

U.S. Army Corps of Engineers New England Division

FINAL
NO FURTHER ACTION DECISION UNDER CERCLA
STUDY AREA 56
BUILDING 2417 LUST SITE

FORT DEVENS, MASSACHUSETTS

CONTRACT NO DACA33-91-D-0006 DELIVERY ORDER NO. 21

OCTOBER 1996

FINAL NO FURTHER ACTION DECISION UNDER CERCLA

STUDY AREA 56 BUILDING 2417 LUST SITE FORT DEVENS, MASSACHUSETTS

Prepared for:

U.S. Army Corps of Engineers New England Division Waltham, Massachusetts

Prepared by:

ABB Environmental Services, Inc. Wakefield, Massachusetts Project No. 07147.00

> CONTRACT NUMBER: DACA33-91-D-0006 Delivery Order 21

> > OCTOBER 1996

TABLE OF CONTENTS

Sec	ction Title	Page No.
EX	XECUTIVE SUMMARY	ES-1
1.0	INTRODUCTION	1-1
2.0	DESCRIPTION AND PHYSICAL SETTING 2.1 DESCRIPTION AND LAND USE 2.2 REGIONAL GEOLOGY 2.3 REGIONAL HYDROGEOLOGY 2.4 STUDY AREA DESCRIPTION AND HISTORY	2-1 2-2 2-2
3.0	RELATED INVESTIGATIONS 3.1 MASTER ENVIRONMENTAL PLAN 3.2 ENHANCED PRELIMINARY ASSESSMENT 3.3 SITE INVESTIGATION REPORT 3.4 PRELIMINARY RISK EVALUATION 3.4.1 Human Health Preliminary Risk Evaluation	3-1 3-1 3-2
4.0	4.1 SITE INVESTIGATION	
5.0	PRELIMINARY HUMAN HEALTH RISK EVALUATION 5.1 Soils	5-1
6.0	CONCLUSIONS	6-1
7.0	DECISION	7-1

TABLE OF CONTENTS

Section Title Page No.

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

REFERENCES

FIGURES

TABLES

APPENDICES

APPENDIX A - SA 56 CLOSURE REPORT

LIST OF FIGURES

Figure	Title	_
2-1	Site Location	
2-2	Site Investigation Sample Locations	
4-1	Site Investigation Field Screening Results	
4-2	Analytes in Site Investigation Subsurface Soil Samples	
4-3	Final Excavation Limit and Confirmation Sample Locations	

LIST OF TABLES

Table	Title	
4-1	Soil Field Screening Results: Site Investigation	
4-2	Analytes in Soil: Site Investigation	
4-3	Field Screening Results: Soil Removal Action	
4-4	Confirmation Sample Results: Soil Removal Action	
5-1	Human Health PRE Evaluation of Subsurface Soil	

EXECUTIVE SUMMARY

Investigations of Study Area 56 (Building 2417 Leaking Underground Storage Tank Site) at Fort Devens Massachusetts have resulted in the decision that no further hazardous waste studies or remediation are required at this site. Study Area 56 was identified in the Federal Facilities Agreement between the U.S. Environmental Protection Agency and the U.S. Department of Defense as a potential site of contamination.

On December 21, 1989 Fort Devens was placed on the National Priorities List under the Comprehensive Environmental Response, Compensation and Liability Act as amended by the Superfund Amendments and Reauthorization Act. In addition, under Public Law 101-510, the Defense Base Realignment and Closure Act of 1990, Fort Devens was selected for cessation of operations and closure. In accordance with these acts numerous studies, including a Master Environmental Plan, an Enhanced Preliminary Assessment, a Site Investigation, and a soil removal action were conducted at Study Area 56.

Study Area 56, Building 2417 Leaking Underground Storage Tank Site, is one of seven original Group 2 Study Areas located on the Main Post of Fort Devens. The Building 2417 Leaking Underground Storage Tank Site is located in the central portion of the Main Post off Givry Road in Harvard, Massachusetts. Building 2417 was constructed during World War II and was until recently used as a warehouse. In October 1990, a 1,000-gallon underground storage tank (used for storage of No. 2 fuel oil) and associated contaminated soil were removed from Study Area 56. Additional contaminated soil was removed in April 1991, but the excavation was terminated because of concern about the stability of Building 2417 and a nearby water line. During development of the Master Environmental Plan and the Enhanced Preliminary Assessment, Study Area 56 was identified as a potential source of residual petroleum contamination.

A Site Investigation conducted in 1992 at Study Area 56 focused on defining the extent of residual petroleum-contaminated soil. The source of petroleum is No. 2 heating oil that may have been released from loose piping or resulted from overflow of oil during filling. Human health risks associated with exposure to soils at Study Area 56 were evaluated in the preliminary risk evaluation conducted during the site investigation. Although no unacceptable risk to human health was identified, the

EXECUTIVE SUMMARY

1	Site Investigation report recommended a removal action to address petroleum
2	contamination beyond localized release in subsurface soil at Building 2417.
3	containment of one foreign reference in substitute son at panding 2417.
4	In September and October 1994, OHM Remediation Services Corporation removed
5	approximately 1,173 tons of petroleum-contaminated soil at Study Area 56. Soil
6	containing total petroleum hydrocarbons above the target cleanup level was
7	excavated and transferred to a temporary soil storage facility at Fort Devens. Field
8	screening and confirmation laboratory analytical results indicated that all soil
9	containing these compounds in excess of target cleanup levels has been removed.
10	
11	With the removal of contaminated soil from the Building 2417 Leaking
12	Underground Storage Tank Site and a determination of no residual risk, there is no
13	evidence or reason to conclude that residual hazardous waste contamination due to
14	the former oil tank has caused significant environmental contamination or poses a
15	threat to human health or the environment. The decision has been made to remove
16	Study Area 56 from further consideration in the Installation Restoration Program
17	process.

1.0 INTRODUCTION

This decision document has been prepared to support a no further action decision at Study Area 56 - Building 2417 Leaking Underground Storage Tank (LUST) Site (SA 56) at Fort Devens, Massachusetts. The report was prepared as part of the U.S. Department of Defense (DOD) Base Realignment and Closure (BRAC) program to assess the nature and extent of contamination associated with site operations at Fort Devens.

In conjunction with the Army's Installation Restoration Program (IRP), Fort Devens and the U.S. Army Environmental Center (USAEC; formerly the U.S. Army Toxic and Hazardous Materials Agency) initiated a Master Environmental Plan (MEP) in 1988. The MEP consists of assessments of the environmental status of SAs, specifies necessary investigations, and provides recommendations for response actions with the objective of identifying priorities for environmental restoration at Fort Devens. SA 56 was identified as a potential source of contamination in the MEP. On December 21, 1989, Fort Devens was placed on the National Priorities List under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) as amended by the Superfund Amendments and Reauthorization Act.

An Enhanced Preliminary Assessment (PA) was also performed at Fort Devens to address areas not normally included in the CERCLA process, but requiring review prior to closure. A final version of the PA report was completed in April 1992. In 1992, DOD, through USAEC, also initiated a Site Investigation (SI) for SA 56 along with the other 12 SAs in SA Groups 2 and 7 at Fort Devens. The SI was conducted by ABB Environmental Services, Inc. (ABB-ES).

Under Public Law 101-510, the Defense Base Realignment and Closure Act of 1990, Fort Devens has been selected for cessation of operations and closure. An important aspect of BRAC actions is to determine environmental restoration requirements before property transfer can be considered. Studies at SA 56 were conducted to support this overall mission.

1 2 3

2.0 BACKGROUND AND PHYSICAL SETTING

2.1 DESCRIPTION AND LAND USE

Fort Devens is located approximately 35 miles northwest of Boston, Massachusetts, adjacent to the town of Ayer and within Middlesex and Worcester counties. The installation consists of approximately 9,280 acres and includes portions of the towns of Ayer, Harvard, Lancaster and Shirley. Cities in the vicinity include Fitchburg, Leominster and Lowell. Land surfaces range from about 200 feet (ft) above mean sea level (MSL) along the Nashua River in the northern portion of the installation to 450 ft above MSL in the southern portion of the installation.

Fort Devens was established in 1917 as Camp Devens, a temporary training camp for soldiers from the New England area. In 1931, the camp became a permanent installation and was redesignated as Fort Devens. Throughout its history, Fort Devens has served as a training and induction center for military personnel and a unit mobilization and demobilization site. All or portions of this function occurred during World Wars I and II, the Korean and Vietnam conflicts, and operations Desert Shield and Desert Storm. The most recent mission of Fort Devens was to command and train its assigned units and support various tenant activities. Fort Devens closed in 1996, in accordance with the Defense Base Realignment and Closure Act.

Fort Devens currently consists of three major land use areas: Main Post, South Post, and North Post (Figure 2-1).

The majority of the facilities on Fort Devens are located in the Main Post area, north of Massachusetts Highway 2. The Nashua River intersects the Main Post along its western edge. The Main Post provided all of the on-post housing, including over 1,700 family units and 9,800 bachelor units (barracks and unaccompanied officer's quarters). Other facilities on the Main Post included community support activities (such as a cafeteria, post exchange, commissary, bowling alley, and golf course), administrative buildings, classrooms and training facilities, maintenance facilities, and ammunition storage facilities. SA 56 is located on the Main Post.

The South Post is located south of Massachusetts Highway 2 and contains individual training areas that were designated for troop training, range activities, and a parachute drop zone where air training exercises were performed. The Nashua River bounds the South Post on the northeast side.

The North Post is directly north of the Main Post. The principal activities on the North Post are the Douglas E. Moore Army Airfield, and the installation Waste Water Treatment Plant.

The primary mission of Fort Devens was to command, train, and provide logistical support for non-divisional troop units. The installation also supported that portion of the U.S. Army Intelligence School located at Fort Devens, for the Army Readiness Region, for Reserve Components, and for Army Reserve and National Guard in the New England area.

2.2 REGIONAL GEOLOGY

Fort Devens is near the western boundary of the Seaboard Lowland Section of the New England-Maritime Physiographic province (Jahns, 1953). It is adjacent to the Worcester County Plateau of the Central Uplands province and part of the installation lies within the province (Koteff, 1966). The land surface is almost completely covered with unconsolidated glacial outwash deposits, resulting in few bedrock outcrops. The surficial deposits are underlain by a highly complex assemblage of intensely folded and faulted metasedimentary rocks with occasional igneous intrusions. The geomorphology of the region is dominated by glacial features such as outwash plains, kames, kame terraces, drumlins, and eskers.

2.3 REGIONAL HYDROGEOLOGY

Groundwater at Fort Devens occurs largely in the permeable glacial-deltaic outwash deposits of sand, gravel, and boulders. Well yields within these sediments are dependent upon the hydraulic characteristics of the aquifer and can range from 2 to over 300 gallons per minute (gpm). Small amounts of groundwater can be obtained from fractured bedrock with yields ranging from 2 to 10 gpm. Minor amounts of groundwater may be found in thin, permeable glacial lenses elsewhere on the installation. The primary hydrogeologic feature at Fort Devens is the Nashua River, which flows through the installation in a south to north direction, with an average discharge rate of 55 cubic feet per second. In addition to the Nashua River, the

36

37

38

terrain is dissected by numerous brooks that are associated with attendant wetlands. There are also several kettle ponds and one kettle lake located within the installation.

2.4 STUDY AREA DESCRIPTION AND HISTORY

SA 56, Building 2417 LUST Site, is one of seven original Group 2 SAs located on the Main Post. Residual No. 2 fuel oil in soil was the focus of the MEP's recommendation to investigate SA 56. Building 2417 is located in the central portion of the Main Post off Givry Road in Harvard, Massachusetts (Figure 2-1). Building 2417 was constructed during World War II and was until recently used as a warehouse. The former 1,000-gallon underground storage tank (UST) (used for storage of No. 2 fuel oil) was located along the southeast side of Building 2417 (see Figure 2-2).

It became apparent that No. 2 fuel oil had leaked from the tank into the surrounding soil when the tank was removed. The tank, its contents (about 1,000 gallons of water and residual No. 2 fuel oil), and approximately 15 cubic yards of surrounding soil were removed on October 24, 1990, by Franklin Environmental Services, Inc. of Wrentham, Massachusetts, between the southeast side of Building 2417 and the asphalt access road (Biang, et al., 1992). Tank removal was monitored by Kurz Associates, Inc. of Bridgewater, Massachusetts, and supervised by U.S. Army personnel. The scrap tank was disposed of at John C. Tombarello & Sons in Lawrence, Massachusetts. The tank was observed to be corroded; however, no holes or cracks were noted. Appurtenant piping was not found. Petroleum odors and stained soil were observed in the excavation. Although an elevated photoionization detector reading (60 parts per million [ppm] total volatile organic compounds [VOCs]) was detected by headspace screening, excavation was discontinued (Cook and Kurz, 1990). In April 1991, additional contaminated soil was removed, but the excavation was terminated because of concern about the stability of Building 2417 and a nearby water line. A total of 126 cubic yards of soil was removed at this time and the excavation was backfilled with clean fill material (Jones, 1991).

Analytical samples were not collected from the original tank excavation at SA 56 in October 1990. Soil samples were collected for total petroleum hydrocarbons (TPH) analysis following the removal of soil on April 12, 1991. Results from two composite samples from the excavation wall and base indicated that TPH

- concentrations in soil remaining in the excavation were 226 ppm and 234 ppm. Based on these results, the site was recommended for further investigation. 1 2

1 2 3 4 5 6 7 8	
9	
10	
11	
12	
13 14	
15	
16	
17	
18	
19	
∠1 22	
23	
24 25	
26	
27	
28	
29	
30 31	
32	
33	
34	

36 37

38

3.0 RELATED INVESTIGATIONS

3.1 MASTER ENVIRONMENTAL PLAN

The Building 2417 LUST Site was identified as a possible source for release of contaminants into the environment from the former UST. The MEP recommended that the site be investigated for potential groundwater contamination and that additional contaminated soil be removed. The recommended sampling program entailed installing monitoring wells and regularly collecting groundwater samples (Biang, et al., 1992).

3.2 ENHANCED PRELIMINARY ASSESSMENT

The Enhanced PA included a review of the study and recommendations presented in the MEP and considered other areas that might require evaluation due to the closure of Fort Devens. No additional findings or recommendations for SA 56 were provided in the Enhanced PA.

3.3 SITE INVESTIGATION REPORT

An SI was initiated in June 1992 and included 13 of the Groups 2 and 7 SAs listed in the MEP.

- SA 13 Landfill No. 9
- SA 43 Historic Gas Stations (19 Sites)
- SA 45 Lake George Street Vehicle Wash Area
- SA 49 Building 3602 LUST Site
- SA 56 Building 2417 LUST Site
- SA 57 Building 3713 Fuel Oil Spill
- SA 58 Building 2648/2650 Fuel Oil Spills
- SA 12 Landfill No. 8
- SA 14 Landfill No. 10
- SA 27 Waste Explosive Detonation Range (Hotel)
- SA 28 Waste Explosive Detonation Range (Training Area 14)
- SA 41 Unauthorized Dumping Area (Site A)
- SA 42 Popping Furnace

ABB Environmental Services, Inc.

SA56NFA.DOC 07147.00

The purpose of the SI, which was conducted by ABB-ES under contract with the USAEC, was to verify the presence or absence of environmental contamination and to determine whether further investigation or remediation was warranted. The Final Site Investigation Report was issued May 1993 (ABB-ES, 1993). The objective of sampling at SA 56 was to investigate the vertical and horizontal extent of environmental contamination generated by the release of oil from the former No. 2 fuel oil UST outside Building 2417 and to recommend further actions.

The SI sampling program included collecting 29 subsurface soil samples from 14 TerraProbe points, and analyzing the samples on site for benzene, toluene, ethylbenzene, xylenes (referred to collectively as BTEX) and TPH as indicators of petroleum contamination. Results of field screening were used to place two soil borings at the location of highest detected concentrations (56B-92-01X and 56B-92-02X) (Figure 2-2). The borings were advanced to bedrock, which was encountered at 10.6 ft below ground surface (bgs), prior to reaching the groundwater table. Soil samples were collected continuously in each of the borings for field screening by a photoionization detector (PID) and for soil classification. Two soil samples were selected from each boring based on PID readings and analyzed at an analytical laboratory for Project Analyte List (PAL) VOCs and TPH.

Because a till layer appeared to be inhibiting the residual fuel-related contaminants from migrating to the bedrock and therefore, the groundwater, groundwater monitoring wells were not installed at the site (ABB-ES, 1993).

3.4 PRELIMINARY RISK EVALUATION

A preliminary risk evaluation (PRE) was performed as part of the SI to help establish whether environmental contamination at SA 56 required further investigation or remediation. This section presents the general approach employed for the PRE; details of the human health PRE for SA 56 is presented in Section 5.0.

The human health PRE for SA 56 evaluated contamination in subsurface soils. Contamination at this study area is in subsurface soils, which are not accessible to ecological receptors. Therefore, an ecological PRE was not conducted. Groundwater samples were not collected at SA 56 because groundwater was not encountered in soil borings; therefore, potential risks associated with exposure to groundwater were not evaluated in the PRE.

37 38

3 4 5

M

3.4.1 Human Health Preliminary Risk Evaluation Methodology

The human health PRE at SA 56 included the following elements:

Current and Future Land Use: Current and foreseeable future land uses are particularly relevant with respect to the applicability of soil screening values used in the PRE. Two sets of soil screening values were used in the evaluation. When the PRE was prepared for SA 56, the future use of this area was assumed to be residential. (A more current Devens Reuse Plan, shows that the Building 2400 area is slated for innovation and technology business [Vanasse Hangen Brustlin, Inc., 1994]). Two sets of soil screening values were considered in the PRE. One set, USEPA Region III risk-based concentrations for residential soil, is used for comparison to contaminant concentrations in only the top three feet of soil. The other set is used for comparison to contaminant concentrations in all soils from 3 to 15 ft in depth (subsurface soils) which are considered to be accessible under a commercial/industrial exposure scenario. Because the contamination at SA 56 is below 3 feet in depth, the U.S. Environmental Protection Agency (USEPA) Region III risk-based concentrations for commercial/industrial soil were used.

Comparison to Public Health Standards and Guidelines: For soil, human health standards and/or guidelines were used as screening criteria to evaluate the significance of the sampling data. The USEPA's Region III risk-based concentrations were used to evaluate the results of the soil sampling program. These concentrations are used by USEPA Region III toxicologists as a risk-based screening tool for Superfund sites and a benchmark for evaluating preliminary site investigation data and preliminary remediation goals. Although it has no official status either as regulation or guidance, it is useful as a screening tool. The data are updated quarterly and therefore regularly incorporate new USEPA toxicity constants as they are developed. The First Quarter, 1993 was the current update used in the SI PRE for SA 56.

For the SA 56 human health PRE, Region III risk-based concentrations for commercial/industrial soil were used. Risk-based concentrations for commercial/industrial soil assume that a worker ingests soil 250 days per year for 25 years, at an ingestion rate of 100 mg/day.

More recent PREs incorporate Method 1 standards from the Revised Massachusetts Contingency Plan (MCP) (MADEP, 1993). However, at the time the human health

PRE was conducted on data collected during the SI at SA 56, the revised MCP was not in effect; therefore, MCP Method 1 standards were not used in the evaluation.

3 4

22

33

34

35 36

37 38

4.0 CONTAMINATION ASSESSMENT

The SA 56 SI laboratory analytical results are discussed in the following subsections. A detailed discussion of the analytical results are included in the SI Report (ABB-ES, 1993).

4.1 SITE INVESTIGATION

Analytical samples were not collected from the original tank excavation at SA 56 in October 1990. Samples were collected for TPH analysis following removal of soil on April 12, 1991. Results from two composite soil samples from the excavation wall and base indicated that TPH concentrations in soil remaining in the excavation were 226 ppm and 234 ppm. The MEP recommended the installation of groundwater monitoring wells and groundwater sampling. Additional objectives included assessing the vertical and horizontal extent of contaminant migration and additional soil removal.

The SI field sampling program at SA 56 conducted by ABB-ES in 1992 included collecting 29 subsurface soil samples from 14 TerraProbe points, and analyzing the samples on site for BTEX and TPH as indicators of petroleum contamination. Toluene, ethylbenzene, and/or xylenes were detected at the 5-ft depths during field screening at locations TP-03, TP-10, and TP-13. TPH was detected in eight of the 11 samples, at concentrations up to 3,800 ppm. Seven field screening samples were collected at a depth of 8 to 9 ft. TPH was detected in four of the seven samples at a maximum concentration of 1,470 ppm at TP-11. Maximum detected concentrations of ethylbenzene and xylenes in the 8- to 9-ft interval were 84 parts per billion (ppb) and 217 ppb, respectively. Eleven soil samples were also collected for field screening from depths of 10 to 11 ft bgs. No significant concentrations of organics were detected in these samples (ABB-ES, 1993).

The results of the field analysis for the subsurface soil samples indicated that residual petroleum-related contamination was present in and around the former UST from 5 to 8 ft bgs (Table 4-1 and Figure 4-1). The results for soil samples collected below 8 ft indicate that the contaminants have not migrated vertically (ABB-ES, 1993).

1 2

Results of field screening were used to place two soil borings at the location of highest detected concentrations. Two samples were collected from each of these borings and were analyzed for VOCs and TPH to confirm field screening results and to further define geologic conditions at SA 56.

Laboratory analytical results correlated well with field screening results. Laboratory results indicated that subsurface soil was contaminated with TPH at concentrations of 56.1 micrograms per gram ($\mu g/g$) in 56B-92-01X and 1,440 $\mu g/g$ in 56B-92-02X in the samples collected from 7 to 9 ft bgs. Concentrations of TPH detected in samples from 9 to 13 ft bgs ranged from 34.1 to 34.4 μ g/g. Acetone was detected in the 9 ft sample from 56B-92-01X at 0.035 μ g/g. Analytical results for soil are presented in Table 4-2 and shown in Figure 4-2.

Although the MEP proposed groundwater sampling at SA 56, monitoring wells were not installed during the SI because groundwater was not encountered in any of the subsurface explorations. The 14 TerraProbe points and two soil borings installed during the SI extended to depths of up to 11 ft bgs.

4.2 SOIL REMOVAL ACTION

Based on the elevated TPH concentrations detected in the subsurface soil at Building 2417, it was determined that a removal action should be conducted to address petroleum contamination beyond localized release in subsurface soil. The Army's decision to conduct a removal action was documented in the Action Memoranda for Various Sites (ABB-ES, 1994).

Fort Devens tasked the New England Division of the U.S. Army Corps of Engineers (USACE) to initiate a response action at the Building 2417 LUST Site. The Corps of Engineers contracted OHM Remediation Services Corporation (OHM) of Hopkinton, Massachusetts, to perform removal actions at SA 56 and at several other sites.

32 33

The following provides a summary of the soil removal action. Further details and documentation are provided in the Final Closure Report (OHM, 1996).

34 35

_1

4.2.1 Removal Action Objectives

At the time the human health PRE was conducted on data collected during the SI at SA 56, the revised MCP (MADEP, 1993) was not in effect; therefore, MCP Method 1 standards were not used in the evaluation. However, when the removal action was planned in 1994, the revised MCP had been promulgated. Therefore, MCP Method 1 S-1/GW-1 soil standards were used as risk-based guidelines to establish target cleanup levels for the removal action at the Building 2417 LUST Site. For a Method 1 Risk Characterization under the MCP, compliance with these soil standards constitutes a demonstration of no significant health risk from exposure to oil or hazardous material in soil. Category S-1 soil has the greatest potential for exposure. For TPH, the S-1 soil standard is 500 micrograms per gram $(\mu g/g)$. For benzene, toluene, ethylbenzene, and xylene, the S-1 soil standards are $10 \mu g/g$, $90 \mu g/g$, $80 \mu g/g$, and $500 \mu g/g$, respectively. These values, which have not changed since the 1993 MCP revisions, were selected as the target cleanup goals for the SA 56 removal action.

4.2.2 Field Observations and Screening Results

On September 13, 1994, OHM began the soil removal action in the area where petroleum contamination was identified during the SI. Water was encountered during the excavation, and is probably indicative of a small, perched aquifer rather than the main bedrock aquifer. Such a condition arises when downward-moving water is obstructed by a lens of low-permeability material (such as glacial till). Infiltrating precipitation accumulates at the top of this low-permeability unit, forming a localized, saturated layer. Water was not encountered in any of the SI TerraProbe points and soil borings (which extended to depths of up to 11 ft bgs). OHM used a vacuum tanker to remove approximately 36,000 gallons of this perched water from the excavation. All water removed was processed through OHM's permitted water treatment facility at the OHM staging area and was discharged on site (OHM, 1996).

To access the contaminated soil, uncontaminated soil was removed from the surface and stockpiled separately for later use as backfill material. A photoionization detector (PID) was used to screen this "clean" soil and to identify the depth at which the excavation reached contaminated soil. Once contamination was encountered, all additional soil removed was stockpiled in temporary staging cells. Soil samples were continually collected from the excavation walls and floor for field screening for TPH

2 3 4

by infrared spectroscopy. Field screening results, shown on Table 4-3, were used to direct the excavation.

Soil samples collected from underneath the Building 2417 foundation (northwest sidewall) indicated the presence of contamination above the TPH action level which could not be removed without potentially jeopardizing the structural integrity of the building. The USACE then directed OHM to demolish the building in order to remove the residual contamination under the building. The removal action continued until screening results indicated that TPH concentrations in residual soils did not exceed $500 \,\mu\text{g/g}$ (OHM, 1996). The excavation ultimately extended to an average depth of 11 ft. A total of 1,173 tons of contaminated soil were removed; the final excavation limit is shown on Figure 4-3.

Prior to demolishing Building 2417, OHM contracted TRC Environmental Services to conduct an asbestos survey. The results of the survey indicated nonfriable asbestos in the floor tile and floor tile mastic, and friable asbestos in visible pipe covering. No asbestos was present in the ceiling, wallboard, or roof shingles sampled (OHM, 1996). OHM removed 120 square feet of nonfriable floor tile and 2 linear feet of pipe covering.

Several rounds of field screening of the soil were required prior to initiation of confirmation soil sampling. Results are presented in Table 4-3. Five confirmation soil samples were collected from the base and walls of the excavation on September 22, 1994, and were submitted by OHM to the contract laboratory for TPH, semivolatile organic compounds (SVOCs), and BTEX analyses. Due to the ongoing demolition of Building 2417 and elevated concentrations in some samples, additional soil was removed and one confirmation sample was collected on October 3, 1994 and three more on October 4, 1994. Analytical results, presented on Table 4-4, confirm that any residual TPH, SVOCs, and BTEX in soil is below the target cleanup levels established for SA 56. Confirmation sample locations are shown on Figure 4-3. Petroleum contamination at SA 56 has been characterized and removed. (OHM, 1996).

4.2.3 Waste Characterization and Disposal

Excavated soil was temporarily stockpiled by OHM in discrete staging cells which were double-lined with polyethylene sheeting and bounded by sand berms. Soil

1

4 5

)

believed to be uncontaminated was stored separately from soil considered contaminated.

A composite soil sample was collected from the "clean" stockpiled soil. On-site screening indicated that the sample contained TPH at a concentration below the target cleanup level of $500 \mu g/g$. The SA 56 excavation was then backfilled using this uncontaminated material as well as additional clean fill provided by an offsite supplier (OHM, 1996).

Waste characterization samples were collected from the contaminated soil stockpiles and were analyzed for TPH, SVOCs, Toxicity Characteristic Leaching Procedure (TCLP) inorganics, TCLP organics, Resource Conservation and Recovery Act (RCRA) characteristics, and BTEX. All contaminated soil was transferred to a temporary soil storage facility at Fort Devens pending reuse as cover material in the proposed Consolidation Landfill. The asbestos-containing material was placed into 1 cubic yard boxes and shipped to Chicopee Sanitary Landfill located in Chicopee, Massachusetts. The demolition debris from Building 2417 was disposed off site at the Fitchburg Municipal Landfill located in Westminster, Massachusetts. Complete waste characterization results, as well as transportation and disposal documentation, are provided in Appendix A (OHM, 1996).

2 3 4

5.0 PRELIMINARY HUMAN HEALTH RISK EVALUATION

Building 2417 was most recently used as a warehouse, but was demolished as part of the removal action conducted in September and October 1994. The intended future use of the surrounding area, according to the *Devens Reuse Plan*, is innovation and technology business (Vanasse Hangen Brustlin, Inc. 1994). Table 5-1 presents the statistics and human health standards and guidelines used in the human health PRE for SA 56 which is summarized below.

5.1 Soils

The PRE, performed as part of the SI, considered all soils between 3 and 15 ft bgs as subsurface soil. Detected contaminant concentrations were compared to Region III risk-based concentrations for commercial/industrial exposure. The Revised MCP Method 1 standards were not used in the PRE because they were not in effect at the time the PRE was conducted (May 1993). The use of Region III commercial/industrial soil concentrations are appropriate because the expected future use of the area is to be commercial.

Table 5-1 presents summary statistics from the field analytical subsurface soil sampling program conducted during the SI at SA 56 and human health standards and guidelines for comparison. Acetone was detected in one sample at 0.035 μ g/g. This concentration is below the USEPA Region III commercial/industrial soil concentration and is not considered a potential risk to human health.

Soil borings from locations 56B-92-01X and 56B-92-02X indicated residual TPH contamination from the former UST up to 1,440 μ g/g at a depth of 7 ft. Below 9 ft, the maximum TPH concentration in subsurface soil samples was 34.4 μ g/g.

To evaluate the health risk associated with TPH in soil during the SI, ABB-ES developed risk-based concentrations for petroleum products. These concentrations were calculated using the same exposure assumptions as those used by USEPA toxicologists in the USEPA Region III Risk-Based Concentration Table, First Quarter, 1993 for commercial/industrial soils. Dose response values for diesel oil used in the calculations are provisional values developed by USEPA, Environmental Criteria and Assessment Office (USEPA, 1992). USEPA suggests using the

reference dose value for diesel oil as a surrogate for No. 2 fuel oil. The calculated risk-based commercial/industrial soil concentration for No. 2 fuel oil is $8,180 \mu g/g$.

The maximum detected TPH concentration in soil at SA 56 (3,800 μ g/g) was below the calculated risk-based commercial/industrial soil concentration of 8,180 μ g/g. Although the PRE therefore determined that residual contamination at SA 56 does not pose an significant risk to human health, the soil removal action was conducted to address petroleum contamination beyond localized release in subsurface soil.

5.2 QUALITATIVE EVALUATION OF RESIDUAL RISK

Cleanup standards for the soil removal action at SA 56 were established using the MCP Method 1 S-1/GW-1 soil standard for TPH. The revised MCP was not a standard at the time of the PRE but was promulgated by the time the removal action was performed. Soil with TPH concentrations exceeding $500 \,\mu\text{g/g}$ was removed during the soil removal action in September and October 1994. The maximum detected TPH concentration in confirmation samples ($266 \,\mu\text{g/g}$) is below the MCP S-1/GW-1 soil standard of $500 \,\mu\text{g/g}$. Groundwater samples were not collected at SA 56 because groundwater was not encountered in soil borings at the site. Because a till layer appeared to be inhibiting the residual fuel-related contaminants from migrating to the bedrock, it is believed that fuel-related contaminants have not migrated to the groundwater. The low residual contaminant concentrations in soil suggest that no significant risks to human health exist at the Building 2417 LUST Site.

3 4 5

∠1

6.0 CONCLUSIONS

No further action is recommended for SA 56. This recommendation is based on historical site use as confirmed by physical observations, sampling, and chemical analysis. It is also based on the results of human health PRE and the completed removal actions.

The objective of the SI sampling program was to investigate the distribution of contamination in the subsurface soils, and if needed, groundwater at SA 56. The potential migration pathway for fuel contamination was via surface water infiltration and percolation through the contaminated overburden soil and into the groundwater. Subsurface soil samples were collected for field and laboratory analysis to determine the distribution of contamination.

Petroleum-related organic compounds were detected in the field analytical samples and in the soil samples submitted for laboratory chemical analysis. The field analytical results identified the area of contamination, both vertically and horizontally. These field analytical results were confirmed by laboratory analysis of soil samples collected from two soil borings. Contamination appeared to be confined to the upper 8 ft of soil in the location of the former UST. The data indicated that contaminants have not migrated into or through the glacial till layer above bedrock. Based on these results, it does not appear that contamination has migrated into the groundwater, which appears to be within the bedrock at SA 56.

Although contaminant concentrations were below levels that would pose a potential human health risk under the assumed commercial/industrial exposure scenario, a soil removal action was proposed to address TPH contamination beyond localized release in soils. The cleanup level for TPH was established using the MCP Method 1 S-1/GW-1 soil standard of $500 \,\mu g/g$, which was conservative given the current and planned future use of the area (innovation and technology business). Soil with TPH concentrations exceeding $500 \,\mu g/g$ was removed during the soil removal action. Excavation was continued until confirmation sample analyses indicated that TPH concentrations were below the cleanup level. The maximum detected TPH concentration in confirmation soil samples ($266 \,\mu g/g$) is below the $500 \,\mu g/g$ standard. The low residual concentrations of TPH and other petroleum-related compounds suggest that no residual risks to human health exist at SA 56.

7.0 DECISION

With the removal of contaminated soil from the Building 2417 LUST Site and a determination of no residual risk, there is no evidence or reason to conclude that residual hazardous waste contamination due to the former UST at Building 2417 has caused significant environmental contamination or poses a threat to human health or the environment. The decision has been made to remove SA 56 from further consideration in the IRP process. In accordance with CERCLA 120 (h) (3), all remedial actions necessary have taken place, and the USEPA and MADEP signatures constitute concurrence in accordance with the same.

JAMES C. CHAMBERS

BRAC Environmental Coordinator

200 96

Date

U.S. ENVIRONMENTAL PROTECTION AGENCY

JAMES P. BYRNE

Fort Devens Remedial Project Manager

Date

Concur

[] Non-concur (Please provide reasons for non-concurrence in writing)

MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION

D. LYNNE WELSH

Section Chief, Federal Facilities - CERO

Date

10/0/96

Concur

[] Non-concur (Please provide reasons for non-concurrence in writing)

ABB-ES ABB Environmental Services, Inc.

bgs below ground surface

BRAC Defense Base Realignment and Closure Act of 1990

BTEX benzene, toluene, ethylbenzene, and xylenes

CERCLA Comprehensive Environmental Response, Compensation, and

Liability Act

DOD U.S. Department of Defense

ft foot or feet

gpm gallons per minute

IRP Installation Restoration Program

LUST leaking underground storage tank

MADEP Massachusetts Department of Environmental Protection

MCP Massachusetts Contingency Plan MEP Master Environmental Plan

mg milligrams
MSL mean sea level

OHM Remediation Services Corporation

PA Enhanced Preliminary Assessment

PAL Project Analyte List
PID photoionization detector

ppb parts per billion ppm parts per million

PRE Preliminary Risk Evaluation

RCRA Resource Conservation and Recovery Act

SA Study Area SI site investigation

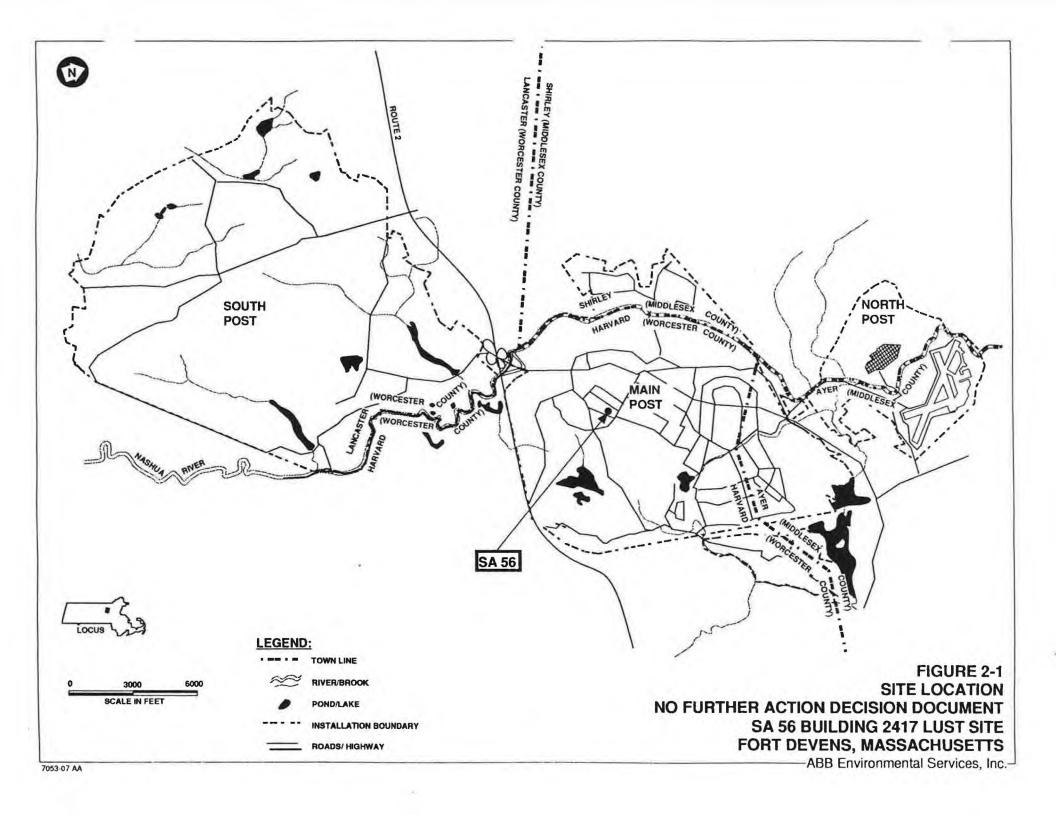
GLOSSARY OF ACRONYMS AND ABBREVIATIONS

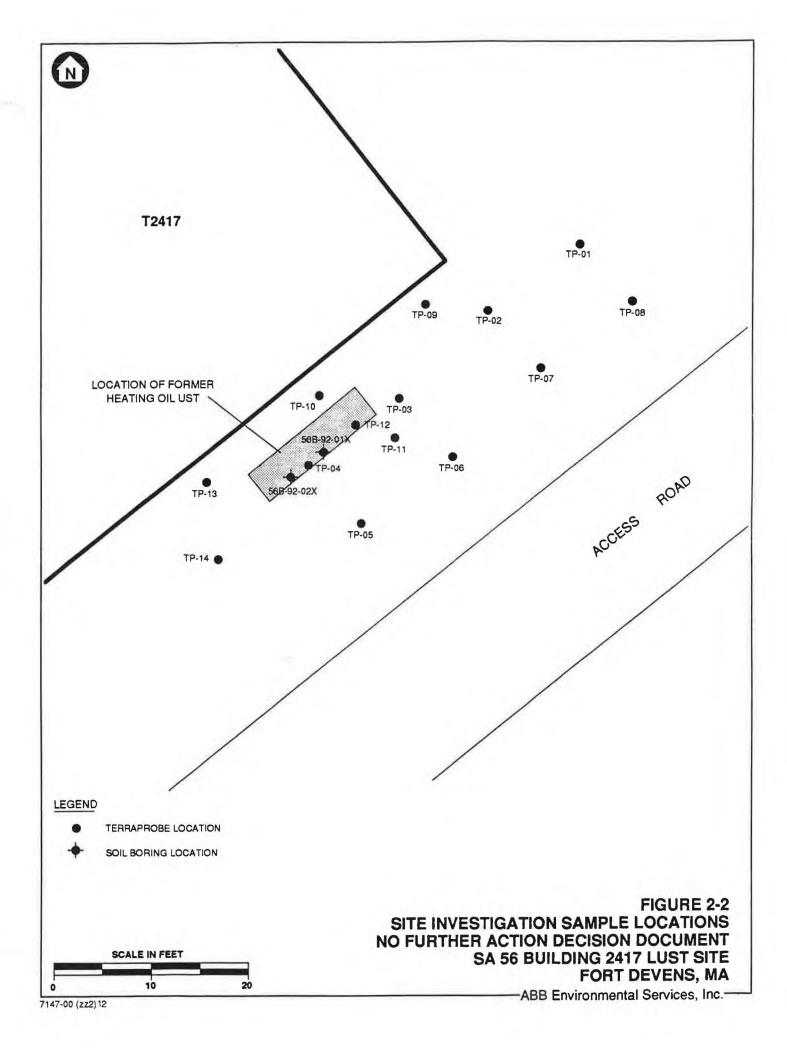
SVOC semivolatile organic compounds

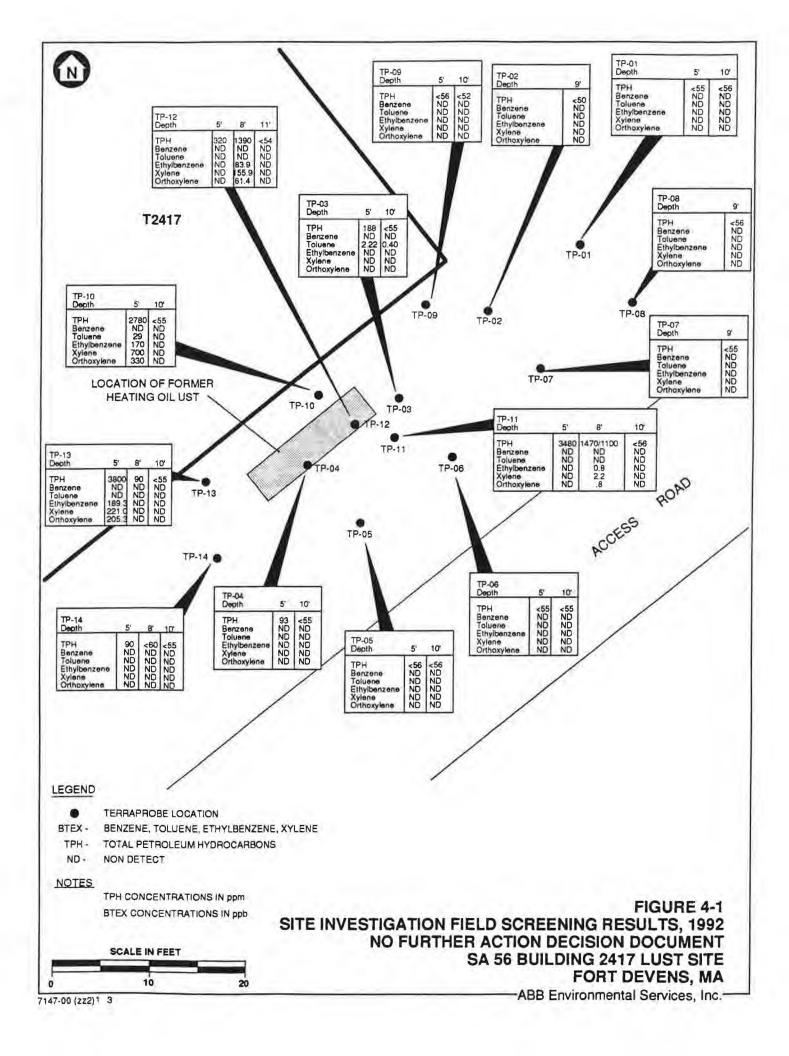
TCLP Toxicity Characteristic Leaching Procedure

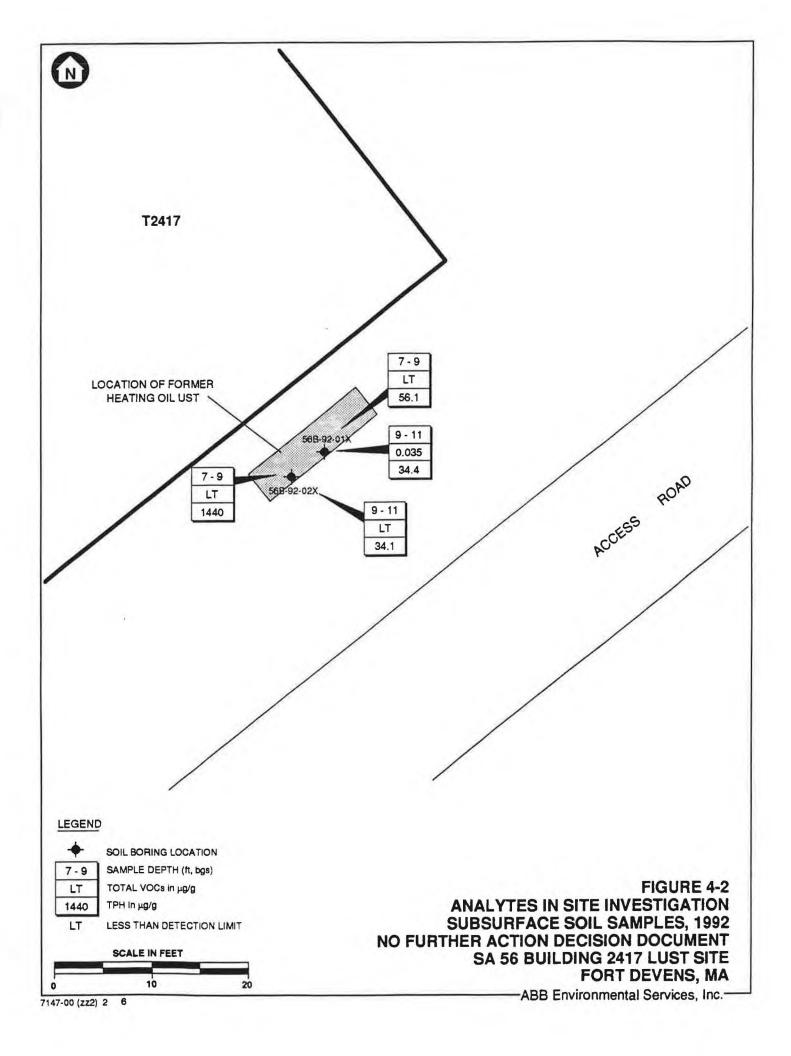
TPH total petroleum hydrocarbons

 $\mu g/g$ micrograms per gram


USACE
USAEC
USEPA
U.S. Army Corps of Engineers
U.S. Army Environmental Center
U.S. Environmental Protection Agency


UST underground storage tank


VOC volatile organic compound


- ABB Environmental Services, Inc. (ABB-ES), 1993. "Final Site Investigation Report Groups 2, 7, & Historic Gas Stations, Fort Devens, Massachusetts"; Data Item A009; prepared for the U.S. Army Environmental Center by ABB Environmental Services, Inc., Portland, ME; May.
- Biang, C.A., R.W. Peters, R.H. Pearl, and S.Y. Tsai, 1992. "Master Environmental Plan for Fort Devens, Massachusetts"; prepared for U.S. Army Toxic and Hazardous Materials Agency; prepared by Argonne National Laboratory, Environmental Assessment and Information Sciences Division; Argonne, IL; Final, April.
- Jahns, R.H., 1953. "Surficial Geology of the Ayer Quadrangle, Massachusetts"; Scale 1:31,680; U.S. Geological Survey.
- Koteff, C., 1966. "Surficial Geologic Map of the Clinton Quadrangle, Worcester County, Massachusetts;" U.S. Geological Survey Map GQ-567.
- Massachusetts Department of Environmental Protection (MADEP), 1993. Revised Massachusetts Contingency Plan, 310 CMR 4.00 et seq.
- OHM Remediation Services Corporation, 1996. "Final Closure Report, Study Area 56, Fort Devens, Massachusetts"; prepared for the U.S. Army Corps of Engineers, Waltham, MA; Hopkinton, MA; March 4.
- U.S. Environmental Protection Agency (USEPA) Region III, 1993. "Risk-Based Concentration Table", Memo from Roy L. Smith, EPA Region III, to RBC mailing list; First Quarter 1993.
- Vanasse Hangen Brustlin, Inc., 1994. <u>Devens Reuse Plan</u>; prepared for the Boards of Selectmen: Town of Ayer, Town of Harvard, Town of Lancaster, Town of Shirley; and the Massachusetts Government Land Bank; November 14.

SA56NFA.DOC 07147.00

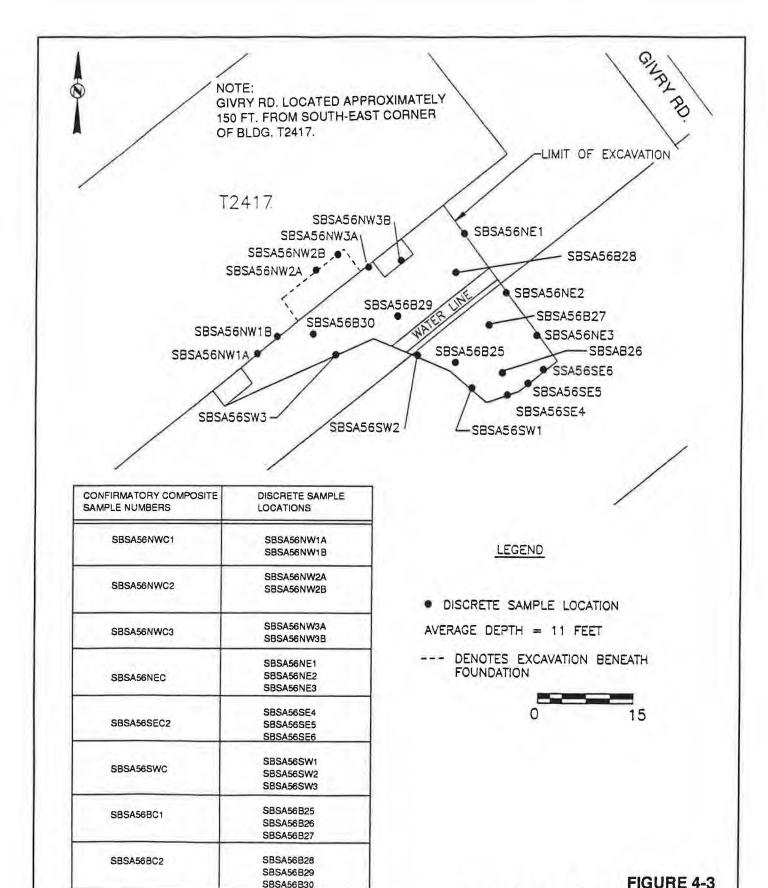


FIGURE 4-3
FINAL EXCAVATION LIMIT AND
CONFIRMATION SAMPLE LOCATIONS
NO FURTHER ACTION DECISION DOCUMENT
SA 56 BUILDING 2417 LUST SITE
FORT DEVENS, MA

SOURCE: OHM REMEDIATION SERVICES CORP., 1996

TABLE 4-1
SOIL FIELD SCREENING RESULTS: SITE INVESTIGATION
SA 56 - BUILDING 2417 LUST SITE
NO FURTHER ACTION DECISION DOCUMENT
FORT DEVENS

	TP-01	TP-01	TP-02	TP-03	TP03	TP-04	TP-04
ANALYTE	56TSX01XX501XF	56TSX01X1001XF	56TSX02XX901XF	56TSX03XX501XF	56TSX03X1001XF	56TSX04XX501XF	56TSX04X1001XF
ORGANICS (ppb)	5 FT	10 FT	9 171	5 FT	10 FF	S FT	10 FT
BENZENE	<5	<5	<5	<5	<5	<5	<5
TOLUENE	<5	<5	<5	2.2	0.4	<5	<5
ETHYLBENZENE	<5	<5	<5	<5	<5	<5	<5
m/p-XYLENE	<10	<10	<10	<10	<10	<10	<10
o-XYLENE	<5	<5	<5	<5	<5	<5	<5
OTHER (ppm)							
TOTAL PETROLEUM HYDROCARBONS	< 55	< 56	< 50	188	< 56	93	< 55

Notes:

< Less than detection limit shown

ppb = parts per billion

ppm = parts per million

TABLE 4-1, continued SOIL FIELD SCREENING RESULTS: SITE INVESTIGATION SA 56 - BUILDING 2417 LUST SITE

NO FURTHER ACTION DECISION DOCUMENT FORT DEVENS

	TP-05	TP-05	TP-06	TP-06	TP-07	TP-08	TP-09	TP-09
ANALYTE	56TSX05XX501XF	56TSX05X1001XF	56TSX06XX501XF	56TSX06X1001XF	56TSX07XX901XF	56TSX08XX901XF	56TSX09XX501XF	56TSX09X1001XF
ORGANICS (ppb)	S IFT	10 FT	5 PT	10 FT	9 KL	9 KT	5 FT	10 FT
BENZENE	<5	<5	<5	<5	<5	<5	<5	<5
TOLUENE	<5	<5	<5	<5	<5	<5	<5	<5
ETHYLBENZENE	<5	<5	<5	<5	<5	<5	<5	<5
m/p-XYLENE	<10	<10	<10	<10	<10	< 10	<10	<10
o-XYLENE	<5	<5	<5	<5	<5	<5	<5	<5
OTHER (ppm)								
TOTAL PETROLEUM HYDROCARBONS	< 56	< 56	< 55	< 57	< 55	< 56	< 56	< 52

Notes:

< Less than detection limit shown

ppb = parts per billion

ppm = parts per million

TABLE 4-1, continued SOIL FIELD SCREENING RESULTS: SITE INVESTIGATION SA 56 - BUILDING 2417 LUST SITE NO FURTHER ACTION DECISION DOCUMENT

FORT DEVENS

	TP-10	TP-10	TP-11	TP-11	TP-11	TP-12	TP-12
ANALYTE	56TSX10XX501XF	56TSX10X1001XF	56TSX11XX501XF	56TSX11XX801XF	56TSX11X1001XF	56'TSX12XX501XF	56TSX12XX801X
ORGANICS (ppb)	S FT	10 FT	5 FT	8 FT	10 FT	5 FT	8 FT
BENZENE	<5	< 5.	<5	<5	<5	<5	<5
TOLUENE	29	<5	<5	<5	<5	<5	<5
ETHYLBENZENE	170	<5	<5	0.8	<5	<5	83.9
m/p-XYLENE	700	<10	<10	2.2	<10	<10	155.9
o-XYLENE	330	<5	<5	0.79	<5	<5	61.4
OTHER (ppm)							
TOTAL PETROLEUM HYDROCARBONS	2780	< 52	3480	1470/1100	< 56	320	1390

Notes:

< Less than detection limit shown

ppb = parts per billion

ppm = parts per million

TABLE 4-1, continued

SOIL FIELD SCREENING RESULTS: SITE INVESTIGATION

SA 56 - BUILDING 2417 LUST SITE

NO FURTHER ACTION DECISION DOCUMENT FORT DEVENS

	TP-12	TP-13	TP-13	TP-13	TP-14	TP-14	TP-14
ANALYTE	56TSX12X1101XF	56TSX13XX501XF	56TSX13XX801X1	56TSX13X1001XF	56TSX14XX501XF	56TSX14XX801XF	56TSX14X1001X1
ORGANICS (ppb)	11 FT	5 FT	8 FT	10 FT	5 FT	8 FT	10 FT
BENZENE	<5	<5	<5	<5	<5	<5	<5
TOLUENE	<5	<5	<5	<5	<5	<5	<5
ETHYLBENZENE	<5	189.2	<5	<5	<5	<5	<5
m/p-XYLENE	<10	220.9	< 10	<10	<10	<10	<10
o-XYLENE	<5	205.3	<5	<5	<5	<5	<5
OTHER (ppm)							
TOTAL PETROLEUM HYDROCARBONS	< 54	3800	90	< 55	90	< 60	< 55

Notes:

< Less than detection limit shown

ppb = parts per billion

ppm = parts per million

TABLE 4-2

ANALYTES IN SOIL: SITE INVESTIGATION SA 56 – BUILDING 2417 LUST SITE NO FURTHER ACTION DECISION DOCUMENT FORT DEVENS, MA

ANALYTE	BORING	56B-92-01X	56B-92-01X	56B-92-02X	56B-92-02X	
	DEPTH	7 FT	9 FT	7 FT	9 FT	
VOLATILES (ug/g)						
ACETONE		< 0.017	0.035	< 0.017	< 0.017	
OTHER (ug/g)						
TOTAL PETROLEUM HYDROCARBO	NS	56.1	34.4	1440.0	34.1	

NOTES:

Table lists identified analytes only.

< = less than detection limit shown

ug/g = micrograms per gram

Sample ID	Date Collected	Sample Location	Sample Depth (feet)	TPH (mg/kg)
SBSA56B1	13-Sept-94	bottom center	3.7	16
SBSA56W1	13-Sept-94	southeast sidewall	3.4	6,059
SBSA56W2	13-Sept-94	southeast sidewall	3.4	ND(42)
SBSA56W3	13-Sept-94	southeast sidewall	3.4	ND(42)
SBSA56W4	13-Sept-94	northwest sidewall	3.4	14J
SBSA56W5	13-Sept-94	northwest sidewall	3.4	22
SBSA56W6	13-Sept-94	northwest sidewall	3.4	ND(42)
SBSA56B2	14-Sept-94	southwest sidewall	4.0	40J
SBSA56B3	14-Sept-94	SE bottom/water line	4.0	9,935
SBSA56B4	14-Sept-94	southwest bottom	6.0	ND(42)
SBSA56W7	14-Sept-94	northwest sidewall	3.0	1,458
SBSA56W8	14-Sept-94	northwest sidewall	3.0	944
SBSA56W9	14-Sept-94	northwest sidewall	3.0	ND(42)
SBSA56B5	15-Sept-94	northwest bottom	9.5	ND(42)
SBSA56W10	15-Sept-94	northwest sidewall	8.0	ND(42)
SBSA56W11	15-Sept-94	northwest sidewall	6.0	ND(42)
SBSA56W12	15-Sept-94	southeast sidewall	6.5	ND(42)
SBSA56W13	15-Sept-94	southeast sidewall	6.5	ND(42)
SBSA56W14	15-Sept-94	southeast sidewall	8.0	ND(42)
SBSA56W15	15-Sept-94	northwest sidewall	8.0	ND(42)
SBSA56B16	15-Sept-94	northwest sidewall	5.5	2,742
SBSA56B6	15-Sept-94	south bottom	9.0	ND(42)
SBSA56B7	15-Sept-94	north bottom	9.0	ND(42)

NOTES:

TPH = total petroleum hydrocarbons

mg/kg = milligrams per kilogram, which is equivalent to micrograms per gram.

ND = TPH was not detected above the method detection limit shown.

J = estimated concentration below the practical quantitation limit.

Sample ID	Date Collected	Sample Location	Sample Depth (feet)	TPH (mg/kg)
SBSA56W17	15-Sept-94	northeast sidewall	7.0	233
SBSA56W18	15-Sept-94	southeast sidewall	5.0	1,950
SBSA56W19	15-Sept-94	southeast sidewall	5.0	817
SBSA56B8	15-Sept-94	east bottom	19.4	ND(42)
SBSA56B9	15-Sept-94	northwest bottom	9.0	ND(42)
SBSA56W20	15-Sept-94	northwest sidewall	6.0	2,425
SBSA56W21	15-Sept-94	northwest sidewall	8.0	ND(42)
SBSA56B10	16-Sept-94	east bottom	4.0	948
SBSA56B11	16-Sept-94	southeast bottom	4.0	2805
SBSA56W22	16-Sept-94	northeast sidewall	5.5	ND(42)
SBSA56W23	16-Sept-94	northeast sidewall	5.5	70
SBSA56W24	16-Sept-94	southeast sidewall	3.7	3,062
SBSA56W25	16-Sept-94	southeast sidewall	4.0	ND(42)
SBSA56B12	16-Sept-94	southeast bottom	4.7	1,342
SBSA56B13	16-Sept-94	east bottom	4.6	ND(42)
SBSA56B14	16-Sept-94	northeast bottom	4.9	ND(42)
SBSA56B15	16-Sept-94	east bottom	4.9	ND(42)
SBSA56B16	16-Sept-94	east bottom	5.8	ND(42)
SBSA56W26	16-Sept-94	southeast sidewall	4.3	540
SBSA56W27	16-Sept-94	southeast sidewall	4.2	ND(42)
SBSA56W28	16-Sept-94	northeast sidewall	5.4	ND(42)
SBSA56W29	19-Sept-94	southeast sidewall	6.0	1,028
SBSA56W30	19-Sept-94	southeast sidewall	6.0	ND(42)

NOTES:

TPH = total petroleum hydrocarbons

mg/kg = milligrams per kilogram, which is equivalent to micrograms per gram.

ND = TPH was not detected above the method detection limit shown.

J = estimated concentration below the practical quantitation limit.

Sample ID	Date Collected	Sample Location	Sample Depth (feet)	TPH (mg/kg)
SBSA56W31	19-Sept-94	southeast sidewall	6.0	1,693
SBSA56W32	19-Sept-94	southeast sidewall	6.0	1,700
SBSA56B17	19-Sept-94	east bottom	6.3	70
SBSA56B18	19-Sept-94	southeast bottom	6.3	1,086
SBSA56B19	19-Sept-94	southeast bottom	6.3	769
SBSA56W33	19-Sept-94	southeast bottom	6.0	153
SBSA56W34	19-Sept-94	southeast bottom	6.0	46
SBSA56W35	19-Sept-94	southeast bottom	5.0	ND(42)
SBSA56W36	19-Sept-94	southeast bottom	5.0	ND(42)
SBSA56W37	19-Sept-94	southeast bottom	5.0	786
SBSA56B20	19-Sept-94	south bottom	6.3	59
SBSA56W38	19-Sept-94	southeast sidewall	5.0	ND(42)
SBSA56W39	19-Sept-94	southeast sidewall	4.0	185
SBSA56W40	19-Sept-94	southeast sidewall	3.0	ND(42)
SBSA56W41	19-Sept-94	southeast sidewall	2.0	ND(42)
SBSA56W42	19-Sept-94	southeast sidewall	1.0	ND(42)
SBSA56B21	20-Sept-94	southeast bottom	6.0	67
SBSA56W43	20-Sept-94	southeast sidewall	7.5	1,975
SBSA56W44	20-Sept-94	southeast sidewall	5.0	ND(42)
SBSA56B22	20-Sept-94	southeast bottom	9.0	459
SBSA56W45	20-Sept-94	northeast sidewall	5.5	ND(42)
SBSA56W46	20-Sept-94	northeast sidewall	6.5	ND(42)
SBSA56W47	20-Sept-94	southwest sidewall	5.5	598

NOTES:

TPH = total petroleum hydrocarbons

mg/kg = milligrams per kilogram, which is equivalent to micrograms per gram.

ND = TPH was not detected above the method detection limit shown.

J = estimated concentration below the practical quantitation limit.

Sample ID	Date Collected	Sample Location	Sample Depth (feet)	TPH (mg/kg)
SBSA56W48	20-Sept-94	southwest sidewall	6.6	1,263
SBSA56B23	20-Sept-94	center bottom	9.0	ND(42)
SBSA56W49	21-Sept-94	southeast sidewall	7.0	629
SBSA56W50	21-Sept-94	southwest sidewall	7.0	ND(42)
SBSA56B24	21-Sept-94	southeast bottom	10.5	ND(42)
SBSA56W51	21-Sept-94	southeast sidewall	8.0	ND(42)
SBSA56W52	21-Sept-94	southeast sidewall	9.5	ND(42)
SBSA56W53	21-Sept-94	southwest sidewall	6.5	ND(42)
SBSA56W54	21-Sept-94	southwest sidewall	8.0	ND(42)
SBSA56W55	21-Sept-94	northwest sidewall	6.0	665
SBSA56BC1	22-Sept-94	composite sample	N/A	144
SBSA56BC2	22-Sept-94	composite sample	N/A	32J
SBSA56SEC	22-Sept-94	composite sample	N/A	252
SBSA56SWC	22-Sept-94	composite sample	N/A	43
SBSA56NEC	22-Sept-94	composite sample	N/A	44
SBSA56DUPC	22-Sept-94	composite sample	N/A	171
SBSA56SEC2	03-Oct-94	composite sample	N/A	31J
SBSA56DUP2	03-Oct-94	composite sample	N/A	44
SBSA56SE4	03-Oct-94	composite subsample	7.5	69
SBSA56SE5	03-Oct-94	composite subsample	7.5	ND(42)
SBSA56SE6	03-Oct-94	composite subsample	7.5	82
SBSA56W56	04-Oct-94	northwest sidewall	6.0	289
SBSA56W57	04-Oct-94	northwest sidewall	7.0	ND(42)

NOTES:

TPH = total petroleum hydrocarbons

mg/kg = milligrams per kilogram, which is equivalent to micrograms per gram.

ND = TPH was not detected above the method detection limit shown.

J = estimated concentration below the practical quantitation limit.

Sample ID	Date Collected	Sample Location	Sample Depth (feet)	TPH (mg/kg)
SBSA56W58	04-Oct-94	northwest sidewall	8.0	ND(42)
SBSA56W59	04-Oct-94	northwest sidewall	9.0	ND(42)
SBSA56W60	04-Oct-94	northwest sidewall	7.0	ND(42)
SBSA56W61	04-Oct-94	northwest sidewall	7.0	325
SBSA56NWC1	04-Oct-94	NW sidewall composite	N/A	ND(42)
SBSA56NWC2	04-Oct-94	NW sidewall composite	N/A	ND(42)
SBSA56NWC3	04-Oct-94	NW sidewall composite	N/A	ND(42)
SA56 Clean Pile	12-Oct-94	clean pile composite	0.5 - 1.0	70

NOTES:

TPH = total petroleum hydrocarbons

mg/kg = milligrams per kilogram, which is equivalent to micrograms per gram.

ND = TPH was not detected above the method detection limit shown.

J = estimated concentration below the practical quantitation limit.

SOURCE: OHM Remediation Services Corp., 1996. Source: OHM Remediation Services Corp., 1996.

TABLE 4-4 CONFIRMATION SAMPLE RESULTS: SOIL REMOVAL ACTION SA 56 - BUILDING 2417 LUST SITE NO FURTHER ACTION DECISION DOCUMENT FORT DEVENS, MA

Sample ID	Date Collected	Naphthalene (mg/kg)	2-methyl naphthalene (mg/kg)	Phenanthrene (mg/kg)	TPH (mg/kg)
SBSA56NEC	22-Sept-94	< 0.355	< 0.355	< 0.355	44.5
SBSA56SEC	22-Sept-94	<3.57	<3.57	<3.57	997
SBSA56SWC	22-Sept-94	< 0.353	< 0.353	< 0.353	37.5
SBSA56BC1	22-Sept-94	< 0.385	0.412	< 0.385	40.9
SBSA56BC2	22-Sept-94	< 0.375	ND (0.375)	0.562	15.3
SBSA56DUPC	22-Sept-94	<3.55	<3.55	<3.55	266
SBSA56SEC2	03-Oct-94	N/A	N/A	N/A	55.4
SBSA56DUP2	03-Oct-94	N/A	N/A	N/A	67.0
SBSA56NW1C	04-Oct-94	< 0.327	<0.327	<0.327	<7.10
SBSA56NW2C	04-Oct-94	< 0.333	<0.327	<0.327	<7.46
SBSA56NW3C	04-Oct-94	< 0.327	< 0.327	< 0.327	<7.24

Sample ID	Date Collected	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)
SBSA56B30	22-Sept-94	< 0.001	<0.001	<0.001	0.003
SBSA56B25	22-Sept-94	< 0.001	<0.001	0.004	0.004
SBSA56NE2	22-Sept-94	<0.001	< 0.001	<0.001	<0.001
SBSA56SE2	22-Sept-94	< 0.001	<0.001	<0.001	0.002
SBSA56SW2	22-Sept-94	<0.001	<0.001	<0.001	< 0.001
SBSA56DUPG	22-Sept-94	< 0.001	0.003	0.003	0.007
SBSA56NW1B	04-Oct-94	< 0.001	<0.001	<0.001	<0.001
SBSA56NW2B	04-Oct-94	< 0.001	< 0.001	< 0.001	<0.001
SBSA49NW3B	04-Oct-94	< 0.001	< 0.001	< 0.001	< 0.001

NOTES:

TPH = total petroleum hydrocarbons mg/kg = milligrams per kilogram, which is equivalent to micrograms per gram. N/A = not applicable

TABLE 5-1 HUMAN HEALTH PRE EVALUATION OF SUBSURFACE SOIL. SA 56 - BUILDING 2417 LUST SITE

NO FURTHER ACTION DECISION DOCUMENT FORT DEVENS, MA

	FREQUENCY	DETECTED CONCE	ENTRATION [a]	REGION III COMMERCIAL/INDUSTRIAL	MAXIMUM EXCEEDS
ANALYTE	OF DETECTION	AVERAGE ug/g	MAXIMUM ug/g	SOIL CONCENTRATION ug/g	GUIDELINE CONCENTRATION?
ORGANICS					
Acetone	1/4	0.035	0.035	100,000	NO
OTHER					
Total Petroleum Hydrocarbons [b]	4/4	391.2	1440	8,180	NO

NOTES:

- [a] Subsurface soil sample from sampling station 56B-92-01X and 56B-92-02X
- [b] The Region III Commercial/Industrial soil equation paramaters were used by ABB to calculate a value for Diesel fuel. This value was used as a surrogate for No. 2 fuel oil that was associated with the SA.
 See associated text for additional information.

NA = not available

ug/g = micrograms per gram

Responses to MADEP Comments On SA 56 Draft Final Closure Report Various Sites - Fort Devens, MA

Comment: Documentation of the transportation and disposal of contaminated soil must be

submitted in the final closure report.

Response: Documentation of the transportation and disposal of contaminated soil will be

provided as an appendix in the final closure report.

Comment: Laboratory analytical reports for confirmation soil samples taken from the bottom and

sidewall area of the excavation must be provided in the closure report.

Response: Laboratory analytical reports for confirmation soil samples taken from the bottom

and sidewall area of the excavation will be provided as an appendix in the final

closure report.

Comment: MADEP requires pending documentation be provided in the Final Closure Report

for review.

Response: Pending documentation will be provided for review as an appendix in the Final

Closure Report.

FINAL CLOSURE REPORT STUDY AREA 56 FORT DEVENS, MASSACHUSETTS

Prepared for:

U.S. Army Corps of Engineers
New England Division
Waltham, Massachusetts
Contract Number DACW45-89-D-0506

Prepared by:

OHM Remediation Services Corp. Hopkinton, Massachusetts

For Kevin J. Mack

Project Manager

March 4, 1996 OHM Job 16208

TABLE OF CONTENTS

Title

Section

Page No.

EXECUTIVE	SUMMARY		E-1
1 O INITEODI	ICTION		1-1
		tivities	
1.511	evious SA 50 investigation Act	uvides	
2.0 PETROLE	EUM-CONTAMINATED SOIL	REMOVAL	. , 2-I
2.1 S	ite Preparation Activities		2-1
2.2 E	excavation and Soil Screening A	Activities	2-1
2.3 C	Confirmation Sample Results		, 2-7
2.4 C	Quality Assurance\Quality Contr	rol	2-10
		ality Control	
		ontrol	
2.6 V	Vaste Characterization & Dispo	sal	2-12
3.0 ASBEST	OS REMOVAL		. , . , ,
4.0 CONCLU	JSIONS		4-1
	L	IST OF TABLES	
Table	Title		Page No.
2-1	Soil Sample Screeni	na Pecults	2-2
2-1 2-2a		osite Soil Sample Results	2-2
2-2a 2-2b		ete Soil Sample Results	2-10
2-20	Commission Discre	to son sample results	2-10

TABLE OF CONTENTS (continuation)

LIST OF FIGURES

Title

Page No.

Figures

1-1	Site Location Map	1-2
1-2	Site Plan	1-3
1-3	UST Investigation - ABB Environmental Services	1-5
2-1	Confirmation Soil Sample Location Map	2-8
	LIST OF APPENDICES	
Appendices	Title	
A	On-site Laboratory Soil Screening Data	
В	ASC Analytical Report - Confirmation Soil Sample Results	
C	Chemical Quality Assurance Report	
D	ASC Analytical Report - Topsoil Sample Results	
E	ASC Analytical Report - Waste Characterization Sample Results	
F	Transportation & Disposal Documentation	
	Contaminated Soil	
	 Demolition Debris 	
	 Asbestos 	
	• Asphalt	
G	Site Photographs	

LIST OF ACRONYMS AND ABBREVIATIONS

ABB Environmental Services, Inc.

ACM Asbestos Containing Material

BGS Below Ground Surface

BTEX Benzene, Toluene, Ethylbenzene, and Xylene

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CQAR Chemical Quality Assurance Report

EMO Fort Devens Environmental Management Office

IR Infrared Spectroscopy

NPL National Priority List

MADEP Massachusetts Department of Environmental Protection

MCP Massachusetts Contingency Plan

MEP Master Environmental Plan

MSR Material Shipping Record

NED US Army Corps of Engineers New England Division

NPDES National Pollutant Discharge Elimination System

PAHs Polycyclic Aromatic Hydrocarbons

PID Photoionization Detector

SA Study Area

SARA Superfund Amendments and Reauthorization Act

SI Site Investigation

SVOC Semi-volatile Organic Compound (includes the PAHs)

TPH Total Petroleum Hydrocarbons

USAEC U.S. Army Environmental Center

USACE United States Army Corps of Engineers

UST Underground Storage Tank

VOC Volatile Organic Compound

EXECUTIVE SUMMARY

Fort Devens was placed on the National Priority List (NPL) on December 21, 1989, under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA, Superfund Act) as amended by the Superfund Amendments and Reauthorization Act (SARA). Subsequently, under Public Law 101-510, the Defense Base Realignment and Closure Act of 1990, Fort Devens was selected for cessation of operations and closure. In accordance with these acts, several studies have been conducted that address Study Area (SA) 56, which was identified in the Federal Facilities Agreement between the U.S. Environmental Protection Agency and the U.S. Department of Defense as a potential site of contamination.

The information gathered through these studies indicated petroleum contamination in the subsurface soils. This closure report documents the historical information and investigation results leading to the recommendation to remove soil, and the remedial actions taken at Study Area (SA) 56.

SA 56 is located on an access road west of Givery Road in the central portion of the Main Post. The study area was established as the result of a release from a 1,000 gallon underground storage tank (UST), used to store No. 2 fuel oil to heat Building 2417. The UST, which was located on the southeast side of Building 2417, was removed in October 1990, by Franklin Environmental Services, Inc. Visual and olfactory observations made during the removal indicated that petroleum contamination was present in the subsurface soils. Additional excavation was performed in April 1991, but was terminated due to concern over the stability of Building 2417.

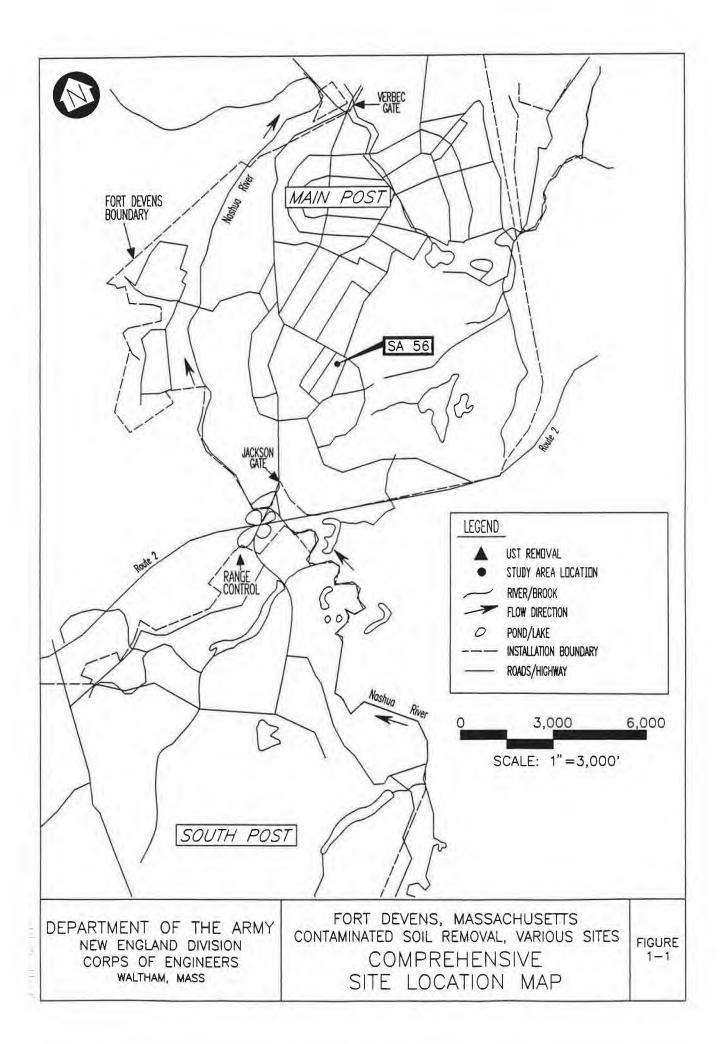
ABB conducted an investigation in 1992 to determine the areal extent of petroleum contamination in the subsurface soils. The results of this investigation indicated that petroleum contamination was present in the area of the former UST, primarily at a depth of 5 to 8 feet below ground surface (bgs).

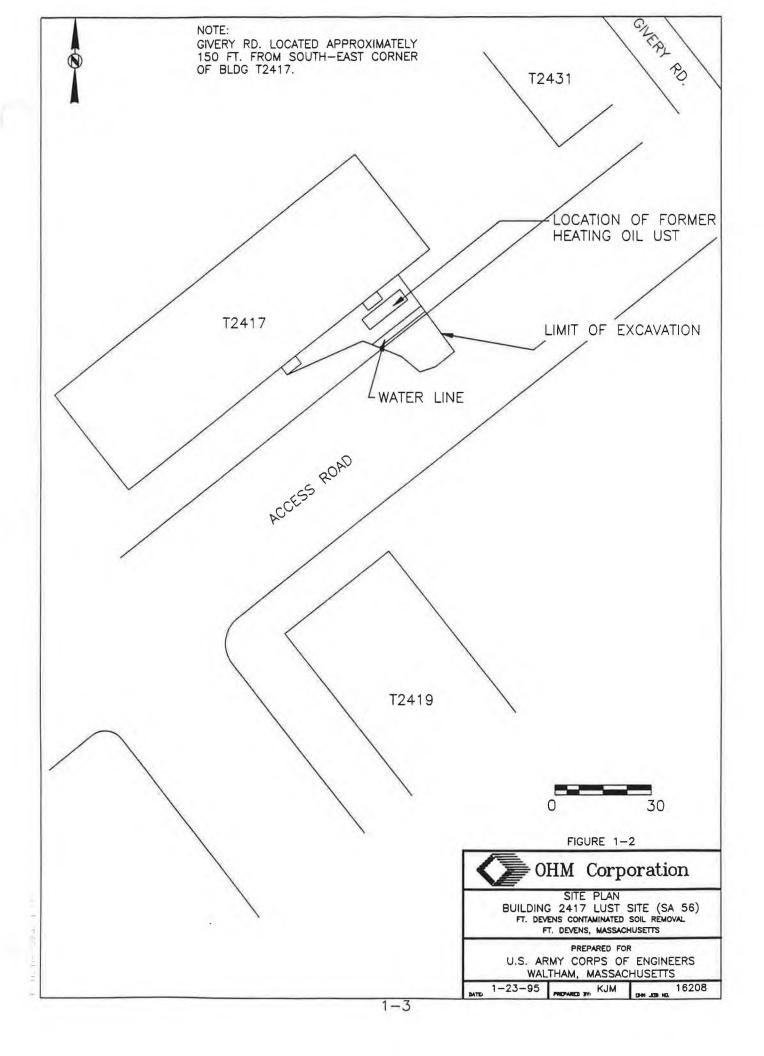
The New England Division (NED) of the United States Army Corps (USACE) contracted OHM Remediation Services Corporation (OHM) to address the remaining petroleum contaminated soil. OHM removed 1,173 tons of contaminated soil from the excavation at SA 56. Confirmation soil samples were collected and analyzed for the total petroleum hydrocarbons (TPH), BTEX, and selected polycyclic aromatic hydrocarbon compounds (PAHs) to document that applicable site action levels for these constituents had been met. Selected PAHs were identified by the USACE from the Massachusetts Contingency Plan (MCP) and Document WSC-401-91, "Policy for the Investigation, Assessment, and Remediation of Petroleum Releases". The material was stockpiled on site in the soils storage facility for eventual reuse as cover material in the proposed Consolidation Landfill. To facilitate deeper excavation, Building 2417 was demolished. The foundation was left intact. Prior to demolition, an asbestos survey was performed and all asbestos-containing material was removed and transported to an approved disposal facility. Based upon previous investigations and the results of remedial activities described herein, OHM recommends no further action at this site.

SECTION 1.0 INTRODUCTION

Fort Devens was placed on the National Priority List (NPL) on December 21, 1989, under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA; Superfund) as amended by the Superfund Amendments and Reauthorization Act (SARA). Subsequently, under Public Law 101-510, the Defense Base Realignment and Closure Act of 1990, Fort Devens has been selected for cessation of operations and closure. This closure report has been prepared as part of the U.S. Department of Defense Base Realignment and Closure program to assess the nature and extent of contamination associated with site operations at Fort Devens. This report contains a summary of activities conducted under CERCLA at Study Area (SA) 56.

In conjunction with the Army's Installation Restoration Program, Fort Devens and the U.S. Army Environmental Center (USACE; formerly the U.S. Army Toxic and Hazardous Materials Agency) developed a Master Environmental Plan (MEP) in 1988. The MEP consisted of assessments of the environmental status of SAs, specified necessary investigations, and provided recommendations for response actions, with the objective of identifying priorities for environmental restoration at Fort Devens. The New England Division of the U.S. Army Corps of Engineers (NED) was tasked with removal efforts at the base. This closure report documents the historical findings leading to the response action recommendation and describes the measures taken at SA 56.

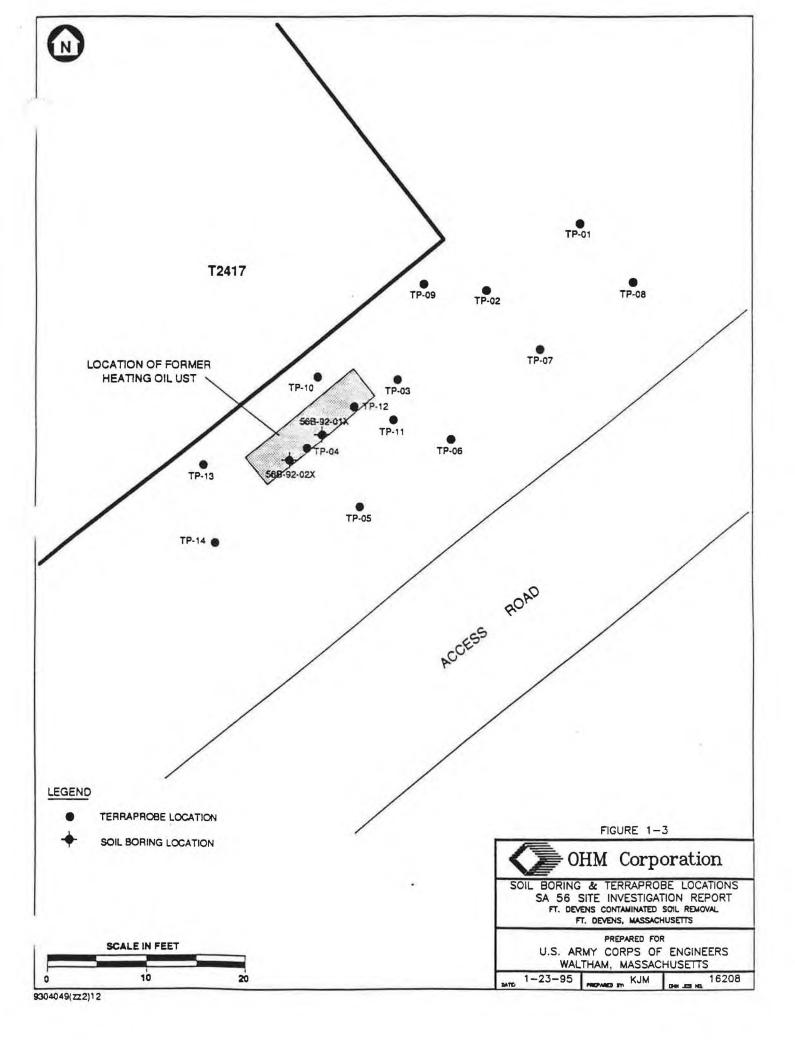

1.1 Site History and Background


SA 56 is located on an access road west of Givery Road in the central portion of the Main Post (Figure 1-1). The study area was established as a result of a release from a 1,000 gallon underground storage tank (UST), used to store No. 2 fuel oil to heat Building 2417. The tank was located on the southeast side of Building 2417 and the tank bottom depth is approximately 8 feet below ground surface (bgs). The tank was removed in October 1990 by Franklin Environmental Services, Inc. Soil was removed between the southeast side of Building 2417 and the asphalt access roadway adjacent to the building (Figure 1-2). Visual and olfactory observations made during the removal operation indicated that petroleum contamination was present in the subsurface soils.

Additional excavation was performed in April 1991, but was terminated due to structural concerns when the excavation reached a depth of 8 feet bgs, which was 2 feet below the foundation. Soil samples collected from the excavation indicated TPH concentrations of 226 and 234 mg/kg. The excavation was backfilled with clean soil. Following the backfilling, ABB Environmental Services Inc. (ABB) conducted an investigation and determined that further removal was necessary (Refer to Section 1.3 of this report).

1.2 Site Conditions

The area in which SA 56 is located is largely blanketed by unconsolidated surficial deposits of glacial and post-glacial origin. The surficial glacial units consist of till, deltaic deposits of glacial Lake Nashua, and glacial stream deposits. SA 56 is located on the east side of a bedrock high which Engineering Technologies Associates, Inc. has modeled as a groundwater recharge area. According to the model, groundwater at SA 56 flows generally eastward toward Mirror Lake, then southward and eventually westward to the Nashua River. Analysis of Borings 56B-92-01X and 56B-92-02X reveals clean gravelly sands generally to depths of approximately 6.5 to 7 feet bgs, and dense, gravelly sandy-silt and silty sand from 7 feet bgs to refusal at 11 feet. Shallow soil in the area of the UST was likely artificial fill associated with the UST and building, whereas the deeper material shows characteristics of a glacial till.



1.3 Previous SA 56 Investigation Activities

ABB was tasked by USACE with conducting the investigation at SA 56. The objective of the investigation was to determine the vertical and horizontal extent of contamination around the former UST (Figure 1-2). A total of 29 subsurface soil samples were collected from 14 locations using ABB's TerraProbe unit. Up to three soil samples were collected at each boring location and analyzed on site for TPH and BTEX compounds by infrared spectroscopy (IR) and gas chromatography (GC), respectively. The results of the field analysis for the subsurface samples indicated that residual petroleum contamination was present in the area of the former UST at a depth of approximately 5 to 8 feet below ground surface. TPH concentrations ranged from 93 mg/kg to 3800 mg/kg in samples collected in the immediate vicinity of the former UST. The data indicated that contamination was primarily confined to less than 8 feet bgs and did not penetrate the glacial till. The maximum concentration of total BTEX compounds was 1.23 mg/kg, detected in a sample collected at a depth of 5 feet bgs from a location between building 2417 and the former UST location.

Based on the on-site screening results obtained during the TerraProbe investigation, two soil borings were installed in the "contaminated" area. Samples were collected to further define the geologic conditions at SA 56, and confirm the analytical data generated on site. Two samples were collected from each boring at depths of 7 to 9 feet and 9 to 11 feet and analyzed for volatile organic compounds (VOCs) and TPH. TPH was detected at a concentration of 1,440 mg/kg in one of the 7 to 9 feet depth samples and at 56.1 mg/kg in the other. The 9 to 11 feet samples indicated TPH concentrations of 34.1 mg/kg and 34.4 mg/kg. The only VOC detected was acetone, which is a common laboratory contaminant, at a concentration of 35 ug/kg. Figure 1-3 shows the location of the TerraProbe sampling points and borings.

Sample ID	Sample Location	Sample Date	Sample Depth (ft)	TPH Result (mg/kg)	
SBSA56B1	bottom center	13-Sept-94	3.7	16	
SBSA56W1	southeast sidewall	13-Sept-94	3.4	6,059	
SBSA56W2	southeast sidewall	13-Sept-94	3.4	ND (42)	
SBSA56W3	southeast sidewall	13-Sept-94	3.4	ND (42)	
SBSA56W4	northwest sidewall	13-Sept-94	3.4	14 J	
SBSA56W5	northwest sidewall	13-Sept-94	3.4	22	
SBSA56W6	northwest sidewall	13-Sept-94	3.4	ND (42)	
SBSA56B2	southwest bottom	14-Sept-94	4.0	40 J	
SBSA56B3	southeast bottom - water line	14-Sept-94	4.0	9,935	
SBSA56B4	southwest bottom	14-Sept-94	6.0	ND (42)	
SBSA56W7	northwest sidewall	14-Sept-94	3.0	1,458	
SBSA56W8	northwest sidewall	14-Sept-94	3.0	944	
SBSA56W9	northwest sidewall	14-Sept-94	3.0	ND (42)	
SBSA56B5	northwest bottom	15-Sept-94	9.5	ND (42)	
SBSA56W10	northwest sidewall	15-Sept-94	8.0	ND (42)	
SBSA56W11	northwest sidewall	15-Sept-94	6.0	ND (42)	
SBSA56W12	southeast sidewall	15-Sept-94	6.5	ND (42)	
SBSA56W13	southeast sidewall	15-Sept-94	6.5	ND (42)	
SBSA56W14	southeast sidewall	15-Sept-94	8.0	ND (42)	
SBSA56W15	northwest sidewall	15-Sept-94	8.0	ND (42)	
SBSA56W16	northwest sidewall	15-Sept-94	5.5	2,742	
SBSA56B6	south bottom	15-Sept-94	9.0	ND (42)	
SBSA56B7	north bottom	15-Sept-94	9.0	ND (42)	

SECTION 2.0 PETROLEUM-CONTAMINATED SOIL REMOVAL

OHM was contracted by the USACE NED to excavate the remaining petroleum-contaminated soil at SA 56, coordinate disposal of the excavated material, and restore the site by backfilling and repaving.

2.1 Site Preparation Activities

OHM conducted pre-excavation activities at SA 56 to ensure that contaminants would be contained at the site and to prevent the general population from coming into contact with contaminants exposed through excavation activities. An exclusion zone was established using orange fencing, and staging cells were constructed for temporary storage of contaminated soils. Sand berms were constructed at the perimeter of each staging cell and the cells were double lined with polyethylene sheeting.

2.2 Excavation and Soil Screening Activities

Excavation at SA 56 began on September 13, 1994, in the area of the former UST location, where petroleum-contaminated soil was identified during the site investigation. Clean soil was removed and stockpiled separately prior to excavating contaminated material. Soils were screened using a photoionization detector (PID) instrument during the removal of clean soils in order to determine the exact depth of contaminated soil. Once PID readings indicated that contaminated material was encountered, soil samples were collected and screened on site in order to guide the excavation. All the samples collected during the excavation were screened for TPH by infrared spectroscopy (IR) to determine where additional excavation was necessary. The decision to proceed with the excavation was based on the site action level of 500 mg/kg for TPH in soil. The screening results are presented in Table 2-1 and the on-site analytical data are provided in Appendix A.

The first round of screening samples was collected on September 13, 1994, and results indicated one sidewall sample with a TPH concentration of 6,059 mg/kg. This sample was collected in the area of the former tank at an approximate depth of 3.5 feet bgs. Excavation, followed by on-site screening, continued for several rounds until screening results indicated that the site was ready to be confirmed clean.

In general, the excavation continued away from the building in a southeasterly direction. Samples collected from underneath the building foundation (northwest sidewall) indicated the presence of contamination above the site action level of 500 mg/kg which could not be removed without potentially jeopardizing the structural integrity of Building 2417. The USACE then directed OHM to demolish the building in order to remove the residual contamination under the building.

The single story building of timber construction was demolished in 1 day utilizing a tracked excavator and general duty excavation bucket. The concrete foundation and floor were left intact. The excavator was then equipped with a grappler to load approximately 60 tons of demolition debris into 6 rolloff containers. The demolition debris was disposed off site at the Fitchburg Municipal Landfill located in Westminster, Massachusetts.

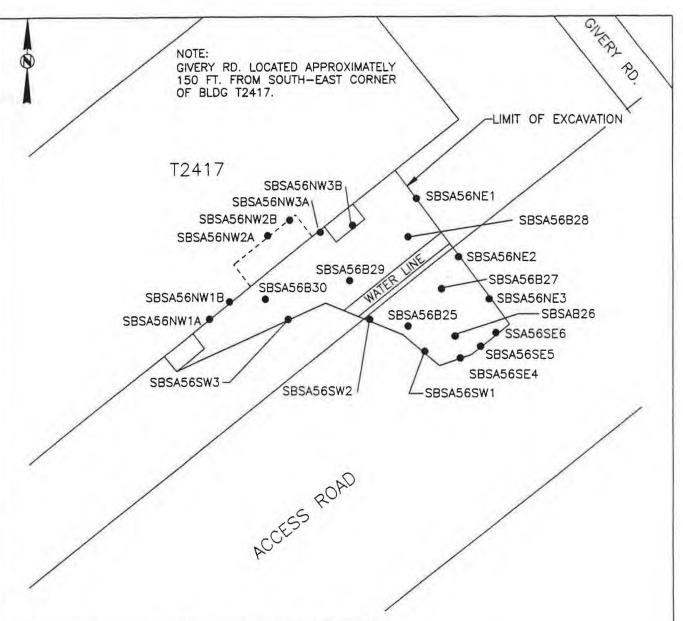
Sample ID	Sample Location	Sample Date	Sample Depth (ft)	TPH Result (mg/kg)	
SBSA56W17	northeast sidewall	15-Sept-94	7.0	233	
SBSA56W18	southeast sidewall	15-Sept-94	5.0	1,950	
SBSA56W19	southeast sidewall	15-Sept-94	5.0	817	
SBSA56B8	east bottom	15-Sept-94	9.4	ND (42)	
SBSA56B9	northwest bottom	15-Sept-94	9.0	ND (42)	
SBSA56W20	northwest sidewall	15-Sept-94	6.0	2,425	
SBSA56W21	northwest sidewall	15-Sept-94	8.0	ND (42)	
SBSA56B10	east bottom	16-Sept-94	4.0	948	
SBSA56B11	southeast bottom	16-Sept-94	4.0	2,805	
SBSA56W22	northeast sidewall	16-Sept-94	5.5	ND (42)	
SBSA56W23	northeast sidewall	16-Sept-94	5.5	70	
SBSA56W24	southeast sidewall	16-Sept-94	3.7	3,062	
SBSA56W25	southeast sidewall	16-Sept-94	4.0	ND (42)	
SBSA56B12	southeast bottom	16-Sept-94	4.7	1.342	
SBSA56B13	east bottom	16-Sept-94	4.6	ND (42)	
SBSA56B14	northeast bottom	16-Sept-94	4.9	ND (42)	
SBSA56B15	east bottom	16-Sept-94	4.9	ND (42)	
SBSA56B16	east bottom	16-Sept-94	5.8	ND (42)	
SBSA56W26	southeast sidewall	16-Sept-94	4.3	540	
SBSA56W27	southeast sidewall	16-Sept-94	4.2	ND (42)	
SBSA56W28	northeast sidewall	16-Sept-94	5.4	ND (42)	
SBSA56W29	southeast sidewall	19-Sept-94	6.0	1,028	
SBSA56W30	southeast sidewall	19-Sept-94	6.0	ND (42)	

Sample ID	Sample Location	Sample Date	Sample Depth (ft)	TPH Result (mg/kg)	
SBSA56W31	southeast sidewall	19-Sept-94	6.0	1,693	
SBSA56W32	southeast sidewall	19-Sept-94	6.0	1,700	
SBSA56B17	east bottom	19-Sept-94	6.3	70	
SBSA56B18	southeast bottom	19-Sept-94	6.3	1,086	
SBSA56B19	southeast bottom	19-Sept-94	6.3	769	
SBSA56W33	southeast sidewall	19-Sept-94	6.0	153	
SBSA56W34	southeast sidewall	19-Sept-94	6.0	46	
SBSA56W35	southwest sidewall	19-Sept-94	5.0	ND (42)	
SBSA56W36	southeast sidewall	19-Sept-94	5.0	ND (42)	
SBSA56W37	southeast sidewall	19-Sept-94	5.0	786	
SBSA56B20	south bottom	19-Sept-94	6.3	59	
SBSA56W38	southeast sidewall	19-Sept-94	5.0	ND (42)	
SBSA56W39	southeast sidewall	19-Sept-94	4.0	185	
SBSA56W40	southeast sidewall	19-Sept-94	3.0	ND (42)	
SBSA56W41	southeast sidewall	19-Sept-94	2.0	ND (42)	
SBSA56W42	southeast sidewall	19-Sept-94	1.0	ND (42)	
SBSA56B21	southeast bottom	20-Sept-94	6.0	67	
SBSA56W43	southeast sidewall	20-Sept-94	7.5	1,975	
SBSA56W44	southeast sidewall	20-Sept-94	5.0	ND (42)	
SBSA56B22	southeast bottom	20-Sept-94	9.0	459	
SBSA56W45	northeast sidewall	20-Sept-94	5.5	ND (42)	
SBSA56W46	northeast sidewall	20-Sept-94	6.5	ND (42)	
SBSA56W47	southwest sidewall	20-Sept-94	5.5	598	

Sample ID	Sample Location	Sample Date	Sample Depth (ft)	TPH Result (mg/kg)	
SBSA56W48	A56W48 southwest sidewall		6.6	1,263	
SBSA56B23	center bottom	20-Sept-94	9.0	ND (42)	
SBSA56W49	southeast sidewall	21-Sept-94	7.0	629	
SBSA56W50	southwest sidewall	21-Sept-94	7.0	ND (42)	
SBSA56B24	southeast bottom	21-Sept-94	10.5	ND (42)	
SBSA56W51	southeast sidewall	21-Sept-94	8.0	ND (42)	
SBSA56W52	southeast sidewall	21-Sept-94	9.5	ND (42)	
SBSA56W53	southwest sidewall	21-Sept-94	6.5	ND (42)	
SBSA56W54	southwest sidewall	21-Sept-94	8.0	ND (42)	
SBSA56W55	northwest sidewall	21-Sept-94	6.0	665	
SBSA56BC1	composite sample	22-Sept-94	N/A	144	
SBSA56BC2	composite sample	22-Sept-94	N/A	32 J	
SBSA56SEC	composite sample	22-Sept-94	N/A	252	
SBSA56SWC	composite sample	22-Sept-94	N/A	43	
SBSA56NEC	composite sample	22-Sept-94	N/A	44	
SBSA56DUPC	composite sample	22-Sept-94	N/A	171	
SBSA56SEC2	composite sample	03-Oct-94	N/A	31 J	
SBSA56DUP2	composite sample	03-Oct-94	N/A	44	
SBSA56SE4	composite subsample	03-Oct-94	7.5	69	
SBSA56SE5	composite subsample	03-Oct-94	7.5	ND (42)	
SBSA56SE6	composite subsample	03-Oct-94	7.5	82	
SBSA56W56	northwest sidewall	04-Oct-94	6.0	289	
SBSA56W57	northwest sidewall	04-Oct-94	7.0	ND (42)	

Sample ID	Sample Location	Sample Date	Sample Depth (ft)	TPH Result (mg/kg)
SBSA56W58	northwest sidewall	04-Oct-94	8.0	ND (42)
SBSA56W59	northwest sidewall	04-Oct-94	9.0	ND (42)
SBSA56W60	northwest sidewall	04-Oct-94	7.0	ND (42)
SBSA56W61	northwest sidewall	04-Oct-94	7.0	325
SBSA56NWC1	NW sidewall composite	04-Oct-94	N/A	ND (42)
SBSA56NWC2	NW sidewall composite	04-Oct-94	N/A	ND (42)
SBSA56NWC3	NW sidewall composite	04-Oct-94	N/A	ND (42)
SA56 Clean Pile	clean pile composite	12-Oct-94	0.5 - 1.0	70

NOTES: TPH= total petroleum hydrocarbons


ND = indicates TPH was not detected; detection limit listed in parentheses

J = Qualifier indicating estimated concentration below practical quantitation limit

During the excavation, a waterline was encountered approximately 12 feet east of and running parallel to Building 2417. This pipe was supported from the bottom to ensure its integrity during the removal operation. The access roadway to the southeast of the building was removed in order to properly bench the excavation. Water was encountered during excavation at a depth of approximately 7-8' bgs. In light of the geologic setting, groundwater is attributed to a perched water table condition and through the 20 days of open excavation approximately 36,000 gallons of water were removed. Although the rate of inflow was never measured, a 3" pneumatic pump was able to maintain a dry excavation. Dewatering was conducted as necessary to support the removal.

All water removed during the excavation was batch processed through OHM's water treatment facility which was located at the staging area and discharged on site. The treatment process consisted of first stage sediment filtration via sand filters followed by target organics removal via activated carbon. All water encountered during excavation was treated and discharged on site in compliance with NPDES (National Pollutant Discharge Elimination System) standards for BTEX, Lead and TPH as identified in the NPDES discharge permit.

Soil samples were relinquished to the on-site laboratory immediately following collection and screening results were generally provided to the site supervisor within two hours. Excavation would only continue in areas where screening results indicated concentrations of TPH in excess of the site action level. Confirmation sampling was initiated after screening results indicated that all contaminated material had been removed.

DISCRETE SAMPLE ID	CONFIRMATORY COMPOSITE SAMPLE ID		
SBSA56NW1A SBSA56NW1B	SBSA56NWC1		
SBSA56NW2A SBSA56NW2B	SBSA56NWC2		
SBSA56NW3A SBSA56NW3B	SBSA56NWC3		
SBSA56NE1 SBSA56NE2 SBSA56NE3	SBSA56NEC		
SBSA56SE4 SBSA56SE5 SBSA56SE6	SBSA56SEC2		
SBSA56SW1 SBSA56SW2 SBSA56SW3	SBSA56SWC		
SBSA56B25 SBSA56B26 SBSA56B27	SBSA56BC1		
SBSA56B28 SBSA56B29 SBSA56B30	SBSA56BC2		

LEGEND

- DISCRETE SAMPLE LOCATION
- AVERAGE DEPTH = 11 FEET
- --- DENOTES EXCAVATION BENEATH FOUNDATION

FIGURE 2-1

OHM Corporation

CONFIRMATION SOIL SAMPLE LOCATION MAP BUILDING 2417 LUST SITE (SA 56) FT. DEVENS CONTAMINATED SOIL REMOVAL FT. DEVENS, MASSACHUSETTS

PREPARED FOR
U.S. ARMY CORPS OF ENGINEERS
WALTHAM, MASSACHUSETTS

1-23-95 PROPARCO BY: KJM DHH JOB HG. 16208

2.3 Confirmation Sample Results

Confirmation samples were collected from the bottom of the excavation and three of the sidewalls on September 22, 1994. Two composite samples were collected from the bottom of the excavation and one from each of the three sidewalls. The northwest sidewall was not sampled at this time because the removal of petroleum-contaminated material from underneath the building foundation was not complete. On October 4, 1994, three composite samples were collected from the northwest sidewall. Figure 2-1 provides the confirmatory sample locations. Three subsamples were composited from each of the three sidewalls and two bottom composite samples. Laboratory results for the sample collected from the southeast sidewall exceeded the TPH action level of 500 mg/kg and as a result this sidewall was resampled on October 3, 1994. Limited hand excavation was conducted prior to resampling the southeast sidewall because it was unclear whether the problem was attributed to the off-site data or to superficial contamination on the face of the sidewall.

Building 2417 was demolished on October 3, 1994 and additional excavation and screening was conducted on the sidewall below the building foundation to remove residual petroleum contamination above the action level. On October 4, 1994, three composite samples were collected from the northwest sidewall. Figure 2-1 provides the confirmatory sample locations. The composite samples were analyzed for TPH and semivolatile compounds. In addition to meeting the TPH action level, OHM was required to meet action levels of 4 mg/kg, 0.7 mg/kg, and 700 mg/kg for naphthalene, 2- methyl naphthalene and phenanthrene, respectively in accordance with the MCP.

In addition, one of the subsamples from each composite was collected and analyzed for BTEX compounds. The action levels for benzene, toluene, ethylbenzene, and xylenes are 10 mg/kg, 90 mg/kg, 80 mg/kg, 500 mg/kg, respectively. The samples were analyzed by ASC laboratory located in Findlay, Ohio. The composite sample and discrete sample from the southeast sidewall of the excavation were collected in triplicate. Two of the split samples were sent to ASC and the third split was submitted to the USACE laboratory in Hubbardston, Massachusetts.

The results of the confirmation sample analyses are summarized in Tables 2-2a and 2-2b, and the ASC analytical report is presented as Appendix B. TPH analysis was performed by EPA method 418.1, BTEX by EPA method 8020 and SVOCs analysis by EPA method 8270. The confirmation composite soil samples were screened on site for TPH prior to being sent to ASC to ensure that the samples were below the action level of 500 mg/kg.

Table 2-2a Confirmation Composite Soil Sample Results Final Closure Report SA 56

Sample ID	Sample Date	Naphthalene (mg/kg)	2-methyl- Naphthalene (mg/kg)	Phenanthrene (mg/kg)	TPH (mg/kg)
SBSA56NEC	22-Sept-94	ND (0.355)	ND (0,355)	ND (0.355)	44.5
SBSA56SEC	22-Sept-94	ND (3.57)	ND (3.57)	ND (3.57)	997
SBSA56SWC	22-Sept-94	ND (0.353)	ND (0.353)	ND (0.353)	37.5
SBSA56BC1	22-Sept-94	ND (0.385)	0.412	ND (0.385)	40.9
SBSA56BC2	22-Sept-94	ND (0.375)	ND (0,375)	0.562	15.3
SBSA56DUPC	22-Sept-94	ND (3.55)	ND (3.55)	ND (3.55)	266
SBSA56SEC2	03-Oct-94	N/A	N/A	N/A	55.4
SBSA56DUP2	03-Oct-94	N/A	N/A	N/A	67.0
SBSA56NW1C	04-Oct-94	ND (0.327)	ND (0.327)	ND (0.327)	ND (7.10)
SBSA56NW2C	04-Oct-94	ND (0.333)	ND (0.333)	ND (0.333)	ND (7.46)
SBSA56NW3C	04-Oct-94	ND (0.327)	ND (0.327)	ND (0.327)	ND (7.24)

NOTES: mg/kg = milligrams per kilogram

ND () = indicates not detected at specified detection limit

N/A = not applicable

The analytical results from the confirmation sampling conducted on September 22, 1994, indicate that all the applicable action levels were attained with the exception of the sample collected from the southeast sidewall. TPH was detected in sample SBSA56SEC at a concentration of 997 mg/kg. On-site screening results indicated a concentration of 252 mg/kg for this sample and the duplicate sample analyzed in the on-site and off-site laboratory indicated similar concentrations of 171 mg/kg and 266 mg/kg, respectively. OHM suspected a problem with the off-site data for the original sample, but could not verify a problem by looking at the raw data. Additional excavation was conducted by hand and the sidewall was resampled. Phenanthrene was detected at a concentration of 0. 562 in bottom sample SBSA56BC2 and 2-methyl naphthalene was detected in bottom sample SBSA56BC1 at a concentration of 0.412 mg/kg. These concentrations are below the applicable action levels of 700 mg/kg and 0.7 mg/kg, respectively.

Table 2-2b Confirmation Discrete Soil Sample Results Final Closure Report SA 56

Sample ID	Sample Date	benzene (mg/kg)	toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)
SBSA56B30	22-Sept-94	ND (0.001)	ND (0,001)	ND (0.001)	0,003
SBSA56B25	22-Sept-94	ND (0.001)	ND (0.001)	0.004	0.004
SBSA56NE2	22-Sept-94	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)
SBSA56SE2	22-Sept-94	ND (0.001)	ND (0.001)	ND (0.001)	0.002
SBSA56SW2	22-Sept-94	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)
SBSA56DUPG	22-Sept-94	ND (0.001)	0.003	0.003	0.007
SBSA56NW1B	04-Oct-94	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)
SBSA56NW2B	04-Oct-94	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)
SBSA56NW3B	04-Oct-94	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)

NOTES: mg/kg = milligrams per kilogram

ND () = indicates not detected at specified detection limit

BTEX compounds were detected in several discrete samples at trace concentrations well below the respective action levels for these compounds. The results of the confirmation samples indicate that petroleum soils have been removed to the site action levels for TPH, BTEX compounds, and the targeted PAH compounds.

2.4 Quality Assurance\Quality Control

Appropriate quality assurance\quality control (QA\QC) measures were taken to ensure the collection of representative soil samples and the generation of accurate and reproducible analytical data.

2.4.1 Sample Collection Quality Control

Soil samples were collected using either a stainless steel trowel or disposable polyethylene scoops. Composite samples were thoroughly homogenized in stainless steel sampling buckets and discrete samples were collected for BTEX analysis. The sampling equipment was decontaminated using the following procedure:

- 1) Non-phosphate soap & water rinse:
- 2) tap water rinse;
- 3) distilled water rinse;
- 4) 10% Nitric acid rinse;

- 5) distilled water rinse:
- 6) methanol rinse; and
- 7) distilled water rinse.

Sample integrity was also maintained by changing gloves between each sample location. The composite and discrete samples from the southeast sidewall of the excavation were collected in triplicate for QA\QC purposes. The resampling of the southeast sidewall was also collected in triplicate. A comparison of the results of the initial confirmation samples from the southeast sidewall, SBSA56SEC and SBSA56SE2, with their respective duplicate samples indicates a poor correlation. TPH was detected in the original sample at a concentration of 997 mg/kg and in the duplicate at a concentration of 266 mg/kg. Review of the raw data did not reveal any problem with the chain of custody, preparation or analysis of the sample. The results suggest that the sample was heterogeneous. The re-sample of the southeast wall indicated a much better correlation of 55.4 and 67 mg/kg for the QA pair.

All samples collected on site were entered on a chain of custody and documented on a sample collection log and a permanent logbook. Samples sent off site were properly preserved, packaged and overnight shipped to the proper laboratory.

2.4.2 Laboratory Quality Control

Quality control measures were taken in the on-site laboratory to ensure the accuracy and precision of the analytical data. TPH concentration were determined by infrared spectrometer using a modification of EPA Method 418.1 A calibration curve was developed for the IR instrument, prior to the start up of sampling activities, to establish detection limits and document linearity of the detector. A single calibration point was run in triplicate to demonstrate measurement precision. Continuing calibrations were also performed on a daily basis thereafter to provide a check on instrument response.

In general, a comparison of TPH results from on-site and off-site confirmation sample analyses indicates a good correlation, with the exception of the initial confirmation sample collected from the southeast sidewall. For this sample, the on-site laboratory results for the original and duplicate correlated well with the duplicate result from the off-site laboratory, indicated the possibility of sample heterogeneity or laboratory error. The off-site laboratory took the proper quality control measures as specified in the methods used. Samples were properly preserved upon receipt by the laboratory and sample extraction and analysis were performed within the holding times specified in the methods. Blank and spike samples associated with the SA 56 samples were all within acceptable QC limits.

The USACE laboratory prepared a Chemical Quality Assurance Report (CQAR) to compare their data with the results generated by the contract laboratory. The CQAR is included in Appendix C of this report and the findings are summarized as follows:

Five QA samples were analyzed, resulting in a total of 156 target analyte determinations -

- Results from the primary and QA samples agreed quantitatively in 4 (57%) of the comparisons
- Results from the primary and QA samples agreed overall in 153 (98%) of the comparisons
- There were 0 (0%) major discrepancies between results from the primary and QA laboratory samples
- There were 3 (2%) minor discrepancies between results from the primary and QA laboratory samples;
 (1 each BTEX, TPH, TCLP Metals)

2.5 Backfilling and Site Restoration

The area of the final excavation was approximately 50 ft. x 35 ft and the average depth of the excavation was approximately 11 feet. A composite sample was collected from the stockpiled "clean" material and screened on site for TPH before this material was used as backfill. Additional fill material was provided by Lagasse trucking to backfill the rest of the excavation. Backfill was placed and compacted in 12" lifts with a vibratory plate compactor. Once the excavation was backfilled and properly graded, asphalt restoration was initiated to repair the access roadway. The asphalt taken up during excavation (approximately 45 cubic yards) was shipped to American Reclamation Recyclers. On October 25, 1994, P.J. Keating restored the roadway. The area between the roadway and the building was backfilled with topsoil, provided by Lagasse Trucking, and the area was seeded and mulched per contract specifications. The contractor's topsoil was sampled at the source and tested for determination of pH. The pH was 6.4 as indicated in ASC's Analytical Report provided in Appendix D.

2.6 Waste Characterization & Disposal

An estimated 750 cubic yards (1173 tons) of contaminated material excavated at SA 56 has been characterized for disposal. Samples were collected at a frequency of one sample for every 100 cubic yards of petroleum-contaminated soil stockpiled at the site and analyzed for the following parameters: TPH, TCLP metals, TCLP organics, RCRA characteristics (ignitability, corrosivity, & reactivity), BTEX compounds, and SVOCs. In addition, RCRA metals and pesticides and polychlorinated biphenyls (PCBs) were analyzed at a frequency of one sample per every 200 cubic yards. The results of these tests indicate that the material can be reused as cover material in Massachusetts-regulated landfills. All TCLP results were below regulatory levels and the RCRA characteristic tests indicated negative results for ignitability, corrosivity, and reactive cyanide. Reactive sulfide was quantified in one sample at a concentration of 40.2 mg/kg, which is well below the regulatory guideline of 500 mg/kg. TPH concentrations ranged from 50.4 mg/kg to 616 mg/kg. The ASC Analytical Reports for the waste characterization samples are located in Appendix E.

All material has been transferred to a temporary soil storage facility on site pending reuse as cover material in the proposed Consolidation Landfill. A Material Shipping Record (MSR) was used to document the shipment of soils to the storage facility. As discussed in Section 2.2, demolition debris was disposed off site at the Fitchburg Municipal Landfill in Westminster, Massachusetts. Refer to Appendix F for a copy of the MSR and other transportation and disposal documentation.

SECTION 3.0 ASBESTOS REMOVAL

Prior to demolishing Building 2417, OHM contracted TRC Environmental Services (TRC) to conduct an asbestos survey to determine if asbestos was present in the building. Bulk samples were collected at various locations inside the building and analyzed by polarized light microscopy and in the case of the floor tiles, by transmission electron microscopy. The results of the survey indicated nonfriable asbestos in the floor tile and floor tile mastic, and friable asbestos in visible pipe covering. No asbestos was present in the ceiling, wallboard, or roof shingles sampled.

OHM developed an Asbestos Abatement Plan prior to removing the asbestos containing materials from Building 2417. OHM removed 120 square feet of nonfriable floor tile and 2 linear feet of pipe covering. The material was placed into 1 cubic yard boxes and shipped to Chicopee Sanitary Landfill, located in Chicopee, MA.

SECTION 4.0 CONCLUSIONS

SA 56 is located on an access road west of Givery Road in the central portion of the Main Post. The study area was established as a result of a release from a 1,000 gallon underground storage tank (UST), used to store No. 2 fuel oil to heat Building 2417. The UST, which was located on the southeast side of Building 2417, was removed in October 1990, by Franklin Environmental Services, Inc. Visual and olfactory observations made during the removal indicated that petroleum contamination was present in the subsurface soils. Additional excavation was performed in April 1991, but was terminated due to concern over the stability of Building 2417. ABB conducted an investigation in 1992 to determine the areal extent of petroleum contamination in the subsurface soils. The results of this investigation indicated that petroleum contamination was present in the area of the former UST, primarily at a depth of 5 to 8 feet bgs.

The USACE-NED contracted OHM to address the remaining petroleum contaminated soil at the site. OHM removed an estimated 750 cubic yards of contaminated soil from the excavation at SA 56. Site photographs are included in Appendix G. Samples were collected and screened on site for TPH analysis during removal activities in order to guide the excavation and minimize the volume of soil removed. Clean soil was stockpiled on site and later reused as backfill. OHM demolished Building 2417 in order to safely remove residual contamination from under the building foundation. Prior to the demolition, an asbestos survey was conducted, asbestos containing material (ACM) was identified, and this ACM was subsequently removed under an Asbestos Abatement Plan.

Confirmation soil samples were collected and analyzed by ASC for TPH, BTEX, and select PAHs to document that applicable site action levels for these constituents had been attained. Proper QA\QC measures were taken to ensure the collection of accurate and reproducible data. The site was properly restored through backfilling, paving and seeding. The petroleum-contaminated soil was transported to a temporary storage facility located on site for eventual use as cover material at the proposed Consolidation Landfill at Fort Devens. Based upon previous investigations and the results of remedial activities described herein, OHM recommends no further action at this site.

Appendix A
On-site Laboratory Soil Screening Data

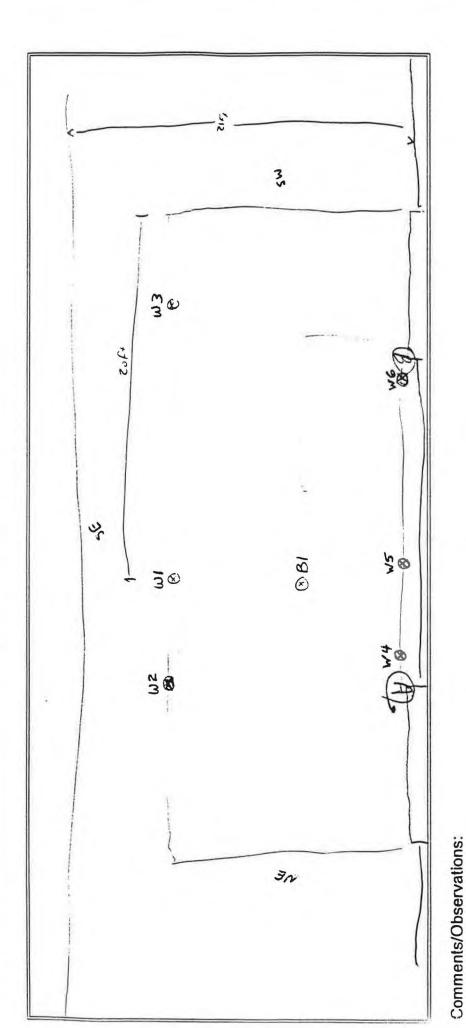
Pg. Lof 2

Date: 9-13-94

Site Name: SAS&

Weather: Cook, MISTY, Samplers: 80

Sample ID Number	Time		Sample Depth (ft)	Coordinates Ref. Pt. Ref. Pt.	Sample Description	# of Bottles
SB5452B1	1500	5	38"		Gray Pungut soil stong	1840E NO
Wi	1435		35"		Brown sudy foil	
Uι	1435		35"		ii 4	
UI	1440		35"		n 1	
4	1445		35"		ii u	
Uζ	1490		35"			
UL	1455	4	35"		, ,	4


Ref. Pt:	
Ref. Pt:	
Map Attached: Yes No	
Sample Type: Screening Confirmation	Disposal/Characterization
Laboratory Destination: Onsite Lab ASC	C - coc # USACE- coc #
Duplicate Taken: Yes (No	Rinsate Taken: Yes No
On-site Laboratory Chain of Cus	stody/Request for Analysis
	Chlordane PCBs Other
Relinquished by(dd/tt): Will 9-13-4	14/538 Received by (dd/tt): Thehall I July
Relinquished by(dd/tt):	Received by (dd/tt):

Sample Location Map Fort Devens - Project #16208

Site Name: 545-6

Date: 09-13-74

Fort Devens - Project #

Prepared by: Bill Bill

20

500 ppm

te: Ft. Devens	, MA -				₹ S,	A56	Date:	. 9.1	3.94	GC A	nalyst	:MR	B		TPH	Analys	<u>:B</u> 2	Page	of	
ncentration (mg/kg)	Action Level	Sam	JB	B:4	B7	Wi	Wii	T3	TPI	1341	B42	Wsq	WS9	W64		rP3 WZ	TPs- WZ			
oclor 1260 lordane	2 ppm 1 ppm	1.79	2.01	ND	.92	.64	.60	1.4	"Tex	WD	NO	. 58	.67	.59	.47	ND	,55			_
ecachlorobip I Ihod 418.1	ohenyl	Samr	ole ID S	SBS,	456	5														
ncentration (mg/kg)	Action Level	WI	W2	W3	W4	ws	W6	BI												
PH 4C	500 ppm	6059 485	00 00	0 N	14 5	22 ND	ND QN	NO 16								- Australia				-
	500 ppm																			

Pg. 1 of 2

of

Bottles

Sample

Description

greyelan

Received by (dd/tt):_

Date: 9-14-94

Sample

B 2

Site Name: SA56

Weather: Cou , Partly Clary

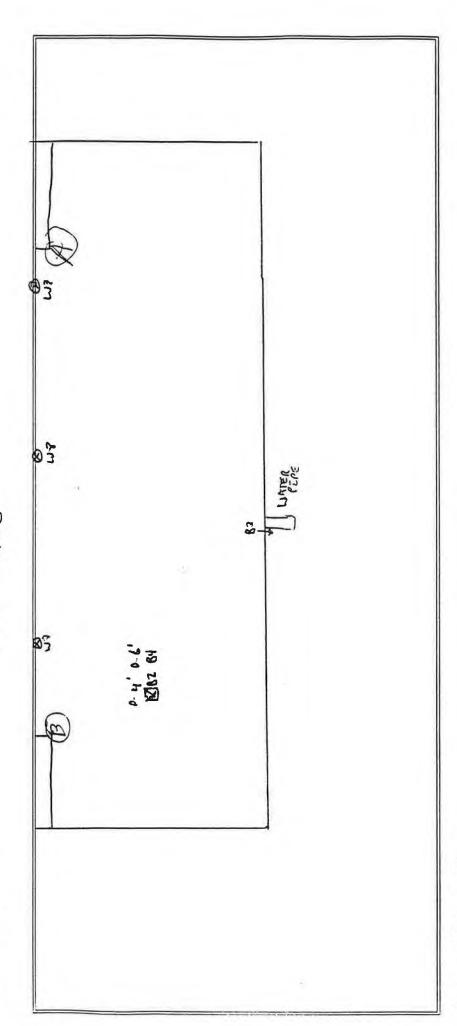
1131

Relinquished by(dd/tt):_

Comp/ Sample

ID Number Time Grab Depth (ft) Ref. Pt. Ref. Pt.

Samplers: BD


Coordinates

B 4 1140 9	Problika, Amun clay	
	Problika, Drown clay	
ap Attached: Yes No (to fallow) ample Type: Screening Confirmation D	Disposal/Characterization	
aboratory Destination: Onsite Lab ASC - coo		oc #
Duplicate Taken: Wes No	Rinsate Taken: Yes No	
On-site Laboratory Chain of Custody/	Request for Analysis	
equested Testing: TPH BTEX Chloro	2007 C. M. A.	1
elinquished by(dd/tt): M-LL 4/4-94/1/15	Received by (dd/tt): Machad	X Jul

Sample Location Map Fort Devens - Project #16208

Date: 9-14-94

Site Name: SAS6

Comments/Observations:

+ NOTE

18 15 c botton Sumple. The who main

1005 located namually by disging with a sharel.

1017 THIS POINT IN TIME the surple lawtion

1015 even with the executed botton and was

hue lebeld 83

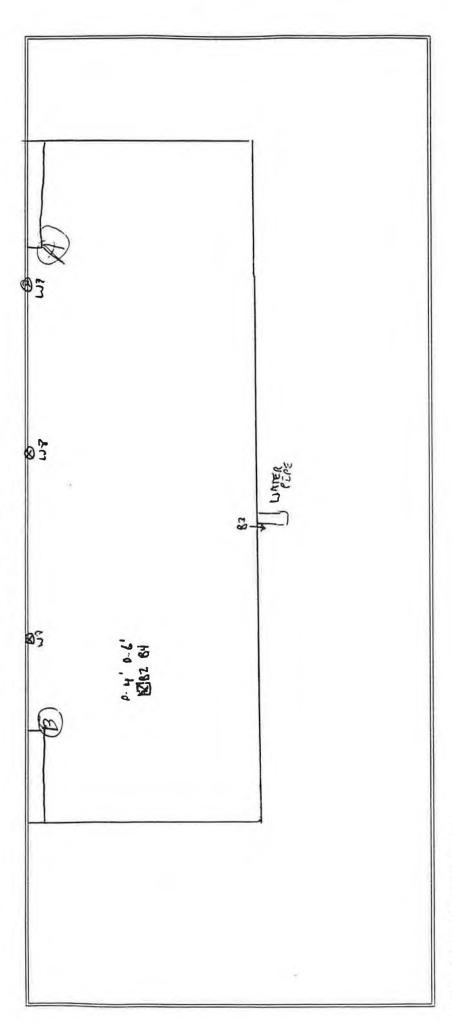
Prepared by: Lill AL

Pg. <u>/ of </u>2

Date: 9-14-94

Site Name: SA56

Weather: COOL PARTLY CHOOSamplers: 30


Sample ID Number	Time	Comp/ Grab	Sample Depth (ft)		dinates Ref. Pt	Sample Description	# of Bottles
S&S456 W7	1400	9	131	-	-	grey clay	1. 4. ~ ! Wa
30	1405	9	n	-	-	grey clay	
PW	1410	9	()	-	-	grey clay	

Ref. Pt: <u>\(\lambda\)</u>
Ref. Pt: <u>UA</u>
Map Attached: Yes No (to Follow)
Sample Type: Screening Confirmation Disposal/Characterization
Laboratory Destination: Onsite Lab ASC - coc # USACE- coc #
Duplicate Taken: Yes No Rinsate Taken: Yes No
On-site Laboratory Chain of Custody/Request for Analysis
Requested Testing: TPH BTEX Chlordane PCBs Other
Relinquished by(dd/tt): 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Relinquished by(dd/tt): Received by (dd/tt):

Sample Location Map Fort Devens - Project #16208

Date: 9-14-94

Site Name: SASL

Comments/Observations:

+ NoTE

18 is a botton sample. The wald main

12 leaded menwelly by daying withan sharel.

12 THIS POINT IN TIME the semple lawford with the eccuration betten and weshome lakely 83

Prepared by: 41 ML

Page of Location No.: SA 5.6 Date: 9.14.94 GC Analyst: TPH Analyst: MPB e: Ft. Devens, MA #hod 8080 Sample ID encentration Action Level (mg/kg) roclor 1260 2 ppm hlordane 1 ppm ercent Recovery 2,4,5,6-tcmx decachlorobiphenyl ethod 418.1 SBSASB Sample ID oncentration Action MB MJ B3 B2 BY FW (mg/kg) Level 944 ND RPH 500 ppm 9935 40 OÜ 1458 ND 156 NO ND 1110 IIC

500 ppm

500 ppm

Pg. 1 of 2

Date: 09-15 - 94

Site Name: SAS 6

Weather: Sunny & Warm; Samplers: MGQ

Sample ID Number	Time	Comp/ Grab	Sample Depth (ft)		dinates Ref. Pt	Sample Description	# of Bottles
SBSAST6 B5	1015	G	9.5'	See	Map	yellown clay some small colbie, originall rellows h clay -	1×46n
WID	1020	1	8'			rellows h clay -	1
WIC	1025	1	6'			yellowish clay, somesm	\

Ref. Pt:					
Ref. Pt:					
Map Attached: Yes No					
Sample Type: Screening	Confirmati	ion Disposa	I/Characteriza	tion	
Laboratory Destination:	nsite Lab A	ASC - coc #		USACE- coc	#
Duplicate Taken	: Yes No	Rinsat	e Taken: Ye	es No	
On-site Labora	atory Chain of C	Custody/Reque	st for Analysis	s	
Requested Testing: TPH) BTEX	Chlordane	PCBs	Other	_
Relinquished by(dd/tt):	what I s	09/15/94 103	ived by (dd/tt)	: En!	3/em 9,15.94
Relinquished by(dd/tt):					

Pg.2. of 2 Sample Location Map Fort Devens - Project #16208 1 80 BS W 1010 Site Name: 5456 12, Date: 09-15-94

Comments/Observations:

Prepared by: M. Queulen

Pg. 1 of 4

of

Bottles

Date: 9,15,94

Sample

Site Name: SA56

Coordinates

Weather: Sunny win

Comp/ Sample

ID Number Time Grab Depth (ft) Ref. Pt. Ref. Pt.

Samplers:

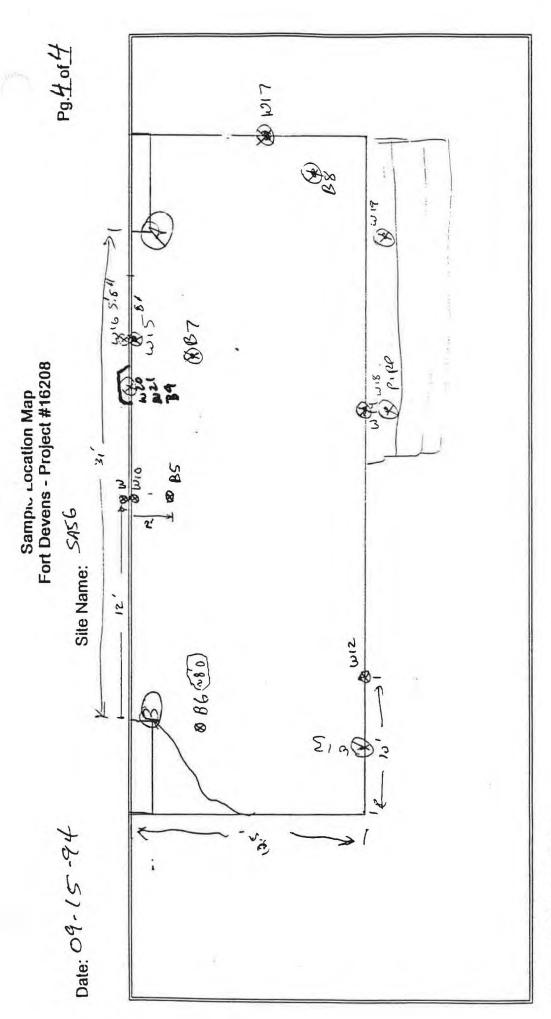
MRB/JB/MEQ

Sample

Description

0	125 G	66	small cubble you
LU13	1218	66"	dry galægrey clay, small cobble
W14	1220	81	dry gold gray clay,
LU15	1225	81	gold grex clex, lott of
W16	1230	56"	fots of cobble, petrolomshell
BE	1213	9'	Wetgold, greycloy, 6ts
B7	1235	91	gela, grey clay tots of small cabible
W17	1236 ~	7/	grey gold clay stight
Map Attac	hed: Ves	No	
	ype: Screer		ation Disposal/Characterization
Sample Ty	ype: Screen	ning Confirma	ation Disposal/Characterization ASC - coc # USACE- coc #
	ype: Screen	ning Confirma	ASC - coc # USACE- coc #
Sample Ty Laboratory	ype: Screen y Destination: Duplicate Ta	Onsite Lab	ASC - coc # USACE- coc #

Sample D Number	Time		Sample Depth (ft)		dinates	Sample Description	# of Bottles
W 18	1238	G	51	101.1 0_	1.01.11.	grey clay wet, strong is thole in snelp	LANO
W19	1270		51			gold gray clay, strong	1
B8	1215	1	9'5"			gold gray clay, strong petroleum smell con y gold grey clay, lots of small cobbie	
Ref. Pt Ref. Pt Map Attach	:	$\overline{}$	ee i	nep			
Sample Ty		Screening ation:		onfirmati	SC - coc	sposal/Characterization # USACE- coc	#


Received by (dd/tt):____

Relinquished by(dd/tt):___

	Time	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample Depth (ft)		dinates Ref Pt	Sample Description	# of Bottles
SBSAJ 6B9		G	91	(O1. 1 (I_	100.10	golo, grey clay, lost of	1×40~
	1508	6	61			gold gold while the fold said	
Lu2)		G	8'			gold, gily clay, lost of small colable, gold grey clay lots of small colable broad and of gold sand petrol small and of gold sand gold sh clay, small colable	
					1		
						1	
Ref. Pt	·	see	map				
Ref. Pt	_						
Map Attach	ed. Y	es	No				
Sample Typ	ne.	Screenin	on Co	onfirmati	ion Di	sposal/Characterization	
Jampie 131				\		# USACE- coc #	ı
aboratory	Destine	adon. (Offisite La		30 - 606	# OSAGE* COC #	
aboratory	Dunlin	ate Tak	V	(No)		Rinsate Taken: Yes No	

Received by (dd/tt):_____

Relinquished by(dd/tt):_____

Comments/Observations:

Prepared by: M. Quecolon

Page of 1
TPH Analyst: MRB

Ite: Ft. Devens, MA

Location No.: 5A 56

Date: 9.15.94 GC Analyst:

ethod 8080

n						
n		The state of the s				
	n	n	n	n l l l l l l l l l l l l l l l l l l l	n l l l l l l l l l l l l l l l l l l l	

oncentration (mg/kg)	Action Level	Bs	W 10	ωŋ	136	137	P38	WIZ	WI3	W14	Wis	WIL	WIT	1018	Wig	Ww	B9	Wil		
1PH	500 ppm	MD	NO	20	WD	ND	GA	100	NO	ND	ND	21.12	233	1950		2425	M	M		
HC		מא	NA	NA	NP	ND	MD	10	15B	NO	ND	610	43_	461	214	485	W	NO	-	-
	500 ppm																			

Pg. 1 of 2

Jate: 9-16-94

Site Name: SA56

Weather: COL, CLOUP

Samplers: BD

Sample			Sample			Sample	# of
D Number	Time	Grab	Depth (ft)	Ref. Pt	Ref. Pt	Description	Bottles
BSA58 BIO	1002	9	4'			Grey Clay rocks	17. 40-21 784
BII	1005		41			Grey Clay rolly	
WZI	1008		56			TAN Brown clay huid!	
W22	1011		56"				
W23	10 M		5%"			Greg colo-elday 4	
LJ24	1017		3'8"			Grey colorel day "	
W25	1020	4	4'			TAU BEDILLY ?	8
Ref. Pt:							
Ref. Pt: Map Attach	ed: (es) Screenir		onfirmation		posal/Characterization USACE- coc	#
Ref. Pt: Map Attache Sample Typ Laboratory	ed: (es) Screenination: (ng C Onsite L	ab As	SC - coc #		#
Ref. Pt: Map Attache Sample Typ Laboratory	ed: (v	es Screenination: (ate Tak	Onsite Linen: Yes	ab As	SC - coc # R	USACE- coc	#
Ref. Pt: Map Attache Sample Typ Laboratory	ed: (v	es Screenination: (ate Tak	Onsite Linen: Yes	ab As	SC - coc # R	# USACE- coc	#
Ref. Pt: Map Attache Sample Typ Laboratory	ed: (e) Destina Duplic On-s	Screenination: (ate Tak	Onsite Language Yes	ab As	SC - coc # R	USACE- coc	#
Ref. Pt: Map Attache Sample Typ Laboratory	Destination	es) Screening ation: (ate Take Take Take Take Take Take Take Tak	Onsite Long Yes	AS No	SC - coc # R ustody/Re	USACE- coc	

Sample Location Map Fort Devens - Project #16208

Pg. 2.0f 2

Site Name: SHSG

Date: 9, 16.94

D 022 \$20¢ Ø Blo Ø₹ 80 Bil \$2m

Comments/Observations:

Prepared by: Riff M.

Pg. 1 of 2

Date: 9, 16.94

Site Name: SA 56

Weather: Cloudy, overcost Samplers: MLB

Sample ID Number	Time	Comp/ Grab	Sample Depth (ft)	 inates Ref. Pt	Sample Description	# of Bottles
SBSA56	1506	6	418"		gold grey clay would colored petrolemsnell	1240
B13	1510		47"		gold clzy, somesand smcobble, pedrol smell	
B14	15/5		4'11"		goldish sord w small cobble, some had clay	
BIS	1517		4'11"		Cost of small pebbles	
Bio	1520		5/10"		Lets of small pebbles	
livea	1504		414		gree gold Clar, lots of	
W27	1509		412"		Fine yellowish send	
W28	1513	V	5/51		grex got clay, small perboses	

Ref. Pt:	
Ref. Pt:	
Map Attached: Yes No	
Sample Type: Screening Confirmation Dis	posal/Characterization
Laboratory Destination: Onsite Lab ASC - coc #	# USACE- coc #
Duplicate Taken: Yes No R	
On-site Laboratory Chain of Custody/Re	equest for Analysis
Requested Testing: TPH BTEX Chlorda	
Relinquished by(dd/tt): DABlen 9.16-54 153	Received by (dd/tt): 8/2 9/1694/539
Relinquished by(dd/tt):	Received by (dd/tt):

10,2 B13 ® 10 D 022 (Don3 O Blo in Pipe 色哥 MISTAL 150

OC 3

Comments/Observations:

Prepared by:

Sample Location Map Fort Devens - Project #16208

Site Name: SHS G

Date: 9, 16,94

Pg2 of2

TPH Analyst: MRS Location No.: Date: 9.16.94 GC Analyst: Site: Ft. Devens, MA Method 8080 Sample ID Concentration Action (mg/kg) Level Aroclor 1260 2 ppm chlordane 1 ppm **Percent Recovery** 2,4,5,6-tcmx decachlorobiphenyl Method 418.1 5735A 56 Sample ID Concentration Action BLO Bu Wizi WZZ WZ3 W24 W25 BIY BIZ 1313 B15 B16 WZG WEZ WES Level (mg/kg) NY del NO 3062 MD 1342 WD wo 540 NO 948 2805 MD 20 TRPH 500 ppm 70 da ND 321 195 97 899 au NO UD NP 266 697 ND ND 69 AK 500 ppm

500 ppm

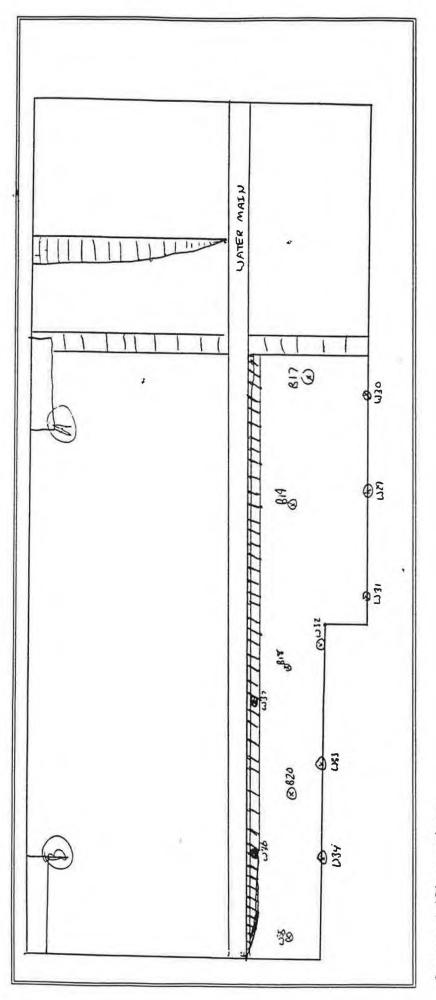
Pg. 1 of 2

Jate: 9-19-94

Site Name: SA 56

Weather: COOL, PARTILLADY

Samplers: 80


Sample ID Number	Time	Comp/ Grab			dinates Ref. Pt.	Sample Description	# of Bottles
SBSAJ B W29	1103	4	6'	SEE	MAP	Gry Gren clay	1x40 ~1
W30	lin	4	6'	M.	h	Brown Clay	
U31	1113	9	6'	G.		Gen Green Chen	
W32	1115	5	6'	L	^	· · · · · · · · · · · · · · · · · · ·	
Biz	1058	9	6.3"	k		Grey Green chur	
B13	1102	9	6'3"	N.	n	40	
B 19	1105	5	6'3'	ų		<i>i</i> 4	

Ref. Pt:	
Ref. Pt:	
Map Attached: Yes No	
Sample Type: Screening Confirmation Dis	posal/Characterization
Laboratory Destination: Onsite Lab ASC - coc #	# USACE- coc #
Duplicate Taken: Yes No Ri	insate Taken: Yes No
On-site Laboratory Chain of Custody/Re	equest for Analysis
Requested Testing: TPH BTEX Chlordar	ne PCBs Other
Relinquished by(dd/tt): 1:11 11 9-19-04 114/5 F	Received by (dd/tt): Tichar XI July 09-19
.≺elinquished by(dd/tt): F	// Received by (dd/tt):

Sample Location Map Fort Devens - Project #16208

Date: 9-19-94

Site Name: S#56

Comments/Observations:

TITITI WALL INSIDE EXAMPTEON

Prepared by:

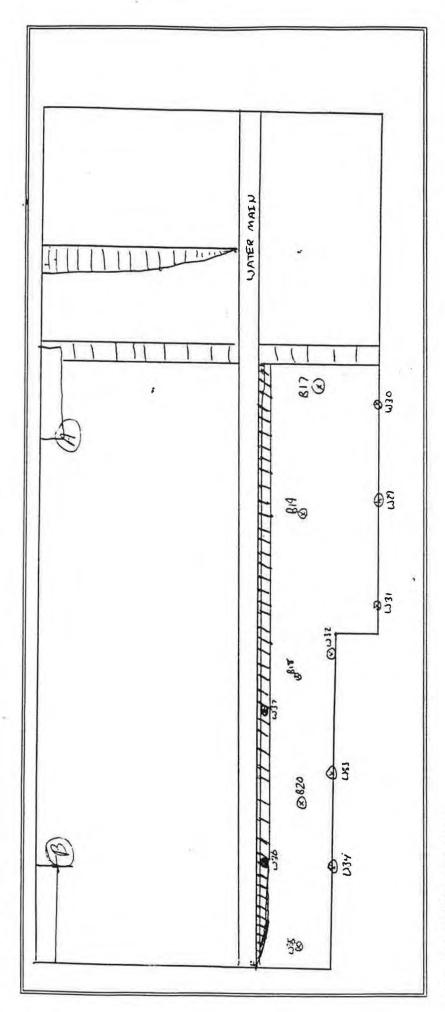
3.

Pg. 1 of Z

Date: 9-19-94

Site Name: SA56

Weather: COOL , PARTLY CLOSS Samplers: BO


Time	Comp/ Grab				Sample Description	# of Bottles
1120	5	6'	SEE	MAP	grey clay	1440-1
1122	5	6'	я	16	grey boson clay	1
1124	5	6'	h	"	grigina	
1127	5	5'	•	77	grey clay	
1131	5	5'	н	n	grey green clay	1
1135	9	C '3"	ч		Grey green Clay	۸
	1120 1127 1129 1129	Time Grab 1120 5 1127 5 1124 5 1127 5 1131 5	Time Grab Depth (ft) 1120 5 6' 1121 5 6' 1129 5 5' 1131 5 5'	Time Grab Depth (ft) Ref. Pt. 1120	Time Grab Depth (ft) Ref. Pt. Ref. Pt. 1120	Time Grab Depth (ft) Ref. Pt. Ref. Pt. Description 1120 5 6' 5EE MAP grey clay 1121 5 6' " " grey clay 1127 5 5' " " grey clay 1131 5 5' " " Grey green clay 1135 9 6'3" " " Grey green Clay

Ref. Pt:	
Ref. Pt:	
Map Attached: Yes No	
Sample Type: Screening Confirmation Di	sposal/Characterization
Laboratory Destination: Onsite Lab ASC - coc	# USACE- coc #
Duplicate Taken: Yes No	Rinsate Taken: Yes No
On-site Laboratory Chain of Custody/F	Request for Analysis
Requested Testing: TPH BTEX Chlorda	ane PCBs Other
Relinquished by(dd/tt): CIL D 9-19-94 INS	Received by (dd/tt): Machael VI Line 09-19-74
Relinquished by(dd/tt):	Received by (dd/tt):

Sample Location Map Fort Devens - Project #16208

Date: () - 19 - 94

Site Name: 5456

Comments/Observations:

[[[[[]]] WALL INSIDE EXCAURTION

Prepared by: (All 1)

3

Pg. Lof 2

Date: 9 - 19 - 94

Site Name: SASZ

Weather: COL, PARTLY CLOSY Samplers: BD

Sample ID Number	Time	Comp/ Grab	The second of the second of		dinates Ref. Pt	4	imple cription	# of Bottles
SBAS6 W35	1347	9	51	SEE	MAP	לוניב תנטים	ey clay	1 you ~1
WH	139	9	11.	16	ਜ	grey clas		
U40	1351	4	3'	'n	1.41	bran oran	3c 50.1/rxky	
Щ	1353	4	2'		4	K	4	
ムウン	1355	4	1,	,	•	ts=	<i>(1)</i>	4

Ref. Pt:	
Ref. Pt:	
Map Attached: Yes No	
Sample Type: Screening Confirm	nation Disposal/Characterization
Laboratory Destination: Onsite Lab	ASC - coc # USACE- coc #
	Rinsate Taken: Yes No
On-site Laboratory Chain of	of Custody/Request for Analysis
Requested Testing: TPH BTEX	Chlordane PCBs Other
Relinquished by(dd/tt): Will 1/2	200 9/A/H Received by (dd/tt): 200 1/4/4 Received by (dd/tt): 200 1/4/4
Relinquished by(dd/tt):	Received by (dd/tt):

Sample Location Map Fort Devens - Project #16208

Date: 9-19-94

Site Name: SA56

. 1EM9 (@ W38 L 20042 S 60 031 D WHI BUD . かま キャ ₹ # 4 ~ 151 ~ 151 let .

Comments/Observations:

Prepared by: Bull Jalu

Page 1 oil / MKM/BD Location No.: SAST Date: 9.19.94 GC Analyst: Site: Ft. Devens, MA **TPH Analyst:** Method 8080 Sample ID Concentration Action Level (mg/kg) Aroclor 1260 2 ppm chlordane 1 ppm **Percent Recovery** 2,4,5,6-tcmx decachlorobiphenyl Method 418.1 SBSA56 Sample ID Concentration Action B17 B18 B19 W29 W30 W31 W32 W33 W34 W35- W36 Bzc W37 W38 W39 (mg/kg) Level 641 WYZ 4040 786 NO ND 59 185 NO TRPH 500 ppm 769 1028 ND 1673 1700 153 46 ND NO NO 1086 ND 370 MO CIVI ND NO ND NO AIIC 272 194 NN WO 141 500 ppm

500 ppm

DAILY FIELD SCREENING RESULTS

1,3-Dichlorobenzene

Page (of (

Site: Ft. Dewns, MA	Location	on No.: S	156	Date:	9.19.94	GC Analyst:	m 1213	TPH Analyst:	
Method 8020									
	Sampl	e ID							
Concentration Action (mg/kg) Level	56 B								
benzene, 10 ppm	W								
toluene 90 ppm	ND								
ethylbenzene 80 ppm	ND								
n,p-xylene	NO								
o-xylene	NO								
tot. tylene 500 ppm	ND	= 1							
chlorobenzene									
1,2-dichlorobenz.									
1,3-dichlorobenz.									
1,4-dichlorobenz.									
Paraget Recovery									

· Note - BTEX analyse's (screening) is not required at this site, however above sample was screened to check elevated aromotic response on TDH instrument.

Pg. 1 of L

of

Bottles

Sample

Description

Date: 9-20-94

Site Name: SA56

Weather: (OOL, CLEAR

Sample | Comp/ Sample | Coordinates | ID Number Time | Grab | Depth (ft)|Ref. Pt._ Ref. Pt.

Samplers: 150

JOJE	36 B21 10	035	9	6'	10	1.	Boan rocky Let clay	1840-1 Voz
	W43 1		9	7'6"	SEE	gan	Bran rocky with clay Bue grey of Reach Bransol clay ration	
	W44 11	049	4	5'	u	.,	Bransolder mytere	
4	B72 10	215	5	9'	4	151	GREYCLAY	•
		-						
	Pt: _ Attached	_	es	No				
Map /	Attached	: Ye	creenin	ng Co	onfirmatio		sposal/Characterization	
Map /	Attached	: Ye	creenin	ng Co			sposal/Characterization # USACE- coc #	
Map /	Attached ble Type: ratory De	: Ye	creenir	ng Co	ab As	SC - coc		
Map /	Attached ole Type: ratory De	d: Ye	creenin tion: ate Take	Onsite La	No AS	SC - coc F	# USACE- coc #	
Map /	Attached ole Type: ratory De	d: Ye	creenintion: ate Take	Onsite La	No AS	SC - coc F	# USACE- coc #_ Rinsate Taken: Yes No Request for Analysis	
Map / Samp Labor Requ	Attached ole Type: ratory De	esting:	creenintion: ate Take te Labe	Onsite La	No As	SC - coc F ustody/R Chlorda	# USACE- coc #. Rinsate Taken: Yes No	2 - jn. 5

Sample Location Map Fort Devens - Project #16208

Date: 9-19-94

Site Name: 5#55

WILLIT WALL INSIDE EXAMATION

Prepared by:

3

 $Pg. \underline{\hspace{0.1cm}}\hspace{0.1cm} \text{ of } \underline{\hspace{0.1cm}}\hspace{0.1cm} \underline{\hspace{0.1cm}}\hspace{0.1cm}$

Date: 9-20-94

Site Name: SA56

Weather: (CCL , CLEAR

Samplers: BO

Sample ID Number Tim		Comp/ Grab		Coordinates Ref. Pt Ref. Pt.		Sample Description	# of Bottles
SSSA 56 WUS	1309	g	56"	SEE	MAP	Grey Clar rocky	1x40 m1 V2.4
W 46	1311	9	6'6"	T. 6 11	19	BROWN CLAY	
WUD	1313	9	56"		1,7	C-e-/ Ck, Shale like	
W48	1315	д	6'6"	1.	i (e	is and	
813	1370	ġ	9'	ti	3.6	Brancici/mis wer	+

Ref. Pt. <u>1/4</u> :	
Ref. Pt. <u>NA</u> :	
Map Attached: Yes No	
Sample Type: Screening Confirmation	Disposal/Characterization
Laboratory Destination: Onsite Lab ASC -	coc# USACE- coc#
Duplicate Taken: Yes No	Rinsate Taken: Yes No
On-site Laboratory Chain of Custo	dy/Request for Analysis
Requested Testing: TPH BTEX Ch	lordane PCBs Other
Relinquished by(dd/tt): William Dele 9-20-94 133	Received by (dd/tt):
Relinquished by/dd/tt):	Received by (dd/tt):

Sample Location Map Fort Devens - Project #16208

Site Name: 5456

Date: 9.30 - 94

UATER MALU 621 B 8220 W43® **€**⊗ 8 % % DE S 13 SUPE 43 @ \$20 Comments/Observations: 25

[[[[[]] LIALL INSIDE EXANGTION

Prepared by:

Site: Ft. Devens	, MA	Loca	tion N	o.: S	A56	/ 7 ₂ .	Date:	9.20	0.94	GC A	nalyst	: mi	213		TPH A	nalys	t: ^	Page PBD	/ot	
Method 8080						1	SAS	6												
		Sam	ole ID	SBS	A36															
Concentration (mg/kg)	Action Level		B2	63	84	wi*	WZ		AW4									Ġ.		
Aroclor 1260	2 ppm	(A.)	2			2,5														
chlordane	1 ppm	ND	ND	ND	1.2	0.1	DN		ND								0014			
decachlorobip , Method 418.1		0	(- ID:	SBSA	6	5.6%	N 7				LCB	SA 5 (
Concentration (mg/kg)	Action Level	B21	10000	W43	1		W7Z	WB	W74	WIS	W45			WYB	B23					
TRPH	500 ppm	67	459	1975	ND	355	NO	131	17	NO	ND	NO	598	1263	ND					
AHC		an	85	351	ND	28J	ND	ND	ND	ND	ND	ND	128	343	MD					
TINC .	500 ppm		×-			******														
	500 ppm																			

ND - Indicates compound (s) not detected

Note . will rerun SBSA36 on 9-21-94 to confirm Arachlor 1260 concentration.

Notes: Results for SA36 are for samples collected from the larger of the 2 excavations adjacent to the shed. The other excavation will carry and "A" designation in order to differential the 2.

Pg./_of_3

Date: 9.21 - 94

Site Name: SA56

Weather: COOL, CLEAR

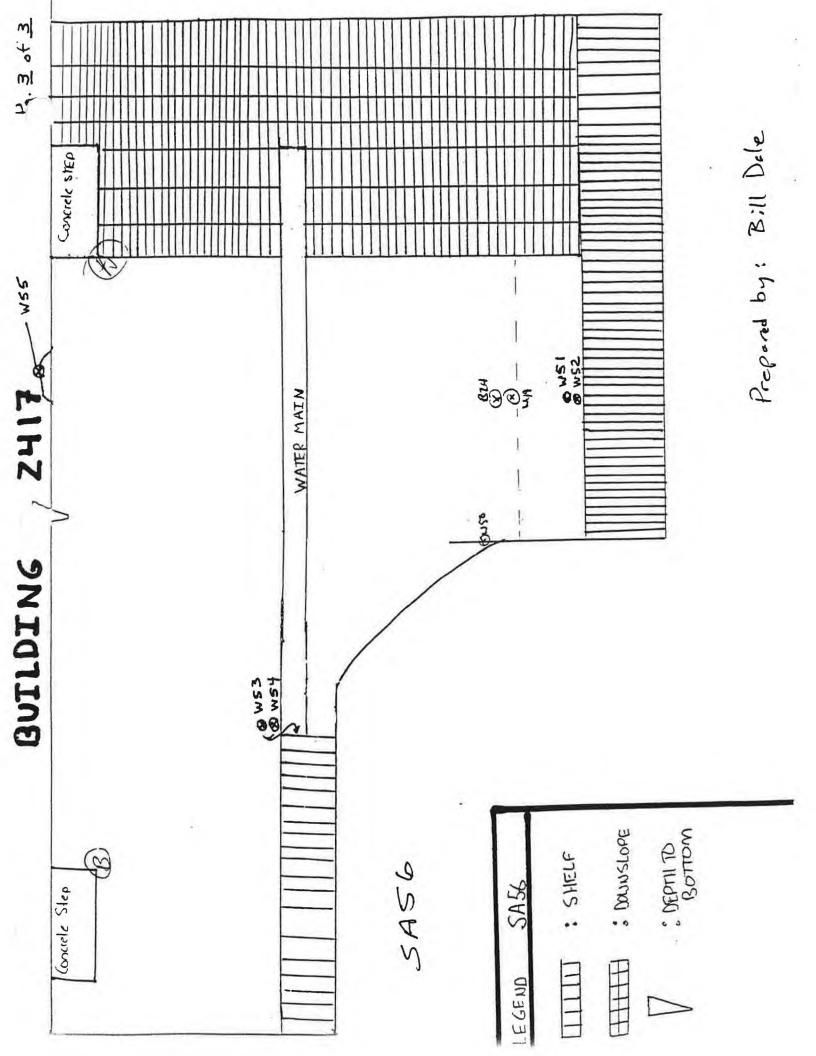
Samplers: BO

Sample ID Number	Sample Comp/ Sample Number Time Grab Depth (ft)R		dinates Ref. Pt	Sample Description	# of Bottles		
SBAS & WLA	Ono	9	7'		Grey CIAY Shale like	1×90~1	
" Uso		9	7		TAN CIAY U/10005	"	
" 823	0930	5	10.5		Brown mud /clay metre	1	
B24	ca						
" \$23 B24 a	22/94						
						Ì	

Ref. Pt: <u>See map</u>								
Ref. Pt: Map Attached: Yes No								
Laboratory Destination: Onsite Lab ASC	- coc # USACE- coc #							
Duplicate Taken: Yes No	Rinsate Taken: Yes No							
On-site Laboratory Chain of Cust	tody/Request for Analysis							
	Chlordane PCBs Other							
Relinquished by(dd/tt): Cill 4-21-948	Received by (dd/tt): Cuylon 9-2494 087							
Relinquished by(dd/tt):	Received by (dd/tt):							

Pg 2 of 3

Date: 09-21-94


Site Name: SAS 6

Weather: Sonny + warm

Samplers:

Sample ID Number	Time	Comp/ Grab	Sample Depth (ft)	dinates Ref. Pt		ample scription		f of ottles
585256 W51	1300	9	8'		Brown Clay	ey sul sume cabble	lx	40mL
W52	1302	G	9.5		Ĺť	N		
W 53	(305	G	6.5		n	И		
w54	1302	G	8'	,	ň	Ü		
w55	1420	4	6		h	η		

Ref. Pt:									
Ref. Pt:	See map								
Map Attached: Yes No									
Sample Type: Screening Confir	mation Disposal/Characterization								
Laboratory Destination: Onsite Lab) ASC - coc # USACE- coc #								
Duplicate Taken: Yes N	lo Rinsate Taken: Yes No								
On-site Laboratory Chain	of Custody/Request for Analysis								
Requested Testing: TPH BTEX	Chlordane PCBs Other								
Relinquished by(dd/tt): 7/1/ Zeula	Chlordane PCBs Other								
Relinquished by(dd/tt):	Received by (dd/tt):								

1ethod 8080		Sam	ple ID	S C	os A	3.6												
Concentration (mg/kg)	Action Level	₩3	64	W5	WG	พา	W8	ABI	1B2	AB3	Λωι	Λως	163	SUB		136		
roclor 1260	2 ppm														ND			
hlordane	1 ppm	ND	M	NO	ND	ND	NO	ND	NN	NO	Nh	WP	ND	587	7.80	,075		
							-	-										
ethod 418.1	•	Samp	ole ID	s B	SAS	56				SB:	5A3(6						
ethod 418.1	Action Level			พรง		W52			WSS		5/13(<i>(</i> ,						
ethod 418.1 oncentration (mg/kg)		B24		100 1020	W51	W52	N	ND	W55	SDB 469	5A3(
ethod 418.1 oncentration (mg/kg)	Level	B24	W49	พรง	W51	W52	N		WSS	SDB	5A3(
ethod 418.1 oncentration (mg/kg)	Level	B24 M2	W49	100 1020	W51	W52	N	ND	W55	SDB 469	5Λ3(
ethod 418.1 oncentration (mg/kg) RPH	Level 500 ppm	B24 M2 M)	W49	100 1020	W51	W52	N	ND	W55	SDB 469	5A30							
ethod 418.1 oncentration (mg/kg) RPH	Level	B24 M2 M)	W49	100 1020	W51	W52	N	ND	W55	SDB 469	5A 30							
ethod 418.1	Level 500 ppm	B24 M2 M)	W49	100 1020	W51	W52	N	ND	W55	SDB 469	5Λ3(
Concentration (mg/kg)	Level 500 ppm	B24 M2 M)	W49	100 1020	W51	W52	N	ND	W55	SDB 469	5/3/3/							

ND. Indicates compound(s) not detected

J- n

Generation is estimated concentration below practical quantification

limit

Pg. Lof4

Date: 09.22-94

Site Name: 5A56

Weather: Overcast 4 0001

Samplers: BD/MGQ

Sample ID Number	Time	Comp/ Grab	Sample Depth (ft)R	 dinates Ref. Pt	Sample Description	# of Bottles
SBSAS &	1510	С	6-7'		Brown send wil some day	Jx402 Amb Glass
NEZ	1505	G			Grayish sendy clay	da 40 ml Vials
SEC	1515	С			Brown send w/ cobola	And Class
5E Z	1512	9			Brown sand w/ cobb/1	224021 V. 21-
500 C	1520	С			Brown clayey send w/ cobble	3x 407 Amb Gless
5 m 2	15(3	G			Brown cloyed sand w/c.bb/s	Viels
DUPC	1515	C			Brown send m/ cobble	2 x 4 = 22 Amb. 6/615
DUPG	1512	G	4		Brown send of cobble	2 x 40 ml

Ref. Pt:		
Ref. Pt:		
Map Attached: Yes No		
Sample Type: Screening Confir	rmation Disposal/Characterization	TRP's only
Laboratory Destination: Onsite Lab	(ASC - coc # 107682 183 USACE- co	oc#_140087
Duplicate Taken: Yes N	lo Rinsate Taken: Yes No	
On-site Laboratory Chain	of Custody/Request for Analysis	
Requested Testing: TPH BTEX		D
Relinquished by(dd/tt): Michael XI	Received by (dd/tt):	Men 1630
Relinquished by(dd/tt):	Received by (dd/tt):	

Pg. 2 of 4

of

Bottles

2x402

Amb-Gloss

Date: 09.22.9+

Sample

SBSAS 7

TRPC

Site Name: SASG

Coordinates

Weather: Overcast & Coal

1515

Comp/ Sample

6.7'

ID Number Time Grab Depth (ft) Ref. Pt. Ref. Pt.

C

Relinquished by(dd/tt):_____

Relinquished by(dd/tt):_____

Samplers: BD/MGQ

Sample

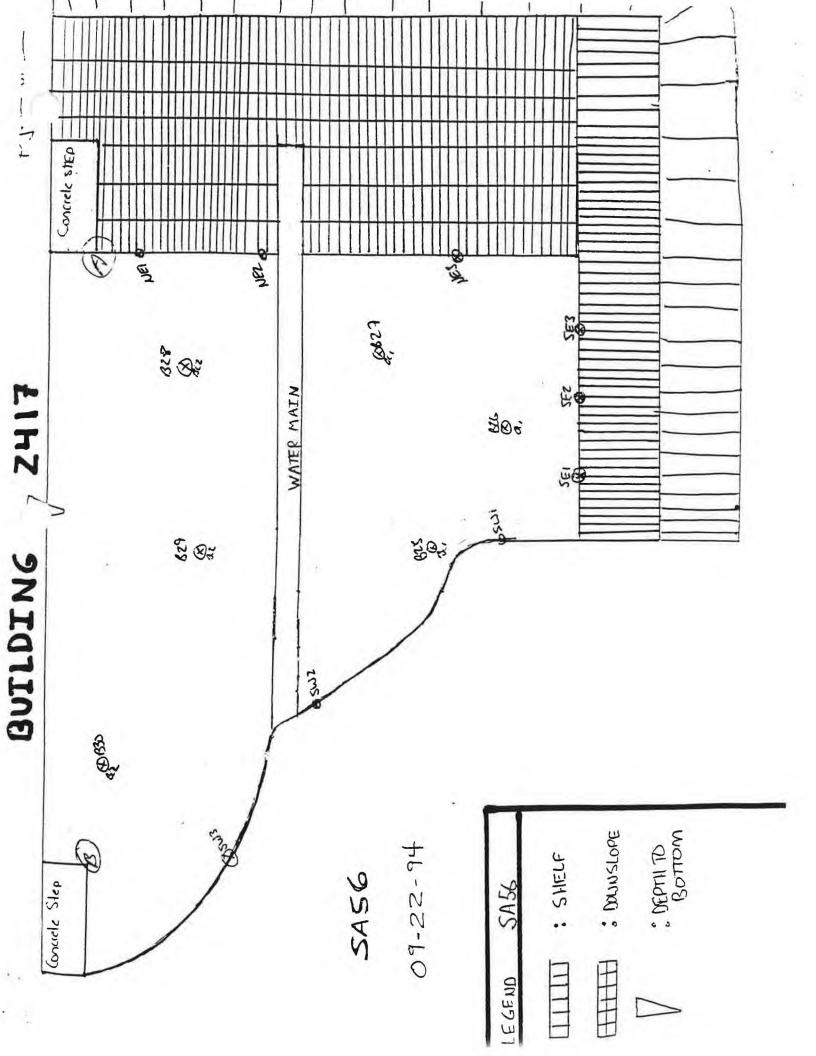
Description

Brown sand w/ some comble

Received by (dd/tt):_____

Received by (dd/tt):_____

TRPG	1572	9	o				CI		4	2 x 40 m
BCZ	1540	C	10'5"			Wat a	ingish (layey	sand	2 x 4 02 Amb. Glas
B30	1532	G	10'5"			Gray 15	L clay	ey Sa	nd	2 x 40 A Via(2 x 4 0 a
BCI	1600	С	10'5"				ay clary			2 × 4 0 7 Amb Gla
B25	1555	G	10.5"				ay cla			1 x 43 m
				8		1		1 1		
Ref. Pt		-	77							
Map Attach	ed: Ye	creenir	No ng Co	nfirmati	ion Dis				ACE- co	c#


Sample Collection Log Supplemental Form Composite Sample Data Fort Devens - Project #16208

Pg. 3 of 4

Date: 09-22-94 Site: 5,456

Sampler: BD/MGQ

Composite	Discrete	Coc	ordinates	
Sample ID	Sample ID	Ref. Pt. A	Ref. Pt. B	Sample Description
SBS156	by	ps 4/20/44		
	NEI	743'6"	35'	Brown/Gray clayery send
	NEZ	12.6"	35'6"	Gray Clayer sond
NEC	NEZ	19	38 '6"	Brownlang clayer send Gray Clayer sond Brown/Gray clayer sond
	SE (29/	32, 6"	Broth sund & cobble
	SEZ	28'6"	34 6" 34"	i i
SEC	5€3	29'	36'	iv iv
50-				
SEC DUPC TRPC				
	Su 1	75'	27	Bown claves and who
	Swz	25'	16'	Brown clayey sand w/ cobbl
SWC	Sw3	24'	Mpy Ext. 2.	16 16
			dyr	
			1	
			¥.	
*	B25	24'	198 22 6 25 29. 6"	Wat gray dayey and
BCI	826	22'	29.6"	1 " " "
	B27	17'6"	30 '	ι
	B28	メ +' 16' 2年'	24.6 "	Wat gray chargey sond
BCZ	B29	16	16'	
	B30	24		er a
100			*4.	
	-	-	4	
85			11 1	

					A 36				-, 1 (n				,		1 or 3	
Method 8080	•	Samp	ole ID	51	351	136	9		ı Sß	SA3	0								
Concentration (mg/kg)	Action Level	BC	FC	M	SC	LUC		TRP	ABC		ANC	Asc	Aux	ADVE	ATRA				
Aroclor 1260	2 ppm																		
chlordane	1 ppm	0.035	0.043	ND	0.22	ND	ND	ND	ND	ND	ND	ND	ND	ND	N.O				
											-	_		_			-		
2,4,5,6-tcmx decachlorobip	henyl																-	1	
	henyl																		
decachlorobip	henyl																-		
decachlorobip	henyl	Samp	ole ID	s8	SASU	1													
decachlorobip	Action Level	Samp B<1	BC 2			NEC	DUR	TAPC	BC1										
decachlorobip	Action	B<1				,	DUR 17-1	TAPC 122											

500 ppm

500 ppm

. Note - BCI was reextracted ! rescreened due to errotic instrument response on initial run

ND- Indicates compound(s) was not detected

J- " estincted concentration below practical quantification limit

Pg. 1_of_3

Date: 10-3-14

Site Name: 5456

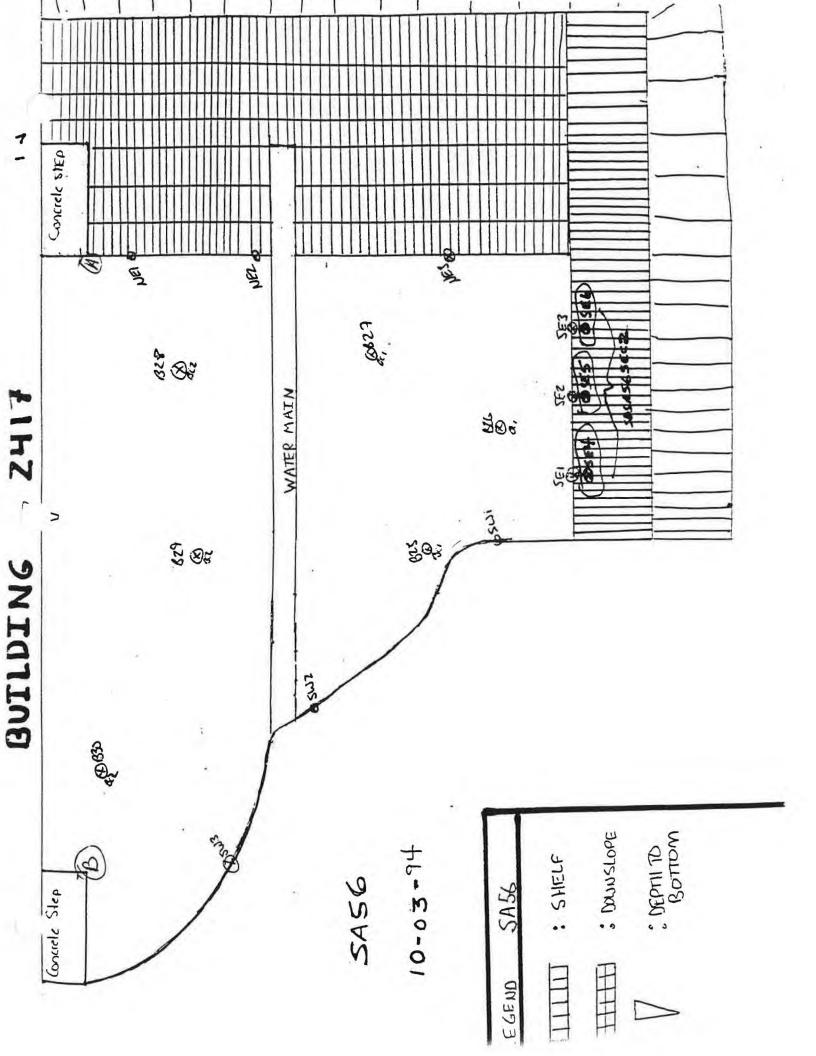
Weather: Sunny : cool

Samplers: B ▷

Sample ID Number	Time	Comp/ Grab	Sample Depth (ft)	 dinates Ref. Pt	Sam Descr	iple ription	# of Bottles
505056580	1255	C	7'6"		grayish, bion	in sand ? clay	Amb atas
Dup ₂	11	C	u		···	ч	(t
↓ TRP	11	C	t)		14	U	r I
SBSATS SEY	1248	G	ti		grey bran ro	ch, mid	1240ml VaA Viala
SET	1244	9	75		gey soon sh	she like chang	At
SE6	1252	9	W.		greg brown	rocky . a.d	it it

Ref. Pt:	
Ref. Pt:	
Map Attached: Yes No	
Sample Type: Screening Confirmation	Disposal/Characterization
Laboratory Destination: Onsite Lab ASC -	coc#USACE- coc#
Duplicate Taken: Yes No	Rinsate Taken: Yes No
On-site Laboratory Chain of Custo	dy/Request for Analysis
Requested Testing: TPH BTEX Ch	lordane PCBs Other
Relinquished by(dd/tt): College 13	○ Received by (dd/tt): Mail 10/3/64 130
Relinquished by(dd/tt):	Received by (dd/tt):

Sample Collection Log Supplemental Form Composite Sample Data Fort Devens - Project #16208


Pg.<u>2</u>of_3

Date: 10-3-94

Site: 5,456

Sampler: 60

Composite	Discrete Sample ID	C	oordinates	22000 Tel 2000 Tel 100
Sample ID	Sample ID	Ref. Pt. A	Ref. Pt. B	Sample Description wet gray day w/ Brown Sind
	1	26	MO2 33/	met gray day w/ Brown Sind
SBSASESELZ		27'	13/3144 34,	wet grayish sondy clay wet send i cobble
BBSA52002	SEB	27'6"	36 6	wet send i cobble
		1		

Bldg 1435 SA56

Page | of)

Site: Ft. Devens, MA

Location No.:

Date: 10.3.94 GC Analyst:

TPH Analyst: MRB

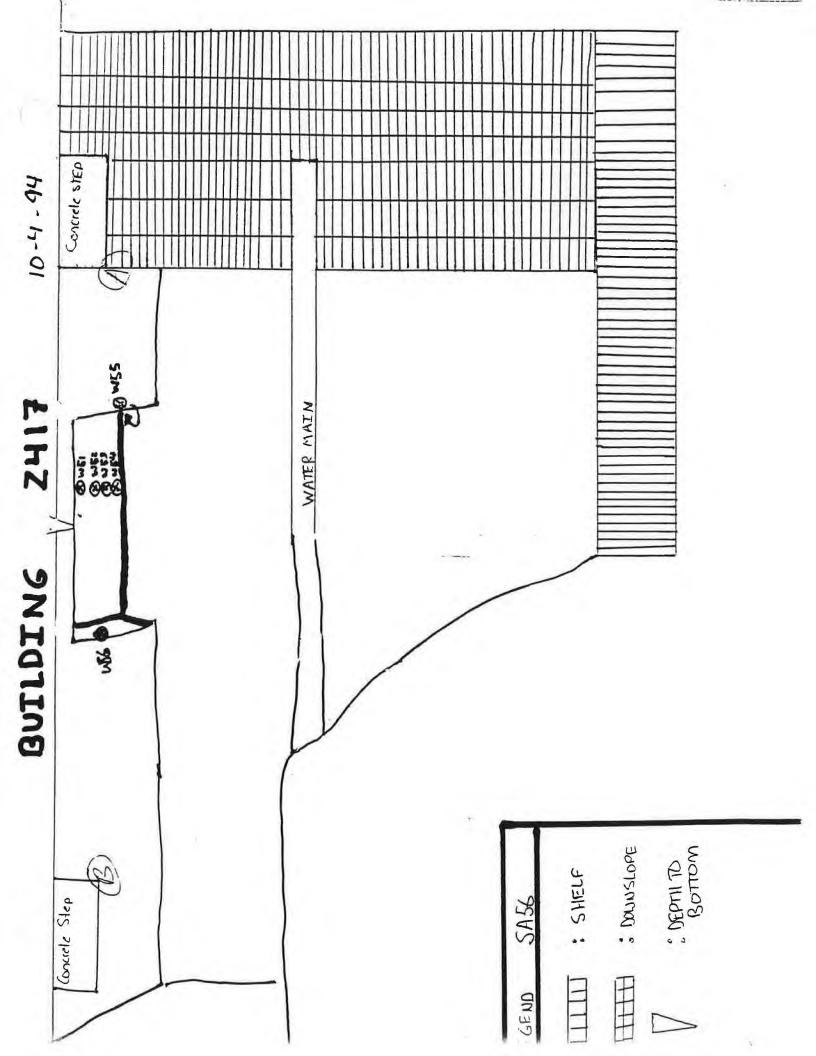
and write

Concentration Action (mg/kg) Level											
Aroclor 1260 2 ppm											
chlordane 1 ppm			1.0								
Percent Recovery				-	-					l	
2,4,5,6-tcmx decachlorobiphenyl	0.231								11-		
decachlorobiphenyl											

Method 418.1	•	Samp	ole ID	BI	eg 14	33-														
Concentration (mg/kg)	Action Level	ωq.	(D) 10		WIZ	WI4	Uis	WIG	W17	Wia	W 20	17.51	LUZZ	W 23	Вч	BS	Wzy	W25	W ZC	w27
TRPH	500 ppm	77	4517	ルり	ND	3 405	2149	in	Nr,	NO	MN	Nh	M	2650	70	ND	NN	NN	ND	NY
17.4		WZY	136	B)	138	ਿੰਦੀ	WK	4)3a	₩31	W3L	WSS	SEC2	SAS Avez	L. TEP2	SEY	SE5"	SEG			
Ely	500 ppm	M	7086	ND	43.1	1035	M	70	384	Щ	gu	315	44	342	69	N	¥2.			
	500 ppm																			

Pg. <u>/</u> of <u>≥</u>

Date:


10-4-94

Site Name: SAI6

Weather: COOL, PARTLYCLODYSamplers: BD

Sample ID Number	Time		Coord Ref. Pt.	4	Sample Sescription	# of Bottles
SBSA56W51	1.230	9		Grey sad	& Clay max tore	1x 40-1
1 452	12.35	9		Brown sa	ody clay	(4)
UЗ	1238	9		Brown so	ndy (ling 0/1006 4	X.
W74	17:42	5		Grey (1-4	of rock	
455	12:45	4		Į.	ti.	
\$ 656	17:50	5		Gres cla	-1 4/smd + cobble	11
				,		

Ref. Pt:	
Ref. Pt:	
Map Attached: Yes No	
Sample Type: Screening Confirmation	Disposal/Characterization
Laboratory Destination: Onsite Lab ASC	- coc # USACE- coc #
Duplicate Taken: Yes No	Rinsate Taken: Yes No
On-site Laboratory Chain of Cust	ody/Request for Analysis
	hlordane PCBs Other
Relinquished by(dd/tt): 10-4-74 /3	130 Received by (dd/tt): Make & Lune 10.4.94 130
Relinquished by(dd/tt):	

Page of |

ite: Ft. Devens, MA

Location No.: BIR 1435 Date: 10.4.94 GC Analyst:

TPH Analyst: MURY

lethod 8080

-				
				_ 1

3thod 418.1	•	Sample ID Bldg 1435							SBSA56											
oncentration (mg/kg)	Action Level	Bio	Bil	Biz	107.3	BIT	B15	B.16	B17	451	WSZ	lus3	Wsy	W55	With	NUKI	Muiz	MWCz		
RPH	500 ppm	ND	ND	Np	5157	395	1084	47	ND	284	NP	NP	Nb	NB	325	M	Np	ND		
	500 ppm																			
	500 ppm																			

	1		-
Da	1	-5	5
Pg.	,	_01	_

of

Bottles

Date: 10-54-94

Sample

Site Name: SAS6

Coordinates

Weather: Sunny & cool

Comp/ Sample

ID Number Time Grab Depth (ft)Ref. Pt. Ref. Pt.

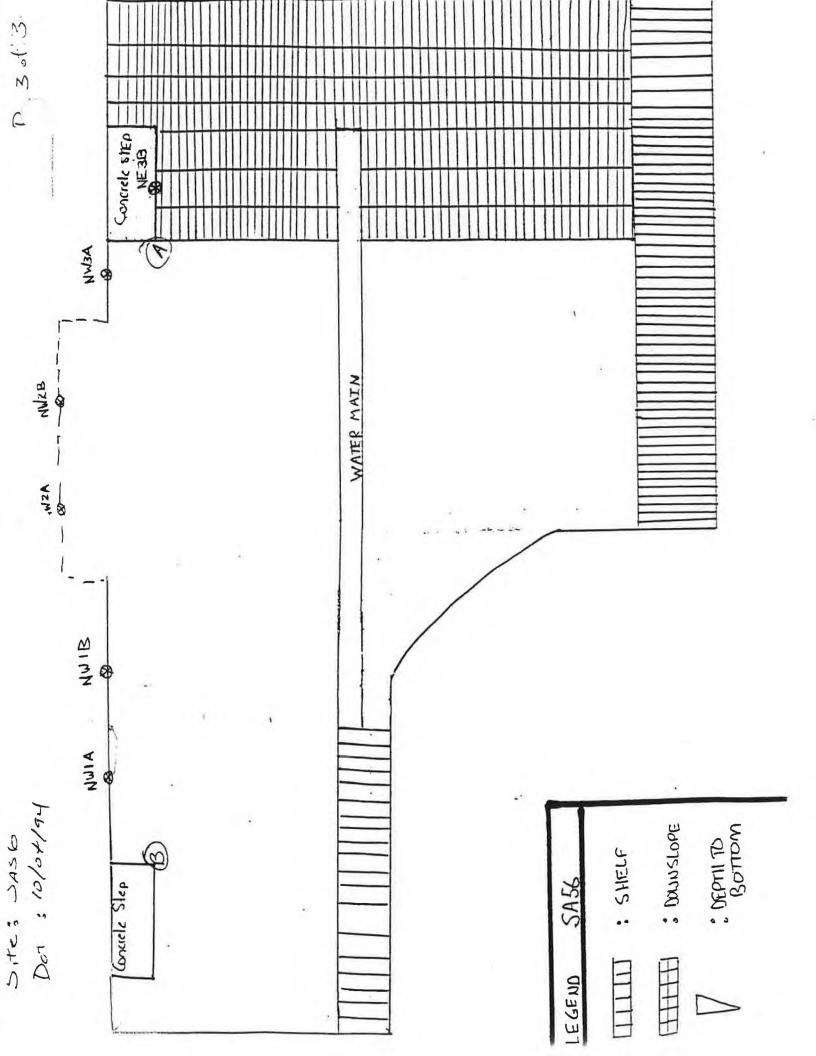
Samplers: BD/460

Sample

Description

585A56NWC1	1510	C	6.7				Amb. Glass
NWC2	1520	C					
NWC3	1530	2				-	0
SBSASGNUIB	1505	G					Glas vials
NWZC	1515	6					
NU3B	1525	G	4				1
Ref. Pt:						-	
Ref. Pt							
Map Attach	ed: Ye	es)	No				
Sample Typ	be: S	creenin	g Confirm	mation D	isposal/Characte	erization	
Laboratory	Destina	tion:	Onsite Lab	ASC - coo	#_107684	_) USACE	E- coc #_ N/A
			en: Yes No		Dinasta Takan	v C	
	Duplica	ate lake	cii. 163 <u>M</u>		Rinsate Taken:	Yes N	0
	1000						<u> </u>
	On-si	ite Labo	oratory Chain	of Custody/l	Request for Ana	ılysis	<u> </u>
Requested Relinquishe	On-si	ite Labo	oratory Chain	of Custody/i	Request for Ana	llysis Other	<u> </u>

Sample Collection Log Supplemental Form Composite Sample Data Fort Devens - Project #16208


Pg. 20f_3

Date: 10-4-94

Site: SASL

Sampler: BD / HaQ

Composite	Discrete	Coor	dinates	
	Sample ID	Ref. Pt. A	Ref. Pt. A	Sample Description
SSSASENWEI	NGI A NGI B	23' /8'6"	1 2 6" 8" 6	" Gray sandy clay w/ rock
55jasemicz	NWZA NWZB	10/6/11/2 10/6/11/2	20'	Grany sendy clay withock
SBSASENWIE 3	AEWA BEWA	3' 6"	28. 6 "	Brown soundy clay whrock
			1	
4,				

Page | of | TPH Analyst: Much

Site: Ft. Devens, MA

Location No.: Billy 1435 Date: 10.4.74 GC Analyst:

Jel	hod	80	80
-		_	

Concentration Action	on						
(mg/kg) Leve							
roclor 1260 2 pp	m				- 11 (4)		
chlordane 1 pp	m						

Method 418.1		Sample ID Bldg 1435							1 5	SBSA56										
Concentration (mg/kg)	Action Level	Bio	Bil	Biz	Bi3		815	B.10	B17	W51	W57	lw3	Wy	655	Wish	Nucl	Muca	MWC 3		
TRPH	500 ppm	ND	140	qiq	5157	395	1084	_67_ 	NO	284	NP	MN	Nb	NP	325	Ny	Np	ND		
	500 ppm																			
	500 ppm																			

Pg. 1 of Z

Date: 10-12-94

Site Name: SA56

Weather: Sunny & Cool

Samplers: MGQ

Dimhar	Time		Sample Depth (ft)		dinates Ref Pt	nates Sample Ref. Pt. Description		# of Bottles	
ID Number SAS6 CLEAN PILE		C	6-12"	Vei. Ft.	NGI. P.L.	Brawn sand		(x con)	
							(4)		
							4.		
Ref. Pt		_	No						
Map Attach Sample Typ Laboratory	Destin	ation:	/_	_	ASC - coc i		usace-coo		
Sample Typ	Destin Duplio	ation:	Onsite La	No Page 1	ASC - coc i	insate Taken: equest for Ana	_ USACE- coo		
Sample Typ Laboratory Requested	Destin Duplic On-s	ation: cate Tak site Lab	Onsite La	No Pain of C	ASC - coc i	tinsate Taken: equest for Ana	Yes No Iysis Other	in A	
Sample Typ	Destin Duplic On-s	ation: cate Tak site Lab	Onsite La	No Pain of C	ASC - coc i	insate Taken: equest for Ana	Yes No Iysis Other		

Page (of (

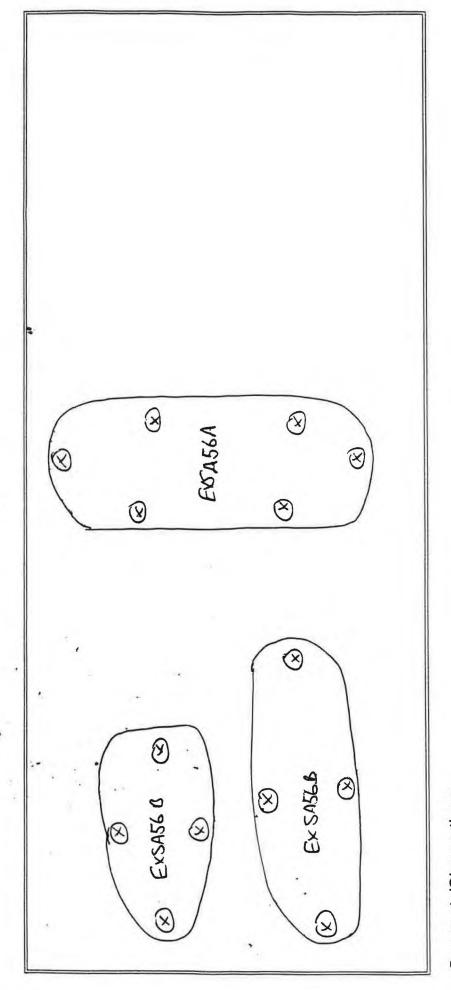
Site: Ft. Devens	, MA	Location	No.: 1435	Dale: /0-/2	.૧૫ GC An	alyst:	TPI	H Analyst: A	16Q	M E
Method 8080	-	Sample	ID							
Concentration (mg/kg)	Action Level	Ouripio ,					TI			
Aroclor 1260	2 ppm									
chlordaņe	1 ppm	Se ille								
Percent Recove 2,4,5,6-tcmx										
decachlorobip	henyl									
Method 418.1		Sample I	ID							
Concentration (mg/kg)	Action	SAS 6 CIPLÉE	1435 Clar Pile							
TRPH	500 ppm		QÚ							
	7.7									7
	500 ppm									
							TA			3/1-
	500 ppm						-	+		-

Pg. Lof Z

Date: 10-20-94

Site Name: SA56

Weather: COOL , OUELCAST Samplers: RO


Sample ID Number	Time	Comp/ Grab	Sample Depth (ft)		dinates Ref. Pt	San Desc	ription	# of Bottles
EXSASS AL	929	C	16"	SEE	MAP	Grey Bran	ClaySed Mitte	5x407
1	925	G	16"	ls.	t.	7.		2 K40~1 U01
	445	C	16"	ч	ч		×	5 X407 Anber
BG	940	6	18"	4			3*	22 40-01 UOA
ACS	929	C	16"	4	L*			5 x 407 Amber
+ AGS	9 25	G	16"		n			1 x 40~1 VO.4

Ref. Pt. : SFF	ATTACHED MAD FOR
	RIE LOCATION}
Map Attached: Yes N	
Sample Type: Screening	Confirmation Disposal/Characterization
Laboratory Destination:	Onsite Lab ASC - coc # 1077/07 USACE- coc # 1077/0
Duplicate Take	n: Yes No Rinsate Taken: Yes No
On-site Labor	atory Chain of Custody/Request for Analysis
Requested Testing: TPF	BTEX Chlordane PCBs Other
Relinquished by(dd/tt):	Received by (dd/tt):
Relinquished by(dd/tt):	Received by (dd/tt):

Sample Location Map Fort Devens - Project #16208

Date: 10-20 -94

Site Name: SA56

Comments/Observations:

Prepared by: Rull

7	4 BD 13-26-91 F	(
Jate: 12 - 3	1.94	
Weather: South	1007	
Sample	Comp/ Sample	

Relinquished by(dd/tt):_____

5.450 Site Name:

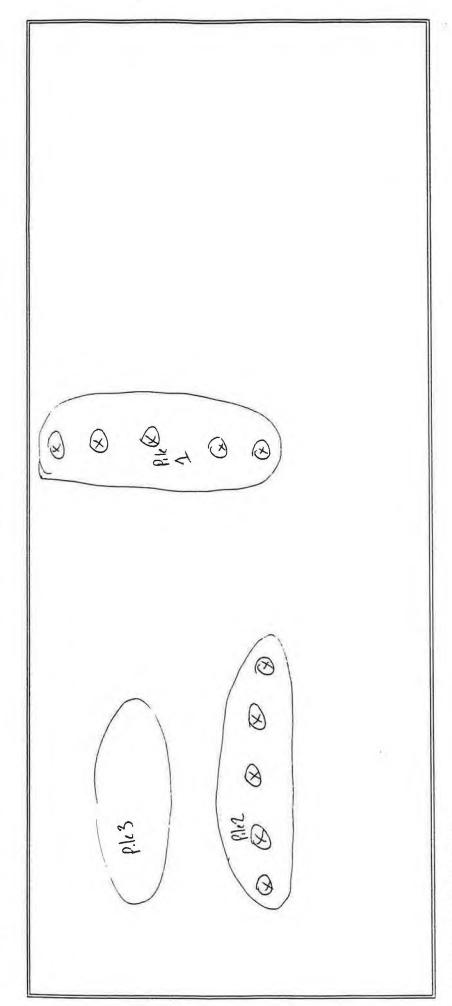
Sample

Pg. ! of ≥

Samplers: BD

Coordinates

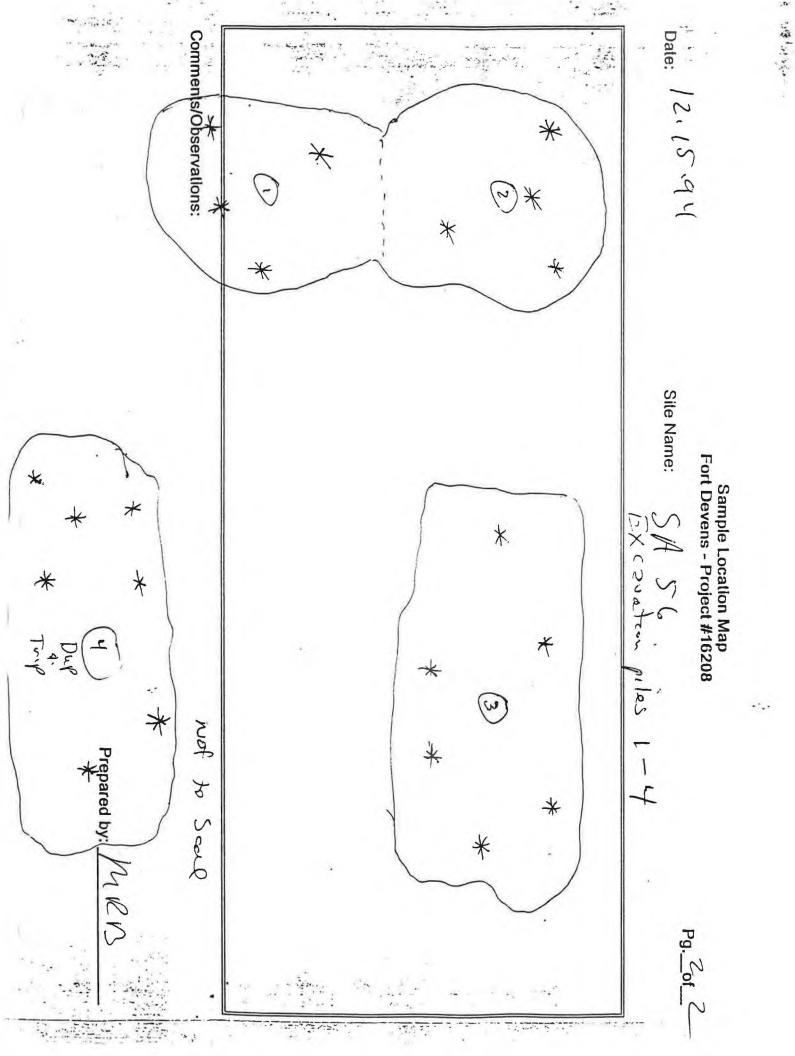
CANADA PERMANENTAL	! IIme!	Grab	Depth (ft)Ref. Pt.	Ref. Pt.	Description	Bottles
トナ ー EXこけとに	:(35	ت			Erica I comostigate	2
ではいい	7,2,-	Q	mes	1027.94	SPILT EY EXIMATION	2
PZC PZC	1159	C			FILE gra clay, 1 sty fresh	2
EXSA 76 120	1140	G			Ex file 25 grabi	7
CS T	.,	5.	mes	10 24 94		7
EUSA5-126	1148	6			good gracex cabble	っ
Ref. Pt	:					
	: —					
Ref. Pt Ref. Pt	_					
Ref. Pt	_	es (No.			
Ref. Pt	:			ion Dia	necel/Characterization //	of set
Ref. Pt	:		ng Confirmat		posal/Characterization /	of sail
Ref. Pt	ed: Y	Screeni	ng Confirmat		posal/Characterization / USACE- coc #	10771
Ref. Pt Map Attach Sample Ty	ed: Y	Screeni	ng Confirmat	ASC - coc #	posal/Characterization / USACE- coc # insate Taken: Yes No	of sort to corr 10771 mps.


Relinquished by(dd/tt):______ Received by (dd/tt):_____

Received by (dd/tt):_____

Sample Location Map Fort Devens - Project #16208

Date: 10-24-9 4


Site Name: SAS6

Comments/Observations:

Prepared by: bill M

Sample D Number Time	The state of the s	Sample L		dinates Ref. Pt_	Sample Description	# of Bottles
XSA56-1750		3-18"	WA	MA	I clads of clay tothe sould brown	
20 1205			- to 1		Mits of cools close of clay	
30 1233					cost of Oble souling yellow/Borning Chey with both of Cookin, chay gold ish on Sand	
40 12:53					Kosts of cooking clay goldish or	44
X5A56AHC 1253			1	11,	Dugticate of EXSAS	4-1
XSASOTRAC 1253	V	$ \vee $	V		Triplicate of EXSASE	T W C
				1		
	1			1		
Ref. Pt: Map Attached: Sample Type: Laboratory Destin	Screenir	Onsite La	ab A	SC - coc i	sposal/Characterization # 107747 USACE-coc	# <u>/67</u> 2
Sample Type: _aboratory Destin	Screenination: cate Tak site Labor	Onsite La	No No nain of C	Custody/R	# 107747 USACE-coc in the state of the state	eTCLP,

Appendix B
ASC Analytical Report - Confirmation Soil Sample Results

ANALYTICAL REPORT

Client:

OHM Remediation Services Corporation

Eastern Region (Hopkinton, MA)

Attn:

William Snow

Ron Kenyon Mike Quinlan

Project:

16208C - USACE; Fort Devens, MA

Sample Type(s): Liquid and Solid

Analysis Performed: Conventional and Organics

Date Sample Received:

September 23, 1994

Date Order Received:

September 23, 1994

Joblink(s): 616695

This report is "PROPRIETARY AND CONFIDENTIAL" and delivered to, and intended for the exclusive use of the above named client only. Analytical Services Corporation assumes no responsibility or liability for the reliance hereon or use hereof by anyone other than the above named client.

Date: October 7, 1994

PROJECT NARRATIVE

The following items relate to the samples and analytical data contained in this report.

- o All solid sample results are reported on a "dry weight" basis.
- o Sample #SBSA56SEC demonstrated variable results due to sample non-homogenity for the TPHC/IR method. This was confirmed by replicate analysis.
- Note any and all comments at the bottom of the tables in Appendix B and/or Appendix C.
- o ASC will retain samples for a maximum of thirty (30) days after completion of the analysis, samples will be held for a longer period of time, if appropriate arrangements are made in advance. A nominal disposal charge of \$5.00/ sample will be imposed for unreturned samples.

APPENDIX A DATA SUMMARY REPORT

DATE. J9/29/94

PAGE: 1

Company: OHM REMEDIATION SERVICES CORPORATION

	Sample Point ID: ASC Sample Number: Sample Date: Facility Code:		SBSA56BC1 JN2578 940922 016208C	SBSA56NEC JN2579 940922 016208C	SBSA56SEC JN2580 940922 016208C	BBSA568WC JN2581 940922 016208C	8BSA56DUPC JN2582 940922 016208C
Parameters	Units						
enventional Data	(CV10)						
olids, Total	•	88.4	86.2	91.7	91.8	93.4	92.0
tal Petroleum Hyd	rocarbon Analysis,	IR (IR00)					
stroleum Hydrocar	bons (IR) mg/kg	15.3	40.9	44.5	997	37.5	266
al Base/Neutral/	Acid Analysis, MS,	(M802)					
Genaphthene cenaphthylene mthracene enzidine enzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	76 F C C C C	<.385 <.385 <.385 <.385 <.385	<.355 <.355 <.355 <.355 <.355 <.355	<3.57 <3.57 <3.57 <3.57 <3.57	<.353 <.353 <.353 <.353 <.353	<3.55 <3.55 <3.55 <3.55 <3.55 <3.55
enzo(b)fluoranthe enzo(k)fluoranthe enzo(ghi)perylene enzo(a)pyrene is(2-Chloroethyl)	ene mg/kg mg/kg mg/kg	1.44 1.47 .498 1.45	<.385 .385</.385</.385</.385</.385</td <td><.355 <.355 <.355 <.355 <.355</td> <td><3.57 <3.57 <3.57 <3.57 <3.57</td> <td><.353 <.353 <.353 <.353 <.353</td> <td><3.55 <3.55 <3.55 <3.55 <3.55</td>	<.355 <.355 <.355 <.355 <.355	<3.57 <3.57 <3.57 <3.57 <3.57	<.353 <.353 <.353 <.353 <.353	<3.55 <3.55 <3.55 <3.55 <3.55
is(2-Chloroethoxy is(2-Chloroisopro is(2-Ethylhexyl)p -Bromophenyl phen utyl benzyl phtha	ppyl)ether mg/kg hthalate mg/kg nyl ether mg/kg	<.375	<.385 <.385 1.04 <.385 <.385	<.355 <.355 .365 <.355 <.355	<3.57 <3.57 <3.57 <3.57 <3.57	<.353 <.353 3.50 <.353 <.353	<3.55 <3.55 <3.55 <3.55 <3.55
arbazole -Chloroaniline -Chloro-m-cresol -Chloronaphthalen -Chlorophenol	mg/kg mg/kg mg/kg mg/kg mg/kg	<.375 <.375 <.375 <.375 <.375	<.385<.385<.385<.385<.385<.385	<.355 <.355 <.355 <.355 <.355 <.355	<3.57 <3.57 <3.57 <3.57 <3.57	<.353 <.353 <.353 <.353 <.353	<3.55 <3.55 <3.55 <3.55 <3.55 <3.55
-Chlorophenyl phe hrysene ibenzo(a,h)anthra ibenzofuran i-n-butyl phthala	mg/kg ncene mg/kg mg/kg		<.385<.385<.385<.385<.385<.385	<.355 <.355 <.355 <.355 <.355 <.355	<3.57 <3.57 <3.57 <3.57 <3.57	<.353 <.353 <.353 <.353 <.353	<3.55 <3.55 <3.55 <3.55 <3.55
,2-Dichlorobenzer ,3-Dichlorobenzer ,4-Dichlorobenzer ,3'-Dichlorobenzer	ne mg/kg ne mg/kg	<.375 <.375	<.385 <.385 <.385 <.385	<.355 <.355 <.355 <.355 <.355	<3.57 <3.57 <3.57 <3.57	<.353 <.353 <.353 <.353	<3.55 <3.55 <3.55 <3.55

DATE. 3/29/94

PAGE: 2

Company: OHM REMEDIATION SERVICES CORPORATION

ASC Samp	Point ID: le Number: mple Date: lity Code:	SBSA56BC2 JN2577 940922 016208C	SBSA56BC1 JN2578 940922 016208C	SBSA56NEC JN2579 940922 016208C	SBSA56SEC JN2580 940922 016208C	SBSA56SWC JN2581 940922 016208C	SBSA56DUPC JN2582 940922 016208C
Parameters	Units						
al Base/Neutral/Acid Ana	lysis, MS,	(MS02)					
3-Dichlorophenol	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
thyl phthalate	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
methyl phthalate	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
-Dimethylphenol	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
Dinitro-o-cresol	mg/kg	<.936	<.962	<.887	<8.93	<.883	<8.87
4-Dinitrophenol	mg/kg	<1.87	<1.92	<1.77	<17.9	<1.77	<17.7
4-Dinitrophenoi 4-Dinitrotoluene	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
5-Dinitrotoluene	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
7. WITH TATALAT (TATALAT) (TATALAT) AT LATE (TATALAT AT LATE)		<.375	<.385	<.355	<3.57	<.353	<3.55
-n-octyl phthalate	mg/kg				4.07	<.353	<3.55
oranthene	mg/kg	2.26	<.385	.387	4.07	V.353	N3.33
iorene	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
cachlorobenzene	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
cachlorobutadiene	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
kachlorocyclopentadiene	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
cachloroethane	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
ophorone	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
Methylnaphthalene	mg/kg	<.375	.412	<.355	<3.57	<.353	<3.55
Methylphenol		<.375	<.385	<.355	<3.57	<.353	<3.55
Methylphenol	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
Vitrosodimethylamine	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
Vitrosodi-n-propylamine	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
Nitrosodiphenylamine	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
phthalene	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
Vitroaniline	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
Vitroaniline	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
Vitroaniline	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
		<.375	<.385	<.355	<3.57	<.353	<3.55
robenzene	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
Nitrophenol	mg/kg			<1.77	<17.9	<1.77	<17.7
litrophenol	mg/kg	<1.87	<1.92			<.353	<3.55
ntachlorophenol	mg/kg	<.375	<.385	<.355	<3.57	·.353	73.33
enanthrene	mg/kg	.562	<.385	<.355	<3.57	<.353	<3.55
enol	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
ene	mg/kg	2.37	<.385	.461	3.96	.413	<3.55
ridine	mg/kg	<.375	<.385	<.355	<3.57	<.353	<3.55
2,4-Trichlorobenzene	mq/kq	<.375	<.385	<.355	<3.57	<.353	<3.55

DATA SUMMARY REPORT

DATE. J9/29/94

PAGE: 3

Company:	OHM	REMEDIATION	SERVICES	CORPORATION
----------	-----	-------------	----------	-------------

	Sample Point ID: ASC Sample Number: Sample Date: Facility Code:	SBSA56BC2 JN2577 940922 016208C	SBSA56BC1 JN2578 940922 016208C	SBSA56NEC JN2579 940922 016208C	SBSA56SEC JN2580 940922 016208C	SBSA568WC JN2581 940922 016208C	8B8A56DUPC JN2582 940922 016208C	
Parameters	Units							
cal Base/Neutral	/Acid Analysis, MS,	(MSO2)						
,4,5-Trichlorophe,4,6-Trichlorophe			<.385 <.385	<.355 <.355	<3.57 <3.57	<.353 <.353	<3.55 <3.55	

DATA SUMMARY REPORT

DATE 39/29/94

PAGE: 1

Company: OHM	REMEDIATION	SERVICES	CORPORATION
--------------	-------------	----------	-------------

	Sample Point ID: ASC Sample Number: Sample Date: Facility Code:	SBSA56B30 JN2583 940922 016208C	SBSA56B25 JN2584 940922 016208C	5BSA56NE2 JN2585 940922 016208C	SBSA56SE2 JN2586 940922 016208C	SBSA56SW2 JN2587 940922 016208C	SBSA56DUPG JN2588 940922 016208C
Parameters	Units						
onventional Data	(CV10)						
Solids, Total	•	81.7	88.4	90.4	92.7	89.9	95.2
TIE Volatile Anal	lysis, GC, (GV33)						
Genzene Ethylbenzene Toluene Kylenes	mg/kg mg/kg mg/kg mg/kg	<.001 <.001 <.001 .003	<.001 .004 <.001 .004	<.001 <.001 <.001 <.001	<.001 <.001 <.001 .002	<.001 <.001 <.001 <.001	<.001 .003 .003 .007

DATE. 10/03/94

PAGE: 1

Company: OHM REMEDIATION SERVICES CORPORATION

ASC Sample Number: JN2589
Sample Date: 940922
Facility Code: 016208C

Parameters

Units

FIE Volatile Analysis, GC, (G	V33)	
Benzene	mg/L	<.001
Ethylbenzene	mg/L	<.001
Toluene	mg/L	<.001
Kylenes	mg/L	<.001
otal Petroleum Hydrocarbon An	alysis,	IR (IR00)
Petroleum Hydrocarbons (IR)	mg/L	<.100
otal Base/Neutral/Acid Analys	is, MS,	(MSO2)
Acenaphthene	mg/L	<.011
Acenaphthylene	mg/L	<.011
Anthracene	mg/L	<.011
Benzidine	mg/L	<.011
Benzo(a)anthracene	mg/L	<.011
Benzo(b)fluoranthene	mg/L	<.011
Benzo(k)fluoranthene	mg/L	<.011
Benzo(ghi)perylene	mg/L	<.011
Benzo(a)pyrene	mg/L	<.011
pis(2-Chloroethyl) ether	mg/L	<.011
ois(2-Chloroethoxy)methane	mg/L	<.011
ois(2-Chloroisopropyl)ether	mg/L	<.011
is(2-Ethylhexyl)phthalate	mg/L	<.011
-Bromophenyl phenyl ether	mg/L	<.011
Butyl benzyl phthalate	mg/L	<.011
arbazole	mg/L	<.011
-Chloroaniline	mg/L	<.011
o-Chloro-m-cresol	mg/L	<.011
2-Chloronaphthalene	mg/L	<.011
2-Chlorophenol	mg/L	<.011
4-Chlorophenyl phenyl ether	mg/L	<.011
Chrysene	mg/L	<.011
Oibenzo(a,h)anthracene	mg/L	<.011
Oibenzofuran	mg/L	<.011
Di-n-butyl phthalate	mg/L	<.011
1,2-Dichlorobenzene	mg/L	<.011
-/- DIGHTOLODOMEONO	9/2	4.011

PAGE: 2

Company: OHM REMEDIATION SERVICES CORPORATION

ASC Sample Number: JN2589
Sample Date: 940922
Facility Code: 016208C

Parameters

Units

tal Base/Neutral/Acid	Analysis, MS,	(MS02)
,3-Dichlorobenzene	mg/L	<.011
,4-Dichlorobenzene	mg/L	<.011
,3'-Dichlorobenzidine	mg/L	<.011
,4-Dichlorophenol	mg/L	<.011
lethyl phthalate	mg/L	<.011
imethyl phthalate	mg/L	<.011
,4-Dimethylphenol	mg/L	<.011
,6-Dinitro-o-cresol	mg/L	<.027
,4-Dinitrophenol	mg/L	<.054
,4-Dinitrotoluene	mg/L	<.011
,6-Dinitrotoluene	mg/L	<.011
i-n-octyl phthalate	mg/L	<.011
luoranthene	mg/L	<.011
luorene	mg/L	<.011
exachlorobenzene	mg/L	<.011
exachlorobutadiene	mg/L	<.011
exachlorocyclopentadie	ne mg/L	<.011
exachloroethane	mg/L	<.011
sophorone	mg/L	<.011
-Methylnaphthalene	mg/L	<.011
-Methylphenol	mg/L	<.011
-Methylphenol	mg/L	<.011
-Nitrosodimethylamine	mg/L	<.011
-Nitrosodi-n-propylami	ne mg/L	<.011
-Nitrosodiphenylamine	mg/L	<.011
aphthalene	mg/L	<.011
-Nitroaniline	mg/L	<.011
-Nitroaniline	mg/L	<.011
-Nitroaniline	mg/L	<.011
trobenzene	mg/L	<.011
e e e e e e e e e e e e e e e e e e e	2.13	
-Nitrophenol	mg/L	<.011
-Nitrophenol	mg/L	<.054
entachlorophenol	mg/L	<.011
henanthrene	mg/L	<.011
henol	mg/L	<.011

DATA SUMMARY REPORT

DATE: 10/03/94

PAGE: 3

Company: OHM REMEDIATION SERVICES CORPORATION

Sample Point ID: SBSA56WB
ASC Sample Number: JN2589
Sample Date: 940922
Facility Code: 016208C

Parameters

Units

otal Base/Neutral/Acid Analysis, MS, (MSO2)

Pyrene	mg/L	<.011
Pyridine	mg/L	<.011
1,2,4-Trichlorobenzene	mg/L	<.011
2,4,5-Trichlorophenol	mg/L	<.011
2,4,6-Trichlorophenol	mg/L	<.011

DATA SUMMARY REPORT

DA'1-: 10/07/94

PAGE: 1

Company: OHM REMEDIATION SERVICES CORPORATION

Sample Point ID: TRIPBLE ASC Sample Number: JN2649 Sample Date: 940922 Facility Code: 016208C

Parameters

Units

BTXE Volatile Analysis, GC, (GV33)

Benzene	mq/L	<.001
Ethylbenzene	mg/L	<.001
Toluene	mq/L	<.001
Xylenes	mg/L	<.001

APPENDIX B QUANTITATIVE RESULTS

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56BC2

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
lids, Total		88.4	.100	-	
	n)				
	- 1				

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56BC1

Compounds		Sample Results	Detection Limits %	Blank Results	Batch Number
lids, Total		86.2	.100	-	
	4				
	,				

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

SBSA56NEC

Compounds	Sample Results %	Detection Limits	Blank Results	Batch Number
ids, Total	91.7	.100	-	

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56SEC

Compounds	Sample Results %	Detection Limits	Blank Results	Batch Number
lids, Total	91.8	.100	-	

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C SBSA56SWC

Compounds	Sample Results	Detection Limits %	Blank Results	Batch Number
lids, Total	93.4	.100	-	
	İ			
	-			

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56DUPC

Compounds	Sample Results	Detection Limits	Blank Results	Batch Number
olids, Total	92.0	.100	-	
		1		

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56B30

Compounds	Sample Results	Detection Limits	Blank Results	Batch Number
lids, Total	81.7	.100	-	
	- 11k			
	1			

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56B25

Compounds	Sa Re	ample sults	Detection Limits	Blank Results	Batch Number
olids, Total		88.4	.100	•	
		4			

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C SBSA56NE2

Compounds	Sample Results %	Detection Limits	Blank Results	Batch Number
lids, Total	90.4	.100	-	

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

SBSA56SE2

Compounds	Sample Results	Detection Limits	Blank Results	Batch Number
lids, Total	92.7	.100	-	
<u> </u>				

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56SW2

Compounds	Sample Results	Detection Limits %	Blank Results	Batch Number
olids, Total	89.9	.100	-	
				V.
		4		
(see				

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56DUPG

Compounds	Sample Results	Detection Limits %	Blank Results	Batch Number
ids, Total	95.2	.100	-	
		13		

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56B30

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Benzene Ethylbenzene Toluene Kylenes	ND ND ND .003	.001 .001 .001	ND ND ND	Q2W3884 Q2W3884 Q2W3884 Q2W3884

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56B25

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Benzene Ethylbenzene Toluene Kylenes	ND .004 ND .004	.001 .001 .001	ND ND ND ND	Q2W3884 Q2W3884 Q2W3884 Q2W3884

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NE2

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
enzene thylbenzene oluene ylenes	ND ND ND ND	.001 .001 .001 .001	ND ND ND ND	Q2W3884 Q2W3884 Q2W3884 Q2W3884

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56SE2

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
enzene chylbenzene oluene vlenes	ND ND ND .002	.001 .001 .001 .001	ND ND ND ND	Q2W3884 Q2W3884 Q2W3884 Q2W3884

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56SW2

Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
ND ND ND	.001 .001 .001	ND ND ND ND	Q2W3884 Q2W3884 Q2W3884 Q2W3884
	The state of the s	ND .001 ND .001 ND .001	ND .001 ND ND ND ND ND ND ND ND ND

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C SBSA56DUPG

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
enzene chylbenzene oluene ylenes	ND .003 .003 .007	.001 .001 .001	ND ND ND ND	Q2W3884 Q2W3884 Q2W3884 Q2W3884

BTXE VOLATILE ANALYSIS, GC, (GV33)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56WB

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
enzene chylbenzene cluene ylenes	ND ND ND ND	.001 .001 .001	ND ND ND ND	Q1W3886 Q1W3886 Q1W3886 Q1W3886

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

TRIPBLK

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Benzene Ethylbenzene Toluene Kylenes	ND ND ND	.001 .001 .001	ND ND ND ND	Q1W3886 Q1W3886 Q1W3886 Q1W3886

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56BC2

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
etroleum Hydrocarbons (IR)	15.3	7.34	ND	Q2T41374

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56BC1

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
etroleum Hydrocarbons (IR)	40.9	7.69	ND	Q2T41374

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NEC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
etroleum Hydrocarbons (IR)	44.5	7.17	ND	Q2T41374

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

SBSA56SEC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
etroleum Hydrocarbons (IR)	997	72.3	ND	Q2T41374
				}

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56SWC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Petroleum Hydrocarbons (IR)	37.5	7.11	ND	Q2T41374

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56DUPC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
troleum Hydrocarbons (IR)	266	14.1	ND	Q2T41374

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56WB

Compounds	4	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
troleum Hydrocarbons	(IR)	ND	.100	ND	P1T41380

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56BC2

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND 1.60	.375 .375 .375 .375 .375	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether	1.44 1.47 .498 1.45 ND	.375 .375 .375 .375 .375	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND ND ND ND	.375 .375 .375 .375 .375	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Carbazole 4-Chloroaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	.375 .375 .375 .375 .375	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
4-Chlorophenyl phenyl ether Chrysene 'benzo(a,h)anthracene benzofuran bi-n-butyl phthalate	ND 1.83 ND ND ND	.375 .375 .375 .375 .375	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND	.375 .375 .375 .375 .375	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND ND	.375 .375 .375 .936 1.87	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND 2.26 ND	.375 .375 .375 .375 .375	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Isophorone	ND ND ND ND ND	.375 .375 .375 .375 .375	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine N-Nitrosodi-n-propylamine	ND ND ND ND ND	.375 .375 .375 .375 .375	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56BC2

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
N-Nitrosodiphenylamine Naphthalene N-Nitroaniline N-Nitroaniline N-Nitroaniline	ND ND ND ND ND	.375 .375 .375 .375 .375	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
itrobenzene -Nitrophenol -Nitrophenol entachlorophenol henanthrene	ND ND ND ND .562	.375 .375 1.87 .375 .375	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
henol yrene yridine ,2,4-Trichlorobenzene ,4,5-Trichlorophenol	ND 2.37 ND ND ND	.375 .375 .375 .375 .375	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
,4,6-Trichlorophenol	ND	.375	ND	Q2C41372

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56BC1

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene	ND	.385	ND	Q2C41372
Acenaphthylene	ND	.385	ND	Q2C41372
Anthracene	ND	.385	ND	Q2C41372
Benzidine	ND	.385	ND	Q2C41372
Benzo(a)anthracene	ND	.385	ND	Q2C41372
Benzo(b)fluoranthene	ND	.385	ND	Q2C41372
Benzo(k)fluoranthene	ND	.385	ND	Q2C41372
Benzo(ghi)perylene	ND	.385	ND	Q2C41372
Benzo(a)pyrene	ND	.385	ND	Q2C41372
bis(2-Chloroethyl) ether	ND	.385	ND	Q2C41372
bis(2-Chloroethoxy)methane	ND	.385	ND	Q2C41372
bis(2-Chloroisopropyl)ether	ND	.385	ND	Q2C41372
bis(2-Ethylhexyl)phthalate	1.04	.385	ND	Q2C41372
4-Bromophenyl phenyl ether	ND	.385	ND	Q2C41372
Butyl benzyl phthalate	ND	.385	ND	Q2C41372
Carbazole	ND	.385	ND	Q2C41372
4-Chloroaniline	ND	.385	ND	Q2C41372
p-Chloro-m-cresol	ND	.385	ND	Q2C41372
2-Chloronaphthalene	ND	.385	ND	Q2C41372
2-Chlorophenol	ND	.385	ND	Q2C41372
4-Chlorophenyl phenyl ether	ND	.385	ND	Q2C41372
\rysene	ND ND	.385	ND	Q2C41372
benzo(a,h)anthracene	ND	.385	ND	Q2C41372
ibenzofuran	ND	.385	ND	Q2C41372
Di-n-butyl phthalate	ND	.385	ND	Q2C41372
1,2-Dichlorobenzene	ND	.385	ND	02C41372
1,3-Dichlorobenzene	ND	.385	ND	Q2C41372
1,4-Dichlorobenzene	ND	.385	ND	Q2C41372
3,3'-Dichlorobenzidine	ND	.385	ND	Q2C41372
2,4-Dichlorophenol	ND	.385	ND	Q2C41372
Diethyl phthalate	ND	.385	ND	02C41372
Dimethyl phthalate	ND	.385	ND	Q2C41372
2,4-Dimethylphenol	ND	.385	ND	Q2C41372
4,6-Dinitro-o-cresol	ND	.962	ND	Q2C41372
2,4-Dinitrophenol	ND	1.92	ND	Q2C41372
2.4-Dinitrotoluene	ND	.385	ND	02C41372
2.6-Dinitrotoluene	ND	.385	ND	02C41372
Di-n-octyl phthalate	ND	.385	ND	Q2C41372
Fluoranthene	ND	.385	ND	Q2C41372
Fluorene	ND	.385	ND	Q2C41372
Hexachlorobenzene	ND	.385	ND	Q2C41372
Hexachlorobenzene Hexachlorobutadiene	ND	.385	ND	Q2C41372
	ND ND	.385	ND	Q2C41372
Hexachlorocyclopentadiene Hexachloroethane	ND	.385	ND	Q2C41372
Isophorone	ND	.385	ND	Q2C41372
2-Wethyrlnanhthalens	.412	.385	ND	Q2C41372
2-Methylnaphthalene	ND	.385	ND	Q2C41372
2-Methylphenol	ND	.385	ND	Q2C41372
4-Methylphenol N-Nitrosodimethylamine	ND	.385	ND	Q2C41372
N-Nitrosodimethylamine N-Nitrosodi-n-propylamine	ND ND	.385	ND	Q2C41372
- HTCTOBOOT-H-broblighting	MD	.303	ND	ZZC413/2

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56BC1

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
N-Nitrosodiphenylamine Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline	ND ND ND ND ND	.385 .385 .385 .385	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Nitrobenzene 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenanthrene	ND ND ND ND ND	.385 .385 1.92 .385 .385	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Phenol Pyrene Pyridine 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol	ND ND ND ND ND	.385 .385 .385 .385 .385	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2,4,6-Trichlorophenol	ND	.385	ND	Q2C41372

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

SBSA56NEC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND ND	.355 .355 .355 .355 .355	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether	ND ND ND ND ND	.355 .355 .355 .355 .355	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND .365 ND ND	.355 .355 .355 .355	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Carbazole 4-Chloroaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	.355 .355 .355 .355 .355	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
4-Chlorophenyl phenyl ether Chrysene benzo(a,h)anthracene benzofuran Di-n-butyl phthalate	ND ND ND ND	.355 .355 .355 .355	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND ND	.355 .355 .355 .355	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND	.355 .355 .355 .887 1.77	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND .387 ND	.355 .355 .355 .355	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Isophorone	ND ND ND ND ND	.355 .355 .355 .355 .355	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine N-Nitrosodi-n-propylamine	ND ND ND ND ND	.355 .355 .355 .355	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NEC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
N-Nitrosodiphenylamine Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline	ND ND ND ND ND	.355 .355 .355 .355 .355	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Nitrobenzene 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenanthrene	ND ND ND ND ND	.355 .355 1.77 .355 .355	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Phenol Pyrene Pyridine 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol	ND .461 ND ND ND	.355 .355 .355 .355 .355	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2,4,6-Trichlorophenol	ND	.355	ND	Q2C41372

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56SEC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene	ND	3.57	ND	Q2C41372
Acenaphthylene	ND	3.57	ND	Q2C41372
Anthracene	ND	3.57	ND	Q2C41372
Benzidine	ND	3.57	ND	Q2C41372
Benzo(a)anthracene	ND	3.57	ND	Q2C41372
Benzo(b)fluoranthene	ND	3.57	ND	Q2C41372
Benzo(k)fluoranthene	ND	3.57	ND	Q2C41372
Benzo(ghi)perylene	ND	3.57	ND	Q2C41372
Benzo(a)pyrene	ND	3.57	ND	Q2C41372
bis(2-Chloroethyl) ether	ND	3.57	ND	Q2C41372
bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND ND ND ND	3.57 3.57 3.57 3.57 3.57	ND ND ND ND	02C41372 02C41372 02C41372 02C41372 02C41372
Carbazole	ND	3.57	ND	Q2C41372
4-Chloroaniline	ND	3.57	ND	Q2C41372
p-Chloro-m-cresol	ND	3.57	ND	Q2C41372
2-Chloronaphthalene	ND	3.57	ND	Q2C41372
2-Chlorophenol	ND	3.57	ND	Q2C41372
4-Chlorophenyl phenyl ether ysene enzo(a,h)anthracene wenzofuran Di-n-butyl phthalate	ND	3.57	ND	Q2C41372
	ND	3.57	ND	Q2C41372
	ND	3.57	ND	Q2C41372
	ND	3.57	ND	Q2C41372
	ND	3.57	ND	Q2C41372
1,2-Dichlorobenzene	ND	3.57	ND	Q2C41372
1,3-Dichlorobenzene	ND	3.57	ND	Q2C41372
1,4-Dichlorobenzene	ND	3.57	ND	Q2C41372
3,3'-Dichlorobenzidine	ND	3.57	ND	Q2C41372
2,4-Dichlorophenol	ND	3.57	ND	Q2C41372
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND ND	3.57 3.57 3.57 8.93 17.9	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND 4.07 ND	3.57 3.57 3.57 3.57 3.57	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Isophorone	ND ND ND ND ND	3.57 3.57 3.57 3.57 3.57	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2-Methylnaphthalene	ND	3.57	ND	Q2C41372
2-Methylphenol	ND	3.57	ND	Q2C41372
4-Methylphenol	ND	3.57	ND	Q2C41372
N-Nitrosodimethylamine	ND	3.57	ND	Q2C41372
N-Nitrosodi-n-propylamine	ND	3.57	ND	Q2C41372

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56SEC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
N-Nitrosodiphenylamine Naphthalene N-Nitroaniline N-Nitroaniline N-Nitroaniline	ND ND ND ND ND	3.57 3.57 3.57 3.57 3.57	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Titrobenzene 2-Nitrophenol 3-Nitrophenol Pentachlorophenol Phenanthrene	ND ND ND ND ND	3.57 3.57 17.9 3.57 3.57	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Phenol Pyrene Pyridine 1,2,4-Trichlorobenzene 1,4,5-Trichlorophenol	ND 3.96 ND ND ND	3.57 3.57 3.57 3.57 3.57	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2,4,6-Trichlorophenol	ND	3.57	ND	Q2C41372

³⁻Methyl- and 4-Methylphenol coelute and are reported as the total - These reporting limits are higher than usual due to matrix

interferences.

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56SWC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND ND	.353 .353 .353 .353	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether	ND ND ND ND ND	.353 .353 .353 .353	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
bis(2-Chloroethoxy)methane bis(2-Chloroisopropy1)ether bis(2-Ethylhexy1)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND 3.50 ND ND	.353 .353 .353 .353 .353	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Carbazole 4-Chloroaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	.353 .353 .353 .353 .353	ND ND ND ND	02C41372 02C41372 02C41372 02C41372 02C41372
4-Chlorophenyl phenyl ether tysene enzo(a,h)anthracene senzofuran Di-n-butyl phthalate	ND ND ND ND ND	.353 .353 .353 .353 .353	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND ND	.353 .353 .353 .353 .353	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND ND	.353 .353 .353 .883 1.77	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND ND ND	.353 .353 .353 .353 .353	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Isophorone	ND ND ND ND ND	.353 .353 .353 .353 .353	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine N-Nitrosodi-n-propylamine	ND ND ND ND ND	.353 .353 .353 .353 .353	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56SWC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
N-Nitrosodiphenylamine Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline	ND ND ND ND ND	.353 .353 .353 .353 .353	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
litrobenzene -Nitrophenol -Nitrophenol Pentachlorophenol Phenanthrene	ND ND ND ND ND	.353 .353 1.77 .353 .353	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Phenol Pyrene Pyridine 1,2,4-Trichlorobenzene 1,4,5-Trichlorophenol	ND .413 ND ND ND	.353 .353 .353 .353 .353	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2,4,6-Trichlorophenol	ND	.353	ND	Q2C41372

³⁻Methyl- and 4-Methylphenol coelute and are reported as the total

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56DUPC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND ND	3.55 3.55 3.55 3.55 3.55	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene Dis(2-Chloroethyl) ether	ND ND ND ND ND	3.55 3.55 3.55 3.55 3.55	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
ois(2-Chloroethoxy)methane ois(2-Chloroisopropyl)ether ois(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND ND ND ND	3.55 3.55 3.55 3.55 3.55	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Carbazole 4-Chloroaniline 5-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	3.55 3.55 3.55 3.55 3.55	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
4-Chlorophenyl phenyl ether ysene enzo(a,h)anthracene pibenzofuran Di-n-butyl phthalate	ND ND ND ND ND	3.55 3.55 3.55 3.55 3.55	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ир ир ир ир ир	3.55 3.55 3.55 3.55 3.55	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ир ир ир ир ир	3.55 3.55 3.55 8.87 17.7	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND ND ND	3.55 3.55 3.55 3.55 3.55	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Isophorone	ND ND ND ND ND	3.55 3.55 3.55 3.55 3.55	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine N-Nitrosodi-n-propylamine	ND ND ND ND	3.55 3.55 3.55 3.55 3.55	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56DUPC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
N-Nitrosodiphenylamine Naphthalene N-Nitroaniline N-Nitroaniline N-Nitroaniline	ND ND ND ND ND	3.55 3.55 3.55 3.55 3.55	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Titrobenzene -Nitrophenol -Nitrophenol Pentachlorophenol Phenanthrene	ND ND ND ND ND	3.55 3.55 17.7 3.55 3.55	ND ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Phenol Pyrene Pyridine ,,2,4-Trichlorobenzene ,,4,5-Trichlorophenol	ND ND ND ND ND	3.55 3.55 3.55 3.55 3.55	ND ND ND ND	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
,4,6-Trichlorophenol	ND	3.55	ND	Q2C41372

³⁻Methyl- and 4-Methylphenol coelute and are reported as the total - These reporting limits are higher than usual due to matrix interferences.

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56WB

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND ND	.011 .011 .011 .011	ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether	ND ND ND ND ND	.011 .011 .011 .011	ND ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND ND ND ND	.011 .011 .011 .011	ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
Carbazole 4-Chloroaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	.011 .011 .011 .011	ND ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
4-Chlorophenyl phenyl ether Chrysene Senzo(a,h)anthracene Senzofuran Di-n-butyl phthalate	ND ND ND ND	.011 .011 .011 .011	ND ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND ND	.011 .011 .011 .011	ND ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND	.011 .011 .011 .027 .054	ND ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND ND ND	.011 .011 .011 .011 .011	ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Isophorone	ND ND ND ND ND	.011 .011 .011 .011	ND ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine N-Nitrosodi-n-propylamine	ND ND ND ND ND	.011 .011 .011 .011	ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56WB

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
N-Nitrosodiphenylamine Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline	ND ND ND ND ND	.011 .011 .011 .011	ND ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
Nitrobenzene 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenanthrene	ND ND ND ND ND	.011 .011 .054 .011	ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
Phenol Pyrene Pyridine 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol	ND ND ND ND	.011 .011 .011 .011	ND ND ND ND	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
2,4,6-Trichlorophenol	ND	.011	ND	Q1C41361

³⁻Methyl- and 4-Methylphenol coelute and are reported as the total

APPENDIX C QUALITY ASSURANCE DATA

SUMMARY OF ANALYTICAL METHODOLOGY

ASC Joblink # 616695

REF	ERENCE	TITLE
160.3	CAWW	Residue, Total, Gravimetric, Dried at 103-105 C
418.1	MCAWW	Petroleum Hydrocarbons, Total Recoverable
8020	SW-846	Aromatic Volatile Organics by GC
8270	sw-846	GC/MS for Semivolatile Organics: Capillary Column Technique

METHODOLOGY REFERENCES

ASTM	American Society for Testing and Materials, 1985 edition.
CAWW	Methods for Chemical Analysis of Water and Wastes, April 1979 and Updated #1 March 1983.
CLP	USEPA Contract Laboratory Program, Document #OLMO1.0, updates December 1990 #OLMO1.1 and February 1991 #OLMO1.1.1.
EPA-500	USEPA Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039 December 1988.
EPA-600	USEPA Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 July 1982.
NIOSH	National Institute for Occupational Safety and Health, 3rd edition, 1984.
SMEWW	Standard Methods for the Examination of Water and Wastewater, 17th edition, 1989.
STOA	Spot Tests In Organic Analysis, 7th edition, 1966.
SW-846	Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, 3rd edition, September 1986 and Update #1 July 1992.
(1)	This method was modified to incorporate the use of Boron Trifluoride (BF3) as the derivatizing reagent according to Method 6640 in SMEWW, 17th edition, 1989.
Title 22	Waste Extraction Test, Title 22, Section 66261.126 Appendix 2 of the California Administrative Code, May 1991.

ASC Certifications

State	Agency	Certification #
Alabama	ADEM	40830
California	CADOH	1178
Colorado	CODOH	OH113
Delaware	DEHSS	OH113
Kansas	KSDHE	E-202 & E-1173
Louisiana	LADOHH	92-10
Maryland	MDDHMH	210
Massachusetts	MADEP	M-OH113
New Jersey	NJDEPE	74603
New York	NYDOH	10712
North Carolina	NCDEM	392
Ohio	OHEPA	OH113
Oklahoma	OKDEQ	9216
Pennsylvania	PADER	68-450
South Carolina	SCDEHNR	92002
Tennessee	TNDOH/TNDEC	2978
Virginia	VADGS	00011
Washington	WADOE	C154
Wisconsin	WIDNR	999037160

Validated by:

o US Army Corps of Engineers	Chemical Analysis In Various Matrices
Approvals:	
o Chemical Waste Management	Waste Characterization Analysis Waste Characterization Analysis Permit for Importing Soils Quality Assurance Plan #930034G Chemical Analysis in Various Matrices

REPORT KEY

mg/kg = milligram per kilogram (ppm)

Mg/m³ = milligram per cubic meter

ug/kg = microgram per kilogram (ppb)

mg/L = milligram per liter (ppm)

ug/L = microgram per liter (ppb)

mg/W = milligram per wipe

ug/W = microgram per wipe

mg/SMP = milligram per sample

ug/SMP = microgram per sample (Tedlar Bag)

ug/smp = microgram per sample

um/cm = microMho per centimeter

pCi/l = picocurie per liter

gm/cc = grams per cubic centimeter

ppm = parts per million ppb = parts per billion

ND = Not detected at or above stated detection limit

< = less than

> = greater than

% = percent

BTU/lb = British Thermal Units per pound

Deg. C = Degrees Celsius n/a = not applicable

Unk = unknown

std = result is relative to standard pH units

CV = Conventionals

IR = Infrared Spectrophotometric

GC = Gas Chromatograph Instrument

GC/MS = Gas Chromatography/Mass Spectrometer Instrument

GRO = Gasoline Range Organics
DRO = Diesel Range Organics

PCB = Polychlorinated Biphenyls (PCBs)

EP TOX = Extraction Procedure Toxicity

TCLP = Toxicity Characteristic Leaching Procedure

RCRA = Resource Conservation and Recovery Act

SOW = Statement of Work

BTXE Volatile Analysis, GC, (GV33)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	
Benzene Ethylbenzene Toluene Xylenes	ND ND ND ND	97 100 98 98	20 20 20 20 20	82 82 82 81	4 5 4	Q2W3884 Q2W3884 Q2W3884 Q2W3884

BTXE Volatile Analysis, GC, (GV33)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	
Benzene Ethylbenzene Toluene Xylenes	ND ND ND	92 92 92 91	ND ND ND	93 93 92 91	1 2 2 6	Q1W3886 Q1W3886 Q1W3886 Q1W3886

TOTAL PETROLEUM HYDROCARBON ANALYSIS, IR (IROO)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Batch Number
Petroleum Hydrocarbons (IR)	ND	100	997	-	-	Q2T41374

Matrix spike recoveries are not available due to the dilution of the QC matrix spike sample extracts during analysis.

TOTAL PETROLEUM HYDROCARBON ANALYSIS, IR (IROO)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
Petroleum Hydrocarbons (IR)	ND	93	ND	76	21	P1T41380

QUALITY ASSURANCE DATA Total Base/Neutral/Acid Analysis, MS, (MSO2)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Batch Number
Acenaphthene	ND	71	ND	96	3	Q2C41372
Acenaphthylene	ND	78	ND	84	1	Q2C41372
Anthracene	ND	75	ND	88	1	Q2C41372
Benzidine	ND	84	ND	16	15	Q2C41372
Benzo(a)anthracene	ND	81	ND	15	14	Q2C41372
Benzo(b)fluoranthene	ND	89	ND	12	8	Q2C41372
Benzo(k)fluoranthene	ND	83	ND	41	20	Q2C41372
Benzo(ghi)perylene	ND	82	ND	14	4	Q2C41372
Benzo(a)pyrene	ND	83	ND	14	10	Q2C41372
bis(2-Chloroethyl) ether	ND	84	ND	80	4	Q2C41372
bis(2-Chloroethoxy)methane	ND	78	ND	93	2	Q2C41372
bis(2-Chloroisopropyl)ether	ND	71	ND	76	7	Q2C41372
bis(2-Ethylhexyl)phthalate	ND	189	ND	108	7	Q2C41372
4-Bromophenyl phenyl ether	ND	80	ND	87	1	Q2C41372
Butyl benzyl phthalate	ND	89	ND	127	2	Q2C41372
Carbazole	ND	80	ND	101	3	Q2C41372
4-Chloroaniline	ND	51	ND	66	3	Q2C41372
p-Chloro-m-cresol	ND	73	ND	87	3	Q2C41372
2-Chloronaphthalene	ND	72	ND	96	2	Q2C41372
2-Chlorophenol	ND	65	ND	81	1	Q2C41372
4-Chlorophenyl phenyl ether	ND	78	ND	96	1	Q2C41372
Chrysene	ND	80	ND	13	17	Q2C41372
Dibenzo(a,h)anthracene	ND	81	ND	55	4	Q2C41372
Dibenzofuran	ND	74	ND	101	1	Q2C41372
Di-n-butyl phthalate	ND	80	ND	109	2	Q2C41372
2-Dichlorobenzene	ND	69	ND	80	1	Q2C41372
1,3-Dichlorobenzene	ND	72	ND	79	1	Q2C41372
1,4-Dichlorobenzene	ND	71	ND	80	1	Q2C41372
3,3'-Dichlorobenzidine	ND	52	ND	53	5	Q2C41372
2,4-Dichlorophenol	ND	73	ND	88	3	Q2C41372
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND	80 79 53 83 78	90 90 90 90 90 90	98 95 101 8	4 2 3 55	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND ND ND	90 80 84 81 76	ND ND ND 4.07 ND	88 80 164 -	7 5 2 26 1	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Isophorone	ND ND ND ND ND	79 73 7 67 77	00 00 00 00 00 00	158 75 60 85	95 3 - 4 2	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine N-Nitrosodi-n-propylamine	ND ND ND ND ND	75 67 73 64 90	20 20 20 20 20 20 20	102 85 88 53 94	2 1 1 8 6	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372

MONTTIL WOODKWARE DAIN

TOTAL BASE/NEUTRAL/ACID ANALYSIS, MS, (MSO2)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Batch Number
N-Nitrosodiphenylamine Naphthalene N-Nitroaniline N-Nitroaniline Nitrobenzene	ND ND ND ND ND	75 74 63 81 75	ND ND ND ND ND	102 102 71 74 78	1 1 2 4 4	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
P-Nitrophenol P-Nitrophenol Pentachlorophenol Phenanthrene Phenol	ND ND ND ND ND	71 87 77 78 65	20 20 20 20 20 20 20	88 54 39 53 88	4 5 10 47 0	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
Pyrene Pyridine 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ND ND ND ND ND	79 44 75 78 73	3.96 ND ND ND ND	- 48 91 85 79	21 6 2 3 7	Q2C41372 Q2C41372 Q2C41372 Q2C41372 Q2C41372
			*			
)		

J-Methyl- and 4-Methylphenol coelute and are reported as the total Due to sample matrix interferences, the spiked sample does not provide valid spike recovery data.

QUALITY ASSURANCE DATA Total Base/Neutral/Acid Analysis, MS, (MSO2)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
Acenaphthene	ND	63	ND	63	7	Q1C41361
Acenaphthylene	ND	70	ND	67	8	Q1C41361
Anthracene	ND	74	ND	73	4	Q1C41361
Benzidine	ND	.7	ND	9	116	Q1C41361
Benzo(a)anthracene	ND	72	ND	69	3	Q1C41361
Benzo(b)fluoranthene	ND	65	ND	63	16	Q1C41361
Benzo(k)fluoranthene	ND	70	ND	67	1	Q1C41361
Benzo(ghi)perylene	ND	67	ND	61	4	Q1C41361
Benzo(a)pyrene	ND	70	ND	67	4	Q1C41361
bis(2-Chloroethyl) ether	ND	62	ND	65	16	Q1C41361
bis(2-Chloroethoxy)methane	ND	74	ND	72	9	Q1C41361
bis(2-Chloroisopropyl)ether	ND	74	ND	75	12	Q1C41361
bis(2-Ethylhexyl)phthalate	ND	77	ND	71	2	Q1C41361
4-Bromophenyl phenyl ether	ND	72	ND	68	1	Q1C41361
Butyl benzyl phthalate	ND	70	ND	68	2	Q1C41361
Carbazole 4-Chloroaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	74 55 66 67 68	ND ND ND ND ND	70 52 65 65 66	6 5 4 4 18	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
4-Chlorophenyl phenyl ether	ND	72	ND	70	3	Q1C41361
Chrysene	ND	74	ND	70	3	Q1C41361
Dibenzo(a,h)anthracene	ND	69	ND	63	7	Q1C41361
Dibenzofuran	ND	68	ND	67	3	Q1C41361
C'-n-butyl phthalate	ND	73	ND	71	7	Q1C41361
<pre>2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol</pre>	ND ND ND ND ND	56 55 54 45 66	ND ND ND ND	59 61 56 43 68	11 12 7 2 12	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND ND	67 59 64 70 63	ND ND ND ND	65 56 64 73 65	0 9 12 4 5	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
2,4-Dinitrotoluene	ND	71	ND	67	2	Q1C41361
2,6-Dinitrotoluene	ND	74	ND	69	4	Q1C41361
Di-n-octyl phthalate	ND	79	ND	76	3	Q1C41361
Fluoranthene	ND	72	ND	68	3	Q1C41361
Fluorene	ND	69	ND	66	5	Q1C41361
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Isophorone	ND ND ND ND ND	72 50 48 45 70	ND ND ND ND	70 59 52 53 72	5 12 5 13 11	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
2-Methylnaphthalene	ND	64	ND	66	13	Q1C41361
2-Methylphenol	ND	66	ND	67	19	Q1C41361
4-Methylphenol	ND	62	ND	66	16	Q1C41361
N-Nitrosodimethylamine	ND	52	ND	60	12	Q1C41361
N-Nitrosodi-n-propylamine	ND	82	ND	80	11	Q1C41361

QUALITY ASSURANCE DATA Total Base/Neutral/Acid Analysis, MS, (MS02)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L		Relative Percent Diff	Batch Number
N-Nitrosodiphenylamine Naphthalene 3-Nitroaniline 4-Nitroaniline Nitrobenzene	ND ND ND ND ND	66 61 63 74 67	ND ND ND ND ND	67 62 56 69 67	8 9 2 2 7	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenanthrene Phenol	ND ND ND ND ND	67 35 60 72 38	ND ND ND ND ND	68 44 62 67 50	19 1 1 4 14	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361
Pyrene Pyridine 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ND ND ND ND ND	71 16 57 69 66	ND ND ND ND ND	68 34 61 67 64	2 50 10 6 5	Q1C41361 Q1C41361 Q1C41361 Q1C41361 Q1C41361

³⁻Methyl- and 4-Methylphenol coelute and are reported as the total

QUALITY ASSURANCE DATA SURROGATE SUMMARY REPORT

SURROGATE ID	A159	B732	A121	A884	A158	B142	# OUT	
C BATCH: Q1C41361	Aqueous (Semi-Vola	tile orga	nics by M	S)			
SAMPLE ID								
BLANK	45	33	61	63	55	54	0	
BLANK SPIKE	52	40	71	65	67	63	0	
SBSA56WB	45	34	58	56	54	64	0	
SBSA56WB MD	51	45	68	62	61	62	0	
SBSA56WB MS	62	53	69	72	64	62	0	
QC LIMITS	(21-110)	(10-110)	(10-123)	(35-114)	(43-116)	(33-141)		
QC BATCH: Q2C41372	Solid (Se	mi-Volati	le organi	cs by MS)				
SAMPLE ID								
BLANK	65	72	61	69	71	84	0	
BLANK SPIKE	75	74	87	77	71	75	0	
SBSA56BC1	71	76	99	85	82	77	0	
SBSA56BC2	71	76	87	78	77	82	O	
SBSA56DUPC	85 D	103 D	0 D	86 D	102 D	88 D	0	
SBSA56NEC	69	75	74	75	79	86	ŏ	
SBSA56SEC	77 D	93 D	O D	74 D	93 D	86 D	ŏ	
SBSA56SEC MD	75 D	95 D	0 D	80 D	98 D	91 D	ŏ	
	74 D			76 D		88 D		
SBSA56SEC MS SBSA56SWC	76	89 D 81	42 D 84	82 82	94 D 79	91	0	
QC LINITS	(25-121)	(24-113)	(19-122)	(23-120)	(30-115)	(18-137)		
SURROGATE ID	A228	# OUT						. *
QC BATCH: Q1W3886	Aqueous (V	olatile o	rganics b	y GC)				
SAMPLE ID	B. 16.							
BLANK	101	0						
BLANK SPIKE	96	0						
SBSA56WB	101	0						
SBSA56WB MD	98	0						
SBSA56WB MS TRIPBLK	98 96	0						
QC LIMITS	(30-130)							
Marata Rai	2000	k aum	1					0.00
SURROGATE ID	A228	# OUT					- 4	
QC BATCH: Q2W3884	Solid (Vol	atile orga	anics by	GC)				
SAMPLE ID	225							
BLANK	108	0						
BLANK SPIKE	102	0						
SBSA56B25	87	0						
SBSA56B30	82	0						
SBSA56DUPG	67	0						
SBSA56NE2	95	0						
		1						
		SU	RROGATE I	D				
A159 = 2-Fluorophe	nol	(7.5)						
B732 = Phenol-D6 A121 = 2,4,6-Tribr A884 = Nitrobenzen A158 = 2-Fluorobip B142 = Terphenyl-D	omophenol e-D5 henyl 14							
A228 = a,a,a-Trifl	norototuen							
* Values outside o	f method q	uality com	ntrol lim	its				

D Sample was diluted, however, some surrogates may be reported if results were observed.

It is ASC's laboratory policy to allow one surrogate per sample fraction (acid, base-neutral or pesticide) to exceed the stated QC limits. This policy is based upon the USEPA SOW for the Contract Laboratory Program (CLP).

QUALITY ASSURANCE DATA SURROGATE SUMMARY REPORT

BATCH: Q2W3884	Solid (Vola	tile or	anics by GC)		
SAMPLE ID					
SBSA56NE2 MD	86	0			
SBSA56NE2 MS	84 78	0			
SBSA56SE2		0			
SBSA56SW2	91	0			
QC LIMITS	(30-130)				

SURROGATE ID

A159 = 2-Fluorophenol

B732 = Phenol-D6
A121 = 2,4,6-Tribromophenol
A884 = Nitrobenzene-D5

A158 = 2-Fluorobiphenyl B142 = Terphenyl-D14 ~228 = a,a,a-Trifluorotoluene

* Values outside of method quality control limits
D Sample was diluted, however, some surrogates may be reported if results were observed.

It is ASC's laboratory policy to allow one surrogate per sample fraction (acid, base-neutral or pesticide) to exceed the stated QC limits. This policy is based upon the USEPA SOW for the Contract Laboratory Progression B

APPENDIX D CHAIN-OF-CUSTODY RECORD(S)

CHAIN-OF-CUS DY RECORD

Form 0019 hnical Services Rev. 08/89

No. 107682

O	.H. MA	TERIALS	CORF			P.C). BOX 551	• FINDLA	AY, OH 45839-0551	•	419	9-423	-3526	1					
no L	LZO ENTS REPP	PROJE	MI Est	ACT Ke			PROJECT LOCAL PROJECT MAI	PROJECT TELEP (508)	772-2610	NUMBER	(IND	ALYSI DICATE ARATE ITAINE		IRED /					
ITEM NO.	SAN	APLE ABER	DATE	TIME	COMP	GRAB		SAMPLE DESCRII (INCLUDE MATRI POINT OF SAMI	PTION X AND PLE)	OF	1	100	AND O	34/		//	REMARKS		
V.	SBSA5	6862	9-12	1540	1		Ust Gie	yesh Claye	4 5-6	2 K407		1				X AIL L SBSAS	absels b	sedin a	_
N	11	B30	11	1532		1	wet 6	egish Cla	Juy sal	2×40~			1						
1	, 11	BCI	Įt.	1600	1		Wet go	المام المادر	14 5m2	2 x407	V	1							
1	ц	BZS	11	1555		1	Lich gi	cy claying	and	Zeroni Von			J				\downarrow		
\$	SBO	56 WB	11	1400		V	Equipme	* Ringz	te when black			1	1			TRPH	4 BTEX >	idified p	HZ
	TEIP		9-1	1535		,	D. * . J			2-1/14						pres.	w coc		
7				121								100				* Ecnq	4-11 Am	set - La	voc.
8																resq.	2-11-5B	Bwdzaz wfzaid	8 ,
9																, ,	H-<2		
10	- *																		
TRANSFER	NUMBER	ITEM NUMBER				ANSF	ERS HED BY		ANSFERS CEPTED BY	DATE	TIME	REM	IARKS	4	20	212.	(C 15	دانداه	0
	1	1-4		Vill	-11	L	1	tel & au	6.11 # 11.6	94	800			TC	-cmp	1124			CX
1	2	(-6		£.	حل	K				9-23	500								
	3							1777	1								てゃ	me 200	-(v
	4													DI	RE			3,00	-(3

CHAIN-OF-CL' ODY RECORD

Form 0019 Technical Services Rev. 06/89

No. 107683

1	о.н. м	ATERIALS	CORP			P.C	D. BOX 551	• FINDLAY, OH 45839-0551		41	9-423	3-352	6							
PR	PROJECT NAME FT De veus PROJECT CONTACT PROJECT CONTACT PROJECT TELEPHONE NO. (508) 772-2610 CLIENT'S REPRESENTATIVE TON BEST-USACE PROJECT MANAGER/SUPERVISOR PROJECT MANAGER/SUPERVISOR S NOW								NUMBER	(INI SEF CO	IALYS DICATE PARATE NTAINE	Ē E	SIRED					//		
TEM NO.	S	AMPLE JMBER	DATE	O O POINT OF SAMPLE				, o		103	A ST	Styl	//	//	//		REMARKS			
-	SBSA!	& NEC	9-22	1510	1		Brain send i	s/some clay	1 × 40	7 /	1					X-AI	y ra	bels V	region w	
1	u	NEZ		1505		1	Greyish send	ly clay	2×40-	-1		1								
1	ų	SEC		1515	1		Brain send	White	ZXYUT	. I V	1									
1	11	SEL		1512		1	Bran send	u/cobbt-	ZXVON			1								
5	11	SWC		1520		i	Brun send,	cleyey, with cubble	7×40;		1		T							
1	, u	SWZ		1518		1	Brown sad	, chayen, with rubble	Zxvon			1	7							
X	11	DUPL		1515	1		Brown Su	of n/coppe	2×40+		1									
1	_11	OUPG	1	1512		1	Brown Sa	d ~/ colle	Zellor	-3		1								
9	ch	~FRRE	1	奶工	8	\	- P	22.99	- Zwei	2-1	-	·	~~	127-1	2/	32	3.3	LLY	سمم	~
10	Mar		1	1512	~	V	- All	a ditti	- 25th		-	4	~~	m	R	Bon	1,22	191/2	~~~	_
	NUMBER	ITEM NUMBER	EM TRANSFERS			TRANSFERS ACCEPTED BY	DATE	TIME	REN	MARKS	4	00	0 1	3/2/1	<i>c</i> .	inclu	del			
	1	1-8		Will Oak Feel		1774842050 Feder Airbill #	7-22	1500		•	1	V		- 1 - 1						
	2	1-8 Fedr		667	9-23	100	3													
	3						• * **		1111									Ten	1 3 cc (محن
	4												SIGNATI						1 300 (354

ANALYTICAL REPORT

Client: OHM Remediation Services Corporation

Eastern Region (Hopkinton, MA)

Attn: William Snow

Ron Kenyon Mike Quinlan

Project: 16208C - USACE; Fort Devens, MA

imple Type(s): Solid

Analysis Performed: Organics

Date Sample Received: September 23, 1994

Date Order Received: September 30, 1994

Joblink(s): 616737

This report is "PROPRIETARY AND CONFIDENTIAL" and delivered to, and intended for the exclusive use of the above named client only. Analytical Services Corporation assumes no responsibility or liability for the reliance hereon or use hereof by anyone other than the above named client.

Reviewed and Approved by:

Thomas E. Gran, Ph.D., Vice President

Date: October 25, 1994

PROJECT NARRATIVE

The following items relate to the samples and analytical data contained in this report.

- o All solid sample results are reported on a "dry weight" basis.
- Note any and all comments at the bottom of the tables in Appendix B and/or Appendix C.
- o **ASC** will retain samples for a maximum of thirty (30) days after completion of the analysis, samples will be held for a longer period of time, if appropriate arrangements are made in advance. A nominal disposal charge of \$5.00/ sample will be imposed for unreturned samples.

APPENDIX A DATA SUMMARY REPORT

DATA SUMMARY REPORT

DATE: 10/04/94

PAGE: 1

Company: OHM REMEDIATION SERVICES CORPORATION

Sample Point ID: SBSA56SEC

ASC Sample Number: JN2773

Sample Date: 940922 Facility Code: 016208C

Parameters

Units

Conventional Data (CV10)

Solids, Total

92.6

Total Petroleum Hydrocarbon Analysis, IR (IROO)

Petroleum Hydrocarbons (IR) mg/kg 344

1

APPENDIX B QUANTITATIVE RESULTS

TOTAL PETROLEUM HYDROCARBON ANALYSIS, IR (IROO)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

SBSA56SEC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
etroleum Hydrocarbons (IR)	344	14.1	ND	Q2T41418
		_		

APPENDIX C QUALITY ASSURANCE DATA

SUMMARY OF ANALYTICAL METHODOLOGY

ASC Joblink # 616737

REF	ERENCE	TITLE	
418.1	MCAWW	Petroleum Hydrocarbons, Total Recoverable	

METHODOLOGY REFERENCES

ASTM	American Society for Testing and Materials, 1985 edition.	
CAWW	Methods for Chemical Analysis of Water and Wastes, April 1979 and Updated #1 March 1983.	
CLP	USEPA Contract Laboratory Program, Document #OLMO1.0, updates December 1990 #OLMO1.1 and February 1991 #OLMO1.1.1.	
EPA-500	USEPA Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039 December 1988.	
EPA-600	USEPA Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 July 1982.	
NIOSH	National Institute for Occupational Safety and Health, 3rd edition, 1984.	
SMEWW	Standard Methods for the Examination of Water and Wastewater, 17th edition, 1989.	
STOA	Spot Tests In Organic Analysis, 7th edition, 1966.	
SW-846	Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, 3rd edition, September 1986 and Update #1 July 1992.	
(1)	This method was modified to incorporate the use of Boron Trifluoride (BF3) as the derivatizing reagent according to Method 6640 in <i>SMEWW</i> , 17th edition, 1989.	
Title 22	Waste Extraction Test, Title 22, Section 66261.126 Appendix 2 of the California Administrative Code, May 1991.	

ASC Certifications

State	Agency	Certification #
Alabama	ADEM	40830
California	CADOH	1178
Colorado	СОДОН	OH113
Delaware	DEHSS	OH113
Kansas	KSDHE	E-202 & E-1173
Louisiana	LADOHH	92-10
Maryland	MDDHMH	210
Massachusetts	MADEP	M-OH113
New Jersey	NJDEPE	74603
New York	NYDOH	10712
North Carolina	NCDEM	392
Ohio	OHEPA	OH113
Oklahoma	OKDEQ	9216
Pennsylvania	PADER	68-450
South Carolina	SCDEHNR	92002
Tennessee	TNDOH/TNDEC	2978
Virginia	VADGS	00011
Washington	WADOE	C154
Wisconsin	WIDNR	999037160

Validated by:

o US Army Corps of Engineers	Chemical Analysis in Various Matrices
Approvals:	
o Chemical Waste Management	Waste Characterization Analysis Waste Characterization Analysis
o USDA	Permit for Importing Soils
o Florida DEP	Quality Assurance Plan #930034G
o Naval Facilities Engineering Service Center	Chemical Analysis in Various Matrices

REPORT KEY

mg/kg = milligram per kilogram (ppm)

 Mg/m^3 = milligram per cubic meter

ug/kg = microgram per kilogram (ppb)

mg/L = milligram per liter (ppm)

ug/L = microgram per liter (ppb)

mg/W = milligram per wipe

ug/W = microgram per wipe

mg/SMP = milligram per sample

ug/SMP = microgram per sample (Tedlar Bag)

= microgram per sample ug/smp

um/cm = microMho per centimeter

pCi/l = picocurie per liter

gm/cc = grams per cubic centimeter

= parts per million ppm = parts per billion

ppb

ND = Not detected at or above stated detection limit

= less than <

= greater than

= percent %

BTU/Ib = British Thermal Units per pound

Deg. C = Degrees Celsius n/a = not applicable

Unk = unknown

std = result is relative to standard pH units

CV = Conventionals

IR = Infrared Spectrophotometric

GC = Gas Chromatograph Instrument

GC/MS = Gas Chromatography/Mass Spectrometer Instrument

GRO = Gasoline Range Organics DRO = Diesel Range Organics

PCB = Polychlorinated Biphenyls (PCBs)

EP TOX = Extraction Procedure Toxicity

TCLP = Toxicity Characteristic Leaching Procedure

RCRA = Resource Conservation and Recovery Act

SOW = Statement of Work

UUALITY ASSURANCE DATA

TOTAL PETROLEUM HYDROCARBON ANALYSIS, IR (IROO)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	
Petroleum Hydrocarbons (IR)	ND	81	-	-	-	Q2T41418
			_			

⁻ There was insufficient sample available to complete our standard matrix spike and matrix spike duplicate analyses.

APPENDIX D CHAIN-OF-CUSTODY RECORD(S)

CHAIN-OF-C_STODY RECORD

Form 0 rield Technical Servi Rev. 08

No. 107683

ROJ	H. MATERIALS JEGT NAME De Je			•		D. BOX 551 FINDLAY, OH 4	3003 5001	•	AN	ALYS	3-3526 IS DES		/	7	//	///	///	-
LIEN	6 ZOS PROJEC	208 Mile Quinlan (508) 772-2610 S REPRESENTATIVE PROJECT MANAGER/SUPERVISOR		2610	NUMBER	SEP.	ARATE ATAINE		/			//		//				
2	SAMPLE NUMBER	DATE	TIME	COMP	GRAB	SAMPLE DESCRIPTION (INCLUDE MATRIX AND POINT OF SAMPLE)		o F	1	103	OFF O	ST.	//	/	//	//	AEMARKS	
S	BASO NEC	4-27	1510	V		Brown sand w/ some clay		24407	1	1						SBSF	abels b	cegre
	" NEZ		1505		1	Broysh sendy clay		Zx40~1 VOA			1							
	" SEZ		1515	5/		Brain send w/cobble		Zx407 Amb Gliss	1	1								
	" SEL	1	151	2	1	Bran send u/cobbb		2x40~1 VOA			1							
	" SWC		152	0 1	1	Brun send, cheyey, with cobb	1000	2×407 Amb511	1	1				14				
-	" SW2		151	3	1	Brown sod, chayen, with co	6616	VOA			1							
	" DUPL		151	TV		brown sud w/ collic		2x407 Andy 1,100	1	1								
	-" DUPG		151	2	1	Brown Sad u/ colle		2×1/0~1			1						V	
1	TRRE	+	州工	X	1	2799		Baton Ambalan	1	7	-	2	1271	e t	5		Zily	
1	TRPE	b	1512	y-	V	malanden	~~~	2x40-1	_	~	V	m	m	R	B	200	2,91/2	~
TRANSFER	ITEM NUMBER				RANS	HED BY ACCEPTED BY		230/8	IME	nem	IARKS	4	00		Biz	عداد	inclu	des
1	1-8		Will	_0	L	Feder Aichell #	0.0-3-	77	OO			, -	U					
2	1-8		F-	6	_		2	941	003	}								
3	3																Tem	E 7.0
4											LERISS		URE					300

ANALYTICAL REPORT

Client: OHM Remediation Services Corporation

Eastern Region (Hopkinton, MA)

Attn: William Snow

Ron Kenyon Mike Quinlan

Project: 16208C - USACE; Fort Devens, MA

Sample Type(s): Solid

Analysis Performed: Conventional and Organics

Date Sample Received: October 5, 1994

Date Order Received: October 5, 1994

Joblink(s): 616781

This report is "PROPRIETARY AND CONFIDENTIAL" and delivered to, and intended for the exclusive use of the above named client only. Analytical Services Corporation assumes no responsibility or liability for the reliance hereon or use hereof by anyone other than the above named client.

Reviewed and

Approved by:

homas E. Gran. Ph.D., Vice President

Date: October 11, 1994

PROJECT NARRATIVE

The following items relate to the samples and analytical data contained in this report.

- o All sample results are reported on a "dry weight" basis.
- o Note any and all comments at the bottom of the tables in Appendix B and/or Appendix C.
- o ASC will retain samples for a maximum of thirty (30) days after completion of the analysis, samples will be held for a longer period of time, if appropriate arrangements are made in advance. A nominal disposal charge of \$5.00/ sample will be imposed for unreturned samples.

APPENDIX A DATA SUMMARY REPORT

NOTE: The Tentatively Identified Volatile (GC/MS) Screen result(s), if applicable, is included in Appendix B.

1 : 05/19/95

PAGE: 1

Company:	OHM	REMEDIATION	SERVICES	CORPORATION
----------	-----	-------------	----------	-------------

								Facility Code:	
								Units	Parameters
								(CV10)	Conventional Data
88.4	90.0	91.1	90.3	89.1	93.3	88.5	90.2	*	Solids, Total
					SBSA56NW3B JN2990 941004 016208C	SBSA56NW2B JN2989 941004 016208C	SBSA56NW1B JN2988 941004 016208C	Sample Point ID: ASC Sample Number: Sample Date: Facility Code:	
								Units	Parameters
								ysis, GC, (GV33)	TXE Volatile Anal
					<.001 <.001 <.001 <.001	<.001 <.001 <.001 <.001	<.001 <.001 <.001 <.001	mg/kg mg/kg mg/kg mg/kg	Benzene Ethylbenzene Toluene Xylenes
			SBSA56NW3C JN2987 941004 016208C	941004	SBSA56NW1C JN2985 941004 016208C	SBSA56DUP2 JN2984 941003 016208C	SBSA56SEC2 JN2983 941003 016208C	Sample Point ID: ASC Sample Number: Sample Date: Facility Code:	
								Units	Parameters
			JN2987 941004	JN2986 941004	<.001 <.001 <.001 <.001 <.001 <.001 SBSA56NW1C JN2985 941004	<.001 <.001 <.001 <.001 <.001 <.001 SBSA56DUP2 JN2984 941003	<.001 <.001 <.001 <.001 <.001 <.001 SBSA56SEC2 JN2983 941003	Facility Code: Units Lysis, GC, (GV33) mg/kg	TXE Volatile Anal Benzene Ethylbenzene Toluene Xylenes

DATA SUMMARY REPORT

DATE: 10/08/94

PAGE: 2

Company: OHM REMEDIATION SERVICES CORPORATION

Sample Point ID: SBSA56NW1C SBSA56NW2C SBSA56NW3C ASC Sample Number: JN2985 JN2986 JN2987

941004 941004

Sample Date: 941004 Facility Code: 016208C 016208C 016208C

Units Parameters

Total	Base/Neutral/Acid	Analysis, MS,	(MS02)
Acen	aphthene	mg/kg	<.327
1.00			. 207

ľ					
ı	Acenaphthene	mg/kg	<.327	<.333	<.327
١	Acenaphthylene	mg/kg	<.327	<.333	<.327
l	Anthracene	mg/kg	<.327	<.333	<.327
ĺ	Benzidine	mg/kg	<.327	<.333	<.327
Ì	Benzo(a)anthracene	mg/kg	<.327	<.333	<.327
۱	Benzo(b)fluoranthene	mg/kg	<.327	<.333	<.327
ļ	Benzo(k) fluoranthene	mg/kg	<.327	<.333	<.327
	Benzo(ghi)perylene	mg/kg	<.327	<.333	<.327
	Benzo(a)pyrene	mg/kg	<.327	<.333	<.327
	bis(2-Chloroethyl) ether	mg/kg	<.327	<.333	<.327
ļ	bis(2-Chloroethoxy)methane	mg/kg	<.327	<.333	<.327
Ì	bis(2-Chloroisopropyl)ether	mg/kg	<.327	<.333	<.327
l	bis(2-Ethylhexyl)phthalate	mg/kg	3.70	3.70	2.87
	4-Bromophenyl phenyl ether	mg/kg	<.327	<.333	<.327
	Butyl benzyl phthalate	mg/kg	<.327	<.333	<.327
	Bucji Benzji phenarace	9/ 1.9			
	Carbazole	mg/kg	<.327	<.333	<.327
	4-Chloroaniline	mg/kg	<.327	<.333	<.327
	p-Chloro-m-cresol	mg/kg	<.327	<.333	<.327
	2-Chloronaphthalene	mg/kg	<.327	<.333	<.327
	2-Chlorophenol	mg/kg	<.327	<.333	<.327
	4-Chlorophenyl phenyl ether	mg/kg	<.327	<.333	<.327
	Chrysene	mg/kg	<.327	<.333	<.327
	Dibenzo(a,h)anthracene	mg/kg	<.327	<.333	<.327
	Dibenzofuran	mg/kg	<.327	<.333	<.327
	Di-n-butyl phthalate	mg/kg	<.327	<.333	<.327
	or " was/a Promatage	9/9			
7	1,2-Dichlorobenzene	mg/kg	<.327	<.333	<.327
	1,3-Dichlorobenzene	mg/kg	<.327	<.333	<.327
1	1,4-Dichlorobenzene	mg/kg	<.327	<.333	<.327
l	3,3'-Dichlorobenzidine	mg/kg	<.327	<.333	<.327
I	2,4-Dichlorophenol	mg/kg	<.327	<.333	<.327
1	Diethyl phthalate	mg/kg	<.327	<.333	<.327
	Diethyl phthalate	mg/kg	<.327	<.333	<.327
I	Dimethyl phthalate 2,4-Dimethylphenol	mg/kg	<.327	<.333	<.327
	4,6-Dinitro-o-cresol	mg/kg	<.818	<.833	<.817
l	2,4-Dinitrophenol		<1.64	<1.67	<1.63
	z,4-printcrobusior	mg/kg	1.04	~1.01	ZT.02

DATA SUMMARY REPORT

DATE: 10/08/94

PAGE: 3

Company: OHM REMEDIATION SERVICES CORPORATION

	Sample Point ID:	SBSA56NW1C	SBSA56NW2C	SBSA56NW3C
AS	C Sample Number:	JN2985	JN2986	JN2987
	Sample Date:	941004	941004	941004
	Facility Code:	016208C	016208C	016208C

Parameters	Units			
otal Base/Neutral/Acid Analy	sis, MS,	(MS02)		
2,4-Dinitrotoluene	mg/kg	<.327	<.333	<.327
2,6-Dinitrotoluene	mg/kg	<.327	<.333	<.327
Di-n-octyl phthalate	mg/kg	<.327	<.333	<.327
Fluoranthene	mg/kg	<.327	<.333	<.327
Fluorene	mg/kg	<.327	<.333	<.327
Hexachlorobenzene	mg/kg	<.327	<.333	<.327
Hexachlorobutadiene	mg/kg	<.327	<.333	<.327
Hexachlorocyclopentadiene	mg/kg	<.327	<.333	<.327
Hexachloroethane	mg/kg	<.327	<.333	<.327
Indeno(1,2,3-cd)pyrene	mg/kg	<.327	<.333	<.327
Isophorone	mg/kg	<.327	<.333	<.327
2-Methylnaphthalene	mg/kg	<.327	<.333	<.327
2-Methylphenol	mg/kg	<.327	<.333	<.327
-Methylphenol	mg/kg	<.327	<.333	<.327
N-Nitrosodimethylamine	mg/kg	<.327	<.333	<.327
N-Nitrosodi-n-propylamine	mg/kg	<.327	<.333	<.327
N-Nitrosodiphenylamine	mg/kg	<.327	<.333	<.327
Naphthalene	mg/kg	<.327	<.333	<.327
2-Nitroaniline	mg/kg	<.327	<.333	<.327
3-Nitroaniline	mg/kg	<.327	<.333	<.327
1-Nitroaniline	mg/kg	<.327	<.333	<.327
Nitrobenzene	mg/kg	<.327	<.333	<.327
2-Nitrophenol	mg/kg	<.327	<.333	<.327
1-Nitrophenol	mg/kg	<1.64	<1.67	<1.63
Pentachlorophenol	mg/kg	<.327	<.333	<.327
Phenanthrene	mg/kg	<.327	<.333	<.327
Phenol	mg/kg	<.327	<.333	<.327
Pyrene		<.327	<.333	<.327
Pyridine	mg/kg	<.327	<.333	<.327
1,2,4-Trichlorobenzene	mg/kg	<.327	<.333	<.327
2,4,5-Trichlorophenol	mg/kg	<.327	<.333	<.327
2,4,6-Trichlorophenol	mg/kg	<.327	<.333	<.327

APPENDIX B QUANTITATIVE RESULTS

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

SBSA56SECZ

Compounds	*	Sample Results	Detection Limits	Blank Results	Batch Number
Solids, Total	8	90.2	.100	-	

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56DUPZ

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
Solids, Total	8	88.5	.100	-	

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW1C

Sample Results	Detection Limits	Blank Results	Batch Number
% 93.3	.100	-	

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

SBSA56NW2C

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
Solids, Total	*	89.1	.100	-	

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW3C

90.3	.100	
		1

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW1B

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
Solids, Total	*	91.1	.100	-	

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW2B

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
olids, Total	%	90.0	.100	-	

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW3B

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
Colids, Total	*	88.4	.100	-	

BTXE Volatile Analysis, GC, (GV33)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW1B

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
enzene thylbenzene oluene ylenes	ND ND ND	.001 .001 .001 .001	ND ND ND ND	Q2W3910 Q2W3910 Q2W3910 Q2W3910

BTXE Volatile Analysis, GC, (GV33)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW2B

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Benzene Ethylbenzene Toluene Xylenes	ND ND ND	.001 .001 .001	ND ND ND ND	Q2W3910 Q2W3910 Q2W3910 Q2W3910

BTXE Volatile Analysis, GC, (GV33)

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW3B

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Benzene Ethylbenzene Toluene Xylenes	ND ND ND	.001 .001 .001 .001	ND ND ND ND	Q2W3910 Q2W3910 Q2W3910 Q2W3910

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56SEC2

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Petroleum Hydrocarbons (IR)	55.4	7.36	ND	Q2T41433A
			W	

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56DUP2

Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
67.0	7.35	ND	Q2T41433A

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW1C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
etroleum Hydrocarbons (IR)	ND	7.10	ND	Q2T41433A
	M) - 1	1		

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW2C

Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
ND	7.46	ND	Q2T41433A

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW3C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
etroleum Hydrocarbons (IR)	ND	7.24	ND	Q2T41433A

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW1C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene	ND	.327	ND	Q2C41430
Acenaphthylene	ND	.327	ND	Q2C41430
Anthracene	ND	.327	ND	Q2C41430
Benzidine	ND	.327	ND	Q2C41430
Benzo(a)anthracene	ND	.327	ND	Q2C41430
Benzo(b)fluoranthene	ND	.327	ND	Q2C41430
Benzo(k)fluoranthene	ND	.327	ND	Q2C41430
Benzo(ghi)perylene	ND	.327	ND	Q2C41430
Benzo(a)pyrene	ND	.327	ND	Q2C41430
bis(2-Chloroethyl) ether	ND	.327	ND	Q2C41430
bis(2-Chloroethoxy)methane	ND	.327	ND	Q2C41430
bis(2-Chloroisopropyl)ether	ND	.327	ND	Q2C41430
bis(2-Ethylhexyl)phthalate	3.70	.327	ND	Q2C41430
4-Bromophenyl phenyl ether	ND	.327	ND	Q2C41430
Butyl benzyl phthalate	ND	.327	ND	Q2C41430
Carbazole	ND	.327	ND	Q2C41430
4-Chloroaniline	ND	.327	ND	Q2C41430
p-Chloro-m-cresol	ND	.327	ND	Q2C41430
2-Chloronaphthalene	ND	.327	ND	Q2C41430
2-Chlorophenol	ND	.327	ND	Q2C41430
4-Chlorophenyl phenyl ether Chrysene 'benzo(a,h)anthracene benzofuran n-butyl phthalate	ND ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Diethyl phthalate	ND	.327	ND	Q2C41430
Dimethyl phthalate	ND	.327	ND	Q2C41430
2,4-Dimethylphenol	ND	.327	ND	Q2C41430
4,6-Dinitro-o-cresol	ND	.818	ND	Q2C41430
2,4-Dinitrophenol	ND	1.64	ND	Q2C41430
2,4-Dinitrotoluene	ND	.327	ND	Q2C41430
2,6-Dinitrotoluene	ND	.327	ND	Q2C41430
Di-n-octyl phthalate	ND	.327	ND	Q2C41430
Fluoranthene	ND	.327	ND	Q2C41430
Fluorene	ND	.327	ND	Q2C41430
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Isophorone	ND	.327	ND	Q2C41430
2-Methylnaphthalene	ND	.327	ND	Q2C41430
2-Methylphenol	ND	.327	ND	Q2C41430
4-Methylphenol	ND	.327	ND	Q2C41430
N-Nitrosodimethylamine	ND	.327	ND	Q2C41430

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW1C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Naphthalene 2-Nitroaniline 3-Nitroaniline	ND ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
A-Nitroaniline Nitrobenzene 2-Nitrophenol A-Nitrophenol Pentachlorophenol	ND ND ND ND ND	.327 .327 .327 1.64 .327	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Phenanthrene Phenol Pyrene Pyridine 1,2,4-Trichlorobenzene	ND ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ND ND	.327 .327	ND ND	Q2C41430 Q2C41430

³⁻Methyl- and 4-Methylphenol coelute and are reported as the total

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW2C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND ND	.333 .333 .333 .333 .333	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether	ND ND ND ND ND	.333 .333 .333 .333	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND 3.70 ND ND	.333 .333 .333 .333 .333	ND ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Carbazole 4-Chloroaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	.333 .333 .333 .333	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
4-Chlorophenyl phenyl ether Chrysene - benzo(a,h)anthracene benzofuran n-butyl phthalate	ND ND ND ND ND	.333 .333 .333 .333	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND ND	.333 .333 .333 .333	ND ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND ND	.333 .333 .333 .833 1.67	ND ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND ND ND	.333 .333 .333 .333	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND ND ND ND	.333 .333 .333 .333	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine	ND ND ND ND ND	.333 .333 .333 .333 .333	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW2C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Naphthalene Nitroaniline Nitroaniline	ND ND ND ND ND	.333 .333 .333 .333 .333	ND ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
e-Nitroaniline Nitrobenzene 2-Nitrophenol 3-Nitrophenol Pentachlorophenol	ND ND ND ND ND	.333 .333 .333 1.67 .333	ND ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Phenanthrene Phenol Pyrene Pyridine 1,2,4-Trichlorobenzene	ND ND ND ND ND	.333 .333 .333 .333	ND ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ND ND	.333	ND ND	Q2C41430 Q2C41430

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW3C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether	ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND 2.87 ND ND	.327 .327 .327 .327 .327	ND ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Carbazole 4-Chloroaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
4-Chlorophenyl phenyl ether Chrysene 'benzo(a,h)anthracene benzofuran D1-n-butyl phthalate	ND ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND ND	.327 .327 .327 .817 1.63	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine	ND ND ND ND ND	.327 .327 .327 .327 .327	ND ND ND ND	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

SBSA56NW3C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
I-Nitrosodi-n-propylamine	ND	.327	ND	Q2C41430
I-Nitrosodiphenylamine	ND	.327	ND	Q2C41430
Iaphthalene	ND	.327	ND	Q2C41430
I-Nitroaniline	ND	.327	ND	Q2C41430
I-Nitroaniline	ND	.327	ND	Q2C41430
-Nitroaniline	ND	.327	ND	Q2C41430
Witrobenzene	ND	.327	ND	Q2C41430
W-Nitrophenol	ND	.327	ND	Q2C41430
-Nitrophenol	ND	1.63	ND	Q2C41430
Pentachlorophenol	ND	.327	ND	Q2C41430
Phenanthrene	ND	.327	ND	Q2C41430
Phenol	ND	.327	ND	Q2C41430
Pyrene	ND	.327	ND	Q2C41430
Pyridine	ND	.327	ND	Q2C41430
.,2,4-Trichlorobenzene	ND	.327	ND	Q2C41430
,4,5-Trichlorophenol	ND	.327	ND	Q2C41430
	ND	.327	ND	Q2C41430

APPENDIX C QUALITY ASSURANCE DATA

SUMMARY OF ANALYTICAL METHODOLOGY

ASC Joblink # 616781

REFERENCE TITLE		TITLE
160.3	CAWW	Residue, Total, Gravimetric, Dried at 103-105 C
418.1	MCAWW	Petroleum Hydrocarbons, Total Recoverable
8020	sw-846	Aromatic Volatile Organics by GC
8270	sw-846	GC/MS for Semivolatile Organics: Capillary Column Technique

METHODOLOGY REFERENCES

ASTM	American Society for Testing and Materials, 1985 edition.
CAWW	Methods for Chemical Analysis of Water and Wastes, April 1979 and Updated #1 March 1983.
CLP	USEPA Contract Laboratory Program, Document #OLMO1.0, updates December 1990 #OLMO1.1 and February 1991 #OLMO1.1.1.
EPA-500	USEPA Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039 December 1988.
EPA-600	USEPA Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 July 1982.
NIOSH	National Institute for Occupational Safety and Health, 3rd edition, 1984.
SMEWW	Standard Methods for the Examination of Water and Wastewater, 17th edition, 1989.
STOA	Spot Tests In Organic Analysis, 7th edition, 1966.
SW-846	Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, 3rd edition, September 1986 and Update #1 July 1992.
(1)	This method was modified to incorporate the use of Boron Trifluoride (BF3) as the derivatizing reagent according to Method 6640 in SMEWW, 17th edition, 1989.
Title 22	Waste Extraction Test, Title 22, Section 66261.126 Appendix 2 of the California Administrative Code, May 1991.

ASC Certifications

State	Agency	Certification #		
Alabama	ADEM	40830		
California	CADOH	1178		
Colorado	CODOH	OH113		
Delaware	DEHSS	OH113		
Kansas	KSDHE	E-202 & E-1173		
Louisiana	LADOHH	92-10		
Maryland	MDDHMH	210		
Massachusetts	MADEP	M-OH113		
New Jersey	NJDEPE	74603		
New York	NYDOH	10712		
North Carolina	NCDEM	392		
Ohio	OHEPA	OH113		
Oklahoma	OKDEQ	9216		
Pennsylvania	PADER	68-450		
South Carolina	SCDEHNR	92002		
Tennessee	TNDOH/TNDEC	2978		
Virginia	VADGS	00011		
Washington	WADOE	C154		
Wisconsin	WIDNR	999037160		

Validated by:

o US Army Corps of Engineers	Chemical Analysis in Various Matrices
Approvals:	
o Chemical Waste Management	Waste Characterization Analysis
o Envirosafe	Waste Characterization Analysis
o USDA	Permit for Importing Soils
o Florida DEP	Quality Assurance Plan #930034G
o Naval Facilities Engineering Service Center	Chemical Analysis in Various Matrices

REPORT KEY

mg/kg = milligram per kilogram (ppm)

Mg/m³ = milligram per cubic meter

ug/kg = microgram per kilogram (ppb)

mg/L = milligram per liter (ppm)

ug/L = microgram per liter (ppb)

mg/W = milligram per wipe ug/W = microgram per wipe

mg/SMP = milligram per sample

ug/SMP = microgram per sample (Tedlar Bag)

ug/smp = microgram per sample um/cm = microMho per centimeter

pCi/l = picocurie per liter

gm/cc = grams per cubic centimeter

ppm = parts per million ppb = parts per billion

ND = Not detected at or above stated detection limit

< = less than
> = greater than

% = percent

BTU/lb = British Thermal Units per pound

Deg. C = Degrees Celsius n/a = not applicable

Unk = unknown

std = result is relative to standard pH units

CV = Conventionals

IR = Infrared Spectrophotometric

GC = Gas Chromatograph Instrument

GC/MS = Gas Chromatography/Mass Spectrometer Instrument

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

PCB = Polychlorinated Biphenyls (PCBs)

EP TOX = Extraction Procedure Toxicity

TCLP = Toxicity Characteristic Leaching Procedure

RCRA = Resource Conservation and Recovery Act

SOW = Statement of Work

BTXE Volatile Analysis, GC, (GV33)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg		Relative Percent Diff	Batch Number
Benzene Ethylbenzene Foluene Kylenes	ND ND ND ND	91 93 92 93	ND ND ND ND	82 85 83 84	1 1 1	Q2W3910 Q2W3910 Q2W3910 Q2W3910

TOTAL PETROLEUM HYDROCARBON ANALYSIS, IR (IROO)

Compounds	Blank Results mg/kg	Blank Spike Recov	mg/kg		Relative Percent Diff	
Petroleum Hydrocarbons (IR)	ND	77	55.4	88	7	Q2T41433A

TOTAL BASE/NEUTRAL/ACID ANALYSIS, MS, (MS02)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND ND	69 82 89 28 88	ND ND ND ND ND	106 138 150 - 70	6 7 16 - 35	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether	ND ND ND ND ND	94 102 87 88 86	ND ND ND ND ND	47 70 94 104 86	78 63 0 30	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND ND ND ND	86 78 98 87 106	ND ND ND ND	104 95 115 81 108	1 4 2 3 3	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Carbazole 4-Chloroaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	92 58 83 80 75	88 88 88 88 88 88 88 88 88 88 88 88 88	126 56 97 106 89	8 12 2 5 6	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
4-Chlorophenyl phenyl ether Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate	ND ND ND ND ND	85 85 85 83 92	22 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	100 57 65 120 111	3 60 1 5 2	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND ND	76 76 75 58 82	20 20 20 20 20 20 20 20 20 20 20 20 20 2	86 85 92 - 99	4 2 1 - 5	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND ND	89 89 53 110 99	ND ND ND ND ND	110 68	4 - 15 -	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND ND ND	85 85 95 88 81	ND ND ND ND ND	69 77 117 74 111	12 11 10 60 6	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND ND ND ND	88 76 14 69 87	88 88 88 88 88 88 88 88 88 88 88 88 88	76 85 - 62 80	1 1 - 1 4	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine	ND ND ND ND ND	82 77 67 76 66	ND ND ND ND ND	93 129 86 94 59	2 2 11 9 8	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430

TOTAL BASE/NEUTRAL/ACID ANALYSIS, MS, (MSO2)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Batch Number
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Naphthalene 3-Nitroaniline 4-Nitroaniline	ND ND ND ND ND	91 87 77 68 90	ND ND ND ND ND	102 114 118	1 7 7 -	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Nitrobenzene 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenanthrene	ND ND ND ND ND	79 79 92 103 87	ND ND ND ND ND	89 39 73 41 93	4 20 5 18 36	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
Phenol Pyrene Pyridine 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol	ND ND ND ND	77 87 45 81 86	ND ND ND ND ND	98 56 - 96 95	4 72 - 4 7	Q2C41430 Q2C41430 Q2C41430 Q2C41430 Q2C41430
2,4,6-Trichlorophenol	ND	80	ND	91	9	Q2C41430

3-Methyl- and 4-Methylphenol coelute and are reported as the total Due to sample matrix interferences, the spiked sample does not provide valid spike recovery data.

QUALITY ASSURANCE DATA SURROGATE SUMMARY REPORT

URROGATE ID	A159	B732	A121	A884	A158	B142	# OUT	
C BATCH: Q2C4143	O Solid (Se	mi-Volati	le organi	cs by MS)				
SAMPLE ID	Car 20 5 5 5	2000		4.00				
10018 MD	82 D	110 D	62 D	91 D	110 D	86 D	0	
10018 MS	77 D	106 D	61 D	87 D	106 D	84 D	0	
BLANK	76	87	81	77	81	75	0	
BLANK SPIKE	79	90	93	83	78	80	0	
SBSA56NW1C	60	71	71	65	63	72	0	
SBSA56NW2C	51	56	51	54	54	60	0	
SBSA56NW3C	65	79	65	76	73	77	0	
QC LIMITS	(25-121)	(24-113)	(19-122)	(23-120)	(30-115)	(18-137)		
URROGATE ID	A228	# OUT				- 1. - 1.		
C BATCH: Q2W3910	Solid (Vol	atile org	anics by	3C)				10, 110
SAMPLE ID								
BLANK	92	0						
BLANK SPIKE	95	ŏ						
SBSA56NW1B	83	ŏ						
SBSA56NW2B	87	ŏ						
SBSA56NW3B	71	ŏ						
SBSA56NW3B MD	85	Ö						
SBSA56NW3B MS	88	0						
	(30-130)							

SURROGATE ID

A159 = 2-Fluorophenol B732 = Phenol-D6 A121 = 2,4,6-Tribromophenol A884 = Nitrobenzene-D5

A158 = 2-Fluorobiphenyl B142 = Terphenyl-D14 A228 = a,a,a-Trifluorotoluene

* Values outside of method quality control limits D Sample was diluted, however, some surrogates may be reported if results were observed.

It is ASC's laboratory policy to allow one surrogate per sample fraction (acid, base-neutral or pesticide) to exceed the stated QC limits. This policy is based upon the USEPA SOW for the Contract Laboratory Program (CLP).

APPENDIX D CHAIN-OF-CUSTODY RECORD(S)

CHAIN-OF-CUE DDY RECORD

Form 0019 Fie. echnical Services
Rev 08/89
No. 107684

O.H. MATERIAL	S CORF		2	P.C). BOX 551	• FINDLAY, OH 45839-055	•	419	9-423	3-352	6			
PROJECT NAME FORT DEVENTY PROJECT CONTACT WELL SUB- PROJECT TELEPHONE NO ZO 19 SOR - 772 - 2645 CLIENT'S REPRESENTATIVE PROJECT MANAGER/SUPERVISOR SO 10-9-19 TOM BEST (USACE) BILL SUB-						S S S	ANALYSIS DESIRED (INDICATE SEPARATE CONTAINERS)							
SAMPLE NUMBER	DATE	TIME	COMP	GRAB	V	SAMPLE DESCRIPTION (INCLUDE MATRIX AND POINT OF SAMPLE)	OF	/	13					REMARKS
1 SASASGSEZ	10-3	1255	1		Grysh, Bran	, sould clay "we+"	1x 40	- J						
2 SBSAS & DUPZ	10-3	1255	1		.16	ï.	1x Vo	2 V						
3 SBSASG NETE	1 10-4	1510	V		Greysond	clay U/rockfragants	Lxy	oz s	1					+ Sample # on Label 13 5BSASHMECT (CQ)
4 SPENSONEZ	1 4	1570	V		u	- 0	- Z×40	7 V	1					+ Sample + un Label 15 SBSA SUNECE CE (3)
5 SESASL NE	3	1530	V		bry Su	-dy clay u/ whs	2 /41	02 V	1					* Souple on Label 15 SBSASGNEC3u(3)
6 SBSASL NEI	B 10-4 B 94	1505		1	Gray Send	y clay U/rock lagran	2 X40	21		1				
3 SBSASLNEZ		1515		1	10	/1	2×40	A		1				
8 SBSA56 NE	60 11,20-017	1525		~	- Gry Sa	ndy cley U/rocks	- 2 X4			1				
9														
10														
NUMBER NUMBER		F		IANSF IQUIS	ERS HED BY	TRANSFERS ACCEPTED BY	DATE	TIME	REM	MARK				
1 1-1		Ert ld			2989343722 Enforce Express ACREEU	10-4	(900e)	-				P BLANK THICUDED		
3	6	Feel	12			est.	54	0443			¥ 3.00			Temp you
4									SAM	Vill	SIGNATUR			

Appendix C
Chemical Quality Assurance Report

RECORD OF TRANSMITTAL

CENED-ED-GL

6 April 1995

FOR Project Engineer, Mr. Mark Applebee
U.S. Army Corps of Engineer,
New England Division
424 Trapelo Rd.
Waltham, MA 02254-9149

SUBJECT: Fort Devens - Study Area 56, Chemical Quality Assurance Report (CQAR)

1. References:

- a. Project No. E0251
- b. Contractor Data Report, Dated January 13, 1995.
- c. Memorandum, CEMRD-ED-GC, 16 Aug 1989, Subject: Minimum Chemistry Data Reporting Requirements for DERP and Superfund HTW Projects.
- 2. Five QA samples were analyzed, resulting in a total of 156 target analyte determinations. Results from analysis of QA samples were compared with results from analysis of the corresponding primary samples (ref 1b). Results of the comparison are as follows:
- a. The contractor's laboratory was Analytical Services Corporation, Findlay, OH, (ASC).
- b. Results from the primary and QA samples agreed overall in 153 (98%) of the comparisons.
- c. Results from the primary and QA samples agreed quantitatively in 4 (57%) of the comparisons.
- d. There were 0 (0%) major discrepancies between results from the primary and QA laboratory samples.
- e. There were 3 (2%) minor discrepancies between results from the primary and QA laboratory samples.

- 3. QA analyses were mostly performed in-house at the Environmental Laboratory. QA analyses were also performed at E3I, Sommerville, MA.
- 4. The CENED-ED-GL POC is Gary S. Rogowski, 508-928-4238.

Encl

CF (w/encl): CEMP-RT Larry Becker CEMRD-ED-EC Anand Mudambi

QA Findings

(Ft. Devens SA56)

1. QA sample shipping and chain-of-custody deficiencies.

Three sample shipments of QA samples were received on September 23, October 4, and October 21, 1994. Proper sample handling protocols were mostly followed with the following exception: 9/23/94, The sample labels were incomplete and the sample labels did not agree with the custody papers, The chain-of-custody documents and cooler receipt form are appended to this report for reference. All shipment information was faxed to Mr. Tim Coleman or Mr. Mark Applebee within 24 hours of receipt.

2. Data comparison for BTEX.

There were 4 determinations. In 1 of these determinations BTEX were detected by the contractor's lab. There was an overall agreement in 3 (75%) and 0 (0%) quantitative agreement of the cases. There was 1 (25%) minor discrepancy between the QA and contractor's laboratory. No major discrepancies were noted.

3. Data comparison for TPH.

There were 2 determinations. In both determinations TPH was detected by both the QA lab and contractor's lab. There was an overall and quantitative agreement of 1 (50%). There was 1 (50%) minor discrepancy between the QA and contractor's laboratory. No major discrepancies were noted.

4. Data comparison for BNA.

There were 112 determinations. In 32 of these determinations BNA's were detected by the QA lab or contractor's laboratory. There was an overall and quantitative agreement of 112 (100%). No major or minor discrepancies were noted.

5. Data comparison for Pesticides/PCB.

There were 21 determinations. In 2 of these determinations either Pest/PCB's were detected by the QA lab or contractor's laboratory. There was an overall and quantitative agreement of 21 (100%). No major or minor discrepancies were noted.

6. Data comparison for TCLP BNA.

No comparison generated due to no contractor data available. The contractor did not send data for this samples. The QA laboratory results are attached for reference.

7. Data comparison for TCLP Metals.

There were 8 determinations. In 2 of these determinations metals were detected by the QA lab or contractor's laboratory. There was an overall agreement in 7 (88%) and 1 (50%) quantitative agreement of the cases. There was 1 (12%) minor discrepancies between the QA lab and the contractor's laboratory. No major discrepancies were noted.

8. Data comparison for TCLP Pesticides.

There were 7 determinations. In 0 of these determinations pesticides were detected by the QA lab or contractor's laboratory. There was 100% agreement. There were no major or minor discrepancies noted.

9. Data comparison for TCLP VOA.

No comparison generated due to no QA laboratory data available. The sample was not analyzed due to an error at the QA lab.

10. Data comparison for TCLP Herbicides.

There were 2 determinations. In these determinations no herbicides were detected by the QA lab or contractor's laboratory. There was 100% agreement. No major or minor discrepancies were noted.

10. Comments.

Contractor's data package was not in full compliance with Minimum Chemistry Data Reporting Requirements as sample receiving information, method numbers and surrogate recoveries for the organics were not provided.

Quality Assurance Split Sample Data Comparison Summary

Project: Ft. Devens - SA56

	Overall		Quantitative				
	Agreement	(1)	Agreement	(2)			
Test Parameter	Number	Percent	Number	Percent			
BNA	112/112	100	0/0	N/A			
Metals-TCLP	7/8	88	1/2	50			
Pest-TCLP	7/7	100	0/0	100			
Herb-TCLP	2/2	100	0/0	N/A			
BTEX	3/4	75	0/1	0			
TPH	1/2	50	1/2	50			
Pest/PCB	21/21	100	2/2	100			
Total	153/156	98	4/7	57			

NOTES:

- (1) Represents the number and percentage agreement of all determinations including analytes not detected by either laboratory.
- (2) Represents the number and percentage agreement of only those determinations where an analyte was detected by at least one laboratory.

APPENDIX B KEY TO COMMENTS ON DATA COMPARISON TABLES

- 0 Data agrees if any one of the following apply:
 - both values are less than respective detection limit (N<MDL)

- N, <MDL, and N, >MDL, but <MDL,

 both values are above respective detection limit (N>MDL) and difference between two values satisfies conditions below

Metals <2x difference for waters, TCLP extracts

<3x difference for airs

<10x difference for solids and oils

Semivolatiles <5x difference for all matrices

Volatiles TPH, BTEX

Pesticides <5x difference for liquids Herbicides <10x difference for solids

PCB's

Alkalinity <2x difference for all matrices Hardness, Ammonia (water quality, etc.)

1 - Minor contamination by laboratory contaminant

2 - Not tested by both laboratories

- 3 Minor data discrepancy, disagreement not serious, if any one of the following apply:
 - N₁<MDL₁ and N₂>MDL₂ and the difference between values N₂ and MDL₁ does not exceed the upper limit (described below) defining a minor data discrepancy
 - both values are above respective detection limit (N>MDL) and conditions described below apply to the difference between the two values

Metals 2x<difference<5x for waters,TCLP extracts

10x<difference<20x for solids, oils

3x<difference<5x for airs

Semivolatiles, 5x<difference<10x for all matrices

VOA, TPH, BTEX

Pesticide/PCB 5x<difference<10x for liquids Herbicides 10x<difference<20x for solids

Alkalinity 2x<difference<5x for all matrices

Hardness, Ammonia

(water quality, etc.)

- 4 Major data discrepancy, disagreement serious, if any one of the following apply:
 - N₁<MDL₁ and N₂>MDL₂ and the difference between values N₂ and MDL₁ exceeds the limit (described below) defining a major data discrepancy

 both values are above respective detection limit (N>MDL) and conditions described below apply to the difference between the two values

Metals >5x difference for waters, TCLP extracts, airs >20x difference for solids, oils

Semivolatiles, >10x difference for all matrices VOA, TPH, BTEX

Pesticide/PCB >10x difference for liquids Herbicides >20x difference for solids

Alkalinity >5x difference for all matrices Hardness, Ammonia (water quality, etc.)

MDL = Method Detection Limit
N = Analytical result

Key to data qualifiers:

B - detected in method blank

J - estimated value, above MDL but below practical quantitation limit

NR - Not reported

COMPARISON OF QA & CONTRACTOR RESULTS

PROJECT: FORT DEVENS

QA SAMPLE NO.: 27709

CONTRACTOR'S SAMPLE NO.: JN2586

QA FIELD ID: SBSA56TRPG

CONTRACTOR'S FIELD ID: SBSA56SE2

QA ANALYSIS DATE: 10/18/94

CONTRACTOR'S ANALYSIS DATE: 09/29/94

MATERIAL DESCRIPTION: SOLID

DATE SAMPLED: 09/22/94

UNITS: ng/g

			RESULTS		RESULTS	
PARAMETER		MDL	QA LAB	CONTRACTOR MDL	CONTRACTOR	COMPARISON
Benzene	<	0.9		< 1		0
Toluene	<	0.8		< 1		0
Ethylbenzene	<	0.8		< 1		0
o/m/p-Xylenes	<	1.5		< 1	2.0	3

SURROGATE RECOVERIES (%)

	QA	CONTRACTOR
1,2-Dichloroethane D4 (76-114)	123	NR
Toluene D8 (88-110)	92	NR
4-Bromofluorobenzene (86-115)	76	NR

^{* -} SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

COMPARISON OF QA AND CONTRACTOR RESULTS

PROJECT: FORT DEVENS

ANALYSIS PERFORMED: TOTAL PETROLEUM HYDRCARBONS

UNITS: mg/kg SOIL, mg/L WATER

**	****	*****	****	***	*****	*****	****	****	****	k te
*	SAMPLE	SAMPLE	CONTRACTOR	CONTRACTOR	QA LAB	QA FIELD	CONTRACTOR	QA LAB	C	*
*	DATE	MATRIX	SAMPLE NO.	FIELD ID	NO.	ID	RESULTS	RESULTS		*
**	*****	*****	*****	******	*****	******	****	*****	****	**
*	9/22/94	SOIL	JN2580	SBSA56SEC	C-27708	SBSA56TRPC	997	- 120	3	*
*-										*
*	10/20/94	SOIL	JN3553	EXSA56AC	C-27958	EXSA56ACS	100	110	0	*
-										.
*										*
*-										*
*										*
-										.
*										*
*-										*
*										*
*-										*
*										*
-										.

QA SAMPLE NO.: 27708 QA FIELD ID: SBSA56TRPC QA ANALYSIS DATE: 11/24/94

CONTRACTOR'S SAMPLE NO.: JN2580 CONTRACTOR'S FIELD ID: SBSA56SEC CONTRACTOR'S ANALYSIS DATE: 09/29/94

MATERIAL DESCRIPTION: SOIL DATE SAMPLED: 09/22/94 UNITS: ug/g

		RESULTS		RESULTS		
PARAMETER	QA LAB	QA LAB	CONTRACTOR	CONTRACTO	R	COMPARISO
	MDL		MDL			CODE
Aniline	< 0.1		NR	NA		2
Phenol	< 0.1		< 3.57			0
Bis(2-chloroethyl)ether	< 0.0		< 3.57			0
2-Chlorophenol	< 0.0		< 3.57			0
1,3-Dichlorobenzene	< 0.0		< 3.57			0
1,4-Dichlorobenzene	< 0.0		< 3.57			0
1,2-Dichlorobenzene	< 0.0		< 3.57			0
Benzyl alcohol	< 0.6		NR	NA		2
2-Methylphenol	< 0.2		< 3.57			0
Bis (2-chloroisopropyl) ether			< 3.57			0
4-Methylphenol	< 0.1		< 3.57			0
N-Nitroso-di-n-propylamine	< 0.0		< 3.57			0
Hexachloroethane	< 0.0		< 3.57			0
Nitrobenzene	< 0.0		< 3.57			0
Isophorone	< 0.0	J 0.10	< 3.57			0
2-Nitrophenol	< 0.0		< 3.57			0
2.4-Dimethylphenol	< 0.2		< 3.57			0
Benzoic acid	< 8		NR	NA		2
Bis (2-chloroethoxy) methane	< 0.0		< 3.57			0
2.4-Dichlorophenol	< 0.3		< 3.57			0
1.2.4-Trichlorobenzene	< 0.0		< 3.57			0
Napthalene	< 0.0	0.032	< 3.57			0
4-Chloroaniline	< 0.2		NR	NA		2
Hexachlorobutadiene	< 0.0		< 3.57			0
4-Chloro-3-methylphenol	< 0.2		< 3.57			0
2-Methylnapthalene	< 0.0		NR	NA		2
Hexachlorocyclopentadiene	< 0.1		< 3.57			0
2,4,6-Trichlorophenol	< 0.2		< 3.57			0
2,4,5-Trichlorophenol	< 0.2		< 3.57			0
2-Chloronaphthalene	< 0.0		< 3.57			0
2-Nitroaniline	< 0.1		NR	NA		2
Dimethylphthalate	< 0.0		< 3.57			0
Acenaphthylene	< 0.0		< 3.57			0
3-Nitroaniline	< 1.1		NR	NA		2
Acenaphthene	< 0.0		< 3.57	127		0
2,4-Dinitrophenol	< 8		< 17.9			0
4-Nitrophenol	< 4		< 3.57			0
Dibenzofuran	< 0.0	J 0.026	NR	NA		2
2.6-Dinitrotoluene	< 0.0	E 151 22.	< 3.57)		0

QA SAMPLE NO.: 27708

CONTRACTOR'S SAMPLE NO.: JN2580

			RESULTS		RESULTS	
PARAMETER	Q.	A LAB	QA LAB	CONTRACTOR	CONTRACTOR	COMPARISO
2.000	1	MDL		MDL		CODE
2,4-Dinitrotoluene	<	0.1		< 3.57		Ó
Diethylphthalate	<	0.0	0.14	< 3.57		0
4-Chlorophenyl-phenylether	<	0.0	0.00	< 3.57		0
Fluorene	<	0.0	J 0.032	< 3.57		0
4-Nitroaniline	<	0.2	1,000,000	NR	NA	2
4,6-Dinitro-2-methylphenol	<	4		< 8.93		0
N-Nitrosodiphenylamine	<	0.0		< 3.57		0
4-Bromophenyl-phenylether	<	0.0		< 3.57		0
Hexachlorobenzene	<	0.0		< 3.57		0
Pentachlorophenol	<	4		< 3.57		0
Phenanthrene	<	0.0	0.47	< 3.57		0
Anthracene	<	0.0	0.19	< 3.57		0
Di-n-butylphthalate	<	0.0	J 0.13	< 3.57		0
Fluoranthene	<	0.0	1.5	< 3.57	4.07	0
Pyrene	<	0.0	1.7	< 3.57	3.96	0
Butylbenzylphthalate	<	0.0	J 0.050	< 3.57		0
3,3-Dichlorobenzidine	<	0.1		< 3.57		0
Benzo(a) anthracene	<	0.0	1.1	< 3.57		0
Bis (2ethylhexyl) phthalate	<	0.1	1.7	< 3.57		0
Chrysene	<	0.0	1.2	< 3.57		0
Di-n-octyl phthalate	<	0.2		< 3.57		0
Benzo(b) fluoranthene	<	0.0	1.4	< 3.57		0
Benzo(k) fluoranthene	<	0.0	1.5	< 3.57		0
Benzo(a) pyrene	<	0.0	1.3	< 3.57		0
Indeno(1,2,3-cd)pyrene	<	0.0		< 3.57		0
Dibenz (a, h) anthracene	<	0.0		< 3.57		0
Benzo(g,h,i)perylene	<	0.0	0.47	< 3.57		0

SURROGATE RECOVERIES (%)

	QA	CONTRACTOR
2-Fluorophenol	102	NR
Phenol-d6	122	NR
Nitrobenzene-d5	127	NR
2-Fluorobiphenyl	104	NR
2,4,6-Tribromophenol	71	NR
Terphanyl-d14	149	NR

^{* -} SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

PROJECT: FORT DEVENS

QA SAMPLE NO.: 27958 CONTRACTOR'S SAMPLE NO.: JN3553
QA FIELD ID: EXSA56ACS CONTRACTOR'S FIELD ID: EXSA56AC
QA ANALYSIS DATE: 11/10/94 CONTRACTOR'S ANALYSIS DATE: 10/26/94

MATERIAL DESCRIPTION: SOIL DATE SAMPLED: 10/20/94 UNITS: ug/g

		RESULTS		RESULTS		
PARAMETER	QA LAB	QA LAB	CONTRACTOR	CONTRACTOR	COMPARISO	
	MDL		MDL		CODE	
Aniline	< 0.090		NR	NA	2	
Phenol	< 0.071		< 0.362		0	
Bis(2-chloroethyl)ether	< 0.026		< 0.362		0	
2-Chlorophenol	< 0.019		< 0.362		0	
1,3-Dichlorobenzene	< 0.015		< 0.362		0	
1,4-Dichlorobenzene	< 0.008		< 0.362		0	
1,2-Dichlorobenzene	< 0.016		< 0.362		Ö	
Benzyl alcohol	< 0.525		NR	NA	2	
2-Methylphenol	< 0.145		< 0.362		0	
Bis(2-chloroisopropyl)ether			< 0.362		0	
4-Methylphenol	< 0.100		< 0.362		0	
N-Nitroso-di-n-propylamine	< 0.027		< 0.362		0	
Hexachloroethane	< 0.016		< 0.362		0	
Nitrobenzene	< 0.034		< 0.362		0	
Isophorone	< 0.034		< 0.362		0	
2-Nitrophenol	< 0.034		< 0.362		0	
2,4-Dimethylphenol	< 0.195		< 0.362		0	
Benzoic acid	< 7.366		NR	NA	2	
Bis (2-chloroethoxy) methane			< 0.362	****	0	
2,4-Dichlorophenol	< 0.229		< 0.362		0	
1,2,4-Trichlorobenzene	< 0.011		< 0.362		0	
Napthalene	< 0.007		< 0.362		0	
4-Chloroaniline	< 0.181		NR	NA	2	
Hexachlorobutadiene	< 0.012		< 0.362		0	
4-Chloro-3-methylphenol	< 0.156		< 0.362		0	
2-Methylnapthalene	< 0.015		NR.	NA	2	
Hexachlorocyclopentadiene	< 0.100		< 0.362	NA.	0	
2,4,6-Trichlorophenol	< 0.159		< 0.362		0	
2,4,5-Trichlorophenol	< 0.140		< 0.362	8	0	
2-Chloronaphthalene	< 0.140		< 0.362		0	
2-Nitroaniline	< 0.019		NR	NA	2	
(= 50 m 50 m 5 m 5 m 5 m 5 m 5 m 5 m 5 m 5	31.73.77.7		< 0.362	NA	0	
Dimethylphthalate	< 0.018	J 0.014	< 0.362		0	
Acenaphthylene		3 0.014		142		
3-Nitroaniline	< 0.945		NR < 0.362	NA	2	
Acenaphthene	< 0.014				0	
2,4-Dinitrophenol	< 6.720		< 1.81		0	
4-Nitrophenol	< 3.644		< 1.81	122	O	
Dibenzofuran	< 0.012		NR	NA	2	
2,6-Dinitrotoluene	< 0.039		< 0.362		0	

PROJECT: FORT DEVENS

QA SAMPLE NO.: 27958

CONTRACTOR'S SAMPLE NO.: JN3553

		RESULTS		RESULTS	
PARAMETER	QA LAB	QA LAB	CONTRACTOR	CONTRACTOR	COMPARISO
	MDL		MDL		CODE
2,4-Dinitrotoluene	< 0.080		< 0.362		0
Diethylphthalate	< 0.013	B 0.19	< 0.362		1
4-Chlorophenyl-phenylether	< 0.020		< 0.362		0
Fluorene	< 0.017	J 0.034	< 0.362		0
4-Nitroaniline	< 0.199		NR	NA	2
4,6-Dinitro-2-methylphenol	< 3.221		< 0.906		0
N-Nitrosodiphenylamine	< 0.024		< 0.362		0
4-Bromophenyl-phenylether	< 0.017		< 0.362		0
Hexachlorobenzene	< 0.014		< 0.362		0
Pentachlorophenol	< 3.168		< 0.362		0
Phenanthrene	< 0.015	0.062	< 0.362		0
Anthracene	< 0.025		< 0.362		0
Di-n-butylphthalate	< 0.043	J 0.080	< 0.362		0
Fluoranthene	< 0.017	0.069	< 0.362		0
Pyrene	< 0.015	0.075	< 0.362		0
Butylbenzylphthalate	< 0.041	J 0.053	< 0.362		0
3,3-Dichlorobenzidine	< 0.054		< 0.362		o
Benzo(a) anthracene	< 0.914	0.053	< 0.362		0
Bis(2ethylhexyl)phthalate	< 0.066	18	< 0.362	4.06	0
Chrysene	< 0.014	0.061	< 0.362		0
Di-n-octyl phthalate	< 0.163		< 0.362		0
Benzo(b) fluoranthene	< 0.038	J 0.052	< 0.362		0
Benzo(k) fluoranthene	< 0.065		< 0.362		0
Benzo (a) pyrene	< 0.042	J 0.043	< 0.362		0
Indeno(1,2,3-cd)pyrene	< 0.014		< 0.362		0
Dibenz (a, h) anthracene	< 0.014		< 0.362		0
Benzo(g,h,i)perylene	< 0.014	J 0.037	< 0.362		0

SURROGATE RECOVERIES (%)

	QA	CONTRACTOR
2-Fluorophenol	75	NR
Phenol-d6	87	NR
Nitrobenzene-d5	79	NR
2-Fluorobiphenyl	87	NR
2,4,6-Tribromophenol	78	NR
Terphenyl-d14	78	NR

^{* =} SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS

QA SAMPLE NO.: 27958
QA FIELD ID: EXSA56ACS
QA ANALYSIS DATE: 11/15/94

CONTRACTOR'S SAMPLE NO.: JN3553

CONTRACTOR'S FIELD ID: EXSA56AC

CONTRACTOR'S ANALYSIS DATE: 10/26/94

MATERIAL DESCRIPTION: SOIL

DATE SAMPLED: 10/20/94

UNITS: ug/kg

		RESULTS		RESULTS	
PARAMETER	QA LAB	QA LAB	CONTRACTOR	CONTRACTOR	COMPARISO
	MOL		MDL		CODE
Alpha-BHC	< 0.53		< 18		0
Gamma-BHC	< 0.42		< 18		0
Beta-BHC	< 0.51		< 18		0
Heptachlor	< NR	J 0.86	< 18		0
Delta-BHC	< 0.58		< 18		0
Aldrin	< 0.47		< 18		0
Heptachlor epoxide	< 0.58		< 18		0
Endosulfan I	< 0.70		< 18		0
4,4'-DDE	< 0.91		< 18		0
Dieldrin	< 0.78		< 18		0
Endrin	< 1.60		< 18		0
4,4'-DDD	< 0.67		< 18		0
Endosulfan II	< 0.62		< 18		0
4,4'-DDT	< 1.20		< 18		0
Endrin aldehyde	< 0.65		< 18		0
Endosulfan sulfate	< 0.65		< 18		0
Methoxychlor	< 0.58		< 18		0
Endrin ketone	< 1.10		< 18		0
Toxaphene	< 37.0		< 362		0
Chlordane	< 0.91		< 181		0

SURROGATE RECOVERIES (%)

	QA	CONTRACTOR
TCMX (60-150)	67	NR
DCB (60-150)	104	NR

* = SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS

QA SAMPLE NO.: 27958

CONTRACTOR'S SAMPLE NO.: JN3553

QA FIELD ID: EXSA56ACS

CONTRACTOR'S FIELD ID: EXSA56AC

QA ANALYSIS DATE: 11/18/94

CONTRACTOR'S ANALYSIS DATE: 10/26/94

MATERIAL DESCRIPTION: SOIL

DATE SAMPLED: 10/20/94

UNITS: mg/kg

		RESULTS		RESULTS		
PARAMETER	QA LAB	QA LAB	CONTRACTOR	CONTRACTOR	COMPARISON	
	MDL		MDL		CODE	
Total PCBs	< NR	0.017	< 0.181		0	
SURROGATE RECOVERIES (%)						
	QA	CONTRACTOR				
CMX (60-150)	80	NA				

^{* =} SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS

QA SAMPLE NO.: 28659
QA FIELD ID: EXSA56ACS
QA ANALYSIS DATE: 1/10/95

CONTRACTOR'S SAMPLE NO.: JN6332 CONTRACTOR'S FIELD ID: EXSA56-4C

CONTRACTOR'S ANALYSIS DATE: NR

MATERIAL DESCRIPTION: TCLP EXTRACT DATE SAMPLED: 12/15/94

UNITS: ug/L

			RESULTS		RESULTS	
PARAMETER		QA LAB MDL	QA LAB	CONTRACTOR MDL	CONTRACTOR	COMPARISON
1,4-Dichlorobenzene	<	0.11		<100	NR	2
2-Methylphenol	<	2.0		<100	NR	2
4-Methylphenol	<	1.36		<100	NR	2
Hexachloroethane	<	0.21		<100	NR	2
Nitrobenzene	<	0.46		<100	NR	2
Hexachlorobutadiene	<	0.15		<100	NR	2
2,4,6-Trichlorophenol	<	2.1		<100	NR	2
2,4,5-Trichlorophenol	<	2.0		<100	NR	2
2,4-Dinitrotoluene	<	1.09		<100	NR	2
Hexchlorobenzene	<	0.18		<100	NR	2
Pentachlorophenol	<	43		<100	NR	2
3-Methylphenol (m-cresol)	<	3.7		NR	NR	2

SURROGATE RECOVERIES (%)

	QA	CONTRACTOR
2-Fluorophenol (10-94)	82	NR
Phenol (21-100)	70	NR
Nitrobenzene-d5 (35-114)	112	NR
2-Fluorobiphenyl (43-116)	97	NR
2,4,6-Tribromophenol (10-123)	95	NR
4-Terphenyl-d4 (33-141)	111	NR

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS

QA SAMPLE NO .:

28659

CONTRACTOR'S SAMPLE NO .: JN6331

QA FIELD ID: EXSA56ACS
NALYSIS DATE: 3/5/95

CONTRACTOR'S FIELD ID: EXSA56-4C

QA ANALYSIS DATE:

CONTRACTOR'S ANALYSIS DATE: NR

MATERIAL DESCRIPTION: TCLP EXTRACT

DATE SAMPLED: 12/15/94

UNITS: MG/L

			RESULTS		RESULTS	
PAR	RAMETER	QA LAB	QA LAB	CONTRACTOR	CONTRACTOR	COMPARISON
		MDL		MDL		CODE
Silver	<	0.010		NR	0.021	3
Arsenic	<	0.004		< 0.10		0
Barium	<	0.006	0.2	NR	0.38	0
Cadmium	<	0.003		<0.005		0
Chromium	<	0.011		<0.020		0
Mercury	<	0.0002	NR	<0.001		2
Lead	<	0.840		<0.001		0
Selenium	<	0.260		<0.001		0

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS

QA SAMPLE NO.: 28659
QA FIELD ID: EXSA56ACS
QA ANALYSIS DATE: 1/23/95

CONTRACTOR'S SAMPLE NO.: JN6332 CONTRACTOR'S FIELD ID: EXSA56-4C CONTRACTOR'S ANALYSIS DATE: NR

MATERIAL DESCRIPTION: TCLP EXTRACT

DATE SAMPLED: 12/15/94

UNITS: MG/L

		RESULTS		RESULTS	
PARAMETER	QA LAB	QA LAB	CONTRACTOR	CONTRACTOR	COMPARISON
	MDL		MDL		CODE
Gamma-BHC (Lindane)	< 0.01		< 0.002		0
Heptachlor	< 0.01		< 0.002		0
Heptachlor epoxide	< 0.01		< 0.002		0
Endrin	< 0.02		< 0.002		0
Methoxychlor	< 0.10		< 0.002		0
Chlordane	< 0.10		< 0.020		0
Toxaphene	< 1.0		< 0.040		0

SURROGATE RECOVERIES (%)

^{* =} SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE

COMPARISON OF QA & CONTRACTOR RESULTS PROJECT: FORT DEVENS

QA SAMPLE NO.: 28659
QA FIELD ID: EXSA56ACS
QA ANALYSIS DATE: 1/25/95

CONTRACTOR'S SAMPLE NO.: JN6332 CONTRACTOR'S FIELD ID: EXSA56-4C CONTRACTOR'S ANALYSIS DATE: NR

MATERIAL DESCRIPTION: TCLP EXTRACT
DATE SAMPLED: 12/15/94

UNITS: UG/L

				RESULTS		RESULTS	
	PARAMETER		MDL	QA LAB	CONTRACTOR MDL	CONTRACTOR	COMPARISON CODE
2,4-D		<	15.0		<250		0
2,4,5-TP		<	3.00		<250		0

E0251

CHAIN-OF-CUSTODY RECORD

Form 0019 Field Technical Services 140087

О.Н	. MATERIALS	CORF			P.0	O, BOX 551	• FINDLAY, OH 45839-05	51 •	41	9-42	3-35	26					X 1-1-3/
PROJ N	T NAME ST DE U 10. PROJE 208 M S REPRESENTATIV M BEST	APGI E	E B	LE/ JSA				NUMBER	(IN	DICAT PARAT INTAIN	E E ERS)	ESIRE 49	/	//	///	7//	
TEM NO.	SAMPLE NUMBER	DATE	TIME	COMP	GRAB		SAMPLE DESCRIPTION (INCLUDE MATRIX AND POINT OF SAMPLE)	C		925	Very Constitution		3	633	/	/	REMARKS
10	SA36TRP	9-22	1010	1		13-0-	n Sz-D w cobble	1 440	b /	1							Triplicate of SBSA36BC.
2 Sr	SA36ATEP	9.22	1155	1		moist	brown Szney soil	1240	2/			8 7					Triplicate of SBSA36ABC
1850	SAZECTRP	9-21	1723	V			andy Suil	14110	7	1	e.						Tuplicale of SBSN36LSEL
AD.	SAS6 TRPC	9-27 94	1515	V		Brown S	ad u/sine colble	21407 Corb			1	×	×			i	
858	13A56 TRPG	9-12 94	1512		V	Bran	send u/som woble	2110	5 7 7 1		1						
6	(3)																
7	SHOUL						TRP _ SET ATHER										
8/4), (5) CABO	250	n' 5A	141	CE	CONTAIN	TS CHANGED ACOM S	135,45	57	200	4 5	5/3.5	45	7;	1213	31	757,
9							16_5	26,5,5,4.	567	1.13	10	1/2	S.A.	56.	121	r-,	
10	4),420,204	Sis	15	15 N	1,4	\$ 7FH	CORRECTIONS HATE 139	Calfee,	10 54	18,0	17/1	zeri	ec	2./	6	SR,	Tur Colomon USKEE,
TRANSFER	ITEM NUMBER	ė	ı			FERS SHED BY	TRANSFERS ACCEPTED BY	DATE	TIME		MARI	s y•				1	MARCIE BLEAU -CHM.
1	1-5	4	2.ll	- 2	L		1771842097 FEDEX ALLAN	9-72	168		-		_				
2		F	T-Det	Z.			Offer	9-23	1200	2		TEV	MP	B	LAA) K	INCLUMED
3										SAM	PLER	s sign	RTUR	E			

CENED-ED-GL SAMPLE CONTAINER RECEIPT FORM

	Work Ord		-11->	
ont	ainer received on 1091 and inspected on 9-3394 by: Ca the	_		-
	Temperature 2./ °C. Temperature taken on (c			
	Shipper Shipper # _/7778 (USM, UPS, DHL, (FEDEX, P/C, AIR EXP, HAND-DELIVERED)	y 20	94	
	Container type (Cooler) box, envelope, etc.)			
	Were custody seals on outside of container? How many & where: 2 for many to dete: 9277, seal name:	N/A	Yes	No
	Were sustody papers taped to lid inside container?	N/A	Yes	No
•	Custody papers properly filled out? (ink, signed, etc.)		Yes !	No
	Was project and project # identifiable from custody papers?		Yes	No
	Did you sign custody papers in appropriate place?		(Yes)	No
	Did you attach shipper's packing form to this form?	N/A	(Yes)	No
С.	Packing material (peanuts, vermiculite, subble wrap, paper,	cans	s, oth	er
	Were all samples sealed in separate plastic bags?	N/A	(es)	No
2.	Did all samples arrive in good condition?		(as)	No
3.	Sample labels complete? (#, date, analysis, preservation, si	gn.)	Yes	No
4.	Were correct sample containers used for tests indicated?	N/A	(Yes)	No
5.	Were correct preservatives used? (TM pH, CN- pH) (TOC pH, NUTRIENT pH, TOX pH, TPH pH, OTHER pH	N/A	Yes	No
6.	Were VOA vials bubble-free (H2O) or no headspace (soil)?	N/A	Ves	No
7.	Was sufficient amount of sample sent in each container?		Yes	No
.8.	Did all sample labels agree with custody papers?		Yes	No
9.	Were air volumes noted for air samples?	(N/A	Yes	No
0.	Were initial weights noted for pre-weighed filters?	N/A	Yes	No
is	crepancies (13) # (18 DISCHENANCIES BIFTWEEN CHIBERS & C	-C:-C	NEZ	V

CHAIN-OF-CUS. JDY RECORD

Form 0 19. Field sechnical Services Rev. 04/89

O.H	I. MATERIALS	CORF), ·		P.C	D. BOX 551	FINDLAY, OH 458	39-0551	•	419	9-423	3-3526				
CLIENT	NO PROJE	m. Le	e (2u	Aci	12-	PROJECT TELEPHONE NO STORY AGER/SUPERVISOR SWOW	2 61 0	NUMBER CONTAINERS	(INE SEP	ALYSI DICATE ARATE NTAINE	S DESI	RED (S)	Marile (65)	211.34	
POLITEM NO.	SAMPLE NUMBER	DATE	TIME	COMP	GRAB		SAMPLE DESCRIPTION (INCLUDE MATRIX AND POINT OF SAMPLE)		90	3.3	10	78 N	3/		//	REMARKS
	XSA36TRR	9-30 94	1000	1		Posticide P	lc_#1		141L	3X						TRIPLICATE EXSABOIC
5850	VAS 6 SELZ	10-3	1255	1		Southerist	rempusik (2nd)		15 408		1					TRIPLICATE OF SUSASGEELL
SE	XSA36TRPG	9-30	100%		V	Grys Su	npk from pile #	-1	7×40-	1						TPEP OF EXSABLE
4		1														
5																
6							11									
7																
8																
9																
10																
TRANSFER	ITEM NUMBER		F		ANSF QUIS	ERS HED BY	TRANSFERS ACCEPTED BY		DATE	TIME	HEM	ARKS	4 "	C	15.7	ence included
1	1-2		Wi	L	De		298934366 Frederal Express A			1800		•	Te	7	p(:	
2	V-		FO	CX			Chafin		94	200						
3											CANAD	LER'S SIG	SMATLIB			
- 4											9	Jill	Del	3		

```
setourdezosto
                                                       20. Were initial weights noted for pre-weighed filters?
          Sex
NO
                                                                                    19. Were air volumes noted for air samples?
          sex
NC
         SEL
                                                              18. Did all sample labels agree with custody papers?
ON
                                            17. Was sufficient amount of sample sent in each container?
        56%
ON
                                            filica, ecaqabaen on ro (O,H) eeri-eiddud alaiv AOV erew .ai
ON
          6.8
                     K/N
                                     He rorrect preservatives used? (TM pH 707, AM 78HPR pH ) (TOC pH pH ) He ROT)
NC
OK SEE
                      ZIX
                                           it. Were correct sample containers used for tests indicated?
          597
                          rīgis (noisavieserg ,eisviana ,esab ,#, %eselqmop eledal elqma8 .81
CV.
          'sel
                                                                                inoisibnos boog ni evinia seigmas ila bio (22
OK
24
          6e:
                      FIN
                                                         Sagad oiraaig esamages nu belaes selgmaa ila emew ii
                     enso , regag rasiw elddud, , esilvoimiey, , asunseg, lairesam paixoaf
          597
                                                     pro Non werwer autober, a becktud jozu eo eura jozu).
OX
                       EIN
                                                            Sid you sign custody papers in appropriate place?
          561
27.
         Sex
 NO
                                   Was project and project # identifiable from custody papers?
          se;
                                              Custody papers properly filled out? (ink, signed, etc.)
No
 NC
         zey A/V
                                                         Were custody papers asped to lid inside container?
         Were custody seals on sutside of container?

Were custody seals on sutside of Sunuchy Seal mame: Sunuchy Summany & winers (2) Annuni Milliam Wolf Walland Walland Contains Sunuchy Sunam Wolf Walland Contains Sunuchy Sunam Wolf Walland Contains Sunam Wolf 
 OK LESY
                                                                         Container type (Cooler) box, envelope, etc.)
                                  (FEDEX), 9/C, AIR EXP, HAND-DELIVERED)
                                                                                                                             DHL,
                                                      # zəddtus
       7598686966
                       (dare)
                                                Temperature ,4.0 °C. Temperature taken on 10-4-94
                                                          reainer received on/6-4-54 and inspected on/8-4-64 by:
    мотк Отает #: 14-552
                            Project #:
                                                           SAMPLE CONTAINER RECEIPT FORM
```

CEMED-ED-GF

YEAISED ON 8-6-34

E0251

CHAIN-OF-CUS. JDY RECORD

PAGE ZOPZ)

No. 107710

C	.H. MATERIA	S COR	, ,	•	P.0	O. BOX 551	FINDLAY, OH 4583	19-055		419	9-42:	3-352	26		-			
PRO CLIE	6208 M ENTS REPRESENTA ZM REST	TKEQ	107	wla		GIE BLEAU	CATION PROJECT TELEPHONE NO. SOB-772-20 INAGER/SUPERVISOR LSNW	514	NUMBER	INC	ALYS DICATE ARATE STAINE	E ERS)	SIRE	/		10/20/20	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
TEM NO.	SAMPLE NUMBER	DATE	TIME	COMP	GHAB		SAMPLE DESCRIPTION (INCLUDE MATRIX AND POINT OF SAMPLE)		9	/	200	P. C.	100		300	e de	3/	REMARKS
1	ExsA56A0	5 94	929	V			all Clay Sad Mix		5240	* ~	1		1	1	1			
95	Exsas6A6	5 10-20	425		V	Grey, BI	Earl, ClaySul Mi	xture	1XV	41		1						
16	EX 1435 LS						and works		5x40 Arte	2	1		1	>	~			
161	Ex 14351	5510-20	1115		4	GOLDSA	N U/ MIXEOGRAII	US	ZXYUN	1		1						
5								-						1				
6														(8/	GG.	21	417115 F 65R - CRH 1024-94
7																		
8																		
9																		
10																		
RANSFER	NOW NUMBI		,		ANSI	FERS SHED BY	TRANSFERS ACCEPTED BY		DATE	TIME	REM	/ARK		0		1.	01	436
	1 1-4		Will	- Q	L		FEDERAL EXPRESS &		10-20	1530								E BLANK INCUDED
3	2		FW01	以又			Ch free	-76	21-94	1200								
-	3										SAME	DI ERVE	SIGN	ATLIDI				
	4										2	Il	De	TURI	_			

CENED-ED-GL

W
2
B
BLAKKS
(-)
0
2
1
1
1
CONTALNER
1
C
RECEIPT
i
13
11
OR
T
12

60	#	5023	1
er received on // 7/54 and inspected on /0-7/54 by: Work Ord	11 11 11	Orl.	35-2
Temperature 41 °C. Temperature taken on $10.27.57$ (c	(date)		
Shipper (USM, UPS, DHL, (FEDEX) $\frac{9}{0}$, AIR EXP, HAND-DELIVERED)	702	W	
Concainer cype (Cocley, box, envelope, ecc.)			
Here custody seals on outside of container? How many & where: (4) AROUND , seal date: 1620-57, seal name:	SON SON	in ces	O/N
Were custody papers taped to lid inside container?	N/A (((() () () () ()	NO
Custody papers properly filled out? (ink, signed, etc.,		(3) (S)	0
. Was project and project # identifiable from custody papers?		(n)	8
. Did you sign custody papers in appropriate place?		(F) (F)	NO.
. If you attach shipper's packing form to this form?	N/V	(S. B. S.)	Xo
9. Packing material (peanuts, vermioulite, attack paper,	() () () ()	(C) (187)	[3]
i. Were all samples sealed in separate plastic bags?	12	(Se.	8
2. Did all samples arrive in good condition?			No
 Sample labels complete? (#, date, analysis, preservation, si 	(S)	(1) (1) (1) (1) (1) (1)	No
4. Were correct sample containers used for tests indicated?	N/N	(1997)	No
S. Were correct preservatives used? (TM pH _, CN- pH _, CTHER pH _, TOC pH _, NUTRIENT pH _, TOX pH _, TPH pH _, CTHER pH _		to to	No
.6. Were VOA vials bubble-free (H_2O) or no headspace (soil)?	Z/N	(1) (1)	No
[7] Was sufficient amount of sample sent in each container?		(A)	ő
18. Did all sample labels agree with custody papers?		Se.S.	So
19. Were air volumes noted for air samples?	N/	(b)	0
20. Were initial weights noted for pre-weighed filters?		(b) (b)	NO
Tisarepanales:			

Appendix D
ASC Analytical Report - Topsoil Sample Results

ANALYTICAL REPORT

Client:

OHM Remediation Services Corporation

Eastern Region (Hopkinton, MA)

Attn:

William Snow

Ron Kenyon Mike Quinlan

pject:

16208C - USACE; Fort Devens, MA

Sample Type(s):

Solid

Analysis Performed:

Conventional

Date Sample Received:

September 10, 1994

Date Order Received:

September 10, 1994

Joblink(s):

616604

This report is "PROPRIETARY AND CONFIDENTIAL" and delivered to, and intended for the exclusive use of the above named client only. Analytical Services Corporation assumes no responsibility or liability for the reliance hereon or use hereof by anyone other than the above named client.

Reviewed and

Thomas E. Gran, Ph.D., Vice President

Date: September 14, 1994

PROJECT NARRATIVE

The following items relate to the samples and analytical data contained in this report.

- o All sample results are reported on an as received "wet weight" basis.
- Note any and all comments at the bottom of the tables in Appendix B and/or Appendix C.
- o ASC will retain samples for a maximum of thirty (30) days after completion of the analysis, samples will be held for a longer period of time, if appropriate arrangements are made in advance. A nominal disposal charge of \$5.00/ sample will be imposed for unreturned samples.

APPENDIX A DATA SUMMARY REPORT

DATA SUMMARY REPORT

DATE: 09/12/94

PAGE: 1

Company: OHM REMEDIATION SERVICES CORPORATION

Sample Point ID: LEGASSE-TP
ASC Sample Number: JN2162
Sample Date: 940909
Facility Code: 016208C

Parameters

Unite

onventional Data (CV10)

oH (Electrode)

std 6.40

APPENDIX B QUANTITATIVE RESULTS

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

LEGASSE-TP JN2162

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
H (Electrode)	std	6.40	-	-	

APPENDIX C QUALITY ASSURANCE DATA

SUMMARY OF ANALYTICAL METHODOLOGY

ASC Joblink # 616604

REFERE	NCE	TITLE				
CLP 1.7.1.1	CLP	pH, Electrode (soil)				

METHODOLOGY REFERENCES

ASTM	American Society for Testing and Materials, 1985 edition.
CAWW	Methods for Chemical Analysis of Water and Wastes, April 1979 and Updated #1 March 1983.
CLP	USEPA Contract Laboratory Program, Document #OLMO1.0, updates December 1990 #OLMO1.1 and February 1991 #OLMO1.1.1.
EPA-500	USEPA Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039 December 1988.
EPA-600	USEPA Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 July 1982.
NIOSH	National Institute for Occupational Safety and Health, 3rd edition, 1984.
SMEWW	Standard Methods for the Examination of Water and Wastewater, 17th edition, 1989.
STOA	Spot Tests In Organic Analysis, 7th edition, 1966.
SW-846	Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, 3rd edition, September 1986 and Update #1 July 1992.
(1)	This method was modified to incorporate the use of Boron Trifluoride (BF3) as the derivatizing reagent according to Method 6640 in SMEWW, 17th edition, 1989.
Title 22	Waste Extraction Test, Title 22, Section 66261.126 Appendix 2 of the California Administrative Code, May 1991.

ASC Certifications

State	Agency	Certification #
Alabama	ADEM	40830
California	CADOH	1178
Colorado	СОДОН	OH113
Delaware	DEHSS	OH113
Kansas	KSDHE	E-202 & E-1173
Louisiana	LADOHH	92-10
Maryland	MDDHMH	210
Massachusetts	MADEP	M-OH113
New Jersey	NJDEPE	74603
New York	NYDOH	10712
North Carolina	NCDEM	392
Ohio	OHEPA	OH113
Oklahoma	OKDEQ	9216
Pennsylvania	PADER	68-450
South Carolina	SCDEHNR	92002
Tennessee	TNDOH/TNDEC	2978
√irginia	VADGS	00011
Washington	WADOE	C154
Wisconsin	WIDNR	999037160

Validated by:

o US Army Corps of Engineers	Chemical Analysis in Various Matrices
Approvals:	
o Chemical Waste Management	Waste Characterization Analysis
o Envirosafe	Waste Characterization Analysis
o USDA	Permit for Importing Soils
o Florida DEP	Quality Assurance Plan #930034G
o Naval Facilitles Engineering Service Center	Chemical Analysis in Various Matrices

REPORT KEY

mg/kg = milligram per kilogram (ppm)

Mg/m³ = milligram per cubic meter

ug/kg = microgram per kilogram (ppb)

mg/L = milligram per liter (ppm)

ug/L = microgram per liter (ppb)

mg/W = milligram per wipe

ug/W = microgram per wipe

mg/SMP = milligram per sample

ug/SMP = microgram per sample

um/cm = microMho per centimeter

pCi/l = picocurie per liter

gm/cc = grams per cubic centimeter

ppm = parts per million ppb = parts per billion

ND = Not detected at or above stated detection limit

< = less than

> = greater than

% = percent

BTU/lb = British Thermal Units per pound

Deg. C = Degrees Celsius

n/a = not applicable

Unk = unknown

std = result is relative to standard pH units

CV = Conventionals

IR = Infrared Spectrophotometric

GC = Gas Chromatograph Instrument

GC/MS = Gas Chromatography/Mass Spectrometer Instrument

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

PCB = Polychlorinated Biphenyls (PCBs)

EP TOX = Extraction Procedure Toxicity

TCLP = Toxicity Characteristic Leaching Procedure

RCRA = Resource Conservation and Recovery Act

APPENDIX D CHAIN-OF-CUSTODY RECORD(S)

CHAIN-OF-CUS1 DY RECORD

Form 0019 Field , achnical Services Rev. 08/89

No. 107639

	ATERIALS ME ORT PROJECT PRESENTATIVE			יוטו		PROJECT LOC A Y VEQUILLI PROJECT MAI	MATION	NY, OH 45839-0551 HONE NO. D7 Z - ZG KO	NUMBER OF CONTAINERS	ANA (IND SEPA			ED /			
SA NU	BEST MPLE MBER SSE TP	DATE	TIME	COMP	GRAB		SAMPLE DESCRIP (INCLUDE MATRIX POINT OF SAMP		18405 P 202	1	ett.	4				REMARKS
NUMBER	ITEM NUMBER		Will	RELIN	21	ERS HED BY	FED EX. 177 984	ANSFERS EPTED BY AIRSILL 11560	DATE Organ		Ma	ARKS H AD	·c E ~10 SHY	PICX.	rued on E	thr TAT Temp 15th

Soil Sample Collection Log Fort Devens - Project #16208

Pg. / of /

Jate: 4-9-94

Site Name: LEGASSE TOP SOIL

Weather: Cool, Putly Cloudy Samplers: BD

Sample ID Number	Time	Comp/ Grab	Sample Depth (ft)		dinates Ref. Pt.	Sample Description	# of Bottles	
LEGASSE-TP	0835	G	NA	NA	NA	Bran, 5016 0/ 50~c abble	12402	
						•		

Ref. Pt:	JA					
Ref. Pt:						
Map Attached:	~					
viap Attached.	100 (10)					
Sample Type: (Screening	> Confirmation	n Disposa	l/Characteria	zation	
aboratory Dest						coc #
					-	
Dup	licate Taken:	Yes (No)	Rinsate	e Taken:	Yes No)
0.5	ı-site Laborato	Chain of C	ustody/Poguo	et for Analy	sis	
Oi	-Site Laborato	ny Chain di Ci	ustody/Neque	St IOI Allaly		PH
Requested Test	ing: TPH	BTEX	Chlordane	PCBs	Other_	<u> </u>
Relinquished by	(dd/tt):		Rece	ived by (dd/	tt):	

Appendix E ASC Analytical Report - Waste Characterization Sample Results

ANALYTICAL REPORT

Client:

OHM Remediation Services Corporation

Eastern Region (Hopkinton, MA)

Attn:

William Snow

Ron Kenyon Mike Quinlan

Project:

16208C - USACE; Fort Devens, MA

Sample(s):

EXSA56AC, EXSA56BC, EXSA56AG and EXSA56BG

ample Type(s): Solid

Analysis Performed: Conventional and Organics

Date Sample Received:

October 21, 1994

Date Order Received:

October 21, 1994

Joblink(s): 616886

This report is "PROPRIETARY AND CONFIDENTIAL" and delivered to, and intended for the exclusive use of the above named client only. Analytical Services Corporation assumes no responsibility or liability for the reliance hereon or use hereof by anyone other than the above named client.

Reviewed and

Approved by:

Thomas E. Gran, Ph.D., Vice President

Date: November 2, 1994

15406 U.S. Rouse 221 East

PROJECT NARRATIVE

The following items relate to the samples and analytical data contained in this report.

- o All sample results are reported on a "dry weight" basis.
- Note any and all comments at the bottom of the tables in Appendix B and/or Appendix C.
- o **ASC** will retain samples for a maximum of thirty (30) days after completion of the analysis, samples will be held for a longer period of time, if appropriate arrangements are made in advance. A nominal disposal charge of \$5.00/ sample will be imposed for unreturned samples.

DATA SUMMARY REPORT

DATE: 10/27/94

PAGE: 1

Company: OHM REMEDIATION SERVICES CORPORATION

	Sample Point ID: ASC Sample Number: Sample Date: Facility Code:	JN3553 941020	EXSA56BC JN3554 941020 016208C	EXSA56AG JN3556 941020 016208C	EXSA56BG JN3557 941020 016208C	
Parameters	Units					
nventional Data	(CV10)					
Solids, Total	*	91.9	89.4	89.1	89.1	
	Sample Point ID: ASC Sample Number: Sample Date: Facility Code:	JN3553 941020	EXSA56BC JN3554 941020 016208C			
Parameters	Units					
tal Pesticide and	PCB Analysis, GC,	(GS05)				
Aldrin	mg/kg	<.018	<.018			
		<.018	<.018			
Alpha-BHC Beta-BHC	mg/kg		<.018			
Chlordane		<.181	<.184			
4,4'-DDD	mg/kg	<.018	<.018			
,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	g/ ng	1.010				
1,4'-DDE	mg/kg	<.018	<.018			
1,4'-DDT	mg/kg	<.018	<.018			
elta-BHC	mg/kg	<.018	<.018			
ieldrin	mg/kg	<.018	<.018			
Endosulfan sulfate	mg/kg	<.018	<.018			
Endosulfan I	mg/kg	<.018	<.018			
Endosulfan II	mg/kg	<.018	<.018			
Endrin	mg/kg	<.018	<.018			
Endrin aldehyde	mg/kg	<.018	<.018			
Endrin ketone	mg/kg	<.018	<.018			
Gamma-BHC	mg/kg	<.018	<.018			
Reptachlor		<.018	<.018			
Heptachlor epoxide	mg/kg	<.018	<.018			
ethoxychlor	mg/kg	<.018	<.018			
Coxaphene	mg/kg	<.362	<.369			
Aroclor 1016	mg/kg	<.181	<.184			
Aroclor 1221	mg/kg	<.181	<.184			
	ma/ka	<.181	<.184			
Aroclor 1232		<.181	TO4			

DATA SUMMARY REPORT

DATE: 10/27/94

PAGE: 2

Company: OHM REMEDIATION SERVICES CORPORATION

 Sample Point ID:
 EXSA56AC
 EXSA56BC

 ASC Sample Number:
 JN3553
 JN3554

 Sample Date:
 941020
 941020

 Facility Code:
 016208C
 016208C

Parameters

Units

tal Pesticide and PCB Analysis, GC, (GSO5)

roclor	1248	mg/kg	<.181	<.184
roclor	1254	mq/kq	<.181	<.184
roclor	1260	mg/kg	<.181	<.184

 Sample Point ID:
 EXSA56AG
 EXSA56BG

 ASC Sample Number:
 JN3556
 JN3557

 Sample Date:
 941020
 941020

 Facility Code:
 016208C
 016208C

Parameters

Units

TXE Volatile Analysis, GC, (GV33)

Benzene	mg/kg	<.001	<.001
Ethylbenzene	mg/kg	<.001	.006
Toluene	mg/kg	<.001	<.001
Xylenes	mg/kg	<.001	.010

 Sample Point ID:
 EXSA56AC
 EXSA56BC

 ASC Sample Number:
 JN3553
 JN3554

 Sample Date:
 941020
 941020

 Facility Code:
 016208C
 016208C

Parameters

Units

otal Petroleum Hydrocarbon Analysis, IR (IROO)

Petroleum Hydrocarbons (IR) mg/kg 103 200

DATE: 10/27/94

PAGE: 3

Company: OHM REMEDIATION SERVICES CORPORATION

Sample Point ID: EXSA56AC EXSA56BC
ASC Sample Number: JN3553 JN3554
Sample Date: 941020 941020
Facility Code: 016208C 016208C

Parameters

Units

otal Base/Neutral/Acid Analys	sis, MS,	(MS02)	
Acenaphthene	mg/kg	<.362	<.370
Acenaphthylene	mg/kg	<.362	<.370
Anthracene	mg/kg	<.362	<.370
Benzidine	mg/kg	<.362	<.370
Benzo(a)anthracene	mg/kg		<.370
Benzo(b)fluoranthene	mg/kg	<.362	<.370
Benzo(k)fluoranthene	mg/kg	<.362	<.370
Benzo(ghi)perylene	mg/kg	<.362	<.370
Benzo(a)pyrene	mg/kg	<.362	<.370
bis(2-Chloroethyl) ether	mg/kg		<.370
ora(2-chroroechyr) echer	mg/ kg	1.302	V.370
bis(2-Chloroethoxy)methane	mg/kg	<.362	<.370
bis(2-Chloroisopropyl)ether	mg/kg	<.362	<.370
bis(2-Ethylhexyl)phthalate	mg/kg	4.06	2.93
4-Bromophenyl phenyl ether	mg/kg		<.370
Butyl benzyl phthalate	mg/kg	**************************************	<.370
Carbazole	mg/kg	<.362	<.370
4-Chloroaniline	mg/kg	<.362	<.370
p-Chloro-m-cresol	mg/kg	<.362	<.370
2-Chloronaphthalene	mg/kg	<.362	<.370
2-Chlorophenol			<.370
z-chrorophenor	mg/kg	1.302	1.370
4-Chlorophenyl phenyl ether	mg/kg	<.362	<.370
Chrysene	mg/kg	<.362	<.370
Dibenzo(a,h)anthracene	mg/kg	<.362	<.370
Dibenzofuran	mg/kg	<.362	<.370
Di-n-butyl phthalate	mg/kg		<.370
1,2-Dichlorobenzene	mg/kg	<.362	<.370
1,3-Dichlorobenzene	mg/kg	<.362	<.370
1,4-Dichlorobenzene	mg/kg	<.362	<.370
3,3'-Dichlorobenzidine		<.362	<.370
	mg/kg		<.370
2,4-Dichlorophenol	mg/kg	<.362	<.370
Diethyl phthalate	mg/kg	<.362	<.370
Dimethyl phthalate	mg/kg	<.362	<.370
2,4-Dimethylphenol	mg/kg	<.362	<.370
4,6-Dinitro-o-cresol	mg/kg	<.906	<.926
2,4-Dinitrophenol	mg/kg	<1.81	<1.85
(1714년) 전 : (1814년 1월 1일			

DATA SUMMARY REPORT

DATE: 10/27/94

PAGE: 4

Company: OHM REMEDIATION SERVICES CORPORATION

 Sample Point ID:
 EXSA56AC
 EXSA56BC

 ASC Sample Number:
 JN3553
 JN3554

 Sample Date:
 941020
 941020

 Facility Code:
 016208C
 016208C

Parameters

Units

otal Base/Neutral/Acid Analy	ysis, MS,	(MS02)	
2,4-Dinitrotoluene	mg/kg	<.362	<.370
2,6-Dinitrotoluene	mg/kg	<.362	<.370
Di-n-octyl phthalate	mg/kg	<.362	<.370
Fluoranthene	mg/kg	< .362	<.370
Fluorene	mg/kg	<.362	<.370
Hexachlorobenzene	mg/kg	<.362	<.370
Hexachlorobutadiene	mg/kg	<.362	<.370
Hexachlorocyclopentadiene	mg/kg	<.362	<.370
Hexachloroethane	mg/kg	< .362	<.370
Indeno(1,2,3-cd)pyrene	mg/kg	<.362	<.370
Isophorone	mg/kg	<.362	<.370
2-Methylnaphthalene	mg/kg	<.362	<.370
2-Methylphenol	mg/kg	<.362	<.370
4-Methylphenol	mg/kg	<.362	<.370
N-Nitrosodimethylamine	mg/kg	<.362	<.370
N-Nitrosodi-n-propylamine	mg/kg	<.362	<.370
N-Nitrosodiphenylamine	mg/kg	<.362	<.370
Naphthalene	mg/kg	<.362	<.370
2-Nitroaniline	mg/kg	<.362	<.370
3-Nitroaniline	mg/kg	<.362	<.370
4-Nitroaniline	mg/kg	<.362	<.370
Nitrobenzene	mg/kg	<.362	<.370
2-Nitrophenol	mg/kg	<.362	<.370
4-Nitrophenol	mg/kg	<1.81	<1.85
Pentachlorophenol	mg/kg	<.362	<.370
Phenanthrene	mg/kg	<.362	<.370
Phenol	mg/kg	<.362	<.370
'yrene	mg/kg	< .362	<.370
Pyridine	mg/kg	<.362	<.370
1,2,4-Trichlorobenzene	mg/kg	<.362	<.370
2,4,5-Trichlorophenol	mg/kg	<.362	<.370
2,4,6-Trichlorophenol	mg/kg	<.362	<.370

APPENDIX B QUANTITATIVE RESULTS

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56AC

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
olids, Total	*	91.9	.100	-	
					1 4
		4.			

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56BC

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
olids, Total	*	89.4	.100	-	

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56AG

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
Solids, Total	*	89.1	.100	-	

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56BG

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
Solids, Total	ક	89.1	.100	-	

TOTAL PESTICIDE AND PCB ANALYSIS, GC, (GS05)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56AC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Aldrin Alpha-BHC Beta-BHC Chlordane	ND ND ND ND	.018 .018 .018	ND ND ND ND	Q2P41545 Q2P41545 Q2P41545 Q2P41545
4,4'-DDD 4,4'-DDE 4,4'-DDT Delta-BHC Dieldrin Endosulfan sulfate	ND ND ND ND ND ND	.018 .018 .018 .018 .018	ND ND ND ND ND ND	Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545
Endosulfan I Endosulfan II Endrin Endrin aldehyde Endrin ketone	ND ND ND ND ND	.018 .018 .018 .018	ND ND ND ND	Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545
Samma-BHC Heptachlor Heptachlor epoxide Methoxychlor Toxaphene	ND ND ND ND ND	.018 .018 .018 .018 .362	ND ND ND ND ND	Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545
Aroclor 1016 Aroclor 1221 Proclor 1232 oclor 1242 Foclor 1248	ND ND ND ND ND	.181 .181 .181 .181	ND ND ND ND	Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545
Aroclor 1254 Aroclor 1260	ND ND	.181	ND ND	Q2P41545 Q2P41545

TOTAL PESTICIDE AND PCB ANALYSIS, GC, (GS05)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56BC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Aldrin Alpha-BHC Beta-BHC Chlordane 4,4'-DDD	ND ND ND ND ND	.018 .018 .018 .184 .018	ND ND ND ND ND	Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545
4,4'-DDE 4,4'-DDT Delta-BHC Dieldrin Endosulfan sulfate	ND ND ND ND ND	.018 .018 .018 .018 .018	ND ND ND ND ND	Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545
Endosulfan I Endosulfan II Endrin Endrin aldehyde Endrin ketone	ND ND ND ND ND	.018 .018 .018 .018	ND ND ND ND ND	Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545
Gamma-BHC Heptachlor Heptachlor epoxide Methoxychlor Toxaphene	ND ND ND ND ND	.018 .018 .018 .018 .369	ND ND ND ND	Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545
Aroclor 1016 Aroclor 1221 Foclor 1232 Doctor 1242 Loctor 1248	ND ND ND ND ND	.184 .184 .184 .184	ND ND ND ND	Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545
Aroclor 1254 Aroclor 1260	ND ND	.184	ND ND	Q2P41545 Q2P41545

BTXE Volatile Analysis, GC, (GV33)

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56AG JN3556

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Benzene Ethylbenzene Toluene Eylenes	ND ND ND	.001 .001 .001	ND ND ND ND	Q2W3957 Q2W3957 Q2W3957 Q2W3957

BTXE Volatile Analysis, GC, (GV33)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56BG

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Benzene Ethylbenzene Toluene Xylenes	ND .006 ND .010	.001 .001 .001	ND ND ND ND	Q2W3957 Q2W3957 Q2W3957 Q2W3957

TOTAL PETROLEUM HYDROCARBON ANALYSIS, IR (IR00)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56AC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
etroleum Hydrocarbons (IR)	103	7.17	ND	Q2T41547

TOTAL PETROLEUM HYDROCARBON ANALYSIS, IR (IROO)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56BC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Petroleum Hydrocarbons (IR)	200	7.36	ND	Q2T41547
	*			

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56AC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND	.362 .362 .362 .362 .362	ND ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether	ND ND ND ND ND	.362 .362 .362 .362 .362	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND 4.06 ND ND	.362 .362 .362 .362 .362	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Carbazole 4-Chloroaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	.362 .362 .362 .362 .362	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
4-Chlorophenyl phenyl ether Chrysene enzo(a,h)anthracene senzofuran Di-n-butyl phthalate	ND ND ND ND	.362 .362 .362 .362 .362	ND ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND	.362 .362 .362 .362 .362	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND ND	.362 .362 .362 .906 1.81	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND ND ND	.362 .362 .362 .362 .362	ND ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND ND ND ND	.362 .362 .362 .362 .362	ND ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine	ND ND ND ND ND	.362 .362 .362 .362 .362	ND ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56AC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Naphthalene Nitroaniline Nitroaniline	ND ND ND ND ND	.362 .362 .362 .362 .362	ND ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
-Nitroaniline Vitrobenzene -Nitrophenol -Nitrophenol entachlorophenol	ND ND ND ND ND	.362 .362 .362 1.81 .362	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
henanthrene henol yrene yridine ,2,4-Trichlorobenzene	ND ND ND ND ND	.362 .362 .362 .362 .362	ND ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
,4,5-Trichlorophenol	ND ND	.362	ND ND	Q2C41530 Q2C41530

³⁻Methyl- and 4-Methylphenol coelute and are reported as the total

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56BC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND ND	.370 .370 .370 .370 .370	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether	ND ND ND ND ND	.370 .370 .370 .370 .370	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND 2.93 ND ND	.370 .370 .370 .370 .370	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Carbazole 4-Chlorcaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	.370 .370 .370 .370 .370	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
4-Chlorophenyl phenyl ether Chrysene 'benzo(a,h)anthracene enzofuran n-butyl phthalate	ND ND ND ND ND	.370 .370 .370 .370 .370	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND ND	.370 .370 .370 .370 .370	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND ND	.370 .370 .370 .926 1.85	ND ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND ND ND	.370 .370 .370 .370 .370	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND ND ND ND	.370 .370 .370 .370 .370	ND ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine	ND ND ND ND ND	.370 .370 .370 .370 .370	ND ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56BC

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
-Nitrosodi-n-propylamine -Nitrosodiphenylamine aphthalene -Nitroaniline -Nitroaniline	ND ND ND ND ND	.370 .370 .370 .370 .370	ND ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
-Nitroaniline itrobenzene -Nitrophenol -Nitrophenol entachlorophenol	ND ND ND ND ND	.370 .370 .370 1.85 .370	ND ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
henanthrene henol yrene yridine ,2,4-Trichlorobenzene	ND ND ND ND ND	.370 .370 .370 .370 .370	ND ND ND ND	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
,4,5-Trichlorophenol ,4,6-Trichlorophenol	ND ND	.370	ND ND	Q2C41530 Q2C41530

APPENDIX C QUALITY ASSURANCE DATA

SUMMARY OF ANALYTICAL METHODOLOGY

ASC Joblink # 616886

REF	ERENCE	TITLE
160.3	CAWW	Residue, Total, Gravimetric, Dried at 103-105 C
418.1	MCAWW	Petroleum Hydrocarbons, Total Recoverable
8020	SW-846	Aromatic Volatile Organics by GC
8080	sw-846	Organochlorine Pesticides and/or PCBs
8270	sw-846	GC/MS for Semivolatile Organics: Capillary Column Technique

METHODOLOGY REFERENCES

ASTM	American Society for Testing and Materials, 1985 edition.
CAWW	Methods for Chemical Analysis of Water and Wastes, April 1979 and Updated #1 March 1983.
CLP	USEPA Contract Laboratory Program, Document #OLMO1.0, updates December 1990 #OLMO1.1 and February 1991 #OLMO1.1.1.
EPA-500	USEPA Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039 December 1988.
EPA-600	USEPA Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 July 1982.
NIOSH	National Institute for Occupational Safety and Health, 3rd edition, 1984.
SMEWW	Standard Methods for the Examination of Water and Wastewater, 17th edition, 1989.
STOA	Spot Tests In Organic Analysis, 7th edition, 1966.
SW-846	Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, 3rd edition, September 1986 and Update #1 July 1992.
(1)	This method was modified to incorporate the use of Boron Trifluoride (BF3) as the derivatizing reagent according to Method 6640 in SMEWW, 17th edition, 1989.
Title 22	Waste Extraction Test, Title 22, Section 66261.126 Appendix 2 of the California Administrative Code, May 1991.

ASC Certifications

State	Agency	Certification #
Alabama	ADEM	40830
California	CADOH	1178
Colorado	CODOH	OH113
Delaware	DEHSS	OH113
Kansas	KSDHE	E-202 & E-1173
Louisiana	LADOHH	92-10
Maryland	MDDHMH	210
Massachusetts	MADEP	M-OH113
New Jersey	NJDEPE	74603
New York	NYDOH	10712
North Carolina	NCDEM	392
Ohio	OHEPA	OH113
Oklahoma	OKDEQ	9216
Pennsylvania	PADER	68-450
South Carolina	SCDEHNR	92002
Tennessee	TNDOH/TNDEC	2978
Virginia	VADGS	00011
Washington	WADOE	C154
Wisconsin	WIDNR	999037160

Validated by:

o US Army Corps of Engineers	Chemical Analysis in Various Matrices
Approvals:	
o Chemical Waste Management	Waste Characterization Analysis Waste Characterization Analysis Permit for Importing Soils Quality Assurance Plan #930034G Chemical Analysis in Various Matrices

REPORT KEY

mg/kg = milligram per kilogram (ppm)

Mg/m³ = milligram per cubic meter

ug/kg = microgram per kilogram (ppb)

mg/L = milligram per liter (ppm)

ug/L = microgram per liter (ppb)

mg/W = milligram per wipe ug/W = microgram per wipe mg/SMP = milligram per sample

ug/SMP = microgram per sample (Tedlar Bag)

ug/smp = microgram per sample um/cm = microMho per centimeter

pCi/l = picocurie per liter

gm/cc = grams per cubic centimeter

ppm = parts per million ppb = parts per billion

ND = Not detected at or above stated detection limit

< = less than
> = greater than
% = percent

BTU/lb = British Thermal Units per pound

Deg. C = Degrees Celsius n/a = not applicable Unk = unknown

std = result is relative to standard pH units

CV = Conventionals

IR = Infrared Spectrophotometric
GC = Gas Chromatograph Instrument

GC/MS = Gas Chromatography/Mass Spectrometer Instrument

GRO = Gasoline Range Organics
DRO = Diesel Range Organics

PCB = Polychlorinated Biphenyls (PCBs)

EP TOX = Extraction Procedure Toxicity

TCLP = Toxicity Characteristic Leaching Procedure

RCRA = Resource Conservation and Recovery Act

SOW = Statement of Work

TOTAL PESTICIDE AND PCB ANALYSIS, GC, (GS05)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Batch Number
Aldrin Alpha-BHC Beta-BHC Chlordane 4,4'-DDD	ND ND ND ND ND	87 85 89 95 99	ND ND ND ND ND	69 59 84 91 77	3 1 1 1	Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545
4,4'-DDE 4,4'-DDT Delta-BHC Dieldrin Endosulfan sulfate	ND ND ND ND ND	97 97 92 98 98	ND ND ND ND ND	85 75 71 81 84	2 5 1 1 2	Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545
Endosulfan I Endosulfan II Endrin Endrin aldehyde Endrin ketone	ND ND ND ND ND	93 96 98 82 97	ND ND ND ND ND	88 88 85 74 79	1 2 1 1	Q2P41545 Q2P41545 Q2P41545 Q2P41545 Q2P41545
Gamma-BHC Heptachlor Heptachlor epoxide Methoxychlor	ND ND ND ND	89 94 96 95	ND ND ND ND	69 84 90 95	1 2 1 10	Q2P41545 Q2P41545 Q2P41545 Q2P41545

BTXE Volatile Analysis, GC, (GV33)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	
Benzene Ethylbenzene Toluene Xylenes	ND ND ND ND	98 96 96 98	ND ND ND	89 89 91 90	19 18 20 20	Q2W3957 Q2W3957 Q2W3957 Q2W3957
				-		

TOTAL PETROLEUM HYDROCARBON ANALYSIS, IR (IROO)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Batch Number
Petroleum Hydrocarbons (IR)	ND	90	ND	99	4	Q2T41547

TOTAL BASE/NEUTRAL/ACID ANALYSIS, MS, (MSO2)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND ND	67 75 74 11 73	ND ND ND ND ND	62 69 72 12 71	7 6 6 62 3	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether	ND ND ND ND ND	73 72 71 71 75	ND ND ND ND ND	77 82 42 69 62	10 4 6 6 13	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
ois(2-Chloroethoxy)methane ois(2-Chloroisopropyl)ether ois(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND ND ND ND	74 66 70 74 71	ND ND ND ND ND	64 58 62 70 74	12 10 8 7 5	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Carbazole 4-Chloroaniline 5-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	78 20 74 70 69	ND ND ND ND ND	74 25 67 63 58	3 5 7 8 13	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
-Chlorophenyl phenyl ether Chrysene Dibenzo(a,h)anthracene Dibenzofuran i-n-butyl phthalate	ND ND ND ND ND	75 72 70 71 75	20 20 20 20 20 20 20 20 20 20 20 20 20 2	70 71 45 67 71	4 2 6 5 4	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND ND	67 67 67 30 72	D D D D D D D D D D D D D D D D D D D	55 53 53 29 64	14 14 16 5 12	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND ND	74 76 72 75 82	88 88 88 88 88 88 88 88 88 88 88 88 88 8	69 72 66 65 43	3 2 13 5	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND ND ND	74 74 74 75 73	ND ND ND ND ND	69 71 100 75 68	3 2 16 1 4	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND ND ND ND	75 67 52 67 71	ND ND ND ND ND	71 52 15 51 46	6 22 37 16 7	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine	ND ND ND ND ND	74 73 67 67 68	ND ND ND ND ND ND	65 61 61 60 57	11 14 7 11 9	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530

QUALITY ASSURANCE DATA Total Base/Neutral/Acid Analysis, MS, (MSO2)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Batch Number
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Naphthalene 3-Nitroaniline 4-Nitroaniline	ND ND ND ND ND	75 77 70 46 72	ND ND ND ND ND	65 74 59 46 69	9 4 16 2 1	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Nitrobenzene 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenanthrene	ND ND ND ND	69 66 87 92 74	ND ND ND ND ND	59 56 88 103 72	14 10 1 2 5	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
Phenol Pyrene Pyridine 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol	ND ND ND ND ND	66 72 40 69 70	ND ND ND ND ND	56 78 40 56 71	12 6 1 17 4	Q2C41530 Q2C41530 Q2C41530 Q2C41530 Q2C41530
2,4,6-Trichlorophenol	ND	77	ND	74	6	Q2C41530

³⁻Methyl- and 4-Methylphenol coelute and are reported as the total

QUALITY ASSURANCE DATA SURROGATE SUMMARY REPORT

SURROGATE ID	A159	B732	A121	A884	A158	B142	# OUT
QC BATCH: Q2C41530	Solid (Se	mi-Volati	le organio	s by MS)			
SAMPLE ID	92	400		200	- 22	2.5	24.0
BLANK	58	65	84	62	62	67	0
BLANK SPIKE	60	62	89	61	61	64	0
EX1435C	44	48	52	44	59	51	0
EXSA56AC	62	65	60	53	59	64	0
EXSA56BC	55	59	60	51	59	60 65	0
SBAR61MNC MD SBAR61MNC MS	58 53	59 53	87 84	62 54	58 52	63	0
QC LIMITS			(19-122)				
SURROGATE ID	B816	A500	# OUT				
QC BATCH: Q2P41545	Solid (Pe	sticide c	ompounds h	od ec)			
SAMPLE ID							
BLANK	50	79	0				
BLANK SPIKE	78	81	0				
EX1435C	60	85	0				
EXSA56AC	79	100	0				
EXSA56AC MD	66	88	0				
EXSA56AC MS	68	87	0				
EXSA56BC	66	89	0				
QC LIMITS	(30-130)	(30-130)					
SURROGATE ID	A228	# OUT					
BLANK BLANK SPIKE EX1435G EXSA56AG EXSA56BG QC LIMITS	102 99 103 78 75 (30-130)	00000					
		su	RROGATE II)			
A159 = 2-Fluorophen B732 = Phenol-D6 A121 = 2,4,6-Tribro A884 = Nitrobenzene A158 = 2-Fluorobiph B142 = Terphenyl-D1 A228 = a,a,a-Triflu R816 = 2,4,5,6-Tetr 300 = Decachlorobi	mophenol -D5 enyl 4 orotoluene	e -xylene					

It is ASC's laboratory policy to allow one surrogate per sample fraction (acid, base-neutral or pesticide) to exceed the stated QC limits. This policy is based upon the USEPA SOW for the Contract Laboratory Program (CLP).

APPENDIX D CHAIN-OF-CUSTODY RECORD(S)

CHAIN-OF-CUS DY RECORD

Fit achnical Services
Rev. 08/89
No. 107707

0.	.H. MATERIALS	CORP			P.C	D. BOX 551	• FINDLAY, OF	H 45839-0551	•	41	9-423	3-352	6					60	AL.		
FO.	ORT DEV ORT DEV ON PROJECT ON BEST	WE G			1/m	ARGIE BLEA	PROJECT TELEPHONE N	0.	NUMBER CONTAINERS	(IN	ALYS DIGATE PARATE NTAINE		/		57/	10	200	183			
OWING	SAMPLE NUMBER	DATE	TIME	COMP	GRAB		SAMPLE DESCRIPTION (INCLUDE MATRIX AND POINT OF SAMPLE)		P		13	3	30	16	20/20/20/20/20/20/20/20/20/20/20/20/20/2				REMA	ARKS	
1	EXSA56 AC	10-70	929	1			n, Clay Send		5 x 40		1			1	1						
1	EXSAS6AG	10-20	925		1		our, Clay Sad		2 x40			1									
1	EXSA56RE	10-26	445	V		L. 17562 G.3 Tw	and Cluy Sond		5 x40		1		1	1	1						
1	EXSASGB6	10-20	940		1	Giey, B	roun Clay Su	ad Mikhre	Z × 40			1									
1	EX1435 C	10-20	1100	1			d with odo		5 x40	Z V	1		1	V	1						
1	EX 1435G	10-76	1115		/	Gold So	nd with mi	xed grain	ZXYO	~\		1									
-																					
1																					
1																					
TRANSFER	ITEM NUMBER		F		ANSF	ERS HED BY	THANSFE ACCEPTED		DATE	TIME	REN	MARKS		A.	eser	ed	at 4	د در	elsios		
1	1-6	1	Villia		0.	L	FEDERAL EXP	TAOI 80	10-20	1530			*	* 3	OAY	TA	Ţ				
2	1-6		EQ E	x #	190	H570180	Jul XX	2	<i>i</i> र्नग/भ	lots			4	t TE	mp	ERA'	TURE	BLAA	UK IU	KLUD.E()
3	3						1					PLER'S	SIO:	ATUR							
4	6											illée									

CHAIN-OF-CUS. ODY RECORD

Floid Technical Services

No. 107707 O.H. MATERIALS CORP. P.O. BOX 551 FINDLAY, OH 45839-0551 419-423-3526 PROJECT NAME PROJECT LOCATION ANALYSIS DESIRED FORT DEVENS AYER MA INDICATE PROJ. NO. PROJECT CONTACT PROJECT TELEPHONE NO. SEPARATE MIKE QUINLAN MARGIE BLEW CONTAINERS 16208 MI PROJECT MANAGER/SUPERVISOR BILL S NOW TOM BEST (USACE) COMP GRAB SAMPLE DESCRIPTION (INCLUDE MATRIX AND POINT OF SAMPLE) SAMPLE NUMBER DATE TIME **REMARKS** 10-70 Grey, Bown, Clay Sand nexture 5 x 407 929 EXSASGAC 94 Anter 2 xyome 10-ZC 925 EXSASGAG VOA 5 AVOE 10.75 945 EXSAS68 94 Amb:-10-10 Z x 40m1 940 EXSASGBG 94 VOA with odor 5 x402 EX1435 C 1100 Amber with mixed grain ZXYOM 1115 EX 14356 VOA REMARKS ITEM TRANSFERS TRANSFERS RELINQUISHED BY ACCEPTED BY * Arsoned at 4° c celsius NUMBER DATE TIME FEDERAL EXPRESS ARGIL 10-10 William Out 94 1530 2 * TEMPERATURE BLANK TUKLUDED 3 SAMPLER'S SIGNATURE

William Dale

ANALYTICAL REPORT

Client: OHM Remediation Services Corporation

Eastern Region (Hopkinton, MA)

Attn: William Snow

Ron Kenyon Mike Quinlan

Project: 16208C - USACE; Fort Devens, MA

ample Type(s): Solid

Analysis Performed: Conventional, Metal and Organics

Date Sample Received: October 25, 1994

Date Order Received: October 25, 1994

Joblink(s): 616912

This report is *PROPRIETARY AND CONFIDENTIAL* and delivered to, and intended for the exclusive use of the above named client only. Analytical Services Corporation assumes no responsibility or liability for the reliance hereon or use hereof by anyone other than the above named client.

Reviewed and

Approved by: ______ Thomas E. Gran, Ph.D., Vice President

Date: November 1, 1994

PROJECT NARRATIVE

The following items relate to the samples and analytical data contained in this report.

- All sample results are reported on a "dry weight" basis.
- Note any and all comments at the bottom of the tables in Appendix B and/or Appendix C.
- o ASC will retain samples for a maximum of thirty (30) days after completion of the analysis, samples will be held for a longer period of time, if appropriate arrangements are made in advance. A nominal disposal charge of \$5.00/ sample will be imposed for unreturned samples.
- o Elevated detection limits for the semi-volatile organics analysis due to matrix interferences. Due to the high level of bis-(2-ethylhexyl)phthalate in the unspiked sample, the matrix spike recoveries for this batch were unrecoverable. RPD values were outside QC levels due to possible sample non-homogeneity.
- Valid Lead spike recoveries could not be reported due to the high level present in the unspiked sample. Batch acceptance is based on acceptable method spike recovery.

APPENDIX A DATA SUMMARY REPORT

DATA SUMMARY REPORT

DATE: 10/28/94

PAGE: 1

Company: OHM REMEDIATION SERVICES CORPORATION

	Sample Poi ASC Sample N Sample Facility	Number:	JN3715 941024	EXSA56P1G JN3717 941024 016208C	EXSA56P2C JN3716 941024 016208C	EXSA56P2G JN3718 941024 016208C	
Parameters		Units					
onventional Data	(CV10)						
Solids, Total		8	91.7	89.1	88.4	87.2	
		Number:	JN3717	EXSA56P2G JN3718 941024 016208C			
Parameters		Units					
TXE Volatile Ana	lysis, GC, (GV	733)					
Benzene Ethylbenzene Toluene Xylenes		mg/kg	<.001 <.001 <.001 .002	<.001 <.001 <.001 .002			
	Sample Poi ASC Sample N Sample Facility	Number:	JN3715 941024	EXSA56P2C JN3716 941024 016208C			
Parameters		Units					
otal Petroleum H	ydrocarbon Ana	lysis,	IR (IROO)				
Petroleum Hydroc	arbons (IR)	mg/kg	50.4	616			
otal Base/Neutra	l/Acid Analysi	s, MS,	(MS02)				
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthrace	ne	mg/kg mg/kg mg/kg	<.360 <.360 <.360 <.360 <.360	<3.66 <3.66 <3.66 <3.66 <3.66			
				<3.66			

DATE: 10/28/94

PAGE: 2

Company: OHM REMEDIATION SERVICES CORPORATION

 Sample Point ID:
 EXSA56P1C
 EXSA56P2C

 ASC Sample Number:
 JN3715
 JN3716

 Sample Date:
 941024
 941024

 Facility Code:
 016208C
 016208C

Parameters Units

Fotal Base/Neutral/Acid Analysis, MS, (MSO2)

Benzo(k)fluoranthene	100		
	mq/kq	<.360	<3.66
Benzo(ghi)perylene	mg/kg	<.360	<3.66
Benzo(a)pyrene	mg/kg	<,360	<3.66
bis(2-Chloroethyl) ether	mg/kg	<.360	<3.66
bis(2-Chloroethoxy)methane	mg/kg	<.360	<3.66
DIS(2 CHIOLOGCHOXY) mechane	mg/ ng	4.300	13.00
bis(2-Chloroisopropyl)ether	mg/kg	<.360	<3.66
bis(2-Ethylhexyl)phthalate	mg/kg	3.24	<3.66
4-Bromophenyl phenyl ether	mg/kg	<.360	<3.66
Butyl benzyl phthalate	mg/kg	<.360	<3.66
Carbazole	mg/kg	<.360	<3.66
1. 7. AZ 3. 4. A 4. A 1. D.3 GA7 1			
4-Chloroaniline	mg/kg	<.360	<3.66
p-Chloro-m-cresol	mg/kg	<.360	<3.66
2-Chloronaphthalene	mg/kg	<.360	<3.66
2-Chlorophenol	mg/kg	<.360	<3.66
4-Chlorophenyl phenyl ether	mg/kg	<.360	<3.66
Chrysene	ma /lea	<.360	<3.66
Dibenzo(a,h)anthracene	mg/kg	<.360	<3.66
Dibenzofuran	mg/kg	<.360	<3.66
	mg/kg		<3.66
Di-n-butyl phthalate	mg/kg	<.360	
1,2-Dichlorobenzene	mg/kg	<.360	<3.66
1,3-Dichlorobenzene	mg/kg	<.360	<3.66
1,4-Dichlorobenzene	mg/kg	<.360	<3.66
3,3'-Dichlorobenzidine	mg/kg	<.360	<3.66
2,4-Dichlorophenol	mq/kq	<.360	<3.66
Diethyl phthalate	mg/kg	<.360	<3.66
breenyr phenarace	mg/ kg	~.500	~5.00
Dimethyl phthalate	mq/kq	<.360	<3.66
2,4-Dimethylphenol	mg/kg	<.360	<3.66
4,6-Dinitro-o-cresol	mg/kg	<.899	<9.16
2,4-Dinitrophenol	mg/kg	<1.80	<18.3
2,4-Dinitrotoluene	mg/kg	<.360	<3.66
	13.11.5		
2,6-Dinitrotoluene	mg/kg	<.360	<3.66
Di-n-octyl phthalate	mg/kg	<.360	<3.66
Fluoranthene	mg/kg	<.360	<3.66
Fluorene	mg/kg	<.360	<3.66
Hexachlorobenzene	mq/kg	<.360	<3.66

DATA SUMMARY REPORT

DATE: 10/28/94

PAGE: 3

Company: OHM REMEDIATION SERVICES CORPORATION

Parameters

Units

rotal Base/Neutral/Acid Analysis, MS, (MSO
--

Hexachlorobutadiene	mg/kg	<.360	<3.66
Hexachlorocyclopentadiene	mg/kg	<.360	<3.66
Hexachloroethane	mq/kq	<.360	<3.66
Indeno(1,2,3-cd)pyrene	mg/kg	<.360	<3.66
Isophorone	mg/kg	<.360	<3.66
2-Methylnaphthalene	mg/kg	<.360	<3.66
2-Methylphenol	mg/kg	<.360	<3.66
4-Methylphenol	mg/kg	<.360	<3.66
N-Nitrosodimethylamine	mg/kg	<.360	<3.66
N-Nitrosodi-n-propylamine	mg/kg	<.360	<3.66
N-Nitrosodiphenylamine	mg/kg	<.360	<3.66
Naphthalene	mg/kg	<.360	<3.66
2-Nitroaniline	mg/kg	<.360	<3.66
3-Nitroaniline	mg/kg	<.360	<3.66
4-Nitroaniline	mg/kg	<.360	<3.66
Nitrobenzene	mg/kg	<.360	<3.66
2-Nitrophenol	mg/kg	<.360	<3.66
4-Nitrophenol	mg/kg	<1.80	<18.3
Pentachlorophenol	mg/kg	<.360	<3.66
Phenanthrene	mg/kg	<.360	<3.66
Phenol	mg/kg	<.360	<3.66
Pyrene	mg/kg	<.360	<3.66
Pyridine	mg/kg	<.360	<3.66
1,2,4-Trichlorobenzene	mg/kg	<.360	<3.66
2,4,5-Trichlorophenol	mg/kg	<.360	<3.66
2,4,6-Trichlorophenol	mg/kg	<.360	<3.66

APPENDIX B QUANTITATIVE RESULTS

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56P1C

8		Detection Limits	Blank Results	Batch Number
•	91.7	.100	-	

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C EXSA56P2C

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
Solids, Total	8	88.4	.100	-	
			-4		
	, i				
	0.1				
					1.7

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56P1G

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
olids, Total	8	89.1	.100	-	

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56P2G

	Sample Results	Detection Limits	Blank Results	Batch Number
S.	87.2	.100	•	
	8			

BTXE Volatile Analysis, GC, (GV33)

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56P1G JN3717

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
enzene thylbenzene oluene ylenes	ND ND ND .002	.001 .001 .001	ND ND ND ND	Q2W3966 Q2W3966 Q2W3966 Q2W3966

BTXE Volatile Analysis, GC, (GV33)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56P2G

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
enzene thylbenzene oluene ylenes	ND ND ND .002	.001 .001 .001 .001	ND ND ND ND	Q2W3966 Q2W3966 Q2W3966 Q2W3966

TOTAL PETROLEUM HYDROCARBON ANALYSIS, IR (IR00)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56P1C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
roleum Hydrocarbons (IR)	50.4	7.19	ND	Q2T41561

Total Petroleum Hydrocarbon Analysis, IR (IROO)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56P2C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Petrcleum Hydrocarbons (IR)	616	37.1	ND	Q2T41561

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C EXSA56P1C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND ND	.360 .360 .360 .360	ND ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether	ND ND ND ND ND	.360 .360 .360 .360	ND ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND 3.24 ND ND	.360 .360 .360 .360	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Carbazole 4-Chloroaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	.360 .360 .360 .360	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
4-Chlorophenyl phenyl ether Chrysene Dibenzo(a,h)anthracene 'benzofurann-butyl phthalate	ND ND ND ND	.360 .360 .360 .360	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND ND	.360 .360 .360 .360 .360	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND	.360 .360 .360 .899 1.80	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND ND ND	.360 .360 .360 .360	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND ND ND ND	.360 .360 .360 .360	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine	ND ND ND ND ND	.360 .360 .360 .360	ND ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56P1C

ND N	.360 .360 .360 .360 .360 .360 .360 .360	NO N	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
ND ND ND ND ND ND ND ND	.360 .360 1.80 .360 .360 .360 .360 .360	ND ND ND ND ND ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
ND ND ND ND	.360 .360 .360 .360	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
			Q2C41557 Q2C41557

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56P2C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene	ND ND ND ND ND	3.66 3.66 3.66 3.66	ND ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether	ND ND ND ND ND	3.66 3.66 3.66 3.66	ND ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate	ND ND ND ND ND	3.66 3.66 3.66 3.66 3.66	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Carbazole 4-Chloroaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol	ND ND ND ND ND	3.66 3.66 3.66 3.66	ND ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
4-Chlorophenyl phenyl ether Chrysene Dibenzo(a,h)anthracene `ibenzofuran i-n-butyl phthalate	ND ND ND ND ND	3.66 3.66 3.66 3.66 3.66	ND ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND ND ND ND ND	3.66 3.66 3.66 3.66	ND ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Diethyl phthalate Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol	ND ND ND ND ND	3.66 3.66 3.66 9.16 18.3	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene	ND ND ND ND ND	3.66 3.66 3.66 3.66 3.66	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND ND ND ND	3.66 3.66 3.66 3.66	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine	ND ND ND ND	3.66 3.66 3.66 3.66	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56P2C

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Naphthalene Nitroaniline Nitroaniline	ND ND ND ND ND	3.66 3.66 3.66 3.66 3.66	ND ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
-Nitroaniline itrobenzene -Nitrophenol -Nitrophenol entachlorophenol	ND ND ND ND ND	3.66 3.66 3.66 18.3 3.66	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Phenanthrene Phenol Pyrene Pyridine 1,2,4-Trichlorobenzene	ND ND ND ND ND	3.66 3.66 3.66 3.66 3.66	ND ND ND ND	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
,4,5-Trichlorophenol ,4,6-Trichlorophenol	ND ND	3.66 3.66	ND ND	Q2C41557 Q2C41557

APPENDIX C QUALITY ASSURANCE DATA

SUMMARY OF ANALYTICAL METHODOLOGY

ASC Joblink # 616912

REF	REFERENCE TITLE	
160.3	CAWW	Residue, Total, Gravimetric, Dried at 103-105 C
418.1	MCAWW	Petroleum Hydrocarbons, Total Recoverable
8020	sw-846	Aromatic Volatile Organics by GC
8270	SW-846	GC/MS for Semivolatile Organics: Capillary Column Technique

METHODOLOGY REFERENCES

ASTM	American Society for Testing and Materials, 1985 edition.
CAWW	Methods for Chemical Analysis of Water and Wastes, April 1979 and Updated #1 March 1983.
CLP	USEPA Contract Laboratory Program, Document #OLMO1.0, updates December 1990 #OLMO1.1 and February 1991 #OLMO1.1.1.
EPA-500	USEPA Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039 December 1988.
EPA-600	USEPA Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 July 1982.
NIOSH	National Institute for Occupational Safety and Health, 3rd edition, 1984.
SMEWW	Standard Methods for the Examination of Water and Wastewater, 17th edition, 1989.
STOA	Spot Tests In Organic Analysis, 7th edition, 1966.
SW-846	Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, 3rd edition, September 1986 and Update #1 July 1992.
(1)	This method was modified to incorporate the use of Boron Trifluoride (BF3) as the derivatizing reagent according to Method 6640 in <i>SMEWW</i> , 17th edition, 1989.
Title 22	Waste Extraction Test, Title 22, Section 66261.126 Appendix 2 of the California Administrative Code, May 1991.

ASC Certifications

State	Agency	Certification #
Alabama	ADEM	40830
California	CADOH	1178
Colorado	CODOH	OH113
Delaware	DEHSS	OH113
Kansas	KSDHE	E-202 & E-1173
Louisiana	LADOHH	92-10
Maryland	MDDHMH	210
Massachusetts	MADEP	M-OH113
New Jersey	NJDEPE	74603
New York	NYDOH	10712
North Carolina	NCDEM	392
Ohio	OHEPA	OH113
Oklahoma	OKDEQ	9216
Pennsylvania	PADER	68-450
South Carolina	SCDEHNR	92002
Tennessee	TNDOH/TNDEC	2978
Virginia	VADGS	00011
Washington	WADOE	C154
Wisconsin	WIDNR	999037160

Validated by:

C	US Army Corps of Engineers	Chemical Analysis in Various Matrices	
-	pprovals:		
	Chemical Waste Management	Waste Characterization Analysis Waste Characterization Analysis	
	USDA	Permit for Importing Soils	
	Florida DEP	Quality Assurance Plan #930034G	
C	Naval Facilities Engineering Service Center	Chemical Analysis in Various Matrices	
	HE COUNTY HE CONTY TO THE PROPERTY HE SHOW THE STATE OF THE PROPERTY HE SHOW THE SHOW HE SHOW THE STATE OF THE PROPERTY HE SHOW THE SHOW THE SHOW THE STATE OF THE SHOW THE S	그는 그들이 하나 하는 아이를 하다면서 하는 사람들이 살아보다면 하는 것이 되었다면 하는 것이 없는 것이 없는 것이 없는 것이 없는 것이다. 그렇게 하는 것이 없는 것이 없는 것이 없는 것이다.	

REPORT KEY

= milligram per kilogram (ppm) mg/kg Mg/m^3 = milligram per cubic meter ug/kg microgram per kilogram (ppb) mg/L = milligram per liter (ppm) ug/L = microgram per liter (ppb) mg/W = milligram per wipe ug/W = microgram per wipe mg/SMP = milligram per sample ug/SMP = microgram per sample (Tedlar Bag) ug/smp = microgram per sample um/cm = microMho per centimeter pCi/l = picocurie per liter gm/cc = grams per cubic centimeter = parts per million ppm ppb = parts per billion = Not detected at or above stated detection limit ND = less than < = greater than % = percent BTU/Ib = British Thermal Units per pound Deg. C = Degrees Celsius n/a = not applicable Unk = unknown = result is relative to standard pH units std CV = Conventionals IR = Infrared Spectrophotometric GC = Gas Chromatograph Instrument GC/MS = Gas Chromatography/Mass Spectrometer Instrument GRO Gasoline Range Organics DRO = Diesel Range Organics PCB = Polychlorinated Biphenyls (PCBs) EP TOX = Extraction Procedure Toxicity TCLP = Toxicity Characteristic Leaching Procedure RCRA = Resource Conservation and Recovery Act

SOW

= Statement of Work

UUALITY ASSURANCE DATA

BTXE Volatile Analysis, GC, (GV33)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Can target and
Benzene Ethylbenzene Toluene Xylenes	ND ND ND ND	98 100 99 100	ND .004 ND .011	75 36 54 40	6 8 10 6	Q2W3966 Q2W3966 Q2W3966 Q2W3966

QUALITY ASSURANCE DATA

TOTAL PETROLEUM HYDROCARBON ANALYSIS, IR (IROO)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Batch Number
Petroleum Hydrocarbons (IR)	ND	85	50.4	83	8	Q2T41561

QUALITY ASSURANCE DATA

TOTAL BASE/NEUTRAL/ACID ANALYSIS, MS, (MSO2)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Batch Number
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene	ND ND ND ND ND	76 86 84 84 82	ND ND ND ND ND	65 73 72 78 49	31 24 35 28 53	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene bis(2-Chloroethyl) ether bis(2-Chloroethoxy)methane	ND ND ND ND ND	84 84 75 84 75	ND ND ND ND ND	99 69 67 71 71	25 29 33 41 35	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole	ND ND ND ND ND	77 127 77 85 89	ND 3.24 ND ND ND	65 .6 70 73 78	43 196 35 29 36	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
4-Chloroaniline p-Chloro-m-cresol 2-Chloronaphthalene 2-Chlorophenol 4-Chlorophenyl phenyl ether	ND ND ND ND ND	35 72 78 73 85	ND ND ND ND ND	46 67 67 61 76	3 36 31 46 28	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 1,2-Dichlorobenzene	ND ND ND ND ND	86 80 80 84 71	ND ND ND ND	80 70 67 72 62	30 30 28 33 40	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
3-Dichlorobenzene 4-Dichlorobenzene 2,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate	ND ND ND ND ND	73 73 37 70 85	ND ND ND ND	61 62 30 69 71	42 42 3 32 31	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Dimethyl phthalate 2,4-Dimethylphenol 4,6-Dinitro-o-cresol 2,4-Dinitrophenol 2,4-Dinitrotoluene	ND ND ND ND ND	87 45 88 91 84	ND ND ND ND	77 46 75 75 70	28 26 33 30 26	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
2,6-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene Hexachlorobenzene	ND ND ND ND ND	90 85 80 82 80	ND ND ND ND	74 74 75 71 70	31 33 37 29 36	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Hexachlorobutadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene	ND ND ND ND ND	67 69 81 73 72	ND ND ND ND	62 60 68 71 68	42 40 32 31 36	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
2-Methylphenol 4-Methylphenol N-Nitrosodimethylamine N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	ND ND ND ND ND	68 70 69 79 80	ND ND ND ND ND	62 63 58 69 68	37 43 35 40 33	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557

QUALITY ASSURANCE DATA

TOTAL BASE/NEUTRAL/ACID ANALYSIS, MS, (MSO2)

Compounds	Blank Results mg/kg	Blank Spike Recov	Unspiked Sample Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Batch Number
Naphthalene 3-Nitroaniline 4-Nitroaniline Nitrobenzene 2-Nitrophenol	ND ND ND ND ND	70 60 85 69 68	ND ND ND ND ND	68 61 68 65 63	31 17 18 35 34	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
4-Nitrophenol Pentachlorophenol Phenanthrene Phenol Pyrene	ND ND ND ND ND	92 98 84 69 87	ND ND ND ND ND	71 81 74 63 79	24 27 35 40 33	Q2C41557 Q2C41557 Q2C41557 Q2C41557 Q2C41557
Pyridine 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ND ND ND ND	48 70 86 76	ND ND ND ND	39 69 74 68	46 30 34 33	Q2C41557 Q2C41557 Q2C41557 Q2C41557

³⁻Methyl- and 4-Methylphenol coelute and are reported as the total - The RPD of replicate matrix spikes is not within two standard deviations of our data base average, indicating possible sample nonhomogeneity with respect to this analyte.

QUALITY ASSURANCE DATA SURROGATE SUMMARY REPORT

SURROGATE ID	A159	B732	A121	A884	A158	B142	# OUT
QC BATCH: Q2C41557	Solid (Ser	mi-Volati	le organi	cs by MS)			
SAMPLE ID							
BLANK	68	72	73	75	71	70	0
BLANK SPIKE	70	72	80	75	75	74	0
EXSA56P1C	52	57	59	75 58	58	57	0
EXSA56P1C MD	91	97	93	96	90	92	0
EXSA56P1C MS	61	63	70	67	65	67	0
EXSA56P2C	110 D	135 D	100 D	120 D	114 D	104 D	Ō
QC LIMITS	(25-121)	(24-113)	(19-122)	(23-120)	(30-115)	(18-137)	
SURROGATE ID	A228	# OUT					
QC BATCH: Q2W3966	Solid (Vola	atile orga	anics by	GC)			
				1 1 1			
		-					
SAMPLE ID							
SAMPLE ID BLANK	99						
SAMPLE ID	99 100						
SAMPLE ID BLANK BLANK SPIKE EXSA49PCG MD	99 100 53						
SAMPLE ID BLANK BLANK SPIKE	99 100 53 47						
SAMPLE ID BLANK BLANK SPIKE EXSA49PCG MD EXSA49PCG MS	99 100 53	0 0 0 0 0 0 0					

SURROGATE ID

A159 = 2-Fluorophenol

B732 = Phenol-D6

A121 = 2,4,6-Tribromophenol A884 = Nitrobenzene-D5 A158 = 2-Fluorobiphenyl B142 = Terphenyl-D14

A228 = a,a,a-Trifluorotoluene

* Values outside of method quality control limits

D Sample was diluted, however, some surrogates may be reported if results were observed.

It is ASC's laboratory policy to allow one surrogate per sample fraction (acid, base-neutral or pesticide) to exceed the stated QC limits. This policy is based upon the USEPA SOW for the Contract Laboratory Program (CLP).

APPENDIX D CHAIN-OF-CUSTODY RECORD(S)

CHAIN-OF-CUS DDY RECORD

Form 0015 echnical Services Rev. 08/89

0.1	I, MATERIALS	CORP		ù.	P.C	D. BOX 551	• FINDL	AY, OH 45839-0551	•	419	-423	-352	6					
CLIEN	C DEDDESENTATIV	CT CONTA	Au		, le.	PRO JECT MAN	PROJECT TELEP 776 AGER/SUPERVISOR	HONE NO 20 (1)	NUMBER	(IND	ALYSI ICATE ARATE TAINE		SIRED					
TEM NO.	SAMPLE NUMBER	DATE	TIME	COMP	GRAB		SAMPLE DESCRII INCLUDE MATRI POINT OF SAM		Q		5						REMARKS	
A F	PIC -	0.24	1135	1		Ex pulc :	to of cob	He gold grey	2×402	1	1							
	ASH56	u	1159	/		Expile	2 compo	site good, grey	и	1	1							
1	XSAS6		1140		1	Expile	1 0000	gill givey	2×404			1						
1 5	XSASL 2G	11 -	1148			Expire	2 grad	gille givey carble carble carble carble	ZXION	\		/						
5						3 2 7 1 3	-											
6																		
7						<u> </u>												
8																		
9																		
(0)																		
TRANSFER	ITEM NUMBER		F		ANSF	ERS HED BY		RANSFERS CEPTED BY		TIME	REM	IARKS	30	sh	丁	AT ofyoc nk incl		
1	179-1	4	Wi	M	1		Food For	Ax 8,11 -15	G	700		•	Pro	1500	vek	15 45	900	
2	1-4	¥	ed X	/			M. Rada	bush	10/25/91	1001		0	100	J. 1	nl>	UK 14CI	(ucit)	
3															- 1			20
4											SAME	LIN	SIGNAT	URE /	11			

ANALYTICAL DIVISION

Laboratory Analysis Report

Client: OHM Remediation Services Corp.

Eastern Region (Hopkinton, MA)

Attn:

William Snow

Ron Kenyon Mike Quinlan

Project:

16208C - USACE; Fort Devens, MA

Sample Type(s): Solid

Analysis Performed:

Conventionals and RCRA TCLP Leachate Parameters

Date Sample Received:

December 16, 1994

Date Order Received:

December 16, 1994

Joblink(s):

617283

This report is "PROPRIETARY AND CONFIDENTIAL" and delivered to, and intended for the exclusive use of the above named client only. OHM Remediation Services Corp., Analytical Division, assumes no responsibility or liability for the reliance hereon or use hereof by anyone other than the above named client.

Reviewed and

Date: <u>January 18, 1995</u>

PROJECT NARRATIVE

The following items relate to the samples and analytical data contained in this report.

- o All solid sample results are reported on an as received "wet weight" basis.
- o Note any and all comments at the bottom of the tables in Appendix B and/or Appendix C.
- o Samples will be retained for a maximum of thirty (30) days after completion of the analysis, samples will be held for a longer period of time, if appropriate arrangements are made in advance. A nominal disposal charge of \$5.00/ sample will be imposed for unreturned samples.
- Surrogate compounds were not added to the method spike for the TCLP Semi-volatile Organics Batch #Q7C41884. All spike recoveries, sample and method blank surrogate recoveries met method criteria, therefore, the batch was accepted. This anomaly will not impact the validity of the data reported.

APPENDIX A DATA SUMMARY REPORT

DATA SUMMARY REPORT

DATE: 01/10/95

PAGE: 1

Company: OF	MI	REMEDIATION	SERVICES	CORPORATION
-------------	----	-------------	----------	-------------

	Sample Point ID: ASC Sample Number: Sample Date: Facility Code:	EXSA56-1C JN6329 941215 016208C	EXSA56-2C JN6330 941215 016208C	EXSA56-3C JN6331 941215 016208C	EXSA56-4C JN6332 941215 016208C	EXSA56DUPC JN6333 941215 016208C
Parameters	Units					
onventional Data	(CV10)					
Flash Point, Seta Reactive Cyanide Reactive Sulfide oH (Electrode)	Flash Deg C mg/kg mg/kg std	>93 <10.0 <20.0 6.91	>93 <10.0 40.2 6.67	>93 <10.0 <20.0 6.58	>93 <10.0 <20.0 6.62	>93 <10.0 <20.0 6.52
RA TCLP Leachate	Herbicide Analysis,	GC, (GS52)				
1,4-D ,4,5-TP (Silvex)	mg/L mg/L	<.250 <.250	<.250 <.250	<.250 <.250	<.250 <.250	<.250 <.250
RA TCLP Leachate	Pesticide Analysis,	GC, (GS54)				
nlordane ndrin eptachlor eptachlor epoxide indane	mg/L mg/L mg/L mg/L mg/L	<.020 <.002 <.002 <.002 <.002	<.020 <.002 <.002 <.002 <.002	<.020 <.002 <.002 <.002 <.002	<.020 <.002 <.002 <.002 <.002	<.020 <.002 <.002 <.002 <.002
ethoxychlor oxaphene	mg/L mg/L	<.002 <.040	<.002 <.040	<.002 <.040	<.002 <.040	<.002 <.040
RA TCLP Leachate	Metals Analysis, (M	E52)				
Arsenic Marium Madmium Madmium Marium Marium Marium Marium Marium	mg/L mg/L mg/L mg/L mg/L	<.100 .444 <.005 <.020 <.100	<.100 .391 <.005 <.020 <.100	<.100 .332 <.005 <.020 <.100	<.100 .378 <.005 <.020 <.100	<.100 .323 <.005 <.020 .444
lercury selenium silver opper sinc	mg/L mg/L mg/L mg/L	<.001 <.100 <.020 <.020 <.200	<.001 <.100 <.020 <.020 <.200	<.001 <.100 <.020 <.020 <.200	<.001 <.100 .022 <.020 <.200	<.001 <.100 .021 <.020 <.200

DATA SUMMARY REPORT

Sample Point ID: EXSA56-1C EXSA56-2C EXSA56-3C EXSA56-4C EXSA56DUPC

DA.w: 01/10/95

PAGE: 2

Company:	OHM	REMEDIATION	SERVICES	CORPORATION

AS	C Sample Number: Sample Date: Facility Code:	JN6329 941215 016208C	JN6330 941215 016208C	JN6331 941215 016208C	JN6332 941215 016208C	JN6333 941215 016208C	
Parameters	Units						
CRA TCLP Leachate Ba	se/Neutral/Acid A	nalysis, M	IS, (MS52)				
2,4-Dinitrotoluene	mg/L	<.100	<.100	<.100	<.100	<.100	
Texachlorobenzene	mg/L	<.100	<.100	< .100	<.100	<.100	
lexachloroethane	mg/L	< .100	< .100	<.100	< .100	<.100	
exachlorobutadiene	mg/L	< .100	<.100	<.100	< .100	<.100	
Methylphenol	mg/L	<.100	<.100	<.100	<.100	<.100	
-Methylphenol	mg/L	<.100	<.100	<.100	<.100	<.100	
trobenzene	mg/L	< .100	<.100	<.100	< .100	< .100	
ntachlorophenol	mg/L	<.100	<.100	< .100	< .100	<.100	
ridine	mq/L	< .100	< .100	<.100	< .100	<.100	
4,5-Trichloropheno	1 mg/L	<.100	<.100	<.100	<.100	<.100	
4,6-Trichloropheno	1 mg/L	<.100	<.100	<.100	<.100	<.100	
RA TCLP Leachate (Z	HE) Volatile Anal	ysis, MS,	(MV50)				
enzene	mg/L	<.125	<.125	<.125	<.125	<.125	
arbon tetrachloride		< .125	<.125	< .125	<.125	<.125	
hlorobenzene	mg/L	< .125	<.125	< .125	< .125	<.125	
hloroform	mg/L	< .125	<.125	<.125	< .125	<.125	
,4-Dichlorobenzene	mg/L	<.125	<.125	<.125	<.125	<.125	
,2-Dichloroethane	mg/L	<.125	<.125	<.125	<.125	<.125	
,1-Dichloroethylene		<.125	< .125	< .125	<.125	<.125	
tethyl ethyl ketone	mg/L	<.125	<.125	< .125	<.125	<.125	
etrachloroethylene	mg/L	<.125	<.125	< .125	<.125	<.125	
richloroethylene	mg/L	<.125	<.125	<.125	<.125	<.125	
'inyl chloride	mg/L	<.125	<.125	<.125	<.125	<.125	

APPENDIX B QUANTITATIVE RESULTS

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C EXSA56-1C

ND ND 6.91 >93	10.0	ND ND -	Q2I4065 Q2I4067
			· x

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-2C

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
eactive Cyanide eactive Sulfide H (Electrode) lash Point, Seta Flash	mg/kg mg/kg std Deg C	ND 40.2 6.67 >93	10.0 20.0	ND ND - -	Q2I4065 Q2I4067

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-3C

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
eactive Cyanide eactive Sulfide I (Electrode) .ash Point, Seta Flash	mg/kg mg/kg std Deg C	ND ND 6.58 >93	10.0	ND ND - -	Q2I4065 Q2I4067

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C EXSA56-4C JN6332

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
eactive Cyanide eactive Sulfide H (Electrode) lash Point, Seta Flash	mg/kg mg/kg std Deg C	ND ND 6.62 >93	10.0	ND ND - -	Q2I4065 Q2I4067
	- 1				

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56DUPC

	Sample Results	Detection Limits	Blank Results	Batch Number
mg/kg mg/kg std Deg C	ND ND 6.52 >93	10.0	ND ND -	Q2I4065 Q2I4067
	mg/kg mg/kg std Deg C			

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-1C

Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
ND . 444 ND ND ND	.100 .100 .005 .020 .100	ND ND ND ND ND	Q7M5777 Q7M5777 Q7M5777 Q7M5777 Q7M5777
ND ND ND ND ND	.001 .100 .020 .020 .200	ND ND ND ND	Q7G5795 Q7M5777 Q7M5777 Q7M5777 Q7M5777
	Results mg/L ND .444 ND	Results Limits mg/L	Results Limits Results mg/L mg/L

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-2C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Arsenic Barium Cadmium Chromium Lead	ND .391 ND ND ND	.100 .100 .005 .020 .100	ND ND ND ND ND	Q7M5777 Q7M5777 Q7M5777 Q7M5777 Q7M5777
Mercury Selenium Silver Copper Sinc	ND ND ND ND	.001 .100 .020 .020 .200	ND ND ND ND	Q7G5795 Q7M5777 Q7M5777 Q7M5777 Q7M5777
	,			

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-3C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Arsenic Barium Cadmium Chromium Lead	ND .332 ND ND ND	.100 .100 .005 .020 .100	ND ND ND ND ND	Q7M5777 Q7M5777 Q7M5777 Q7M5777 Q7M5777
Mercury Selenium Silver Copper Zinc	ND ND ND ND	.001 .100 .020 .020 .200	ND ND ND ND	Q7G5795 Q7M5777 Q7M5777 Q7M5777 Q7M5777

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-4C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Arsenic Barium Badmium Chromium Bead	ND .378 ND ND ND	.100 .100 .005 .020	ND ND ND ND	Q7M5777 Q7M5777 Q7M5777 Q7M5777 Q7M5777
Mercury Selenium Silver Copper Jinc	ND ND .022 ND ND	.001 .100 .020 .020 .200	ND ND ND ND	Q7G5795 Q7M5777 Q7M5777 Q7M5777 Q7M5777

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56DUPC

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Arsenic Barium Cadmium Chromium Lead	ND .323 ND ND .444	.100 .100 .005 .020 .100	ND ND ND ND ND	Q7M5777 Q7M5777 Q7M5777 Q7M5777 Q7M5777
Mercury Gelenium Gilver Copper Zinc	ND ND .021 ND ND	.001 .100 .020 .020 .200	ND ND ND ND ND	Q7G5795 Q7M5777 Q7M5777 Q7M5777 Q7M5777

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-1C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-D ,4,5-TP (Silvex)	ND ND	.250 .250	ND ND	Q7H41872A Q7H41872A

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-2C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
2,4-D 2,4,5-TP (Silvex)	ND ND	.250 .250	ND ND	Q7H41872A Q7H41872A

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-3C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
2,4-D 2,4,5-TP (Silvex)	ND ND	.250 .250	ND ND	Q7H41872A Q7H41872A
				14 -

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-4C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-D ,4,5-TP (Silvex)	ND ND	.250 .250	ND ND	Q7H41872A Q7H41872A

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56DUPC

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-D ,4,5-TP (Silvex)	ND ND	.250 .250	Results mg/L	Q7H41872A Q7H41872A
				X.

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-1C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
hlordane ndrin eptachlor eptachlor epoxide indane	ир ир ир ир ир	.020 .002 .002 .002 .002	ND ND ND ND	Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A
ethoxychlor oxaphene	ND ND	.002 .040	ND ND	Q7P41892A Q7P41892A

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-2C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Chlordane Endrin Meptachlor Meptachlor epoxide Lindane	ND ND ND ND ND	.020 .002 .002 .002 .002	ND ND ND ND ND	Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A
ethoxychlor oxaphene	ND ND	.002 .040	ND ND	Q7P41892A Q7P41892A

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-3C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Chlordane Endrin Heptachlor Heptachlor epoxide Lindane	ND ND ND ND ND	.020 .002 .002 .002 .002	ND ND ND ND	Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A
Methoxychlor Toxaphene	ND	.002	ND ND	Q7P41892A Q7P41892A

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-4C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
hlordane Indrin Eptachlor Eptachlor epoxide Lindane	ND ND ND ND ND	.020 .002 .002 .002 .002	ND ND ND ND ND	Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A
ethoxychlor oxaphene	ND ND	.002 .040	ND ND	Q7P41892A Q7P41892A

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C EXSA56DUPC

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
hlordane ndrin eptachlor eptachlor epoxide indane	ND ND ND ND ND	.020 .002 .002 .002 .002	ND ND ND ND	Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A
ethoxychlor oxaphene	ND ND	.002 .040	ND ND	Q7P41892A Q7P41892A

RCRA TCLP LEACHATE BASE/NEUTRAL/ACID ANALYSIS, MS, (MS52)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-1C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
2,4-Dinitrotoluene Mexachlorobenzene Mexachloroethane Mexachlorobutadiene 2-Methylphenol	ND ND ND ND ND	.100 .100 .100 .100 .100	ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
-Methylphenol itrobenzene entachlorophenol yridine ,4,5-Trichlorophenol	ND ND ND ND ND	.100 .100 .100 .100	ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
,4,6-Trichlorophenol	ND	.100	ND	Q7C41884

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-2C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-Dinitrotoluene exachlorobenzene exachloroethane exachlorobutadiene -Methylphenol	ND ND ND ND ND	.100 .100 .100 .100	ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
-Methylphenol itrobenzene entachlorophenol yridine ,4,5-Trichlorophenol	ND ND ND ND	.100 .100 .100 .100	ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
,4,6-Trichlorophenol	ND	.100	ND	Q7C41884

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-3C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-Dinitrotoluene exachlorobenzene exachloroethane exachlorobutadiene -Methylphenol	ND ND ND ND ND	.100 .100 .100 .100 .100	ND ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
-Methylphenol itrobenzene entachlorophenol yridine ,4,5-Trichlorophenol	ND ND ND ND ND	.100 .100 .100 .100 .100	ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
,4,6-Trichlorophenol	ND	.100	ND	Q7C41884

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-4C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-Dinitrotoluene exachlorobenzene exachloroethane exachlorobutadiene -Methylphenol	ND ND ND ND ND	.100 .100 .100 .100 .100	ND ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
-Methylphenol itrobenzene entachlorophenol yridine ,4,5-Trichlorophenol	ND ND ND ND	.100 .100 .100 .100	ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
,4,6-Trichlorophenol	ND	.100	ND	Q7C41884

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56DUPC

		mg/L	mg/L	
4-Dinitrotoluene exachlorobenzene exachloroethane exachlorobutadiene -Methylphenol	ND ND ND ND ND	.100 .100 .100 .100 .100	ND ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
-Methylphenol itrobenzene entachlorophenol yridine 4,5-Trichlorophenol	ND ND ND ND ND	.100 .100 .100 .100	ND ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
4,6-Trichlorophenol	ND	.100	ND	Q7C41884
(92.)				
	HW U			

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-1C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,4-Dichlorobenzene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
Vinyl chloride	ND	.125	ND	Q7V4132

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-2C JN6330

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,4-Dichlorobenzene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
Vinyl chloride	ND	.125	ND	Q7V4132
			*	

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-3C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
enzene Carbon tetrachloride Chlorobenzene Chloroform .,4-Dichlorobenzene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
,,2-Dichloroethane ,,1-Dichloroethylene Methyl ethyl ketone Metrachloroethylene Mrichloroethylene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
inyl chloride	ИД	.125	ND	Q7V4132
	8			

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-4C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
enzene arbon tetrachloride hlorobenzene hloroform ,4-Dichlorobenzene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
,2-Dichloroethane ,1-Dichloroethylene sethyl ethyl ketone setrachloroethylene richloroethylene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
inyl chloride	ND	.125	ND	Q7V4132

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56DUPC

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Benzene Carbon tetrachloride Chlorobenzene Chloroform .,4-Dichlorobenzene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND ND	Q7V4113 Q7V4113 Q7V4113 Q7V4113 Q7V4113
.,2-Dichloroethane .,1-Dichloroethylene Methyl ethyl ketone Metrachloroethylene Mrichloroethylene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND ND	Q7V4113 Q7V4113 Q7V4113 Q7V4113 Q7V4113
inyl chloride	ND	.125	ND	Q7V4113

APPENDIX C QUALITY ASSURANCE DATA

SUMMARY OF ANALYTICAL METHODOLOGY

ASC Joblink # 617283

REFERENC	E	TITLE
1020	SW-846	Flash Point, Setaflash
1311	SW-846	Toxicity Characteristic Leaching Procedure
6010	SW-846	Inductively Coupled Plasma Atomic Emmision Spectroscopy
7470	SW-846	Mercury in Liquid Waste (Manual Cold-Vapor Technique)
8080	SW-846	Organochlorine Pesticides and/or PCBs
8150	SW-846	Chlorinated Herbicides
8240	SW-846	GC/MS for Volatile Organics
8270	SW-846	GC/MS for Semivolatile Organics: Capillary Column Technique
CLP 1.7.1.1	CLP	pH, Electrode
SECTION 7.3.3.2	SW-846	Test Method to Determine HCN Released from Wastes
SECTION 7.3.4.2	SW-846	Test Method to Determine HS Released from Wastes

METHODOLOGY REFERENCES

ASTM	American Society for Testing and Materials, 1985 edition.
CAWW	Methods for Chemical Analysis of Water and Wastes, April 1979 and Updated #1 March 1983.
CLP	USEPA Contract Laboratory Program, Document #OLMO1.0, updates December 1990 #OLMO1.1 and February 1991 #OLMO1.1.1.
EPA-500	USEPA Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039 December 1988.
EPA-600	USEPA Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 July 1982.
NIOSH	National Institute for Occupational Safety and Health, 3rd edition, 1984.
SMEWW	Standard Methods for the Examination of Water and Wastewater, 17th edition, 1989.
STOA	Spot Tests In Organic Analysis, 7th edition, 1966.
SW-846	Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, 3rd edition, September 1986 and Update #1 July 1992.
(1)	This method was modified to incorporate the use of Boron Trifluoride (BF3) as the derivatizing reagent according to Method 6640 in <i>SMEWW</i> , 17th edition, 1989.
Title 22	Waste Extraction Test, Title 22, Section 66261.126 Appendix 2 of the California Administrative Code, May 1991.

ASC Certifications

State	Agency	Certification #
Alabama	ADEM	40830
California	CADOH	1178
Colorado	CODOH	OH113
Delaware	DEHSS	OH113
Kansas	KSDHE	E-202 & E-1173
Louisiana	LADOHH	92-10
Maryland	MDDHMH	210
Massachusetts	MADEP	M-OH113
New Jersey	NJDEPE	74603
New York	NYDOH	10712
North Carolina	NCDEM	392
Ohio	OHEPA	OH113
Oklahoma	OKDEQ	9216
Pennsylvania	PADER	68-450
South Carolina	SCDEHNR	92002
Tennessee	TNDOH/TNDEC	2978
Virginia	VADGS	00011
Washington	WADOE	C154
Wisconsin	WIDNR	999037160

Validated by:

o US Army Corps of Engineers	Chemical Analysis in Various Matrices
Approvals:	
o Chemical Waste Management	Waste Characterization Analysis
o Envirosafe	Waste Characterization Analysis
o USDA	Permit for Importing Soils
o Florida DEP	Quality Assurance Plan #930034G
o Naval Facilities Engineering Service Center	Chemical Analysis in Various Matrices

REPORT KEY

mg/kg = milligram per kilogram (ppm)

Mg/m³ = milligram per cubic meter

ug/kg = microgram per kilogram (ppb)

mg/L = milligram per liter (ppm)

ug/L = microgram per liter (ppb)

mg/W = milligram per wipe ug/W = microgram per wipe

mg/SMP = milligram per sample

ug/SMP = microgram per sample (Tedlar Bag)

ug/smp = microgram per sample

um/cm = microMho per centimeter

pCi/l = picocurie per liter

gm/cc = grams per cubic centimeter

ppm = parts per million ppb = parts per billion

ND = Not detected at or above stated detection limit

< = less than

> = greater than

% = percent

BTU/lb = British Thermal Units per pound

Deg. C = Degrees Celsius n/a = not applicable

u/a — not applicable

Unk = unknown

std = result is relative to standard pH units

CV = Conventionals

IR = Infrared Spectrophotometric

GC = Gas Chromatograph Instrument

GC/MS = Gas Chromatography/Mass Spectrometer Instrument

GRO = Gasoline Range Organics
DRO = Diesel Range Organics

PCB = Polychlorinated Biphenyls (PCBs)

EP TOX = Extraction Procedure Toxicity

TCLP = Toxicity Characteristic Leaching Procedure

RCRA = Resource Conservation and Recovery Act

SOW = Statement of Work

QUALITY ASSURANCE LAIR

CONVENTIONAL DATA (CV10)

Compounds		Blank Results	Blank Spike Recov	Unspiked Sample Results	Matrix Spike Recov	Relative Percent Diff	Batch Number
eactive Cyanide eactive Sulfide	mg/kg mg/kg	ND ND	87 91	1 1		-	Q2I4065 Q2I4067

RCRA TCLP LEACHATE METALS ANALYSIS, (ME52)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
Arsenic Barium Cadmium Chromium Lead	ND ND ND ND ND	82 84 84 82 81	ND .364 .019 ND ND	85 84 86 83 80	1 1 1 1	Q7M5777 Q7M5777 Q7M5777 Q7M5777 Q7M5777
Mercury Selenium Silver Copper Linc	ND ND ND ND	99 77 94 81 81	ND ND ND .036 ND	94 79 81 85 85	6 2 1 1	Q7G5795 Q7M5777 Q7M5777 Q7M5777 Q7M5777

RCRA TCLP LEACHATE HERBICIDE ANALYSIS, GC, (GS52)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
2,4-D 2,4,5-TP (Silvex)	ND ND	71 102	ND ND	60 90	16 13	Q7H41872A Q7H41872A
					•	

RCRA TCLP LEACHATE PESTICIDE ANALYSIS, GC, (GS54)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
Chlordane Endrin Heptachlor Heptachlor epoxide Lindane Methoxychlor	ND ND ND ND ND	109 109 92 102 63 88	ND ND ND ND ND	112 128 104 106 65	3 15 5 5 3 3	Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A
						¥

RCRA TCLP LEACHATE BASE/NEUTRAL/ACID ANALYSIS, MS, (MS52)

Compounds	Blank Result mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
2,4-Dinitrotoluene Mexachlorobenzene Mexachloroethane Mexachlorobutadiene 2-Methylphenol	и и и и	D 82 D 58 D 73	ND ND ND ND ND	73 53 33 35 64	3 13 21 22 2	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
-Methylphenol itrobenzene entachlorophenol yridine ,4,5-Trichlorophenol	и и и и	D 69 D 73 D 62	ND ND ND ND ND	75 62 57 59 32	6 1 12 1 4	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
,4,6-Trichlorophenol	И	78	ND	69	2	Q7C41884
					1	

^{]-}Methyl- and 4-Methylphenol coelute and are reported as the total

UURLIIY ASSURANCE DATA

RCRA TCLP LEACHATE (ZHE) VOLATILE ANALYSIS, MS, (MV50)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,4-Dichlorobenzene	ND ND ND ND ND	97 97 91 97 74	ND ND ND ND ND	99 100 90 94 80	9 13 5 4 6	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene	ND ND ND ND ND	99 90 90 95 98	ND ND ND ND ND	93 83 82 93 99	2 1 0 7 7	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
Vinyl chloride	ND	86	ND	79	5	Q7V4132
				-1-		

RCRA TCLP LEACHATE (ZHE) VOLATILE ANALYSIS, MS, (MV50)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,4-Dichlorobenzene	ND ND ND ND ND	95 97 91 94 80	80 68 68 68 68 68 68 68 68	101 101 96 98 80	3 3 0 3 4	Q7V4113 Q7V4113 Q7V4113 Q7V4113 Q7V4113
1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene	ND ND ND ND ND	96 91 91 90 95	ND ND ND ND ND	104 84 90 92 99	2 6 1 1	Q7V4113 Q7V4113 Q7V4113 Q7V4113 Q7V4113
inyl chloride	ND	84	ND	78	4	Q7V4113

LUMLIT MOSUKANCE DATA

SURROGATE SUMMARY REPORT

SURROGATE ID	A159	B732	A121	A884	A158	B142	# OUT	
QC BATCH: Q7C4188	4 Leachate	(Semi-Vola	atile org	anics by 1	MS)			
SAMPLE ID								
BLANK	66	57	103	74	78	16 *	1	
BLANK SPIKE	0 *	0 +	0 *	0 *	0 *	0 *	6	
EX1435-1C MD	68	60	87	70	68	65	0	
EX1435-1C MS	74	65	93	76	76	68	0	
EXSA56-1C	67	58	85	69	73	64	0	
EXSA56-2C	88	79	118	94	100	82	0	
EXSA56-3C	62	55	85	67	72	61	0	
EXSA56-4C	58	54	81	67	70	60	0	
EXSA56DUPC	71	62	94	74	81	67	0	
QC LIMITS	(21-110)	(10-110)	(10-123)	(35-114)	(43-116)	(33-141)		
SURROGATE ID	F047	# OUT	-7					9 -
QC BATCH: Q7H4187	2A Leachate	(Werbici)	ie compour	nda by GC		-		
AC DUTOU: ALUATO!	TA TOUCHER	("FATTET	ad compou	and by GC				
SAMPLE ID								
BLANK	59	0						
BLANK SPIKE	100	0						
EX1435-1C MD	130	0						
EX1435-1C MS	99	0						
EXSA56-1C	38	0						
EXSA56-2C	76	0						
EXSA56-3C	33	0						
EXSA56-4C	81	0						
EXSA56DUPC	75	0						
QC LIMITS	(30-130)							
SURROGATE ID	B816	A500	# OUT					
QC BATCH: Q7P4189	2A Leachate	(Pesticio	de compour	nds by GC)			
SAMPLE ID	2.0		•					
BLANK	89	65	0					
BLANK SPIKE	89 90	46 82	0					
EX1435-1C MD			0					
EX1435-1C MS	94	84	0					
EXSA56-1C	86	75						
EXSA56-2C	90 83	78 80	0					
EXSA56-3C	88	76	0					
EXSA56-4C EXSA56DUPC	87	78	0					
EVSUSODOLC	0/	/ 0	U					
QC LIMITS	(30-130)	(30-130)						
	,/	***************************************						
		SUI	RROGATE I	D				
1212 - 1 2 2 2 2 3 4 4								
A047 = 1,2-Dichlo			A500 =	Decachlo	robipheny	1	414	
B185 = Toluene-D8			FU47 =	2,4-Dich	roropheny	racetic-a	cia	
B668 = Bromofluor								
A159 = 2-Fluoroph	IEHOT							
B732 = Phenol-D6	romonhonal							
A121 = 2,4,6-Trib	oromopuenol							
A884 = Nitrobenze	nhenvi							
3100 7 7 7								
A158 = 2-Fluorobi	1114							
3142 = Terphenyl-	trachlers -	-villana						
	etrachloro-m	-xylene						
3142 = Terphenyl-	etrachloro-m		ntrol lim	its				

It is ASC's laboratory policy to allow one surrogate per sample fraction (acid, base-neutral or pesticide) to exceed the stated QC limits. This policy is based upon the USEPA SOW for the Contract Laboratory Program (CLP).

SURROGATE SUMMARY REPORT

C BATCH: Q/V4113	Leachate	(Volatile	organics b	MS)	
SAMPLE ID					
BLANK	102	96	96	0	
BLANK SPIKE	103	98	97	0	
EXSA56DUPC	101	99	104	0	
WST05 MD	109	98	104	0	
WST05 MS	107	96	99	0	
QC LIMITS	(70-121)	(81-117)	(74-121)		
C BATCH: Q7V4132	Leachate	(Volatile	organics b	MS)	
SAMPLE ID					
CARLE THE TO		100	98	0	
BLANK	105	700		•	
	109	102	98	0	
BLANK	109 102	102 98	98 96	0	
BLANK BLANK SPIKE	109	102	98	0	
BLANK BLANK SPIKE EX63BEDP2A MD	109 102 105 104	102 98 98 103	98 96 95 100	0 0 0 0	
BLANK BLANK SPIKE EX63BEDP2A MD EX63BEDP2A MS	109 102 105 104 102	102 98 98 103 94	98 96 95 100 93	0 0 0 0 0 0	
BLANK BLANK SPIKE EX63BEDP2A MD EX63BEDP2A MS EXSA56-1C	109 102 105 104 102 102	102 98 98 103 94 99	98 96 95 100 93 94	0 0 0 0 0 0	
BLANK BLANK SPIKE EX63BEDP2A MD EX63BEDP2A MS EXSA56-1C EXSA56-2C	109 102 105 104 102	102 98 98 103 94	98 96 95 100 93	0 0 0 0	
BLANK BLANK SPIKE EX63BEDP2A MD EX63BEDP2A MS EXSA56-1C EXSA56-2C EXSA56-3C	109 102 105 104 102 102	102 98 98 103 94 99	98 96 95 100 93 94 93	0 0 0 0 0 0	

SURROGATE ID A047 = 1,2-Dichloroethane-D4 A500 = Decachlorobiphenyl F047 = 2,4-Dichlorophenylacetic-acid B185 = Toluene-D8 B668 = Bromofluorobenzene A159 = 2-Fluorophenol B732 = Phenol-D6A121 = 2,4,6-Tribromophenol A884 = Nitrobenzene-D5 \158 = 2-Fluorobiphenyl
3142 = Terphenyl-D14

B816 = 2,4,5,6-Tetrachloro-m-xylene

* Values outside of method quality control limits
D Sample was diluted, however, some surrogates may be reported if results were observed.

It is ASC's laboratory policy to allow one surrogate per sample fraction (acid, base-neutral or pesticide) to exceed the stated QC limits. This policy is based upon the USEPA SOW for the Contract Laboratory Program (CLP).

APPENDIX D CHAIN-OF-CUSTODY RECORD(S)

CHAIN-OF-CL , ODY RECORD

Form 0019 d Technical Services Rev. 08/99

No. 107747 O.H. MATERIALS CORP. P.O. BOX 551 FINDLAY, OH 45839-0551 419-423-3526 PROJECT NAME PROJECT LOCATION ME Devens ANALYSIS DESIRED UNDICATE NUMBER PROJECT CONTACT PROJECT TELEPHONE NO Quintzu SEPARATE 16208 MILLE 1508 772 - 2019 CONTAINERS CLIENT'S REPRESENTATIVE PROJECT MANAGER/SUPERVISOR LISALE im Colenza COMP SAMPLE DESCRIPTION (INCLUDE MATRIX AND POINT OF SAMPLE) SAMPLE NUMBER DATE TIME REMARKS EX SA 56-12.15 1150 2 94 EXSASL-1205 1230 1253 XSA56of cobble Goldish brown szylvela 1253 lots of cubble DUPC 10 · Herp blank included · H°C · Jdzy TAT TRANSFERS TRANSFERS ITEM TIME RELINQUISHED BY ACCEPTED BY DATE NUMBER 12.15 Fed Ex A:-6.11 2989315940 1900 5 nBlen 1 2 3 SAMPLER'S SIGNATURE D MBlen 4

ANALYTICAL DIVISION

Laboratory Analysis Report

Client: OHM Remediation Services Corp.

Eastern Region (Hopkinton, MA)

Attn:

William Snow

Ron Kenyon Mike Quinlan

Project:

16208C - USACE; Fort Devens, MA

Sample Type(s): Solid

Analysis Performed: Conventional and Metals

Date Sample Received: December 16, 1994

Date Order Received: January 12, 1995

Joblink(s): 617411

This report is "PROPRIETARY AND CONFIDENTIAL" and delivered to, and intended for the exclusive use of the above named client only. OHM Remediation Services Corp., Analytical Division, assumes no responsibility or liability for the reliance hereon or use hereof by anyone other than the above named client.

Reviewed and Approved by:

Thòmas E. Gran, Ph.D., Vice President)

Date: January 23, 1995

419-423-3526

PROJECT NARRATIVE

The following items relate to the samples and analytical data contained in this report.

- o All solid sample results are reported on a "dry weight" basis.
- o Note any and all comments at the bottom of the tables in Appendix B and/or Appendix C.
- o Samples will be retained for a maximum of thirty (30) days after completion of the analysis, samples will be held for a longer period of time, if appropriate arrangements are made in advance. A nominal disposal charge of \$5.00/ sample will be imposed for unreturned samples.

APPENDIX A DATA SUMMARY REPORT

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-1C

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
Reactive Cyanide Reactive Sulfide OH (Electrode) Plash Point, Seta Flash	mg/kg mg/kg std Deg C	ND ND 6.91 >93	10.0	ND ND -	Q2I4065 Q2I4067

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C EXSA56-2C JN6330

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
eactive Cyanide eactive Sulfide H (Electrode) lash Point, Seta Flash	mg/kg mg/kg std Deg C	ND 40.2 6.67 >93	10.0 20.0	ND ND - -	Q2I4065 Q2I4067

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C EXSA56-3C

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
Reactive Cyanide Reactive Sulfide oH (Electrode) Flash Point, Seta Flash	mg/kg mg/kg std Deg C	ND ND 6.58 >93	10.0	ND ND	Q2I4065 Q2I4067

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-4C JN6332

eactive Cyanide mg/kg ND 10.0 ND Q2I4065 eactive Sulfide mg/kg ND 20.0 ND Q2I4067 eactive Sulfide mg/kg ND 20.0 ND Q2I4	Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
	eactive Cyanide eactive Sulfide I (Electrode) .ash Point, Seta Flash	mg/kg mg/kg std Deg C	ND 6.62	20.0	ND	Q2I4065 Q2I4067

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56DUPC

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
Reactive Cyanide Reactive Sulfide oH (Electrode) Flash Point, Seta Flash	mg/kg mg/kg std Deg C	ND ND 6.52 >93	10.0	ND ND	Q2I4065 Q2I4067

RCRA TCLP LEACHATE METALS ANALYSIS, (ME52)

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-1C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Arsenic Barium Cadmium Chromium Gead	ND .444 ND ND ND	.100 .100 .005 .020 .100	ND ND ND ND	Q7M5777 Q7M5777 Q7M5777 Q7M5777 Q7M5777
Mercury Selenium Silver Copper Sinc	ND ND ND ND ND	.001 .100 .020 .020 .200	ND ND ND ND ND	Q7G5795 Q7M5777 Q7M5777 Q7M5777 Q7M5777

RCRA TCLP LEACHATE METALS ANALYSIS, (ME52)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-2C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
rsenic arium admium hromium ead	ND .391 ND ND ND	.100 .100 .005 .020 .100	ND ND ND ND	Q7M5777 Q7M5777 Q7M5777 Q7M5777 Q7M5777
dercury elenium ilver opper inc	ND ND ND ND	.001 .100 .020 .020 .200	ND ND ND ND ND	Q7G5795 Q7M5777 Q7M5777 Q7M5777 Q7M5777

RCRA TCLP LEACHATE METALS ANALYSIS, (ME52)

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-3C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
rsenic Jarium Jadmium Chromium Jead	ND .332 ND ND ND	.100 .100 .005 .020 .100	ND ND ND ND ND	Q7M5777 Q7M5777 Q7M5777 Q7M5777 Q7M5777
ercury elenium ilver opper inc	ND ND ND ND	.001 .100 .020 .020 .200	ND ND ND ND	Q7G5795 Q7M5777 Q7M5777 Q7M5777 Q7M5777

RCRA TCLP LEACHATE METALS ANALYSIS, (ME52)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-4C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Arsenic Barium Cadmium Chromium Lead	ND .378 ND ND ND	.100 .100 .005 .020 .100	ND ND ND ND	Q7M5777 Q7M5777 Q7M5777 Q7M5777 Q7M5777
Mercury Selenium Silver Copper Zinc	ND ND .022 ND ND	.001 .100 .020 .020 .200	ND ND ND ND ND	Q7G5795 Q7M5777 Q7M5777 Q7M5777 Q7M5777

RCRA TCLP LEACHATE METALS ANALYSIS, (ME52)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56DUPC

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
rsenic arium admium hromium ead	ND .323 ND ND .444	.100 .100 .005 .020 .100	ND ND ND ND	Q7M5777 Q7M5777 Q7M5777 Q7M5777 Q7M5777
ercury elenium ilver copper inc	ND ND .021 ND ND	.001 .100 .020 .020 .200	ND ND ND ND	Q7G5795 Q7M5777 Q7M5777 Q7M5777 Q7M5777

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-1C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-D ,4,5-TP (Silvex)	ND ND	.250 .250	ND ND	Q7H41872A Q7H41872A

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-2C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-D ,4,5-TP (Silvex)	ND ND	.250	ND ND	Q7H41872A Q7H41872A

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-3C JN6331

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-D ,4,5-TP (Silvex)	ND ND	.250	ND ND	Q7H41872A Q7H41872A

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-4C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-D ,4,5-TP (Silvex)	ND ND	.250 .250	ND ND	Q7H41872A Q7H41872A

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56DUPC

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
2,4-D 2,4,5-TP (Silvex)	ND ND	.250 .250	ND ND	Q7H41872A Q7H41872A
				100

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-1C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
hlordane ndrin eptachlor eptachlor epoxide indane	ND ND ND ND ND	.020 .002 .002 .002 .002	ND ND ND ND	Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A
ethoxychlor oxaphene	ND ND	.002 .040	ND ND	Q7P41892A Q7P41892A

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C EXSA56-2C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
hlordane ndrin eptachlor eptachlor epoxide indane	ир ир ир ир ир	.020 .002 .002 .002 .002	ND ND ND ND	Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A
ethoxychlor oxaphene	ND ND	.002	ND ND	Q7P41892A Q7P41892A

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-3C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
hlordane ndrin eptachlor eptachlor epoxide indane	ND ND ND ND ND	.020 .002 .002 .002 .002	ND ND ND ND	Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A
ethoxychlor oxaphene	ND ND	.002	ND ND	Q7P41892A Q7P41892A

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-4C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Chlordane Endrin Heptachlor Heptachlor epoxide Lindane	ND ND ND ND ND	.020 .002 .002 .002 .002	ND ND ND ND	Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A
Methoxychlor Toxaphene	ND ND	.002 .040	ND ND	Q7P41892A Q7P41892A

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56DUPC

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Chlordane Endrin Heptachlor Heptachlor epoxide Gindane	ND ND ND ND ND	.020 .002 .002 .002 .002	ND ND ND ND	Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A
Methoxychlor Toxaphene	ND ND	.002 .040	ND ND	Q7P41892A Q7P41892A

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-1C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-Dinitrotoluene Mexachlorobenzene Mexachloroethane Mexachlorobutadiene -Methylphenol	ND ND ND ND	.100 .100 .100 .100	ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
-Methylphenol itrobenzene entachlorophenol yridine ,4,5-Trichlorophenol	ND ND ND ND	.100 .100 .100 .100	ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
,4,6-Trichlorophenol	ND	.100	ND	Q7C41884

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-2C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
2,4-Dinitrotoluene Hexachlorobenzene Hexachloroethane Hexachlorobutadiene 2-Methylphenol	ND ND ND ND ND	.100 .100 .100 .100	ND ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
4-Methylphenol Nitrobenzene Pentachlorophenol Pyridine 2,4,5-Trichlorophenol	ND ND ND ND	.100 .100 .100 .100	ND ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
2,4,6-Trichlorophenol	ND	.100	ND	Q7C41884

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-3C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-Dinitrotoluene exachlorobenzene exachloroethane exachlorobutadiene -Methylphenol	ND ND ND ND ND	.100 .100 .100 .100 .100	ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
-Methylphenol itrobenzene entachlorophenol yridine ,4,5-Trichlorophenol	ND ND ND ND ND	.100 .100 .100 .100	ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
4,6-Trichlorophenol	ND	.100	ND	Q7C41884

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-4C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-Dinitrotoluene exachlorobenzene exachloroethane exachlorobutadiene -Methylphenol	ND ND ND ND ND	.100 .100 .100 .100	ND ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
-Methylphenol itrobenzene entachlorophenol yridine ,4,5-Trichlorophenol	ND ND ND ND ND	.100 .100 .100 .100	ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
,4,6-Trichlorophenol	ND	.100	ND	Q7C41884

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56DUPC

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
,4-Dinitrotoluene exachlorobenzene exachloroethane exachlorobutadiene -Methylphenol	ND ND ND ND ND	.100 .100 .100 .100	ND ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
-Methylphenol itrobenzene entachlorophenol yridine ,4,5-Trichlorophenol	ND ND ND ND	.100 .100 .100 .100	ND ND ND ND ND	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
,4,6-Trichlorophenol	ND	.100	ND	Q7C41884

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-1C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Benzene Carbon tetrachloride Chlorobenzene Chloroform .,4-Dichlorobenzene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
,,2-Dichloroethane ,,1-Dichloroethylene lethyl ethyl ketone letrachloroethylene richloroethylene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
inyl chloride	ND	.125	ND	Q7V4132

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-2C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,4-Dichlorobenzene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
Jinyl chloride	ND	.125	ND	Q7V4132

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-3C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
enzene Carbon tetrachloride Chlorobenzene Chloroform ,,4-Dichlorobenzene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
,2-Dichloroethane ,1-Dichloroethylene ethyl ethyl ketone etrachloroethylene richloroethylene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
inyl chloride	ND	.125	ND	Q7V4132

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-4C

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,4-Dichlorobenzene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
Jinyl chloride	ND	.125	ND	Q7V4132
		1		

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56DUPC

Compounds	Sample Results mg/L	Detection Limits mg/L	Blank Results mg/L	Batch Number
enzene Carbon tetrachloride Chlorobenzene Chloroform ,4-Dichlorobenzene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4113 Q7V4113 Q7V4113 Q7V4113 Q7V4113
,2-Dichloroethane ,1-Dichloroethylene ethyl ethyl ketone etrachloroethylene richloroethylene	ND ND ND ND ND	.125 .125 .125 .125 .125	ND ND ND ND	Q7V4113 Q7V4113 Q7V4113 Q7V4113 Q7V4113
inyl chloride	ND	.125	ND	Q7V4113

APPENDIX C QUALITY ASSURANCE DATA

SUMMARY OF ANALYTICAL METHODOLOGY

ASC Joblink # 617283

REFERENC	REFERENCE TITLE			FERENCE TITLE	
1020	SW-846	Flash Point, Setaflash			
1311	SW-846	Toxicity Characteristic Leaching Procedure			
6010	SW-846	Inductively Coupled Plasma Atomic Emmission Spectroscopy			
7470	SW-846	Mercury in Liquid Waste (Manual Cold-Vapor Technique)			
8080	SW-846	Organochlorine Pesticides and/or PCBs			
8150	SW-846	Chlorinated Herbicides			
8240	SW-846	GC/MS for Volatile Organics			
8270	SW-846	GC/MS for Semivolatile Organics: Capillary Column Technique			
CLP 1.7.1.1	CLP	pH, Electrode			
SECTION 7.3.3.2	SW-846	Test Method to Determine HCN Released from Wastes			
SECTION 7.3.4.2	SW-846	Test Method to Determine HS Released from Wastes			

METHODOLOGY REFERENCES

ASTM	American Society for Testing and Materials, 1985 edition.
CAWW	Methods for Chemical Analysis of Water and Wastes, April 1979 and Updated #1 March 1983.
CLP	USEPA Contract Laboratory Program, Document #OLMO1.0, updates December 1990 #OLMO1.1 and February 1991 #OLMO1.1.1.
EPA-500	USEPA Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039 December 1988.
EPA-600	USEPA Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 July 1982.
NIOSH	National Institute for Occupational Safety and Health, 3rd edition, 1984.
SMEWW	Standard Methods for the Examination of Water and Wastewater, 17th edition, 1989.
STOA	Spot Tests In Organic Analysis, 7th edition, 1966.
SW-846	Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, 3rd edition, September 1986 and Update #1 July 1992.
(1)	This method was modified to incorporate the use of Boron Trifluoride (BF3) as the derivatizing reagent according to Method 6640 in SMEWW, 17th edition, 1989.
Title 22	Waste Extraction Test, Title 22, Section 66261.126 Appendix 2 of the California Administrative Code, May 1991.

ASC Certifications

State	Agency	Certification #
Alabama	ADEM	40830
California	CADOH	1178
Colorado	СОДОН	OH113
Delaware	DEHSS	OH113
Kansas	KSDHE	E-202 & E-1173
Louisiana	LADOHH	92-10
Maryland	MDDHMH	210
Massachusetts	MADEP	M-OH113
New Jersey	NJDEPE	74603
New York	NYDOH	10712
North Carolina	NCDEM	392
Ohio	OHEPA	OH113
Oklahoma	OKDEQ	9216
Pennsylvania	PADER	68-450
South Carolina	SCDEHNR	92002
Tennessee	TNDOH/TNDEC	2978
Virginia	VADGS	00011
Washington	WADOE	C154
Wisconsin	WIDNR	999037160

Validated by:

o US Army Corps of Engineers	Chemical Analysis in Various Matrices
Approvals:	
o Chemical Waste Management	Waste Characterization Analysis Waste Characterization Analysis Permit for Importing Soils Quality Assurance Plan #930034G Chemical Analysis in Various Matrices

REPORT KEY

mg/kg = milligram per kilogram (ppm)

Mg/m³ = milligram per cubic meter

ug/kg = microgram per kilogram (ppb)

mg/L = milligram per liter (ppm)

ug/L = microgram per liter (ppb)

mg/W = milligram per wipe ug/W = microgram per wipe

mg/SMP = milligram per sample

ug/SMP = microgram per sample (Tedlar Bag)

ug/smp = microgram per sample

um/cm = microMho per centimeter

pCi/l = picocurie per liter

gm/cc = grams per cubic centimeter

ppm = parts per million ppb = parts per billion

ND = Not detected at or above stated detection limit

< = less than

> = greater than

% = percent

BTU/lb = British Thermal Units per pound

Deg. C = Degrees Celsius

n/a = not applicable

Unk = unknown

std = result is relative to standard pH units

CV = Conventionals

IR = Infrared Spectrophotometric

GC = Gas Chromatograph Instrument

GC/MS = Gas Chromatography/Mass Spectrometer Instrument

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

PCB = Polychlorinated Biphenyls (PCBs)

EP TOX = Extraction Procedure Toxicity

TCLP = Toxicity Characteristic Leaching Procedure

RCRA = Resource Conservation and Recovery Act

SOW = Statement of Work

CONVENTIONAL DATA (CV10)

Compounds		Blank Results	Blank Spike Recov	Unspiked Sample Results	Matrix Spike Recov	Relative Percent Diff	Batch Number
Reactive Cyanide Reactive Sulfide	mg/kg mg/kg	ND ND	87 91	-	-	-	Q2I4065 Q2I4067

RCRA TCLP LEACHATE METALS ANALYSIS, (ME52)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
Arsenic Barium Cadmium Chromium Lead	ND ND ND ND ND	82 84 84 82 81	ND .364 .019 ND ND	85 84 86 83 80	1 1 1 1	Q7M5777 Q7M5777 Q7M5777 Q7M5777 Q7M5777
Mercury Selenium Silver Copper Zinc	ND ND ND ND	99 77 94 81 81	ND ND ND .036 ND	94 79 81 85 85	6 2 1 1 1	Q7G5795 Q7M5777 Q7M5777 Q7M5777 Q7M5777

RCRA TCLP LEACHATE HERBICIDE ANALYSIS, GC, (GS52)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
2,4-D 2,4,5-TP (Silvex)	ND ND	71 102	ND ND	60 90	16 13	Q7H41872A Q7H41872A

RCRA TCLP LEACHATE PESTICIDE ANALYSIS, GC, (GS54)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
Chlordane Endrin Heptachlor Heptachlor epoxide Lindane	ND ND ND ND	109 109 92 102 63	ND ND ND ND ND	112 128 104 106 65	3 15 5 5 3	Q7P41892A Q7P41892A Q7P41892A Q7P41892A Q7P41892A
Methoxychlor	ND	88	ND	92	3	Q7P41892A

RCRA TCLP LEACHATE BASE/NEUTRAL/ACID ANALYSIS, MS, (MS52)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
,4-Dinitrotoluene exachlorobenzene exachloroethane exachlorobutadiene -Methylphenol	ND ND ND ND ND	82 82 58 73 60	ND ND ND ND ND	73 53 33 35 64	3 13 21 22 2	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
-Methylphenol itrobenzene entachlorophenol yridine ,4,5-Trichlorophenol	ND ND ND ND ND	83 69 73 62 63	02 02 03 04 04 04 04	75 62 57 59 32	6 1 12 1 4	Q7C41884 Q7C41884 Q7C41884 Q7C41884 Q7C41884
,4,6-Trichlorophenol	DN	78	ND	69	2	Q7C41884

³⁻Methyl- and 4-Methylphenol coelute and are reported as the total

RCRA TCLP LEACHATE (ZHE) VOLATILE ANALYSIS, MS, (MV50)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Matrix Spike Recov	Relative Percent Diff	Batch Number
Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,4-Dichlorobenzene	ND ND ND ND ND	97 97 91 97 74	ND ND ND ND ND	99 100 90 94 80	9 13 5 4 6	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
1,2-Dichloroethane 1,1-Dichloroethylene Methyl ethyl ketone Tetrachloroethylene Trichloroethylene	ND ND ND ND ND	99 90 90 95 98	ND ND ND ND ND	93 83 82 93 99	2 1 0 7 7	Q7V4132 Q7V4132 Q7V4132 Q7V4132 Q7V4132
Vinyl chloride	ND	86	ND	79	5	Q7V4132

....

RCRA TCLP LEACHATE (ZHE) VOLATILE ANALYSIS, MS, (MV50)

Compounds	Blank Results mg/L	Blank Spike Recov	Unspiked Sample Results mg/L	Spike	Relative Percent Diff	Batch Number
Benzene Carbon tetrachloride Chlorobenzene Chloroform C.4-Dichlorobenzene	ND ND ND ND ND	95 97 91 94 80	88 88 88 88 88 88 88 88 88 88 88 88 88	101 101 96 98 80	3 3 0 3 4	Q7V4113 Q7V4113 Q7V4113 Q7V4113 Q7V4113
.,2-Dichloroethane .,1-Dichloroethylene Methyl ethyl ketone Cetrachloroethylene Crichloroethylene	ND ND ND ND ND	96 91 91 90 95	ND ND ND ND ND	104 84 90 92 99	2 6 1 1	Q7V4113 Q7V4113 Q7V4113 Q7V4113 Q7V4113
inyl chloride	ND	84	ND	78	4	Q7V4113

nesta MAI

SURROGATE SUMMARY REPORT

SURROGATE ID	A159	B732	A121	A884	A158	B142	# OUT	
QC BATCH: Q7C41884	Leachate	(Semi-Vol	atile org	anics by 1	(S)			
SAMPLE ID								
BLANK	66	57	103	74	78	16 *	1	
BLANK SPIKE	0 *	0 *	0 *	0 *	0 *	0 *	6	
EX1435-1C MD	68	60	87	70	68	65	0	
EX1435-1C MS	74	65	93	76	76	68	0	
EXSA56-1C	67	58	85	69	73	64	0	
EXSA56-2C	88	79	118	94	100	82	0	
EXSA56-3C	62	55	85	67	72	61	0	
EXSA56-4C	58	54	81	67	70	60	0	
EXSA56DUPC	71	62	94	74	81	67	0	
QC LIMITS	(21-110)	(10-110)	(10-123)	(35-114)	(43-116)	(33-141)		
SURROGATE ID	F047	# OUT						
QC BATCH: Q7H41872	A Leachate	(Herbicio	de compou	nds by GC				
CAMBLE TO								
SAMPLE ID BLANK	59	0						
BLANK SPIKE	100	ő						
EX1435-1C MD	130	ő						
EX1435-1C MS	99	ő						
EXSA56-1C	38	ŏ						
EXSA56-2C	76	Ö						
EXSA56-3C	33	O.						
EXSA56-4C	81	0						
EXSA56DUPC	75	0						
QC LIMITS	(30-130)							
	2000	****	() arm					
SURROGATE ID	B816	A500	# OUT					
QC BATCH: Q7P41892	A Leachate	(Pesticio	de compou	nds by GC				
SAMPLE ID	20							
BLANK	89	65	0					
BLANK SPIKE	89 90	46 82	0					
EX1435-1C MD EX1435-1C MS	94	84	0					
EXSA56-1C	86	75	0					
EXSA56-2C	90	78	0					
EXSA56-3C	83	80	o					
EXSAS6-4C	88	76	Ö					
EXSA56DUPC	87	78	0					
QC LIMITS	(30-130)	(30-130)						
3	1000	NE SHEEK!						
		SUI	RROGATE I	D				
A047 = 1,2-Dichlor	oethane-D4		A500 =	Decachlo	obinhenv	1		
B185 = Toluene-D8			F047 =	2,4-Dich	oropheny	lacetic-a	cid	
B668 = Bromofluoro	benzene		1345143	-,				
A159 = 2-Fluorophe								
B732 = Phenol-D6								
A121 = 2,4,6-Tribre	omophenol							
A884 = Nitrobenzen	e-D5							
A158 = 2-Fluorobip	henyl							
3142 = Terphenyl-D		The second second second						
B816 = 2,4,5,6-Tet	rachloro-m	-xylene						
B816 = 2,4,5,6-Tet: * Values outside o	rachloro-m		ntrol lim	ite				

It is ASC's laboratory policy to allow one surrogate per sample fraction (acid, base-neutral or pesticide) to exceed the stated QC limits. This policy is based upon the USEPA SOW for the Contract Laboratory Program (CLP).

UUALITY ASSUMME

SURROGATE SUMMARY REPORT

	A047	B185	B668	# OUT	400
C BATCH: Q7V4113	Leachate	(Volatile	organics	by MS)	
SAMPLE ID					
BLANK	102	96	96	0	
BLANK SPIKE	103	98	97	0	
EXSA56DUPC	101	99	104	0	
WST05 MD	109	98	104	0	
WST05 MS	107	96	99	0	
QC LIMITS	(70-121) (81-117)	(74-121)		
QC BATCH: Q7V4132	Leachate	(Volatile	organics	by MS)	
QC BATCH: Q7V4132	Leachate	(Volatile	organics	by MS)	
	Leachate	(Volatile	98	0	
			98 98	0	
SAMPLE ID BLANK	105	100 102 98	98	0	
SAMPLE ID BLANK BLANK SPIKE	105 109	100 102	98 98	0	
SAMPLE ID BLANK BLANK SPIKE EX63BEDP2A MD	105 109 102	100 102 98	98 98 96 95	0 0 0	
SAMPLE ID BLANK BLANK SPIKE EX63BEDP2A MD EX63BEDP2A MS	105 109 102 105	100 102 98 98	98 98 96 95	0 0 0	
SAMPLE ID BLANK BLANK SPIKE EX63BEDP2A MD EX63BEDP2A MS EXSA56-1C	105 109 102 105 104	100 102 98 98 103	98 98 96 95 100 93	0 0 0	
SAMPLE ID BLANK BLANK SPIKE EX63BEDP2A MD EX63BEDP2A MS EXSA56-1C EXSA56-2C	105 109 102 105 104 102	100 102 98 98 103 94	98 98 96 95	0	

SURROGATE ID

A047 = 1,2-Dichloroethane-D4
B185 = Toluene-D8
B668 = Bromofluorobenzene
A159 = 2-Fluorophenol
B732 = Phenol-D6
A121 = 2,4,6-Tribromophenol
A884 = Nitrobenzene-D5
\\158 = 2-Fluorobiphenyl
\\3142 = Terphenyl-D14
B816 = 2,4,5,6-Tetrachloro-m-xylene

* Values outside of method quality control limits
D Sample was diluted, however, some surrogates may be reported if results were observed.

It is ASC's laboratory policy to allow one surrogate per sample fraction (acid, base-neutral or pesticide) to exceed the stated QC limits. This policy is based upon the USEPA SOW for the Contract Laboratory Program (CLP).

APPENDIX D CHAIN-OF-CUSTODY RECORD(S)

CHAIN-OF-CL ODY RECORD

Form 0019 Technical Services Rev. 08/99

OTTM C	orporation															_	No. 1	07747
O.H. I	MATERIALS	CORP			P.0	D. BOX 551	• FINDLAY, OH 45839-	0551		419	-423-35	26		V	أر	n)		
PROJ NO	CLIENT'S REPRESENTATIVE USALE PROJECT MANAGER/SUPERVISOR TIM Cole non USALE USALE				૧	CONTAINERS	(INDI SEPA	ANALYSIS DESIRED (INDICATE SEPARATE CONTAINERS)										
TEM NO	SAMPLE NUMBER	DATE	TIME	COMP	GRAB		SAMPLE DESCRIPTION (INCLUDE MATRIX AND POINT OF SAMPLE)		O	/	4	9	//	//	/		REMARK	(S
EX	SA56-	12.15	1150	1		chocks of	all brown color	bine 2	-	1	1							
E	XSA56-		1205	1		madin	gold brown color lover of lots of cabble	is .	2	1					-			
8 EX	×5A56-		1230	V		15200 1	ots of cubble		2	1	1							
2 57	45A56-		1253	V		goldest	1 brown 52-A/r Cl	2/,	2	/	/							
5 EX	15A56 14PC		1253	1		901015	4 brown szudy	clay,	2	1	/							
6																		
7																		
8										14								
9					P	-												
10																		
THANSFER	ITEM NUMBER		1			FERS SHED BY	TRANSFERS ACCEPTED BY	11115	ATE.	TIME	REMAR	, T	٠,	P		blzw	le 12	chiles
1	1-5	•	5	·	L/3	Blan	Fel Ex A:-4:11 2989315940		7	1900		-		_				
2	1-5	Ŧ	ed 1				M. Radebaugh	12/1	6/94	1021		ا	od.	57	Ţ	AT		
3	(1						O				5.4.1.51.51.51	up 6:0-	ATURE.					
4											SAMPLE			n	13	1 en	-	

ANALYTICAL DIVISION

Laboratory Analysis Report

Client: O

OHM Remediation Services Corp.

Eastern Region (Hopkinton, MA)

Attn:

William Snow

Ron Kenyon Mike Quinlan

Project:

16208C - USACE; Fort Devens, MA

Sample Type(s): Solid

Analysis Performed: Conventional and Metals

Date Sample Received: December 16, 1994

Date Order Received: January 12, 1995

Joblink(s): 617411

This report is "PROPRIETARY AND CONFIDENTIAL" and delivered to, and intended for the exclusive use of the above named client only. OHM Remediation Services Corp., Analytical Division, assumes no responsibility or liability for the reliance hereon or use hereof by anyone other than the above named client.

Reviewed and

Thomas E. Gran, Ph.D., Vice President)

Date: January 23, 1995

419-423-3526

PROJECT NARRATIVE

The following items relate to the samples and analytical data contained in this report.

- o All solid sample results are reported on a "dry weight" basis.
- Note any and all comments at the bottom of the tables in Appendix B and/or Appendix C.
- o Samples will be retained for a maximum of thirty (30) days after completion of the analysis, samples will be held for a longer period of time, if appropriate arrangements are made in advance. A nominal disposal charge of \$5.00/ sample will be imposed for unreturned samples.

APPENDIX A DATA SUMMARY REPORT

APPENDIX B QUANTITATIVE RESULTS

DATA SUMMARY REPORT

DATE: 01/19/95

PAGE: 1

Company: OHM REMEDIATION SERVICES CORPORATION

Sample Point ID: EXSA56-2C EXSA56-4C

ASC Sample Number: JN7192 JN7193

Sample Date: 941215 941215 Facility Code: 016208C 016208C

Parameters Units

nventional Data (CV10)

olids, Total \$ 90.8 91.9

RA Total Metals Analysis, (ME50)

mg/kg	18.1	19.0
mg/kg	37.1	29.1
mg/kg	<1.05	<1.01
mq/kq	16.4	14.9
mg/kg	9.39	25.1
mg/kg	<.048	< .048
mg/kg	<5.26	<5.03
mg/kg	<1.05	<1.01
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 37.1 mg/kg <1.05 mg/kg 16.4 mg/kg 9.39 mg/kg <.048 mg/kg <5.26

CONVENTIONAL DATA (CV10)

Company Name

Facility Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-2C JN7192

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
olids, Total	ş	90.8	.100	-	
		φ			

CONVENTIONAL DATA (CV10)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION 016208C

EXSA56-4C JN7193

Compounds		Sample Results	Detection Limits	Blank Results	Batch Number
olids, Total	%	91.9	.100	-	
	l)				

RCRA TOTAL METALS ANALYSIS, (ME50)

Company Name

Facility

Sample Point

ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-2C

JN7192

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
rsenic arium admium hromium ead	18.1 37.1 ND 16.4 9.39	5.26 1.05 1.05 1.05 2.11	ND ND ND ND ND	Q2M5858 Q2M5858 Q2M5858 Q2M5858 Q2M5858
ercury elenium ilver	ND ND	.048 5.26 1.05	ND ND	Q2G5868 Q2M5858 Q2M5858

RCRA TOTAL METALS ANALYSIS, (ME50)

Company Name

Facility

Sample Point ASC Sample No.

OHM REMEDIATION SERVICES CORPORATION

016208C

EXSA56-4C

JN7193

Compounds	Sample Results mg/kg	Detection Limits mg/kg	Blank Results mg/kg	Batch Number
rsenic arium admium hromium ead	19.0 29.1 ND 14.9 25.1	5.03 1.01 1.01 1.01 2.01	ND ND ND ND ND	Q2M5858 Q2M5858 Q2M5858 Q2M5858 Q2M5858
ercury elenium ilver	ND ND ND	.048 5.03 1.01	ND ND ND	Q2G5868 Q2M5858 Q2M5858

APPENDIX C QUALITY ASSURANCE DATA

SUMMARY OF ANALYTICAL METHODOLOGY

Joblink # 617411

REF	ERENCE	TITLE
160.3	CAWW	Residue, Total, Gravimetric, Dried at 103-105 C
6010	SW-846	Inductively Coupled Plasma Atomic Emmision Spectroscopy
7471	SW-846	Mercury in Solid Waste (Manual Cold-Vapor Technique)

METHODOLOGY REFERENCES

ASTM	American Society for Testing and Materials, 1985 edition.
CAWW	Methods for Chemical Analysis of Water and Wastes, April 1979 and Updated #1 March 1983.
CLP	USEPA Contract Laboratory Program, Document #OLMO1.0, updates December 1990 #OLMO1.1 and February 1991 #OLMO1.1.1.
EPA-500	USEPA Methods for the Determination of Organic Compounds in Drinking Water, EPA-600/4-88/039 December 1988.
EPA-600	USEPA Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA-600/4-82-057 July 1982.
NIOSH	National Institute for Occupational Safety and Health, 3rd edition, 1984.
SMEWW	Standard Methods for the Examination of Water and Wastewater, 17th edition, 1989.
STOA	Spot Tests In Organic Analysis, 7th edition, 1966.
SW-846	Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, 3rd edition, September 1986 and Update #1 July 1992.
(1)	This method was modified to incorporate the use of Boron Trifluoride (BF3) as the derivatizing reagent according to Method 6640 in SMEWW, 17th edition, 1989.
Title 22	Waste Extraction Test, Title 22, Section 66261.126 Appendix 2 of the California Administrative Code, May 1991.

Laboratory Certifications

State	Agency	Certification #	
Alabama	ADEM	40830	
California	CADOH	1178	
Colorado	CODOH	OH113	
Delaware	DEHSS	OH113	
Kansas	KSDHE	E-202 & E-1173	
Louisiana	LADOHH	92-10	
Maryland	MDDHMH	210	
Massachusetts	MADEP	M-OH113	
New Jersey	NJDEPE	74603	
New York	NYDOH	10712	
North Carolina	NCDEM	392	
Ohio	OHEPA	OH113	
Oklahoma	OKDEQ	9216	
Pennsylvania	PADER	68-450	
South Carolina	SCDEHNR	92002	
Tennessee	TNDOH/TNDEC	2978	
Virginia	VADGS	00011	
Washington	WADOE	C154	
Wisconsin	WIDNR	999037160	

Validated by:

0	US Army Corps of Engineers	Chemical Analysis in Various Matrices
A	oprovals:	
0	Chemical Waste Management	Waste Characterization Analysis
0	Envirosafe	Waste Characterization Analysis
0	USDA	Permit for Importing Soils
0	Florida DEP	Quality Assurance Plan #930034G
0	Naval Facilities Engineering Service Center	Chemical Analysis in Various Matrices

REPORT KEY

mg/kg = milligram per kilogram (ppm)

Mg/m³ = milligram per cubic meter

ug/kg = microgram per kilogram (ppb)

mg/L = milligram per liter (ppm)

ug/L = microgram per liter (ppb)

mg/W = milligram per wipe

ug/W = microgram per wipe

mg/SMP = milligram per sample

ug/SMP = microgram per sample (Tedlar Bag)

ug/smp = microgram per sample um/cm = microMho per centimeter

pCi/I = picocurie per liter

gm/cc = grams per cubic centimeter

ppm = parts per million ppb = parts per billion

ND = Not detected at or above stated detection limit

< = less than
> = greater than

% = percent

BTU/lb = British Thermal Units per pound

Deg. C = Degrees Celsius n/a = not applicable

Unk = unknown

std = result is relative to standard pH units

CV = Conventionals

IR = Infrared Spectrophotometric

GC = Gas Chromatograph Instrument

GC/MS = Gas Chromatography/Mass Spectrometer Instrument

GRO = Gasoline Range Organics
DRO = Diesel Range Organics

PCB = Polychlorinated Biphenyls (PCBs)

EP TOX = Extraction Procedure Toxicity

TCLP = Toxicity Characteristic Leaching Procedure

RCRA = Resource Conservation and Recovery Act

SOW = Statement of Work

QUALITY ASSURANCE DATA

RCRA TOTAL METALS ANALYSIS, (ME50)

Compounds	Blar Resul mg/k	lts Spik Reco	k Unspiked e Sample v Results mg/kg	Matrix Spike Recov	Relative Percent Diff	Number
Arsenic Barium Cadmium Chromium Lead		ND 84 ND 90 ND 80 ND 83 ND 83	7.32	86	1 1 2 1 9	Q2M5858 Q2M5858 Q2M5858 Q2M5858 Q2M5858
Mercury Selenium Silver		ND 92 ND 87 ND 66	ND	81 90 81	9 1 6	Q2G5868 Q2M5858 Q2M5858

APPENDIX D CHAIN-OF-CUSTODY RECORD(S)

corporation

No. 107747 O.H. MATERIALS CORP. P.O. BOX 551 FINDLAY, OH 45839-0551 419-423-3526 PROJECT NAME PROJECT LOCATION DRUCE ANALYSIS DESIRED A year INDICATE NUMBER PROJECT CONTACT PROJECT TELEPHONE NO Quintzu SEPARATE 16208 508/772-2019 Mike CONTAINERS) CLIENT'S REPRESENTATIVE PROJECT MANAGER/SUPERVISOR LISALE im Colenza COMP GRAB SAMPLE NUMBER SAMPLE DESCRIPTION (INCLUDE MATRIX AND POINT OF SAMPLE) TIME DATE REMARKS EX SA 56-12.15 clock of clay 1150 2 94 EXSASL-1205 2 2 1230 1253 EXSA56 1253 2 DUPC 10 Temp blank included 4°C Jdzy TAT REMARKS TRANSFER ITEM TRANSFERS TRANSFERS RELINQUISHED BY ACCEPTED BY DATE TIME NUMBER 12.5 Fed Ex A. - 6.11 2989315940 1900 nBlea 2 3 SAMPLER'S SIGNATURE -MBlen

Appendix F Transportation & Disposal Documentation

- Soil
- Demolition Debris
- Asbestos
- Asphalt/Concrete

serie ocharanent at enenammentar Lintarnon Bureau of Waste Prevention

2-0662

Material Shipping Record & Log

Tracking Number

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under

4PORTANT:
is form is NOT
be used for the
sipment of
mediation
actes subject to
anagement
ider section 310
UR 40.0035 of
· Massachu-
atts Contingency
an nor is it to be
sed in lieu of a
vardous waste
anifest for

wardous waste recyclable atenais subject the Massachuats Hazardous aste Regulaons 310 CMR 1.000.

l portion of Main Post 01433 Zoccos Lional tracking documents associated with this it:
l portion of Main Post 01433 Zo code tional tracking documents associated with this
01433 Zo code Lional tracking documents associated with this
01433 Zo code Lional tracking documents associated with this
01433 Zo code tional tracking documents associated with this
Zo code Lional tracking documents associated with this
tional tracking documents associated with this
집 선물에 가는 이렇게 가셨다면서 하면 가지를 가지 않는데 되었다면 되었다. 어머니는 이번 사람이 되었다면 되었다면 하다.
nt:
Environmental Officer
211/21011110111011
01433
Zip cook

CINTON

I discrete number and exercises

(508) 796-3114

No acode

Bureau of Waste Prevention

2-0667-5456

Material Shipping Record & Log

Tracking Number

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

1	Transporter/Common	Carrier Information	1
200		A6111A1 1111A1 111A1	

Hazardous existe ficense number (1 applicable)	2.00
/	Licensery state (if applicable)
/ Date	
MA	01.462
See	01462 Zip code
iny.	
s - Building 202	
BRAC Environm	ental Officer
Dite	
	341 ST
_	
	•
	*
Type of contamination:	•
≥ □ gasoline □ di	sselfueib∑ 42 oil □ 44 oil
	sselfuel by 12 oil □ 14 oil oil □ Kerosene □ jerfue
≥ □ gasoline □ di	sselfuel By 1/2 oil □ 1/4 oil oil □ Kerosene □ jerfue
e gasoline die / #6 oil waste b. Debris:	sselfuel (12 oil 14 oil oil 14 oil oil 15 oil 16 oil oil 16 oil
e gasoline die / #6 oil waste b. Debris:	oil □ Keròsene □ jettue
1	BRAC Environm The Fort Devens, MA 0 Size Zocc fill/disposal thermal pro-

Massachuserts Department of Environmental Protection Bureau of Waste Prevention

2-0667-5456

Material Shipping Record & Log

racking Number

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

section 310 CMR 40.0035 nor manifesting under 31	10 CMR 30.000
Description of Material (cont.)	
4. Constituents of concern (check all that apply):	7. Estimated volume of materials:
MAS C CO ME Cr TO PE C Hg C Na C PC8s C HVOCs C PATH C VOCs C PAHS C BNAs	782 cubic yards
HVOCS PATH VOCE PAHS BNAS	200.700

BTEX, Bacium

5. Analyses performed (check all that apply):

製 As 図 Cd 図 Cr 図 Pb 図 Hg 図 Na 図 PC8s □ HVOCs □ PATH 図 VOCs □ PAHs 図 BNAs 図 TPH 図 TCLP (inorganic) 図 TCLP (organic) □ Other

Paticles BTEX, RCRI Connetestics

6 Screening performed

CONTRACT

Libra _ (Red

782 cubic	yards
Cook Yards	
1172.5 tons	
7.	
Other	

8. Contaminant source (check one/specify):

Transportati	on accident 🗆	usi 🗷 other	
forme-	1000 callen	No 2 Food oil	VST location
describe	7		

Indicate which waste characterization support documentation is attached

☐ site history information.
☐ sampling and analytical methods/procedure

∑ laboratory data ☐ field screening data

If supporting documentation is not appended, provide an attachment stating the date and in connection with what document such information was previously submitted to the facility.

Qualified Environmental Professional Opinion

T.S. Alving & Associates

Earle of organization

Todd Alving Licensed Site Professional

Page of professional

(508) 435-3679

Telephone number and edension

I have personally examined and am familiar with the information contained on and submitted with this form. Based on this information, it is my opinion that the testing and assessment actions undertaken were adequate to characterize the waste, and that the facility or location can accept wastes with the characteristics described in this submittal. I am aware that significant penalties including, but not limited to, possible fines and imprisonment may result if I willfully submit information which I know to be false, inaccurate, or materially incomplete."

Storer 10.70.95

10.20.95

Learner number:

Seal TODD

S.

ALVING
No. 4025

SITE PROSES

Sureau of Waste Prevention

12-0667-5456

Material Shipping Record & Log

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

Harris (print)

H Certification of Generator

I certify under penalties of law that I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this certification, and that, based on my inquiry of those individuals immediately responsible for obtaining the information contained herein is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties, including, but not limited to, possible fines and imprisonment, for willfully submitting false, inaccurate, or incomplete information."

0	i i			/		
	amen	0	4	ha	4	_
Strong	1/24/	96				
0==						

Acknowledgment of Receipt by Receiving Facility

U.S. Army - Fort Devens - Bldg 202

Receiving Facility

James C. Chambers

Augrestical e (print)

BRAC Environmental Officer

Ope

Page 4 of 5

ke additional ies of this e as necesBureau of Waste Prevention

2-0667-5456

Material Shipping Record & Log

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40,0035 nor manifesting under 310 CMR 30,000

Load Information	
040,4:269	LOAD 1: 270
Violeta	
A ACIO	7
torianum di trasposorii	There A Estan
oching tadily	AMOUNT BOOK CELLA, SOIL Storage
10:23:95	10 23.95
to acted	One reprined
0557	0328
inu nizaned	The Actived
10.23.95	10-23-95
ale of stitument	Dire of stromust
ine of shamen	Time of shament
MA 32685	MA 32588
nual racor mas sixon	Inco/Incorregion
MA 47499	MA 27020
wingstator	fraue registration
69,230 lbs. 34.68 ton	60,510 lb. 30 25 ton
OAD (27 (4040 e272
DEAL	1 along
Soruna d bassore	Storanua di conserve
B. 202 Soil Storage Arca, CellA	B. 202 Soil Storage Area, Cell
Receiving facility	Ascenting basin
10.23 95	10.23.95
Dire received	Date received
0900	0907
Time received	Time received
10.23.95	10.23.95
Diee of stripment	Date of shipman
Time of shipment	Time of shipmer
MA B44609	MA E40038
fruct/fractor registration	Truck/Tractor registration
MA 21421	MA 12363
Trailer migratiation	Trave registration
55,060 lbs. / 27.53 ton	57,800 lbs. 1 28.90 ton
Load da (auto, parastors)	Lord star (curic prosutors)

K Log Sheet Volume Information

Paga 1 01 10

(משובים משום (משום משום (משום

121.32 ton 242,650 lb.

Total carted bread and this page (cubic partitions)

ike additional pies of this ge as neces-

ry.

Bureau of waste Prevention

2-0667-5456 Tracking Number

Material Shipping Record & Log

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

4	2.4-
L	140 1: 2 +3
X	Wal loger
12	praure of transports
	3 202 Soil Storage CellA
	cerning Lacility
	10-23.95
D	R ricared
T.	0909
100	0.23.95
D	e of shipment
Th	ne di givarieni
1	MA C34867
In	callical residen
	MA10207
(r.	TC III
-	59,160 lb / 29.88 ton
Lo	ec a.e (audic years/ors)
-1	010 1275
Ţ	TILA but has
2	Val Jager
1	pinns d trazans
	3 202 So:1 Storage Array, Cell
	10:23:95
	as ucused
	0938
	ine received.
	10.23.95
	are of stronger
	line of shioment
	MA C34867
	nut/nutrinoprinter
	MA 10207
1	rate registration
-	60,780 lbs. / 30.39 ton

	~ = 1
LOAD	1:274
\vee	Ma (1/12
Chrone	d françoisi
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Receiving	202 Soil Storage Area Co
	. 23.95
Oser record	wd .
09	130
Term recon	ned .
10	.23.95
Dee of sh	lanet
Time of at	Nomani .
MA	E40038
	city videostation
	712363
Train reg	ISTATO:
62	740 lbs. 131.37 ton
ord size	lade prators
LOAD	1:276 M
V	
1	
	of sugre
	2002 CellA, Soil Story Area
Recent no	
10	1395
Date race	med
Firme reco	z (red
10	-23.95
One of s	
Dame of	and the same of th
	A 22685
	EDD regerator
101-10	+ 35283
-	3.33

Log Sheet Volume Information

252,520 lbs	1 126.26 ton
Total whome this page (cubic parechars)	
242,650 lb	121.32 ton
(ממן בחושל מישול (מבאר מישולים)	TENNER DE
495,170 lbs/	247,58 ton
Total carried broad and this page (auto parts	(Ecc)

Page 2 at 10

Lord da (aux practors)

de:

ry.

ake additional pies of this ge as necesBureau of Waste Prevenuon

2-0667- SAS6
Tracking Number

Material Shipping Record & Log

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000 © 2417

Load Information

	178
LOAD 1: 277	10401:278
X M. Cheller	X Babert A Eaton
Signature di transporter	Signature of barisporter
B 202 Soil Storage Arra, Call	B. 202 Soil Storage Area, Cell &
Receiving Lacilly	Parametring tacility
10 23 95	10.23.95
Date received	Date received
0954	0957
Firm received	Time received
10.23.95	10.23.95
Date of structural	Over of structures
Time of snigment	Time of shipment
MA EYOC33	MA 32588
InauTraca residen	Incollector repairment
MA 12363	MA 27020
Iraur nostrann	In an mostrator
63 720 lbs. / 31.86 tens	54,510 lbs. 1 27.25 ton
Load sur Janoc prosultors	Load size (audic press/ors)
LOAD 1: 279 19N	LOAD 1: 280 Jas
Somme of trasporer	Sprann d trascorer
B. 202 Sal Stronge Area, CellA	B 202 Soil Storage Arra, CeilA
	(1) The same of th
10 - 23 - 9 5 Date recurred	10 · 23 · 9 5
	1007
I C C C	Time received
Ore of strategy	10.23.95 Does of strictment
Time of shortent	Date of stratums
MA BY4609 Indulator reportation	MAC34867 Inac/race reportator
MAZI4ZI	MA 10207
57, 340 lbs / 29.92 ton	62,440 lb. 31.22 ton
Load star (cuox parastors)	Load dia (audic particular)

Log Sheet Volume Information

238,510 lb	1119,25
Total volume his page (case partitions)	
495 170 lbs. 1	247 5% tons
וממו בחושו מיצול (ממנ מינו מינו	1
733 680 165. 1	366.83 ton
Total carted bread and the page (case par	tts-fors)

Page 3 of 16

ike additional pies of this

Je as neces-

γ.

Bureau of Waste Prevention

2-0667-5456 Tracking Number

Material Shipping Record & Log

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000 B. 2417

7	Load	Informa	tion

LOAD 1: 231 Recently Ledery 10.23 One received 1015 Direct received 10-23 Date of striament Time of stroment MA 22685 ותמלותבם הקבדונים MA 47499 Traini registration 60,180 lb1 Load siz (audic prositors) LOAD 1: Sonature of transporter Receiving today 10 23.95 ORE PERIOD 1027 Firm received 10-23 95 Date of STADTION Time of shipment 7=40038 MACS Inct/Incom registration MA telet 12BG3 Trailer registration 65,740 lbs. 32.87 tons Load stat (cubic parectors)

LAQ	11:252 AI LIC-	1
	Robert A Ent	on
bus	n d bassporer	_
	202 Sail Storage Area, Ce	NA
	no badity	
	.23.95	
76	consid	-
· ·	0 24	_
	23.95	
	States	_
-	NALL TO	
2	i shonari	-
	A32588	-
	Tractor registration	
	<u>A</u>	
	mostato:	
	9,910 26. 29.95	-
and 1	te and parton	
	- 2 : 3 X.1	
LOA	p/1: 234	
X	17001	
	URN	-
12.5	nun d trassore!	_
	202 Sc. 1 Storage Arca, Coll	14
	ang bedity	
	0.23.95	
-	nomed	
1	030	
Time	received	
1	0.23.95	
	d syamen	
Done	d stimut	
n	4 = 24095 4 = 4095	
	Anor morraton	_
,,,	nA61631	

Log Sheet Volume Information

241,250 Total volume this page (cubic partitions) 733 680 lbs 366 \$3 ton

Page 4 of 10

Lord de (alac passions)

ce additional ies of this e as neces-

Bureau of Waste Prevention

2-0667-5456 Tracking Number

Material Shipping Record & Log

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000 B. 2417

Load Information

9AO 0: 385	LOAD 1: 2-8/6
May Frozen	X Dell
Sprann d tamporei	Sprane diteresione
B. 202 Soil Storage Arou, (CI)A	B. Doz Soil Storage Aray Cell
	10.23-95
10-23-95.	One received
1036	
Time received	Three excellent
10.23.95	10-23.95
Dale of shorteni	One of stripment
Time of shloment	Time of shigment
MAC34867	MA 22685
Incollect resistan	Incollinator registration
MA10207	MA 47499
Travel registration	fra er registration
64,640 lb 132-32 ton	61,940 lbs. 1 3097 ton
Load size (audic naras/ors)	(and size (asket range flore)
Schools of Calors Schools of Calors Schools of Calors Receiving techny 10.23.95 Othe received	Scrawing definitions 1 B. 202 Soil 3 to range Area, Cell 1 Recording tables 10.23.95 Date records
1020	1056
Time received	Time received
10-23-95	10.23.95
One of stromer	Date of stripment
Time of shipmen	Time of sharmers
MA 32588	MAEY0038
Truck/ ractor registration	Inuc/Inucar reportation
MA 27020	MA 12363
Trailer registration	Fraler registration
(e1, 530 lbs. 130-76 ton	62,320 lbs. / 31.16 ton
Load #3 (Quok protetors)	Lord dar (auto prosstore)

Log Sheet Volume Information

[ספו כמדושל מרשים וחל מוג מסף (מומיל מותבולמים)

250,430 lbs.	/125.21 ton
Total volume this page (cost percents)	1
974,930 lb. 1	487,45 ton
ומו שווא מיים (מבה איים מו	
1,225,360 lis	1 612.68

Paga 5 of 10

ake additional spies of this spe as neces-

Bureau of Waste Prevention

2-0667-5456

Material Shipping Record & Log

Tracking Number

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000 B. 2417

Load Information

Signature of transporter (B) 202 Soil Storage Are, (C) Percenting ladily 10.23.95 Dee a stransmi MAELY09 Insulination masterion MA (C) (C) 3.1 Insulination proservos LOAD/1:291 Socialist a transporter B. 204 Soil Storage Area, Cell A Receiving ladily 10.23.95 Dee a stransmi Inne assumed Three distances Three distances MA 22635 Inculination repartmen MA 22635 Inculination repartmen MAY 1499 Insulination repartmen To 2,780 Llos. 136.39 to	LOAD #	HAN
Personal LC - 23 - 95 Der nooned 10 - 23 - 95 Der a swamen The of swamen MA EL + 09 Insul mostrator 33 7 + 0 lbs 31e - 37 + town Coal see laudic parastors) LOAD/1: 29 1 Sopranar a traspoper B. 20 50.1 3 towneys Area, Cell A Receiving tablity 10 - 23 - 95 Der a swamen MA 22635 Insul received MA 22635 Insul received MA 22635 Insul received MA 27499 Insile mostrator MA 47499 Insile mostrator	Signature o	tasporei
Personal LC - 23 - 95 Der nooned 10 - 23 - 95 Der a swamen The of swamen MA EL + 09 Insul mostrator 33 7 + 0 lbs 31e - 37 + town Coal see laudic parastors) LOAD/1: 29 1 Sopranar a traspoper B. 20 50.1 3 towneys Area, Cell A Receiving tablity 10 - 23 - 95 Der a swamen MA 22635 Insul received MA 22635 Insul received MA 22635 Insul received MA 27499 Insile mostrator MA 47499 Insile mostrator	32	02 Soil Storage Are, C
Die neural 1100 The neural 10.23.95 Die a shamen MAELTO9 Incutrator nostrator MA 61631 Traver nostrator 10.291 Sopranse a traspope: B. 207 So.1 3 torregue Area, Cell A. Received 10.23.95 Dire neural Incutrator nostrator MA 22635 Incutrator nostrator MA 17499 Incite nostrator MA 47499 Incite nostrator		
Time received 10.23.95 Date a stranger MA ELY 09 Incollect repostation MA GIGS 1 Insular repostation 23.740 lbs (36.87 town) LOAD 1: 29 1 Socialist a transper B. 20/ So.1 3 towns, Area, Cell A Receiving table 10.23-95 Date received Time received Time a stranger MA 22635 Tracel received MA 22635 Tracel received MA 47499 Trailer repostation MA 47499 Trailer repostation	10	.23.95
Time received 10.23.95 Date a stranger MA ELY 09 Incollect repostation MA GIGS 1 Insular repostation 23.740 lbs (36.87 town) LOAD 1: 29 1 Socialist a transper B. 20/ So.1 3 towns, Area, Cell A Receiving table 10.23-95 Date received Time received Time a stranger MA 22635 Tracel received MA 22635 Tracel received MA 47499 Trailer repostation MA 47499 Trailer repostation	Des recen	d
Time of sharmon Time of sharmon MA ELY 09 Incollector nostroon MA 61631 Insul nopotation Sopianas of transport B. 204 So.1 3 to remy Area, Cell A Received Time received I O · 23 · 95 Date of sharmon MA 22635 Incollector nopotation MA 47499 Insul nopotation MA 47499 Insul nopotation	110	
Time of stroment MAELY 09 Incollination massesson MA 61631 Insul massesson The local see Iclose percentage B. 204 So. 1 3 to reage Arrea, Cell A. Received Time massesson Time massesson Time massesson MA 22635 Incollination massesson MA 47499 Trailer massesson MA 47499 Trailer massesson		30 pt 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
Time of shorment MAELY 09 INDUTATION MODIFIED TO BE LODGE PROTECTORS) LOAD 1: 29 1 Socialist of transport B. 204 So. 1 Stormage Arrea, Cell A. Received Time received Time received Time of shorment MA 22635 Time/Tractor reportation MAY 1499 Trailer reportation MAY 1499 Trailer reportation	10.	23.95
MAELY 095 INDUITED MOSTERON MA GIVE'S 1 ITEMIN MOSTERON 3, 740 lbs (36.37 ton) Sopranse a crassope: B. 204 So. 1 Storage Area, Cell A Accoming table 10.23-95 Dee a strongen MA 22635 Incall accompanient MA 22635 Incall accompanient MA 47499 Italian mosteron	Date of sixt	meni
Incollector mostreson MA GIGS 1 Insul mostreson 3 740 lbs (36.87 ton) Coel see (auce prostors) LOAD/1: 291 Sopinate at transper B. 20/ So.1 3 tonery. Area, Cell A Receiving table 10.23-95 Dire received Time received MA 22635 Incollector mostreson MA 47499 Trailer mostreson	Time of she	ynen/
Incollector mostreson MA GIGS 1 Insul mostreson 3 740 lbs (36.87 ton) Coel see (auce prostors) LOAD/1: 291 Sopinate at transper B. 20/ So.1 3 tonery. Area, Cell A Receiving table 10.23-95 Dire received Time received MA 22635 Incollector mostreson MA 47499 Trailer mostreson	MA	E24095
The most and South of 36.37 tong Control of South of Sout	_	
The most and South of 36.37 tong Control of South of Sout	MA	61631
Socialists of consequences Avea, Cell A Receiving tactify 10.23-95 Dire received 10.23-95 Dire of shortent MA 22635 Inconfractor repostration MA 47499 Institute repostration		
Socialists of consequences Avea, Cell A Receiving tactify 10.23-95 Dire received 10.23-95 Dire of shortent MA 22635 Inconfractor repostration MA 47499 Institute repostration	73	740 lb 13637 ton
Springs of carsonses B. 204 So.1 Shoreuge Area, Cell A Receiving ladyly 10.23-95 Dire neceived 10.23-95 Dire a stronger MA 22635 Inconfractor repostation MA 47499 Insiler registration	Lord sa le	
Time received Time received 10.23.95 Date of structured MA 22635 Truck/Tractor repostation MA 47499 Trailler repostation	B. 2	of So. 1 Storage Area, Cell
Dire received I O · 23 · 9 S Dire al stroment MA 22635 Inucul received MA 47499 Irailler registration		
Time received 10.23.95 Dire al stroment MA 22635 Incoll racco reported on MA 47499 Trailler reportation		
IO.23.95 Date of stratters Three of stratters MA 22635 Inconfractor repostration MA 47499 Institut repostration	DITE MEN	ad
Dire of stroment Time of stroment MA 22635 Industriación repostation MA 47499 Indian repostation	Time race	red
Dire of stroment Time of stroment MA 22635 Industriación repostation MA 47499 Indian repostation	10.	23.95
MA 22635 Incollact reported on MA 47499 Indian reported on		
MA 22635 Incollact reported on MA 47499 Indian reported on	8	
Trust reported on MAY7499 Trailer reporter on		
Trust reported on MAY7499 Trailer reporter on	MA	22635
Trailer registration		
Trailer registration	MA	Y7499
72780 0m 131 30 L	Trailer reg	57301
16,130 303.1 30 37 47		700 1 1 2 20 1
		,780 lbs. 1 36.39 to

LOAD 1: 290	hogen
V 1/116	1)
Storarum of transporter	
B 202 501	Storage Area, Cell
Receiving tadility	SHOULD THE COLD
10.23.95	
10.23.95 One record	
1104	
Time recoved	
10.23-95 Dee d shared	
Case of structural	
Time of shipment	
MAC 34567	-
Involution reportation	
MA 10207	000
Lus an understation	
62,640 26	1/31.32 ton.
Load size (alone remains)	
Sound tossore: B 202 Sc.15	A Eston
Recording totally	TO AGE
10-23-95	
Date received	-
1121	
Time received	
10.23.95	
Dee of stromen	
Time of shipment	
MA 32558	
[nex/fractor reportation	
MA 270 20	
Trailer registration	

Log Sheet Volume Information

2.77,410 lb	1 130.70 Jon
fool where his page (and percuros)	
1,225,360 lb.	612.65 ton
logicated breatlance anti-tost	

Page 6 at 10

(ממל שב (ממל משב למים)

logication broad and the pack (asic fact fact fore)

ta:

the additional piece of this ge as neces-

Bureau of Waste Prevention

Tracking Number

Material Shipping Record & Log

9

Load Information	,
JAD 1: 293 /1 /2	600 1294 A
7/ ///	
Ill state	VAN
Sprawe ditrasporer	Storaleri di transponer
B. 202 Soil Storage Man, CellA	B 202 Soil Storage Area
Pacaming Leality	Assisting tadility
10.23.95	10.23.95
Dise received	Dee received
1123	1125
Time received	Time accepted
10 23.95	10.23.95
Dale of shipment	Dee of shipment
Time of sharrent	Pine of shipmen
MAE40038	MA E24095
nucul ractor mass tream	Inculinator reparation
MA12363	MA 61631
rainr nepstator	Frailer registration
66,180 los 133.09 ton	60,720 lbs. / 30.36 t
and size (autoic personnes)	LONG EN (CLOCK CATE, TOTE)
Sommer de trasporer B 202 Soil Storage Area, Cell A	Sporm of preferring B. 202 Soil Storage Aren Ce
Receiving training	10-23.95
10.23.95 Date incurred	Des normal
1130	1138
Fine received	Time received
10.23.95	10.23.95
One of Stigment	Due of swamers
	Time of shipment
Time of shorterit	Time of sharmer A.1.A. 22685
Three of shorters MAC34867	MA 22685
Time of shorterin MAC3+867 Inconfractor impostration	MA 22685
Time of shorters MAC3+867 Invas/Inactor ingostretion MA10207	MA 22685 Industrian MA 47499
Time of shorterit MAC3+867 Industriation impostration MA10207 Inalier impostration	MA 22685 Inco/Incor reportation MA 47499 Institut reportation
Time of shorters MAC3+867 Invas/Inactor ingostretion MA10207	MA 22685 MA 47499

Log Sheet Volume Information

2.49670 lb	124.83 tons
foot worms the page force parenters!	
1,502,770 lb.	1751.38.tons
Total carried brivard (aubic particulars)	1
1752,440 lbs.	1876.21 tous
fool carried broard and this page (audit part	z-fore)

Paga 7 01 10

ake additional spies of this age as neces-

ury.

Bureau of Waste Prevenuon

(-406 (-11476

Material Shipping Record & Log

Tracking Humber

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000 B. 2417—

Load Information

20.7	1209
LOAD 1:387	MAR 1: 293
There t A Ealon	X (a bm
Sportun di transporti	Sprang of basesons
Α	
B 202 Soil Storage Area (Cel	Ancarring badily
10.23.95	10.23 95
1149	Oper mounted
	Dise reports
First received	
10.23.95	10.23.95
Date of shipment	One of structural
Time of sharment	Time of sharmani
MA 32588	MA BY4609
ma 27020	MAZIYZI
Internoperation	Insur registration
30 65,350 lbs 32.67 ton	
LONG SIR (CADIC PRISADES)	Load site (cook interators)
2.03	
10001299	LOADI-3CC
VIIII VE	X M/d Dana
	100
Sonature of transporer	Spran d prezore
B. 202 Soil Strage Area, Cell A	B ZOZ Soil Storage Area, Cell A
Receiving teathy	Ascaming tability
10.23-95	10.23.95
One received	Case received
1156	1159
Firme received	Time received
10-23-95	10.23.95
Dire of stratest	Dec a states
Fine of sharrent	Time of shipment
MAE40038	MAC34867
Indi/nata negativa	[nac/Incor reported or
MA 12363	MA 10207
	Trains reportation
(07, 480 liss. 33.74 ton	55620 lb 27.81 ton
Load sta (cubic partitions)	Last de Capit come tous

Log Sheet Volume Information

238,410 lbs. /	119.20 ton
Total solume his page (aloc parazions)	
1.752,440 lb	1 576.21 tons
Total cared bread (aboc participas)	
1,990,850 105/	1995.41 ton
[m] mand hand and me (nee	

Page 8 of 10

ake additional pies of this Qe as neces-

ry.

aureau of Waste Prevention

7-0667-5A56 Tracking Number

Material Shipping Record & Log

Blog 2417

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

100			
J	Inad	Informa	· dina
	Luau	IIIIUIIII	шип

LOAD 0:301 //	LOAD 1: 302
to be	x Ash + A Saton
Sprane difference	Signature of transporter
1812, 202 - Sit Strang Area, Cella	Blde 202- Soil Staging Agen Celly
Ascaming Leastry	Ascening Jacilly
10/23/95	10/23/93
1300	1306
Firm regered	The repried
10/23/95	10/23/95
Cale of sharmani	Diese of structures
line of shamen	Time of shipment
M/ 22635	MA32588
nation reserved	Inculnate registration
MA 47499	MA 27020
THE PROPERTY.	Total and
LOSS SE (CLOCK PROSPOS)	59030 llu/29.52 tons
(oad siz (ciok proshors)	Coast size (custor percurions)
LOAD 1: 303	LOAD 4: 304
CUAU V. 200	
× M Colle	X ZIAN
Square diseasons	Spran a practice
Bida 202 - Soil Staging Area Cell A	Bly 202-Sil Staging Area, Cell A
10/23/15	10/23/95
Date received	Date received
130%	_131
Fitte received	Time received
10/23/95	10/23/95
Dare of stripment	Case of SNamen
Time of shipment	Time of striamers
MA E40038	MA 844609
Truck/Tractor registration	Indu/nata repartation
MA 12363	MA 21421
5040 lls/28.02 tons	53480 lly/36.74 tora
Lord star (cubic partitions)	Lord stal (cook prost/ors)

K	Log Sheet Volume Information
	231750 Us/ 115.88 tens
Too	1990 350 Ups/ 995.41 tong.
	2020/00/1/ 1111 29

Paga 9 at 10

Note:

sary.

Make additional copies of this page as neces-

Bureau of Waste Prevention

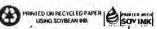
2-0667-5156

Material Shipping Record & Log

Tracking Number

Blug 2417

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000


Load Information	
DAD 4: 305 /	LOAD 0: 306
Mal From	x for 3
loratin d brisponer	Storage distribution Sex Staging Asea, Ce
Bldg 202- Soil Staging Area, Cell A	Area ala Ser Stagina Asea, Ce
10/23/95	10/23/95
we received	One received 3.3.7
B20	Three received,
10/23/95	10/23/95
ae of shlament	Date of shigment
ine of snipment	Time of shorment
MA C34567	MA 23685
MA 10207	MA 47499
THE MOSTOW	Traver mosstation
56100 lls/2805 tens	66440 Us/ 3322 tons
Del S.E. (CUDIC PROS.ADIS)	Load size (auto / prositions)
in hi	
.OAD 1: 367 MM	LOAD #:
X	
Commend transporer	Signature of transporter
Aver 202 Deil Staring Area Cell A	Ascairing too liy
	-1-
Dire received	Date received
Ome received	Time received
Dire of snigment	Diet of sharrent
Time of shipment	Time of shipment
Fructs/Tractor impostration	Inics/Iracor reportation
Trailer registration	Trailer registration
oad sta (cubic yards.ford)	Load size (cubic yards/hors)
· ·	
Log Sheet Volume Information	
122540 lls/61.27 tons	Paga KO of 10
oal volume this page (avoic perta/ors) . 1111 29	1.4. <u>0</u> 11 <u>10</u>

ATTENTION SHIPPERS!

FREIGHT CHARGES ARE PREPAID ON THIS BILL OF LADING UNLESS MARKED COLLECT.

			A	OT NEGOTIABLE		Shippe	er No. er No.		
Page	of /	-	Waste Management		(SCAC)		Date	10/11	9/94
On Collect on Delivery shipm TO: Consignee	***		consignee's name or as otherwise provided in tiem 430. Sec. 1		SACE				
Street 127 3	/	7 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			lake Geonge : vens		A	Zip Code,	01437
City Westmin	isten	State WH	Zip Code 11473	21 hr Europeney C					
Roule	6 4 8 9 3		810g 2417 5A 56:	54.49 Blag 36	02		Vehicle Numbe		
No of Units & Container Type	IIM	Identification	BASIC DESCRIPTION Proper Shipping Name, Hazard Class, Number (UN or NA), Packing Group, per 172.10	1, 172.202, 172.203	TOTAL QUANTITY (Weight, Volume, Gallons, etc.)	(Subje	ect to	RATE	CHARGES (For Carner Use Only)
1 30yd Nodoff		General	Construction Debais						
PL	ACAR	DS TENDE	RED:YES NO	COD TO: ADDRESS					
Note — Where the ratio is dependent on value, shippers are required to state specifically in writing the agreed or declared value of the property. The agreed or declared value of the property. The agreed or declared value of the property is hereby specifically stated by the shipper to be not exceeding. It hereby declared that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked and labelled, and are in all respects in proper condition for transport by Ental Englance in the state of the property of the property is thereby declared that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked and labelled, and are in all respects in proper condition for transport by Ental Englance in the property of the property is hereby declared that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked and labelled. Bright in the property is hereby declared that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked and labelled. Bright in the property is hereby declared that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked and labelled. Bright in the property is the fully and accurately described above by proper shipping name and are classified, packed, marked and labelled. Bright in the property is the full that the contents of the full that the conten		Amt: \$ COLLECT []		1)					
		consignee without recourse on the consignor, the consignor shall sign the changes: \$ CHARGES: \$ CHARGES: \$ FREIGHT CHARGES trained shall not make delivery of this stripment without payment of treight and all other tawful charges.			ARGES eck box if charges are to be collect				
this Bill condition which s corpora deliver	of Lading the on of contents and carrier (the stion in posse y at said desti-	property described above of packages unknown) in word carner being underst ssion of the property under nation if on its route other	lawfully filed. Tariffs in effect on the date of the ossue of in apparent good order, except as united (confinits and in apparent and fleshind as indicated abuse sold broughout this contract tar maning any justism or is the contract) agrees to carry to its usual place of was to deliver to another carrier on the route to Said it of all or any of, said property over all or any portion of	governos e hashina governos e hashinalio Shippe harity e o	o and as fo each party, at any time of differencial stall to subject to all in our flee date of slopoural fless that be each forms with all the count for each forms and combine	he hill of lading that of lading	terns and co	andmuns in the	e ir

SHIPPER	45 Army Coap of ENGINOUS	CARRIER
	Timothy of Polon	PER TINE

ATTENTION SHIPPERS! FREIGHT CHARGES ARE PREPAID ON THIS BILL OF LADING UNLESS MARKED COLLECT.

STRAIGHT BILL OF LADING Shipper No. ORIGINAL-NOT NEGOTIABLE Washe Manayment or Central Mossachusetts 10/19/94 On Collect on Delivery shormerts, the letters, COO, must appear before consignee a name or as otherwise provided in firm 430. Sec. 1. FROM: Shipper USACE TO: Consignee fitch bung Candfill Street 3613 Cake George ST Zip Code 0/432 Westminster State MA Zip Code 01 473 21 by Emergency Contact fel Ha Vehicle BIRG 2417 SH 156 Number Route BASIC DESCRIPTION WEIGHT TOTAL QUANTITY CHARGES No. of Units IIM Proper Shipping Name, Hazard Class, (Weight, Volume, (Subject to (For Carrier & Container Type Identification Number (UN or NA), Packing Group, per 172.101, 172.202, 172.203 Correction Use Outy) Gallons, atc.) 1 3040 General Onstanction bebais ROROFF REMIT PLACARDS TENDERED:YES ☐NO ☐ COD TO: ADDRESS COD FEE Note - Where the rate is dependent on value, shippers are I hereby declars that the contents of this consignment are COD PREPAID 11 required to state specifically in writing the agreed or declared fully and accurately described above by proper shipping Amt: \$ COLLECT [] value of the property name and are classified, packed, marked and labeled and The agreed or declared value of the property is hereby are in all respects in proper condition for transport by . Reli . Subject to Section 7 of the conditions, if this shipment is in be delivered to the TOTAL specifically stated by the shipper to be not exceeding Highway Water (DELETE NON APPLICABLE MODE OF risignee without recourse on the consignor. The consignor shall sign the CHARGES: TRANSPORTI according to applicable international and Mowing statement Honal governmental regulations The carrier shall not make delivery of this shipment without payment of FREIGHT CHARGES eight and all other lawful charges I HEHIRLI PREPAID accept when box M right is checked Signature RECEIVED subject to the classifications and hawfully first facility in other contine date of the cone of suctionals finale amenion and as foreactionally all any fine interest orbit after any said property. Bistosecy carvers to be performed to enumber shall be subject to all for full of Liding leans and conditions in the

this Billiul Lading. The purperty described above prappared good order except as mile) (continues and continue of continues of packages unknown), reacked it on signed, and destined its indicated above. which said carrier (the word carrier being understood throughout this contract as nie annie principal in corporation in possession of the property under the contract) agrees to many to also used the corporation in possession of the property under the contract). delivery at said destination if on its route, otherwise in deliver to arriving currier on the route to said destination. If is mutually agreed as to each carrier of all or any of said property over all or any portion of

(preparent) lassals attorned the dident shipment

Shipper hereby certifies that he is familiar with all the bill of lading ferms and conditions in the governing classifulation and the said terms and comblems are bereby agreed to by the shipper and acceptor for foreself and fire assigns-

SHIPPER US Army Copy of Esteries	CARRIER
PER Trioty flower	PER DIJSE

TO:

AFTENTION SHIPPERS!

Heabure landful

State TMA

Page ____ of ____

	1	
1	1	٦
L	4	ı

FREIGHT CHARGES ARE PREPAID ON THIS BILL UF LADING UNLESS MARKED COLLECT. STRAIGHT BILL OF LADING Shipper No. ORIGINAL-NOT NEGOTIABLE Carrier No. Classe Mankeyant or central Mossachusetts (SCAC) FROM: USACE Shipper 2613 Lake George 57 State WIA Zip Code 0/432 Zip Code 6/473 21 for Emergency (out of fel the

	B1092417 SN-54				
IIM	BASIC DESCRIPTION Proper Shipping Name, Hezard Class, Idenlilication Number (UN or NA), Packing Group, per 172.101, 172.202, 172.203	TOTAL QUANTITY (Weight Volume, Gallons, etc.)	WEIGHT (Subject to Correction)	RATE	CHARGES (For Carner Use Only)
	General Construction Debnis				
-					
				H	
			_		
	IIM	BASIC DESCRIPTION Proper Shipping Name, Hazard Class, Identification Number (UN or NA), Packing Group, per 172.101, 172.202, 172.203	BASIC DESCRIPTION Proper Shipping Name, Hezard Class, Idenlification Number (UN or NA), Packing Group, per 172.101, 172.202, 172.203 TOTAL QUANTITY (Weight, Volume, Gattons, etc.)	BASIC DESCRIPTION Proper Shipping Name, Hazard Class, Idenlification Number (UN or NA), Packing Group, per 172.101, 172.202, 172.203 Number (Weight Volume, Gallons, etc.) TOTAL QUANTITY (Weight Volume, Gallons, etc.) Correction)	BASIC DESCRIPTION Proper Shipping Name, Hazard Class, Identification Number (UN or NA), Packing Group, per 172.101, 172.202, 172.203 TOTAL QUANTITY (Weight, Volume, Gallons, etc.) WEIGHT (Subject to Correction)

PLACARDS TENDERED:YES ☐NO ☐

REMIT COD TO: ADDRESS

Note - Where the rate is dependent on value shippers are required to state specifically in writing the agreed or declared value of the property

The agreed or declared value of the property is hereby specifically stated by the shipper to be not exceeding

per

hereby declare that the contents of this consignment are fully and accurately described above by proper shipping name and are classified packed marked and tabeled and are in all respects in proper condition for transport by E Rall . Highway W Water (DELETE NON APPLICABLE MODE OF TRANSPORT) according to applicable international and na Honel governmental regulations

COD

Amt: \$

Subject to Section 7 of the conditions, if this shipment is to be delivered to the consigner without recourse on the consigner, the consigner shall sign the

The camer shall not make delivery of this shipment reight and all other lawful charges

(Signature of Consignor

COD FEE PREPAID []

TOTAL CHARGES

FREIGHT CHARGES FREIGHT PREPAID except when box at right is checked

RECEIVED, subject to the classifications and fawfully filed, faults in effection the date of the issue of this Bill of Lading, the property described above in apparent good order except as noted (condents and condition of contents of packages unknown), market Torisigned, and destined as indicated above which said carrier (the word carrier being understood throughout this contract as migrating any person of corporation in possession of the property under the contract) agrees to carry to its usual place of delivery at said destination if on its route otherwise to deliver to another carrier on the route to said destination. It is mutually agreed as to each carrier of all or any of said property over all or any portion of

sant made to destination and as to each party of any titre interested in all or any said property. That every service to be performed beneated is stall the subject in all the full of larting terms and conditions in the

governing classification on the date of stopment.

Stopper hereby certifies that he is furnish with all the hill of facing terms and conditions in the governing classifu about and the said ferms and conditions are hereby agreed to by the shipper and accepted for houself and his assigns

SHIPPER 45 Arry Corp of Extender	CARRIER
PER Smintly of Color	PER

Signature

1	A	USING SC
4		

TTENTION SHIPPERS! FREIGHT CHARGES ARE PREPAID ON THIS BILL OF LADING UNLESS MARKED COLLECT.

-	
L	

			STRAIGHT BIL ORIGINAL—NO	T NEGOTIABLE		Shippe			
Page	of		(Name of	carrier)	(SCAC)		Date _	10/2	1/24
TO: Consignee #170	HEUR	c/west	Consignee a name or as otherwise provided in Hern 430, Sec. 1	Street 26,/	SACE P. LAKE G-EC				0143
1.4. 10 / 1		State /17.		21 hr Emergency C		71	7_2	ip Code	
oute			5×56				Vehicle Number		
No.of Units & Container Type	BASIC DESCRIPTION Proper Shipping Name, Hazard Class,				TOTAL QUANTITY (Weight, Volume, Gallons, etc.)	(Subje	ct to	RATE	CHARGES (For Carner Use Only)
Roll-OFF		(TANGE)	ALCONSTITUTED DEL	3R15					
PL	ACARI	S TENDE	RED:YES NO	REMIT COD TO: ADDRESS					
Note Where the rate required to state specific value of the property	ally in writing the	agreed or declared	I hereby declare that the contents of this consequence are tully and accurately described above by proper shipping name and air classified, packed, marked and labeled and	COD FEE PREPAID [] COLLECT [] 5					
The agreed or declared value of the proporty is hereby specifically stated by the shipper to be not exceeding Highway # Water (DELETE NON APPLICABLE MODE OF TRANSPORT) according to applicable international and national governmental regulations.		Subject to Section 7 of the conditions, if this shipment is to be delivered to the consigner without recourse on the consigner shall sign the college without recourse on the consigner, the consigner shall sign the college of the consigner shall sign the consigner shall sign the consigner shall sign the consigner of the consigner shall sign the consigner of the consigner shall sign the consigner of the consigner of the consigner shall sign the consigner of the consigner shall sign the consigner of the consigner					AGES to box of charges are to be		
conduction which a corporal idelicery	of Ladeng the po in of contents of aid corner (the wallian in possess all that destina	operty described above packages unknown) in ordicarrier being understron on of the property under tion if on its route, other	Signature tawfully filed. Tariffs in office tracific date of the examinate an appaisant quarties describes explain and of too death, and and will consequent, and destroys as unfacted allower out throughout their conflicts in meaning any person or as the contract) appress for earry to discovering base of west to individe to another carrier on the could be said or didle on any fixed property over allow any person or or didle on any fixed property over allow any person or	greater to the preferre greatering classific atte Stapper hearty co	Expedient of Consigners as and as for can be party at any time office followers which has subject to all the months of the of Sequence times. That he is further with all the for months of the and terms and conditions a million accounts.	this of lading t of clang t	terms and con	nty that every ndisons in the others in the	

PER

Shipper No.

STRAIGHT BILL OF LADING

•			ORIGINAL—NO			Carrier No.			
Page	of	-	WASTA JIHWAOLBIAS (Name of		(SCAC)	Date	K/21/44		
TO:	CI+BO	/	consignes a name or as otherwise provided in Item 420, Sec. 1	Street 16 13	ACE LAKE GERK ELEVIS				
City Cut EST 11/11	STER	State /17	A Zip Code C/4/73	24 for Emergency Co	mulaet let De	Vehic			
No. of Units & Container Type	нм	Identification	BASIC DESCRIPTION Proper Shipping Name, Hazard Class, Number (UN or NA), Packing Group, per 172.101	, 172.202, 172.203	TOTAL QUANTITY (Weight, Volume, Gallons, etc.)	WEIGHT (Subject to Correction)		CHARGES (For Carner Use Only)	
Poll-0FF (1,1)		CLILL	IL CONSTRUCTION D	EBRIS					
PL	ACAR	DS TENDE	RED:YES NO	REMIT C O D TO: ADDRESS					
Note — Where the rate required to state specific value of the property			I hereby declare that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, pecked, marked and labeled, and	COD Amt: \$			COD FEE: PREPAID [.] COLLECT [] \$		
The agreed or declared value of the property is hereby specifically stated by the shipper to be not exceeding Highway # Weter (DELETE NON APPLICABLE MODE OF HANSPORT) according to a specifically stated by the shipper to be not exceeding Highway # Weter (DELETE NON APPLICABLE MODE OF HANSPORT) according to a specificable international and national governmental regulations 5 per			Subject to Section 7 of the o consigner without recourse following statement. The carrier shall not mak legist and all other tawful of	REIGHT CHARGES PRICEARD Check bus of thinges are bot of the bus of thinges are bus of the bus of th					
this Rati consta- what is corpora- delivery	of Lading the on of contents and carrier the thon or posse y at said desir	property described above of parkages unknown, in words arren being undersi- ission of the property under- nation if on its route, other	lawfully filed, familis an effection the date of the oscillents and in apparent good under except as unless (continues and reached sove-speed, and destained as instituted above one throughout the continue fast measures proper or or the contract) adjects to carry to its count plumer of most to deliver to another carries on the mode to had or of all or any of said property over all or any purison of	service to be perform governing (lasse), also Singles history cor	Significant of Congress manufacture cachigates at any parameter of beneaving subulifiar satigues to all the countries date of significant others that her extraction were all time to or and the spark jeroes and combines on the assupps.	nsied in all or any said pr risk of lading terms and all of lading terms and	operly that ever conditions in the conditions in the	, ,	
HIPPER US	ARM	1 Cons	of ENGINOUS	CARRIER)	2 Ch	el		<u>८</u> ।	

FOR HELP IN CHEMICAL EMERGENCIES INVOLVING SPILL, LEAK, FIRE OR EXPOSURE CALL TOLL-FREE 1-800-424-9300 DAY OR NIGHT

STRAIGHT BILL OF LADING ORIGINAL - NOT NEGOTIABLE				Shipper's	ио.М	0708
CARRIER: FLEET ENVIRONMENTAL SERVICE	S, INC.	SCAC		Carrier's	No	1/14/94
TO: Partyka Resource Management Consignee 645 Shawinigan Drive Street Chicopee, MA 01020 Zip			Devens	orp. of l	Engine	
Route:			and a street	Vehi Num		2,2,3,2
No. 1 Packages Description of Ambles Shipping Ambles Proper Shipping	G NAME)	HAZARO OLASS	Number -	WEIGHT :- (subject to	RATE	LABELS REQUIRED (or exemption)
7cy Non-Friable Asbestos	ı	NONE				
				1		
Remit C.O.D. to: Address: City: State:	Zip:	COD	Amt:	ŝ		C.O.D. FEE: Prepaid Collect \$
NOTE — Where the rate is dependent on value, shippers are required to state ing the agreed or declared value of the property. The agreed or declared value of	specifically in writ-	Subject to Service I of the conditions of the conceptur, the Lenguage male up the following the conceptus which met make distrary of the ship (Segmentus of Conceptus)	ng statement	od to the consigner wobside	7.00	FREIGHT CHARGES PREPAID COLLECT
RECEIVED, subject to the classifications and lawfully filed tariffs in affect on the date packages unknown), marked, consigned, and destined as indicated above which said can contract; agrees to early to its usual place of dollever at said destination, if or its sould, give all or any portion of said route to destination and as to each party at any time inter- ting operating classification on the date of known. Stopper time provides that the said and the best of the best of lading terms and conditions.	uthorwise to deliver to ested in all or any said	ing understood throughout this c smother carrier on the route to t property, that every service to be	performed hereund	any person or corpo mutually agreed as ler shall be subject t	to each car to each car to all the bill	session of the property under the ner of all or any of, said property of feding terms and conditions in
This is to curify that the above named manuals are popularly standard discretized packaged invalued and tripled and are in groper condition for transportation according of the expeditable regulations of the Opportunity of Hamsportation. Per	PLACARDE REQUIRED	>	116		YES DA	IO — FURNISHED BY CARRIER TURE:
SHIPPER: U.S. ARMY (COC OF ENGINEERS	3/	CARRIER: PER:				
DATE: 11-14-94		DATE:				
EMERGENCY RESPONSE						nazards of the material and son with that knowledge

FOR HELP IN CHEMICAL EMERGENCIES INVOLVING SPILL, LEAK, FIRE OR EXPOSURE CALL TOLL-FREE 1-800-424-9300 DAY OR NIGHT

STRAIGHT BILL OF LADING ORIGINAL - NOT NEGOTIABLE				Shipper's	No.N	9 0708
CARRIER: FLEET ENVIRONMENTAL SERVICES, I	NC.	SCAC		Carrier's	No	1/14/94
TO: Partyka Resource Management Consignee 645 Shawinigan Drive Street Chicopee, MA 01020 Zip			Devens	orge St.		Zip 01433
Route:		7717	447404	Vehi Num		
Chipping (I) HAZAHOOUS MATERIALS, PROPER SHIPPING NA	MEI	HAZĀRD CLASS	Wumber	WEIGHT (subject to correction)	, MIE	LABELS REQUIRED Sor exemption
7cy Non-Friable Asbestos	N	ONE		200	P	
Remit C.O.D. to: Address: City: State: Zip:		COD	Amt:	\$		C.O.D. FEE: Prepaid Collect \$
NOTE — Where the rate is dependent on value, shippers are required to state specific ing the agreed or declared value of the property. The agreed or declared value of the property are to be not exceeding.	cally in writ-	Subject to Bartoni P at the conditions of the concision, the subsyme shall upon the fallowing the series shall not make date or at me ships (Signature of Consignar)	physicant of the distance statement and without payment of tre	d he the james need without ghe and all after handel the	receive on the	FREIGHT CHARGES PREPAID COLLECT
RECEIVED, subject to the classifications and fewfully filed fairlis in effect on the date of issue packages unknown; marked consigned and destined as indicated above which said carrier (file contract) gives to fairly to its usual place of delivery of send destination, it on its route, otherw user all or any portion of send round to destination and as to each party of any fine interested in the governing classification on the date of stipment. Shipper nearly carries that he is familiar with all the bill of fading terms and conditions in its assigns.	se to gelines to the most contract to the most contract per most c	ng understood throughout this co- nother Carrier on the route to be upsity, that every service to be t	nitact as meaning and destination it is sectormed hereund	any person or corpo mutually agreed as ar shall be subject t	ell the bill	session of the property under the ries of all or any of, said property of lading serms and conditions in
This is to mindy that the above remind materials are properly standing directions pageaged marked and latered and are in proper combines for transportation according to the exposurable regulations of the Organization of Transportation.	ACAMUS OUIRED	>	PLA SUP		YES ON	IO — FURNISHED BY CARRIER TURE:
SHIPPER: US Army Cour of Francis		CARRIER:	est En	Simboline)	atul,	Somices
PER: 11:14 14		DATE: 11	and I	12/006	de	
EMERGENCY RESPONSE			by a person	with knowledg	e of the l	nazards of the material and

Chicopee Sanitary Landfill Facility SPECIAL WASTE LOG

Assonet,			4	40 m	7 W	1	. 1
			4	100 m	Ü	1 1	
			,	W. 1.			
			-				
Assonet,						4	
	MA 0270	02**	4	(1.78 ·········	4.		
P.O. Box	939						
		_,					
Fleet En					2 (Name, Tit	le. Addres	s & Tele
4					- 3-	-11011011010	
				nd labeled; and, applicable interna			
				e fully and accur			
Operator's Ce	milication (F	TITLEU Name	alu (lile)	(Signature)		1	(11976)
Mirhas		10 nert	And THO	1Signatural	Win	1.16.3	1/. j4 (Date)
m 1/	101	11	1.	11.1	160	11	1 1/ 11/
			2				
				ditional info			
and Type	of Conta	iners: <u>1 a -</u>	ud beix	7. Total	Guantity ()	ds):	1.
Description	of Waste	Disposed:	NON-E	riable Asb	es (US		
154	1						
DED Wester	Region S	tate House M	Vest 438 Di	wight Street, St	crinofield Ma	01103	
Recional Asb	estos Coorc	finator, US E	PA, Pecion	LJFK Federal	Building, So	ston, MA	02203 or
Vame and	Address o	f Respons	ible Agend	cy:			
JIIICUDES SAN	italy callell	ir racinty, ive	- Cumodid 1	Road, Chicope	A. IMM - [-10]	-100-100	_
Connecticut V	alley Sanita	ry Waste Dis	cosal, Inc.,	645 Shawiniga	n Drive, Chic	opee, MA	01020
Telephone					*		
Waste Dispo	osal Site	Name, Maili	ing Addres	ss, Physical		. A	
Aver, MA					s Phone (
				Operator	's Address	West Chile	
Benerator's	George	St., Fort	Devens	Operator 88C E	s Name	* ±	1
2613 Lake							

Market Same Market Visit	80X 9,5 , ASSONET, HA 02	702 TEL. (508) 644-3023
CUSTOMER: OHM MAILING ADDRESS: 88	20 MG. 218:01748	PES SALESPERSON: 6-/c) Start Date (// 4 /54 Mon/Tues/Wed/Thurs/fri):
TEL. #: 50% 426-	P.O. # 10 Z/OZZZ	2
ADDRESS: FOR+ Dad	ZIP: 01453	215:
SITE CONTACT PERSON: SITE TEL. #: (508) BPA #:	772-2275 HAX #: CONTACT	PERSON:
*******	START DATEON SITE	**************************************
SCOPE OF WORK:	Pick: Up & 7.C.	
	JGPE to FRITZE	
		d filea.m./p
LABORER L	neg. o.t. Kan	PARÁTALKA HOUR
		nanga pangangan ang pangangan pangangan ang pangangan ang pangangan pangangan ang pang
SUPPLIES - QUANTITY	SUPPLEES - QUANCIT	Y SUPPLIES - QUANTITY
Speedi Dry	Paly	Tyreke
Speedi Dry	Paly	Dry 100
Speedi Dry	Paly Soute	Tyvaka
Speedi Dry	Paly. Soute Clove. Misc. Misc. MRS. SURCONTR ASTE DESCRIPTION WASTE	Tyveke
Speedi Dry	Paly. Soute Clove. Misc. ************************************	Tyreko
Speedi Dry	Paly. Soute Clove. Misc. ************************************	Tyreko
Speedi Dry	Paly. Soute Clove. Misc. ***********************************	Tyveke

31

645 Shawinigan Drive Chicopee, MA 01020 (413) 785-1581

Dear Customer:

In compliance with the notification requirements of Federal and state regulations, find enclosed a completed asbestos disposal and documentation form acknowledging that the listed asbestos wastes have been disposed of at our facility.

The enclosed duplicate copy of the form(s) indicate the date of disposal, type of material and quantity. If you have any questions or comments, please do not hesitate to contact us. Thank you for your business.

Very truly yours,

A. Ronald Wesolowski

Office Manager

ARW/jk

Enc.

Shipper's No.

THIS MEMORANDUM
is an actnowledgment that a bill of lading has been issued and is not the Original 800 of Lading, nor a copy or duplicate, covering the property named herein, and is intended solely for filling or record.

ARRIER: FLEET ENVIRONMENTAL SERVICES.	INC.	SCAC	Carrier's No						
O: Partyka Resource Management Consignee 645 Shawinigan Drive Street Destination Chicopee, MA 01200 Zip		Origin	Devens	eorge St.		Zip 01433			
Route:			201000	Vehic	T 1 T 1				
No. Kind of Packages. Description of Articles Dipping HIT HAZAHOOUS MATERIALS - PROPER SHIPPING N	AME)	HAZARU CLASS	I.O. Number	WEIGHT (subject to correction)	RATE	LABELS REQUIRED (or exemption)			
7cy: Non-Friable Asbestos	NO	NE		2800	P				
1 Jan mathen									
lemit C.O.D. to:						C.O.D. FEE:			
ity: State: Zip	o:	COD	Amt:	. \$		Prepaid			
TE — Where the rate is dependent on value, shippers are required to state specifie agreed or declared value of the property. The agreed or declared value of the property specifically stated by the shipper to be not exceeding 3. Per RECEIVED, supject to the classifications and lawfully fried tariffs in effect on the date of its packages unknown, marked, consigned, and destined as undicated above which said certer (contract) agrees to carry to its usual office of definery at Ead destination, if on its route, one over all or any portion of said route to destination and as to seen party at any time interested the governing classification on the date of anioment. Shooper nersecy certifies that no is fermiliar with all the bill of feding terms and conditions of	toperty two of this Bill of La Ne word carrier bean nwise to deliver to a in all or any said pri	g understood throughout this o nother carrier on the route to operty, that every service to be	contract as meaning said destination, it operformed hereur	g any person or corpo is mutually agreed a ider shall be subject :	s to each car to all the bill	session of the property under the ner of all or any of, said property of lading terms and conditions in			
#55/00% We is a country that the above-name meterals are property classified, discretical, sectages, marked and seems are property condition for transpostable according to the post-condition for transpostable according to the post-condition requestions of the	PLACARDS REQUIRED	>	PL	ACARDS -		YO FURNISHED BY CARRIER			
SHIPPER: US ARMY (1972 IF ENTIRES	7	CARRIER:	Tool E	Aug An	11/2/	500000			
'ER:		PER:	1.1.	1111		*^			
MERGENCY RESPONSE		DATE: //	. 14.	74					
ELEPHONE NUMBER: (200) 537-3540		emergency response	information o	who has acces	ss to a per	hazards of the material and rson with that knowledge.			

9-8LS-A3 (Rev. 9/88)

5

(3)

ATTENTION SHIPPERS!

FREIGHT CHARGES ARE PREPAID ON THIS BILL OF LADING UNLESS MARKED COLLECT.

Page	of	Z	STRAIGHT BIL ORIGINAL—NO CACA-SSE 7 (Name of	RVCKING		Shippe		0/18/	/44
ro:			consignees name or as othererse provided in Kem 430, Sec 1		ACR S CAKR Ge	nece			
ity Uxr/	STU	State 11A	Zip Code 01508	City FT DK	itas	State /		Code	01435
oute		110	+0 5.4-52				Vehicle Number		
No.of Units & Container Type	нм		BASIC DESCRIPTION Proper Shipping Name, Hazerd Class, Number (UN or NA), Packing Group, per 172.10	1, 172.202, 172.203	TOTAL QUANTITY (Weight, Volume, Gallons, etc.)	WEIC (Subje	SHT III	ATE	CHARGES (For Carner Use Only)
Dump		/tsph	Affor Recycling						
	ua saa			REMIT					
PL	ACAR	DS TENDE	RED:YES NO	COD TO: ADDRESS					
Note — Where the rate required to state specific			hereby declare that the contents of this consignment are fully and accurately described above by proper ahipping	Amt: \$					
value of the property The agreed or declared value of the property is hereby specifically stated by the shipper to be not exceeding TRANSPORT; according to applicable international and national governmental regulations Signature Signature			Subject to Section 7 of the conditions, if this shipment is to be delivered to the consignee without recourse on the consigner, the consigner shall sign the CHARGES: The carrier shall not make delivery of this shipment without payment of region and all other lawful charges. FREIGHT CHARGE FREIGHT PREPAID Check by					ARGES eta box d' charges era lo bei cullect	
Ihs Bill condition which is corpora deliver destina	of Lading, the in of contents aid carrier (the alon in posse; y at said desti- tion it is multi-	properly described above of packages unknown, of packages unknown, word carrier being undersite seon of the property under sation, if on its route, other alty agreed as to each carrier	iawfully bled transfism effection the date of the issue of in apparent good order eacept as noted (contents and arked consigned and destined as inflicated above out throughout this constitute as meaning any person or if the contract) agrees to carry to its own place of wise to deliver to another carrier on the route to said in class of any of said property over all or any portion of	service to be perform governing classificati Shipper hereby co	nor and as to tak typorty at any time into sold teneuration stell the soldyes to all the out-on the take of supports of the property of the take of supports of the take of take of the take of the take of the take of take of the take of take of take of the take of ta	e bill of lading bill of lading i	terms and condition	ons in the	

PER

Appendix G Site Photographs