

FORT DEVENS GROUP 1B SITES

FINAL RADIOLOGICAL SURVEY AND REMEDIATION REPORT DRMO YARD

CONTRACT DACA31-94-D-0061 DELIVERY ORDER NUMBER 0003

U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING GROUND, MARYLAND

November 1996

PRINTED ON RECYCLED PAPER

FINAL RADIOLOGICAL SURVEY AND REMEDIATION REPORT FOR DEFENSE REUTILIZATION AND MARKETING OFFICE (DRMO) YARD FORT DEVENS, MASSACHUSETTS

CONTRACT DACA31-94-D-0061 DELIVERY ORDER NUMBER 0003

Prepared for:

U.S. Army Environmental Center Aberdeen Proving Ground, Maryland

Prepared by:

Radiation Science, Inc. Cranbury, New Jersey

Oversight by:

ABB Environmental Services, Inc. Wakefield, Massachusetts

NOVEMBER 1996

FINAL RADIOLOGICAL SURVEY AND REMEDIATION REPORT FOR

DEFENSE REUTILIZATION AND MARKETING OFFICE (DRMO) YARD FORT DEVENS, MASSACHUSETTS

Table of Contents

Executive	Summary
-----------	---------

- 1.0 Introduction
 - 1.1 Site History
 - 1.2 Surface Conditions
 - 1.3 Other Contaminants
 - 1.4 Project Summary
- 2.0 Release Criteria
- 3.0 Survey Methods
- 4.0 Survey Results
 - 4.1 Pre-remediation
 - 4.2 Post-remediation
- 5.0 Data Quality Review
 - 5.1 Field Data
 - 5.2 Laboratory Data
 - 5.3 Overall Evaluation
- 6.0 Conclusions

Annendix A	Field Measurements
Appendix B	Soil Analysis Results
Appendix C	Post Remediation Soil Analysis Results
Appendix D	Calibration Certificates & MDA Calculations
Appendix E	PCB/TCLP Lead QC Summaries (Drums 1-5) and COC Records

Appendix F Radioactive Package Shipment Survey Record

EXECUTIVE SUMMARY

This Radiological Survey Report has been prepared in accordance with the U.S. Army Environmental Center (USAEC) scope of work for Contract No. DACA31-94-D-0061, Delivery Order No. 0003, Modification 1. The scope of work modification sets forth the requirements for performing a radiological survey at the Defense Reutilization and Marketing Office (DRMO) Yard, Fort Devens, Massachusetts.

The DRMO Yard is currently undergoing environmental restoration as Area of Contamination (AOC) 32 in accordance with Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The pavement and surface soils have been contaminated primarily with inorganics and polychlorinated biphenyls (PCBs) from yard operations. In addition to these findings, the U.S. Army Center for Health Promotion and Preventative Medicine (USACHPPM) conducted a preliminary survey to establish the history of radioactive sources at Fort Devens. The locations of sources, the activity of those sources, and the uses, accidents, and leaks that may have contaminated any areas at Fort Devens are presented by USACHPPM in an industrial radiation historical data review report entitled "Industrial Radiation Historical Data Review No. 27-43-E3QX-95 Fort Devens, Massachusetts" and dated November 7, 1994.

One of the outdoor sites identified in the report is the DRMO Yard which is located at the north end of the Main Post on the corner of Cook Street and Market Street in the town of Ayer. The DRMO Yard is comprised of three fenced enclosures. These fenced yards are identified in this report as the west yard, east yard and the tire recycling yard. According to the historical data review report by USACHPPM, there was a potential for radium contamination from jeep crushing activities that occurred within these yards. For an undetermined period of time, jeeps were crushed without removal of speedometer, fuel, temperature, battery and oil pressure gages with radium faces. Based on a record search, crushing potentially occurred within the north end of the east yard, the tire recycling yard, and on a 40- by-100-foot concrete pad (former building slab) east of Building 204. No crushing was reported to be performed within the west yard.

As a result of the preliminary survey by USACHPPM, the USAEC contracted ABB Environmental Services, Inc. (ABB-ES) to perform a radiological survey at the DRMO Yard to investigate for potential contamination from radium 226 (Ra-226) in soils and on paved surfaces. The Army identified the following areas as "affected" areas as defined by NUREG/CR-5849 Manual for Conducting Radiological Surveys in Support of License Termination, (NRC, 1992):

• The tire recycling yard (an approximate 2,915 square meter [m²] unpaved area).

total beta/gamma measurements measured $28,623 \pm 1303$ beta/gamma disintegrations per minute (dpm)/100 square centimeters (cm²) and 55 total alpha dpm/100 cm². The survey discovered no surface contamination on paved areas at any of the yards and no soil contamination within the tire recycling yard, the concrete pad area east of Building T-204, and the south portion of the east yard.

Following the radiological site survey, Radiation Science, Inc. returned to the site to excavate through the pavement and investigate/remediate the hot spot areas detected during the site survey at the north end of the east yard. Hot spot areas were found to be predominantly contaminated soil (only one fully intact dial was found below the pavement). Contaminated soil was containerized in five 55-gallon drums and relinquished to the Army for disposal. Composited samples were collected for each drum for laboratory analyses of Ra-226, PCBs, and Toxicity Characteristic Leaching Procedure (TCLP) Lead. Maximum concentrations were 89 picocuries per gram (pCi/g) above background Ra-226, 1,800 micrograms per kilogram (μ g/kg) PCBs (Aroclor 1254), and 107,000 microgram per liter (μ g/L) TCLP Lead. TCLP lead concentrations in two of the five drums exceeded the TCLP regulatory limit of 5,000 μ g/L.

Upon soil removal, a composite soil sample was collected from the walls and bottom of each of the 10 hot spot excavations and from around the radium dial indicator and gage. All samples revealed Ra-226 concentrations below the release limit of 3.75 pCi/g. The average Ra-226 concentration of the 12 soil samples was 1.13 pCi/g, above background. This average value is approximately 30 percent of the release limit. Based upon the initial site survey and the remedial results, the east yard, tire recycling yard, and concrete pad area east of Building T-204 meet the release criteria established for total alpha contamination and Ra-226 concentrations in soil.

1.0 INTRODUCTION

The U.S. Army Environmental Center (USAEC) has directed ABB Environmental Services, Inc. (ABB-ES), under Contract No. DACA31-94-D-0061, Delivery Order No. 0003 Modification 1, to conduct radiological survey work at the Defense Reutilization and Marketing Office (DRMO) Yard, Fort Devens, Massachusetts.

The U.S. Army Center for Health Promotion and Preventative Medicine (USACHPPM) conducted a preliminary survey to establish the history of radioactive sources at Fort Devens. The locations of sources, the activity of those sources, and the uses, accidents, and leaks that may have contaminated any areas at Fort Devens are presented by USACHPPM in an industrial radiation historical data review report (USACHPPM, 1994). One of the outdoor sites identified in the report is the DRMO Yard which is located at the north end of the Main Post on the corner of Cook Street and Market Street in the town of Ayer. The DRMO Yard is comprised of three fenced enclosures on both sides of Cook Street (Figure 1). These fenced yards are identified in this report as the west yard, east yard and the tire recycling yard. According to the historical data review report by USACHPPM, there was a potential for radium contamination from jeep crushing activities that occurred within these yards. For an undetermined period of time, jeeps were crushed without removal of speedometer, fuel, temperature, battery and oil pressure gages with radium faces. As a result of the preliminary survey by USACHPPM, the USAEC contracted ABB-ES to perform a radiological survey within the DRMO Yard to investigate for potential contamination from radium 226 (Ra-226) in surface soils and on paved surfaces.

USAEC also requested that ABB-ES search and review historical information to define more precisely where jeep crushing may have occurred within the DRMO Yard. The search for historical information involved interviewing Fort Devens personnel; reviewing historical aerial photographs, Fort Devens record vault drawings, and Department of Defense (DoD) regulations; and visiting the site to inspect topography and other site conditions (ABB-ES, 1995). The following information regarding site background and crushing operations was derived from this background research.

1.1 Site History

Formerly, the Army cut jeeps (in half or quarter following a predetermined and precise procedure) in the DRMO yard so that they could not be resold for use by the general public. Later, the Army discovered that buyers who bought the jeeps for "scrap metal" were welding the frames back together and selling them as operable jeeps. For liability purposes, the Army began to crush the jeeps. Army personnel crushed the jeeps using tank retrievers and other tracked vehicles. Later, contractors hired by the buyer crushed the jeeps by using the clam shell bucket of the crane as the jeeps were loaded to be

1.2 Surface Conditions

The west yard was constructed and paved in August 1979 when DRMO took over the property west of Cook Street and constructed Building P-213 (warehouse). Record drawings for Building P-213 and the west yard show that there was a layer of approximately 10 inches (in) of coal that remained from a former coal pile over the area prior to construction of the west yard.

Aerial photographs show that the entire east yard was completely paved sometime between 1969 and 1972. Based on conversations with DRMO personnel, jeep crushing was believed to have started after the east yard was paved. Between the fence that surrounds the east yard and the paved surface is an approximate 10-ft-wide perimeter that is covered with sporadic vegetation, gravel, and sand. There are two unpaved spots (approximately 20 to 30 feet [ft] in diameter) located in the northern portion of the east yard where pavement has been removed (believed to be associated with PCB spill cleanup). The yard most recently used for tire recycling at the north end of the east yard is totally unpaved.

During a site visit, ABB-ES noted the presence of coal fragments intermixed with the sand and gravel along the west fence of the east yard. In an aerial photograph taken in 1965, approximately 25 percent of the east yard (southwest side) appears noticeably stained (black), presumably with coal from the coal pile which, at the time, was located directly across Cook Street. Coal ash was also formerly hauled down Cook Street, past the DRMO Yard, for disposal in the Shepley's Hill landfill. The presence of coal and coal ash in the east yard (and perhaps the tire recycling yard) could influence the results of a radiological survey due the potential presence of naturally occurring radioactive uranium, radium or potassium. As a result, a background survey was performed in consideration of these possible influences (refer to Section 3.0, Survey Methods).

The concrete pad located east of Building T-204 is surrounded by pavement on the west end and vegetation on the remaining three sides.

1.3 Other Contaminants

The DRMO Yard is also currently undergoing environmental restoration as Area of Contamination (AOC) 32 in accordance with Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The pavement and surface soils have been contaminated primarily with inorganics and PCBs from yard operations.

2.0 RELEASE CRITERIA

The release criteria for this project are based on NUREG-1500, "Working Draft Regulatory Guide on Release Criteria for Decommissioning". A discussion of the release criteria and their derivation is provided in the Radiological Work Plan (ABB-ES, 1995). These release criteria are 1,020 disintegrations per minute (dpm)/100 square centimeters (cm²) total surface alpha contamination, and 3.75 picocuries (pCi) of Ra-226 per gram (g) of soil, above locally determined background levels.

3.0 SURVEY METHODS

The site survey was conducted as described in the Radiological Survey Work Plan (ABB-ES, 1995) and follows the recommendations provided in NUREG-5849, "Manual for Conducting Radiological Surveys in Support of License Termination" (NRC, 1992). Table 1 summarizes the type and frequency of survey that was performed in each area.

Ten locations (Figure 2) approximately 300 to 500 ft west of the site survey area were used to determine background levels for dose rates, gamma count rate, and Ra-226 concentration in soil. This area included both paved and unpaved surfaces, as well as areas where coal was stored previously. Background for each type of surface, as well as soil concentrations were determined and results are reported in Appendix B.

The DRMO Yard was divided into four survey units: (1) tire recycling yard (unpaved), (2) east yard north (paved with unpaved areas), (3) east yard south of the concrete barriers (paved with unpaved areas), and the concrete pad east of Building T-204 (concrete surface and unpaved perimeter). Only the east yard south of the concrete barriers was designated an "unaffected unit". A 10-m-by-10-m grid was established over all areas, as depicted in Figure 3. All survey results are keyed to those grid identification numbers.

Each grid was scanned with a 2- by-2-inch sodium iodide (NaI) crystal, with the meter in ratemeter mode. Using the audio output to identify hotspots, the detector was held 3 inches above ground level and was moved over the area at a slow pace. Any location exhibiting elevated count rates was identified for further investigation. The range of count rates detected in each grid is reported.

Measurements of the total alpha and total beta/gamma surface activity were made at any hotspots identified during the gamma scan. In addition 30 random locations were selected for measurement in each paved survey unit, the east yard (north and south of the concrete barrier) and the concrete pad.

Dose equivalent measurements were obtained at waist level with a Bicron tissue

tools. The pieces of pavement were scanned and disposed as radioactive or non-radioactive based on the scan results. Five 55-gallon drums of waste were generated and relinquished to the Army for disposal at an approved disposal facility as directed by the Radiation Waste Division of the Industrial Operations Command (IOC), Rock Island, Illinois. Hot spot areas were found to be predominantly contaminated soil (only one fully intact dial was found below the pavement). Composited samples were collected for each drum for laboratory analyses of Ra-226, PCBs, and Toxicity Characteristic Leaching Procedure (TCLP) Lead. Maximum concentrations were 89 pCi/g above background Ra-226, 1,800 micrograms per kilogram (µg/kg) PCBs (Aroclor 1254), and 107,000 microgram per liter (µg/L) TCLP Lead. TCLP lead concentrations in two of the five drums exceeded the TCLP regulatory limit of 5,000 μ g/L. Drum characterization results are summarized in Table 2. PCB and TCLP Lead QC Summaries and Chain of Custody documentation for Drums 1 through 5 are provided in Appendix E. Data quality review for Ra-226 analyses is summarized in Section 5.0. The results of radiological dose rate and smear surveys performed on the drums for staging and transportation purposes are included in Appendix F.

At the end of each phase of remediation, a soil sample was obtained from the bottom and sides of the excavation for each hotspot. The average value from the 12 soil samples obtained in the excavated hotspots was 1.13 pCi/g of Ra-226, above background. This is approximately 30 percent of the release limit.

5.0 DATA QUALITY REVIEW

Providing quality data for a remediation project is based on certain key elements as discussed in EPA guidance documents (EPA 504/G-93/071). These are known as PARCC (precision, accuracy, representativeness, completeness, and comparability) parameters. In addition, the sensitivity of measurements, expressed as the Minimum Detectable Activity (MDA) must be sufficiently low to detect contamination that is less than or equal to 25 percent of the release criteria (NRC, 1992). The process for assessing these parameters, as well as the project specific results, are discussed below.

Field measurements and quality control were provided by RSI. Laboratory measurements and quality control were provided by PACE, ESE and Quanterra, with the data quality review conducted by RSI.

5.1 Field Measurements

Precision. Precision is a test of how closely a measurement can be replicated. Replicate measurements for total alpha and beta contamination were made by obtaining two one-minute counts in sequence at the same location. Slightly more than 4 percent of the total measurements were duplicated in this manner. The formula below was used to

For this project the data is 100 percent representative. All hotspots identified during the scanning survey were subsequently proven to be hotspots based on the samples obtained during the remediation phase.

Completeness. Completeness is a measure of the amount of valid data obtained compared to the amount that was specified. For the purposes of evaluation, data defined as invalid through a QA review is subtracted from the complete data set to determine the number of valid data points. Generally, completeness greater than 95 percent is desirable. For the field measurements of dose rate, alpha, and beta contamination, all data obtained was valid, thereby providing 100 percent completeness.

Comparability. Comparability is a non-quantitative evaluation of the agreement between different types of data sets which should be, intuitively, related to each other. For example, on this project, all locations exhibiting elevated dose rates, also exhibited elevated gamma count rates, illustrating total comparability of these two data sets. Although the beta contamination has a relatively short range, it too is comparable with the gamma data. The alpha results are not comparable with any other data, as its range of affect is limited to several centimeters.

Sensitivity. To determine the suitability of a meter for a measurement, the MDA is compared with the project specific release limits. The minimum detectable activity was calculated using an equation from NUREG-5849, and the average of the daily background and source checks. The MDA for total alpha measurements (55 dpm/100 cm²) was 5.4 percent of the fixed contamination release limit (1,020 dpm/100 cm²). Therefore, the instrumentation employed was suitable for detecting contamination at the release limit and distinguishing it from background. MDA calculations are presented in Appendix D, as well as calibration certificates for field instrumentation.

5.2 Laboratory Analysis

For the initial survey, PACE analyzed 210 soil samples by gamma spectroscopy to determine the Ra-226 concentration. In the next phase, 18 soil samples were analyzed by Quanterra and ESE to confirm the efficacy of remediation. The first contract laboratory, PACE, was no longer in business at the time of the data review.

Precision. To assess the precision, (reproducibility) of laboratory analysis, PACE reanalyzed 20 samples out of 210, roughly 10 percent. The re-analysis was an immediate recount of a sample on the same detector. The average RPD was 6 percent with a range of zero to 14 percent. However, an error was discovered in the reporting of QA data. A duplicate analysis was reported as 0.75 pCi/g for both counts, yet the raw data provides two different values, 0.73 pCi/g and 0.75 pCi/g. This is merely a transcription error and does not affect the quality of the data.

Completeness. For the first phase of laboratory analysis, conducted by PACE, 210 soil samples were specified. Chain of custody forms and analytical results indicate all 210 samples were received, prepared, analyzed, and reported, with no losses or rejections. Therefore, the laboratory data for this phase was 100 percent complete. In the second phase, a minimum of one sample from each remediated hotspot was expected, and a minimum of one sample from each hotspot was obtained. All samples collected were received by the laboratories intact and subsequently analyzed. Those results, as reported here, are acceptable and provide 100 percent completeness of the laboratory data for this project.

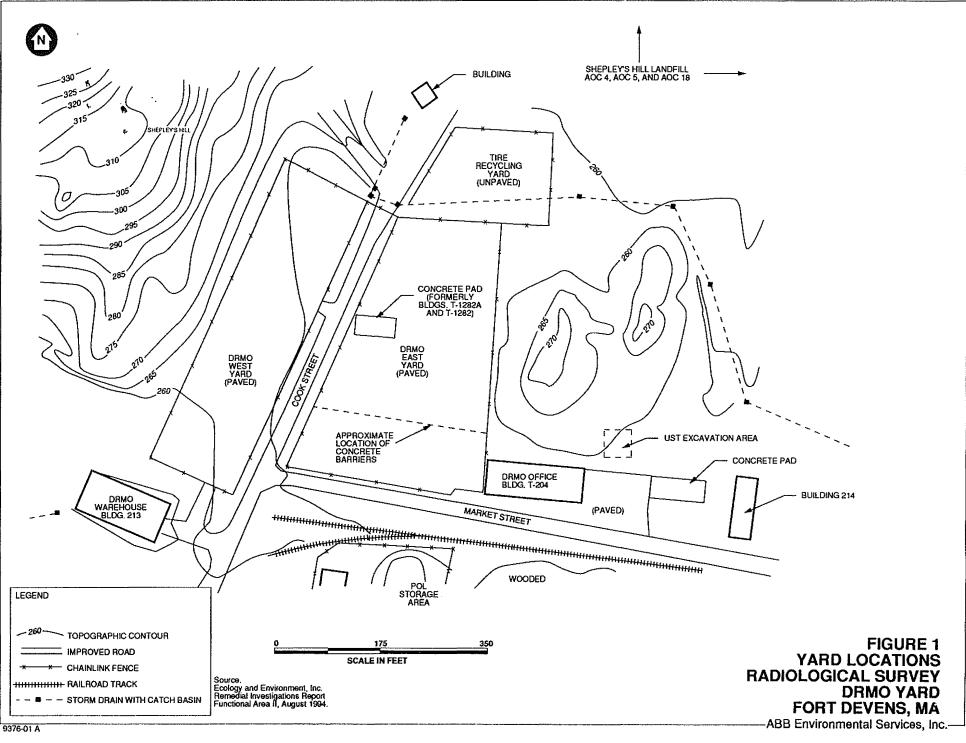
Comparability. Because this parameter relates two data sets, and the laboratory data only produced a single data set (Ra-226 in soil) it is difficult to compare the results within a laboratory. However, comparability between the laboratory and field data was high. That is, hotspots identified in the field produced soil samples with elevated Ra-226 concentrations.

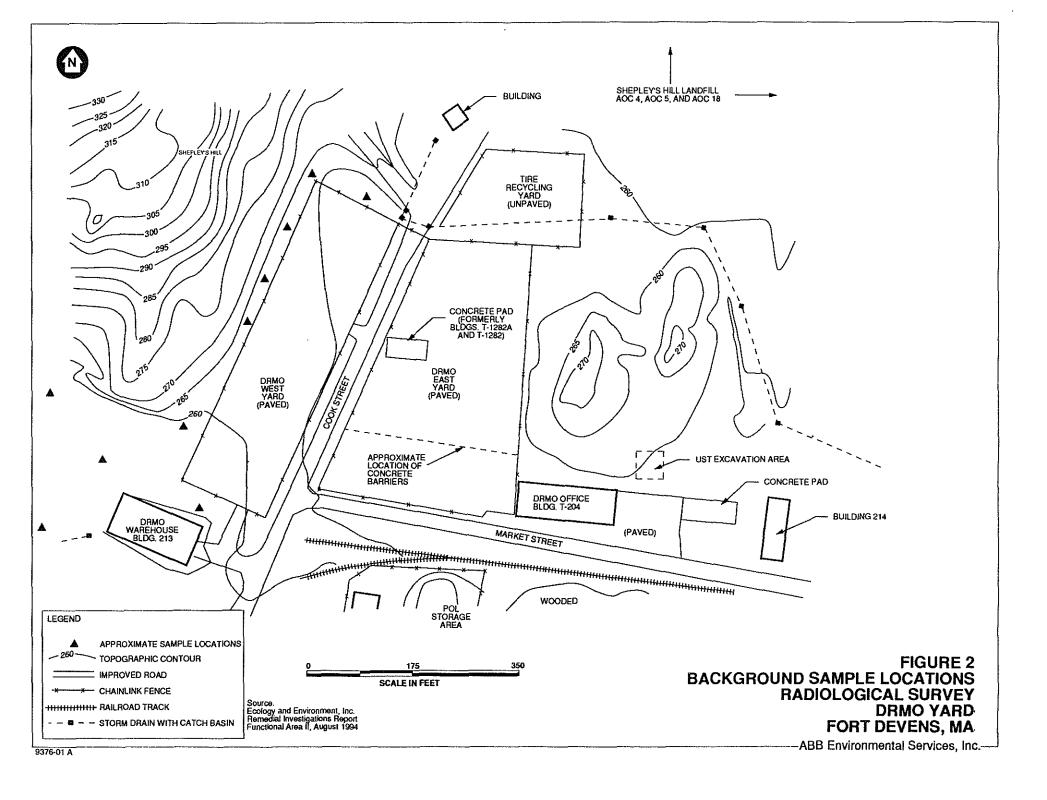
Sensitivity. MDA calculations were provided by all laboratories as part of the computer generated data report. The counting error due solely to random statistical fluctuations, expressed as sigma, was evaluated as part of the analytical sensitivity. NUREG-5849 recommends the 2 sigma error be less than 20 percent of the reported value.

The MDA values for PACE (pre-remediation) were on the order of 0.2 to 0.3 pCi/g, less than 10 percent of the Ra-226 release criteria of 3.75 pCi/g. The statistical counting error at the 95 percent level, (2 sigma) was generally less than 20 percent of the reported value.

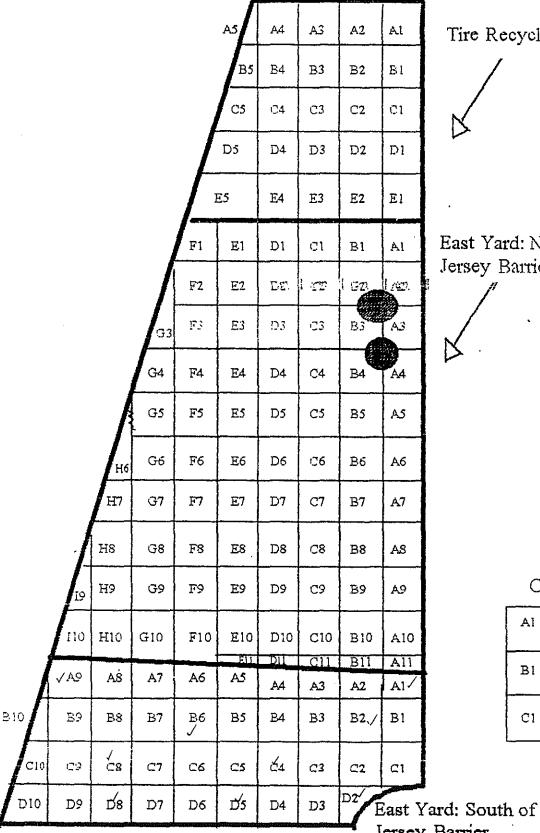
Quanterra results were reported with MDAs at an average value of 1.2 pCi/g, approximately 32 percent of the release criteria. In addition, the two sigma errors are on the order of 40 to 50 percent of the reported results. This may be due to the small sample size (45 g), and the inhomogeneity of the contaminant, as previously discussed in the paragraph entitled "Precision".

ESE counted all samples for a sufficient length of time to ensure all results were above their minimum detectable activity.


5.3 Overall Data Evaluation

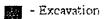

The data is suitable for use, and adequately characterizes the contamination levels on site. Comparing the 95 percent confidence level upper limit of the measured values (i.e. result \pm 2 sigma) to the release criteria provides an added margin of safety in assuring compliance with the release criteria.

References


- ABB Environmental Services, Inc. (ABB-ES), 1995 "Final Radiological Survey Work Plan, Defense Reutilization and Marketing Office (DRMO) Yard, Fort Devens, Massachusetts"; August 4, 1995
- ABB Environmental Services, Inc. (ABB-ES), 1995. Memorandum entitled "Historical Data Search and Radiological Survey Implications AOC 32 (DRMO Yard), Fort Devens, Massachusetts"; June 16, 1995.
- ABB Environmental Services, Inc. (ABB-ES), 1996 "Final Radiological Survey Work Plan Addendum, Defense Reutilization and Marketing Office (DRMO) Yard, Fort Devens, Massachusetts"; February 14, 1996.
- U.S. Army Center for Health Promotion and Preventative Medicine (USACHPPM), 1994. "Industrial Radiation Historical Data Review No. 27-43-E3QX-95 Fort Devens Massachusetts"; November 7, 1994.
- U.S. Environmental Protection Agency (EPA), 1994 EPA 540/G-93/071 Data Quality Objectives Process for Superfund. Washington, DC 1994.
- U.S. Nuclear Regulatory Commission (NRC), 1994. "NUREG-1500 Working Draft Regulatory Guide on Release Criteria for Decommissioning: NRC Staff's Draft for Comment". Draft Report for Comment, August, 1994.
- U.S. Nuclear Regulatory Commission (NRC), 1992. "NUREG/CR-5849 Manual for Conducting Radiological Surveys in Support of License Termination", Prepared by J. D. Berger, Environmental Survey and Site Assessment Program, Energy/Environmental Systems Division, Oak Ridge Associated Universities, Oak Ridge, TN; Prepared for U.S. Nuclear Regulatory Commission; Draft Report for Comment, June 1992.
- U.S. Nuclear Regulatory Commission (NRC), 1995 NUREG-1506 Measurement Methods for Radiological Surveys in Support of New Decommissioning Criteria. Draft Report for Comment, August 1995.
- U.S. Nuclear Regulatory Commission (NRC), 1995a NUREG-1507 Minimum

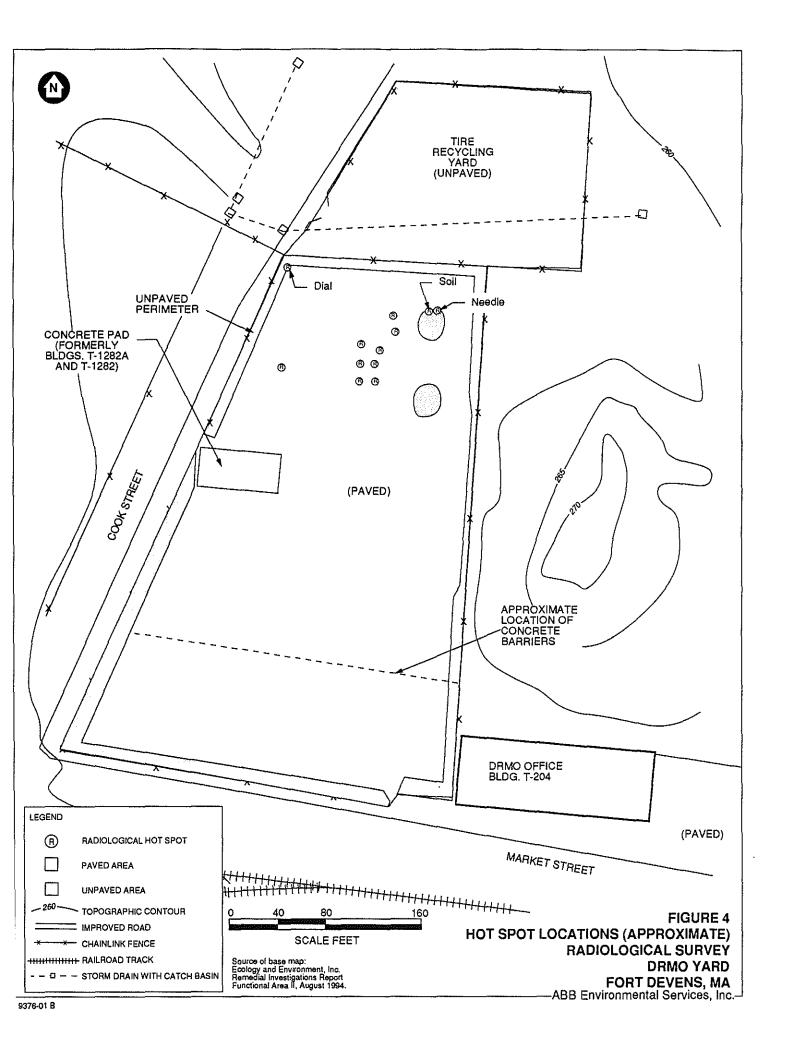
 Detectable Concentrations with Typical Radiation Survey Instruments for Various
 Contaminants and Field Conditions. Draft Report for Comment, August 1995.

DRMO Grid Identification Map


Tire Recycling Yard

East Yard: North of Jersey Barrier

-- Concrete



Concrete Pad

Al	A2	A3	A4	A5
		100000	•:••:•	
Bl	B2	B3:	B4:	6 5
Cl	C2	C3	C4	C5

FIGURE 3 **GRID IDENTIFICATION MAP** RADIOLOGICAL SURVEY **DRMO YARD** FORT DEVENS, MA

Jersey Barrier

TABLE 1 RADIOLOGICAL SURVEY DRMO YARD FORT DEVENS, MASSACHUSETTS

SITE AREA	AREA CLASSIFICATION	SURVEY ELEMENTS	MEASUREMENT/SAMPLING FREQUENCY
East Yard - North of Jersey Barriers (6,980 nf paved; 690 nf unpaved)	Affected Area; Paved surface w/ unpaved perimeter	(1) Gamma surface scan (cpm); (2) Direct measurements for: a) Surface activity (dpm/100cn²); b) Dose rate (\(\mu\) R/hr); and (3) Soil sampling at unpaved perimeter.	(1) scanning 100% of paved and unpaved area (7,670 m²); (2a) 30 randomly selected locations (paved area); (2b) 1 measurement/100 m² of paved and unpaved areas; and (3) 4 samples every 100 m² within unpaved borders (690 m²)
East Yard - South of Jersey Barriers (2,330 n² paved; 500 n² unpaved)	Unaffected Area; Paved surface w/ unpaved perimeter	 (1) Gamma surface scan (cpm); (2) Direct Measurements of: a) Surface activity (dpm/100cm²); b) Dose rate (μ R/hr); and (3) Soil sampling at unpaved perimeter. 	(1) scanning 10% of paved and unpaved areas (283 m²); (2a) 30 randomly selected locations (paved area); (2b) 30 randomly selected locations (paved and unpaved area); and (3) 30 randomly selected samples within unpaved areas.
Tire Recycling Yard (2,915 n² unpaved)	Affected Area; Unpaved surface	(1) Gamma surface scan (cpm); (2) Direct measurements of dose rate (\(\mu R/hr\)); and (3) Soil sampling of surface soils	(1) scanning 100% of area (2,915 m²); (2) 4 measurements every 100 m²; and (3) 4 samples every 100 m².
Concrete Pad (east of Bldg T- 204) (370 m² concrete; and 1,000 m² unpaved and 220 m² paved perimeter area	Affected Area; Concrete surface w/ grass and paved perimeter	 (1) Gamma surface scan (cpm); (2) Direct measurements of: a) Surface activity (dpm/100cm²); b) Dose rate (μ R/hr); (3) Soil sampling at unpaved perimeter of concrete pad. 	(1) scanning 100% of concrete area and 10 meter wide perimeter area (approx. 1,600 m²); (2a) 30 (total) randomly selected locations (concrete pad and paved perimeter area); (2b) 1 measurement/100 m² of entire area; and (3) 4 samples every 100 m² within 10 m unpaved perimeter of pad.
Background		(1) Gamma surface scan (cpm); (2) Direct measurements 1 meter above the surface for dose rate (#R/hr); and (3) Soil sampling.	(1,2,& 3) 10 off-site locations representative of coal pile/coal ash areas.

TABLE 2 DRUM CHARACTERIZATION RESULTS

RADIOLOGICAL SURVEY DRMO YARD FORT DEVENS, MASSACHUSETTS

DRUM	DRUM TOTAL PCBs (μg/kg)		RA-226 ^(g) (pCi/g)	
1	1,800 ^(a)	107,000 ^(d)	89.3	
2	380 ^(b)	71,000 ^d	56.7	
3(c)	480 ^(a)	2,290	10.6	
4	ND ^(e)	471	4.4	
5	259 th	29,900 ^{d)}	1.1	

- (a) Concentrations reported are for Aroclor 1254. Aroclor 1016, 1221, 1232, 1242, 1248, and 1260 were below the detection limit (< 33 µg/kg
- (b) Concentration reported is for Aroclor 1260. Aroclor 1016, 1221, 1232, 1242, 1248, and 1254 were below the detection limit ($< 33 \mu g/kg$).
- (c) Drum 3 also contains dials and needles (separated from the soil in a container) located during the August and February radiological work
- (d) TCLP lead concentrations exceed the TCLP regulatory limit of 5,000 μ g/L.
- (e) Below detection limits ($<32 \mu \text{ g/kg}$ except Aroclor 1254; $<490 \mu \text{ g/kg}$ for Aroclor 1254).
- (f) Concentration reported is for Aroclor 1254. Aroclor 1016, 1221, 1232, 1242, 1248, and 1260 were below the detection limit (< 15.1 µg/kg)
- (g) Concentrations are above site background (0.77 pCi/g) at 95% confidence level.

Analysis was by the following analytical methods:

PCBs - Method 8080

TCLP Lead - Method 1311 (extraction) and Method 6000/7000 (analysis)

Ra-226 Gamma Spectroscopy - Method 901.1

Appendix A

Field Measurements

Location: Fort Devens, MA, Background Area

Location	Dose Rate	Gamma Scan
	(µRem /hr)	Range (cpm x 10³)

1	6	9.8	-	10.9
2	6	10.0	-	11.5
3	5	9.9	-	11.2
4	7	9.6		11.0
5	6	11.4		12.0
6	7	11.3	-	15.0
7	7	10.2	_	12.8
8	5	10.6	-	13.7
9	6	11.4	•	14.0
10	7	10.8	-	12.2

Radiation Science, Inc.

Approved &

	<u> </u>			
Grid ID *hotspot	Total Alpha (dpm /100 cm²)	Total Beta/Gam (dpm /100 cm ²	.	Gamma Scan Range (cpm x 10³)
				-
A1	1.t. 55	3626 ± 70	8 8	10.3 - 12.5
A2			8	10.5 - 12.4
АЗ	1.t. 55	2592 ± 67	2 7	11.5 - 12.5
A4			6	11.3 - 12.6
A5	1.t. 55	2567 ± 67	2 7	11.5 - 12.6
A6			8	11.5 - 12.7
A7	1.t. 55	2629 ± 67	4 7	11.3 - 12.7
A8			6	11.4 - 12.6
A9	1.t. <u>5</u> 5	4137 ± 72	5 5	11.0 - 12.6
A10			7	11.0 - 12.7
A11			6	10.9 - 12.6
B1			7	11.2 - 12.4
B2*			15	10.9 - 28.2
B2*			25	10.9 - 43.7
B2*	1.t. 55	28623 ± 13	03 55	10.9 - 112.3
В3			7	11.2 - 12.6
B4			6	11.0 - 12.6
B5			8	10.8 - 12.4
В6	1.t. 55	4436 ± 73	5 8	11.3 - 12.6
B7			7	11.4 - 12.5
B8	l.t. 55	l.t. 995	7	11.6 - 12.7
B9			8	11.4 - 12.6
B10			6	11.5 - 12.7
B11	l.t. 55	3240 ± 69	5 6	11.5 - 12.8
C1			6	11.7 - 12.6

R	adiatio	n Scienc	re. Inc.
٠,	aulano	TI OCICIN	LE, LLLL

Approved by

	T	T		
Grid ID *hotspot	1		Gamma Scan Range (cpm x 10³)	
C2*	l.t. 55	19551 ± 1124	45	11.4 - 71.8
C3*	l.t. 55	21009 ± 1155	30	11.3 - 83.6
C4	1.t. 55	3738 ± 712	_6	11.4 - 12.9
C5			5	11.4 - 12.7
C6	l.t. 55	3352 ± 699	5	11.5 - 12.8
C7			5	11.2 - 12.6
C8			7	11.3 - 12.7
C9			7	11.3 - 12.8
C10	1.t. 55	4349 ± 732	7	11.5 - 12.5
C11			7	11.5 - 12.5
D1	1.t. 55	3614 ± 708	8	11.6 - 13.2
D2			7	11.6 - 13.1
D3*	l.t. 55	8847 ± 867	30	11.4 - 37.0
D4*	l.t. 55	11639 ± 941	18	11.6 - 42.4
D4*	l.t. 55	6143 ± 789	10	11.6 - 20.7
D4*	l.t. 55	5433 ± 738	10	11.6 - 22.3
D4*	1.t. 55	4536 ± 867	10	11.6 - 21.0
D5			7	11.3 - 12.9
D6			5	11.1 - 12.8
D7	l.t. 55	3364 ± 699	7	11.5 - 12. <i>7</i>
D8			7	11.4 - 12.6
D9			5	11.4 - 12 <i>.7</i>
D10			6	11.3 - 12.8
D11	l.t. 55	3751 ± 712	6	11.4 - 12.8
E1			8	11.4 - 13.2

~	4		- 4		~ *		7	_
	24		~ + 1	\sim	Sci	ATT C	Δ.	12.0
i 🔪	au	Lli	a Li	uu	JULI	CIL		LIIL

Approved by James Jacks

Grid ID *hotspot	Total Alpha (dpm /100 cm²)	Total Beta/Gamma (dpm /100 cm²)	Dose Rate (μRem / hr)	Gamma Scan Range (cpm x 10³)
E2	1.t. 55	3713 ± 711	7	11.5 - 12.9
E3			7	11.4 - 12.8
E4			7	11.4 - 12.9
E5	l.t. 55	3477 ± 703	7	11.4 - 12.7
E6			6	10.0 - 12.7
E7			5	11.1 - 12.6
E8	l.t. 55	3265 ± 696	6	11.3 - 12.5
E9	l.t. 55	3938 ± 719	6	11.0 - 12.5
E10	1.t. 55	3427 ± 702	7	11.2 - 12.6
E11			6	11.1 - 12.5
F1*	l.t. 55	3389 ± 700	20	11.2 - 37.4
F2			7	11.4 - 12.5
F3	1.t. 55	3614 ± 708	6	11.5 - 12.9
F4*	I.t. 55	4673 ± 743	13	11.5 - 21.3
F5	67 ± 42	4012 ± 721	6	11.2 - 12.7
F6			6	10.6 - 11.9
F7	1.t. 55	3601 ± 707	6	11.4 - 12.8
F8			6	11.3 - 12.7
F9	l.t. 55	3813 ± 715	7	11.4 - 12.8
F10			7	11.3 - 12.6
G3			6	11.4 - 12.7
G4	1.t. 55	3290 ± 697	6	11.5 - 12.7
G5			6	11.5 - 14.7
G6	97 ± 47	2069 ± 654	7	9.3 - 12.1
G7			6	11.4 - 12.5

Radiation Science, Inc.

Approved by hours Darde

<u></u>				
Grid ID *hotspot	Total Alpha (dpm /100 cm²)	Total Beta/Gamma (dpm /100 cm²)	Dose Rate (μRem / hr)	Gamma Scan Range (cpm x 10³)
G8			7	11.3 - 12.7
G9			6	11.4 - 12.6
G10_	1.t. 55	3664 ± 710	7	11.4 - 12.5
H6			5	11.3 - 12.6
H7			6	11.4 - 12.9
H8	l.t. 55	3826 ± 715	7	11.4 - 12.8
H9			6	11.2 - 12.7
H10			5	11.4 - 12.8
I8			6	11.3 - 12.8
I9			6	11.2 - 12.7
I10			6	11.4 - 12.8

Radiation Science, Inc.

Approved by

	<u></u>	· 		
Grid ID	Total Alpha (dpm /100 cm²)	Total Beta/Gamma (dpm /100 cm²)	Dose Rate (μRem /hr)	Gamma Scan Range (cpm x 10³)
A1	-	-	-	-
A2	l.t. 55	3664 ± 710	_5	-
A3	l.t. 55	3900 ± 717	6	-
A4	l.t. 55	1981 ± 650	6	•
A5	1.t. 55	3738 ± 712	6	•
A6	1.t. 55	3489 ± 704	7	
A7	l.t. 55	4100 ± 724	7	•
A8	l.t. 55	3763 ± 713	6	20
A9	-	-	-	•
A10	l.t. 55	3801 ± 714	7	-
B1	l.t. 55	3165 ± 393	7	•
B2	-	-	-	-
В3	l.t. 55	2766 ± 679	6	
B4	1.t. 55	3514 ± 704	7	-
B5	1.t. 55	3551 ± 706	6	11.3 - 12.7
B6	-	-	-	-
B 7	l.t. 55	2717 ± 677	7	-
B8	1.t. 55	3364 ± 699	6	-
В9	l.t. 55	3913 ± 718	7	with
B10	l.t. 55	3776 ± 713	7	-
C1	l.t. 55	3713 ± 711	7	•
C2	l.t. 55	3477 ± 703	6	-
C3	l.t. 55	3265 ± 696	6	11.2 - 12.6
C4	-	-	-	•

Radiation Science, Inc.

Approved by

	_			
Grid ID	Total Alpha (dpm /100 cm²)	Total Beta/Gamma (dpm /100 cm²)	Dose Rate (μRem /hr)	Gamma Scan Range (cpm x 10³)
C5	l.t. 55	3938 ± 719	6	-
C6	l.t. 55	3427 ± 702	7	-
C7	l.t. 55	3389 ± 700	8	-
C8	-	-	-	11.6 - 13.1
C9	l.t. 55	3614 ± 708	7	-
C10	1.t. 55	3776 ± 713	6	-
D1	-	-		_
D2	_	_	-	-
D3	l.t. 55	4100 ± 724	6	-
D4	l.t. 55	4137 ± 725	6	-
D5	-	•	•	•
D6	I.t. 55	3065 ± 689	7	•
D7	l.t. 55	2766 ± 679	7	-
D8		-	-	-
D9	l.t. 55	3601 ± 707	7	-
D10	l.t. 55	3676 ± 710	6	-

Radiation Science, Inc.

Approved by

Location: Fort Devens, MA, Concrete Pad

	T	1	<u>г</u>	
Grid ID	Total Alpha (dpm /100 cm²)	Total Beta (dpm /100 cm²)	Dose Rate (μRem / hr)	Gamma Scan Range (cpm x 10³)
A1	l.t. 55	3315 ± 698	5	11.4 - 12.9
A2	1.t. 55	1358 ± 627	7	11.6 - 13.0
A3	l.t. 55	2642 ± 674	7	11.7 - 13.0
A4	1.t. 55	2143 ± 656	7	12.0 - 14.4
A5	l.t. 55	1969 ± 650	5	11.8 - 14.5
B1-1	l.t. 55	3352 ± 699	6	10.5 - 11.9
B1-2	1.t. 55	2679 ± 676		
B1-3	l.t. 55	2928 ± 684		
B1-4	1.t. 55	2642 ± 674		
B2-1	1.t. 55	1732 ± 641	5	11.0 - 12.1
B2-2	1.t. 55	1682 ± 639		
B2-3	1.t. 55	1994 ± 651		
B2-4	1.t. 55	1919 ± 648		
B3-1	l.t. 55	2019 ± 652	6	10.9 - 11.7
B3-2	1.t. 55	2330 ± 663		
B3-3	l.t. 55	2081 ± 654		
B3-4	1.t. 55	2143 ± 656		
B4-1	59 ± 40	1570 ± 635	5	11.0 - 11.7
B4-2	1.t. 55	1371 ± 627	į	
B4-3	l.t. 55	1782 ± 643		
B4-4	l.t. 55	1595 ± 636		
B5	1.t. 55	1894 ± 647	6	11.3 - 13.6

Radiation Science, Inc.

Approved by

Location: Fort Devens, MA, Concrete Pad

l.t. 55

Grid ID	Total Alpha (dpm /100 cm²)	Total Beta (dpm /100 cm²)	Dose Rate (μRem / hr)	Gamma Scan Range (cpm x 10³)
			1	
C1-1	l.t. 55	2654 ± 675	6	10.6 - 11.7
C1-2	l.t. 55	2530 ± 670		
C1-3	l.t. 55	2941 ± 685		
C1-4	I.t. 55	2492 ± 669		
C2	l.t. 55	1894 ± 647	6	11.1 - 13.5
C3	l.t. 55	2405 ± 666	7	11.2 - 14.0
C4	l.t. 55	2729 ± 677	6	11.2 - 13.7

± 639

1682

6

Radiation Science, Inc.

Approved by

C5

Date: 9/15/95

10.8

14.0

Grid ID	Dose Rate	Gamma Scan
	(µRem /hr)	Range (cpm x 10³)

A1-1	6	11.2 - 12.3
A1-2	6	
A1-3	6	
A1-4	7	
A2-1	7	11.4 - 12.0
A2-2	6	
A2-3	6	
A2-4	6	
A3-1	7	11.5 - 12.0
A3-2	7	
A3-3	6	
A3-4	6	
A4-1	5	11.8 - 13.4
A4-2	7	
A4-3	7	
A4-4	6	
A5-1	7	11.6 - 14.1
A5-2	7	·
A5-3	6	
A5-4	8	
B1-1	6	11.2 - 12.6
B1-2	8	
B1-3	7	
B1-4	6	

R	adi	ati	on	Sci	ence	, Inc.

Approved b

Date: 015/05

Grid ID	Dose Rate	Gamma Scan
	(µRem /hr)	Range (cpm x 10³)

B2-1	7	11.0 - 12.3
B2-2	7	
B2-3	6	
B2-4	66	
B3-1	7	11.6 - 12.8
B3-2	6	
B3-3	6	
B3-4	7	
B4-1	7	11.7 - 13.7
B4-2	5	
B4-3	7	
B4-4	7	
B5-1	5	11.5 - 13.8
B5-2	7	
B5-3	6	
B5-4	6	
C1-1	6	10.9 - 11.7
C1-2	6	
C1-3	7	
C1-4	6	
C2-1	6	11.5 - 12.3
C2-2	6	
C2-3	6	
C2-4	7	

Radiation Science, Inc.

Approved by:

Grid ID	Dose Rate	Gamma Scan
	(µRem /hr)	Range (cpm x 10³)

C3-1 7 11.3 - 12.8 C3-2 8 -	
C3-3 7 C3-4 7 C4-1 6 11.7 - 13.7 C4-2 8 C4-3 7	
C3-4 7 C4-1 6 11.7 - 13.7 C4-2 8 C4-3 7	
C4-1 6 11.7 - 13.7 C4-2 8 C4-3 7	
C4-2 8	
C4-3 7	
(
C4-4 7	
C5-1 6 11.8 - 14.2	
C5-2 7	
C5-3 7	
C5-4 7	
D1-1 6 11.3 - 12.5	
D1-2 7	
D1-3 7	
D1-4 6	
D2-1 6 11.3 - 12.2	
D2-2 8	
D2-3 6	
D2-4 6	
D3-1 6 11.2 - 12.5	· · · · · · · · · · · · · · · · · · ·
D3-2 7	
D3-3 7	
D3-4 7	

Radiation Science, Inc.

Approved by:

Grid ID	Dose Rate	Gamma Scan
	(µRem /hr)	Range (cpm x 10³)

D4-1	7	11.4 - 14.0
D4-2	5	
D4-3	6	
D4-4	7	
D5-1	8	11.6 - 14.2
D5-2	8	
D5-3	7	
D5-4	7	
E1-1	7	11.4 - 12.6
E1-2	7	
E1-3	8	
E1-4	6	
E2-1	7	11.2 - 12.6
E2-2	6	
E2-3	7	
E2-4	7	
E3-1	6	11.3 - 12.5
E3-2	8	
E3-3	6	
E3-4	7	
E4-1	7	11.4 - 13.9
E4-2	7	
E4-3	7	
E4-4	8	

Radiation Science, Inc.

Approved by:⊆

Grid ID	Dose Rate	Gamma Scan
	(µRem /hr)	Range (cpm x 10³)

E5-1	6	11.2 - 14.0
E5-2	8	
E5-3	7	
E5-4	8	

Radiation Science, Inc.

Approved by:

Appendix B

Pre-Remediation Soil Analysis Results

Ft. Devens Bkgd

PACE ID	Location	Ra-226	2 sigma
69699	Bckgd 1	0.75	0.13
69702	Bckgd 2	0.47	0.12
69710	Bckgd 3	0.56	0.11
69729	Bckgd 4	0.77	0.15
69737	Bckgd 5	0.68	0.14
69745	Bckgd 6	1.1	0.21
69753	Bckgd 7	0.89	0.16
69761	Bckgd 8	0.87	0.17
69800	Bckgd 9	0.93	0.17
69818	Bckgd 10	0.75	0.14

Mean	0.777
Standard Error	0.05787055
Median	0.76
Mode	0.75
Standard Devis	0.18300273
Variance	0.03349
Range	0.63
Minimum	0.47
Maximum	1.1
Count	10

East DRMO Yard North

PACE ID	Location	Ra-226 pCi/g	2 sigma
69770	1	0.81	0.16
69788	2	0.76	0.14
69796	3	0.88	0.16
69966	4	0.78	0.12
69974	5	0.68	0.1
69982	6	0.86	0.14
69990	7	0.97	0.16
70000	8	0.96	0.15
70026	9	0.89	0.15
70034	10	1	0.18
70069	11	1.3	0.17
70077	12	0.96	0.16
70085	13	0.93	0.16
70093	14	1.1	0.2
70107	15	1	0.18
70115	16	0.71	0.11
69826	17	0.87	0.14
69834	18	0.79	0.12
69842	19	0.7	0.1
69850	20	1.2	0.15
69869	21	0.9	0.12
69877	22	0.86	0.12
69885	23	0.8	0.12
69893	24	0.57	0.1
69907	25	0.72	0.11
69915	26	0.61	0.11
69923	27	0.78	0.13
69931	28	1.2	0.16
73904	<u> HS1</u>	287	15
73912	HS2	1.9	0.22

With	hotspots
Mean	10.4496667
Standard Error	9.53632933
Median	0.875
Mode	0.78
Standard Devis	52.2326269
Variance	2728.24731
Range	286.43
Minimum	0.57
Maximum	287
Count	30

Without	hotspots
Mean	0.87821429
Standard Error	0.03319038
Median	0.865
Mode	0.78
Standard Devis	0.17562699
Variance	0.03084484
Range	0.73
Minimum	0.57
Maximum	1.3
Count	28

East DRMO Yard South

PACE ID	Location	Ra-226	2 sigma
69940	1	0.9	0.15
70255	_ 2	0.6	0.11
70263	3	1.1	0.18
70271	4	0.77	0.11
70280	5	0.8	0.11
70298	6	0.74	0.14
70301	7	0.59	0.09
70310	88	0.54	0.12
70328	9	0.68	0.14
70336	10	0.69	0.1
70344	11	0.75	0.14
70352	12	0.59	0.14
70360	13	0.71	0.11
70379	14	0.76	0.22
70123	_ 15	0.63	0.1
70131	16	0.71	0.12
70140	17	0.72	0.12
70158	18	0.62	0.1
70166	19	0.76	0.16
70174	20	0.56	0.1
70182	21	0.64	0.09
70190	22	0.73	0.17
70204	23	0.72	0.14
70212	24	0.66	0.13
70220	25	0.62	0.09
70239	26	0.71	0.1
70247	27	0.63	0.1
71880	28	0.56	0.1
71898	29	0.82	0.14
71901	30	0.9	0.14

Mean	<u>0.707</u>
Standard Error	0.02166702
Median	0.71
Mode	0.71
Standard Devis	0.11867516
Variance	0.01408379
Range	0.56
Minimum	0.54
Maximum	1.1.
Count	30

Concrete Pad

PACE ID	Location	Ra-226	2 sigma	
71910	A1-1	0.7_	0.1	_
71928	A1-2	0.61	0.11	
71936	A1-3	0.56	0.1	_
71944	A1-4	0.66	0.1	
71952	A2-1	0.74	0.12	
71960	A2-2	0.81	0.25	_
71979	A2-3	0.5	0.1	ND
71987	A2-4	0.81	0.13	-
71995	<u>A3-1</u>	0.86	0.14	
72002	<u>A3-2</u>	0.83	0.17	_
71324	A3-3	0.87	0.16	
71332	A3-4	0.87	0.2	_
71340	A4-1	1.3	0.24	
71359	A4-2	0.68	0.14	_
71367	A4-3	0.7	0.13	_
71375	A4-4	0.88	0.14	_
71383	A5-1	0.77	0.13	
71391	A5-2	0.66	0.12	_
71405	A5-3	0.67	0.13	
71413	A5-4	0.58	0.12	
71421	B5-1	0.73	0.13	_
71430	B5-2	0.61	0.13	_
71448	B5-3	0.76	0.14	_
71456	B5-4	0.55	0.09	
71464	<u>C2-1</u>	0.57	0.09	_
71472	C2-2	0.52	0.13	
71480	<u>C2-3</u>	0.67	0.09	_
71499	C2-4	0.62	0.1	
71502	C3-1	0.7	0.12	_
71510	C3-2	0.68	0.1	_
71529	C3-3	0.81	0.11	_
71537	<u>C3-4</u>	0.71	0.12	_
71545	C4-1	0.72	0.12	
71533	<u>C4-2</u>	0.57	0.09	_
71561	<u>C4-3</u>	0.53	0.09	_
71570	C4-4	0.65	0.1	
71588	C <u>5-1</u>	0.54	0.09	_
71596	C5-2	0.45	0.08	
71863	C5-3	0.71	0.12	_
71871	C5-4	0.79	0.13	

Mean	0.69875
Standard Error	0.02346899
Median	0.69
Mode	0.7
Standard Devis	0.1484309
Variance	0.02203173
Range	0.85
Minimum	0.45
Maximum	1.3.
Count	40

Ft. Devens Tire Yard

PACE ID	Location	Ra-226	2 sigma
71731	A1-1	0.95	0.17
71740	A1-2	0.072	<u>0.013</u>
71758	_ A1-3	0.92	0.17
71766	A1-4	0.86	0.16
71774	A2-1	0.85	_0.15
71782	A2-2	0.99	0.15
71790	_ A2-3	1	_0.17
71804	A2-4	0,99	0.18
71812	A3-1	0.7	0.13
71820	A3-2	0.75	0.14
71839	A3-3	0.64	0.12
71847	A3-4	0.82	0.13
74048	A4-1	0.55	0.19
74056	A4-2	0.5	0.09
74064	A4-3	0.57	0.08
74072	A4-4	0.48	0.09
74080	A5-1	0.53	0.09
74099	A5-2	0.62	0.08
74102	A5-3	0.67	0.21
74110	A5-4	0.63	0.11
71855	B1-1	0.68	0.14
72010	B1-2	0.7	0.15
72029	B1-3	0.76	0.14
72037	B1-4	0.58	0.11
72045	B2-1	0.84	0.16
72053	B2-2	0.89	0.17
72061	B2-3	1.2	0.17
72070	B2-4	0.7	0.14
72088	B3-1	0.56	0.1
72096	B3-2	0.59	0.12
72100	B3-3	0.86	0.13
72118	B3-4	0.64	0.12
74129	B4-1	0.9	0.11
74137	B4-2	0.77	0.11
74145	B4-3	0.57	0.1
73696	B4-4	0.95	0.18
73700	B5-1	0.62	0.13
73718	B5-2	0.54	0.12
73726	B5 - 3	1.1	0.18
73734	B5-4	0.64	0.12
72126	C1-1	0.85	0.19
72134	C1-2	0.72	0.16
72142	C1-3	0.67	0.14
72150	C1-4	0.73	0.15
71600	C2-1	0.82	0.12

Mean	0.75172
Standard Error	0.02082609
Median	0.72
Mode	0.64
Standard Devis	0.20826091
Variance	0.04337261
Range	1.528
Minimum	0.072
Maximum	1.6
Count	100

71618	C2-2	0.99	0.16
71626	C2-3	0.91	0.12
71634	C2-4	0.93	0.15
71642	C3-1	0.74	0.11
71650	C3-2	0.72	0.11
71669	C3-3	0.75	0.1
71677	C3-4	0.72	0.1
73742	C4-1	0.75	0.13
73750	C4-2	0.78	0.15
73769	C4-3	1.1	0.2
73777	C4-4	0.64	0.14
73785	C5-1	1.1	0.16
73793	C5-2	1	0.17
73807	C5-3	1	0.17
73815	C5-4	1,2	0.18
71685	D1-1	0.67	0.01
71693	D1-2	0.8	0.12
71707	D1-3	0.79	0.13
71715	D1-4	0.79	0.13
71723	D2-1	0.76	0.12
71170	D2-2	0.59	0.12
71189	D2-3	0.7	0.12
71197	D2-4	0.36	0.08
71200	D3-1	0.57	0.12
71219	D3-2	0.65	0.12
71227	D3-3	0.55	0.011
71235	D3-4	0.58	0.12
73823	D4-1	0.68	0.12
73831	D4-2	0.66	0.12
73920	D4-3	0.73	0.1
73939	D4-4	0,68	0.11
73947	D5-1	0.65	0.11
73955	D5-2	0.63	0.1
73963	D5-3	0.68	0.1
73971	D5-4	0.77	0.11
71243	E1-1	1_	0.17
71251	E1-2	1.2	0.17
71260	E1-3	0.66	0.11
71278	E1-4	0.6	<u>0.</u> 13
71286	E2-1	0.47	0.1
71294	E2-2	0.55	0.12
71308	E2-3	0.63	0.11
71316	E2-4	0.53	0.11
74005	E3-1	0.47	0.09
74013	E3-2	0.47	0.09
74021	E3-3	0.64	0.1
			· — —

Ft. Devens Tire Yard

74030	E3-4	0.64	0.11
73980	E4-1	0.74	0.11
73998	E4-2	0.95	0.14
73840	E4-3	1.6	0.2
73858	E4-4	0.98	0.13
73866	E5-1	0.86	0.12
73874	E5-2	0.92	0.13
73882	E5-3	0.82	0.11
73890	E5-4	0,85	0.12

Appendix C

Post-Remediation Soil Analysis Results

Post Remediation Samples

Sample ID	Location	Ra-226	2 sigma
10427-001	Hotspot 1	2.07	0.9
DVRAD*1	Hotspot 2	0.924	0.065
DVRAD*3	Hotspot 3	0.886	0.067
10427-004	Hotspot 4	2.7	0.88
10427-005	Hotspot 5	_3.15	0.97
10427-006	Hotspot 6	3,49	0.97
DVRAD*3	Hotspot 7	1.66	0.142
10882-001	Hotspot 8	1.85	1.04
10427-009	Hotspot 9	2.38	0.82
DVRAD*4	Hotspot 10	0.908	0.065
650073912	Hotspot 11	1.9	0.22
DVRAD*5	Hotspot 12	0.841	0.065

Mean	1.89658333
Standard Error	0.26308451
Median	1.875
Standard Devia	0.91135149
Variance	0.83056154
Range	2.649
Minimum	0.841
Maximum	3.49
Count	12

Appendix D

Calibration Certificates

Phone: (216) 248-7400 • Fax: (216) 349-658

Instrument Calibration Certificate # 1689

Customer	RADIATION SCIENCE	Orde	Number	 14002
Instrument	MICRO REM	S/N	B260U	 NEW

Calibration Data

Range	Exposure Rate uR/h	Instrument Reading uR/h	% Error	Exposure Rate uR/h	Instrument Reading uR/h	% Error
X1000	160,000.0	160,000.0	0.0	40,000.0	40,000.0	0.0
X100	16,000.0	16,000.0	0.0	4,000.0	4,000.0	0.0
X10	1,600.0	1,600.0	0.0	400.0	400.0	0.0
X1	160.0	160.0	0.0	40.0	40.0	0.0
X0.1	16.0	16.0	0.0	4.0	4.0	0.0

Calibration Sou Intensity at 1 me	227 m P	TH Date _	06/13/95	Source to Dete Geometry	ctor PER	PENDICULAR
Zero Check	oK	HV Check	ок	Threshold Set		N/A
Battery Ok	ок	Scaler Rate	N/A	Geotropic Che		ок
Checkband		Response +/-	- 1%	+/- 2%	6	
Reproducibility	ок	(Checked 3 t	imes, identi	cal conditions +/- 1	10%)	
Check Source	N	Ά	Check So	ource Reading	N/A	
Quality Assuran	ce Review By:	тв		Date	07/26/95	
Calibrated By_		RC		Date	07/26/96	
Re-Cal Due		07/26/96				

INSTRUMENT FIELD CHECK LOG

Meter: Source:

Bicron Micro Rem meter

Cesium-137

Activity: 5 microcuries

Serial # B260U Serial # Cs-7A

мR mR HV BAT Back-Source BAT HV Back-Source (OK) Meas Date Time (OK) (OK) ground dose **Initials** Meas Date Time (OK) dose Initials ground rate rate 5-7 ml 10mR Sun 1900 \checkmark 817/95 8/17/95 10mg 8:40 m 5-7 ml 1400 hg 5-7 18 10 Sui) 8/18/157 0930 1 10 ml me 10 ml 1530 1400 hs 8/18/95 (June) 10 w 5-7 re 10 mp 20 5-7mx 8/22/95 8/9/95 1000 07:00 5-7 10x6 Kus. W 1430 5-7ma 49/95 21 8/22/15 10 nR 10 nr ma_ 1530 J me 5-7 \$/10/95 0730 10 mg W 5-7 7 8/10/05 1500 10 MR ML 10 . R 11/15/0730 ms 11/95 1530 MA 10 mB 5-7 0830 10mg 0 MA 1530 10 ml ma 15/95 0800 10 mR ma 8/15/95/1950 5-7 10,R ms 18/16/95 0830 J 10,1 ma MAR 8/16/95 1730 me 6830 WAR 8/17/95 W2

MOTHOWILL FILLD CHECK LOG

Meter: Detector: Ludlum Model 2223 Scaler Ratemeter

Ludlum Model 43-1-1 Phoswich detector

Thorium-230

Activity: 6,410 DPM

Serial #: 102933 Serial #: 010421

Serial #: S-3689B

CMX -placed comply 129195

Source:	Thorium-230
Source:	Technecium-99

Activity: 15,000 DPM

			_	_		-	-
Se	erial	#:	1	69	99-	.9	4

Meas. #	Date	Time	BAT (OK)	HV (Vdc)	Δt (min)	Bckgrnd Beta	Source Beta	Net Beta (cpm)	Bckgrnd Alpha	Source Alpha	Net Alpha	Initials
1	8/8/95	15:60	/	650	2	257	3077	2920/	O	3329	3329	me.
2	8/9/95	07:00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	650	2	268	2985	2717	8	3548	3540	GA
3	8/9/95	1530	/	620	2	248	2591	2348	8	3015	3007	me_
4	8/10/95	6730	1	650	. 2	278	2813	2535	7	2909	2902	ma
5	8/10/95	1500		650	2	258	2634	2378	5	3064	3059	ma
6	8/11/95	6730		650	Q	297	2667	2370 Helele	1	2975	2974	ma
rŢ	8/11/95		1	650	2	276	2558	2282 2554	4	2953	2949	me
8	8/14/25	0800		650	2	272	2967	2635 2901	G	2996	2990	ma
9	8/14/95	1530	1	650	ત્રે	261	2711	2450 2705	6	3156	3150	ma
10	8/15/95		/	650	っつ	293	2821	2528 3815	6	3052	3046	ms
11	8/15/95	1900		650	d	302	2888	58.1 d 528,0	9	3026	3015	W
17	8/16/95	0830	1	650	4	228	2718	2490 2713	5	2943	2938	ma
13	8/16/95	1		650	d	25(2490	2239 1811 - 1814		3012	30 (l	2~
14	8/17/95	0830	[/	650	2	279	2796	2517 279 2	4	3101	3¢97	mz
15	8/17/95	1900	J	650	4	30(2802	2747	5	3066	3041	na
(6	8/18/95	0930	U'	650	2	303	2773	2470 2715 \$	5	2993	2988	rul

Ludlum Model 2223 Scaler Ratemeter Meter:

Ludlum Model 43-1-1 Phoswich detector

Thorium-230

Source: Technecium-99 Source:

Detector:

Activity: 6,410 DPM Activity: 15,000 DPM

Serial #: 102933

Serial #: 010421

Serial #: S-3689B 94

DPM	Serial #:	1699-9

Meas. #	Date	Time	BAT (OK)	HV (Vdc)	Δt (min)	Bckgrnd Beta	Source Beta	Net Beta (cpm)	Bckgrnd Alpha	Source Alpha	Net Alpha	Initials
17	8/18/95	1300	1	650	J	285	2582	2297	3	2947		M
18	8/22/95	1000	✓ <u> </u>	650	ر	275	2611	2336	6	3008	3002	ML
19	8/22/45	1430	V	650	Z	289	2590	2301	6	2986	2980	ma
20	9/19/95	1220	/	0	. 1	227	3125	3125	5	1758		M
21	3/19/95	1600	<i>></i>	50	1	२८२	2633		33	1690		MA-
						ι						
,												

Designer and Manufacturer of Scientific and Industrial Instruments

CERTIFICATE OF CALIBRATION

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 915-235-5494 501 OAK STREET FAX NO. 915-235-4672 SWEETWATER, TEXAS 79556, U.S.A.

CUSTOM	ER <u>RADIATION SC</u>	IENCE, INC.					ORD	ER NO	208285	
vifg	Ludlum Measure	ments, Inc.	Model		2223		Serial No.	<u> </u> i	2933	
∧fg	Ludium Measure	ments, inc.	Model	43	3-1-1		Serial No.	RN 0	loyzi	
Cal. Date	09/13/94	Co	al Due Date	09/13/9	5	Cal. Inter	val1 <u>Y</u>	ear Met	erface 20	2-601
eck mar	k 🗹 applies to appli	cable instr. and	or detector IAW mfg	g. spec.		75°F			Alt707.8	
	Instrument Instrum	•		_		Out of Tol.		ing Repair		
	nanical ck.	▼ Meter Z				d Subtract			ens. Linearity	
	esp. ck	Reset c	k.		dow Op				o. a. a	
Audio	o ck.	☐ Alam S	elling ck.	▼ Batt	t. ck. (Mi	n. Volt)	2.2_VDC			
lrument '	Volt Set725	_ V Input Sens	Comments mV D	et. Oper	725	V at <u>Com</u>	ments mV	Threshold Dial Ratio		mV
⊾ H	V Readout (2 points)	Ref./Inst	<u> 500 /</u>	5	00	V Ref./Inst	Zabo	/_	2000	
eta th eta wi	inis: hreshold = 1290 reshold = 3.5 m ndow =30 mV. with dut. (omnut.)	nV.^^ nV.					·			
mma Calibra	RANGE/MULTIPL		except for M 449 in which the REFERENCE CAL, POINT	front of probe (ex	INSTR	RUMENT REC		INSTRUM METER R	IENT EADING*	
										- - -
	"Uncertainty within ± 109	6 C.F. within ± 20	. <u> </u>				R	ange(s) Co	slibrated Electro	nically
	REFERENCE	INSTRUMENT	INSTRUMEN	П	RE	FERENCE	INSTRU	MENT	INSTRUME	VT
	CAL POINT	RECEIVED	METER REA			AL. POINT	RECE!	VED	METER REA	\DING*
idout	. 500 K cpm	_ <u>500113</u>	<u>50413</u>	Log Sco	g ale	500 K cpm		500k	<u>500 k</u>	
	50 K cpm	50011	5∞11			50 K cpm		50K	SOK	
	5 K cpm	<u> </u>				5 K cpm	···	5K	<u>sk</u>	
	500 cpm 50 cpm	<u>570</u>	03 002			500 cpm 50 cpm		500 50	<u> </u>	
	xements, inc. certifies that to onal Standards Organization	he above instrument	has been calibrated by st			National Institute of		Technology, o	r to the calibration fo	
allbration	n system conforms to the rec	ukements of MIL-ST							oration License No	
	mma S/N □ 1162 □ 0		7 5105 T1000 T	T070					leutron Am-241 B	~ C/N T 204
	na S/N Pu23				.Sr	-90	Other _		eulion Alli-247 b	
	00 S/N638						Multimete	r S/N	57770262	
ilibrate	ed 8y:	hadrin	More			Date		9-13-9	74	
viewe		mil	Heming				9-13-	54		• • • • • • • • • • • • • • • • • • • •
	02/04/94									

TMA/Eberline Albuquerque Laboratory
7021 Pan American Hwy. NE
Albuquerque, NM 87109
(505) 345-3461 • FAX # (505) 761-5416

CERTIFICATE OF CALIBRATION

	Electron	olated Beta Stand	iard		
			S.O.#	S-02780	
			P.O.#	94001	
Description of Standard:	•				
Model No. DNS-12	_Serial No	1699-94	lsotop	e <u>Technet</u>	ium-99
Electroplated on polished <u>Stain</u>	less Steel	disc,	0.7	79	mm thick
Total diameter of 4.77	<u></u>	cmand an activ	e diameter of _	4,45	cm
The radioactive material is perman surface.	ently fixed to I	the disc by heat tre	atment without	anycovering	over the activ
Measurement Method:		•			
The 2 pi beta emission rate was me of beta particles emitted in the he and at the operative voltage. The source S/N 2393/91.	misphere abo	ove the active surf	ace was verifie	d by counting	above, belov
Measurement Result:				•	
The observed beta count rate from	m the surface	of the disc per m	ninute (cpm) or	the calibrati	on date was
9,340	<u>+</u>	467			
The total disintegration rate (dpm disc, was) assuming _	25 % backscatt	er of beta parti	cles from the	surface of the
15,000	<u> </u>	748	(0.006	573	_μCi)
The uncertainty of the measuren confidence level, and the estimate					or at the 99%
Calibrated by: <u>Arlene Gutie</u>	rrez	Review	ed by:	wles Kam	don
Calibration technician:	lee S.	utenga. Re	presentative:	Lathy	Durch
				1-12-94	

TMA/Eberline Albuquerque Laboratory 7021 Pan American Hwy. NE Albuquerque, NM 87109 (505) 345-3461 • FAX # (505) 761-5416

CERTIFICATE OF CALIBRATION

	Electrople	ated Alpha Standard			
			S.O.#_	S-02780	
Description of Standard			P.O.#	94001	
Description of Standard	•				
Model No. <u>DNS-11</u>	Serial No	s-3689B ·	lsotope	P <u>Thorium</u>	-230
Electroplated on polished_	Stainless Steel	disc,	0.79	9	mm thick.
Total diameter of	4.77	_cm and an active diarr	eter of	4.45	cm
The radioactive material is surface.	permanently fixed to ti	ne disc by heat treatmen	nt without a	ny covering c	ver the active
Measurement Method:					
The 2 pi alpha emission counting of alpha particles below and at the operatival pha source S/N 239	emitted in the hemisple voltage. The calibrate	here above the active su	ırface was	verified by co	unting above,
Measurement Result:					
The observed alpha partic was	cles emitted from the	surface of the disc per	minute (cp	om) on the ca	libration date
3,210	±	128			
The total disintegration rat was	e (dpm) assuming 1.5	% backscatter of alpha	particlesf	rom the surfac	ce of the disc
6,410	± 256	(0	.00289	µCi)	
The uncertainty of the m confidence level, and the					r at the 99%
Calibrated by: <u>Arlene</u>	Gutierrez	Reviewed by	r. Char	les Kanlo	<u> </u>
Calibration technician:	alea s	Elting A. Represe	entative:	Lath	Bunk
Calibration date: 1/10	(O)t	Reviewed da	to:	1-12-9	4

Appendix E

PCB/TCLP Lead QC Summaries and Chain of Custody Records

.

PCB QC SUMMARY
Drums 1,243

609.05

2F PCB SURROGATE RECOVERY

Lab Name:_	QUANTERRA, MO	Contract: 609-05
------------	---------------	------------------

Lab Code: ITMO Case No.: ____ SAS No.: ___ SDG No.: 10427

Level:(low/med) LOW

	EPA	Sl	S2
	SAMPLE NO.	(DCB)#	(TCMX)#
	==========	=====	======
01	PBLK01	_136	114
02	PSPK01	143	116
03	DRUM#1	125	103
04	DRUM#1DL	_137	
05	DRUM#1MS	123	101
06	DRUM#1MSDL	_131	
07	DRUM#1MSD	120	101
08	DRUM#1MSDDL	146	
09	DRUM#2	132	96
10	DRUM#3	140	105
11			
12			
13			
14			
15			
16			<u> </u>
17			
18]	
		-	מונים ב

ADVISORY QC LIMITS

S1 (DCB) = Decachlorobiphenyl S2 (TCMX) = Tetrachlorom-m-xylene

(10-267)

- # Column to be used to flag recovery values
- * Values outside of QC limits
- D Surrogates diluted out

page <u>1</u> of <u>1</u>

FORM II PEST-2

1/87 Rev.

3F SOIL PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Name: <u>QUANTERRA, MO</u>		Contra	act: 609-	-05	
Code: ITMO Case No.:		SAS No.:	SDG No.:	10427	
ríx Spike - EPA Sample No.	:DRUM	#1	Level	:(low/med	i) LOW
				·	
	SPIKE	SAMPLE	MS	MS	OC
		CONCENTRATION	CONCENTRATIO	ON %	LIMITS
COMPOUND	-	(ug/Kg)	(ug/Kg)	REC #	REC.
	1	-=========	360		
Aroclor-1016Aroclor-1260	170	00	360 360	_215_*	9-12
ALOCIOL 1200	-1	1	<u> </u>	-	-0-12
COMPOUND		MSD CONCENTRATION (ug/Kg)		RPD	
Aroclor 1016			127 * 52		50-114
Aroclor 1016 Aroclor 1260			-127_* -52 -138_* -44		;

FORM III PEST-2

SOIL PCB SPIKE BLANK(LCS) RECOVERY

SAS No.: SDG No.: 10427	ame: <u>OUANTERRA, MO</u>	********	Contrac	ct:	609-05
ADDED CONCENTRATION % LIMITS (ug/kg) (ug/kg) REC # REC. Aroclor-1016	Code: <u>ITMO</u> Case No.:		SAS No.:	SDG No.:	10427
ADDED CONCENTRATION % LIMITS (ug/kg) (ug/kg) REC # REC. Aroclor-1016	Blank No.: S	PK92640			
ADDED CONCENTRATION % LIMITS (ug/kg) (ug/kg) REC # REC. Aroclor-1016					
ADDED CONCENTRATION % LIMITS (ug/kg) (ug/kg) REC # REC. Aroclor-1016					
COMPOUND (ug/kg) (ug/kg) REC # REC. Aroclor-1016 170 150 92 50-114					
Aroclor-10161701509250-114		(ug/kg)	(ug/kg)	REC #	REC.
				1 1	į
l		170		107	_8-127
		\		ì!.	<u></u>
	# Column to be used to f	lag recovery	and RPD value:	s with a	n asterisk
# Column to be used to flag recovery and RPD values with an asterisk	* Values outside of QC l	imits			
# Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits	NT at datawained				
* Values outside of QC limits	MD: Hot determined				
	Chike Pecovery: 0	out of	2 outside	e limits	
* Values outside of QC limits	Spine Recovery	_ 044 01		C	
* Values outside of QC limits					

FORM III PEST-2

4C PCB METHOD BLANK SUMMARY

Lab Name: <u>QUANTERRA</u>	A, MO	C	Contract: 60	9-05	
Lab Code: <u>ITMO</u> Case	No.:	SAS No.:_	SDG No.	: 10427	
Lab Sample ID: BLKS	2640	Lal	File ID:		
Matrix:(soil/water)	SOIL	Lev	rel(low/med)	LOW	
Date Extracted:	02-28-96	Ext	raction: (S	SepF/Cont/So	ne) <u>SONC</u>
Date Analyzed (1):	02-28-96	Dat	e Analyzed	(2):	
Time Analyzed (1):	14:59	Tin	ne Analyzed	(2):	
Instrument ID (1):	GCA	strument ID	(2):		
GC Column ID (1):	DB-5MS	GC	Column ID	(2):	
THIS MET	HOD BLANK APPLI	ES TO THE FOLLO	WING SAMPLE	S, MS AND MS	SD:
02 03 04 05 06 07	EPA SAMPLE NO. ====================================	LAB SAMPLE ID ====================================	02-28-96 02-28-96 02-29-96 02-28-96 02-29-96 02-28-96		
COMMENTS:			•		

COMMENTS:	•	

page <u>1</u> of <u>1</u>.

1/87 Rev.

METHOD BLANK

Drums 1,243

1D PCB ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: <u>QUANTERRA,MO</u> Contract: 6	09-05 PBLK01
Lab Code: ITMO Case No.: SA	S No.: SDG No.: _10427
Matrix: `(soil/water)SOIL	Lab Sample ID: BLK92640
Sample wt/vol: 30.0 (g/ml) G	Lab File ID:
Level: (low/med) LOW	Date Sampled:
% Moisture: not dec dec	Date Extracted: 02-28-96
Extraction: (SepF/Cont/Sonc) SONC	Date Analyzed: 02-28-96
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1
CAS NO. Compound	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
12674-11-2Aroclor-1016 11104-28-2Aroclor-1221 11141-16-5Aroclor-1232 53469-21-9Aroclor-1242 12672-29-6Aroclor-1248 11097-69-1Aroclor-1254 11096-82-5Aroclor-1260	33 U

U: Concentration of analyte is less than the value given.

FORM I PEST

Channel: A

Software Version: 3.3 <4811>

Sample Name : BLK 92640 Time : 02/28/96 15:14 Study

Sample Number: 27 Operator

Instrument : GC_A(DB-5MS,DB-1701)
AutoSampler : HP 7673A
Rack/Vial : 0/0

Interface Serial #: 8116920948 Data Acquisition Time: 02/28/96 14:59

: 1.00 min. Delay Time : 15.00 min. End Time Sampling Rate : 2.9412 pts/sec

Raw Data File : G:\USERS\ACQUIRE\GC1\AA18992.RAW : G:\USERS\ACQUIRE\GC1\AA18992.RST Result File Instrument File: g:\users\acquire\method\A8080.ins

Process File : AAPCB Sample File : AA1660

Sequence File : G:\USERS\ACQUIRE\METHOD\A960228.seq

Inj. Volume : 0 ul Area Reject : 200.000000 Sample Amount : 30.0000 Dilution Factor : 10.00

Noise Threshold: 10 Area Threshold : 100 Bunch Factor: 1 Divisor : 1.0000 Adder : 0.0000 Multiplier : 1.0000

Instrument Conditions:

/GCA,,,;

Instrument: GC A

Column Ch A :DB-5MS 30M X .32mm X 1.0um Ch 8 :D8-608 30M X ,32mm X 0.5um

Carrier Gas :H (12 ml/min)

Temperature :170C-->20C/min-->220c-->4c/min.-->250C(2min)

:Inj. Vol is 2.0 ul split into 1.0ul/col Notes

Divisor = % Solids/100

Dil. Factor = Final Vol X Any Dilutions

Total Number of Peaks Detected: 27

PCB REPORT

A/D mV Range : 1000

Peak	Time	Area	Component	Conc.	XREC.	XREC.
#	(min)	[uV*sec]	Name	ppb	TCMX	DBC
	1.96	385907.5	SURR, Group	73.77	1 e+ 03	221.32
	2.83	2310.0	AR 1016 Group	0.77	11.62	2.32
	+	388217.4		74.55		**********

Group Report For : AR 1016 Group

Peak #	Time [min]	Area [uV*sec]	Component Name	Conc. ppb	XREC. TCMX	XREC. DBC	
10	2.50	337.6	AR 1016 (1-3)	0.11	1.70	0.34	
11	2.83	1972.3	AR 1016 (2-3)	0.66	9.92	1.98	
0	3.60	0.0	AR 1016 (3-3)	0.00	0.00	0.00	
		2310.0	********	0.77		********	

Group Report For : AR 1260 Group

Peak #	Time [min]	Area [uV*sec]	Component Name	Conc. ppb	XREC. TCMX	XREC. DBC	
0	7.03	0.0	AR 1260 (1-4)	0.00	0.00	0.00	
0	7.16	0.0	AR 1260 (2-4)	0.00	0.00	0.00	
0	7.61	0.0	AR 1260 (3-4)	0.00	0.00	0.00	
0	8.38	0.0	AR 1260 (4-4)	0.00	0.00	0.00	
****		0.0	*********	0.00			

Group Report For : SURR. Group

0148

XREC.

#	(min)	(uV*sec)	Hame	ppb	TCMX	DBC	
6 24 27	1.96 8.64 14.00	184159.3 575.3 201172.9	TCMX DBC DCB	7.60 0.05 9.08	113.98 136.47	22.80 0.14 27.23	
••••		385907.5		16.72	٠		••••••••••••

Types and reasons for Manual Analysis if perfprmed on this sample:

1. Manual Identification: RT shift, Wrong peak, Interference from...

2. Manual Integration: Incorrect integration, Interference from...

Sample Name : BLK 92640

: g:\users\acquire\gc1\AA18992.raw FileName

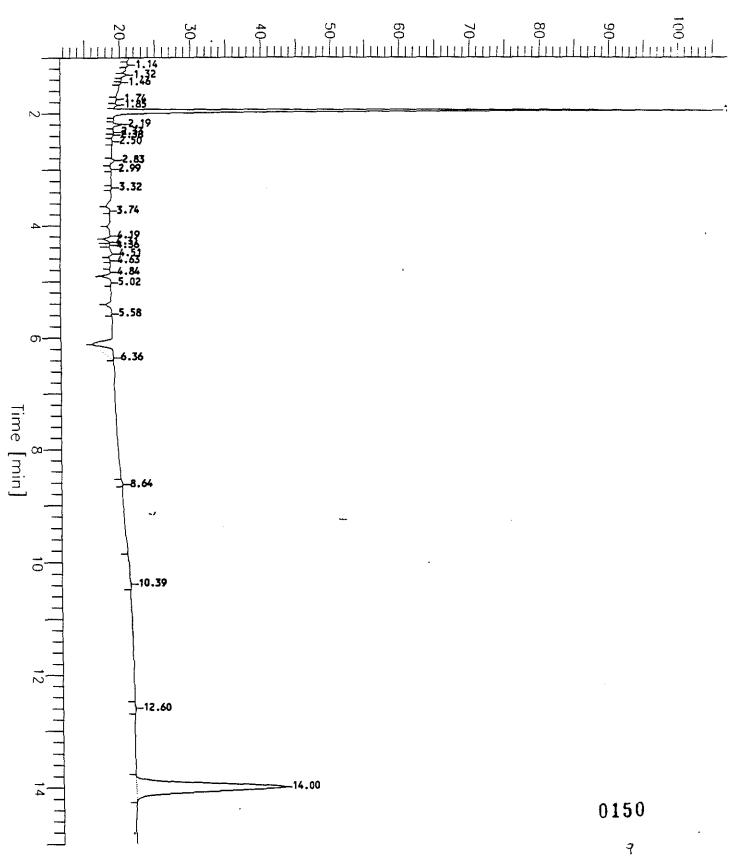
Hethod : A8080.ins

Start Time : 1,00 min Scale Factor: 1.0

End Time : 15.00 min

Plot Offset: 12 mV

Sample #: 27 Date : 02/28/96 15:14


Time of Injection: 02/28/96 14:59 Low Point: 11.56 mV High P

High Point : 105.58 mV

Page 1 of 1

Plot Scale: 94.0 mV

Response [mV]

INORGANIC SAMPLE DATA

Drums 1,243

609.05 10427

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: QUANTERRA_MO	Contract: 609	Contract: 609.05					
Lab Code: ITMO Case No.:	SAS No.:	SDG No.: 10427					
SOW No.: SW846							
EPA Sample No. DRUM #1 DRUM #2 DRUM #3 PBT92922	Lab Sample II P10427-012 P10427-013 P10427-014 PBT92922						
							
							
	7 1 0						
Were ICP interelement corrections ap	opiled ;	Yes/No YES					
Were ICP background corrections app: If yes - were raw data generate		Yes/No YES					
application of background corre		Yes/No NO_					
Comments:							
I certify that this data package is conditions of the contract, both tender than the conditions detailed in this hardcopy data package and is on floppy diskette has been authorise Manager's designee, as verified by	chnically and for above. Release of n the computer-rea zed by the Laborat	completeness, for the data contained adable data submitted cory Manager or the					
Signature:	Name:						
Date:	Title:						
	COVER PAGE - IN						

0001

EPA SAMPLE NO.

ab Code: ITMO_			Contract: 609	€. (05		RUM #1
	Lab Code: ITMO Case No.:				SDG	No.:	10427
Matrix (soil/wa	ater): WATE	ર	I	Lak	o Sampl	e ID:	P10427-012
evel (low/med)	LOW_	_					02/26/96
Solids:	0.)					
Cor	ncentration	Units (ug	/L or mg/kg dry	/ V	weight)	: UG/	L_
	CAS No.	Analyte	Concentration	С	Q	M	
	7439-92-1	Lead	107000	-		P_	
				_			
				_			
				_			
				_ _			
				_		<u> </u>	
				_		-	
				_			
				_			
			·	_			
				_	i	-	
				_			
				_			
				-			
				_		.	
Color Before:		Clari	ty Before:			Text	ure:
Color After:		Clari	ty After:		_	Arti	facts:
Comments:							

0002

EPA SAMPLE NO.

Lab Name: QUAN	rerra_mo		Contract: 609	9.05	DRUM #2
					No.: 10427
Matrix (soil/wa	ater): WATE	ર	I	Lab Sample	E ID: P10427-013
Level (low/med)): LOW_		I	Date Recei	ived: 02/26/96
% Solids:	0.0	ס			
Cor	ncentration	Units (ug	/L or mg/kg dry	y weight):	: UG/L_
	CAS No.	Analyte	Concentration	C Q	М
	7439-92-1	Lead	71000		P_
					_
Color Before:		Clari	ty Before:	! !	 Texture:
Color After:		Clari	ty After:		Artifacts:
Comments:					
		다	OPM T - TN		

EPA SAMPLE NO.

Lab Name: QUANTERRA_MO	Contract: 609.05 DRUM #3
	SAS No.: SDG No.: 10427
Matrix (soil/water): WATER	Lab Sample ID: P10427-014
Level (low/med): LOW	Date Received: 02/26/96
% Solids:0.0	
Concentration Units	(ug/L or mg/kg dry weight): UG/L_
CAS No. Analy	te Concentration C Q M
7439-92-1 Lead	2290 P
Color Before: Cl	arity Before: Texture:
Color After: Cl	arity After: Artifacts:
Comments:	
	FORM I - IN

0004

EPA SAMPLE NO.

	•	THOKGWATC .	WINDIPES DATA	ourët						
Lab Name: QUAN	TERRA_MO		Contract: 60	9.05	PBT92922					
Lab Code: ITMO	Case No	o.:	SAS No.: SDG No.: 10427							
Matrix (soil/w	ater): WATE	२	Lab Sample ID: PBT92922							
Level (low/med): LOW	_	I	Date Rece	ived: 03/04/96					
% Solids:	0.0	0								
Co	ncentration	Units (ug	/L or mg/kg dry	y weight)	: UG/L_					
	CAS No.	Analyte	Concentration	C Q	M					
	7439-92-1	Lead	34.3	<u></u>	P_					
				-						
				-						
			ty Before:		Texture:					
Color After:		Clari	ty After:		Artifacts:					
Comments:										
			ODM T TAT							
		F.	ORM I - IN		TCLP					

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QUANTERRA_MO	Contract: 609.05	
Lab Code: ITMO Case No.:	SAS No.: SDG No.: 10427	
Initial Calibration Source:	SOL/L/SPX/IC	
Continuing Calibration Source:	SOL+/LL/SPX	

Concentration Units: ug/L

				· · · · · · · · · · · · · · · · · · ·					
Analyte	Initia True	al Calibra Found	ation %R(1)	True	Continui: Found	ng Cali %R(1)	bration Found	%R(1)	м
Lead	4000.0	_3966.82	_99.2	4000.0	_4045.47	101.1	_3967.26	99.2	P_
						l			
	<u> </u>					<u> </u>			
									—
			·						
•									
	<u> </u>								
					-				

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QUANTERRA_MO	Contract:	609.05
Lab Code: ITMO Case No.:	SAS No.:	SDG No.: 10427
Initial Calibration Source:	SOL/L/SPX/IC	
Continuing Calibration Source:	SOL+/LL/SPX_	

Concentration Units: ug/L

Analyte	Initia True	al Calibra Found	ation %R(1)	True	Continui: Found	ng Cali %R(1)	lbration Found	%R(1)	***************************************
Lead				4000.0	_3990.00	_99.8			F
									-
									-
									-
									-
									-

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

2B CRDL STANDARD FOR AA AND ICP

Lab	Name:	QUANTERRA_MO	Contract:	609.05
Lab	Code:	ITMO_ Case No::	SAS No.:	SDG No.: 10427
AA (CRDL S	tandard Source:	SPX/SOL+/LL_	
ICP	CRDL S	Standard Source:	SOL+/SPX	

Concentration Units: ug/L

Analyte		andard for	r AA %R	Tr	T	CRDL Star nitial Found		Fina	l %R
Lead				20	0.0	186.48	_93.2		Ī
									 -

				- <u></u> -	_	,			l ———
	-			 -		<u> </u>			Ì
	-			I		·····			
					_				
					_				

FORM II (PART 2) - IN

3 BLANKS

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO Case No.:	SAS No.: SDG No.: 10427
Preparation Blank Matrix (soil/wate	r): WATER
Preparation Blank Concentration Uni	ts (ug/L or mg/kg): UG/L_

Analyte	Initial Calib. Blank (ug/L)	С	Conti	nı B. C	uing Calib Lank (ug/L) 2	rat	ion	С	Prepa- ration Blank C M
Lead	34.3	Ū	34.3	Ū	34.3	Ū	34.3	Ū	34.300 U P
		_		_					
		_		_		_		_	
		_		_				_	
		_				 		 -	
		-		_		 —		-	
				-				-	
			· · · · · · · · · · · · · · · · · · ·	-		-		-	-
		-		_	***************************************	-		-	
						_		_	
		_		_		<u> </u>			
				_		_		_	
		_		_				_	
		_						1-1	[
						_			
		_		_		-		-	
								1-1	
						_		-	
				_		_		1=1	
		_						[_[
								_	
				_		_		-	
								I _	

FORM III - IN

ICP INTERFERENCE CHECK SAMPLE

Lab	Name:	QUANT:	ERRA_MO		Cont	ract: 6	509.05	_
Lab	Code:	ITMO_	_Case No.: _	SAS	No:		SDG No.:	10427
ICP	ID Numb	ber: T	JA1100		ICS	Source:	SOL+/SPX	ζ

Concentration Units: ug/L

Analyte	Sol. A	rue Sol. AB	Ini Sol. A	itial Found Sol. AB	%R	Sol. A	Final Found Sol. AB	i %R
Lead				886.4				

FORM IV - IN

7 LABORATORY CONTROL SAMPLE

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO_ Case No.:	SAS No.: SDG No.: 10427
Solid LCS Source:	
Aqueous LCS Source: SOL+/CHEMPUR	

Analyte				True	Soli Found	id C	(mg/kg) Lin	nits	%R
Lead	_1000.0	_1073.69	107.4_			_			
						_			
						_		•	
						_			
						_			
						_			
						<u>-</u>			
						_			
						_			
				·		<u> </u>			

FORM VII - IN

10
Instrument Detection Limits (Quarterly)

Lab Name: Ç	QUANTERRA_N	10		Contract	: 609.05_		
Lab Code: I	TMO_ Case	No.:	SAS	No.:	SDG 1	JO.: 104	127
ICP ID Numb	er:	TJA1100)	Date:	01/01/96	i	
Flame AA ID Number :							
Furnace AA	ID Number	•					
		Wave- length	Back-	CRDL	IDL		
	Analyte		ground	(ug/L)	(ug/L)	М	
	Lead	_220.35_		100_	34.3	P	

Comments:	

FORM X - IN

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

			Contra	_		
			SAS No'.:		~	
CP ID Numr	per: TUALIU	U	Date:	10/01/9		
	Wave-	Ir	nterelement (Correction P	Factors for	:
Analyte	length (nm)	Al	Ca	Fe	Mg	AS_
Lead		0.0013200				
Comments:						

FORM XI (Part 1) - IN

11B ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

	.					
nalyte	Wave- length (nm)		nterelement o		Factors for :	
ad	_220.35	0.000000	-0.0017600_	_0.0009690		

FORM XI (Part 2) - IN

12 ICP LINEAR RANGES (QUARTERLY)

Lab	Name:	QUANTE	ERRA_MO		Contract:	609.05	
Lab	Code:	ITMO_	Case No.:		SAS No.:	_ SDG No.	: 10427
ICP	ID Nur	mber: T	JA1100		Date:	01/01/96	
			· · · · · · · · · · · · · · · · · · ·	_			
		1					
				Integ. Time	Concentration (ug/L)		
			Analyte		(ug/II)	М	
			Lead	5.00		P_	
		ļ					
		3					
		į					
						<u> </u>	
~							
Com	ments:					· ·	

FORM XII - IN

13 PREPARATION LOG

Lab Name:	QUANTERRA_M	0	_ Contract	:: 609.05	_
Lab Code:	ITMO Case	No.:	SAS No.:	SDG No.:	10427

Method: P_

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
DRUM #1 DRUM #2 DRUM #3 LCSW93089-1 PBT92922 PBW93089	03/01/96 03/01/96 03/01/96 03/01/96 03/01/96 03/01/96		100 100 100 100 100 100

FORM XIII - IN

14 ANALYSIS RUN LOG

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO Case No.:	SAS No.: SDG No.: 10427
Instrument ID Number: TJA1100	Method: P_

Start Date: 03/01/96 End Date: 03/01/96

EPA														Ar	ia]	.yt	es	3									
Sample No.	D/F	Time	ક	R	P B																						
S0	1.00	1535			\overline{X}	-	-	-	-	-	-	-	_	_	-		-	-	_	_	-		-	-	_	_	
S	1.00	1538			X				-	_	_	-	_		_	_	_	-			_	_			_	-	-
S	1.00	1541				-	-	1	_	_		_		-	_	_	-		-	_	_	-	_	_		-	-
S	1.00	1545				Γ		_	-	_		_	_	-	_	_	_		-	_	_	_	_	_	_	-	-
ICV	1.00	1548			X	_	-	_	-	_	_		_	_	_	-	_	_	_	_	_	-	-		-	-	-
ICB	1.00	1551			X	-			-	-	_		-	-	_	-	_	_		_	_	-	-] — I	-	-	
CRI	1.00	1554			X	_	-		-	_	_	_		-	-	_	-		-	-	-	-	-	-	-	-	
S	1.00	1557			X	-		_			-		-		-		-	-	-	_	-	-		-		-	-
ICSA	1.00	1600			X	_	-	_		-	_		-	-	_	-	-	-	-	_	_	-	-	-	-		-
ICSAB	1.00	1604			X	-	-	_	-	-	-	_	-	-	-	-	-		-			-	-		-	-	-
PBW93089	1.00	1607			X	-		_		-	-		-		-	_	-	-	-		-	-	-		-	-	
LCSW93089-1	1.00	1610			X	1-		_		-	-	1	-		-		-1	-	-		_	-		-	-		
ZZZZZZ	1.00	1613				_	-	_		-		-	-		-	-	-	-	-	_	-	-	_	-	-	-	
CCV	1.00	1616		****	X	-	-		-	-		-	-	-	-	-		_		-		_	-		-	[—]	-
CCB	1.00	1620			Х	— I	—	-			-	-		-		-		-		-	-	_		—	-	-	
ZZZZZZ	1.00	1623	l ——	***************************************		-	-		-	-	-	-	-	-	-		-	-	-		-	_	_		-		-
ZZZZZZ	1.00	1626				-		_	-	-	-	-	-	-		-	-	_	-	-	_	_	-	-	-	-	
ZZZZZZ	1.00	1629			1-	-	1-1		-	-		-	-		-		-	-	-		-		 		_		-
ZZZZZZ	5.00	1632					-	-	-		-	-		-		-		-	-	_	-	-	_	_	-		
ZZZZZZ	1.00	1635			1-	-	-	_		-	-		-	-		-	-	-		_		_		-		-	
ZZZZZZ	1.00	1639			-		-	-		-			-		-		-[-		-			-	-	-	
ZZZZZZ	1.00	1642			-	-	-	-		-	-		-		-		-		-		-	-	-	-		-	
CCV	1.00	1645			\overline{X}	-	-		-	-		-	-		-		-	-	-		-			-	-	-	
CCB	1.00	1648			X	-	 	-	-		-	-		-		-			-	-	_	-	_	_		-	
DRUM #1	1.00	1651			X	-	-	_	-		-	-		-	-	-	-		-	-	_	-		-	-	-	
DRUM #2	1.00	1655			X	-		—			-	-		-	-	-			-		–		-	-		-	
DRUM #3	1.00	1658]		X		-		-	-	-		-		-		-	-		_	-		 		_		- -
ZZZZZZ	1.00	1701			1	-	-		-	-	-	-	-		-		-		-			_	-		_		- -
PBT92922	1.00	1704			X	-	-	_	-		-	-		-		-	-1		-	_		_			_	-	_ -
ICSA		1707	l		x	-		 —		_	-		_	-		-	_	_	-		-		_		_		-
					X	-	-		-	-	-	-	-		_	-		_			_	_	_		_	-	
ICSAB	1.00	1710			4	-		 			_	_		_	_		_	_		_	_		_	_	_	_	_ .
CCV	1.00	1714			X		 _	l — ˈ		l — l	_		_	 _					_			_	_	_			

· FORM XIV - IN

14 ANALYSIS RUN LOG

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO Case No.:	SAS No.: SDG No.: 10427
Instrument ID Number: TJA1100	Method: P_

Start Date: 03/01/96 End Date: 03/01/96

EPA														Ār	ıal	уt	es	;						·····			
Sample No.	D/F	Time	앙	R	P B					ĺ																	
CCB	1.00	1717			X	_	_				_	_	_	_	_			_	_	_	_	-	-	_	-	-	-
					_	_	_	_	-	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_		_].
	<u> </u>				-		-	-	-1	-	-1	-	-	-		-	-	-	-		 	-	-1	-	-	-1	
					-	-	-	-1	-	-	-	-	-	-	-	-	-	-	-		-	_	-	-	-	-[- -
						-	_								_			_		_		_		-			_
		l			_	 _		_	_	_		_		_	_]	_		_	_	_	_	_	_	_	_	_	_
					-		-	-1	-1	-	-1	[-	(-1	-	-	-	-1		_	_		-	-	-	
		<u> </u>			-] — [-	-		-	-		-	-	-	-		-]	-	–	-		-		-	- -
					_		_								_					_	-	-	-		-	-	- -
					1_	_	_		=	_	_	_	_		_	_	_	_		_	_	_					
		-			_	-	_		-	_	-		-	-	-	_	-	_	_		_	_			_	-1	_ .
		l ——			-	-	-	-1	-	-	-		-1		-	-	-	-		-	-	-	-	-	-		-{-
					-	-	-	-		-	-		-		-		-		-	-	-	-	-	-	-	-	-[
							_							_						_	_				_		
					_	_	_	_	_	_	_	_				_		_		_		_	_	_	_	_	_].
					-	_	_	_		-	_		_		-	-	_	-	-		_			-1		-	-1
	l ——	<u> </u>	<u> </u>		-	-	-		-	-	-	-[-{		-		-		-	-		-	-	-
	***************************************			******	-	-		-	-	-		-		-	-		-	-	-		-	-	-	-		-	-1
						_	_			_			_					_	_	_	_		_				
	l ———		Ì		1_		 _		-1		_	_		_		-1		_		_		_	_	-1	_	_	_
	l ———				-	-	-		-1	-1	-	-		-	_	-		-	_	_		-	-	-		-	-1
		l	l		-	-	-	-		-	-\	-	-	-		-		-		-		-		-1		-1	
					_	_	_					_	_	_	_		_	_	_		_	_	_				
							[_	_				_	_	_	_	_	_	_	_	_	_	_	_	_			
					-	_	_		_		_	_		_		_	_	_	-	_	_		_	_	_	_	_
		I	l	*****		-		-		-	-		-	-		-	-	-			-		-		-	-	- -
		 	\ 		·	-	-			_	-	_	-		-	<u></u>	-\					-		-	—	-1	-1

FORM XIV - IN

CHAIN OF CUSTODY SAMPLE LOG-IN/RECEIPT RECORDS

Drums 1,2+3

Quanterra February 26, 1996 04:19 pm

Account: 11084 Project: 609.05 ABB QAS No. 609.05 Rev. 0

Master Sample Login: 10427 Project Manager: A. Field Entered and Reviewed by: Final: Sample Header Template: Client ID C-Matrix Date: Coilected Received. Due Shipper Rad Category Red Sample No. Sample No. Comments Class Preservative Anal. Due Date Hold Date Site (Container Numbers: % Filled) # Container Type Analysis Data: 21-FEB-96 15:00 26-FEB-96 09:00 18-MAR-96 FED EX Soil 10427-001 SOIL #1 R4731-001 GAMMA=Radium 226 only RAD/GAMMA/Q4 COLD 11-NAR-96 1 PM - Plastic-1L 21-AUG-96 R148 (216339:100) RAD/SCREEN/O4 COLD 11-MAR-96 24-AUG-96 R14B (216339:100) 10427-002 SOIL #2 in the process of Spiles and them 21-FEB-96 15:00 '26-FEB-96 09:00 18-MAR-96 FED EX #4731-002 GAMMA=Radium 226 only 1 PW - Plastic-1L RAD/GANNA/Q4 COLD 11-KAR-96 21-AUG-96 R14B (216340:100) RAD/SCREEN/Q4 COLD 11-HAR-96 24-AUG-96 R14E (216340:100) 10427-0020UP SOIL #2 REPLICATE Soil 23-FEB-96 10:10 26-FEB-96 09:00 18-MAR-96 FED EX 3* R4730-001 GAMMA=Radium 226 only RAD/GAIMIA/G4 1 PM - Plastic-1L COLD 11-MAR-96 23-AUG-96 R14B (216341:100) RAD/SCREEN/Q4 COLD 11-MAR-96 24-AUG-96 R14B (216341:100) 10427-003 SOIL #3 23-FEB-96 10:00 26-FEB-96 09:00 18-MAR-96 FED EX Soil R4731-DQ3 GAUGHA=Radium 226 only RAD/GAMMA/Q4 PN - Plastic-1L COLD 11-MAR-96 23-AUG-96 R148 (216342:100) RAD/SCREEN/Q4 COLD 11-MAR-96 24-AUG-96 #148 (216342:100) 10427-004 SOIL #4 Soil 23-FEB-96 10:00 26-FEB-96 09:00 18-MAR-96 FED EX R4731-004 GANNA=Radium 226 only PN - Plastic-1L RAD/GANNA/Q4 COLD 11-MAR-96 23-AUG-96 R14B (216343:100) RAD/SCREEN/Q4 COLD 11-NAR-96 24-AUG-96 R14B (216343:100) 10427-005 SOIL #5 Soil 23-FEB-96 10:10 26-FEB-96 09:00 18-MAR-96 FED EX R4731-005 GAMMA=Radium 226 only 1 PM - Plastic-1L RAD/GAMMA/04 COLD 11-MAR-96 23-AUG-96 R14B (216344:100) RAD/SCREEN/Q4 COLD 11-HAR-96 24-AUG-96 R14B (216344:100) 10427-006 SOIL #6 Soil 23-FEB-96 10:20 26-FEB-96 09:00 18-MAR-96 FED EX R4731-006 GAMMA=Radjum 226 only

RAD/GANNA/Q4

RAD/SCREEN/04

PN - Plastic-1L

11-MAR-96

11-HAR-96

23-AUG-96 R14B

24-AUG-96 R14B

(216345:100)

(216345:100)

COLD

COLD

^{3*=}Sample has not been rad screened.

Quanterra February 26, 1996 04:19 pm Account: 11084 Project: 609.05 ABB QAS No. 609.05 Rev. 0 Master Sample Login: 10427

Project Manager: A. Field

Draft:	Final:	Entered and Reviewed by:	PM Review:

mple No. Client 1D Comments	C-Matrix	Date: Collected Received Due	<u>Shipper</u>	Rad Category Rad Sample No.
Container Type	Analysis	Class Preservative Anal. Due Date H	old Date Site	(Container Numbers:% Fitled)
27-007 SOIL #7 GAMMA=Radium 226 only	Soil	23-FEB-96 10:25 26-FEB-96 09:00 18-M	AR-96 FED EX	3* R4731-007
1 PN - Plastic-1L 1	RAD/GAMMA/Q4 RAD/SCREEN/Q4		3-AUG-96 R14B 4-AUG-96 R148	(216346:100) (216346:100)
427-008 \$01L #8 GAMMA=Redium 226 only	- Soil -	23-FEB-96 10:30 26-FEB-96 09:00 18-M	AR+96 FED EX	3* R4731-005 11 1255
1 PN - Plastic-1L 1	RAD/GANNA/Q4 RAD/SCREEN/Q4		3-AUG-96 R14B 4-AUG-96 R14B	(216347: 100) (216347: 100)
0427-009 SOIL #9 GAMMA≕Radium 226 only	Soil	23-FEB-96 10:35 26-FEB-96 09:00 18-M	AR-96 FED EX	3* R4731-009
1 PN - Plastic-1L 1	RAD/GAMMA/04 RAD/SCREEN/Q4		3-AUG-96 R14B 4-AUG-96 R14B	(216348:100) (216348:100)
0427-010 SOIL #10 GAMMA=Redium 226 only	Soil	23-FEB-96 10:40 26-FEB-96 09:00 18-M	AR-96 FED EX	3* R4731-010
1 PN - Plestic-1L 1	RAD/GANNA/Q4 RAD/SCREEN/Q4		3-AUG-96 R148 4-AUG-96 R148	(216349:100) (216349:100)
0427-011 SOIL #12 GAMMA=Radium 226 only	Soil	23-FEB-96 10:45 26-FEB-96 09:00 18-M	AR-96 FED EX	3* R6731-011
1 PM - Plastic-1). 1	RAD/GANNA/Q4 RAD/SCREEN/Q4		3-AUG-96 R14B 4-AUG-96 R14B	(216350;100) (216350;100)
D427-012 DRUN #1 GANNA=Radium 226 only//TCLP METAL	Soit S=Pb Only.	23-FEB-96 08:00 26-FEB-96 09:00 18-M	AR-96 FEĎ EX	39 R4731-012
1 PN - Plastic-1L 1	RAD/GAMMA/Q4 RAD/SCREEN/Q4	S COLD 11-MAR-96 2: S COLD 11-MAR-96 2:	3-AUG-96 R14B 4-AUG-96 R14B	(216351:100) (216351:100)
1 AM - Amber Glass-250ML 1 1	EXTMETAL/TCLP/Q4 ICAP/TCLP/Q4 PCB/8080/Q4	S COLD 11-MAR-96 2: S COLD 11-MAR-96 2:	2-MAR-96 R14B 1-AUG-96 R14B	(216352:100) (216352:100)
9427-013 DRUM #2	Soil	S COLD 11-MAR-96 00 23-FEB-96 10:55 26-FEB-96 09:00 18-N	8-MAR-96 R14B NR-96 FED EX	(216352:100) 3* R4731-013
1 PM - Plastic-1L	ייים שחנץ.			

3*=Sample has not been rad screened.

Quanterra February 26, 1996 04:19 pm Account: 11084 Project: 609.05 ABB QAS No. 609.05 Rev. 0 Master Sample Login: 10427

Project Manager: A. field

PM Revieu:_____ Entered and Reviewed by:___ Draft: Final:

Sample Header Template:

public sesses iembrare:				
mple No. Client ID	C-Matrix	Date: Collected	teceived Due Shipper	Rad Category Rad Sample No.
# Container Type	Analysis	Class Preservative	Anal. Due Date Hold Date Site	e (Container Humbers:% Filled)
ata:	•			
1	RAD/SCREEN/Q4	S COLD	11-MAR-96 24-AUG-96 R14	(216353:100)
1 AN - Amber Glass-250ML	EXTMETAL/TCLP/Q4	S COLD	11-MAR-96 22-MAR-96 #141	(216354:100)
1	ICAP/TCLP/Q4	S COLD	11-MAR-96 21-AUG-96 R141	
i	PCB/8080/Q4	S COLD	11-MAR-96 08-MAR-96 R14I	
0427-014 DRUM #3	Soit	23-FEB-96 11:10 2	26-FEB-96 09:00 18-MAR-96 FED EX	3* R4731-014
GAMMA=Radium 226 only//TCLP M	ETALS=Pb Unity.			-, · · 'É .
1 PM - Piastic-1L	RAD/GAMMA/Q4	S COLD	11-MAR-96 23-AUG-96 R141	3 (216355:100)
1	RAD/SCREEN/Q4	S COLD	11-MAR-96 24-AUG-96 R141	
1 AN - Amber Glass-250HL	EXTHETAL/TCLP/Q4	S COLD	11-MAR-96 22-MAR-96 R14	
1	ICAP/TCLP/Q4	S COLD	11-MAR-96 21-AUG-96 R141	
i	PCB/8080/Q4	S COLD	11-NAR-96 08-NAR-96 R14	

Chain of Custody Record

	QUA 4124			[D					, <u>, , , , , , , , , , , , , , , , , , </u>		Date .			-1	Chain C	V Cush	vity Miss	nher	
	Client		۲	Project Manager Herb	مالم							/91	a	Ì	Digger C	1	15	57	
	ABB Environmental Ser Address Corp Place 128, 107 April	VICE, -	MC.	Telephone Numb	er (Area	Lodel/	Fax Number	7			2/23	74						I	,
	Coro Place 120 107 destal	on ed		(617)60	24	-6	1-06-1	12.7	1246-50	60				Į,	Page _	1		of .	1
	CAP THE ED TO THE LIFE	Zip Code		Site Contact				101/	<u> </u>	<u>wo</u>	_ 					nelysia	,		
	Wakefield, MA	01880		Toke .	Tace	obs.	en					H	T	T		11		17	
	Project Name 1	1 - 10		Juke Carrier/Waybill N	umber				<u> </u>			1 3	69				. 1		
	DRMC Yard Rad Survey			Fedfy	449	178	7176:	34					ما					1 1	
	Contract/Purchase Order/Quote No.				41 4 4			7	***************************************			C. Care	2			11	.		i
												26	T						
	Sample I.D. No. and Description	Date	Time	Sample Type	Tol		Containe		Preservative	Conditio	on on Receipt	12	2	1	1 1		Ì		1
	Sample I.D. No. and Description				Volu		Туре	No.				শু	<u>œ </u>	4_	 	4-4		\bot	
-\	Soil#1	2/2/96	1500	Sil	14		classic was	1	ia_	1001	<u> </u>			-	\vdash			+	├ ─-
7	Sil 12	2/3/9/	1500		 		برسي بالدام	1	ice	1		1	_ _			4-1	} -		
įJ	Sil # 2 Replicate	2/23/96	1010	 	├ ── ├ -			井	u_					—	\vdash	4-4		4-4	├ ─├─
3	Sil #3	2/23/96	1000	 				1	ice	╂─┼				+	 -		-+	+	
ゝ	Soil #4	2/23/96	1000	l				-	ice	╂──╂		-	*	+	 	+-+	-	+	
٠,	× 31 7 5	2/23/76	1020					4	111	╂──╂			4	—	$\vdash\vdash$	+	-+		
ำ	Calta	2/23/9/	1025	 	 		-	1	160_	╂──╂		┠╏┼	-	\dashv	┟─┼╴	++	-+	+	
4	Sol # a	2/22/01	1030	 	-	- 1		4	ill	 			+	╅	 	++	+	++	_
٦	Soi # 1	2/22/96	1035	F 1				1		t — t	·····		0	1		1-1	+	1-1	
P	Sp 1 # 10	2/3/96	1040					1	ice		71	i	3	1-		1		1	
v	Seil #12	2/23/96	1045		4		*	1	ia	1		1	-			11	_	1	_
	Dum #1	7/23/96	0900		16+2	5£.4	physical	·4L>	ise	X2 1			1			77	\neg	1	\neg
ં	Drum # 2	2/23/96	1655		1472	T in	arken!	2	iu				1					\Box	$\neg \uparrow \neg$
4	Drum # 3	2/23/96	1110	4	11 -25	أساسا	diam'r.	_2	il	1		i							
		/_/	L		<u> </u>					Ĺ <u>. </u>			<u>`</u>						
	Special Instructions																		
Possible Hazard Identification Sample Disposal																1			
	Non-Hazard Flammable Skin	Poison B				í			d _	osal By Lab	_	٦							
	Turn Around Time Required		OC Level	nown		Project Sc			UZ Disp	osal By Lab		Arch	we Fo		<i>\</i>	4onths		_	
	Normal Rush	ļ		. 🗆	124	1.10,000.04				۸									
	1 Relinquished By		Date	Time		1. Receive	d By		11					Dale			Time		
\supset	"Lancell be in	j				DA	لامه	m	the	\mathcal{M}				2-1	6-7	6	09	. 3	
<u>ح</u>	2 Relinquished By	1	Date	Time		2. Receive	d By			<u></u>				Date			Time		
77								•										-	
~	3 Relinquished By	. ===-	1	Date	Time		3. Receive	d By							Date		£j	พาย	
	Comments				L		<u> </u>								L				•
	CONTRACTS															1			

COPIED TO: BW+ AF

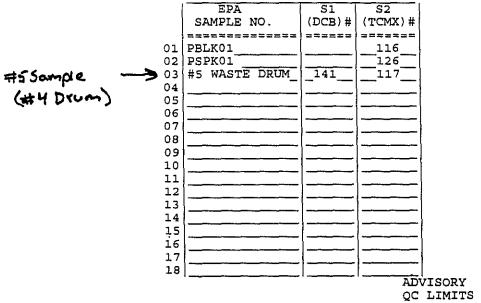
DATE: 2-26-96

TIME: 09:33

BY 27

Logia No.: 10427

Condition Upon Receipt Variance Report St. Louis Laboratory


lient:_		AAB	Date	: 2	-26-56 Time: 0900
		609.05	lniti	med b	y: Intorett
ipper	/No	: Fe) EX 497 8717 434	RFA	/COC	C Numbers: 11557
editi	ioe/	Variance (Check all that apply):			
1.	0	Sample received broken/leaking.	8.	0	Sample ID on container does not metch sample ID
2.		Sample received without proper preservative.			on paperwork. Explain:
		Cooler temperature not within 4°C ± 2°C			
		Record temperature:	-		
		□ pH	 9.		All coolers on airbill not received with shipment.
		O other:	10.		Other (explain below):
3 .		Sample received in improper comminer.			
4 .	- .	Sample received without proper paperwork. Explain:			ţ
5.		Paperwork received without sample.			
6.		No sample ID on sample container.		٠	
7. ,.		Cusandy tape disturbed/broken/missing.			
loses:		o variances were noted during sample receipt.			re Upon Recolpt:
orrec	:tive	Action:			
	+	Client's Name: Inform	ned verbally or	; -	Ву:
		Client's Name: Inform	ed in writing) : _	Ву:
		Sample(s) processed "as is".			
		Sample(s) on hold until:			f released, notify:
Sampia	s Co	neroi Supervisor Review: (or designate) Julie	teht	c	Dees: 226-86
Projec	ı Ma	inagement Review: aller mixe	ld	c	Dess: 2-26-91
SL-AD	MIN	SIGNED OSIGINAL MUST B 1-0004, Revised 11/24/95	e retained	מנד א	E PROJECT FILE

PCB QC SUMMARY Drum 4

609.05

2F PCB SURROGATE RECOVERY

Lab	Name:_	OUAN	rerra, mo		Contr	act:	: 609-05
Lab	Code:	<u>ITMO</u>	Case No.:	SAS	No.:	SDG	No.: 10882
Lev	el:(lov	v/med)	LOW				

S1 (DCB) = Decachlorobiphenyl (58-205) S2 (TCMX) = Tetrachlorom-m-xylene (48-180)

- # Column to be used to flag recovery values
- * Values outside of QC limits
- D Surrogates diluted out

. 🔻

page <u>1</u> of <u>1</u>

FORM II PEST-2

1/87 Rev.

SOIL PCB SPIKE BLANK(LCS) RECOVERY

o Name: <u>QUANTERRA, MO</u>		Contrac	:t:	609-05	
b Code: <u>ITMO</u> Case No.:		SAS No.:	DG No.:	10882	
ike Blank No.: SPKS	8205				
1	SPIKE	SPIKE	SPK		
	ADDED	CONCENTRATION		QC LIMITS	
COMPOUND **	(ug/kg)	(ug/kg)	REC #	REC.	
				=====	
Aroclor-1016	170	160	94_	50-114	
Aroclor-1260	170	160	99	_8-127	
·			•		
# Column to be used to flag	g recovery	and RPD values	s with a	an asteris	k
* Values outside of QC limit	its				
ND: not determined					
Spike Recovery: 0	out of	_2outside	e limit	3	
COMMENTS:					

FORM III PEST-2

4C PCB METHOD BLANK SUMMARY

·
SONC

~~

page <u>1</u> of <u>1</u>

1/87 Rev.

METHOD BLANK

1D
PCB ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

FCB ORGANICS	MNALISIS DATA SHEET	
Lab Name: <u>QUANTERRA,MO</u> Contract:	PBLK01	
Lab Code: <u>ITMO</u> Case No.: S	AS No.: SDG No.: 10882	
Matrix: (soil/water)SOIL	Lab Sample ID:BLK98205	
Sample wt/vol: 30.0 (g/ml) G	Lab File ID:	
Level: (low/med) LOW	Date Sampled:	
% Moisture: not dec dec	Date Extracted: 04-24-96	
Extraction: (SepF/Cont/Sonc) SONC	Date Analyzed: 04-25-96	
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1	
CAS NO. Compound	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q	
12674-11-2Aroclor-1016	33 U	
11104-28-2Aroclor-1221	33 0	
11141-16-5Aroclor-1232	33	
53469-21-9Aroclor-1242	33U	
12672-29-6Aroclor-1248	33 0	
11097-69-1Aroclor-1254	33	
11096-82-5Aroclor-1260	33	
	1	

FORM I PEST

U: Concentration of analyte is less than the value given.

Software Version: 3.3 <4811>

: 04/25/96 15:10 Time Sample Name : BLK 98205 Study

Sample Number: 24

Operator

Instrument : GC_A(DB-5MS,DB-608) AutoSampler : HP 7673A Channel: A A/D mV Range: 1000

Rack/Vial : 0/0

Interface Serial # : 8116920948 Data Acquisition Time: 04/25/96 14:54

Delay Time : 1.00 min. End Time : 15.00 min. Sampling Rate : 2.9412 pts/sec

Raw Data File : G:\USERS\ACQUIRE\GC1\AA20235.RAW Result File : G:\USERS\ACQUIRE\GC1\AA20235.RST Instrument File: g:\users\acquire\method\A8080_ins

Process file : AAPCB
Sample File : AA1660
Sequence File : G:\USERS\ACQUIRE\METHOD\A960425.seq

Area Reject : 200.000000 Dilution Factor : 10.00 Inj. Volume : 0 ul Sample Amount : 30.0000

Noise Threshold: 10 Area Threshold : 100 Bunch Factor: 1 Multiplier : 1.0000 Divisor : 1.0000 Adder : 0.0000

Instrument Conditions:

/GCA,,,;

Instrument: GC A

Column Ch A :DB-5MS 30M X .32mm X 1.0um Ch B :08-608 30M X .32mm X 0.5um

:H (12 ml/min) Carrier Gas

:170C-->20C/min-->220c-->4c/min.-->250C(2min) Temperature Notes :Inj. Vol is 2.0 ut split into 1.0ut/cot

Divisor = % Solids/100

Dil. Factor = Final Vol X Any Dilutions

Total Number of Peaks Detected: 32

PCB REPORT

Peak #	Time [Min]	Area [uV*sec]	Component Name	Conc. ppb	XREC. TCPOX	XREC. DBC	· · ·
	1.96 2.82 8.20	399106.6 3352.9 23946.2	SURR. Group AR 1016 Group AR 1260 Group	76.30 1.12 4.58	1e+03 16.87 68.67	228.89 3.37 13.73	

426405.7 82.00

Group Report For : AR 1016 Group

Peak #	Time [min]	Area [uV*sec]		Component Name	Conc. ppb	XREC. TCHX	XREC. DBC
13	2.49	451.9	AD	1016 (1-3)	0.15	2.27	0.45
14	2.82	2901.1		1016 (2-3)	0.97	14.59	2.92
0	3.60	0.0	AR	1016 (3-3)	0.00	0.00	0.00

3352.9 1.12 CDL

Group Report For : AR 1260 Group

Peak #	Time [min]	Area [uV*sec]	-	Component Name	Conc. ppb	XREC. TOX	XREC. DBC	
0	7.02	0.0	AR 12	260 (1-4)	0.00	0.00	0.00	
0	7.16	0.0	AR 12	260 (2-4)	0.00	0.00	0.00	
0	7.61	0.0	AR 12	260 (3-4)	0.00	0.00	0.00	
29	8.20	23946.2	AR 12	260 (4-4)	4.58	68.67	13.73	

4.58 LYL 23946.2

00123

Peak #	Time [min]	Area [UV*sec]	Component Name	Conc. ppb	XREC. TCHX	XREC. DBC	
8 30 32	1.96 8.65 14.02	188053.3 734.7 210318.6	TCHX DBC DCB	7.76 0.06 9.49	116.39	23.28 0.18 28.47	
		300104.6		17.31			. *** ** ** ** ** ** ** ** ** ** ** ** *

Types and reasons for Manual Analysis if performed on this sample:

1. Manual Identification: RT shift, Wrong peak, Interference from...
2. Manual Integration: Incorrect integration, Interference from...
3. Other

No Manual Analysis were performed on this sample.

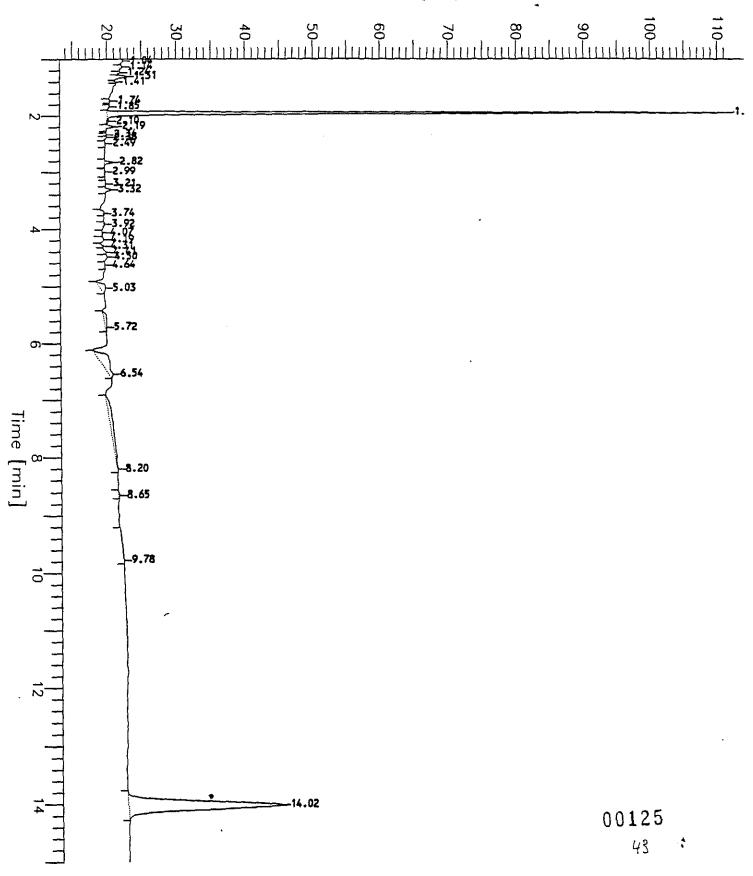
Sample Name : BLK 98205

: g:\users\acquire\gc1\AA20235.raw

: A8080.ins Hethod Start Time : 1.00 min

1.0 Scale Factor:

End Time : 15.00 Plot Offset: 13 mV : 15.00 min


Sample #: 24 Date : 04/25/96 15:10 Time of Injection: 04/25/96 Low Point : 13.20 mV Plot Scale: 98.2 mV

14:54

High Point : 111.43 mV

Page 1 of 1

Response [mV]

INORGANIC SAMPLE DATA

Drum 4

609.05

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO Case No.:	SAS No.: SDG No.: 10882
SOW No.: SW846	•
EPA Sample No. _#5 WA DR_#4 _PBT98878	Lab Sample ID _P10882-005PBT98878
	•
Were ICP interelement correct:	ions applied ? Yes/No YES
Were ICP background correction If yes - were raw data ge	ns applied ? Yes/No YES
application of background	d corrections ? Yes/No NO_
Comments:	
conditions of the contract, be other than the conditions deta in this hardcopy data package	age is in compliance with the terms and oth technically and for completeness, for ailed above. Release of the data contained and in the computer-readable data submitted athorized by the Laboratory Manager or the ed by the following signature.
Signature:	Name:
Date:	Title:
	COVER PAGE - IN TCLP

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

	`. ·	INORGANIC A	ANALYSES DATA S	SHEET				
Lab Name: QUAN	TERRA MO		Contract: 609	9.05	#5 WA DR #4			
			SAS No.: SDG No.: 10882					
Matrix (soil/water): WATER					e ID: P10882-005			
Level (low/med					ived: 04/17/96			
% Solids:			•	ouce Rece	1764. 04/17/98			
			/I or mayled day	ur wadahe \	. IIC / r			
	ı 	onics (ug.	/L or mg/kg dry	y weight)	: UG/L_			
	CAS No.	Analyte	Concentration	C Q	M			
	7439-92-1	Lead	471		P_			
					-			
					-			
					-			
					-			
					-			
					-			
Color Before:		Clari	ty Before:	·	Texture:			
Color After:		Clari	ty After:	 -	Artifacts:			
Comments:								
		F	ORM I - IN					
					TCLP			

00002

EPA SAMPLE NO.

	,	TIMORGANIC .	ANALISES DATA S	SHEET					
ab Name: QUAN	TERRA_MO		Contract: 609	9.05	PBT98878				
				SAS No.: SDG No.: 10882					
Matrix (soil/w					= ID: PBT98878				
evel (low/med): LOW_				ived: 04/17/96				
Solids:	0.()							
Co	ncentration	Units (ug	/L or mg/kg dry	y weight):	: UG/L_				
	GR G N-	31							
		_	Concentration		M				
	7439-92-1	Lead	39.8		P_				
				_					
				-	\ <u> — </u>				
Color Before:		Clari	ty Before:		Texture:				
Color After:	to the second se	Clari	ty After:	.	Artifacts:				
Comments:									
<u>-</u>									
		······································							
		F	ORM I - IN						

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QUANTERRA_MO	Contract:	609.05
Lab Code: ITMO Case No.:	SAS No.:	SDG No.: 10882
Initial Calibration Source:	SOL/L/SPX/IC	
Continuing Calibration Source:	SOL+/LL/SPX_	

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continui: Found	ng Cali	ibration Found	%R(1)	
			l					300(12)	
Lead	4000.0	4044.48	101.1	4000.0	_4032.17	100.8	_4021.31	100.5	E
									-
									-
								 	-
									-
									11
									_
									-
						<u> </u>		<u> </u>	-
									-
								l ———	-
								I ———	-
									-
			\						
								i	11-
	 ;								-
						ļ ———		\	-
							l		-
									-
			 						-

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: QUANTERRA_MO	Contract:	609.05
Lab Code: ITMO Case No.:	SAS No.:	SDG No.: 10882
Initial Calibration Source:	SOL/L/SPX/IC	
Continuing Calibration Source:	SOL+/LL/SPX	

Concentration Units: ug/L

Analyte	Initia True	al Calibra Found	ation %R(1)	True	Continui: Found	ng Cali %R(1)	bration Found	%R(1)	М
Lead				4000.0	_3995.93	_99.9			P_
									
									-
								.	
									-
				<u> </u>					

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

2B CRDL STANDARD FOR AA AND ICP

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO_ Case No.:	SAS No.: SDG No.: 10882
AA CRDL Standard Source:	SPX/SOL+/LL_
ICP CRDL Standard Source:	SOL+/SPX

Concentration Units: ug/L

	CRDL St	andard fo	r AA	CRDL Standard for ICP Initial Final						
Analyte	True	Found	%R	True	Found	%R	Fina. Found	L		
.ead				200.0	214.85	107.4		Τ.		
								-		
								Į.		
								-		
	[-		
						 		-		
								-		
								- -		
								-		
								-		
		}						-		
								-		
								-		
								[-		

FORM II (PART 2) - IN

3 BLANKS

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO Case No.:	SAS No.: SDG No.: 10882
Preparation Blank Matrix (soil/water): WATER
Preparation Blank Concentration Unit	s (ug/L or mg/kg): UG/L

Analyte	Initial Calib. Blank (ug/L)	C	Conti	nı Bl	uing Calibr Lank (ug/L) 2	at C	ion 3	С	Prepa- ration Blank C M
Lead	39.8	J	39.8		39.8_		39.8		39.800 U P

FORM III - IN

4 ICP INTERFERENCE CHECK SAMPLE

Lab	Name:	QUANTERRA_MO	Contract:	609.05
Lab	Code:	ITMOCase No.:	SAS No:	SDG No.: 10882
ICP	ID Numb	per: TJA1100	ICS Source:	SOL+/SPX

Concentration Units: ug/L

Analyte	Sol. A	AB	Ini Sol. A	tial Found Sol. AB	i %R	Sol. A	Final Found Sol. AB	%R
Lead	0	1000	49	968.7	96.9	46	950.1	95.0

FORM IV - IN

LABORATORY CONTROL SAMPLE

Lab Name: QUANTERRA MO	Contract: 609.05
Lab Code: ITMO_ Case No.:	SAS No.: SDG No.: 10882
Solid LCS Source:	
Aqueous LCS Source: SOL+/CHEMPUR	

Analyte	Aque True	eous (ug/I Found	.) %R	True	Soli Found	id C	(mg/kg) Lim	its	%R
Lead	_1000.0	991.29	99.1_						
						_			
						-	-		
						_			
						-			
						_			
						_			
						-		···	
						_			
						-			
									
						_			
						-			
						_			
			·			-] ——— [-		
						_			
<u> </u>							l		

FORM VII - IN

10 Instrument Detection Limits (Quarterly)

Lab Name:	QUANTERRA_MO_			Contract:	609.05		
Lab Code:	ITMO_ Case No	o.:	SAS	No.:	SDG No.: 10882		
ICP ID Nur	mber:	TJA1100		Date:	04/01/96		
Flame AA ID Number :							
Furnace AA	A ID Number :						

	Wave-				
Analyte	length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	M
Lead	_220.35_		100	39.8	P
· · · · · · · · · · · · · · · · · · ·					

Comments:				
**************************************	 	<u></u>	 	

FORM X - IN

11A ICP: INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Code: 1	ITMO_ Case	No.:	Contra SAS No.: Date:	SDG	No.: 10882	
Analyte	Wave- length (nm)		nterelement (
Lead	220.35		0.000000	0.000000		

Comments:					
			·	 	

FORM XI (Part 1) - IN

11B ICP: INTERELEMENT CORRECTION FACTORS (ANNUALLY)

_		····	ract: 609.05_	
ITMO_ Case	NO.:	_ SAS NO.:	SDG	No.: 10882
ber: TJA110	0	Date:	10/01/95	
İ				
	-	Interelement	Correction F	actors for :
(nm)	NA_	TH_	u	
220 35			·	
			-	
		_	-	
		_	-	
		_	-	
	· · · · · · · · · · · · · · · · · · ·	- [-	
			_	
		_		
			-	
		_	-	
1		1	1	,
	ITMO_ Case Der: TJA110 Wave- length	Wave-length (nm) NA_	Wave-length (nm) NA TH_	Wave-length (nm) NA TH U

FORM XI (Part 2) - IN

12 : ICP LINEAR RANGES (QUARTERLY)

Lab	Code:	ITMO_	ERRA_MO Case No.: [JA1100		SAS			SDG- No	2
			Analyte	Integ. Time (sec.)	Con	centratio	on	M	
			Lead	5.00		50000	-0-	_P_	
Com	ments:							•	

FORM XII - IN

13 PREPARATION LOG

Ĺab	Name:	QUANTER	RRA_M)	-		Contract:	609.0)5	_	
Lab	Code:	ITMO	Case	No.:	 SAS	No.	•	SDG	No.:	10882	

Method: P_

7,00	EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
	#5 WA DR #4_ LCSW99006 PBT98878 PBW99006	04/30/96 04/30/96 04/30/96 04/30/96		100 100 100 100
1010				
]	l	1

FORM XIII - IN

14 ANALYSIS RUN LOG

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO Case No.:	SAS No.: SDG No.: 10882
Instrument ID Number: TJA1100	Method: P_

Start Date: 04/30/96 End Date: 04/30/96

EPA														Ar	ıal	уt	es	3				•					
Sample No.	D/F	Time	양	R	P B																						
S0	1.00	1301			\overline{X}		-	-	-	-	-	-	-	-		-	_		_	-	_		-	-	_		-
S	1.00	1304			X		_				-1		_	_	_	-	_	-	_		_	_	-	-	-	-	-
S	1.00	1307			l_!	_										-	_	-	_	_	-	-	-		-	_	-
S	1.00	1311											_	_	_	-1	_	_	_	_	_	_	-	_		-	-
ICV	1.00	1314			X		_	-	_		_	_	_	_	_	-		_	_	_	-	_	-	-		_	-
ICB	1.00	1317			X			-	_	-	-		-		-	_	-	_	_	-		-	_	-		-	-
CRI	1.00	1320			X	_	_	-	-	-		_		-	-	-	-	-		_	-	-	–			-	i — I
s	1.00	1324			X	-	_		-		-1	_	_	-	_			-1	_	-		-		-	-	-	-
ICSA	1.00	1329			X	_	_	-	-1		-1	_	_		-1	-	-	-		-	_	-	-		-	_	
ICSAB	1.00	1332			X		_	-	_		1	-	-					-1	_	-	-	-	-	-		-	
PBW99006	1.00	1336			X		-	- 1	_	-	-		_	_	_	_	-		_	-	-	-	_	-	-	-	-
LCSW99006	1.00	1339			X	-	—		_	-	-1	-	_		-1	-	-	-		-	-	-	-	-	-	-	-
ZZZZZZ	1.00	1342				-	_				-1	-	_		-1	-	-	-		-	_	-	-	-	[— I	-	- -
lccv	1.00	1345			$\overline{\mathbf{X}}$	_	_		-1		-1	-	-		-1		-	-	-	-	_	_	-	—	-	-	
CCB	1.00	1348			X		_	-	-1	-	-		-	-	-	-	-	-	-	-	_		-	-	-	-	
#5 WA DR #4	1.00	1352			X		-		-	-	-		-		-		-	-1	-			-		-			- -
ZZZZZZ	1.00	1355				-	-		-		-		_		-1		-		-	-		-	-	 -		-	i — -
ZZZZZZ	1.00	1358				-	-		-		-	-	_	-	-		-		-	-	-	—		-	-	_	- -
ZZZZZZ	1.00	1401			-	-	-		-1	-	-	-	-	-	-		-		-	-	-	-	-	—	-	_	
ZZZZZZ	1.00	1404			-	-	_		-		-		-		-		-	-	-	-1	-	_	-		-	_	, -
ZZZZZZ	1.00	1408			-	-	-		-		-		-		-	-	-1		-	-	_	-	-	_	-	-	
ZZZZZZ	1.00	1411	l ———		-	_		-		-1		-		-	-	-		-		-		-		 		-	ı —
ZZZZZZ	5.00	1414	l ——		-	-	-	-	-	-	-	-	-	-	-	-		-		-		_	-			-	-
PBT98878	1.00	1417	 		\overline{X}	_	-	-	-	-		-1	-	-		-		-		-		_	_		-	-	-
ZZZZZZ	1.00	1420			121	_		-	-	-	-	-		-				-	-	-	_	_	-	-	-	_	
CCV	1.00	1424			$\overline{\mathbf{x}}$	-	—		-[-	-	-		-	-		-1	-	-		_	_		_		-	-
CCB	1.00	1427	ļ ——		X		-			-	-		-		-1		-1		_		_		_	_		-	_ -
ZZZZZZ	3.00	1430			^		-		-		-1	-	-	-	-		-		-	_	_	 		_	_	_	.
ZZZZZZ	3.00	1433			-		-		-		-1	-	-	-	_	-	-	_		_	_	_	_		_		_ -
ZZZZZZ	1	1436			-		 		-		-	-1		_	_	_	_	_	_	-		_	_	_	_		_ -
	i		l ——		-		_		_		_	_		_		_		_		_	_		_	 _		_	-1-
PBT98878	1.00	1440			- I	_	_		_	_	_	_		_		_	_	_	_	_	_	_			_	_	_ .
ICSA	1.00	1443			X	_		_		_		_	_		_	_	_	_	_	_		_	_	_	_		_ .
1	l	l	l		1_		 		_	_	_	_		_]		_!	1				l		l			

FORM XIV - IN

14 ANALYSIS RUN LOG

Lab Name: QUANTERRA_MO	Contract: 609.05
Lab Code: ITMO Case No.:	SAS No.: SDG No.: 10882
Instrument ID Number: TJA1100	Method: P_

Start Date: 04/30/96 End Date: 04/30/96

EPA					1			-						Ar	ıal	yt	es										
Sample No.	D/F	Time	olo	R	P B					7													_				
ICSAB CCV CCB	1.00 1.00 1.00	1446 1449 1452			X X -				_ _ _ _		_	-	_	- - - -	_		_ _ _ _	_				1 1		_			
					<u> </u>			-	-		_	_ _ _ _	_	_	_	_	_		_					_ _ _ _			
							_ _ _ _	- - -	- - -	_	_	_	_ _ _		_	- - -			_ _ _ _	1 1 1	_ _ _	- -	<u>-</u> -	- - -	 - - -	- - -	- - - -
								 - - - -	_	_ _ _	_	_	_ _ _ _	_	_	_	— — — —										
					 - - -	- - -	 - - -	_			_	_	_	_	_	- - -	_ _ _		_	_	_	_ _ _	- -		_ _ _ _	- - -	- - -
								-			_	_ _ _ _				_				_		_ _ _		1 1 1 1		-	
					 - - -	<u>-</u>	_ _ _	_	_ _ _ _		_	_ _ _ _	_ _ _	_ _ _	<u>-</u> -	_	- - - -		_ _ _	-	<u>-</u>	_	_		_ _ _	-	
					_	_	_		_	_	_	_	_	_	_	_		_		_	_	_	_	_	_	_	_

FORM XIV - IN

CHAIN OF CUSTODY SAMPLE LOG-IN/RECEIPT RECORDS DRUM 4

Quanterra April 18, 1996 03:44 pm
Account: 11084 Project: 609.05 ABB QAS No. 609.05 Rev. 0
Master Sample Login: 10862

Project Manager: A. Field

Sample Header Template	2	
------------------------	---	--

Sample No. Comments	Client ID	C-Matrix	Date: Co	llected	Received	Due Shipper	Rad (Category Rad Sample No.	
# Container Type Data:	, , , , , , , , , , , , , , , , , , , 	Analysis	Class	Preser	rvative Anal. Due Date	e Hold Date Site		(Container Numbers: Fi	lled)
10882-001	#1 HOLE #8	Soil	16	-APR-96	08:30 17-APR-96 09:20	08-MAY-96 FED-EX	3*	R4896-001	
'∳ 1 PN - Plastic-11		RAD/GAMMA/Q4	s	corp	01-MAY-96	15-OCT-96 S4J		(225557:100)	
10682-002	#2 HOLE #10	RAD/SCREEN/Q4	S 16	COLD	01-MAY-96 08:40 17-APR-96 09:20	14-OCT-96 S4J 08-MAY-96 FED-EX	3*	(225557:100) R4896-002	
			_						
1 PN - Plastic-11 1	i.	RAD/GAMMA/Q4 RAD/SCREEN/Q4	s s	COLD	01-MAY-96 01-MAY-96	15-OCT-96 S4J 14-OCT-96 S4J		(225558:100) (225558:100)	
10882-003	#3 DUPLICATE #10	Soil	16	-APR-96	08:40 17-APR-96 09:20	08-MAY-96 FED-EX	3*	R4896-003	
l PN - Plastic-ll l	a	RAD/GAMMA/Q4 RAD/SCREEN/Q4	s s	COLD	01-MAY-96 01-MAY-96	15-OCT-96 S4J 14-OCT-96 S4J		(225559:100) (225559:100)	
10882-004	#4 WASTE DRUM #4	Soil	16	-APR-96	08:45 17-APR-96 09:20	08-MAY-96 FED-EX	3*	R4896-004	
1 PN - Plastic-11 1		RAD/GAMMA/Q4 RAD/SCREEN/Q4	s s	COLD	Öl-MAY-96 Ol-MAY-96	15-OCT-96 S4J 14-OCT-96 S4J		(225560:100) (225560:100)	
10882-005 ICAP/TCLP = PB C	#5 Waste Drum #4 ONLY.	Soil	16	-APR-96	08:56 17-APR-96 09:20	08-MAY-96 FED-EX	3*	R4896-005	
2 PN - Plastic-II 2 1		EXTMETAL/TCLP/Q4 ICAP/TCLP/Q4 PCB/8080/Q4 RAD/SCREEN/Q4	s s s	COTD COTD COTD COTD	01 -MAY - 96 01 -MAY - 96 01 -MAY - 96 01 -MAY - 96	14-MAY-96 S4J 13-OCT-96 S4J 30-APR-96 S4J 14-OCT-96 S4J		(225561:100 225577:99) (225561:100 225577:99) (225578:98) (225561:100)	

^{** 3*=}Sample has not been rad screened.

1 cmr 7 c CURF 671L

Chain of Custody Record

CIUA 4124																			
Client	1	_		Project Manager		2 11	•		Date	1.11				Cha	ın Of C	11	/ Nym	ber	
	BB Environmental	Services		Telephone Num	Herb	Colb	Y				16/	4	5_			ΤŢ	. / 4	ŧδ	
Address) I ~		Telephone Numi	ber (Anga Code			- ,, ,	Lab N	Vumber					4	,			
City			75			011	<u> 145</u>	-6606						Pag	<u> </u>	<u></u>	o	<u>/ 1/</u>	
City	P. all	Zip Code		Site Contact	ጉ	T 1					ļ _.				Anal	ysis			
Project Name	e liela MA	01880)	Carrier/Waybill N	Jure	Jacobs	on	_				ŀ	古	٠]			-		
гојест мате	DRMOV L. T.					214 4.	- 0.					- 1:	œ	1	1 1	1)		
Contract/Dural	DRMO YUND - Ft.	Devens		l te	<u>γ-'x</u>	3169	134	03.1					M	ļ					1 1
Comagoraid	iasa Citalifctota No.										401.1	╽.	9		11				
		T	Т	T	T =	T C4-/-			T		9	B.B.	3		1 1	ı		1	
Sam	ple I.D. No. and Description	Date	Time	Sample Type	Total Volume	Contain Type	No.	Preservative	Condition on Re	eceipt		a)	38				-		
6-1	Hole *8	4/16/46	0830	5011 0	111	17/	1	None	100%		.1		~	+-	╁┼		+	+	╂╼┼╼╌
	Huie B	7110170	IUNU	13011	427	pr.	 4	- Note	700%		거		-	+-	+-			1-	├─├ ─
F 7	Hule * 10	4/16/96	0840	50.1	1.1	11	7	NUNR	100%		7		-		f - f			-	
	70	1 11 11	12012			PA_		<u> </u>	1008		Y	-†	-			_	1	1-	
# 3	Duplicate 710	4/16/46	0840	50.1	11	11	1	None	100%		J	7	7	1	\Box	\top	\top	$\dagger \Box$	
														T	\Box		1		
" 4	Waste Drum "4	4/16/96	0845	Soil de	611	11	1	None	100%		$\overline{\Lambda}$		\Box						
				0				M,								$\Box \mathbb{L}$			
<u>5</u>	Waste Drum #4	4/16/96	0856	Soil 4	250 1	7504	43	Cold	3 × 100	l	\perp	\	<u>/ </u>						
		1.12	<u> </u>		<u> </u>	1227						_	_	_		_ _			<u> </u>
W02	truste Drug 14	-4//6/96	0850	Soil_	250 -	250-1	12	Cold		〓	===	:	4 _		\sqcup	-4-	1_		
		1.1.1.101	1000		050	350	7					<u>_</u>	1	-	╁	-	—		
* 755	VOUSIE Draw #4	4/16/96	0850	201	250 m	250A	=	Cold		=	-1'		<u>~</u>		$\vdash \downarrow$		╂—	 	
ROD		ļ	 			 	 						- -	-	<i>-</i>		-		├─- ┃──
			<u> </u>		 	 	╂──┨					+		+	╁─┼		+	-	
Special Instruc	tions	l	<u> </u>	L	L			<u> </u>	<u> </u>									1	
														•					
Possible Haza	rd Identification					Sample D)isposal	ı											
Non-Hazi	ard Flammable Skin	trritant	Poison B		nown	□Re	tum To	Client	Disposal By Le	ab		Arci	hive F	or		Mon	ths		
Tum Around T	ime Required			OC Level		Project S	pecific ((Specify)											
Normal	Rush																		
1. Relinquishe 3	^{igy} () /		ı i	Date Id I II / /	Time	1. Явсвіч	ed (By)	· mi	/ 		- '			Da		2		ne S.	
	Keg Den			4/10/95	0915	12/	<u>لايم</u>	- //h	hhu _							7-76		ン <u>タ:</u>	20_
2. Relinquishe	ON A ARR	es to F	£9-X	Daté White	11me 14:30	2. Aeceiv	өа ву	•						Da.	16		Tin	110	
3. Relinquished	- D. Juc(), us			4/16/96 Date	Time	3. Receive	ad Ru							 . Da	te		Tin	 na	,
s. maiinguisne	u oy		ľ		1,4170	J. Hecelvi	ou uy							100	.5		'"		
Comments				······································													_1		

		15 (SWFD)		_	Login No.: 10882
	Tiv	AE. 11:47 Condition Upon	-		e Report
	BY	St. Lo	ris Laborat	OLA	
Client	•	ABB	Deta	. 4-	-17-96 75 09:20
		SV 534.01 609.05	Taini	"	17-96 09:20 y: 2ulm little
-		FeDEX 316 9734 057			Numbers: 1/746
• •			KLA	vecc	Numbers: 17 / 4 16
-000	ICIOID	Variance (Check all that apply):			
1.		Sample received broken/leaking.	8.		Sample ID on container dose not march sample ID
2.		Sample received without proper preservative.	•		on paperwork. Explain:
		☐ Cooler temperature not within 4°C ± 2°C			
		Record semperature:			
		□ pH	9.		All coolers on airbill not received with shipment.
		□ other:	10.		Other (explain below):
3.	a	Sample received in improper container.			
4.		Sample received without proper paperwork. Explain:	:		
5.		Paperwork received without sample.			
6.		No sample ID on sample container.		•	
7.		Custody tape disturbed/broken/missing.		•	
Notes		o variances were noted during sample receipt.	Cooler Temp	er sker	Upon Recolpt: 4°C
		Actions:			
-			med verbally or		Davi.
			•	-	By:
-		Cliens's Name: Inform	med in writing		Ву:
		Sample(s) processed "as is".			
		Sample(s) on hold until:		_ H	released, notify:
Samp	He Co	nerol Supervisor Review: (or designate)	MIL		4-17-96
Proje	ct Ma	inagement Review:	488	D	- T-/T-76
SL-A	DMIN	SECRED ORIGINAL MUST 1 -0004, Revised 11/24/95	ee retained :	en the	1 PROJECT FILE 00078

QC Summary

Drum 5

: G73308 BATCH

LYSIS : EPA 8080/3540

TYPE : FDER/SW LYST

: VICTOR BAUDER RACTOR : CURTIS GUINYARD REPORT DATE/TIME : 07/31/96 09:47

ANALYSIS DATE/TIME : 07/14/96
EXTRACT DATE : 07/16/96

'A ENTRY : VICTOR BAUDER

: FINAL

ID

HOD BLANK CORRECTION METHOD : NONE

THAMA LOT: QEES

PLE

S*99

LD GRP QC TYPE PROJECT NUMBER PROJECT NAME LAB COORDINATOR ABB FT DEVENS TASK 7 1296066G 0201 JOSEPH VONDRICK s ESE

CLIENT DATE TIME

ANALYZED ANALYZED DRUM 5 07/22/96 06:07PM

HOLDING TIMES CHECK

PLE ANALYTE ANL DATE EXT DATE SMP DATE H.T. OVER

HOLDING TIMES MET

hod Blank Sample Summary

E.	SAMPLE	STORET	PARAMETER	UNITS	FOUND	DET LMT
19/96	MB*THAMA*1	39514*8080/3540-G	PCB-1016	UG/KG-	ND	13.3
19/96	MB*THAMA*1	39491*8080/3540-G	PCB-1221	UG/KG-	ND	13.3
19/96	MB*THAMA*1	39495*8080/3540-G	PCB-1232	UG/KG-	ND	13.3
19/96	MB*THAMA*1	39499*8080/3540-G	PCB-1242	UG/KG-	ND	13.3
19/96	MB*THAMA*1	39503*8080/3540-G	PCB-1248	UG/KG-	ND	13.3
19/96	MB*THAMA*1	39507*8080/3540-G	PCB-1254	UG/KG-	ND	13.3
19/96	MB*THAMA*1	39511*8080/3540-G	PCB-1260	UG/KG-	ND	13.3

rogate Spike Recovery Summary

E	SAMPLE	STORET	PARAMETER	UNITS	TARGET	FOUND	*RECV	RECV CRIT
19/96	CCS*1060*133	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG	200	219	110	67-119
19/96	CCS*1060*133	96519*SUR	DECACHLOROBIPHENYL	UG/KG	200	221	111	51-169
19/96	MB*THAMA*1	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG	66.7	58.3	87.4	67-119
19/96	MB*THAMA*1	96519*SUR	DECACHLOROBIPHENYL	UG/KG	66.7	73.4	110	51-169
19/96	SP1*THAMA*1	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG	66.7	55.4	83.1	67-119
19/96	SP1*THAMA*1	96519*SUR	DECACHLOROBIPHENYL	UG/KG	66.7	71.4	107	51-169
22/96	DA*DV5S*99	96798*SUR	TETRACHLORO-M-XYLENE	(8080,354UG/KG	66.7	60.9	91.3	67-119
22/96	DA*DV5S*99	96519*SUR	DECACHLOROBIPHENYL	UG/KG	66.7	82.3	123	51-169
19/96	SPM1*DV5S*99	96798*SUR	TETRACHLORO-M-XYLENE	(8080,354UG/KG	66.7	48.2	72.3	67-119
19/96	SPM1*DV5S*99	96519*SUR	DECACHLOROBIPHENYL	UG/KG	66.7	63.9	95.8	51-169
19/96	SPM2*DV5S*99	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG	66.7	49.1	73.6	67-119
19/96	SPM2*DV5S*99	96519*SUR	DECACHLOROBIPHENYL	UG/KG	66.7	67.0	100	51-169
19/96	CCS*1060*143	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG	200	223	112	67-119
19/96	CCS*1060*143	96519*SUR	DECACHLOROBIPHENYL	UG/KG	200	207	104	51-169
22/96	CCS*1254*14	96798*SUR	TETRACHLORO-M-XYLENE	{8080,354UG/KG		NA		67-119
22/96	CCS*1254*14	96519*SUR	DECACHLOROBIPHENYL	UG/KG		NA		51-169

Batch Narrative - G73308 Analysis: EPA 8080/3540

Updated by 1781

CCS*1060*143 HAS PCB-1016 AT 21.0% DIFFERENCE WHICH IS SLIGHTLY ABOVE THE 20.0% CRITERIA. THE SAMPLE DOES NOT HAVE ANY PCB-1016 IN IT. ALL OTHER CCS

COMPOUNDS ARE WITHIN CRITERIA. VSB 7-23-96

Updated by 3377

PROBLEM:

Sample matrix spike not within acceptance criteria:

PB UN*DV5SL*99 Exceeds criteria. (Recovery Limit 100 +/- 15)

EXPLANATION:Sample concentration is greater than 4 times the spike concentration.

PROBLEM:

Sample matrix spike duplicate not within acceptance criteria: PB UN*DV5SL*99 Exceeds criteria. (Recovery Limit 100 +/- 15) EXPLANATION: Sample concentration is greater than 4 times the spike concentration.

Analyst		DATE	
Reviewer	***************************************	DATE	

07/31/96

Environmental Science & Engineering, Inc.

FT DEVENS SOIL OC SUMMARY

Page 1

NAME	UNITS	STOR*METH	BATCH	SAMPLE	DATE	TARGET	FOUND	*RECV	RECV CRIT	R.P.D.	R.P.D. C	RIT.
PCB-1016	UG/KG-	39514*8080/3540-G	G73308	SP1*THAMA*1	07/19/96	267	294	110.1	N/A		N/A	
PCB-1260	UG/KG-	39511*8080/3540-G		SP1*THAMA*1		267	312	116.9	N/A	ì	N/A	
LEAD, TOTAL	UG/L	1051*6020-G	G73649	SP*QC*1	07/30/96	20.0	19.6	98.0	75-137	•	31	
		07/31	/96	Environment	al Science & E	Ingineerin	a. Inc					
		01/3.	.,	mit a ww Ottuscito								
		07/3.	., 50		EVENS SOIL QC	-	g, 2					
		07/3.	., 50	FT E		SUMMARY	-					
		,		PT E Sample Matrix	EVENS SOIL QC Spike (SPM) R	SUMMARY Recovery S	ummary					
iame	UNITS	STOR*METH	BATCH	FT E	EVENS SOIL QC	SUMMARY	-	*RECV	RECV CRIT	UNSPIKED	R.P.D.	R.P.D. CR
		,	BATCH	PT E Sample Matrix	EVENS SOIL QC Spike (SPM) R	SUMMARY Recovery S	ummary	%RECV 118.9		UNSPIKED	R.P.D.	R.P.D. CR
CB-1016		STOR*METH 39514*8080/3540-G	BATCH	FT E Sample Matrix SAMPLE	EVENS SOIL QC Spike (SPM) R	SUMMARY Recovery S TARGET	ummary FOUND		N/A		R.P.D.	
CB-1016 CB-1016	UG/KG- UG/KG-	STOR*METH 39514*8080/3540-G	BATCH	Sample Matrix SAMPLE SPM1*DV5S*99	EVENS SOIL QC Spike (SPM) R	SUMMARY Recovery S TARGET 303	ummary FOUND 360	118.9	N/A N/A	0.0		N/A
CB-1016 CB-1016 CB-1260	UG/KG- UG/KG-	STOR*METH 39514*8080/3540-G 39511*8080/3540-G	BATCH	Sample Matrix SAMPLE SPM1*DV5S*99 SPM2*DV5S*99	EVENS SOIL QC Spike (SPM) R	SUMMARY Recovery S TARGET 303 303	FOUND 360 324	118.9 107.0	N/A N/A	0.0		N/A N/A
MME CB-1016 CB-1016 CB-1260 CB-1260 EAD, TOTAL	UG/KG- UG/KG- UG/KG-	STOR*METH 39514*8080/3540-G 39511*8080/3540-G	BATCH G73308	Sample Matrix SAMPLE SPM1*DV5S*99 SPM2*DV5S*99 SPM1*DV5S*99	EVENS SOIL QC Spike (SPM) R	SUMMARY Recovery S TARGET 303 303 303	FOUND 360 324 482	118.9 107.0 159.2	N/A N/A N/A	0.0 0.0 0.0	10.5	N/A N/A N/A

FT DEVENS SOIL QC SUMMARY

Spike into Matrix (SPX) Recovery Summary

NAME	UNITS	STOR*METH	BATCH	SAMPLE	DATE	TARGET	FOUND	*RECV	RECV (CRIT UNSPIKED
LEAD, TOTAL	UG/L	1051*6020-G	G73649	SPX*DV5SL*99	07/30/96	5.6	-318	-5679	N/A	29900

Environmental Science and Engineering, Inc.

FT DEVENS SOIL QC SUMMARY

Standard Matrix Spike Recovery and Replicate Statistics Summary

STORET*METHOD NAME	N	MINIMUM	MAXIMUM	AVERAGE	STANDARD DEVIATION
39514*8080/3540PCB-1016	1	110.1	110.1	110.1	0.0
39511*8080/3540PCB-1260	1	116.9	116.9	116.9	0.0
1051*6020-G LEAD, TOTAL	1	98.0	98.0	98.0	0.0

Environmental Science and Engineering, Inc.

FT DEVENS SOIL QC SUMMARY

Sample Matrix Spike Recovery Statistics Summary

STORET*METHOD NAME	N	MINIMUM	MAXIMUM	AVERAGE	STANDARD DEVIATION
39514*8080/3540PCB-1016	2	107.0	118.9	113.0	8.4
39511*8080/3540PCB-1260	2	159.2	167.2	163.2	5.7
1051*6020-G LEAD, TOTAL	2	3600	3600	3600	0.0

Environmental Science and Engineering, Inc.

FT DEVENS SOIL QC SUMMARY

Spike into Matrix Recovery Statistics Summary

STORET*METHOD	NAME	N	MINIMUM	MAXIMUM	AVERAGE	STANDARD DEVIATION
1051*6020-G	LEAD. TOTAL	1	-5679	-5679	-5679	0 - 0

Chains of Custody (copies)

Drum 5

						CHA	IN OF C	UST	OE	Υ	RE	EÇ(OF	RD						Pageof_	1_
PROJECT NO. 9376.0	2 /	JECT N	len S	5 - 1	DRM	0 Rad	. survey		(3)	a			SAMI	PLE TY	PE					REMARKS (*	- J.
SAMPLERS (SK	NATURE)	- Ag	B-6	55				NO. OF CON- TAINERS	TCLP- 1311	3 - 8080									sc	INDICATE IL/WATER/AIR IMENT/SLUDGE	1
STA. NO.	DATE	TIME	SOMP PM	GRAB		STATION	LOCATION	IAINERS	137	PcB											<i>'</i>
	6/12/96)115	Х		I	DRUM !	5	2	X	X									Soj	DV 55.	+90
																			List	DVSSA	
													-			-					
															•						
																		-			
					į.																<u></u>
						40(E0400M															
RELINQUISHE	BY: (SIGNA	TURE)	D,	ATE/T	IME	RECEIVED	BY: (SIGNATURE)	RELINQU	ISHE	BY:	(SIGNA	TURE	,	DATE	TIME		RECE	VEDI	BY: (SIGNAT	URE)	
Dimithy RELINQUISHE	Jame	_	6/12		408	Fed.		RELINQU							/TIME				BY: (SIGNAT		
RELINQUISHED	BY: (SIGNA	TURE)	DA	 ATE/T 	IME	RECEIVED (SIGNATUR	FOR DISPOSAL BY E)	: DATE	TIME		PEMAI Pote	aks ntial	TCI LA	LP-1	lead ow l	onl eref	y a. Ra	nd -23	PCB in 16 /3-	soil 10 pcilg	
-62					<u>. </u>						, ,	<u> </u>	/	ABE	8 Er	ıvir	onn	nen	tal Se	r vices, İ r (n/141/9))C

Environmental Science & Engineering, Inc. 07-03-96 *** FIELD LOGSHEET *** FIELD GROUP: DV5SL /// PROJECT NUMBER 1296066G 0201 FG NAME: FT DEVENS ABB LEACHATE LAB COORD. JOSEPH VONDRICK
SITE/STA HAZ? FRACTIONS (CIRCLE) DATE TIME PARAMETER LIST 7/2/96 4p - ALGAL CC PER 550
NOTE -CHANGE OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED -CIRCLE FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES -HAZARD CODES: I=IGNITABLE C=CORROSIVE R=REACTIVE T=TOXIC WASTE H=OTHER ACUTE HAZARD; IDENTIFY SPECIFICS IF KNOWN -PLEASE RETURN COMPLETED LOGSHEETS WITH SAMPLES TO Environmental Science & Engineering, Inc.
SAMPLED BY: (Name/Organization)
RELINQUISHED (Name/Organization/Date/Time) VIA: REC'D BY (Name/Organization/Date/Time)
1 ABRAHAM TACOB/ESE/7/3/16/pm ruceiving My 656
2 7/3/16 1300
3 cc 7/3/26
SAMPLER: Shipped on Ice? Yes/No; I anticipate shipping(#) more samples on/ SAMPLE CUSTODIAN: Custody Seals Used? Yes/No) If Yes, Seals Intact? Yes/No Interior Temp? No Deg C Preservatives Audited? Yes/No Any Problems? Yes/No; If Yes, describe:

Appendix F

Radioactive Package Shipment Survey Record

DRUW# (
Date Surveyed 2/23/36 Surveyed By Ton Bracks
Transported By License Plate #
Type of Package 55 gallow drum Label (circle one) White I Yellow II Yellow III
Dose rate survey
Survey Instrument & serial # BICTON # 3966N
Reading at Contact 50 Reading at 3 ft
Smear Survey Ludlum Scaler/Rateneter
Survey Instrument & serial # Model #2223 Serial # 102933
Results $\frac{236}{}$ dpm/100 cm ² α
Results $\frac{2 \mu 6}{100 \text{ dpm}/100 \text{ cm}^2}$ β/γ
Contamination greater than 2,2000 dpm/100 cm ² removable must be decontaminated prior to shipment.
Describe Radioactive Material (activity, physical form, and quantity) Radium 286 in soil and asphalt mix
,
Reviewed By: Kan July Date: 2/27/96

Radiation Science, Inc.

Form RW01

DRUM#2
Date Surveyed 3/23/96 Surveyed By TON Bracke
Transported By License Plate #
Type of Package 55 gallow drum Label (circle one) White I Yellow II Yellow III
Dose rate survey
Survey Instrument & serial # BICRON = B966N
Reading at Contact 50 Reading et 3 ft. 10
Smear Survey Ludium Scales/Ratemeter
Survey Instrument & serial = Model # 2223 Serial # 102933
Results $\frac{2\ell}{2}$ dpm/100 cm ² α
Results dpm/100 cm² β/γ Contamination greater than 2,2000 dpm/100 cm² removable must be decontaminated prior to shipment.
Describe Radioactive Material (activity, physical form, and quantity) Radium 226 in soil and asphalt mix
Reviewed By: San Dule: 3/27/96

Radiation Science, Inc.

Form RW01

Deun #3

Date Surveyed 3/23/96 Surveyed By Tom Doucke	
Transported By License Plate = _	
Type of Package 55 921100 from Label (circle one) White I Yellow II Yellow II	I
Dose rate survey	
Survey Instrument & serial # BICTON #- B966N	
Reading at Contact 55 Reading at 3 ft. 10)
Smear Survey Ludlum Scalez/Ratemeter	
Survey Instrument & serial # Mode! # 2223 SCRIA! # 10	2933
Results 226 dpm/100 cm ² α	
Results $\frac{2496}{3}$ dpm/100 cm ² β/γ	
Contamination greater than 2,2000 dpm/100 cm ² removable a decontaminated prior to shipment.	nust be
Describe Radioactive Material (activity, physical form, and quantity))
Radium 226 IN Soil and asphalt MIX Ra	divin 276
in DAW-Baper, glastic + meter)	
Reviewed By: Som Dente: 2	127196
Radiation Science, Inc.	Form RW01

Drum = 4
Date Surveyed 4/16/96 Surveyed By Seet Dennenlein
Transported By License Plate #
Type of Package 55 gullon drun Label (circle one) White I Yellow II Yellow III
Dose rate survey
Survey Instrument & serial # Bicron * B966x'
Reading at Contact 15 MR/hr Reading at 3 ft. 10 MR/hr
Smear Survey
Survey Instrument & serial # Ludlum 2223 # 102933
Results 230 dpm/100 cm ² α
Results 2500 dpm/100 cm ² β/γ
Contamination greater than 2,2000 dpm/100 cm ² removable must be decontaminated prior to shipment.
Describe Radioactive Material (activity, physical form, and quantity) Radium - 226 in soil /asphalt
Reviewed By: Name Balo Date: 8/8/96
Radiation Science, Inc. Form XX

Drum #5
Date Surveyed 6/12/96 Surveyed By Som Denner to
Transported By License Plate #
Type of Package 55 gallon drum Label (circle one) White I Yellow II Yellow III
Dose rate survey
Survey Instrument & serial # Bicron * B966N
Reading at Contact
Smear Survey
Survey Instrument & serial # Indum 2223 # /0243?
Results 230 dpm/100 cm ² α
Results $\angle 500$ dpm/100 cm ² β/γ
Contamination greater than 2,2000 dpm/100 cm ² removable must be decontaminated prior to shipment.
Describe Radioactive Material (activity, physical form, and quantity) Radium - 226 in 501/ asphal+
Reviewed By: Date: \$18196
Radiation Science, Inc. Form XX