	7.8	09/25/95
Flashpoint, °F	SW846 1010	>203	09/25/95
Reactive Cyanide, mg/Kg	(1)	<2	09/25/95
Reactive Sulfide, mg/Kg	(2)	<40	09/25/95

⁽L) SW846 Chapter 7.3.3

⁽²⁾ SW846 Chapter 7.3.4

9151 Rumsey Road Suite 150, Columbia, MD 21045-1992 9) 730-8525 Fax (410) 997-2586

Report Number:

9509197

Report To:

OHM Corporation

Project:

Ft. Devens #16208

Project Date:

September 29, 1995

Sample ID:

EXQUEENDUP, dated 09/15/95

Parameter	Method	Result	Date Analyzed
Corrosivity (as pH)	SW846 9045	7.7	09/25/95
Flashpoint, °F	SW846 1010	>203	09/25/95
Reactive Cyanide, mg/Kg	(1)	<2	09/25/95
Reactive Sulfide, mg/Kg	(2)	<40	09/25/95

⁾ SW846 Chapter 7.3.3

SW846 Chapter 7.3.4

9151 Rumsey Road Suite 150, Columbia, MD 21045-1992) 730-8525 Fax (410) 997-2586

Report Number:

9509197

Report To:

OHM Corporation

Project:

Ft. Devens #16208

Date:

September 29, 1995

Sample ID:

Method Blank

Parameter	Method	Result	Date Analyzed
Reactive Cyanide, mg/L	(1)	<0.02	09/25/95
Reactive Sulfide, mg/L	(2)	<1	09/25/95
Total Petroleum Hydrocarbons, mg/Kg (3)	EPA 418.1M	<16	09/29/95

(1) SW846 Chapter 7.3.3 SW846 Chapter 7.3.4

Total Petroleum Hydrocarbon results reported as mg/Kg on a dry weight basis.

Service rp.

9509197

CHAIN-OF-CUS DY RECORD

Form 001: achnical Service Rev. 08/8!

158326

P.O. BOX 551 O.H. MATERIALS CORP. FINDLAY, OH 45839-0551 419-423-3526 OJECT NAME PROJECT LOCATION **ANALYSIS DESIRED** Ayer, MA
| PROJECT TELEPHONE NO. -+. Devens (INDICATE NUMBER SEPARATE (508) 772-2019 6208 Mike Quinlan
IENTS REPRESENTATIVE CONTAINERS) Kevin Mack USACE COMP GRAB SAMPLE DESCRIPTION (INCLUDE MATRIX AND POINT OF SAMPLE) **SAMPLE NUMBER** DATE TIME REMARKS TCLP EXQUEENO1 9:545 1210 X IXIL Brown Sandy Soil wI heavy -001 3x 802 Brown Souly Soil is benyy cobbic 2 NUN EXQUEFNOZ 35 1203 Uga 3 vous sandy soil wheny IXIL EX QUEEN DUP :5 1210 3 X802 Brown Szely Soil whosey 2×16e 1203 -004Exqueenouph ml UOA reserved you conjected to late Set 9/16

SAMPLER'S SIGNATURE
Matthew Jones REMARKS **TRANSFERS TRANSFERS** ITEM ACCEPTED BY DATE TIME NUMBER **RELINQUISHED BY** Fed Ex Aubill 9,15 1-4 2 3