EXPANDED SITE INVESTIGATION

REMEDIAL OVERSIGHT OF ACTIVITIES AT FORT DEVENS PLOW SHOP POND AND GROVE POND

FINAL

May 2006

EPA CONTRACT NO. EP-W-05-020 Task Order: # 01

Submitted to:

U.S. Environmental Protection Agency Region 1 Boston, Massachusetts

FINAL

EXPANDED SITE INVESTIGATION

GROVE POND AND PLOW SHOP POND AYER, MASSACHUSETTS

May 2006

Prepared for:

USEPA Region 1 Contract EP-W-05-020 Task Order #01

Prepared by:

Gannett Fleming, Inc 199 Wells Avenue, Suite 210 Newton, Massachusetts 02459

GF Project No. 045399

TABLE OF CONTENTS

LIST	OF APPENDICES	V
1.0	INTRODUCTION	1
1.1	Report Organization	2
2.0	SITE BACKGROUND	3
2.1	Site Description	3
2.2	Site History	
	Grove Pond	
	Plow Shop Pond	6
3.0	EVALUATION OF EXISTING DATA	7
3.1	Previous Studies	7
3.2	Summary of Analytical Data	
3.2		
3.2	J	
	Sediment, < 1 foot below grade	
	Surface Soil, < 1 foot below grade Deep Sediment and Subsurface Soil, > 1 foot below grade	
	Surface Water	
	Groundwater	
	Biological Tissue Data	
3.2	2.3 Validation Review	12
4.0	SITE CHARACTERISTICS	14
4.1	Geology	
4.1	1.1 Arsenic Mineralogy	15
4.2	Hydrogeology	16
4.3	Meteorology	16
5.0	CONCEPTUAL MODELS	18
5.1 H	Background:	20
5.2 F	Pond Sediment Data Summary:	21
5.3 A	Arsenic	23
	3.1 Distribution	
	5.3.1.1 Grove Pond	

4	5.3.1.2 Plow Shop Pond	25
5.3	3.2 Transport Processes	26
	3.3 Conceptual Model	
.		20
	C admium 4.1 Distribution	
	5.4.1.1 Grove Pond	
	5.4.1.2 Plow Shop Pond	
	4.2 Transport Processes	
3.4	4.3 Conceptual Model	
	Chromium	
	5.1 Distribution	
	5.5.1.1 Grove Pond	
	5.5.1.2 Plow Shop Pond	
	5.2 Transport Processes	
5.5	5.3 Conceptual Model	
5.6 N	Mercury	37
	6.1 Distribution	
	5.6.1.1 Grove Pond	
	5.6.1.2 Plow Shop Pond	
	6.2 Transport Processes	
	6.3 Conceptual Model	
	Lead	
	7.1 Distribution	
	5.7.1.1 Grove Pond	
	5.7.1.2 Plow Shop Pond	
	7.2 Transport Processes	
3.7	7.3 Conceptual Model	42
5.8 N	Manganese	44
5.8	8.1 Distribution	44
5.8	8.2 Transport Processes	45
5.8	8.3 Conceptual Model	45
50 X	Vanadium	16
	9.1 Distribution	
	9.2 Transport Processes	
	9.3 Conceptual Model	
.		
	Groundwater Hydrology	
	10.1 Grove Pond / Town of Ayer Wellfield	
	10.2 Plow Shop Pond	
5.1	10.3 Arsenic Flux to Red Cove	50
6.0	LIIMAN LEAI TU DICK ACCECCMENT	F.A
6.0	HUMAN HEALTH RISK ASSESSMENT	54
6.1	Human Health Risk Assessment Conclusions	54
	Grove Pond	
	Plow Shop Pond	55

7.0	ECOLIGICAL RISK ASSESSMENT	57
7.1	RISK FINDINGS	49
7.1	1.1 Water Column Invertebrate Community	50
7.1	1.2 Benthic Macroinvertebrate Community	51
	1.3 Fish Community	
	1.4 Omnivorous Mammals.	
	1.5 Piscivorous Mammals	
	1.6 Carnivorous Birds	
	1.7 Piscivorous Birds	
	1.8 Insectivorous Birds	
7.2 N 8.0	MAJOR UNCERTAINTIESSUMMARY AND CONCLUSIONS	
8.1	Conceptual Model	55
8.2	Human Health Risk Assessment	58
	Grove Pond	
	Plow Shop Pond	58
8.3	Ecological Risk Assessment	60
REF	FERENCES	61

LIST OF FIGURES

- FIGURE 2-1 SITE LOCATION MAP
- FIGURE 3-1 SAMPLE LOCATION PLAN GROVE POND
- FIGURE 3-2 SAMPLE LOCATION PLAN PLOW SHOP POND
- FIGURE 5-1: HISTOGRAMS OF ARSENIC CONCENTRATIONS IN SHALLOW SEDIMENT (0-1 FOOT) GROVE AND PLOW SHOP PONDS
- FIGURE 5-2: ARSENIC IN SEDIMENT: 0-1 FOOT BELOW GRADE GROVE POND
- FIGURE 5-3: ARSENIC IN SEDIMENT: GREATER THAN ONE FOOT BELOW GRADE GROVE POND
- FIGURE 5-4: ARSENIC IN SEDIMENT: 0-1 FOOT BELOW GRADE PLOW SHOP POND
- FIGURE 5-5: ARSENIC IN SEDIMENT: GREATER THAN ONE FOOT BELOW GRADE PLOW SHOP POND
- **FIGURE 5-6:** ARSENIC AND IRON RATIO: 0-1 FOOT BELOW GRADE GROVE AND PLOW SHOP PONDS
- FIGURE 5-7: ARSENIC VS. IRON IN SHALLOW SEDIMENT: 0-1 FOOT BELOW GRADE GROVE AND PLOW SHOP PONDS
- **FIGURE 5-8:** CADMIUM IN SEDIMENT: 0-1 FOOT BELOW GRADE GROVE POND
- FIGURE 5-9: HISTOGRAMS OF CADMIUM CONCENTRATION IN SHALLOW SEDIMENT (0-1 FOOT) GROVE AND PLOW SHOP PONDS
- FIGURE 5-10:CADMIUM IN SEDIMENT: GREATER THAN ONE FOOT BELOW GRADE GROVE POND
- FIGURE 5-11:CADMIUM IN SEDIMENT: 0-1 FOOT BELOW GRADE PLOW SHOP POND
- FIGURE 5-12:CADMIUM IN SEDIMENT: GREATER THAN ONE FOOT BELOW GRADE PLOW SHOP POND
- FIGURE 5-13:CADMIUM VS. LEAD: NORTON DATA GROVE POND CORE #1
- FIGURE 5-14: HISTOGRAMS OF CHROMIUM CONCENTRATIONS IN SHALLOW SEDIMENT (0-1FOOT) GROVE AND PLOW SHOP PONDS
- FIGURE 5-15:CHROMIUM IN SEDIMENT: 0-1 FOOT BELOW GRADE GROVE POND
- FIGURE 5-16:CHROMIUM IN SEDIMENT: GREATER THAN ONE FOOT BELOW GRADE GROVE POND
- FIGURE 5-17:CHROMIUM IN SEDIMENT: 0-1 FOOT BELOW GRADE PLOW SHOP POND
- FIGURE 5-18:CHROMIUM IN SEDIMENT: GREATER THAN ONE FOOT BELOW GRADE PLOW SHOP POND
- FIGURE 5-19:CHROMIUM VS. LEAD IN SHALLOW SEDIMENT: 0-1 FOOT BELOW GRADE GROVE AND PLOW SHOP PONDS
- **FIGURE 5-20:**CHROMIUM VS. MERCURY IN SHALLOW SEDIMENT: 0-1 FOOT BELOW GRADE GROVE AND PLOW SHOP PONDS
- FIGURE 5-21:MERCURY IN SEDIMENT: 0-1 FOOT BELOW GRADE GROVE

POND

- FIGURE 5-22:HISTOGRAMS OF MERCURY CONCENTRATIONS IN SHALLOW SEDIMENT (0-1 FOOT) GROVE AND PLOW SHOP PONDS
- **FIGURE 5-23:**MERCURY IN SEDIMENT: GREATER THAN ONE FOOT BELOW GRADE GROVE POND
- FIGURE 5-24:MERCURY IN SEDIMENT: 0-1 FOOT BELOW GRADE PLOW SHOP POND
- **FIGURE 5-25:**MERCURY IN SEDIMENT: GREATER THAN ONE FOOT BELOW GRADE PLOW SHOP POND
- FIGURE 5-26:LEAD IN SEDIMENT: 0-1 FOOT BELOW GRADE GROVE POND
- FIGURE 5-27:HISTOGRAMS ON LEAD CONCENTRATIONS IN SHALLOW SEDIMENT (0-1 FOOT) GROVE AND PLOW SHOP PONDS
- **FIGURE 5-28:**LEAD IN SEDIMENT: GREATER THAN ONE FOOT BELOW GRADE GROVE POND
- FIGURE 5-29:LEAD IN SEDIMENT: 0-1 FOOT BELOW GRADE PLOW SHOP POND
- FIGURE 5-30:LEAD IN SEDIMENT: GREATER THAN ONE FOOT BELOW GRADE PLOW SHOP POND
- FIGURE 5-31:COPPER VS. LEAD IN SHALLOW SEDIMENT ADJACENT TO RAILROAD ROUNDHOUSE 0-1 FOOT BELOW GRADE
- FIGURE 5-32:SHALLOW GROUNDWATER ELEVATIONS
- FIGURE 5-33:SHALLOW (1FT) SEDIMENT TEMPERATURE
- FIGURE 5-34: SEDIMENT TEMPERATURE (1 FT) BELOW WATER SEDIMENT INTERFACE

LIST OF APPENDICES

APPENDIX A	List of Data Sources
APPENDIX B	Data Summary Tables
APPENDIX C	Human Health Risk Assessment
APPENDIX D	Baseline Ecological Risk Assessment

1.0 INTRODUCTION

The U.S. Environmental Protection Agency (EPA) directed Gannett Fleming, Inc. (Gannett Fleming) to conduct an Expanded Site Investigation (ESI) and prepare an ESI Report for Plow Shop and Grove Ponds that are adjacent to the former Fort Devens National Priorities List (NPL) site. The objective of this investigation is to prepare an ESI report, using the sediment, soils, surface water, biota, benthic invertebrates, fish, frog tissue, swallow tissue, and toxicity data collected to date, to support the selection of an approach for site remediation. This report is in response to the approved Task Order Number #01 under Contract Number EP-W-05-020.

The former Fort Devens is located at the intersection of four towns: Ayer, Harvard, Lancaster, and Shirley in Middlesex and Worcester counties, Massachusetts. It is located 40 miles west of Boston. Fort Devens was listed on the NPL in November of 1989. In 1991, it was identified for cessation of operations, pursuant to the Base Realignment and Closure of 1991, commonly known as BRAC II and was officially closed in September 1996. Portions of the property formerly occupied by Fort Devens were retained by the Army for reserve forces training and renamed the Devens Reserve Forces Training Area (RFTA). Areas not retained as part of the Devens RFTA were, or are in the process of being, transferred to new owners for reuse and redevelopment.

Plow Shop and Grove Ponds are located at the southern border of the business and residential district in Ayer. The pond basins are bounded on the west and south by former Fort Devens property, to the northeast by residential areas, and to the southeast by land controlled by the Town of Ayer and used as a municipal well field. They are the fifth and sixth in a chain of six ponds in Ayer.

Sediment data collected from the two ponds through the 1990s indicate that elevated levels of several trace elements including arsenic, cadmium, chromium, mercury, and lead may be present at concentrations that pose significant human health and ecological risks. In October 1995, the Army issued a report that summarized all of the information collected to date and performed a Preliminary Risk Evaluation (PRE) in order to qualitatively gauge what risk the ponds were posing to human health and the environment. Primary concerns focused on the impacts from the ponds on Town and Devens drinking water supplies, fish and wildlife resources, and recreational activities such as fishing, hunting, and swimming. The PRE determined that exposure to both Plow Shop and Grove Pond sediments presented both human health and ecological risks. Both ponds were subsequently posted "Catch and Release Fishing Only."

In the late 1990s, EPA, in cooperation with the U.S. Fish and Wildlife, the U.S. Geological Service and the MADEP, embarked upon an effort to collect the necessary information to address the data gaps identified in the Army's 1995 report. The data collected from the joint effort were used when preparing this ESI Report for both Grove and Plow Shop Ponds.

1.1 Report Organization

This report consists of eight sections. In Section 1.0, the Introduction defines the purpose and study objectives of the ESI. Section 2.0 provides a general description of Grove Pond and Plow Shop Pond, including site history and background information. Within Section 3.0 is an evaluation of the existing data and includes references to previous studies and investigations; a summary of the analytical data is presented; and background studies are identified. In Section 4.0, a brief description of the physical characteristics of the study area is provided including the local geology, local meteorological conditions, and a general description of the surface water and groundwater hydrology. Section 5.0, presents conceptual models and supporting information for the presence of the principal chemicals of potential concern in sediment in Grove and Plow Shop Ponds. This section includes a discussion of the rationale for the concentration, distribution, plausible source(s), and transport mechanism(s) for each element of interest. The emphasis of this section is on elements and/or compounds that have been identified in previous studies of the ponds or in the present effort as potentially significant from a risk perspective. In Section 6.0 is the Human Health Risk Assessment, which evaluates whether site contaminants pose a current or potential risk to human health and the environment. In Section 7.0 is the Ecological Risk Assessment, which evaluates and assesses the risk to the environment posed by site contaminants. Lastly, Section 8.0 provides a summary of the conclusions.

2.0 SITE BACKGROUND

For the Grove and Plow Shop Ponds ESI, the "study area" or "the site" refers to Grove Pond and Plow Shop Pond, located in the Town of Ayer, Middlesex County, Massachusetts. Refer to Figure 2-1 – Site Location Map for the approximate boundaries of the ponds. The study area is located approximately 35 miles northwest of Boston.

2.1 Site Description

The study area is located northeast of the former Fort Devens, currently referred to as Devens. Grove and Plow Shop Ponds are included in a string of six ponds. Grove and Plow Shop Ponds are the most downgradient of the six ponds and, Plow Shop Pond drains into Nonacoicus Brook. In the downgradient direction, the string of ponds are referred to as: Long Pond, Sandy Pond, Flannagan Pond, Balch Pond, Grove Pond, and Plow Shop Pond. These ponds were formed by a series of dams installed in the 19th century. During that time Grove and Plow Shop Ponds were periodically "flowed" or flooded during the winter months to provide a source of ice and were drained during the spring and summer for grazing of livestock. Prior to the existence of the ponds, the area that is now submerged was occupied by meadows underlain by peat bogs.

Grove Pond is roughly triangular in shape and covers about 60 acres. The northern shore includes the location of the Plastic Distributing Company (PDC, location of former tannery operations), Pirone Park owned by the Town of Ayer, and residential properties. The southeastern shore is bordered by property owned by the Town of Ayer. The southern shore is also bordered by property owned by Fort Devens. Within this area are Devens' water supply wells, which are currently active with treatment. Immediately beyond the Devens' shoreline is the Massachusetts National Guard. The western edge of the pond is formed by the railroad causeway, owned and operated by Guildford Transportation (formerly Boston & Maine Railroad, B&MRR).

Grove Pond is shallow, with maximum water depth approximately 5 to 6 feet, and the water is frequently eutrophic, or well nourished by aquatic plant life. The pond bottom consists largely of a thick mat of decomposing vegetation. Grove Pond receives drainage from Balch Pond, as well as from Cold Spring Brook and Bowers Brook, and discharges through a culvert on the western edge of the pond into Plow Shop Pond. Cold Spring Brook is downgradient of Devens. Bowers Brook connects into Cold Spring.

Town of Ayer Well Field: The Town of Ayer wells are located on south shore of Grove Pond off Barnum Road, immediately outside the Devens Barnum Gate. These two wells were installed several decades ago by the Town of Ayer originally as backup to the Town's Spectacle Pond well field. The first of these wells, Grove Pond No. 1, was installed in 1943. It is 60 ft deep, with a rated capacity of 694 gpm. The second, Grove Pond No. 2, was constructed in 1952. It is 60.5 ft deep, with a rated capacity 780 gpm, and is located 120 ft west of the first well. Both are within

150 ft of Grove Pond. The original, hand-sketched construction diagrams for these wells, as well as the drillers' log for Grove Pond No. 2, are reproduced in Appendix A of the 1999 Phase I Interim Data Report (Gannett Fleming, 1999). In 1998, after rehabbing and construction of a water treatment plant at the site, these wells were added to Town of Ayer's distribution system.

Devens Grove Pond Well Field: The Devens Grove Pond well field is located approximately 1,000 feet to the west of the Town of Ayer wells. The general hydrogeologic setting of this well field is similar to the Town of Ayer wells, i.e., the wells are screened in the overburden aquifer in proximity to Grove Pond. These 12 wells have 8-inch diameter casings and 10 ft screens centered at depths of 35 ft to 43 ft below ground surface (bgs). The wells have been pumped at relatively low rates since activities on the Base decreased in recent years (e.g., 550--680 gpm total production for several days per month, in 1998).

Plow Shop Pond is also a shallow pond and is approximately 30 acres. The central portion of the pond is approximately 8 feet deep, and the deepest portion of the pond is reported to be at the northeast arm of the pond. The water level is controlled by a dam located at the northwest corner of the pond where it forms Nonacoicus Brook and its associated wetlands, which in turn flows approximately 1.5 miles northwest into the Nashua River. Plow Shop Pond is similar to Grove Pond in regards to the aquatic community; however, Plow Shop Pond is smaller and slightly deeper, and the aquatic vegetation tends to be less dense than Grove Pond. (USFWS, September 2000)

The northern shore of Plow Shop Pond is bordered by commercial businesses. The eastern shore is the Guilford Transportation railroad causeway. The southern and western shores include the former railroad roundhouse, and woodland and grassland associated with Shepley's Hill Landfill. Both ponds are used by local residents for recreational fishing. Signs are posted for "catch and release" fishing.

In 1998, the U.S. Geological Survey (USGS) used a high-frequency acoustic energy fathometer and ground-penetrating radar (GPR) to measure water depth and saturated sediment thickness at more than 1000 locations in Grove Pond and Plow Shop Pond (Mercadante et al., 1999). Ground-truth values were obtained manually at several locations by pushing a stick into the sediment until refusal was met. Results from Grove Pond show a maximum water depth of 1.93 meters, in the northwest end of the pond. Sediment thickness is generally uniform over much of the pond bottom, ranging from 0.5 m around the pond's perimeter to about 2.5 m in spots along the pond's central axis. In Plow Shop Pond, the maximum water depth, 2.43 m, occurs at the north end of the northeast arm of the pond. Sediments in Plow Shop Pond are thicker than in Grove Pond. Sediment thickness over most of the western half of the pond is approximately 5 to 5.5 m in places and may have been emplaced prior to the construction of the dam in 1887 (Mercadante et al., 1999). On the eastern side of Plow Shop Pond, sediment thickness is somewhat more uniform, ranging from 0.5 m along the shore to about 4 m at a distance of approximately 100 m offshore (toward the center of the pond).

2.2 Site History

Gannett Fleming reviewed an aerial photograph from 2001, Sanborn Maps for the years 1892, 1921 and 1949, and various reports to understand the general history of the ponds and land uses adjacent to the ponds and brook in regards to potential sources of contaminants to the study area. Refer to Appendix A for the Sanborn Map Review, which includes property descriptions from 1892 to 1949.

Grove Pond

A tannery, located on the northwest corner of Grove Pond, operated intermittently from 1854 through June 1961 until a fire destroyed the operation. Prior to 1953, tannery wastes were discharged directly into Grove Pond with little or no treatment. In addition to tannery operations, a landfill was formerly located between the tannery and Grove Pond. Its location is suggested by aerial photographs that show gradual infilling of a cove in the northwest corner of Grove Pond.

According to the Sanborn Map Review, north of the tannery is the location of a former foundry and machine shop. These types of operations are documented as early as 1887, and operations ceased some time between 1921 and 1949. The 1949 Sanborn Map indicated that the property was used by a rope storage company and for paper and pulp storage. This area is the current location of the Faulkner Drive site as shown on Figure 2 –1 Site Location Map.

East of the former tannery, is Pirone Park, where landfilling may have occurred in the past. According to the Environmental FirstSearch™ database for the study area, a solid waste landfill is present at Pirone Park and is identified as the Town of Ayer Demolition Landfill. Refer to Appendix C of the May 2002 Gannett Fleming Data Gap Evaluation Report (Gannett Fleming, 2002a) for the results of the database search. Based on electronic correspondence with the MADEP, this "location was never a sited landfill, but is a piece of municipally owned property adjacent to Pirone Park. The Ayer DPW used the property as a dumping ground for pieces of asphalt and concrete, etc."…"It's badly overgrown with odd piles of asphalt and concrete the above interspersed among heavy vegetation. This site was never a municipal solid waste landfill nor a demo landfill."

Other potential sources of contamination to the pond are: stormwater runoff from the Guildford Transportation (former B&MRR) railroad yard and causeway on the southern/western shore; historical infilling of portions of the pond's perimeter; inflow from Cold Spring Brook and Balch Pond; and runoff from Devens and the Town of Ayer. Extensive apple orchards lie within the drainage basin for the pond, and historical application of arsenic-containing pesticides was suggested as a potential contaminant source. The contribution of arsenic and other metals to pond-bottom sediments by discharging groundwater may be significant.

Plow Shop Pond

Plow Shop Pond is bordered to the north by commercial properties. Sanborn records indicate that a lumber company, northwest of the pond, had been in operation since 1887 and at least until 1949.

Other potential sources of contamination to the pond are: stormwater runoff from the Guildford Transportation (former B&MRR) railroad and the former Railroad Roundhouse; historical infilling of portions of the pond's perimeter; and, Shepley's Hill Landfill.

Elevated concentrations of arsenic (greater than the current MCL of $10 \mu g/L$) have been reported from groundwater in the vicinity of Grove Pond (Gannett Fleming, 2002) and Plow Shop Pond (e.g., from numerous monitoring wells and direct-push sampling in the vicinity of Shepley's Hill Landfill). While groundwater was not included in the list of media to be evaluated for this report, mechanisms responsible for trace-element mobilization have been described qualitatively in discussions of the Conceptual Site Models (CSM) as appropriate. For example, in Sec. 5.3.3 the CSM proposed for arsenic suggests that this element may be accumulating in pond sediments due to precipitation at a redox boundary below the sediment-water interface. Reducing groundwater, enriched in dissolved arsenic, iron, and other trace metals, migrates upward and encounters more oxidizing conditions before discharging to the pond. As geochemical conditions evolve along this flow path, to a point where pH and ORP favor oxidation of iron its precipitation as a solid, ferric oxyhydroxide. Other trace elements, including arsenic, are sorbed by this phase.

A detailed discussion of groundwater hydrologic conditions for Grove Pond and Plow Shop Pond is provided in Section 5.10. In this discussion, mass flux calculations are presented for arsenic, iron, and manganese in sediments in Red Cove. The agreement between the mass estimated from groundwater data for these elements, and the observed average sediment concentrations, supports the general CSM.

3.0 EVALUATION OF EXISTING DATA

3.1 Previous Studies

Gannett Fleming acquired documents pertaining to investigations of the study area and surrounding properties from several sources. The majority of the reports were received from the BRAC library located at Devens. Other sources to obtaining studies included the MADEP Central Regional office and the Town of Ayer public library. A large number of documents were acquired and are maintained in the Gannett Fleming library in Newton, Massachusetts. A listing of the documents from which data were taken for use in the ESI with brief descriptions is included in Appendix A. Following this list are key data tables used in this ESI Report.

As part of the Data Gap Evaluation prior to this ESI, Gannett Fleming summarized each document, describing the different investigations and analyses performed. The summaries indicated if laboratory reports or quality assurance/quality control (QA/QC) information was included in the document. These summaries were used to assist in determining which analytical data to enter into the Geographical Information System (GIS) database.

3.2 Summary of Analytical Data

Analytical data from nearly half of the reports obtained were used in the GIS database. The reasoning for not utilizing reports for data input was:

- The report did not include analytical data.
- More recent studies included the data from previous studies.
- The sample locations were unknown.
- Some reports were draft reports and finalized report information was used.
- Remediation activities took place and confirmatory samples indicated a change in contaminant levels.

3.2.1 Development of Database Management System

Gannett Fleming utilized GISKey™ software as the database management system for the analytical data used in this ESI Report. The GISKey database interfaces with AutoCAD®, where figures have been produced to aid in visually understanding and evaluating contaminant distribution. Sample locations are identified in Figure 3-1 and Figure 3-2 for Grove Pond and Plow Shop Pond, respectively. All contaminant information on the figures is included in the analytical summary tables. The analytical summary tables are organized by pond, medium, and depth and are included as Appendix B.

3.2.2 Analytical Data

As part of the Data Gap Evaluation, the chemistry data were compared to EPA Region 9 Preliminary Remediation Goals (PRGs) for the human health risk screening. For the ecological risk screening, analytical data were compared to US EPA National Ambient Water Quality Critera, Oak Ridge National Laboratory (ORNL) Secondary Chronic Values, Ontario Ministry of the Environment (OME) benchmarks, and National Oceanic and Atmospheric Administration (NOAA) standards, where applicable. These benchmarks were employed to add a risk perspective to an initial evaluation of the nature and extent of contamination in the ponds.

The majority of the reports used for database input did not include laboratory analytical reports. Where analytical reports were not available, summary tables found within the reports were used. In some cases, it appears that contaminant concentrations from summary tables may represent laboratory method detection limits; however, if there were no notes in the summary tables indicating detection limits, the concentration was entered into the database.

Most of the investigations focused on inorganics, which is appropriate for the historical and current site use around the ponds. However, in some cases, such as the Railroad Roundhouse, the emphasis included organics appropriate for the likely source of contamination.

Below is a summary of the environmental media reviewed for this ESI Report. Based on field observations (odors, sheen, *etc.*) recorded during EPA's 2004-2005 field programs, VOCs, SVOCs, and PAHs should be evaluated in the subsurface sediments and groundwater in the Red Cove and RRRH areas.

Sediment, < 1 foot below grade

For inorganics, primarily aluminum, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, sodium and zinc were in exceedance of the benchmarks identified above. In very few cases, all inorganics analyzed exceed the benchmarks. Pesticide analysis primarily included 4,4'-DDD, 4,4'-DDE and 4,4'-DDT and/or endrin with the exception of sediment samples SED-A through SED-G (October 1992), Sediment 1 through Sediment 6 (April 1994), and SW-2 through SW-4 (December 1993) collected from Grove Pond, which included full analyses of pesticides. Heptachlor was analyzed in some Plow Shop Pond sediment samples, and there were no exceedances. Pesticide exceedances occurred in the southwestern portion of Grove Pond, and along the Plow Shop Pond shoreline abutting the railroad causeway, the Railroad Roundhouse, and the west/southwest shoreline near Shepley's Hill Landfill.

PCBs were analyzed in Grove Pond sediments SED-A through SED-G, Sediment 1 through Sediment 6, and SW-2 through SW-4; and, nothing was detected.

VOCs were analyzed in sediment samples collected near the Railroad Roundhouse and in Grove Pond sediments SED-A through SED-G, Sediment 1 through Sediment 6, and SW-2 through SW-4; and, there were no exceedances. Acetone, methyl ethyl ketone and methylene chloride was analyzed for in sediment samples in Plow Shop Pond downgradient of SHL; and, there were no exceedances.

SVOCs were analyzed in sediment samples collected from Grove Pond and Plow Shop Pond. In Grove Pond, exceedances (anthracene, fluoranthene, fluorene, hexachlorobenzene, 2-methylnapthanlene, napthalene, phenanthrene and/ or pyrene) occurred in sediment samples GRD-95-08X, -09X, -14X, -15X, -26X, -27X, -29X, -31X, -33X, -36X, and -50X. For Plow Shop Pond, SVOC exceedances occurred in SESHL11 (pyrene) and SESHL 12 (benzoanthracene, chrysene, napthalene, phenanthrene and pyrene).

Other analyses for sediments included residue, hydrogen ion, and total organic carbon (TOC).

Surface Soil, < 1 foot below grade

Surface soil samples were collected at Faulkner Drive, PDC, along the shoreline of Grove Pond, and along the shoreline of Plow Shop Pond in the area of the railroad causeway and the Railroad Roundhouse. Surface soil samples were compared only to residential PRGs.

For Faulkner Drive, the samples were analyzed for metals, pesticides and PCBs, VOCs, and SVOCs. The metals with the most frequent exceedances were arsenic, antimony, and lead. However, there were some samples with exceedances for cadmium, chromium, mercury, manganese, nickel, and zinc. There were no exceedances for samples that were analyzed for pesticides, PCBs, or VOCs. There were exceedances of SVOCs; however, some of the exceedances appear to be method detection limits.

For PDC, surface soil samples were analyzed for metals only. Exceedances were found for aluminum, antimony, arsenic, chromium, iron, lead, mercury, methyl mercury, nickel, and zinc.

For samples collected along the Grove Pond and Plow Shop shoreline, exceedances are similar to what was found in sediments.

Deep Sediment and Subsurface Soil, > 1 foot below grade

Metals were analyzed in subsurface soil at Faulkner Drive, PDC, and the railroad causeway, and in 2 samples from Shepley's Hill Landfill. Metals were analyzed in deeper sediment/subsurface soil in Grove and Plow Shop Ponds. For Faulkner Drive, PDC, the railroad causeway, SHL, Grove and Plow Shop Pond, exceedances occurred primarily for arsenic, cadmium, chromium, lead, and mercury. However, exceedances also occurred for antimony, iron, magnesium, and zinc.

Pesticide analysis primarily included 4,4'-DDD, 4,4'-DDE and 4,4'-DDT collected from Plow Shop Pond samples. Full pesticide analysis was performed on soil samples collected from PDC. Endrin was analyzed in samples collected from Grove Pond. There were no pesticide exceedances.

PCBs were only analyzed for soil samples collected from PDC; and, there were no exceedances.

Trichlorofluoromethane was the only VOC analysis performed for soil/sediment deeper than 1 foot below grade. These samples were collected from deep sediments in Plow Shop Pond; and, there were no exceedances.

SVOCs were analyzed at PDC, Grove Pond near the tannery, Railroad Roundhouse, and Faulkner Drive. In Grove Pond, near the former tannery, benzo (a) pyrene exceeded the benchmark. Napthalene was identified as an exceedance at PDC. At the Railroad Roundhouse at various depths, various SVOCs were identified. Faulkner Drive had SVOC exceedances. There were no SVOC analyses for deep sediment or subsurface soil at Plow Shop Pond.

Surface Water

Gannett Fleming did not enter surface water analytical data from all reports obtained. Gannett Fleming reviewed the reports and entered data from Grove Pond (1992, 1995, 1998, 1999, and 2000) and Plow Shop Pond (1991, 1993, 1995, and 1998). Gannett Fleming also included surface water data from the EPA sampling effort in 2004. Analyses included total metals, dissolved metals, pesticides and PCBs, VOCs, and SVOCs.

Total metals exceedances were found in both Grove Pond and Plow Shop Pond. For Grove Pond, exceedances included arsenic, chromium, manganese, and iron. For Plow Shop Pond, exceedances from samples collected in 1991 included arsenic; however, in 1995 exceedances included aluminum, antimony, arsenic, chromium, iron, manganese, mercury and vanadium. (Note: the metal analysis for PSP in 1995 included a broader range of metals.)

Dissolved metal analysis was performed on surface water samples collected from Grove Pond and Plow Shop Pond. For Grove Pond surface water samples, exceedances included antimony, chromium, cadmium, manganese, and thallium. For Plow Shop Pond, four surface waters samples were collected in 1993 and one exceedance occurred for dissolved arsenic and manganese.

PCBs were only analyzed in surface water samples collected from Grove Pond; and, there were no exceedances.

Pesticides were analyzed in surface water samples collected from Grove Pond and Plow Shop Pond. There were no exceedances in the samples collected from Grove Pond. For samples collected from Plow Shop Pond, alpha-BHC and endrin were reported in the analyses. Endrin exceedances occurred in surface water collected from Plow Shop Pond.

VOCs were analyzed in surface water samples collected from Grove Pond and Plow Shop Pond. In 1993, surface water samples were collected from Grove Pond, and there were no exceedances. In 1995, six surface water samples collected from Grove Pond were reported to be analyzed for BEHP, five of the samples exceeded the PRG. In 1991, 14 surface water samples were collected from Plow Shop Pond; and, cis-1,2-dichloroethylene, methylene chloride, and chloroform were in exceedance of the PRGs.

SVOC analyses were performed on surface water samples collected from Grove Pond, and there were no exceedances.

Other analyses for surface water included: residue, TOC, inorganic analyses (non-metallic, i.e. alkalinity, chloride, nitrate), hardness, and hydrogen ion.

Groundwater

Groundwater data were not used in the risk assessments but were used to support the conceptual site model (CSM) and aid in background evaluations. Gannett Fleming did not enter groundwater analytical data from all reports obtained. We reviewed the reports and entered data that showed historical sampling events for SHL from 1991 through 2001. Data were entered from sampling events at PDC for August and November 1999. Samples were also entered into the database from Faulkner Drive (2000) and the railroad causeway (1993). Analysis included total metals at PDC and SHL; dissolved metals at Faulkner Drive and the railroad causeway; pesticide and PCB analysis at the railroad causeway; VOCs at Faulkner Drive, PDC, the railroad causeway, and SHL; and SVOCs were analyzed for at Faulkner Drive and the railroad causeway.

Total metals exceedances were discovered in groundwater collected from wells at PDC for arsenic, chromium, and mercury. For samples collected in association with Shepley's Hill Landfill, primarily the groundwater analysis included only arsenic and exceedances occurred in the majority of groundwater samples collected for arsenic analysis. However, there were samples collected from Shepley's Hill Landfill for a broader range of total metal analysis. Exceedances included primarily arsenic, chromium, iron, and manganese. There were some exceedances for thallium and vanadium.

Dissolved metal exceedanaces did not occur in groundwater samples collected from wells at Faulkner Drive; however, the summary tables reviewed in the reports are not detailed. The railroad causeway analysis was more complete; and, exceedances occurred primarily for

manganese, with an exception of one sample (ERM-8) with groundwater exceedances for arsenic, iron, and manganese.

Pesticides and PCB analysis performed for groundwater samples collected from wells at the railroad causeway did not have groundwater exceedances.

VOCs were analyzed in groundwater collected from wells at Faulkner Drive; however, only 1,1,1-trichloroethane and 1,2,4-trimethyl benzene were reported, with 1,2,4-trimethyl benzene exceeding the benchmark in groundwater from 6 wells in February 2000. Groundwater samples collected from the railroad causeway were analyzed and reported for a broad range of VOCs; and, there were no exceedances. Groundwater samples collected from PDC were also analyzed and reported for a broad range of VOCs; and, there was one exceedance for 1,2,4-trimethyl benzene, one (1) exceedance for methyl tert-butyl ether (MBTE), and two exceedances for naphthalene. For Shepley's Hill Landfill, groundwater was collected for analyses of a select list of VOC contaminants: 1,1-dichloroethane, 1,2-dichloroethane, 1,2-dichloroethene, acetone, benzene, m-dichlorobenze, methyl isobutyl ketone, MBTE, o-dichlorobenze, p-dichlorobenzene, sec-butylbenzene, and xylene. Exceedances occurred at Shepley's Hill Landfill for benzene (3 exceedances in June 1999, 1 exceedance in November 1999, and 4 exceedances in May 2001); and p-dichlorobenzene (1 exceedance in May 2001).

SVOCs were analyzed in groundwater collected from 6 wells located at Faulkner Drive and 8 wells located at or near the railroad causeway. For Faulkner Drive, groundwater was collected and reported for a select list of SVOC contaminants: 1-methyl naphthalene, acenapthene, acenapthylene, anthracene, fluoranthene, fluorine, naphthalene, phenanthracene, and pyrene. In 2000, two rounds of samples were collected; and, in total, there was one (1) exceedance for 1-methyl naphthalene and 6 exceedances for naphthalene. For the railroad causeway, in 1993 a full SVOC analysis was performed and there were no exceedances.

Biological Tissue Data

Several reports provided data for biological tissues. These were incorporated into the human health and ecological risk assessments. Chemical analyses were conducted for fish, frog, and invertebrate tissue, as well as tree swallow eggs and stomach contents. In addition, data from surface water and sediment toxicity tests were used in the ecological risk assessments. Please, refer to the human health and ecological risk assessments for a list of data sources and summaries of the data used for each assessment.

3.2.3 Validation Review

A validation review of the quality of the analytical data from the various investigations was conducted as part of the Data Gap Evaluation leading up to the ESI Report. The data that were

determined to be usable in the ESI were used for site characterization, conceptual model development, and human health and ecological risk assessments.

Many reports were used to assemble the analytical database. These reports were reviewed to determine and evaluate:

- 1. The level of data validation or review performed at the time the data were generated,
- 2. The analytical protocols and laboratories utilized, and
- 3. The availability of Quality Assurance (QA) and Quality Control (QC) information.

The review conducted was similar to an EPA Region 1 Tier 1 data validation (EPA, 1996) review in that one of the goals was to determine whether there was enough information provided to conduct a higher level of data validation, if desired. The analytical data were generated over a period of 13 to 14 years, by various laboratories, and for many different reasons and entities. The documentation available for each of the data sets is as varied as the sources. It should be noted that none of the data appear to have undergone formal data validation as per EPA data validation guidelines (EPA, 1996).

In order to be able to justify combining any of these data sets in the future, minimum usability criteria were implemented to complete this review. Data were determined to be usable for ESI purposes under the following conditions:

- 1. EPA-approved or equivalent laboratory methods were used,
- 2. Data were generated by an EPA laboratory or under the Army Corp of Engineers analytical and review protocols,
- 3. Enough QA/QC information was provided in the report to perform a Tier II level data validation at some future time, or
- 4. EPA had already reviewed and accepted the data.

If none of the above conditions were met, the data set was assigned a "Not Acceptable" data usability code. These data were not used in the ESI.

As demonstrated in these tables, the vast majority of the data were determined to be usable based on the minimum usability criteria. For example, the human health risk assessment will not utilize data from samples that were field filtered or collected to support ecological studies. These types of use limitations will be identified in task-specific sections.

In addition, it may not be appropriate to combine data generated using different analytical methods for some purposes. For example, the metals data in the Haines (2001) report were generated using non-standard analytical methods. It may not be appropriate, in all cases, to combine those metals data with other metals data due to differences in the detection limits and other specifics of the methodologies.

4.0 SITE CHARACTERISTICS

4.1 Geology

There are bedrock outcrops in some locations within the Fort Devens reservation, and in other areas bedrock is buried by glacial deposits to depths of 200 feet or more. Primary post-glacial deposits are peaty swamp deposits found mostly along streams, surface water bodies; and artificial fill. Depth to bedrock beneath Grove Pond has not been verified; however, results of a seismic refraction survey close to Grove Pond indicate a layer that is believed to be consolidated till and/or bedrock at depths of 60 to 100 feet below grade. Unconsolidated, surficial material in the area consists of stratified glacial outwash (kame plain and kame terrace) deposits, primarily coarse sand and gravel. Logs from borings advanced along the south side of Grove Pond, close to the Town of Ayer wells, report fine to coarse brown sands and angular gravel. A gray silty layer, approximately 10 feet thick, was encountered at a depth of about 35 - 45 feet below grade in one well at the edge of Grove Pond (well 92-3; CDM, 1993). The lateral extent of this layer is unknown, although it has been inferred to be continuous beneath the pond based on the response of well 92-3 in the pump tests (CDM, 1993).

Bedrock underlying Fort Devens consists mainly of low-grade metasedimentary rocks, gneisses, and granites. These rocks range in age from Late Ordivician to Early Devonian (approximately 450 million to 370 million years old). A generalized summary map (Fig. 3-3 in Vol. I of the 1993 Remedial Investigation report; ABB-ES, 1993) identifies bedrock immediately to the south of Grove Pond as the Berwick Formation, and the Devens-Long Pond facies of the Ayer Granite is immediately to the west. It is noted in the Remedial Investigation that formation boundaries are approximate because bedrock exposures in this area are limited. However, this map indicates that in the vicinity of Grove Pond, the contact between the Berwick Formation and the Devens-Long Pond facies appears to strike in a northerly direction, passing between the western shore of Grove Pond and the eastern edge of Plow Shop Pond, approximately under the railroad causeway.

Results of a seismic refraction survey (cf. CDM, 1993) conducted by Geoscience Services Associates Inc. in 1991 did not confirm the presence of bedrock along a traverse parallel to the southern shore of Grove Pond near the Town wells. At this location, the lower layer is interpreted as dense till and/or bedrock, overlain by unconsolidated sands and gravels and was encountered at depths ranging from 48 feet to 116 feet below ground surface. However, the results of the seismic survey are ambiguous. Therefore, the subsurface elevation of the bottom of the Town of Ayer production well screens with respect to a dense till/bedrock layer is unknown.

The Berwick Formation is described as primarily calcareous and biotitic metasiltstones and metasandstone (Robinson and Goldsmith, 1991). Two localized zones of mica schists and phyllites containing pyrite (FeS₂) and pyrrhotite (Fe_{1-x}S) have been identified within the Berwick Formation. Both of these zones are thin, elongate bodies oriented in a northeast-southwest

direction. The western sequence lies between Townsend and Chelmsford, directly north of Ayer. This sequence is described as a quartz-rich pyrrhotitic schist containing aggregates of biotite. Cores of the Berwick Formation, taken in the vicinity of the Shepley's Hill Landfill, have been studied extensively (ABB-ES, 1995a). From these cores, the metasiltstone is described as calcareous, with secondary quartz and sulfides along bedding planes and fractures.

4.1.1 Arsenic Mineralogy

Sulfide minerals include a large number of compounds with the general structural formula $A_m X_p$. In these minerals, the larger atom, may be S, As, Sb, Bi, Se, or Te. In a few minerals, S and As or Sb are present in nearly equal amounts. The smaller atom, A, is one or more of a group of metals that includes Fe, Co, Ni, Cu, Zn, Ag, Cd, and Mo.

The group of sulfide minerals with the formula AX₂ includes pyrite (FeS₂), cobaltite (CoAsS), arsenopyrite (FeAsS), and gersdorffite (NiAsS). The substitution of small amounts of Ni and Co for Fe in pyrite is not uncommon, but the mineral bravoite (Ni,Fe)S₂, in which Fe is less than 50 mole percent, is rare. Arsenopyrite is the most abundant arsenic mineral. It forms at high to moderate temperatures and is often found in association with other sulfide minerals in contact-metamorphic rocks (Mason and Berry, 1968).

Arsenic may substitute for sulfur atoms in some sulfide minerals -- for example, in pyrite or chalcopyrite (CuFeS₂), paired As-S atoms may substitute for S₂. Alternatively, arsenic may be present in pyrite or other sulfide minerals as a discrete phase (such as arsenopyrite). Both occurrences are commonly observed. In a letter report (Prof. M. Williams, Dept. of Geosciences, U. Mass. - Amherst to M. Deuger, Army BRAC Office, May 8, 1996), electron microprobe analysis of a sample of granite from a gravel pile on Devens verified the presence of discrete grains of arsenopyrite as well as pyrite with detectable As. The lithologic unit from which the gravel pile was mined is unknown, but it is probable that this material was locally derived.

Pyrrhotite (Fe_{1-x}S), niccolite (NiAs) and breithauptite (NiSb) belong to the niccolite group of sulfide minerals, all of which have AX-type structures (Mason and Berry, 1968). Pyrrhotite occurs primarily in basic igneous rocks but has also been reported from contact metamorphic rocks, in high temperature hydrothermal veins, and in sediments. Pyrrhotite has been found in association with pyrite, chalcopyrite (CuFeS₂), pentlandite (Fe,Ni)₉S₈, and other sulfide minerals. Experimentally, arsenic has been shown to substitute in the pyrrhotite crystal structure, and arsenopyrite has been found as a pseudomorph after pyrrhotite (Deer, Howie, and Zussman, 1966).

In summary, the presence of sulfide mineralization in bedrock outcrops on and near Ft. Devens, the identification of sulfides in bedrock core samples from the Berwick Formation, and the unequivocal identification of cobaltite in a bedrock sample from the south shore of Grove Pond

(Gannett Fleming, 2002), indicate that arsenic minerals are commonly-observed, naturally occurring geologic constituents of the bedrock in the vicinity of Grove and Plow Shop Ponds.

4.2 Hydrogeology

The groundwater hydrology of the Grove Pond area has been explored through various field investigations and numerical modeling (e.g., CDM, 1993; ETA, 1995). Grove Pond lies in a topographic depression, and the water table in the surficial aquifer generally mimics the topography. Under unstressed conditions (i.e., in the absence of pumping), groundwater flow in the immediate vicinity of the Town of Ayer wells is from southwest to northeast, and discharges to the pond. Similarly, flow in the area immediately north of the pond is toward the south, again discharging to the pond. The water-table gradient in the unstressed state is approximately 0.008 ft/ft beneath the slope descending toward the pond from the Devens boundary, and decreases to approximately 0.002 ft/ft near the Town of Ayer wells (estimated from the water table map shown in Figure 4-1, CDM, 1993). Horizontal hydraulic conductivity for the aquifer is approximately 300 ft/day (CDM, 1993), consistent with a pump test performed on the Ayer wells, as well as various independent determinations in the area. The ratio of horizontal to vertical hydraulic conductivity is estimated to be 10:1.

Under pumping conditions, the groundwater elevations are drawn down by several feet at the Town of Ayer production wells, and flow is drawn from the surrounding area, including the aquifer beneath the pond. The conceptual model invoked by most studies to date represents the outwash sand beneath the pond as a "semi-confined" aquifer; that is, the lower-conductivity pond-bottom sediments "cap" the underlying sand, offering resistance to infiltration from the pond, and supporting a vertical head difference. Under pumping conditions, the head in the underlying sand is lower than that due to the standing pond water, and recharge from the pond to the aquifer is induced. The flux of pond water through the bottom sediment and into the underlying sandy aquifer is determined by the distribution of the groundwater potential in the aquifer and the thickness and vertical hydraulic conductivity of the pond-bottom sediment. It is emphasized that the hydraulic properties of the pond-bottom sediment, critical to calculating the induced infiltration, have not been measured directly, or inferred from calibration of numerical models. In model studies performed to date, the conductivity of the pond sediment layer has been assumed to be similar to that determined in nearby surface water bodies (CDM, 1993) or to be some fraction of stream-bottom values characteristic of the region (ETA, 1995).

4.3 Meteorology

The Fort Devens climate is typical of the northeastern United States: long, cold winters and short, hot summers. The coldest months are January and February, with mean daily minimum temperatures of 17 °F; July is the hottest month, with mean daily maximum temperature of 83 °F. The mean annual temperature is 58 °F. During a normal year, the temperature reaches or exceeds 90 °F on 12 days, and 134 days of the year the temperature is at or below freezing.

The 1993 Remedial Investigation (RI) report for Fort Devens (ABB-ES, 1993) summarizes local climatic conditions as follows: Average annual rainfall is 39 inches. Mean monthly precipitation varies from a low of 2.3 inches (June) to a high of 5.5 inches (September). Average annual snowfall is 65 inches. Most of the snowfall occurs between December and March, although snow has been reported for the months of September through May. Wind speed averages 5 miles per hour (mph). The highest monthly average is 7 mph (March and April), and the lowest monthly average is 4 mph (September). Average daytime relative humidities range from 71 percent (January) to 91 percent (August). Average nighttime relative humidities vary between 46 percent (April) to 60 percent (January).

At Worcester (MA) Municipal Airport, approximately 25 miles to the southwest of the site, average annual rainfall for the period 1931 to 1997 is 46.84 inches. Average monthly rainfall over the same period at Worcester is quite uniform, ranging from 3.10 inches in February to 4.40 inches in November. Although conditions at Ft. Devens may deviate slightly from those recorded in Worcester, approximately 30 miles away, the Worcester meteorological station is the nearest station with consistent, continuous data.

5.0 CONCEPTUAL MODELS

This chapter presents conceptual models and supporting information for the presence of the principal chemicals of potential concern (COPCs) in sediment in Grove and Plow Shop Ponds. In this section, information that is often presented separately as "Nature and Extent" and "Fate and Transport" has been combined to reduce redundancy and for clarity in discussing a rationale for the concentration, distribution, plausible source(s), and transport mechanism(s) for each element of interest. The emphasis of this section is on elements and/or compounds that have been identified in previous studies of the ponds or in the present effort as potentially significant from a risk perspective. In particular, the report focuses on arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb) in sediment. Briefer treatments of manganese (Mn) and vanadium (V) are given, as well.

Each of the key elements is treated in the following subsections. Each subsection, in turn, first offers a qualitative discussion of the concentrations and spatial distribution of the particular element. This discussion provides descriptive statistics for the element, and any observations of systematic variations within the system that may bear on interpretation of sources and transport processes. Second, a brief outline of the properties and processes believed to be of significance in the transport of the element in the ponds is given. Finally, a conceptual model is developed for the element. The conceptual model attempts to integrate what is known about historical activities around the ponds that may have contributed contaminants to the sediment, the spatial distribution of element concentrations, and the environmental behavior of the element. The objective of the conceptual model is to provide a general, interpretive framework that identifies likely source(s) and transport pathways for the element, and that is consistent with and supported by the available data. The depth of the discussion offered for each element is conditioned by the importance of the element with respect to the most recent human-health and ecological risk assessments (Sections 6.0 and 7.0, respectively). For that reason, arsenic and chromium, which are shown elsewhere to pose the most significant risks, are treated in somewhat more detail here.

It should be noted that the assessments provided in this section are based on a subset of the comprehensive database that was assembled in the course of completing the ESI. The comprehensive database attempts to bring together all available data from the many investigations that have been conducted on the ponds over approximately a 15 year time span. Although this large database has the potential to reveal systematic variations in contaminant concentrations at the scale of the ponds, and to provide relatively robust statistics, there are unavoidable inconsistencies within the data. The different investigations involved a variety of sponsoring agencies, sampling crews, field sampling methods, analytical laboratories, and evolving technologies. For these reasons, reported "non-detect" results from the laboratories imply a wide range of detection limits, and were discarded prior to calculating all sample statistics reported in this section. In addition, a number of results in the database were identified in review as questionable due to possible laboratory error, data transcription error, etc. These,

too, were eliminated from the database prior to calculating descriptive statistics. That is, the discussion of conceptual models is based solely on what are believed to be "defensible" analytical results. Omission of non-detect analyses, rather than invoking some arbitrary substitution such as half the method detection limit, tends to bias the reported estimates of central tendency (i.e., arithmetic or geometric mean) high. The descriptive statistics summarized in this section are used solely for qualitative purposes to support the development of conceptual models for key elements.

In order to visualize the spatial distribution of key elements, bubble maps are provided for each element, with the exceptions of Mn and V. The data are presented for each pond separately, and for two depth intervals, 0-1 ft below the sediment/water interface ("shallow"), and >1 ft below the sediment/water interface ("deep"). The bubble maps display a name for every sample in the database; however, a bubble is plotted only for each detection. Non-detects are shown with the notation <MDL, where MDL is the reported detection limit. The area of each bubble is proportional to the concentration (in mg/kg) of the particular element displayed. Correspondingly, the diameters of the bubbles scale with the square root of the concentration. The bubble maps are provided in order to give a qualitative, visual impression of the distribution of detected concentrations. It is emphasized that the comprehensive data are assembled from all known sampling and analysis programs, and are not the result of a random sampling plan. For this reason, there are spatial biases in the database, e.g., higher sample density in known areas of concern, such as Tannery Cove in Grove Pond and Red Cove in Plow Shop Pond.

Histograms are presented for each element in each pond for the shallow (0-1 ft) sediment. The histograms show the frequency of occurrence of analyses within given ranges, based on log₁₀-transformed concentrations (in mg/kg). It is often observed that various environmental parameters are log-normally distributed, and there is some indication that the measured concentrations of inorganics in the pond sediments tend toward this pattern. That is, the histograms of the log-transformed data are, in many cases, approximately Gaussian. The peak of such a histogram is centered on the geometric mean of the sample population, and the spread about that peak is measured by the geometric standard deviation. Elements that show marked departures from a log-normal distribution of concentrations, as well as a large spread in concentrations (i.e., large geometric standard deviation), are suggestive of anthropogenic inputs to the system. This is apparent, for example, in the histogram for chromium in shallow (0-1 ft) sediment in Grove Pond.

This section of the report does not attempt to address polycyclic aromatic hydrocarbons (PAHs), which have been detected in various locations in Grove and Plow Shop Ponds. Of particular note are detections in sediment in the vicinity of the former Railroad Roundhouse site on the south shore of Plow Shop Pond. Sediment toxicity tests conducted by EPA in 2005 using sediment from this area demonstrated lethal effects on both midge-fly larvae and amphipods. However, because most of the sediment sampling and analysis conducted over the past two decades has been directed primarily toward metals contamination, insufficient data are available to support

the development of a conceptual model for PAHs. It is noted that additional investigation of sediment contamination immediately offshore from the Railroad Roundhouse is currently being undertaken by Army.

PCBs and pesticides also emerge from the present human-health risk analysis as risk drivers, and, like PAHs, are omitted from the discussion in this section. There are insufficient data for these analytes to support an interpretation of source(s) and transport.

5.1 Background:

According to the EPA guidance (2002), background is defined as:

- 1. Naturally occurring: present in the environment, not influenced by human activity
- 2. Anthropogenic: natural and man-made, present in the environment as a result of human activity but not specifically site-related

To date, there is no "sediment background" data set that has been collected explicitly for the purpose of establishing background concentrations of trace metals in Grove and Plow Shop Pond sediments. To assemble such a data set is difficult for the following reasons:

Data collected under a number of other programs (e.g., by Army, EPA, USF&W, USGS, etc.) suggest that the composition of groundwater discharging to these ponds is variable and location-dependent. Nevertheless, it has been documented that groundwater in the immediate vicinity of the ponds carries elevated levels of many of the elements of interest (particularly dissolved iron (Fe) and arsenic). Because the pond sediments are accumulating these elements through geochemical mechanisms such as sorption and precipitation, spatial variability, both vertically and laterally, in pond sediment composition is expected. It would be difficult to identify the number and location of pond sediment samples that adequately capture the range of conditions and concentrations represented in groundwater, even without consideration of any anthropogenic input.

In addition, both Grove and Plow Shop Ponds have existed, in an urban/industrial setting, for over 100 years. It is known that untreated tannery waste was discharged directly into Grove Pond at least throughout the first half of the 20th century (see, e.g., Gannett Fleming, 2002) and it is likely that other historical, industrial operations surrounding the ponds were also responsible for contributing some portion of the COPCs to the sediments. Unfortunately, records of operations and documentation of historical releases, either deliberate or unintended, are sparse. Thus, identifying the anthropogenic component of "background" in these sediments is extremely difficult.

Two sediment samples were obtained in Flannagan Pond and one was collected in Sandy Pond, both of which are located upstream from the study area. In addition, Norton, et al. (2001) analyzed one sediment core in Spectacle Pond, for comparison to cores that they collected from Grove Pond and Plow Shop Pond. However, the extent to which these ponds receive contributions from surface runoff, groundwater, and/or any anthropogenic sources that are different from inputs to Grove and Plow Shop Ponds is not known, and so these cannot be considered to represent "background" for the purpose of comparison to the subject ponds. In discussion of results from Flannagan, Sandy, and Spectacle Ponds, these locations will be referred to as "reference" areas rather than "background."

5.2 Pond Sediment Data Summary:

The following tables summarize descriptive statistics for seven key elements in each pond and for each of two depth intervals. Statistics for aluminum (Al) and iron (Fe) are also given because of their potential importance in the transport of the other metals. As noted in section 5.0, the dataset was first reviewed for questionable entries (e.g., possible faulty analyses, data-entry errors, etc.), and all non-detect (ND) results were omitted for the purpose of calculating the statistical parameters. In the following tables, the first column records the number of NDs present and the total number of samples present in the database. The succeeding columns display the arithmetic mean (AM), the arithmetic standard deviation (ASD), the minimum detected concentration (recall that, in many cases, lower concentrations may have been sampled, but are not considered if not detected), the maximum concentration, the geometric mean (GM) given as the arithmetic mean of the logarithm (base 10) of the concentrations, the geometric standard deviation (GSM) given in logarithmic (base 10) units, and the geometric mean given in mg/kg (GM (conc)). All concentrations are reported in mg/kg (ppm). Note that the descriptive statistics for vanadium and manganese are based only on data collected by EPA in 2004/2005, and thus represent a much smaller database than do those for the other elements shown in the tables. No deep (>1 ft) sediment from Grove Pond was analyzed in the EPA 2004/2005 program.

	Tabulated Data for Grove Pond Sediments, 0-1 ft							
	NDs/total	\mathbf{AM}	ASD	min.	max.	GM	GSD	GM (conc)
Al	0 / 142	11200	13100	1320	90000	3.9024	0.3206	7990
Fe	0 / 142	15500	8640	93	42800	4.0985	0.3381	12500
Pb	2 / 142	271	337	3.29	1760	2.1248	0.5804	133
Hg	24 / 120	25.8	68.5	0.128	420	0.6080	0.7991	4.06
As	3 / 142	81.6	97.2	3.09	910	1.6975	0.4673	49.8
Cd	54 / 133	31.2	83.9	1	730	1.1193	0.5272	13.2
Cr	5 / 140	6050	12200	4.69	52000	2.6895	1.1243	489
V	0 / 17	66.5	39.7	22	140	1.76	0.24	57.3
Mn	0 / 17	981	469	70	1800	2.91	0.33	818

Note: NDs are not included in statistics

Tabulated Data for Grove Pond Sediments, >1 ft

	NDs/total	AM	ASD	min.	max.	GM	GSD	GM
								(conc)
Al	0 / 14	4770	1370	2060	7800	3.6602	0.1383	4570
Fe	0 / 14	5280	3260	1280	13900	3.6439	0.2828	4400
Pb	6 / 16	122	310	3.21	1000	1.2863	0.7854	19.3
Hg	3 / 10	27.1	55	0.0808	150	0.5369	1.087	3.44
As	7 / 16	167	426	2.86	1300	1.3983	0.7882	25.0
Cd	15 / 16	3.59		3.59	3.59	0.5551		3.59
Cr	0 / 16	3290	10900	4.69	44000	1.9721	1.2065	93.8

Note: NDs are not included in statistics

Tabulated Data for Plow Shop Pond Sediments, 0-1 ft

	NDs/total	\mathbf{AM}	ASD	min.	max.	GM	GSD	GM
								(conc)
Al	1 / 108	8320	5370	388	27000	3.8106	0.3468	6470
Fe	0 / 108	58000	96300	428	410000	4.4217	0.5168	26400
Pb	9 / 108	188	210	3.88	1210	2.0042	0.5541	101
Hg	6 / 102	28.9	42.0	0.038	250	0.8721	0.8994	7.45
As	1 / 108	579	1060	3.49	6800	2.3365	0.6340	217
Cd	49 / 103	19.0	15.8	1.5	66	1.1316	0.3838	13.5
Cr	6 / 108	2590	4230	8.3	37800	2.9580	0.7827	908
V	5 / 20	39.2	22.5	7.1	80	1.50	0.32	31.8
Mn	0 / 20	3430	7350	130	34000	3.15	0.55	1410

Note: NDs not included in statistics

	NDs/total	AM	ASD	min.	max.	GM	GSD	GM (conc)
Al	0 / 79	4950	4800	353	29000	3.5358	0.3875	3430
Fe	0 / 79	15900	31600	335	220000	3.7922	0.5587	6200
Pb	13 / 79	33.2	52.4	0.757	260	1.0554	0.6609	11.4
Hg	26 / 78	16.2	38.4	0.1	220	0.4027	0.8308	2.53
As	9 / 79	163	377	1.53	2500	1.5447	0.7668	35.1
Cd	71 / 79	97.7	166	3.6	430	1.2959	0.8306	19.8
Cr	12 / 77	477	999	4.6	5700	2.1027	0.7102	127
V	4 / 24	15.0	12.5	3.2	51	1.05	0.33	11.2
Mn	0 / 24	792	900	31	4500	2.68	0.49	475

Note: NDs not included in statistics

5.3 Arsenic

For comparison to Grove and Plow Shop Pond sediments, the following values are reported from the reference areas, as described above (Sec. 5.1):

Reference Area	As Concentration (mg/kg)
Flannagan Pond	110 and 55
Sandy Pond	47
Spectacle Pond*	18
Grove Pond*	~18-20
Plow Shop Pond*	~29-59

^{*}Norton (2001) "background"

5.3.1 Distribution

5.3.1.1 Grove Pond

In Grove Pond surficial sediments (0 to 1 ft depth), 3 out of 142 samples reported non-detectable arsenic concentrations. Of the detected results, the arithmetic mean is 81.6 mg/kg and the geometric mean is 49.8 mg/kg (standard deviation of logs is 0.4673) (Fig. 5-1). Detected values range from 3.09 mg/kg to 910 mg/kg.

In deeper Grove Pond sediments (> 1 ft), 7 out of 16 samples reported non-detectable arsenic concentrations. Of the detected results, the arithmetic mean is 167 mg/kg and the geometric mean is 25.0 mg/kg (standard deviation of logs is 0.7882). Detected values range from 2.86

mg/kg to 1300 mg/kg. The sample reporting 1300 mg/kg, from Tannery Cove, is not only a statistical outlier but also is likely due to burial of tannery-contaminated material and thus is not true "deeper sediment." The next highest value in the deeper Grove Pond data set is 78 mg/kg. Without the 1300 mg/kg, the arithmetic mean of the Grove Pond deeper sediment arsenic concentrations is 25.6 mg/kg and the geometric mean is 15.3 mg/kg.

Arsenic values from shallow Grove Pond sediments are consistent with the upstream pond values, i.e. the arithmetic mean of 81.6 mg/kg is comparable to the values reported from Flannagan Pond (55 and 110 mg/kg) and Sandy Pond (47 mg/kg). There is at least one high value among the Grove Pond samples (the maximum observed, 910 mg/kg; GRD-92-03X, in Tannery Cove), and possibly a few more, but most of the data appear to be generally consistent with values reported from upstream locations. Overall, the data do not indicate that there has been extraordinary arsenic impact to Grove Pond sediments. There are a few elevated concentrations in and near Tannery Cove (e.g., GRD-95-27X, 340 mg/kg; Fig. 5-2), and it is possible that these sediments contain a component of contamination related to historical pesticide use at the tannery.

Data from the deeper Grove Pond sediments (Fig. 5-3) may be misleading because the sampling was biased toward Tannery Cove, and the "deep" samples probably were not always "deep." It is known that the sediments in the area of Tannery Cove have undergone considerable perturbation, including the deposition of fill in the cove, which would have buried earlier surficial sediments. Thus any tannery-related arsenic contamination may be present at depth when in fact it was originally deposited on the sediment surface. In addition, the deeper Grove Pond sediments comprise a small sample population (n = 9 reportable detections) and the geometric standard deviation is relatively large, reflecting this small sample size. The large scatter may be attributable to the few tannery-related high hits.

In the study by Norton, et al. (2001), arsenic concentrations are relatively low in the "asymptotic" portion of the sediment profiles (at a depth of approximately 50 cm; 18-20 ppm). The conceptual model developed by the authors of this study suggested that the arsenic was deposited from the "top down," so the deeper concentrations represent "ambient" material. However, this model neglects the possibility that some of the arsenic is accumulating in sediments by precipitation out of upwardly-discharging groundwater. It is known that groundwater on the south side of Grove Pond, in the vicinity of the Town of Ayer water-supply wells, is reducing and relatively high in dissolved arsenic and iron (maxima approximately 200 micrograms per liter and 22 mg/L, respectively; GF, 2002). This condition may exist elsewhere around Grove Pond as well as at other locations around Plow Shop Pond. When upward-moving, reducing groundwater reaches a redox boundary somewhere near the sediment-water interface and encounters more oxidizing conditions, the iron precipitates out as ferric oxides, hydroxides, or oxyhydroxides. These ferric iron phases are known for their capacity to sorb arsenic and other elements from solution. Thus, as groundwater passes through pond-bottom sediments, these elements may accumulate in the solid phase as a consequence of the redox controls on their mobility. Under this scenario, the

sedimentary profile has an entirely different origin, and it may be perfectly consistent to find arsenic at higher concentration in the shallower sediment.

5.3.1.2 Plow Shop Pond

In Plow Shop Pond surficial sediments (0 to 1 ft depth), 1 out of 108 samples reported non-detectable arsenic concentrations. Of the detected results, the arithmetic mean is 579 mg/kg and the geometric mean is 217 mg/kg (standard deviation of logs is 0.6340) (Fig. 5-1). Detected values range from 3.49 mg/kg to 6800 mg/kg.

In deeper Plow Shop Pond sediments (> 1 ft), 9 out of 79 samples reported non-detectable arsenic concentrations. Of the detected results, the arithmetic mean is 163 mg/kg and the geometric mean is 35.0 mg/kg (standard deviation of logs is 0.7668). Detected values range from 1.53 mg/kg to 2500 mg/kg.

The average arsenic concentration in shallow sediments in Plow Shop Pond is notably higher than that in Grove Pond (579 mg/kg, compared to 81.6 mg/kg). However, it is apparent (see, e.g., Fig. 5-4) that the sampling in Plow Shop Pond has been biased toward Red Cove and the west side of the Pond. Because these areas were targeted for specific reasons (known high concentrations of arsenic and iron) and samples are not randomly located, the distribution and average arsenic concentrations in Plow Shop Pond cannot be considered to be "representative." The observed differences between arsenic concentrations in Grove Pond and Plow Shop Pond sediments are attributed primarily to differences in the groundwater chemistry that is discharging to the ponds. The southwest side of Plow Shop Pond, including Red Cove, is characterized by reducing groundwater bearing significantly elevated levels of dissolved arsenic (up to several hundred micrograms per liter). The reasons for the local / regional difference in groundwater compositions is not known at this point, but EPA is currently conducting a comprehensive study that focuses on groundwater-surface water interaction in Red Cove.

The database for deeper sediments in Grove Pond is small (n=9 detected values), with one sample reporting 1300 mg/kg; without this sample, the mean for Grove Pond deeper sediments is 25 mg/kg. The arithmetic mean of Grove Pond surface sediments is 81 mg/kg, suggesting a ratio of arsenic concentration in shallow sediments to deep sediments of approximately 3:1. In contrast, the concentrations in Plow Shop Pond sediments, both shallow and deep, are larger and the databases are larger (n = 107 and n = 70 detectable values, respectively). Overall, surface sediments in Plow Shop Pond are higher in arsenic (arithmetic mean = 579 mg/kg) than in Grove Pond, and the deeper sediments also report higher arsenic concentrations (163 mg/kg). However, the ratio of arsenic concentration in shallow sediments to deep sediments in Plow Shop Pond is also approximately 3:1. Thus, the observed distribution of arsenic in deep and shallow Plow Shop Pond sediments is consistent with the upward movement of groundwater bearing dissolved arsenic under reducing conditions and precipitation upon reaching a redox boundary near the sediment-water interface. A more detailed conceptual model is postulated in Sec. 5.3.3.

5.3.2 Transport Processes

The most common oxidation states in which arsenic occurs in the natural environment are +3, +5, and -3. In solution, the principal inorganic species are referred to as arsenate, or As(V), usually without regard to degree of protonation, and arsenite, As(III). Under moderately oxidizing conditions (ORP > +100 mV), arsenic occurs predominantly as As(V), while As(III) is present under moderately reducing conditions. As(V) sorbs more strongly, especially to hydroxide surfaces of iron, manganese, and aluminum. Cations, anions, and uncharged species are attracted to sites on these surfaces that may also be positively, negatively, or neutrally charged, i.e. represented as Fe—OH₂⁺, Fe—O⁻, and Fe—OH⁰, respectively. Because As(III) species sorb less strongly, arsenic is both more mobile and more toxic in the trivalent state. The solubility, toxicity, mobility, and bioavailability of As(V) and As(III) have been addressed at length in a number of papers in the recent literature. Some excellent sources are the review papers by Bhumbla and Keefer, 1994; Smith et al, 1998; and Cullen and Reimer, 1989.

In oxygenated fresh waters in the pH range from \sim 5 to 9, the dominant As(V) species are $H_2AsO_4^-$ (from pH <3 to around pH 7) and $HAsO_4^{-2}$ (to pH \sim 11). The dominant As(III) species in this pH range is $H_3AsO_3^{-0}$ (see, e.g., Cherry et al, 1979). The pH values measured in Grove Pond and Plow Shop Pond groundwater and surface water lie within this range. In anoxic systems, As(III) is the thermodynamically significant form. Under extremely reducing, acidic conditions and in the presence of sulfur, As_2S_3 (the mineral orpiment) or AsS (realgar) may form. At neutral to alkaline pH, thioarsenite species, including $AsS(SH)(OH)^-$, $As(SH)S_2^{-2}$, AsS_3^{-3} and $As(SH)_4^-$ complexes, may be important (Bostick et al., 2005).

The redox behavior of arsenic in natural systems is complex. Thermodynamically, As(V) should be the dominant form relative to As(III). A recent study of arsenic in groundwater in a glacial-till aquitard system presents evidence of the suitability of using the As(V)/As(III) redox couple as an indicator of the oxidation-reduction potential of the system (Yan et al, 2000). However, thermodynamically predicted As(V)/As(III) ratios are rarely observed, and it is probable that relative concentrations of these species are affected by microbial reactions.

Both pH and microbial activity influence the oxidation of arsenite to arsenate, and the reduction of arsenate to arsenite. Bacteria, fungi, and some plants convert inorganic arsenic to organic forms (e.g., various methylated species such as monomethyl and dimethyl arsenic). Some of the organic species are volatile (e.g. dimethyl arsine) but the predominant species are non-volatile or semi-volatile (Argonne National Laboratory, Human Health Fact Sheet, August 2005). Concentrations of organic arsenic species are controlled by the composition of the microbial population; nature and concentration of organic matter; redox conditions; pH; mineral composition; and moisture. A more detailed description of these processes, as well as an extensive discussion of the bacterial methylation of arsenic, and a discussion of the uptake of arsenic by terrestrial and aquatic plants, is found in Cullen and Reimer, 1989.

5.3.3 Conceptual Model

Arsenic is a naturally occurring element that is commonly found in New England soils and groundwater. Originally associated primarily with sulfide minerals in bedrock, arsenic is redistributed throughout the overburden by physical (e.g. glacial erosion and transport) and chemical processes (e.g., dissolution, precipitation, adsorption). In addition, anthropogenic arsenic sources include waste incineration, coal combustion, metal mining, pesticide and herbicide applications, and use as a wood preservative. Potential sources that may have contributed arsenic to Grove Pond and Plow Shop Pond include local apple orchards, the leather tannery, and numerous historical industrial operations surrounding the ponds.

Concentrations of arsenic in Grove and Plow Shop Ponds are clearly elevated in places and exceed some standard risk thresholds (e.g., secs. 6 and 7). One distinct "hotspot" occurs along the southwest shore of Plow Shop Pond (see Fig. 5-4). In July 2004, EPA sampled groundwater via GeoProbe at several points around Plow Shop Pond. Two of these were located immediately adjacent to Red Cove, in order to characterize the vertical distribution of arsenic and other parameters in groundwater discharging to the cove (EPA data, July 2004). Data from these vertical profiles show that ORP ranges from -133.9 mV (at a depth of 30-32 ft BGS immediately adjacent to Red Cove) to +94.7 mV (at a depth of 6-8 ft BGS near the Plow Shop Pond dam). Dissolved arsenic ranges from non-detect at 1 microgram per liter to several hundred ppb (maximum 740 ppb, at a depth of 14 ft below ground surface (BGS) near Red Cove); and dissolved iron is present at concentrations between 430 and 72000 micrograms per liter. ORP generally decreases with depth below ground surface, pH increases, and both iron and arsenic concentrations increase as ORP decreases (Fig. 5-6). The positive correlation between dissolved arsenic and iron observed in these data suggests that reductive dissolution of ferric oxyhydroxides in the overburden and release of sorbed constituents is responsible for the elevated arsenic in groundwater discharging toward the Cove. When this reducing groundwater reaches a redox interface, the ferrous iron in solution forms a number of phases that sorb arsenic and other dissolved trace metals (LaForce et al., 2000; Harrington et al., 1998; Brannon and Patrick, 1987; and Moore et al., 1988).

The association of reducing groundwater with high Fe and high As concentrations is observed throughout the region. While the presence of Shepley's Hill Landfill may be a factor in mobilization of Fe and As in groundwater reaching Red Cove, the extent to which anthropogenic versus natural processes are responsible for high As concentrations in Plow Shop Pond (specifically in Red Cove) is currently unknown. Ongoing investigations by the EPA and Army may provide additional insights into the cause of the low-ORP, high-Fe, high-As groundwater on the east side of the landfill. In the fall of 2005, EPA Office of Research and Development (ORD) personnel began a focused investigation of groundwater-surface water interaction in the vicinity of Red Cove. A key objective of their study is the identification of the processes that control arsenic behavior at Red Cove. As part of this study, groundwater, surface water, pore water, and sediments have been sampled and will be characterized for a more comprehensive

understanding of the mechanisms that determine arsenic mobility at this location. Documentation is anticipated in 2007. In addition, Army is undertaking a Comprehensive Site Assessment and a Corrective Action Alternative Analysis for Shepley's Hill Landfill, which may also provide insight into the relationships between the landfill, groundwater geochemistry, and groundwater – surface water interaction. Pending results of these studies, no definitive conclusions can be drawn regarding the role of the landfill in mobilizing arsenic transport to Red Cove. This question is beyond the scope of the present report.

Conclusions (Arsenic):

The following points are offered in support of the 'weight of evidence' conclusion that elevated levels of arsenic in Grove Pond and Plow Shop Pond sediments, particularly in the vicinity of Red Cove, are due to accumulation from groundwater:

- Low-ORP, high-Fe, high-As groundwater is known to be discharging toward the Cove (supported by EPA 2004 groundwater data);
- Presence of low-ORP, high-Fe, high-As groundwater and high-As sediments elsewhere, at locations not impacted by landfills (e.g., Grove Pond);
- Observed oxidation and precipitation of iron, as Fe(III) oxide phases, in Red Cove sediments (i.e., the red floc often observed on the sediment surface);
- Known affinity of hydrous ferric oxides for arsenic and other trace metal species in solution, resulting in the observed association of Fe and As in a fixed ratio in pond sediments (Fig. 5-7);
- Decrease in sediment arsenic concentration along west side of Plow Shop Pond, approaching the 'hinge' where the more oxidizing pond water is recharging groundwater;
- Lack of a plausible anthropogenic explanation for fairly uniform but elevated As concentrations in sediments across both Grove and Plow Shop Ponds (with the exception of Red Cove), both of which are shallow, low-energy environments unfavorable to large-scale sedimentary mixing;
- Accumulation of arsenic in sediments at redox boundaries is a recognized phenomenon.

In addition, arsenic may be precipitating in pond sediments in sulfide phases that may include either discrete As-sulfides such as orpiment (As_2S_3) or realgar (As_2S_2) , or in association with Fesulfides (Huerta-Diaz et al., 1998). Although this mechanism is incompletely understood at present, the formation of arsenic phases under sulfidic conditions is the subject of ongoing research (e.g., Wilkin and Ford, 2002; Wilkin, 2001; Wilkin et al., 2002). The precipitation of

realgar has been reported in marine sediments (O'Day et al., 2004) and the precipitation of arsenic sulfides has been postulated as an explanation of the observed decrease in aqueous arsenic concentrations in very low-ORP groundwater at several sites in New England (Stein, et al., 2005). While no data currently exist to support the occurrence of this mechanism in sediments from Grove or Plow Shop Pond, EPA investigators (study in progress; Ford et al., 2006) have observed zones of black, organic-rich sediment in shallow cores taken in Red Cove. Results obtained by Ford and co-workers from such intervals will yield insights into the nature of As or As-Fe phases forming under anoxic conditions in Plow Shop Pond sediments.

In Grove Pond, another "hotspot" is observed in the vicinity of Tannery Cove. It is probable that arsenical pesticides were used at the tannery, but this mass contribution is minor compared to contributions from groundwater (see, e.g., Fig. 5-1), especially on the southwest shore of Plow Shop Pond. Sample GRD-95-26, located in Tannery Cove and at a depth of 3 ft, reported 1000 mg/kg Pb and 1300 mg/kg As, which may be indicative of the use of lead arsenate, an insecticide that first came into use in Massachusetts in 1892 (Peryea, 1998). In the same sample, Cr and Hg are reported at 44000 mg/kg and 150 mg/kg, respectively, and these elements are also consistent with tannery-related chemicals. It is apparent that this sample contains some component of contamination from the tannery, but the depth of this sample suggests that the contamination was initially a surficial deposit that was subsequently buried by fill.

5.4 Cadmium

5.4.1 Distribution

Cadmium does not prove to be a major risk driver for either human health or ecological receptors in the present assessment (Secs. 6 and 7). However, it has been singled out previously as a contaminant of potential concern (e.g., ABB, 1995). For this reason, a brief discussion of the distribution of cadmium in the ponds is offered here for completeness. For comparison to Grove and Plow Shop Pond sediments, the following values are reported from the reference areas, as described above (Sec. 5.1):

Reference Area	Cd Concentration (mg/kg)
Flannagan Pond	11 and 13
Sandy Pond	<3
Spectacle Pond*	0.44
Grove Pond*	~0.2 – 0.38
Plow Shop Pond*	~<0.2 - 0.58

^{*}Norton (2001) "background"

5.4.1.1 Grove Pond

The distribution of cadmium detections in shallow (0-1 ft) sediment samples from Grove Pond is shown in Figure 5-8. There is no obvious spatial pattern of cadmium concentrations. The maximum detection is 730 mg/kg, in a sample at the west end of the pond, adjacent to the railroad causeway. This is an outlier within the available data; the next highest detection is 130 mg/kg, located in the center of the pond. Cadmium was not detected in 54 of 133 samples in the database for shallow sediment. The arithmetic mean of the 79 detections is 31.2 mg/kg; the geometric mean is 13.2 mg/kg (Fig. 5-9). The geometric mean is nearly identical to that for Plow Shop Pond detections (13.5 mg/kg). That is, this measure of central tendency does not distinguish the two ponds.

Based on his own more limited sampling (three cores and ten surface grab samples), Norton (2001) suggests that there is a preponderance of higher concentrations in the eastern end of Grove Pond. Based on the comprehensive data displayed in Figure 5-8, this pattern is not strongly supported. Norton calculated an arithmetic mean of 12 mg/kg for his ten surface sediment samples, within a factor of 2 to 3 of the mean calculated for the comprehensive data set.

Cadmium was detected in the two upstream reference samples from Flannagan Pond at 11 and 13 mg/kg, and was ND (<3 mg/kg) in the single upstream reference sample from Sandy Pond. Based on this very small sample set, there is nothing to distinguish shallow-sediment Cd detections in the upstream reference ponds from those in Grove Pond.

Sampling of deep (>1 ft) sediment in Grove Pond is relatively sparse, and Cd was detected in only one of fifteen samples, at a concentration of 3.59 mg/kg (Fig. 5-10). Based on these limited data, it appears that cadmium concentrations at depth are lower overall than those in the upper 1 ft of sediment.

5.4.1.2 Plow Shop Pond

The distribution of cadmium detections in shallow (0-1 ft) sediment samples from Plow Shop Pond is shown in Figure 5-11. There is some suggestion that the higher detections tend to be more concentrated toward the western shore. The maximum detection is 66 mg/kg, in a sample in the southwest portion of the pond known as Red Cove. Cadmium was not detected in 49 of 103 samples in the database for shallow sediment. The arithmetic mean of the 54 detections is 19.0 mg/kg; the geometric mean is 13.5 mg/kg (Fig. 5-9). The geometric mean is nearly identical to that for Grove Pond detections (13.2 mg/kg). That is, this measure of central tendency does not distinguish the two ponds.

For comparison, Norton (2001) reports an arithmetic average for Cd in 10 shallow-sediment grab samples of 6 mg/kg, about one third of the result for the larger database considered here. The estimates of central tendency for Cd in shallow sediment in Plow Shop Pond (arithmetic mean: 19.0 mg/kg; geometric mean: 13.5 mg/kg) are comparable to the single-sample results for the upstream reference ponds (one ND, and detections of 11 and 13 mg/kg).

The majority of deep sediment samples (>1 ft) from Plow Shop Pond (Fig. 5-12) did not yield detectable cadmium; 71 of 79 samples were ND. Two samples show anomalously high detections. The highest cadmium concentration found in deep Plow Shop Pond sediment is 430 mg/kg at a depth of 1.5 ft, immediately off the Railroad Roundhouse site (PSPC09). The other high detection is in Red Cove (PSPC19), with a concentration of 290 mg/kg at a depth of 3.5 ft. The arithmetic mean of the 8 detections in deep sediment is 97.7 mg/kg; the geometric mean is 19.8 mg/kg. Note that these values are not indicative of the central tendency across the pond, because they give no weight to the non-detects, which dominate the overall dataset. In addition, it is noted that both the area off the Railroad Roundhouse site and the area of Red Cove may have received an input of sediment due to various site activities (e.g., erosion from the steep slopes between the roundhouse and the pond and between Shepley's Hill Landfill and the pond), so that "deep" (>1 ft) sediment may have been closer to the sediment – water interface in relatively recent years.

5.4.2 Transport Processes

Cadmium occurs as Cd²⁺ and in a variety of Cd(II) solids (e.g., CdO, CdCO₃, CdCl₂, CdSO₄, CdS). Like other metal cations, cadmium sorbs onto oxyhydroxides of Fe, Al, and Mn. In an aqueous environment, cadmium will eventually precipitate as an oxide or a sulfide, depending upon local redox conditions and the availability of reduced sulfur.

5.4.3 Conceptual Model

Cadmium appears to be somewhat elevated in Grove Pond and Plow Shop Pond shallow sediment relative to what might be considered "background" for the area. Norton (2001) collected and analyzed a core from Spectacle Pond, located about 3.5 miles to the east, as representative of a nearby pond not subject to historical industrial activities. The highest Cd detected in the Spectacle Pond core was 1.64 mg/kg. In contrast, central tendency estimates for Grove and Plow Shop Ponds shallow sediment (0-1 ft) are of the order of tens of mg/kg. Cadmium in the ponds generally shows no systematic spatial variation in map view, suggesting that its presence may be related to widespread urban and industrial activities surrounding the ponds. Scattered high values, such as the 730 mg/kg detection near the western shore of Grove Pond, may reflect sporadic, local sources. There is a suggestion of higher concentrations (of the order of tens of mg/kg) along the southern and western shores of Plow Shop Pond (Fig. 5-11). It is possible that the Cd originates in adjacent soils, and that the clastic sedimentation rate is somewhat higher in these areas because of relatively steep slopes and some bare ground on the shore. This speculation is further supported by the observation of detections of Cd in the deep (>1 ft) sediment in the same areas. Elsewhere, there is a striking contrast between shallow sediment (0-1 ft), in which nearly half of all samples show detectable cadmium, and deeper sediment (>1 ft), in which Cd was detected in less than 10% of all samples.

Cadmium enters the environment via a number of uses. It is present in petroleum and coal, and is consequently released to the atmosphere in combustion products, and subsequently deposited to surface soil and water. In addition, particulates from tire wear contribute Cd near roads (California Air Resources Board, 2004). Cadmium is used extensively in batteries. possible use near the ponds is in vented Ni-Cd batteries, often used in diesel locomotives, which are known to release Cd to the environment (Dartmouth Toxic Metals Research Program, 2005). Cadmium is also widely used as a pigment in paints, plastics, ceramics, enamels, and glass; its use in dyes goes back to the 19th century and before. Historical maps and drawings of the Town of Aver show an industrial facility on the north shore of Plow Shop Pond in the late 19th century it is unknown whether or not this business labeled Nashoba Mordant and Dye Company; manufactured or handled cadmium-based pigments. Other possible industrial users of Cd include the former tannery and the present-day plastics business on the northwest shore of Grove Pond. Cadmium is added to plastics not only as a pigment, but also as a stabilizer against degradation by light and temperature (ATSDR, 1999). Cadmium has been used in rare instances in the tanning process (Dartmouth Toxic Metals Research Program, 2005), but there is no indication of a spatial association with the tannery site on Grove Pond, or any apparent correlation with more unequivocal tannery contaminants, such as chromium.

Detections of Cd at concentrations of several hundred mg/kg in deep Plow Shop Pond sediment adjacent to the Railroad Roundhouse and in Red Cove appear to be isolated, and are of unknown origin. Both areas may have been subject to relatively rapid sedimentation due to erosion of the steep slopes between the roundhouse and the pond and between Shepley's Hill Landfill and the pond, so that material that was at the sediment – water interface during the 20th century is now buried to depths up to several feet.

It is noted in the comprehensive data for sediment in Grove and Plow Shop Ponds that there is a rather strong empirical correlation between cadmium and lead. Figure 5-13, for example, shows that the ratio of Pb to Cd is constant over the upper 15 cm of Grove Pond Core #1 analyzed by Norton (2001). Such a correlation is suggestive of either a common source (i.e., Cd and Pb were released to the environment in a roughly fixed proportion, which is retained through their transport and accumulation processes in the ponds), or common controls on transport once in the environment (i.e., the sources may be different, but the predominant transport processes tend to distribute the metals spatially in a similar fashion). The former scenario is consistent, for example, with a source in combustion of leaded fuels with minor Cd impurities. At depth (Fig. 5-13), the Cd concentrations decrease more rapidly than do the Pb concentrations; no explanation for this systematic variation has been identified.

In summary, cadmium is somewhat elevated in shallow sediment across both ponds, at geometric mean concentrations of the order of 10 mg/kg. The widespread presence of Cd is likely attributable to deposition from the atmosphere and from particulates carried to the ponds in stormwater runoff. In addition, there are sporadic, local concentrations of the order of hundreds of mg/kg, possibly related to historical industrial and transportation activities around the ponds.

Specific discrete sources are not indicated by the available data, and ultimate sources of release remain unknown.

5.5 Chromium

5.5.1 Distribution

For comparison to Grove and Plow Shop Pond sediments, the following values are reported from the reference areas, as described above (Sec. 5.1):

Reference Area	Cr Concentration (mg/kg)
Flannagan Pond	21 and 14
Sandy Pond	27
Spectacle Pond*	24
Grove Pond*	~30-35
Plow Shop Pond*	~8-50

^{*}Norton (2001) "background"

5.5.1.1 Grove Pond

In Grove Pond surficial sediments (0 to 1 ft depth), 5 out of 140 samples reported non-detectable chromium concentrations. Of the detected results, the arithmetic mean is 6050 mg/kg and the geometric mean is 489 mg/kg (standard deviation of logs is 1.1243) (Fig. 5-14). Detected values range from 4.69 mg/kg to 52000 mg/kg.

In deeper Grove Pond sediments (> 1 ft), 0 out of 16 samples reported non-detectable chromium concentrations. The arithmetic mean is 3290 mg/kg and the geometric mean is 93.8 mg/kg (standard deviation of logs is 1.2065). Detected values range from 4.69 mg/kg to 44000 mg/kg.

Chromium concentrations in sediments from the reference areas are remarkably uniform, generally around ~ 20 to 30 mg/kg, suggesting that this is a "typical" ambient Cr value. However, extreme values – up to three orders of magnitude higher than the background range – are likely due to anthropogenic impacts. The distribution of these extreme concentrations (Fig. 5-15) indicates an association with the former tannery, with some transport to the east and also to the west, through Plow Shop Pond. Also, the very high values in deep sediment (Fig. 5-16) are located in Tannery Cove. Although initially tannery-related and likely the result of surface deposition, these concentrations are found in sediments that are now deep due to burial by infilling of the cove. The standard deviations of the logarithmically transformed data from Grove and Plow Shop Ponds are high, due to the large spread in the data. Figure 5-14 shows the distributions of Cr data from Grove and Plow Shop Ponds.

In addition to the high Cr concentrations found near the former tannery site, two sediment samples from the southwest cove of Grove Pond exhibit elevated Cr. Samples GRD-95-29X and GRD-95-46X are reported at 20400 mg/kg and 2010 mg/kg, respectively. The higher of these two is among the samples exhibiting a correlation between Cr and Hg, suggesting a possible association with tannery-derived contamination.

5.5.1.2 Plow Shop Pond

In Plow Shop Pond surficial sediments (0 to 1 ft depth), 6 out of 108 samples reported non-detectable chromium concentrations (Fig. 5-17). Of the detected results, the arithmetic mean is 2590 mg/kg and the geometric mean is 908 mg/kg (standard deviation of logs is 0.7827) (Fig. 5-14). Detected values range from 8.3 mg/kg to 37800 mg/kg.

In deeper Plow Shop Pond sediments (> 1 ft), 12 out of 77 samples reported non-detectable chromium concentrations (Fig. 5-18). The arithmetic mean is 477 mg/kg and the geometric mean is 127 mg/kg (standard deviation of logs is 0.7102). Detected values range from 4.6 mg/kg to 5700 mg/kg.

5.5.2 Transport Processes

The most common oxidation states of chromium are Cr⁰, Cr⁺³ (trivalent chromium) and Cr⁺⁶ Most naturally occurring chromium is in the form of Cr(III), while (hexavalent chromium). anthropogenic chromium enters the environment usually as Cr(III) or Cr(VI). Most Cr(VI) salts have high solubilities, while the solubilities of Cr(III) solids (oxides, hydroxides, or oxyhydroxides) are low, of the order < 0.05 parts per billion at pH = 6 (James, 2002). Chromate is a strong oxidant, and Cr(VI) is relatively easily reduced in the environment by interaction with such common reductants as Fe(II) and organic matter (Rai et al., 1989). The oxidation of Cr(III) to Cr(VI) is slow and controlled primarily by Mn-oxide. Cr(III) either sorbs or precipitates readily, through adsorption onto ferric oxyhydroxides; by precipitation as a discrete Cr-oxide or oxyhydroxide; or through substitution of Cr⁺³ for Fe⁺³, due to their similar ionic radius and charge, and precipitation as a mixed Cr⁺³--Fe⁺³oxide, hydroxide, or oxyhydroxide, e.g. (Cr_xFe₁-_x)(OH)₃. In the pH range from 4 to 9 and at redox potentials (Eh) between approximately +250 and +750 mV, the dominant Cr(VI) species in solution are HCrO₄ and CrO₄-2. At lower Eh and with increasing pH, Cr(III) species are Cr⁺³, Cr(OH)⁺², Cr₃(OH)₄⁺⁵, Cr(OH)₂⁺, and Cr(OH)_{3(aq)} (calculated using Geochemist's Workbench; Bethke, 19xx; at 25 °C, chromium activity = 10⁻⁵). In solution, aqueous concentrations of Cr(VI) are controlled mainly by adsorption/desorption and precipitation/dissolution reactions under neutral to acidic conditions, while Cr(III) concentrations are determined primarily by precipitation/dissolution of Cr(III) solids (Rai et al., 1989).

The solubility of Cr(III) may be enhanced by complexation or chelation with organic molecules. It is known, for example, that organic acids containing carboxyl groups (e.g., --RCOOH) can coordinate with Cr(III) to form complexes that may remain in solution for days to months.

Factors affecting the solubility of Cr(III) in these forms include pH, light, concentration and molecular weight of organic acids, and microbial activity (James, 2002; James and Bartlett, 1983; Srivastava et al., 1999). The accumulation of Cr by aquatic plants is also known (e.g., Cossich et al., 2002). The large amount of aquatic vegetation observed in both Grove and Plow Shop Ponds may have played a significant role in the distribution of chromium, originating at the former tannery site, in pond sediments. However, the extent to which chromium transport in the ponds has occurred, either as organic complexation of Cr(III) or sorption/uptake by aquatic plants, is unknown and cannot be determined from currently available data.

5.5.3 Conceptual Model

Known uses of chromium (both Cr(III) and Cr(VI)) include chrome plating operations, the manufacture of dyes and pigments, steel-making, leather tanning, wood preservation, and as rust and corrosion inhibitors and algaecides in industrial processing water. In addition, chromium compounds are also used in the textile industry as mordants, and lead chromate ("chrome yellow") is a pigment that is used in paints, plastics, and printing ink. At least two historical industries that may have used some of these chromium compounds were located in the immediate vicinity of the ponds, including the Nashoba Mordant and Dye Company, located at the northern end of Plow Shop Pond, and the tannery at the northwest corner of Grove Pond.

In the leather-tanning process, chromium salts are commonly used, most often as a basic Cr(III) sulfate. Hides are pickled in an acidic solution at a pH of 3, the chrome solution is introduced, and the pH is increased. Because the tannery discharged an untreated waste stream directly into Grove Pond from the beginning of operations in the mid-19th century until the middle of the 20th century, it is likely that Grove and Plow Shop Pond sediments contain some component of tannery-related chromium contamination. Some Cr (III) precipitates as mixed Cr-Fe oxide or is removed from solution by adsorption onto Fe (and/or Al, Mn) oxides in sediment. In addition, organic complexation of Cr(III) and/or uptake of Cr by suspended aquatic vegetation can enhance chromium mobility and may account for the observed distribution in pond sediments, particularly in Plow Shop Pond. Such processes may also bear on the apparently anomalous detection of chromium at 20,400 mg/kg in the southwest cove of Grove Pond.

The Massachusetts Department of Environmental Protection performed an investigation of the former tannery site in 1999 (MADEP, 2000) that included sampling of soils and groundwater, as well as adjacent sediment and surface water in Tannery Cove. Although high concentrations of chromium were detected in site soils (maximum 63,800 mg/kg at 9-11 ft bgs in the boring for MW-6), groundwater concentrations were relatively low (maximum (dissolved) 69 µg/L at PZ-1R, November 1999). The MADEP concludes, Calculations based on data from the piezometers, seepage meters, and monitoring well indicate that under current conditions, transfer of metals from groundwater to Grove Pond sediments near the PDC site is not a significant source of metals in the sediments." (MADEP, 2000, sec. 9.40, p. 30)

It is notable that chromium concentrations in shallow (0-1 ft) sediments are ubiquitously high across Plow Shop Pond (Fig. 5-17); many samples report Cr at least two orders of magnitude above the reference area concentrations. Although there is little doubt that the tannery contributed significant quantities of chromium to the pond system, questions of additional sources and transport mechanisms remain open to speculation.

Elevated concentrations (of the order of thousands of mg/kg) are found in deep sediment (>1 ft) along the southern and western shores of Plow Shop Pond (Fig. 5-18). It is possible that the Cr was originally deposited at the water/sediment interface, and subsequently buried to appear in "deep" sediment. As noted in the discussion of Cd in deep Plow Shop Pond sediment (sec. 5.4.3), there are suggestions that the clastic sedimentation rate is somewhat higher along the southern and western shores because of relatively steep slopes and some bare ground.

Chromium may have been used to treat industrial-process waters that were discharged to one or both ponds, as an algaecide or a rust inhibitor. A good-faith effort was made to search the records of the Town of Ayer for any information that such treatments might have contributed to the Cr load in pond sediments, without success. Inquiries to the Town of Ayer regarding this question did not produce any response, so any direct anthropogenic contributions cannot be established with certainty.

Conclusions (Chromium):

Any interpretation is largely speculative, given the available data and information on industrial use or discharge of these elements. Nevertheless, the following points are offered in support of the 'weight of evidence' conclusion that elevated levels of chromium in Grove Pond and Plow Shop Pond sediments are due to waste discharged by the former tannery and transported by dissolved or suspended organic matter:

- Cr(III) may remain in solution for long periods when in the form of organic complexes
- Uptake/accumulation and mobilization by aquatic vegetation is a plausible mechanism, given the amount of biomass in each of the subject ponds
- The highest Cr concentrations and the highest Pb concentrations are strongly correlated (R² > 0.9) and are found in sediments from Tannery Cove (Fig. 5-19). Elsewhere in both ponds, the correlation between Cr and Pb is weak or non-existent. This observation is consistent with postulated uses of both Cr (in the tanning process) and Pb, possibly as an arsenate pesticide, at the tannery.
- Chromium is correlated with mercury in both Grove and Plow Shop Pond sediments (Fig. 5-20), suggesting a possible common source and transport mechanism (see Conceptual Model for Hg in Sec. 5.6.3). The data shown in Fig. 5-20 for Grove Pond sediments indicate two

possible Cr/Hg trends, possibly indicating that two different mechanisms may be responsible for their behavior in pond sediments, such as abiotic and inorganic adsorption (e.g., onto Fe(III) phases) and organic and/or aquatic-plant controlled uptake and deposition.

5.6 Mercury

5.6.1 Distribution

For comparison to Grove and Plow Shop Pond sediments, the following values are reported from the reference areas, as described above (Sec. 5.1):

Reference Area	Hg Concentration (mg/kg)
Flannagan Pond	0.3 and 0.3
Sandy Pond	0.62
Spectacle Pond*	0.112
Grove Pond*	~0.090 - 0.180
Plow Shop Pond*	~0.170 – 2.323

^{*}Norton (2001) "background"

5.6.1.1 Grove Pond

The distribution of mercury detections in shallow (0-1 ft) sediment samples from Grove Pond is shown in Figure 5-21. There is a clear preponderance of higher concentrations in the northwestern portion of the pond, known as Tannery Cove. The maximum detection is 420 mg/kg, in a sample in this area (GRD-92-03X). The second highest detection is also in Tannery Cove, at 340 mg/kg (GP13). Mercury was not detected in 24 of 120 samples in the database for shallow sediment. The arithmetic mean of the 96 detections is 25.8 mg/kg; the geometric mean is 4.06 mg/kg (Fig. 5-22). (Note that the apparent anomaly on the bubble plot (Fig. 5-21) in the far SW cove of Grove Pond is a data-entry error. The reported Hg concentration there is 4.22 mg/kg. It is entered in the database at 422 mg/kg. The sample number is GRD-95-44X.)

Based on a smaller sample set of ten surface grabs, Norton (2001) calculated an arithmetic mean of 29.3 mg/kg, very close to that computed for the comprehensive dataset discussed in the foregoing.

Mercury was detected in the two upstream reference samples from Flannagan Pond at 0.3 mg/kg, and in the reference sample from Sandy Pond at 0.62 mg/kg. Based on this limited comparison, it appears that mercury is significantly elevated in shallow Grove Pond sediment relative to the upstream reference ponds, particularly in the area of Tannery Cove. It is emphasized again that the central tendency estimates for the comprehensive data are based on detections only, and are therefore biased high with respect to the pond-wide mercury concentrations.

Sampling of deep (>1 ft) sediment in Grove Pond is relatively sparse (Figure 5-23), and Hg was detected in seven of ten samples. Although there is a suggestion of higher detections in the Tannery Cove area, this conclusion is tentative because of the paucity of samples across the majority of the pond. The arithmetic mean of the seven detections is 27.1 mg/kg; the geometric mean is 3.44 mg/kg. These central-tendency estimates are strongly influenced by a few high detections in the Tannery Cove area, and are not representative of the pond as a whole. The maximum concentration detected in deep sediment is 150 mg/kg (GRD-95-26X) at a depth of 3 ft. The next highest detection is also in Tannery Cove, 28 mg/kg (GRD-95-27X) at a depth of 5 ft. It is noted that the area off the former tannery site is known to have been subject to filling, so that "deep" (>1 ft) sediment was likely closer to the sediment – water interface in relatively recent years.

5.6.1.2 Plow Shop Pond

The distribution of mercury detections in shallow (0-1 ft) sediment samples from Plow Shop Pond is shown in Figure 5-24. No spatial pattern is apparent; the higher detections are scattered widely across the pond. The maximum detection is 250 mg/kg, in a sample from the northwest portion of the pond near the opening of the outlet cove. Mercury was not detected in only 6 of 102 samples in the database for shallow sediment. The arithmetic mean of the 96 detections is 28.9 mg/kg; the geometric mean is 7.45 mg/kg (Fig. 5-22). These measures of central tendency are both higher than those for shallow sediment in Grove Pond (25.8 mg/kg and 4.06mg/kg, respectively).

For comparison, Norton (2001) reports an arithmetic average for Hg in 10 shallow-sediment grab samples of 18.4 mg/kg, about 36% lower than the result for the larger database considered here. Mercury was detected in the three samples from the two upstream reference ponds at 0.3, 0.3, and 0.62 mg/kg. Based on this limited characterization of the reference ponds, it appears that Hg is elevated in shallow sediment in Plow Shop Pond relative to upstream areas.

Mercury in deep sediment samples (>1 ft) from Plow Shop Pond is also elevated relative to available reference values. 26 of 78 available deep sediment analyses are non-detect. The arithmetic mean of the 52 detections is 16.2 mg/kg; the geometric mean is 2.53 mg/kg. There is some suggestion that the higher concentrations of mercury in deep Plow Shop Pond sediment tend to be found along the western shore (Figure 5-25). The maximum detection of Hg in deep sediment is 220 mg/kg, obtained for sample PSPC19 at a depth of 3.5 ft, located in Red Cove. Other relatively high detections in deep sediment are at PSPC15 at a depth of 1.5 ft (117 mg/kg), at the mouth of the northwest outlet cove, and at PSPC17 at a depth of 1.5 ft (96 mg/kg), near the northwest shore, south of PSPC15. Note again that it is possible that sedimentation along the western shore, perhaps due to erosion of the steep slope between Shepley's Hill Landfill and the pond, may have buried sediment formerly closer to the sediment – water interface.

5.6.2 Transport Processes

Mercury occurs in three oxidation states. Hg(0) is present either as a liquid at room temperature or as a gas (95% of Hg in the atmosphere is Hg⁰). Mercury can exist in soil and water in a number of Hg(I) and Hg(II) species. The dominant process controlling Hg transport appears to be the sorption of nonvolatile forms to particulates in soil or in the water column and subsequent deposition in sediments (Hurley, et al., 1991). Mercury is transformed by biotic and abiotic oxidation and reduction reactions, bioconversion of inorganic and organic forms, and photolysis. Inorganic Hg can be methylated by aerobic and anaerobic microorganisms. In the pH range 4-9 and in the presence of sulfide, Hg⁺² will precipitate as a sulfide with low solubility (approximately 10⁻¹⁵ to 10⁻¹⁶ micrograms per liter (ATSDR 1999)). If pH is low and Hg concentrations sufficiently high, methylHg is favored, and has greater bioavailability than inorganic forms.

5.6.3 Conceptual Model

Mercury is clearly elevated in Grove Pond and Plow Shop Pond shallow sediment (geometric mean concentrations of ~4 and ~ 7 parts per million, respectively; maximum detections of 420 and 250 ppm, respectively) relative to the upstream ponds (detections of a few tenths of a ppm). In Grove Pond, there is a clear spatial association of the higher Hg detections with the former tannery site in the northwest portion (Fig. 5-21). Upstream of the tannery (i.e., in the eastern portion of Grove Pond), Hg detections are typically <1 mg/kg. In the vicinity of Tannery Cove, concentrations rise to tens to hundreds of mg/kg. This spatial distribution is strongly suggestive of a source of mercury at the historical tannery, consistent with its possible use as a fungicide in hide storage or use in the tanning process itself. Mercury salts used in the leather tanning industry include mercuric (Hg(II)) chloride, mercury oxide (yellow), mercury oxide (red), ammoniated mercuric chloride, mercurous chloride calomel, and mercuric iodide.

In addition to the spatial association of elevated Hg with the tannery site, it is noted that mercury concentrations in the sediment of both ponds are strongly correlated with chromium concentrations (Fig. 5-20). Because most of the chromium present in the ponds system unequivocally originates at the former tannery, its association with mercury is strongly suggestive of an identical source.

Plow Shop Pond exhibits mercury that is distributed quite ubiquitously (Fig. 5-24). The pond is downstream of the tannery site via a culvert under the railroad causeway. The geometric mean concentration of Hg in shallow sediment is higher (~7 mg/kg) in Plow Shop Pond than in Grove Pond (~4 mg/kg), and there are few non-detects in the database. Thus, it is apparent that, once Hg was released to the environment from the tannery site, transport processes acted to distribute it relatively uniformly across Plow Shop Pond. This is a somewhat unexpected result, as familiar transport processes for metals might be expected to show a "swath" of elevated Hg from the culvert to the outlet in the northwest cove. If, for example, Hg were sorbed onto clastic particles

(e.g., on ferric oxyhydroxide grain coatings), its downstream distribution would be controlled by sediment transport processes. However, it is difficult to reconcile the ubiquitous Hg in Plow Shop Pond with expected patterns of clastic sediment transport, particularly given that the pond is a very low-energy environment. For this reason, it is speculated that organic matter in the ponds may have played a significant role in enhancing the mobility of mercury.

Although Hg has received a great deal of attention in recent years in New England because of concern for the impact of atmospheric fallout from emissions from coal burning in the Midwest, it appears that the Hg in Grove and Plow Shop Ponds is dominated by one or more other sources. Kamman, et al. (2004) recently surveyed numerous lakes across Vermont and New Hampshire for mercury accumulation. They found total mercury in sediment at concentrations ranging from 0.07 to 0.62 mg/kg, with an arithmetic mean of 0.24 mg/kg, based on 129 samples. These results are about two orders of magnitude lower than the concentrations observed in Grove and Plow Shop Ponds, suggesting that regional atmospheric deposition has contributed only a very small fraction of the Hg observed.

5.7 Lead

5.7.1 Distribution

For comparison to Grove and Plow Shop Pond sediments, the following values are reported from the reference areas, as described above (Sec. 5.1):

Reference Area	Pb Concentration (mg/kg)
Flannagan Pond	200 and 120
Sandy Pond	280
Spectacle Pond*	5.7
Grove Pond*	~8 - 14
Plow Shop Pond*	~1 - 12

^{*}Norton (2001) "background"

5.7.1.1 Grove Pond

The distribution of lead detections in shallow (0-1 ft) sediment samples from Grove Pond is shown in Figure 5-26. Lead detections are ubiquitous across the pond, but the highest detections appear to cluster in the northwestern portion of the pond, known as Tannery Cove. The maximum detection is 1760 mg/kg, in a sample in this area (GRD-95-31X). The second highest detection is also in Tannery Cove, at 1600 mg/kg (GP15). Lead was not detected in only 2 of 142 samples in the database for shallow sediment. The arithmetic mean of the 140 detections is 271 mg/kg; the geometric mean is 133 mg/kg (Fig. 5-27).

Based on a smaller sample set of ten surface grabs, Norton (2001) calculated an arithmetic mean of 249 mg/kg, very close to that computed for the comprehensive dataset discussed in the foregoing.

Lead was detected in the two upstream reference samples from Flannagan Pond at 120 and 200 mg/kg, and in the reference sample from Sandy Pond at 280 mg/kg. Based on this limited comparison, it appears that lead is not greatly elevated overall in shallow Grove Pond sediment relative to the upstream reference ponds. However, a number of samples in the vicinity of Tannery Cove show concentrations above 1000 mg/kg, approximately an order of magnitude higher than the upstream reference values.

Sampling of deep (>1 ft) sediment in Grove Pond is relatively sparse (Figure 5-28), and Pb was detected in 10 of 16 samples. Although there is a suggestion of higher detections in the Tannery Cove area, this conclusion is tentative because of the paucity of samples across the majority of the pond. The arithmetic mean of the ten detections is 122 mg/kg; the geometric mean is 19.3 mg/kg. These central-tendency estimates are strongly influenced by a few high detections in the Tannery Cove area, and are not representative of the pond as a whole. The maximum concentration detected in deep sediment is 150 mg/kg (GRD-95-26X) at a depth of 3 ft. The next highest detection is also in Tannery Cove, 28 mg/kg (GRD-95-27X) at a depth of 5 ft. It is noted that the area off the former tannery site is known to have been subject to filling; "deep" (>1 ft) sediment was likely closer to the sediment – water interface prior to this activity.

There are relatively few samples from >1 ft in Grove Pond, so it is difficult to generalize. However, it is noteworthy that, pond-wide, there are 38% NDs for Pb in the deeper sediment, while the shallow sediment showed only <2% NDs. The very high- concentration samples in the deeper sediment are exclusively in the Tannery Cove area, and are believed to be due to burial of once-surficial sediments by material pushed into the pond during historical filling operations in the cove. (The high Pb is accompanied by high Cr, which is believed to be an unequivocal indicator of tannery impact.)

5.7.1.2 Plow Shop Pond

The distribution of lead detections in shallow (0-1 ft) sediment samples from Plow Shop Pond is shown in Figure 5-29. Lead detections are ubiquitous across the pond, although there appears to be a cluster of more elevated concentrations in the vicinity of the former Railroad Roundhouse on the southeast shore. The maximum detection is 1210 mg/kg, in a sample in this area (RHD-94-02X). (Note that the Figure 5-29 displays a concentration of 1214 mg/kg at a location that falls on shore northeast of the outlet cove in the northwest portion of the pond. This point is deemed suspect, and is not included in the summary statistics discussed here.) The second highest detection is also immediately offshore from the former Railroad Roundhouse, at 1000 mg/kg (SHD-94-09X). Lead was not detected in only 9 of 108 samples in the database for

shallow sediment. The arithmetic mean of the 99 detections is 188 mg/kg; the geometric mean is 101 mg/kg (Fig. 5-27).

Based on a smaller sample set of ten surface grabs, Norton (2001) calculated an arithmetic mean of 229 mg/kg, about 22% higher than the mean computed for the larger data set considered in the foregoing.

Lead was detected in the two upstream reference samples from Flannagan Pond at 120 and 200 mg/kg, and in the reference sample from Sandy Pond at 280 mg/kg. Based on this limited comparison, it appears that lead is not greatly elevated overall in shallow Plow Shop Pond sediment relative to the upstream reference ponds. However, a number of samples in the vicinity of the former Railroad Roundhouse show concentrations of the order of 1000 mg/kg, significantly higher than the upstream reference values.

Sampling of deep (>1 ft) sediment in Plow Shop Pond (Fig. 5-30) is much more extensive than that in Grove Pond (Figure 5-n). Lead was detected in 66 of 79 samples. Concentrations overall are significantly lower than those detected in shallow Plow Shop Pond (0-1 ft) sediment. The bubble map suggests that Pb concentrations in deep sediment tend to be higher along the western shore of the pond, similar to the observations made for cadmium (Sec. 5.4.3) and chromium (Sec. 5.5.3). The arithmetic mean of the 66 detections is 33.2 mg/kg; the geometric mean is 11.4 mg/kg. The maximum concentration detected in deep sediment is 260 mg/kg, near the mouth of the outlet cove in the northwest portion of the pond (PSPC15).

5.7.2 Transport Processes

Lead occurs as Pb²⁺ and in a variety of Pb(II) solids (e.g., PbO, PbCO₃, PbCl₂, PbSO₄, PbS). Like other metal cations, lead sorbs onto oxyhydroxides of Fe, Al, and Mn. This gives lead a strong affinity for solid particulates, and limits its mobility in solution. In an aqueous environment, lead will eventually precipitate as an oxide or a sulfide, depending upon local redox conditions. Lead can also be biomethylated, increasing its mobility and volatility.

5.7.3 Conceptual Model

Lead is ubiquitous in shallow (<1 ft) sediment in both Grove and Plow Shop Ponds. Less than 5% of the 250 shallow sediment samples analyzed from the two ponds showed no detectable lead. The geometric mean concentrations for Grove and Plow Shop Ponds are 133 mg/kg and 101 mg/kg, respectively. Detections of the order of 100 mg/kg are scattered widely across both ponds. An area of distinctly higher lead concentrations appears to lie adjacent to the former tannery site in Grove Pond, with several samples showing concentrations greater than 1000 mg/kg. Another area of somewhat elevated Pb is in Plow Shop Pond adjacent to the former Railroad Roundhouse site, where concentrations in several samples are again of the order of 1000 mg/kg.

Deep sediment (>1 ft) in both ponds shows a greater prevalence of non-detects for lead than does shallow sediment, and the arithmetic and geometric means of all lead detections in deep sediment are significantly lower than those for shallow sediment.

Lead carbonate, or "white lead," sublimed lead, and other lead compounds were at one time widely used paint pigments. It is not known whether or not any historical industries around the ponds (e.g., the Nashoba Mordant and Dye Company) manufactured or handled lead-containing pigments. Note that there is no indication in the spatial distribution of lead detected in sediment that a significant source was or is present in the industrial area on the north shore of Plow Shop Pond. Lead compounds (e.g., Pb-sulfate and Pb-stearate) are used as stabilizers in plastics, particularly those used for electrical insulation. Soluble salts of lead (e.g., nitrates, acetates) have

been used as insecticides. Lead arsenate was a widely used pesticide from the late 19th century

Lead has been exploited historically for a number of its physical and chemical properties.

through the first half of the 20th century. This pesticide was applied heavily in apple orchards, which cover significant acreage within the drainage basin for the ponds. However, due to its relative immobility once adsorbed onto soil particles, there is little evidence that significant quantities of lead were transported from fruit-growing areas to the ponds. Lead anti-knock compounds were added to motor fuels starting in the 1920s, and their use in the United States peaked in the 1970s, when the advent of the catalytic converter and environmental concerns for lead emissions resulted in their phase-out. During the period of leaded gasoline use, large quantities of lead were released to the atmosphere in vehicle exhaust, spread widely by air circulation, and ultimately deposited to soil and surface water. Particulates washed into surface water through soil erosion and storm water runoff added further to lead accumulation in sediment.

The ubiquitous concentrations of lead of the order of 100 mg/kg found across both Grove and Plow Shop Ponds can likely be ascribed to atmospheric deposition and deposition from stormwater runoff from developed areas. Analyses on three samples collected from the upstream reference ponds, which were not subject to the industrial activities prevalent around

Plow Shop Ponds can likely be ascribed to atmospheric deposition and deposition from stormwater runoff from developed areas. Analyses on three samples collected from the upstream reference ponds, which were not subject to the industrial activities prevalent around Grove and Plow Shop Ponds, vielded concentrations in the same range as the arithmetic and geometric means for shallow sediment from the latter, 100 to 300 mg/kg. Elevated Pb at concentrations of the order of 1000 mg/kg in the vicinity of the former tannery site suggests that lead arsenate pesticides likely were used in historic tannery operations. This is further supported by the association of the high lead concentrations in this area with correspondingly high arsenic (presumably from the pesticide compounds) and chromium (believed to be a reliable "tracer" for Elevated lead, again at concentrations of the order of 1000 mg/kg, found adjacent to the former Railroad Roundhouse site may be derived from babbitt, a Pb alloy used to manufacture journal bearings for railroad cars. Babbitt formulated for this application is typically composed of lead, antimony, tin, and copper. Speculation that babbitt was handled on the site is supported by results from the Railroad Roundhouse Supplemental Site Investigation that found elevated levels of Sb (maximum 1400 mg/kg), Cu (maximum 6900 mg/kg), Pb

(maximum 7100 mg/kg), and Sn (maximum 140 mg/kg) in onshore soil, interpreted to be "maintenance by-products" (ABB, 1995). Because antimony and tin are not on the standard Target Analyte List for sediment, correlations between sediment Pb and Sb or Sn cannot be sought to test this hypothesis. However, a strong correlation between Cu and Pb is found for sediment samples collected in Plow Shop Pond adjacent to the Railroad Roundhouse (Fig. 5-31).

In summary, the majority of the lead detections in shallow (0-1 ft) sediment in both ponds, typically of the order of 100 mg/kg, are likely due to ubiquitous atmospheric deposition and stormwater runoff, with the ultimate source being emissions from leaded fuels. This source has diminished sharply in the past 20 years due to the phase-out of leaded gasoline. Lead is further elevated in the northwest portion of Grove Pond, where concentrations of the order of 1000 mg/kg can likely be ascribed to the waste stream from the historic tannery, which appears to have applied lead arsenate pesticides. Similarly, lead is locally elevated in sediment adjacent to the former Railroad Roundhouse, where maintenance activities yielded metallic debris. Lead was detected in deep (>1 ft) sediment along the southern and western shores of Plow Shop Pond. As noted in the discussions of Cd (Sec. 5.4.3) and Cr (Sec. 5.5.3), this pattern may be a consequence of more rapid sedimentation along these portions of the shoreline due to steep slopes and exposed soils. Under these circumstances, sediment that was shallow (0-1 ft) in the later half of the 20th century may now be categorized as "deep" (>1 ft).

5.8 Manganese

The human-health risk assessment (sec. 6.0; Appendix C) identifies manganese in surface water in Grove Pond as a risk driver (i.e., Hazard Quotient greater than one). Although there has been no suggestion that Mn represents anthropogenic inputs to the ponds, a brief overview of its occurrence in sediment is given here for completeness. The discussion is based on sediment sampling and analyses performed by EPA in 2004 and 2005 only.

5.8.1 Distribution

The following table summarizes sediment analyses for manganse available as reference values (Sec. 5.1) to which to compare results from Grove and Plow Shop Ponds.

Reference Area	Mn Concentration (mg/kg)
Flannagan Pond	460 and 690
Sandy Pond	980
Spectacle Pond*	380
Grove Pond*	~220 - 825
Plow Shop Pond*	~290 - 942

^{*}Norton (2001) "background"

Manganese was detected in all EPA 2004/2005 sediment samples. Results for shallow (0-1 ft) Grove Pond sediment range from 70 to 1800 mg/kg, with a geometric mean of 818 mg/kg. Shallow (0-1 ft) Plow Shop Pond results are notably higher, in the range 130 to 34,000 mg/kg, and with a geometric mean of 1410 mg/kg. Deep (>1 ft) Plow Shop Pond sediment exhibits lower Mn concentrations than does the shallow sediment, ranging from 31 to 4500 mg/kg, with a geometric mean of 475 mg/kg. The geometric mean Mn concentrations observed for shallow (0-1 ft) Grove Pond and deep (>1 ft) Plow Shop Pond are comparable to the reference concentrations cited in the above table. The geometric mean for shallow (0-1 ft) Plow Shop Pond sediment (1410 mg/kg) is higher than the reference values.

5.8.2 Transport Processes

Manganese is a commonly occurring element in the earth's crust, with an average concentration of 950 mg/kg (Krauskopf, 1967). In solution, manganese behavior is generally similar to that of iron. Aqueous species contain Mn in the +2, +3, and +4 oxidation states and, like iron, Mn may precipitate as oxide, sulfide, and carbonate solid phases. At pH values between 4 and 9, the range found in most natural waters, Mn requires a higher oxidation potential than Fe to oxidize Mn⁺² to Mn⁺⁴, and the kinetics of abiotic Mn oxidation are generally much slower than for Fe (Stumm and Morgan, 1996).

Although not as toxic as the other elements of interest in this study, manganese may cause unpleasant taste and odor in drinking water, and may clog pipes through formation of scale precipitated by Mn-oxidizing bacteria.

5.8.3 Conceptual Model

The high concentrations of Mn in shallow sediment in Plow Shop Pond are predominantly in the southwestern portion. The maximum detected (34,000 mg/kg) is in Red Cove, and a sequence of near-shore sediment samples collected by EPA along the western margin of the pond shows a systematic decrease in Mn to the north, reaching 240 mg/kg near the outlet weir. This pattern mimics closely the distribution of iron and arsenic concentrations in Plow Shop Pond sediment, suggesting that similar processes control the distribution. It is known that groundwater approaching Red Cove shows relatively high concentrations of manganese. EPA profile sampling of groundwater in two direct-push borings adjacent to Red Cove conducted in July 2004 yielded Mn concentrations in filtered samples from 0.39 to 6.2 mg/L, with an arithmetic mean of 1.8 mg/L (see table, sec. 5.10.3). Dissolved iron in the same samples was also elevated, with a mean concentration of 34 mg/L. ORP reported for these samples falls in a relatively narrow range, from -134 to -78 mV. It is concluded that the relatively high Mn concentrations detected in sediments in the southwestern portion of Plow Shop Pond have accumulated from low-ORP, high-Fe, high-Mn groundwater that discharges to the surface water in this area, in a process similar to that controlling arsenic (cf, Sec. 5.3.3).

5.9 Vanadium

The human-health risk assessment (sec. 6.0; Appendix C) identifies vanadium in fish tissue in Plow Shop Pond and as a risk driver (i.e., Hazard Quotient greater than one). Although there has been no suggestion that this element represents anthropogenic inputs to the ponds, a brief overview of its occurrence in sediment is given here for completeness. The discussion is based on sediment sampling and analyses performed by EPA in 2004 and 2005 only.

5.9.1 Distribution

The following table summarizes sediment analyses for vanadium available as reference values (Sec. 5.1) to which to compare results from Grove and Plow Shop Ponds.

Reference Area	V Concentration (mg/kg)
Flannagan Pond	39 and 21
Sandy Pond	49
Spectacle Pond*	not analyzed
Grove Pond*	not analyzed
Plow Shop Pond*	not analyzed

^{*}Norton (2001) "background"

Vanadium was detected in 17 of 17 shallow (0-1 ft) sediment samples from Grove Pond analyzed by EPA in 2004/2005. Concentrations range from 22 to 140 mg/kg, with a geometric mean of 57.3 mg/kg. Three reference samples collected in upstream Flannagan and Sandy Ponds showed V in the range 21 to 49 mg/kg, indicating no evidence of a source or sources local to Grove Pond. Similarly, vanadium was detected in 15 of 20 shallow sediment samples collected by EPA in Plow Shop Pond, ranging from 7.1 to 80 mg/kg, with a geometric mean of 31.8 mg/kg. Again, the similarities in concentrations detected in the upstream ponds, Grove Pond, and Plow Shop Pond suggest no local inputs. Deep (>1 ft) sediment from Plow Shop Pond exhibited detectable V in 20 of 24 samples, in the range 3.2 to 51 mg/kg, with a geometric mean of 11.2 mg/kg. There are no readily available reference values for V in deep sediment for comparison.

5.9.2 Transport Processes

The aqueous speciation of vanadium is dependent on both pH and ORP. Under oxidizing conditions and at near-neutral pH, the most abundant species are those of V(V), $VO_2(OH)_2^-$ and $H_2VO_4^-$. At lower pH and/or under more reducing conditions, concentrations of other, positively-charged, vanadium species increase and are either approximately equal to, or exceed, those of V(V). These include V(III) as $V(OH)_2^+$, and V(IV) as $VOOH^+$ and VO^{+2} . Because vanadium may be present in sediment pore waters in nearly equal proportions as positively- and

negatively-charged species, it may bind to both negatively- and positively-charged sites on hydrous ferric oxide surfaces.

Vanadium is naturally occurring, at an average concentration of 135 mg/kg in the earth's crust (Krauskopf, 1967). This element is used in the production of steel and other metal alloys, and in small amounts in manufacture of plastics, ceramics, and rubber. In addition to V mobilized in the environment by surficial weathering processes, V is also released into the atmosphere by combustion of fuel oil and coal.

5.9.3 Conceptual Model

There are no indications in the limited vanadium data reviewed (i.e., EPA 2004/2005 analyses only) of local sources to the ponds. Observed geometric means are comparable to reference values obtained from upstream ponds not impacted by historical activities surrounding Grove and Plow Shop Ponds. It is likely that most of the vanadium mass found in pond sediment is of natural origin, and is present at concentrations reflecting regional lithologies and long-term geological and geochemical transport processes.

5.10 Groundwater Hydrology

This section addresses briefly the interaction of the ponds with adjacent groundwater. This aspect of the hydrology of the system is of particular importance with respect to arsenic detected in pond sediment, which is interpreted to have accumulated primarily from discharging groundwater (see sec. 5.3.3).

Available data to constrain the groundwater hydrology on the scale of Grove and Plow Shop Ponds and the surrounding watershed are limited. The present discussion is restricted to two portions of the system that have been characterized in greater detail. The first is the area in the vicinity of the Town of Ayer water supply wells on the southeast shore of Grove Pond. This area was studied to evaluate the source of arsenic detected in raw (untreated) water produced at the supply wells (Gannett Fleming, 2002). The second area for which there are extensive hydrological data is the domain west of Plow Shop Pond, in the vicinity of Shepley's Hill Landfill (SHL). Groundwater associated with SHL is characterized periodically under a Long-Term Monitoring Plan (Stone and Webster, 1996), and under the Performance Monitoring Plan for the SHL extraction, treatment, and discharge (ETD) system (CH2MHill, 2005). In addition, EPA collected water-level data for an expanded suite of wells in the SHL area in November 2004. Finally, EPA and Gannett Fleming mapped near-shore shallow sediment temperatures along the southern and western shoreline of Plow Shop Pond in March 2004 and April 2005.

5.10.1 Grove Pond / Town of Ayer Wellfield

A Zone II (i.e., the domain contributing to production under extended drought conditions) delineation was conducted for the Town of Ayer Grove Pond wellfield in 1992 (CDM, 1993).

Water levels were recorded regionally both before and during a pumping test at the supply wells. The interpreted groundwater potential surface indicated flow under ambient conditions (no pumping) converging on the eastern portion of the pond from the south, east, and north. The interpreted water levels under pumping conditions suggested relatively local drawdown, with a significant component of the production coming from induced infiltration from Grove Pond. More detailed characterization of the hydrostratigraphy in the neighborhood of the supply wells (Gannett Fleming, 2002) showed that interaction of the wells with the surface water is inhibited by relatively low-conductivity material overlying the screened interval. For this reason, it was concluded that the capture zone for the supply wells extends farther beneath the pond than inferred in the 1992 Zone II study, and induced infiltration is weak. It is likely that a significant fraction of the deeper groundwater flow that converges on the eastern portion of Grove Pond joins a regional subsurface flow toward the WNW, generally following the surface water drainage from Grove Pond to Plow Shop Pond to Nonacoicus Brook to the Nashua River.

Little is known about groundwater – surface water interaction around the majority of the Grove Pond perimeter. It is likely that shallow groundwater discharges to the pond, particularly in the eastern (upgradient) portion. The areas in proximity to the Ayer and Devens wellfields on the south shore are exceptions. Weak induced recharge was found immediately offshore of the Ayer wells when pumping (Gannett Fleming, 2002), and it is likely that the same occurs adjacent to the Devens Grove Pond wellfield. In the western (downgradient) portion of the pond, it is possible that the surface water recharges groundwater, which generally flows to the west and/or northwest.

5.10.2 Plow Shop Pond

Groundwater elevations have been characterized more extensively adjacent to Plow Shop Pond than for areas surrounding Grove Pond because of monitoring associated with Shepley's Hill Landfill (SHL). The landfill lies to the west and southwest of Plow Shop Pond, and monitoring well coverage is extensive. EPA performed a synoptic round of water-level gauging on November 15, 2004, in a large suite of wells along the western and southwestern shore of the pond, as well as in wells farther to the south, west, and northwest. Figure 5-32 shows an interpreted potential surface based on the data collected from shallow overburden wells. Reference elevations were adopted from CH2MHill's survey of existing and new wells (CH2MHill, 2006). Water levels in three wells (SHP-99-29X, SHM-93-01A, and SHL-10) were referenced to older survey results available through the Army GIS database.

An important feature characterizing the interaction of groundwater with Plow Shop Pond is the point where the 217 ft msl groundwater contour intersects the shore immediately north of the southwestern embayment known as Red Cove. The surface water elevation was not measured at the time of the November 2004 groundwater gauging event. However, a staff gauge was installed subsequently near the outlet dam, and has shown very stable pond elevations in six rounds of data collection in August and September 2005 and in March 2006 (CH2MHill, 2005,

2006). The surface water elevation in these six events varied from 217.0 to 217.2 ft msl, indicating that the weir imposes strong control on the pond level. It is therefore reasonable to assume that the surface elevation of Plow Shop Pond was approximately 217 ft msl at the time of the November 2004 groundwater gauging event. The point at which the 217 ft msl groundwater equipotential intersects the pond shoreline is then interpreted as the "hinge" for the pond. Groundwater levels to the south of this point are higher than the surface water, and groundwater discharges to the pond. Groundwater levels to the north of this point are lower than the pond level, and surface water recharges groundwater. Performance monitoring data for the SHL ETD system (CH2MHill, 2005, 2006) confirm that the hinge was in the vicinity of piezometer N2-P2 in August and September 2005. However, the hinge appears to have shifted somewhat to the north, in the vicinity of SHP-01-37X, in March 2006, perhaps due to seasonally elevated groundwater levels in spring.

Independent evidence for the zone of groundwater discharge to the south and southwest shore of Plow Shop Pond is found in nearshore temperature data. In winter and spring, the surface water is colder than adjacent shallow groundwater. Where relatively warm groundwater discharges to the pond, the sediment temperature is elevated relative to the surface water. On March 8, 2004, Gannett Fleming personnel walked the shore of Plow Shop Pond, observed the distribution of surface ice and open water, and measured sediment temperatures with a thermocouple probe where possible. Most of the pond retained thick ice cover at this time, but intermittent patches of open water up to several feet wide perpendicular to the shore and up to tens of feet long parallel to shore were observed. In the two prominent coves on the south and southwest shore, large areas of water were open. Many of these open patches showed accumulations of reddish orange flocculant, interpreted to be hydrous ferric oxide precipitated from reducing groundwater that discharges to the oxidizing surface water environment.

Figure 5-33 shows temperatures measured at 1 ft depth below the water-sediment interface in March 2004; locations are approximate. Sediment temperatures were recorded in the range 1.8 to 10.3 °C. Temperatures varied systematically near the two coves, increasing from the outer (pondward) opening toward the inner (landward) end. The maximum temperature reached in the southern cove (west of the Railroad Roundhouse site) was 10.3 °C; that in Red Cove was 8.5 °C. This pattern is consistent with the focusing of groundwater discharge due to refraction of flowlines approaching the coves. At locations where the thermocouple probe could be inserted to greater depth, temperatures were consistently higher with depth. In addition, where the temperatures at 1 ft bgs were highest (e.g., at the end of the southern cove), the vertical variation in temperature was smallest. These observations are again consistent with discharge of relatively warm groundwater to the pond, with the warmest sediment temperatures corresponding to loci of maximum advective heat transport. Northward of the northernmost point shown on Figure 5-33, the ice was in contact with the shore, and no patches of open water were observed. This change in conditions north of Red Cove is consistent with the location of the hinge interpreted from the adjacent groundwater levels (Figure 5-32). North of the northernmost observed patch of open

water, cold pond water recharges groundwater, and the nearshore surface temperature remains at or below freezing.

EPA collected similar data in April 2005 (Figure 5-34). At that time, the entire pond was free of ice. Temperatures at 1 ft below the water-sediment interface were recorded with the thermocouple probe, and sample locations were recorded with a hand-held GPS unit. Data were recorded along the shoreline from a point north of Red Cove to the outlet weir. The data show a gradient from temperatures around 16 °C north of Red Cove to about 13 °C approaching the outlet. This observation is consistent with increasing recharge by surface water from south to north. The vertical hydraulic gradient increases in magnitude from zero at the hinge to a maximum near the outlet weir, and the flux of cold surface water under winter/spring conditions correspondingly increases from south to north.

5.10.3 Arsenic Flux to Red Cove

The hydraulic data discussed in the foregoing paragraphs indicate that shallow groundwater discharges to Red Cove. Arsenic concentrations are very high in shallow (0-1 ft) sediment in this area, with a maximum observed of 6800 mg/kg. It is of interest to estimate the total arsenic mass flux to Red Cove in groundwater to compare to the observed mass presently sequestered in sediment.

The observed head change from SHP-01-38A (217.5 ft msl) to the pond (217.1 ft msl) on August 1, 2005 (CH2MHill, 2006) was 0.4 ft (0.12 m). The distance from that monitoring well to the pond shore is approximately 50 ft (15 m), giving a horizontal gradient of 0.008. CH2MHill (2006) estimated the hydraulic conductivity of the fine sands in the neighborhood of the extraction wells to be 45 ft/d (14 m/d), the average of two determinations. This is in agreement with the overburden conductivity assigned in a calibrated numerical model by Harding (2003). These values give a groundwater flux ("Darcy velocity") of q = 0.36 ft/d (0.11 m/d).

EPA profiled groundwater chemistry in two direct-push borings flanking Red Cove in July 2004. One boring was sampled from 3 to 23.5 ft bgs, a section 20.5 ft (6.2 m) thick; the second was sampled from 4 to 37 ft bgs, a section 33 ft (10 m) thick. The average overburden thickness profiled was 27 ft (8.2 m). The perimeter of Red Cove is approximately 400 ft (120 m). The cross-sectional area across which overburden groundwater approaches the cove is then A = $11,000 \text{ ft}^2 \text{ (990 m}^2\text{)}$. The total volume flow rate to the cove is Q = q x A = $3800 \text{ ft}^3/\text{d} \text{ (110 m}^3/\text{d} = 1.1 \text{x} 10^5 \text{ L/d})$. Twelve groundwater samples were collected across these two sections; the geometric mean (filtered) arsenic concentration detected was $\bar{c} = 0.43 \text{ mg/L}$. The total mass flux to the cove is then estimated to be $J = Q \times \bar{c} = 4.7 \times 10^4 \text{ mg/d} = 17 \text{ kg/yr}$.

A simple test can be carried out to determine whether or not the foregoing estimate of the total arsenic mass flux to Red Cove reconciles with the concentrations of arsenic observed in sediment. The cove is roughly 100 ft by 200 ft in areal extent, i.e., covering about 2.0×10^4 ft² (1.9x10³ m²). If most of the arsenic brought to the surface by discharging groundwater

accumulates in the uppermost 1 ft (0.30 m) of sediment, the corresponding volume of sediment is 2.0×10^4 ft³ (570 m³). Assume that the (dry) bulk density of the sediment is 1800 kg/m^3 , giving a total sediment mass of 1.0×10^6 kg. According to the estimate for the total mass flux in the previous paragraph, over a period of 100 years, about 1700 kg of arsenic would be discharged to Red Cove. Averaged over the total shallow (<1 ft) sediment mass, this yields a concentration of 1700 mg/kg, which is typical of the observed concentrations in this area. Analytical results for the twelve shallow sediment samples in Red cove shown in Figure 5-4 show As concentrations ranging from 310 to 6800 mg/kg, with a geometric mean of 1400 mg/kg.

It is emphasized that the foregoing is only an order-of-magnitude argument. It involves numerous assumptions and estimates of many parameters, resulting in considerable uncertainty. Nevertheless, the order-of-magnitude agreement between the estimated arsenic mass available from groundwater and the observed arsenic mass in sediment supports the plausibility of the proposed mechanism of accumulation.

It has been suggested that arsenic mobility is controlled by iron (sec. 5.3.3), in which case it might be expected that iron concentrations in Red Cove sediment and in adjacent groundwater are related in a fashion similar to that discussed in the foregoing paragraphs for arsenic. This can be tested readily by rescaling the calculation. The ratio of the geometric mean Fe concentration to the geometric mean As concentration for the ten (filtered) groundwater samples collected from the EPA direct-push borings is 70 (see table below). Therefore, the expected iron concentration in Red Cove sediment, under the same assumptions made for the arsenic calculation, is 70 x 1700 = 120,000 mg/kg. Observed iron concentrations in eleven Red Cove sediment samples (Fig. 5-4; PS2 was not analyzed for Fe) range from 25,500 to 410,000 mg/kg, with a geometric mean of 130,000 mg/kg. Therefore, the mass of iron present in Red Cove sediment is consistent in an order-of-magnitude sense with the cumulative flux of dissolved iron in discharging groundwater over a time scale of the order of 100 years.

It has also been proposed (sec. 5.8.3) that manganese accumulates in sediment from reducing groundwater that discharges to Red Cove. Again, an order-of-magnitude test is possible by estimating the mass flux of manganese in groundwater to the cove, and comparing to the mass present in shallow sediment. The ratio of geometric mean Mn to geometric mean As from the ten (filtered) direct-push groundwater samples is 3.0 (see table below). The expected manganese concentration in sediment is then 3.0 x 1700 = 5100 mg/kg. For comparison, the observed Mn concentrations in four shallow sediment samples collected in Red Cove by EPA in 2004/2005 (PSP06, PSPC13, PSPC14, and PSPC19) range from 1500 to 34,000 mg/kg, with a geometric mean of 4000 mg/kg. This agreement supports the conclusion that manganese, like iron and arsenic, accumulates in Red Cove sediment from discharging groundwater. The reducing groundwater encounters more oxidizing conditions as it approaches the sediment/water interface, and the iron and manganese precipitate to solid phases.

In principle, a similar test could be made for accumulation of other trace metals, including Cd, Cr, Pb, and V, whose mobility in groundwater also is strongly influenced by iron. This would provide an estimate of possible accumulation from groundwater to compare to sediment concentrations. In the cases of Cd, Cr, and Pb, it is concluded in the foregoing sections that much of the mass present is likely due to anthropogenic inputs from historical activities surrounding the ponds. These conclusions would be supported by a determination that accumulation of Cd, Cr, and Pb from discharging groundwater yields sediment concentrations much lower than observed. In practice, this calculation cannot be carried out, because all analyses for Cd and Pb performed on filtered samples from the direct-push groundwater profiling at Red Cove failed to detect these elements at a detection limit of 0.2 μ g/L. Chromium was detected in one of ten filtered samples at 0.52 \square g/L, just above the detection limit of 0.5 μ g/L. Vanadium was not detected in filtered groundwater samples from the direct-push borings.

Analytical results for groundwater sampled from direct-push borings, Red Cove

interval ft bgs	As unfiltered μg/L	As (F) filtered μg/L	Fe unfiltered μg/L	Fe (F) filtered μg/L	Mn unfiltered μg/L	Mn (F) filtered μg/L	
boring RC1							
3-5	260	270	33000	37000	650	740	
8-10	650	NA	23000	NA	450	NA	
13-15	740	NA	26000	NA	520	NA	
18-20	650	690	23000	20000	1000	970	
21.5-23.5	580	630	17000	19000	1700	2400	
boring RC2							
4-6	130	140	15000	19000	940	1200	
9-11	600	650	45000	72000	1400	2200	
14-16	370	390	51000	55000	970	660	
19-21	270	310	32000	37000	490	540	
24-26	330	370	28000	31000	380	390	
30-32	550	710	34000	30000	2400	2700	
35-37	530	610	21000	16000	5400	6200	
arith. mean	470	480	29000	34000	1400	1800	
geom. mean	430	430	27000	30000	980	1300	

6.0 HUMAN HEALTH RISK ASSESSMENT

A Human Health Risk Assessment (HHRA) has been performed and is included as Appendix C. This section of this ESI report contains a summary of the human health risk assessment for Grove and Plow Shop Ponds. The objective of the HHRA is to provide a quantitative estimate of risk posed to humans potentially exposed to Grove Pond and Plow Shop Pond. To assess potential public health risks, three major aspects of chemical contamination and exposure must be considered: 1) the presence of chemicals with toxic characteristics; 2) the existence of pathways by which human receptors may contact site-related chemicals; and 3) the presence of human receptors. The absence of any of these three aspects would result in an incomplete exposure pathway and an absence of quantifiable risk.

The HHRA consists of five major components: Hazard Identification, Exposure Assessment, Dose-Response Assessment, Risk Characterization and Uncertainty Analysis. Tables 5-1 and 5-2 and Appendix C of the HHRA present summaries of the cancer risks and noncancer hazard indices which exceeded EPA acceptance criteria for each receptor evaluated in the risk assessment. These tables identify the chemicals which are driving the risks and present the hazard indices segregated by target organ. Section 6.0 of the HHRA presents the uncertainties associated with the risk evaluations and presents rationale for consideration in determining the chemicals of concern for this site which may require further evaluation and action.

6.1 Human Health Risk Assessment Conclusions

Grove Pond

The human health risk assessment evaluated risks to four receptors: a recreational adult, recreational child, subsistence angler adult and subsistence angler child. Media considered in the recreational receptor evaluations included sediment, surface water and fish tissue. The only medium used in the evaluation of risks to the subsistence angler receptors was fish tissue. For Grove Pond, the carcinogenic risk threshold of 1E-4 was equaled for the recreational adult and recreational child. This threshold was exceeded for the subsistence angler adult. Carcinogenic risk for the subsistence angler child was found to be between 1E-5 and 1E-4. The non-cancer Hazard Index (HI) risk threshold of one (1) was exceeded for all receptors.

Carcinogenic risk drivers, defined as chemicals with risks in excess of 1E-6, for the recreational receptors included arsenic (surface water and sediment), PAHs (sediment), phthalates (surface water) and PCBs (fish tissue). Noncarcinogenic risk drivers, defined as chemicals with hazard quotients (HQs) in excess of one (1), for the recreational receptors included arsenic (sediment), manganese (surface water), mercury (fish tissue), and PCBs (fish tissue).

Carcinogenic risk drivers for the subsistence angler included PCBs, DDD and DDE. Noncarcinogenic risk drivers included mercury and PCBs.

Risk thresholds from potential exposure to lead found in environmental media were not exceeded for recreational adults or children but were exceeded for the subsistence angler child receptor.

Plow Shop Pond

Human health risk assessment results for Plow Shop Pond were similar to those from Grove Pond. For Plow Shop Pond, the carcinogenic risk threshold of 1E-4 was exceeded for the recreational adult and recreational child. This threshold was equaled for the subsistence angler adult. Carcinogenic risk for the subsistence angler child was found to be between 1E-5 and 1E-4. The non-cancer Hazard Index (HI) risk threshold of one (1) was exceeded for all receptors.

Carcinogenic risk drivers for the recreational receptors included arsenic (surface water, sediment and fish tissue), PAHs (sediment) and PCBs (fish tissue). Noncarcinogenic risk drivers, defined as chemicals with hazard quotients (HQs) in excess of one (1), for the recreational receptors included arsenic (sediment, surface water), chromium (sediment), and mercury (fish tissue).

Carcinogenic risk drivers for the subsistence angler included arsenic and DDD. Noncarcinogenic risk drivers included mercury and vanadium.

Risk thresholds from potential exposure to lead found in environmental media were not exceeded for recreational adults or children. Lead was not a chemical of potential concern in fish tissue from Plow Shop Pond.

Evaluation of Results

This section compares human health risk results to the findings of the fate and transport/environmental chemistry evaluation performed for this study. Of this risk drivers identified in the human health risk assessment, the metals arsenic, chromium, mercury and lead appear to be related to identifiable sources within Grove and Plow Shop Ponds including areawide groundwater for arsenic. Vanadium and manganese have not been identified as metals with clear Pond-related sources. Possibly, elevated levels of these metals, and associated risks, occur as a result of mobilization of naturally occurring metals by reduced groundwater that enters the ponds from the direction of Shepley's Hill Landfill or other areas.

Organic constituents identified as risk drivers include PAHs, PCBs and DDT breakdown products. While these chemicals are clearly anthropogenically-related, multiple sources for these chemicals appear applicable. Sources may have included upstream contamination, stormwater runoff, atmospheric deposition as well as contributions from the former tannery and railroad

roundhouse located on the shores of these ponds. Currently, it is not possible to clearly attribute the contribution levels of these sources to the concentrations observed. However, it does not appear that groundwater is a contributor of organic constituents to the Ponds.

7.0 ECOLIGICAL RISK ASSESSMENT

A Baseline Ecological Risk Assessment (BERA) has been performed and is included in Appendix D. This section of this ESI report contains a summary of the BERA which was conducted to provide a quantitative estimate of risk posed to ecological receptors potentially exposed to Grove Pond and Plow Shop Pond media. This BERA, which incorporates data from 1991 to 2005 collected through several different investigations in the ponds, was conducted to support the ESI.

The conceptual site model (CSM) for Grove Pond and Plow Shop Pond identifies exposure pathways from chemicals in pond sediment, surface water, and biota to aquatic organisms and semi-aquatic wildlife foraging in the pond. Assessment and measurement endpoints were selected based on the CSM. Assessment endpoints represent the ecological resources in the ponds that are to be protected. Measurement endpoints represent measurable ecological characteristics that are evaluated to determine if the assessment endpoints are met.

The assessment endpoints for the receptor groups in the ponds are as follows:

- Protection of the long-term health of water column invertebrate populations sublethal and lethal acute toxic effects of chemicals in surface water.
- Protection of benthic macroinvertebrate communities from sublethal and lethal acute toxic effects of chemicals in sediments.
- Protection of the long-term health of local fish populations from sublethal and lethal toxic effects of chemicals in surface waters
- Protection of omnivorous mammals and birds, piscivorous mammals and birds, and
 insectivorous birds foraging in the pond, to insure that ingestion of chemicals in food
 items, sediment, and surface water does not have a negative impact on growth, survival,
 and reproduction.

The measurement endpoints used in this BERA to determine risk are the following:

- Comparison of surface water and sediment concentration data to literature benchmarks protective of aquatic biota.
- Surface water chronic toxicity testing using sensitive freshwater invertebrate and fish species.
- Sediment toxicity testing using sensitive invertebrate species.
- Comparison of aquatic invertebrate and fish tissue residue levels against literature Critical Body Residues (CBRs).
- Food chain modeling to estimate a daily intake for wildlife receptors foraging in the ponds; compared the daily intake with literature toxicity reference values (TRV) to calculate a hazard quotient (HQ).

A Weight of Evidence (WOE) approach was used to interpret the various findings of the risk assessment. A WOE score was given to each measurement endpoint "low-medium" to "high", depending on the strength of the link between the measurement endpoint and its associated assessment endpoint. The WOE score was evaluated along with the estimation of risk for each assessment endpoint in a risk integration step. This risk integration step allowed a determination of the potential for and significance of risk to the various assessment endpoints.

Exposure units are defined in ecological risk assessment to provide an estimate of the area of exposure for a given ecological receptor and to determine how to organize the analytical data. The exposure units for this BERA were 1) Grove Pond, 2) Plow Shop Pond, and 3) Flannagan Pond, the reference site.

The HQ method was used to determine risk for ecological receptors foraging in the ponds. An HQ was calculated for each chemical of potential concern (COPC) by dividing an estimated or measured exposure or dose by a corresponding benchmark or toxicity value. Hazard quotients were determined for benchmarks comparisons, CBR comparisons, and food chain modeling. The HQ method was not used to determine risk in toxicity tests, however, which relied on statistical analyses instead.

Where applicable, potential risk to ecological receptors was determined for the background EU, using the same methods used to determine risk to Grove Pond and Plow Shop Pond receptors. A residual risk (RR) was calculated by dividing the site HQ by the background HQ. If the RR was greater than one, risk for a given COPC could not be attributed to background conditions.

7.1 RISK FINDINGS

The results of the risk characterization are summarized in Table 7-1 (Grove Pond) and Table 7-2 (Plow Shop Pond).

TABLE 7-1 Summary of Ecological Risks for Grove Pond

Target	Measurement Endpoints (Lines of Evidence)								Integrated Risk
Receptor Group	Published Benchmarks		Laboratory Toxicity Testing		Tissue Residue Analyses		Food Chain Modeling		Interpretation
	WOE	Risk	WOE	Risk	WOE	Risk	WOE	Risk	
water column invertebrates	L-M	L	M	N					Low risk; no unacceptable risk.
Fish	L-M	L	M	N	М-Н	L			Low risk; no unacceptable risk.
benthic invertebrates	L-M	Н	М-Н	M	М-Н	L			Medium risk; unacceptable risk.
omnivorous mammals				80.00		1473	М-Н	N	No unacceptable risk
piscivorous mammals							М-Н	N	No unacceptable risk.
carnivorous birds							М-Н	M	Medium risk
piscivorous birds				1683			М-Н	N	No unacceptable risk.
insectivorous birds		K.					М-Н	M	Medium risk; Unacceptable risk unlikely.

Shaded cells indicate that the measurement endpoint was not applicable to the assessment endpoint

WOE = weight of evidence

N=No significant risk identified; L-M = low-medium; M-H = medium-high; H = high

ND = not determined

TABLE 7-2 Summary of Ecological Risks for Plow Shop Pond

Target	Measurement Endpoints (Lines of Evidence)							Integrated Risk	
Receptor Group	Published Benchmarks		Laboratory Toxicity Testing		Tissue Residue Analyses		Food Chain Modeling		Interpretation
	WOE	Risk	WOE	Risk	WOE	Risk	WOE	Risk	
water column invertebrates	L-M	L	M	N					Low risk; no unacceptable risk.
Fish	L-M	L	M	N	М-Н	L			Low risk; no unacceptable risk.
benthic invertebrates	L-M	Н	М-Н	M	М-Н	L			Medium risk; unacceptable risk.
omnivorous mammals				* 1			М-Н	Н	High risk; unacceptable risk
piscivorous mammals							М-Н	N	No unacceptable risk.
carnivorous birds							М-Н	L	Low risk
piscivorous birds							М-Н	M	Medium risk; unacceptable risk unlikely.
insectivorous birds							М-Н	M	Medium risk; unacceptable risk unlikely.

Shaded cells indicate that the measurement endpoint was not applicable to the assessment endpoint

WOE = weight of evidence

N=No significant risk identified; L-M = low-medium; M-H = medium-high; H = high ND = not determined

7.1.1 Water column invertebrate community

Potential risk to water column invertebrates based on each measurement endpoint was determined to be the following:

A. Benchmark comparison: The benchmark comparison measurement endpoint was given low-medium weight because benchmarks do not identify site-specific risk but are generic in nature. The benchmark comparisons for Grove Pond and Plow Shop Pond revealed low potential risk to surface water invertebrates.

B. Toxicity testing: The toxicity testing measurement endpoint was given a medium weight. The results of the toxicity tests with *Ceriodaphnia dubia* revealed no significant toxicity for surface water invertebrates in Grove Pond and Plow Shop Pond.

Integrating these two lines of evidence, it is unlikely that surface water invertebrates in either of the ponds experience unacceptable risk from exposure to COPCs.

7.1.2 Benthic macroinvertebrate community

A. Benchmark comparison: The benchmark comparison measurement endpoint was given low-medium weight because benchmarks do not identify site-specific risk but are generic in nature. The benchmark comparisons revealed high potential risk to benthic invertebrates in Grove Pond and Plow Shop Pond.

- B. Toxicity testing: The toxicity testing measurement endpoint was given a medium-high weight. Laboratory toxicity testing of three Grove Pond sediment samples using two benthic invertebrate species resulted in significant growth reductions (but no mortality) in two of the three samples. Testing of 11 Plow Shop Pond sediment samples using the same two species resulted in significant mortality and growth reductions in one sample, and significant growth reductions (but no mortality) in five additional samples.
- C. CBR comparison: The CBR comparison measurement endpoint was given a medium-high weight. The results of the CBR comparison suggested low risk to benthic invertebrates from accumulated COPC in Grove Pond and Plow Shop Pond.

Integrating these results, it was concluded that toxicity testing and the CBR comparisons carried greater weight than did the comparisons to sediment benchmarks. Therefore, while benchmark exceedances alone suggested potential high risk to benthic invertebrates in both ponds, subsequent lines of evidence indicated that the exceedances did not equate to high risk. The three lines of evidence suggest that benthic invertebrates in Grove Pond were likely to experience medium risk due to potential growth reduction. Benthic invertebrates in Plow Shop Ponds were

likely to experience medium risk due to reduced survival at one location and reduced growth at several other locations in the pond

7.1.3 Fish community

A. Benchmark comparison: The benchmark comparison measurement endpoint was given low-medium weight because benchmarks do not identify site-specific risk but are generic in nature. The benchmark comparisons for Grove Pond and Plow Shop Pond revealed low potential risk to fish.

B. Toxicity testing: The toxicity testing measurement endpoint was given a medium weight. The results of the toxicity tests with *Pimephales promelas* revealed no significant toxicity for fish in Grove Pond and Plow Shop Pond.

C. CBR comparison: The CBR comparison measurement endpoint was given a medium-high weight. The results for the CBR comparison in six fish species collected from Grove Pond indicated that three metals (copper, lead, and zinc) exceeded their LOAEL level by small margins (highest average HQ [hazard quotient]_{LOAEL} = 2.9 for copper in bullhead). These results suggested the presence of low risk to fish in Grove Pond.

The results for the CBR comparison in four fish species collected from Plow Shop Pond, indicated that only copper exceeded its LOAEL level by a small margin (highest average HQ_{LOAEL} = 2.5 in bullhead). These results also suggested the presence of low risk to fish in Plow Shop Pond.Integrating these three lines of evidence, the fish community in either Grove Pond or Plow Shop Ponds is not likely to be at substantial risk from exposure to COPCs. The low risk identified by the CBR comparisons would not have community-level impacts because all the LOAEL exceedances were low, and both copper and zinc are under physiological control.

7.1.4 Omnivorous mammals

The raccoon was the target receptor representing omnivorous mammals feeding at the Site. Only one LOE was available to assess risk to this receptor group. Food chain modeling was used to calculate COPC-specific total daily doses (TDD) for comparison to mammalian Toxicity Reference Values (TRVs). Most of the COPC concentrations in the food items used in modeling were based on site-specific measurements or estimates. Hence, this LOE was given a medium-to-high weight.

The results of the HQ calculations indicated it unlikely that omnivorous mammals would experience unacceptable risk from foraging in Grove Pond. However, the potential for high risk was identified for omnivorous mammals foraging in Plow Shop Pond, mainly because of the incidental ingestion of arsenic in pond sediments. There was significant uncertainty associated with this finding, as discussed below.

7.1.5 Piscivorous mammals

The mink was the target receptor representing piscivorous mammals feeding at the Site. Only one LOE was available to assess risk to this receptor group. Food chain modeling was used to calculate COPC-specific TDDs for comparison to mammalian TRVs. Most of the COPC concentrations in the food items used in modeling were based on site-specific measurements or estimates. Hence, this LOE was given a medium-to-high weight.

The results of the HQ calculations indicate that it was not likely that piscivorous mammals would experience unacceptable risk from foraging in Grove Pond or Plow Shop Pond.

7.1.6 Carnivorous birds

The black-crowned night heron was the target receptor representing carnivorous birds feeding at the Site. Only one LOE was available to assess risk to this receptor group. Food chain modeling was used to calculate COPC-specific TDDs for comparison to bird TRVs. Most of the COPC concentrations in the food items used in modeling were based on site-specific measurements or estimates. Hence, this LOE was given a medium-to-high weight.

The results of the HQ calculations indicated the potential for medium risk to carnivorous birds foraging in Grove Pond and low risk in Plow Shop Pond, mainly owing to the incidental ingestion of chromium in pond sediments. There was significant uncertainty associated with this finding, as discussed below.

7.1.7 Piscivorous birds

The kingfisher was the target receptor representing piscivorous birds feeding at the Site. Only one LOE was available to assess risk to this receptor group. Food chain modeling was used to calculate COPC-specific TDDs for comparison to bird TRVs. Most of the COPC concentrations in the food items used in modeling were based on site-specific measurements or estimates. Hence, this LOE was given a medium-to-high weight.

The results of the HQ calculations indicated that it was not likely that piscivorous birds foraging in Grove Pond would experience unacceptable risk. However, the potential for medium risk was identified for piscivorous birds foraging in Plow Shop Pond, owing to excessive levels of methyl mercury in fish.

7.1.8 Insectivorous birds

The tree swallow was the target receptor representing insectivorous birds feeding at the Site. Only one LOE was used to assess risk to this receptor group. Food chain modeling was used to calculate COPC-specific TDDs for comparison to bird TRVs. The COPC concentrations used in modeling were based on the analysis of tree swallow stomach contents. Hence, this LOE was

given a medium-to-high weight.

The results of the HQ calculations indicated that insectivorous birds foraging in Grove Pond and Plow Shop Pond would likely experience medium risk, mainly because of the presence of high chromium levels in stomach contents.

7.2 MAJOR UNCERTAINTIES

The potential for high risk from sediment ingestion was identified for omnivorous mammals (represented by the raccoon) and carnivorous birds (represented by the black-crowned night heron) foraging in the two Site ponds. Several major uncertainties are associated with these risk estimates.

Firstly, unacceptable risk was identified for the raccoon in Plow Shop Pond because of incidental ingestion of arsenic in sediment. The sediment uptake assumption for the raccoon (9% of the diet) was taken from EPA (1993). Because the value was based on conditions different from those in the ponds, there is uncertainty in the accuracy of this value for Grove Pond and Plow Shop raccoons, or other omnivorous mammals. This uncertainty is particularly important because the unacceptable risk concluded for the raccoon in Plow Shop Pond is due to incidental ingestion of arsenic in sediment. Therefore, the risk assumption relies entirely on the sediment intake assumption for this species.

Similarly, the sediment uptake assumption for the black-crowned night heron (2% of the diet) was based on a best professional judgment. There were no measured values for similar species that could have been used with more confidence; EPA (1993) lists an uptake for other aquatic birds at 2%. This uncertainty is particularly important because the risk concluded for the black-crowned night heron in both ponds is due to incidental ingestion of chromium in sediment. Therefore, the risk assumption relies entirely on the sediment intake assumption for this species. For both the raccoon and the night heron, uncertainty is associated with the sediment ingestion rates for another reason. The estimated sediment uptake percentages are potentially overestimated because of the dense vegetative mat that exists throughout the ponds. Because this mat may act as a barrier between sediment and biota, wildlife receptors may have limited direct exposure to sediment substrate. The incidental ingestion assumptions (e.g., 0.09 for the raccoon and 0.02 for the black-crowned night heron potentially overestimate risk from this pathway.

8.0 SUMMARY AND CONCLUSIONS

8.1 Conceptual Model

The ESI presents a broad overview of each of five key elements that have been identified in this and previous studies as potential concerns from a risk perspective. Data for each of these five elements are presented in Section 5.0 in map view in order to identify qualitatively any spatial patterns that suggest localized sources and/or transport pathways. Maps are presented for each pond, and for two depth intervals: 0-1 ft and >1 ft below the sediment/water interface. In addition, histograms are presented for the log-transformed concentrations of each element for the shallow interval (0-1 ft). These plots give a visual impression of the central tendency (geometric mean) and variability (geometric standard deviation) of each element at the pond-wide scale. Elements that exhibit marked departures from log-normal distributions, as well as wide scatter, are suggestive of releases at one or more point sources, superimposed on the ambient distribution.

Arsenic. Arsenic is detected in Grove Pond shallow (0-1 ft) sediment at concentrations typically a few tens to a few hundred mg/kg. The geometric mean is 49.8 mg/kg, which is within the range of available reference concentrations determined for the upstream ponds. Characterization of deeper sediment (>1 ft) is limited, but suggests somewhat lower concentrations overall, with a geometric mean of 25.0 mg/kg. A few samples from the northwest portion of the pond (Tannery Cove) exhibit higher concentrations, of the order of 1000 mg/kg, found in both shallow and deep sediment. It is inferred that the widespread arsenic in Grove Pond sediment has accumulated from discharging groundwater, which is known to exhibit elevated arsenic where reducing conditions prevail. In the vicinity of the former tannery, scattered detections at higher concentrations suggest that there may have been local releases associated with historical activities, possibly use of arsenical pesticides.

Plow Shop Pond also exhibits widespread arsenic detections, typically of the order of a few hundred mg/kg, notably higher than the overall concentrations found in Grove Pond. The geometric mean for shallow sediment (0-1 ft) in Plow Shop Pond is 217 mg/kg. Deep sediment (>1 ft) overall is lower in As, with a geometric mean of 35.0 mg/kg. Arsenic detections in shallow sediment are significantly elevated relative to the mean in the southwest portion of the pond (Red Cove), with a maximum detection of 6800 mg/kg. It is inferred that the preponderance of the arsenic detected in Plow Shop Pond sediment is again the result of accumulation from high-As groundwater. Groundwater approaching Red Cove has been shown to exhibit reducing conditions and high dissolved iron and arsenic. The extent to which Shepley's Hill Landfill is responsible for creating or exacerbating the reducing conditions that mobilize arsenic is unknown. When this groundwater discharges to the pond, and encounters oxidizing conditions near the sediment/water interface, hydrous ferric oxide phases precipitate, and adsorb arsenic. This process is evidenced by the abundant reddish orange floc for which Red Cove is

named. Sediment As concentrations decrease to the north, approaching the hinge line, north of which the pond recharges groundwater.

Cadmium. Cadmium is detected in both Grove Pond and Plow Shop Pond shallow (0-1 ft) sediment, typically at concentrations ranging from non-detect to a few tens of mg/kg. The geometric mean concentrations for detections in both ponds are nearly identical, 13.2 mg/kg (Grove Pond) and 13.5 mg/kg (Plow Shop Pond). Analyses on deep samples (>1 ft) revealed very few detections. It is inferred that the widespread Cd in shallow sediment likely accumulated from atmospheric deposition and stormwater runoff. Although there are a few potential industrial users of cadmium adjacent to the ponds, there is no suggestion of a localized source in the spatial distribution of concentration. Scattered detections at higher concentrations may be the result of local releases. The maximum detection across both ponds is an isolated value of 730 mg/kg, adjacent to the railroad causeway at the west end of Grove Pond. This may reflect a local, sporadic source. The higher concentrations along the southern and western shores of Plow Shop Pond may result from erosion and deposition of adjacent soils. Clastic sedimentation rates may be higher in this area because of the relatively steep topography and bare ground on the shore. The detection of Cd in the deep (>1 ft) sediment in the same area is consistent with this scenario.

Chromium. Chromium exhibits a very wide range of concentrations in shallow (0-1 ft) sediment in Grove Pond, from non-detect to 52,000 mg/kg. Over the majority of the pond, concentrations are typically of the order of tens of mg/kg, while the high values are found in the vicinity of the former tannery in the northwest portion (Tannery Cove). The geometric mean, which is strongly influenced by the very high concentrations in the Tannery Cove area, is 489 mg/kg, significantly higher than the reference values from the upstream ponds (14-27 mg/kg). The spatial association with the former tannery is clear and consistent with the known use of chromium in the tanning process, and historical waste disposal practices. Few samples have been collected from deep (>1 ft) sediment in Grove Pond, so that generalizations with respect to the spatial distribution of Cr are not possible. There are, however, detections of very high Cr in deep sediment in Tannery Cove (maximum 44,000 mg/kg). It is believed that these "deep" sediments were deposited in the 19th and/or 20th centuries, and subsequently buried by rapid sedimentation due to infilling of the cove.

Plow Shop Pond also shows very high levels of chromium in shallow sediment, with a geometric mean of 908 mg/kg, and a maximum detection of 37,800 mg/kg. In contrast to Grove Pond, high chromium detections in Plow Shop Pond are widespread, and show no obvious spatial pattern of accumulation. While it seems apparent that the ultimate source of the majority of the chromium in Plow Shop Pond sediment is the historic tannery, it is not clear what processes have acted to distribute Cr ubiquitously. It is speculated that organic complexation and/or uptake of Cr by aquatic vegetation may have served to spread chromium relatively uniformly across the pond.

Mercury. Mercury is detected in shallow (0-1 ft) sediment across most of Grove Pond at concentrations of the order of a few mg/kg, but is clearly elevated in the northwest portion of the pond (Tannery Cove). The geometric mean concentration is 4.06 mg/kg, and the maximum (Tannery Cove) is 420 mg/kg. There are relatively few samples of the deep (>1 ft) sediment in Grove Pond, but these are consistent with the shallow results; the maximum detection is 150 mg/kg, in Tannery Cove. The clear spatial association with the former tannery implicates that facility as the source of the preponderance of mercury in pond sediment. Although no records of use have been found, mercury salts were used in tanning, and mercury was used commonly as a fungicide, as well.

Mercury concentrations in Plow Shop Pond shallow (0-1 ft) sediment are higher overall than in Grove Pond, with a geometric mean of 7.45 mg/kg. Mercury is widely dispersed in Plow Shop Pond, with no apparent spatial pattern. As discussed for chromium, it is speculated that organic complexation and/or uptake of Hg by aquatic plants may play a role in the apparently high mobility of mercury within Plow Shop Pond. It is interesting to note that the ratio of the geometric mean concentration for 96 detections of Hg in Plow Shop Pond to that for 96 detections in Grove Pond shallow sediment is 1.83, while the ratio of geometric means for 102 detections of Cr in Plow Shop Pond and 135 detections in Grove Pond is 1.86. The similarity in spatial distribution, as well as in the overall partitioning of contaminant mass between the two ponds, is strongly suggestive that the mercury and chromium in the system share the same source (i.e., the historic tannery) and are controlled by similar transport processes.

Lead. Lead is detected ubiquitously in shallow sediment across Grove Pond, with a geometric mean of 133 mg/kg. Relatively few deep sediment samples were collected in Grove Pond, but the limited data suggest significantly lower concentrations in the sediments >1 ft below the sediment/water interface; Pb was detected in this interval in 10 of 16 samples, with a geometric mean of 19.3 mg/kg. Lead was detected in three shallow samples from the upstream reference ponds in the range 120 to 280 mg/kg, similar to the geometric mean for Grove Pond. Widespread lead concentrations of the order of 100 mg/kg are inferred to result from atmospheric deposition and stormwater runoff, ultimately tracing back to historic vehicle emissions in the era of leaded fuels. A few anomalously high concentrations of lead were detected in the vicinity of Tannery Cove (maximum 1760 mg/kg), and suggest possible use of lead arsenate pesticides at the facility. Note, for example, that the highest lead detection in deep (>1 ft) sediment was found in a sample from Tannery Cove, with Pb at 1000 mg/kg, and accompanied in the same sample by As at 1300 mg/kg and Cr at 44,000 mg/kg. The association with As suggests a possible origin in lead arsenate, and the association with very high Cr seems to implicate the tannery's waste stream. It is noted again that "deep" sediment (>1 ft) in tannery cove likely was surficial sediment in recent decades, but was buried by rapid sedimentation associated with infilling of the cove.

Lead in shallow sediment in Plow Shop Pond is again ubiquitous, with typical concentrations of the order of 100 mg/kg. The geometric mean is 101 mg/kg. Sample coverage for deep sediment in Plow Shop Pond is much more extensive than in Grove

Pond. The geometric mean for 66 detections (out of 79 samples) is 11.4 mg/kg, an order of magnitude lower than in the shallow interval. This is again consistent with the interpretation that the preponderance of lead in Plow Shop Pond originates from atmospheric deposition and stormwater inputs. A few detections of lead at concentrations of the order of 1000 mg/kg were found adjacent to the former Railroad Roundhouse site on the southeast shore. Detection of elevated Pb, Sb, Cu, and Sn in onshore soils at the Roundhouse site are suggestive of a source in babbitt, an alloy used in railroad-car bearings. A strong correlation of Pb and Cu in nearshore sediment samples further supports this interpretation.

8.2 Human Health Risk Assessment

Grove Pond

The human health risk assessment evaluated risks to four receptors: a recreational adult, recreational child, subsistence angler adult and subsistence angler child. Media considered in the recreational receptor evaluations included sediment, surface water and fish tissue. The only medium used in the evaluation of risks to the subsistence angler receptors was fish tissue. For Grove Pond, the carcinogenic risk threshold of 1E-4 was equaled for the recreational adult and recreational child. This threshold was exceeded for the subsistence angler adult. Carcinogenic risk for the subsistence angler child was found to be between 1E-5 and 1E-4. The non-cancer Hazard Index (HI) risk threshold of one (1) was exceeded for all receptors.

Carcinogenic risk drivers, defined as chemicals with risks in excess of 1E-6, for the recreational receptors included arsenic (surface water and sediment), PAHs (sediment), phthalates (surface water) and PCBs (fish tissue). Noncarcinogenic risk drivers, defined as chemicals with hazard quotients (HQs) in excess of one (1), for the recreational receptors included arsenic (sediment), manganese (surface water), mercury (fish tissue), and PCBs (fish tissue).

Carcinogenic risk drivers for the subsistence angler included PCBs, DDD and DDE. Noncarcinogenic risk drivers included mercury and PCBs.

Risk thresholds from potential exposure to lead found in environmental media were not exceeded for recreational adults or children but were exceeded for the subsistence angler child receptor.

Plow Shop Pond

Human health risk assessment results for Plow Shop Pond were similar to those from Grove Pond. For Plow Shop Pond, the carcinogenic risk threshold of 1E-4 was exceeded for the recreational adult and recreational child. This threshold was equaled for the subsistence angler adult. Carcinogenic risk for the subsistence angler child was found to

be between 1E-5 and 1E-4. The non-cancer Hazard Index (HI) risk threshold of one (1) was exceeded for all receptors.

Carcinogenic risk drivers for the recreational receptors included arsenic (surface water, sediment and fish tissue), PAHs (sediment) and PCBs (fish tissue). Noncarcinogenic risk drivers, defined as chemicals with hazard quotients (HQs) in excess of one (1), for the recreational receptors included arsenic (sediment, surface water), chromium (sediment), and mercury (fish tissue).

Carcinogenic risk drivers for the subsistence angler included arsenic and DDD. Noncarcinogenic risk drivers included mercury and vanadium.

Risk thresholds from potential exposure to lead found in environmental media were not exceeded for recreational adults or children. Lead was not a chemical of potential concern in fish tissue from Plow Shop Pond.

Evaluation of Results

This section compares human health risk results to the findings of the fate and transport/environmental chemistry evaluation performed for this study. Of this risk drivers identified in the human health risk assessment, the metals arsenic, chromium, mercury and lead appear to be related to identifiable sources within Grove and Plow Shop Ponds including area-wide groundwater for arsenic. Vanadium and manganese have not been identified as metals with clear Pond-related sources. There has been no suggestion that either Mn or V sediment concentrations represent anthropogenic inputs to the ponds. It is concluded that the relatively high Mn concentrations found in the southwestern portion of Plow Shop Pond have accumulated from low-ORP, high-Fe, high-Mn groundwater that discharges to the surface water in this area, in a process similar to that controlling arsenic (cf, Sec. 5.3.3). It is likely that most of the vanadium mass found in pond sediment is of natural origin, and is present at concentrations reflecting regional lithologies and long-term geological and geochemical transport processes. Possibly, elevated levels of these metals, and associated risks, occur as a result of mobilization of naturally occurring metals by reduced groundwater that enters the ponds from the direction of Shepley's Hill Landfill or other areas.

Organic constituents identified as risk drivers include PAHs, PCBs and DDT breakdown products. While these chemicals are clearly anthropogenically-related, multiple sources for these chemicals appear applicable. Sources may have included upstream contamination, stormwater runoff, atmospheric deposition as well as contributions from the former tannery and railroad roundhouse located on the shores of these ponds. Currently, it is not possible to clearly attribute the contribution levels of these sources to the concentrations observed. However, it does not appear that groundwater is a contributor of organic constituents to the Ponds. Relatively few analyses for organics in groundwater surrounding the ponds have been performed. The available data are not

sufficient to determine the extent of organic contamination of pond sediments from groundwater.

8.3 Ecological Risk Assessment

The BERA identified unacceptable risk for two receptor groups in Grove Pond and three receptor groups in Plow Shop Pond. The chemicals that were identified as risk drivers are arsenic, chromium, and PAHs.

In Grove Pond, risk to benthic invertebrates was found to be unacceptable based on results of toxicity tests, although no specific risk driver could be identified. Risk to carnivorous birds was also found to be unacceptable in Grove Pond. The risk estimate was driven by the incidental ingestion of chromium in sediment.

In Plow Shop Pond, risk to benthic invertebrates, omnivorous mammals, and carnivorous birds was found to be unacceptable. For benthic invertebrates, unacceptable risk was attributed to PAHs in the vicinity of the Railroad Roundhouse. In other areas (e.g., the western shore), a COC driving toxicity could not be identified with confidence. Risk to omnivorous mammals was attributed primarily to the incidental ingestion of arsenic in sediment. Risk to carnivorous birds was attributed primarily to the incidental ingestion of chromium in sediment. While risk to omnivorous mammals and carnivorous birds was found to be unacceptable, there is significant uncertainty associated with risk determination for both receptor groups. This is primarily because of the uncertainty associated with the amount of sediment that the representative species were assumed to ingest.

References

ABB-ES. 1993. Final Remedial Investigation Addendum Report, Data Item A009. Vol. I of IV, Report Text. Prepared by ABB-ES, Inc., for US Army Environmental Center, Aberdeen Proving Ground, Maryland. December 1993.

ABB-ES. 1995a. Final Feasibility Study: Shepley's Hill Landfill Operable Unit, Data Item A009. Prepared by ABB-ES, Inc., for US Army Environmental Center, Aberdeen Proving Ground, Maryland. February 1995.

ABB-ES. 1995b. *Draft Plow Shop Pond and Grove Pond Sediment Evaluation, Data Item A009*. Prepared by ABB Environmental Services, Inc., for US Army Environmental Center, Aberdeen Proving Ground, Maryland. October 1995.

Agency for Toxic Substances and Disease Registry (ATSDR). 1998. *Toxicological Profile for Chromium*. U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. 1998.

Agency for Toxic Substances and Disease Registry (ATSDR). 1999. *Toxicological profile for mercury*. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Agency for Toxic Substances and Disease Registry (ATSDR). 1999. ToxFAQs for cadmium, CAS#7440-43-9, June 1999, http://www.atsdr.cdc.gov/tfacts5.html

Agency for Toxic Substances and Disease Registry (ATSDR). 1999. ToxFAQs for mercury, CAS#7439-97-6, April 1999, http://www.atsdr.cdc.gov/tfacts46.html

Agency for Toxic Substances and Disease Registry (ATSDR). 1999. ToxFAQs for lead, CAS#12709-98-7, September 2005, http://www.atsdr.cdc.gov/tfacts13.html

Bethke, C. 1994. Geochemist's Workbench, Version 2.0: A Users Guide, University of Illinois, 219 p.

Bostick, B. C., Fendorf, S., and Brown, Jr., G. E. 2005. *In situ* analysis of thioarsenite complexes in neutral to alkaline arsenic sulphide solutions. *Min. Mag.* 69(5):781-795.

Brannon, J. M. and Patrick, Jr., W. H. 1987. Fixation, transformation, and mobilization of arsenic in sediments. *Environ. Sci. Technol.* 21(5):450-459.

Bhumbla, D. K., and Keefer, R. F., 1994, Arsenic mobilization and bioavailability in soils. In Nriagu, J. O. (ed.) *Arsenic in the Environment, Part 1: Cycling and Characterization*, p.51-82. Wiley & Sons, New York.

California Air Resources Board, 2004, Air toxics update #4, June 9, 2004, http://www.arb.ca.gov/toxics/ToxicUpdates/toxupd4.html

CDM January 1993. Town of Ayer, Massachusetts Grove Pond Wells Hydrogeologic Investigation and Zone II Aquifer Mapping. Camp Dresser & McKee Inc.

Cossich, E. S., Tavares, C. R. G., and Ravagnani. T. M. K., Biosorption of chromium(III) by Sargassum sp. biomass. *Electronic Jour. Biotech.* 5(2).

Cullen, W. R. and Reimer, K. J., 1989, Arsenic speciation in the environment. *Chem. Rev.* 89:713-764.

Dartmouth Toxic Metals Research Program, 2005, The facts on cadmium, February 22, 2005, http://www.dartmouth.edu/~toxicmetal/TXQAcd.shtml

Dartmouth Toxic Metals Research Program, 2005, The facts on lead, February 9, 2005, http://www.dartmouth.edu/~toxicmetal/TXQApb.shtml

Dean, J. G., Bosqui, F. L., and Lanoveite, K. H. 1972. Removing heavy metals from waste water. *Environ. Sci. Technol.* 6:518-522.

Deer, Howie, and Zussman. 1966. An introduction to the rock-forming minerals. John Wiley and Sons, Inc. New York. 528 p.

ETA May 1995. Detailed Flow Model for Main and North Post, Fort Devens, Massachusetts. Prepared by Engineering Technologies Associates, Inc. (ETA) for commander, US Army Toxic and Hazardous Materials Agency. Ellicott City, Maryland.

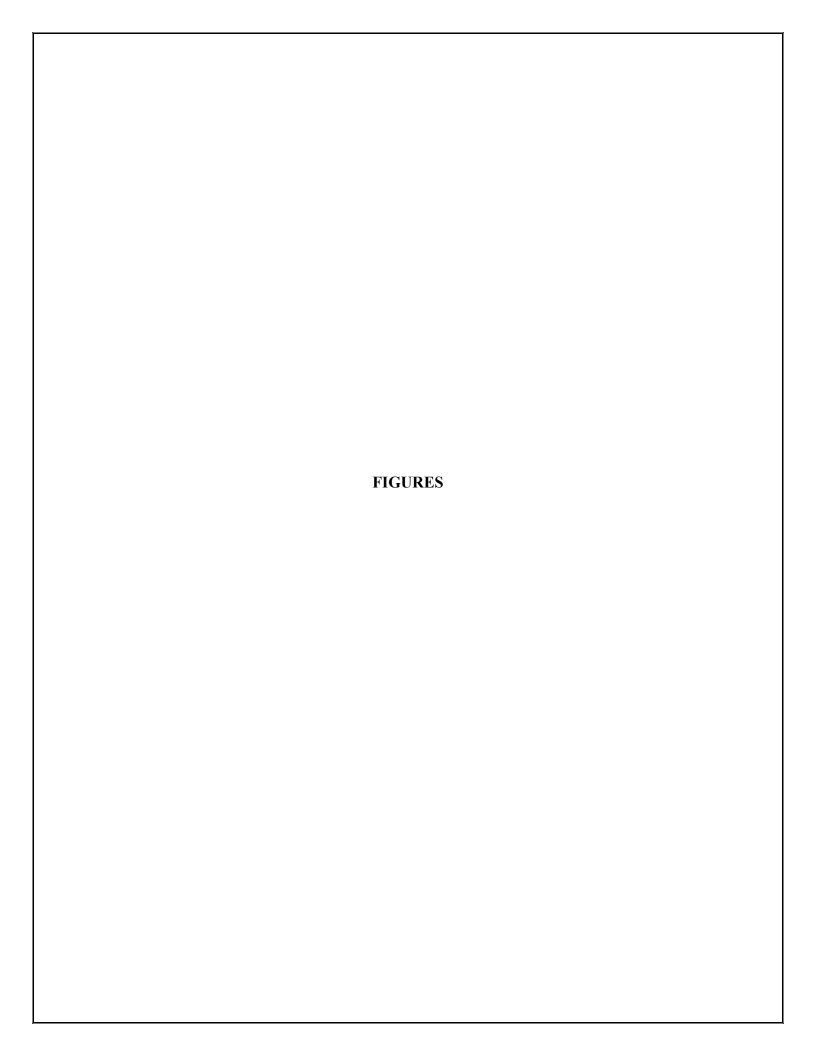
Gannett Fleming, 2002, Final Grove Pond Arsenic Investigation, technical report prepared for U. S. Environmental Protection Agency, March 2002.

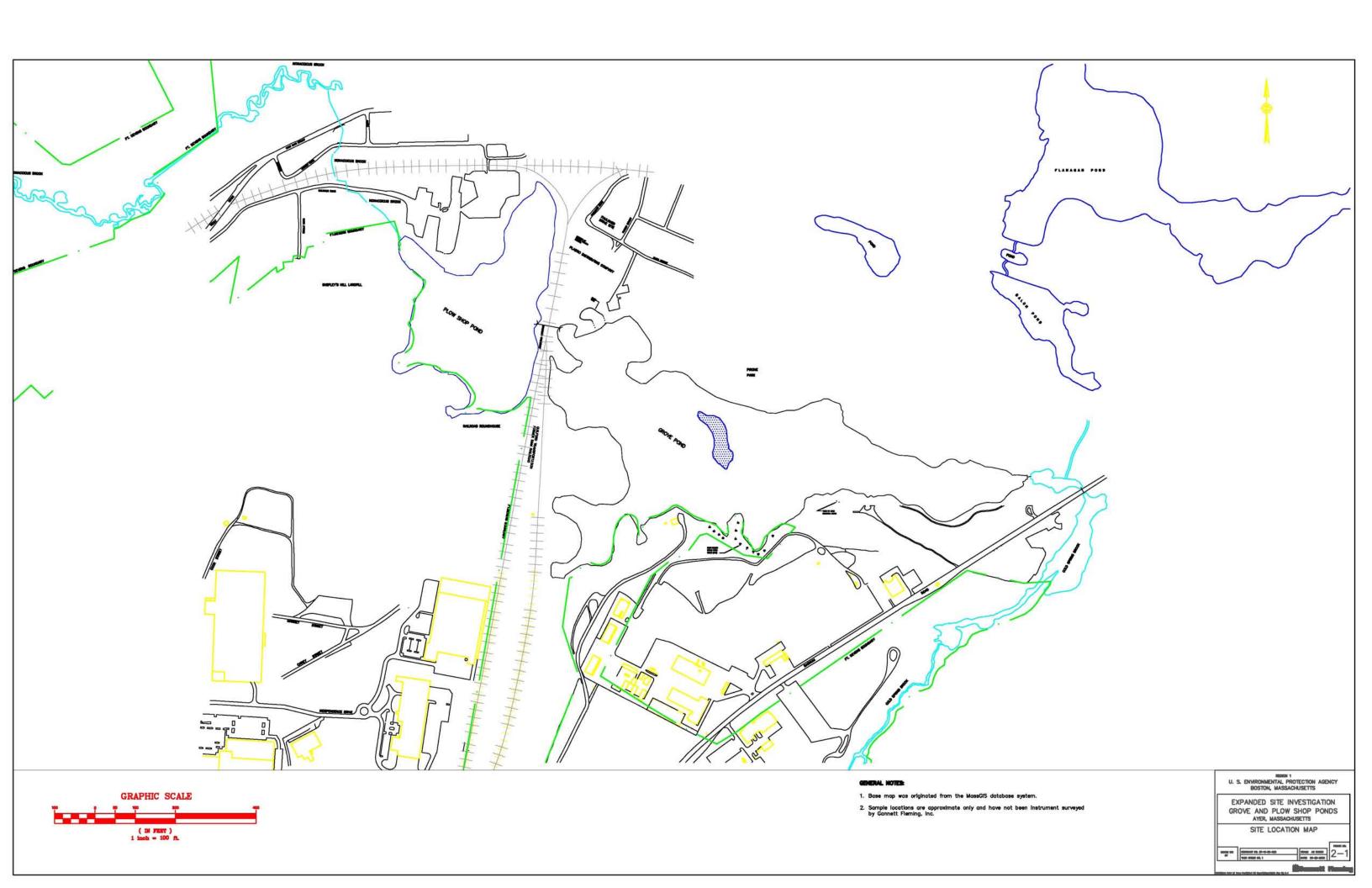
Gannett Fleming, Inc. 2002a. Data Gap Evaluation Report. Remedial Investigation Grove & Plow Shop Ponds. Prepared for: U. S. Environmental Protection Agency, Region I. May 2002.

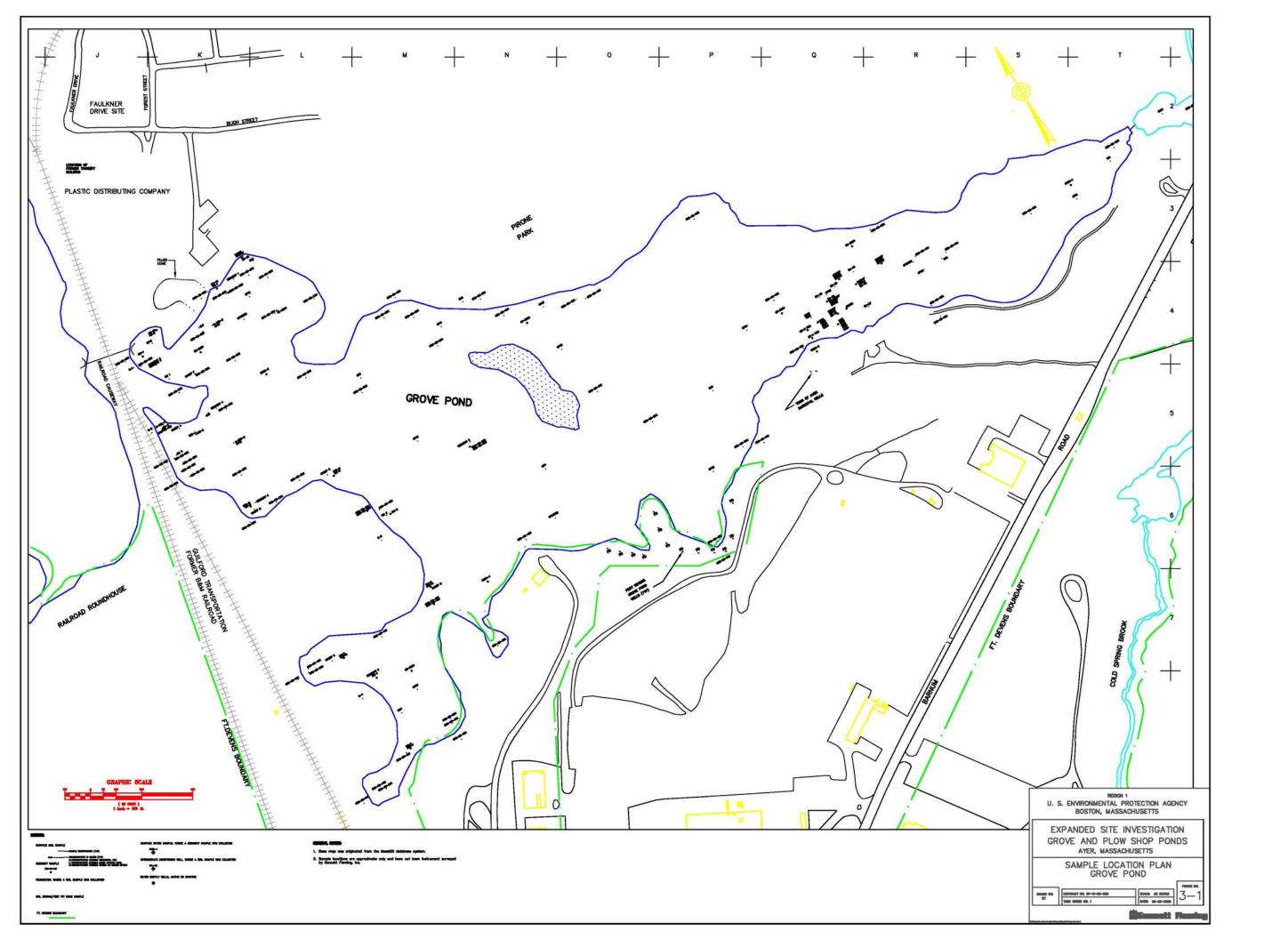
Gannett Fleming, Inc., 2002b, Final Grove Pond Arsenic Investigation, technical report prepared for U. S. Environmental Protection Agency, March 2002.

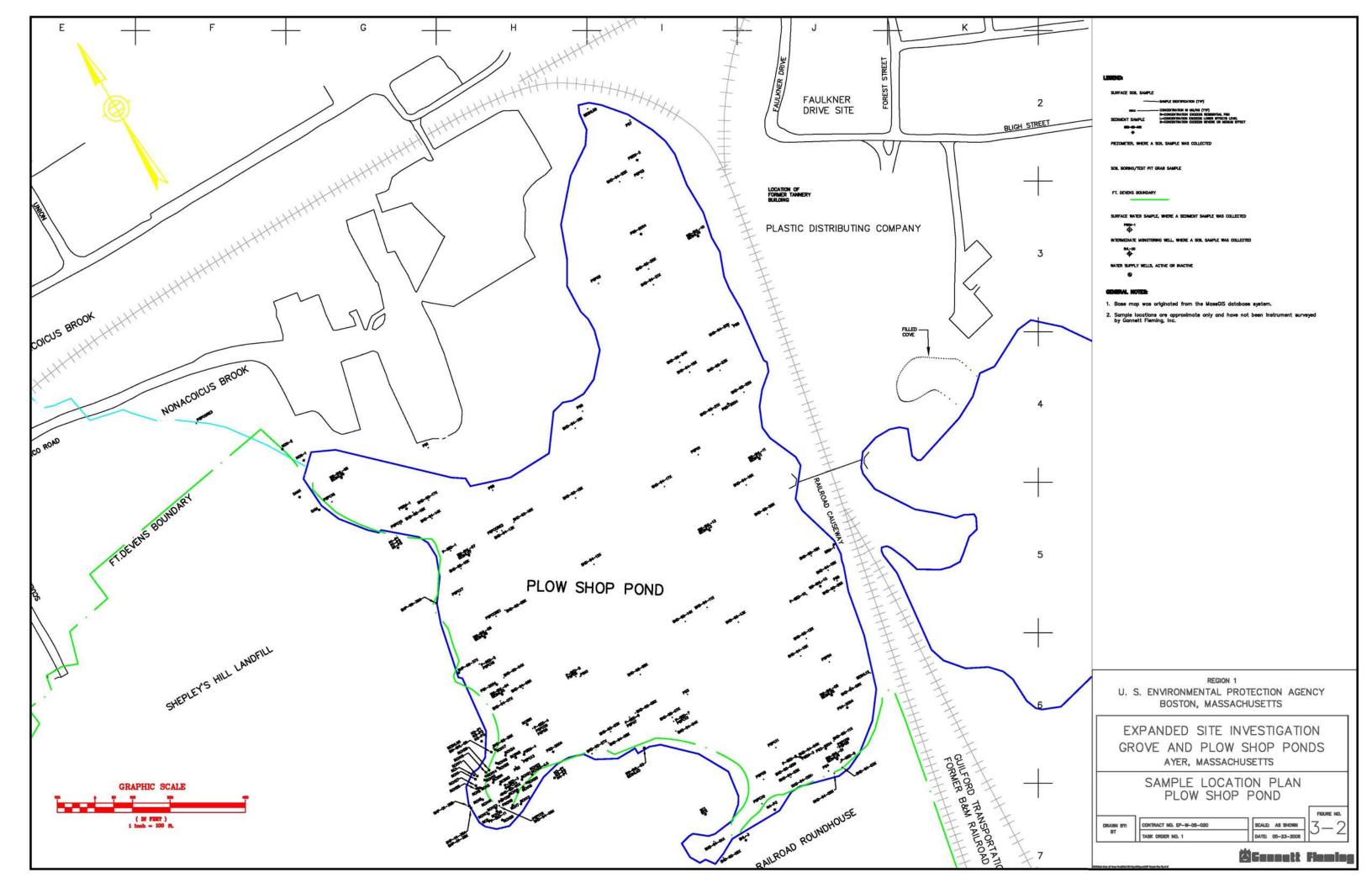
Haines, T.A. and J.R. Longcore. 2001. Final Report: Bioavailability and Potential Effects of Mercury and Selected Other Trace Metals on Biota in Plow Shop and Grove Ponds, Fort Devens, MA. Prepared by Haines and Longcore (U.S. Geological Survey) for U.S. EPA Region I. April 2001.

Harrington, J. M., Fendorf, S. E., and Rosenzweig, R. F., 1998, Biotic generation of As(III) in metal(loid)-contaminated freshwater lake sediments. *Environ. Sci. Technol.* 32(16):2425-2430.


- Huerta-Diaz, M. A., Tessier, A., and Carignan, R., 1998, Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. *Appl. Geochem.* 13:213-333.
- Hurley, J. P., Watras, C. J., and Bloom, N. S. 1991. Mercury cycling in a northern Wisconsin seepage lake the role of particulate matter in vertical transport. *Water Air Soil Pollut*. 56:543-551.
- James, B. R., 2002, Chemical transformations of chromium in soils: relevance to mobility, bio-availability and remediation. *The Chromium File* from the International Chromium Development Assoc., No. 8, February 2002.
- James B. R., and Bartlett, R. J., 1983, Behavior of chromium in soils. V. Fate of organically-complexed Cr (III) added to soil. *J. Environ. Qual.* 12:169-172.
- Kamman, N., C. T. Driscoll, R. Estabrook, D. C. Evers, and E. K. Miller, 2004, Biogeochemistry of mercury in Vermont and New Hampshire lakes, an assessment of mercury in water, sediment, and biota of Vermont and New Hampshire lakes, Comprehensive Final Project Report, USEPA Office of Research and Development.
- LaForce, M. J., Hansel, C. M., and Fendorf, S. E., 2000, Arsenic speciation, seasonal transformations, and co-distributions with iron in a mine waste-influenced palustrine emergent wetland. *Environ. Sci. Technol.* 34(18):3937-3943.
- Mason, Brian and L.G. Berry. 1968. Elements of Mineralogy. W.H. Freeman and Company. San Francisco, CA. 550p.
- Mercadante, A.M., Colman, J.A., and Buursink, M.L., 1999, *Map Showing Morphometry, Bathymetry and Soft-Sediment Thickness of Plow Shop Pond and Grove Pond, Ayer, Massachusetts*, USGS Water-Resources Investigations Report 99-4241.
- Moore, J. N., Ficklin, W. H., and Johns, C., 1988, Partitioning of arsenic and metals in reducing sulfidic sediments. *Environ. Sci. Technol.* 22(4):432-437.
- Norton, S. A., 2001, *Paleolimnological Assessment of Grove and Plow Shop Ponds, Fort Devens Ayer, Massachusetts*, Report to USEPA, Agreement Number 1434-HQ-98-AGO1927, August 2001.
- O'Day, P. A., Vlassopoulos, D. V., Root, R., and Rivera, N., 2004, The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. *Proc. Nat. Acad. Sci.* 101(38):13703-13708.
- Peryea, F. J., 1998, Historical use of lead arsenate insecticides, resulting soil contamination and implications for soil remediation. Proceedings, 16th World Congress of Soil Science (CD Rom), Montpellier, France. 20-26 Aug. 1998. Scientific registration number 274, Symposium number 25.
- Rai, D., Eary, L. E., and Zachara, J. M., 1989, Environmental chemistry of chromium. *Sci. Tot. Environ.* 86:15-23.


- Robinson, P. and Goldsmith, R., "Stratigraphy of the Merrimack Belt, Central Massachusetts", <u>The Bedrock Geology of Massachusetts</u>, 1991.
- Smith, E., Naidu, R., and Alston, A. M., 1998, Arsenic in the soil environment: a review. In Sparks, D. L. (ed.) *Advances in Agronomy*, 64:149-195. Academic Press, San Diego.
- Srivastava S, Prakash S, Srivastava MM (1999) Chromium mobilization and plant availability-the impact of organic complexing ligands. *Plant Soil*. 212:203-208.
- Stein, C. L., W. C. Brandon, and D. F. McTigue, 2005, Arsenic behavior under sulfate-reducing conditions: beware of the "danger zone," EPA Science Forum 2005, Washington, D. C., May 16-18, 2005, http://www.epa.gov/ord/scienceforum/2005/pdfs/regionposter/Stein Regions29.pdf
- U. S. Environmental Protection Agency, 2002, Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites. EPA 540-R-01-003, OSWER 9285.7-41.
- U.S. Environmental Protection Agency. <u>Toxicological Review of Trivalent Chromium</u>. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. 1998.
- U.S. Environmental Protection Agency. <u>Toxicological Review of Hexavalent Chromium</u>. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. 1998.
- U.S. Environmental Protection Agency. 1996. Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses. U.S. EPA-New England Region I Quality Assurance Unit Staff Office of Environmental Measurement and Evaluation. July 1996, Revised December 1996.
- U.S. Environmental Protection Agency. 1993. Wildlife Exposure Factors Handbook. Office of Research. EPA.
- U. S. Environmental Protection Agency. 1971. *Water quality criteria data book*. Washington DC: U. S. Environmental Protection Agency.
- U.S. Fish and Wildlife Service. 2000. *Trace Element Exposure in Benthic Invertebrates from Grove Pond, Plow Shop Pond, and Nonacoicus Brook, Ayer, Massachusetts*. Prepared by US Fish and Wildlife Service for USEPA. September 2000.
- WHO 1990. *Methyl mercury*. Vol. 101. Geneva, Switzerland: World Health Organization, International Programme on Chemical Safety.
- Wilkin, R. T. and Ford, R. G., 2002, Use of hydrochloric acid for determining solid-phase arsenic partitioning in sulfidic sediments. *Environ. Sci. Technol.* 36(22):4921-4927.


Wilkin, R. 2001. Iron sulfide-arsenite interactions: adsorption behavior onto iron monosulfides and controls on arsenic accumulation in pyrite. Abstract in USGS Workshop on Arsenic in the Environment, Denver, CO. February 2001.


Wilkin, R., Ford, R., Beck, F., Clark, P., Paul, C., LeMay, J., and Puls, R. 2002. Arsenic geochemical behavior during ground water-surface water interactions at a contaminated site. 2002 Program with Abstracts, New Hampshire Consortium on Arsenic, *Arsenic in New England: a Multidisciplinary Scientific Conference*. Manchester, NH. May 29-31, 2002.

Yan, X.-P., Kerrich, R., and Hendry, M. J. 2000. Distribution of arsenic(III), arsenic(V), and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. *Geochim. Cosmochim. Acta* 62(15):2637-2648.

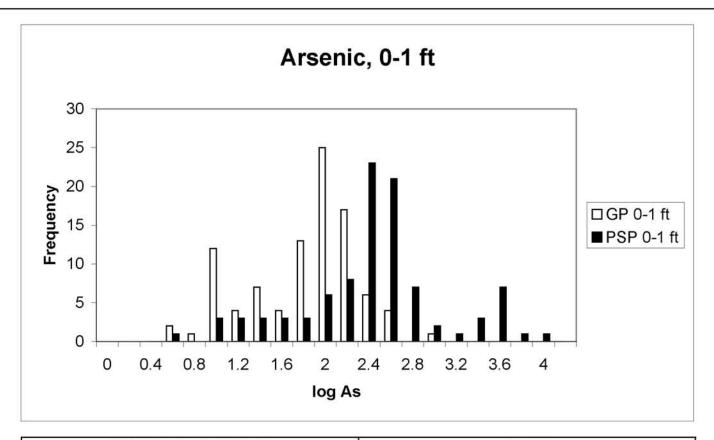
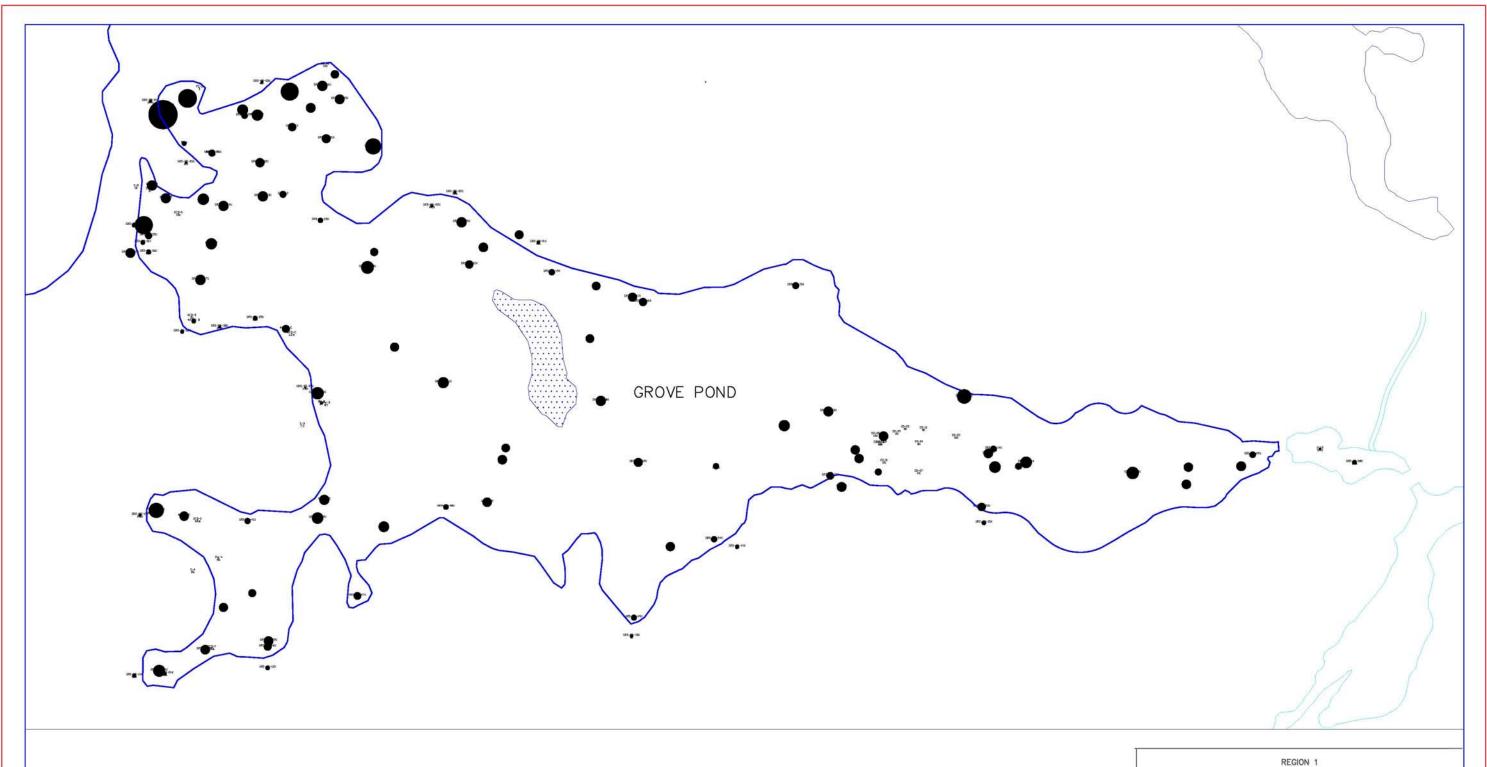


FIGURE NO.: FIGURE 5-1

HISTOGRAMS OF ARSENIC CONCENTRATIONS
IN SHALLOW SEDIMENT (0-1 ft.)
GROVE AND PLOW SHOP PONDS

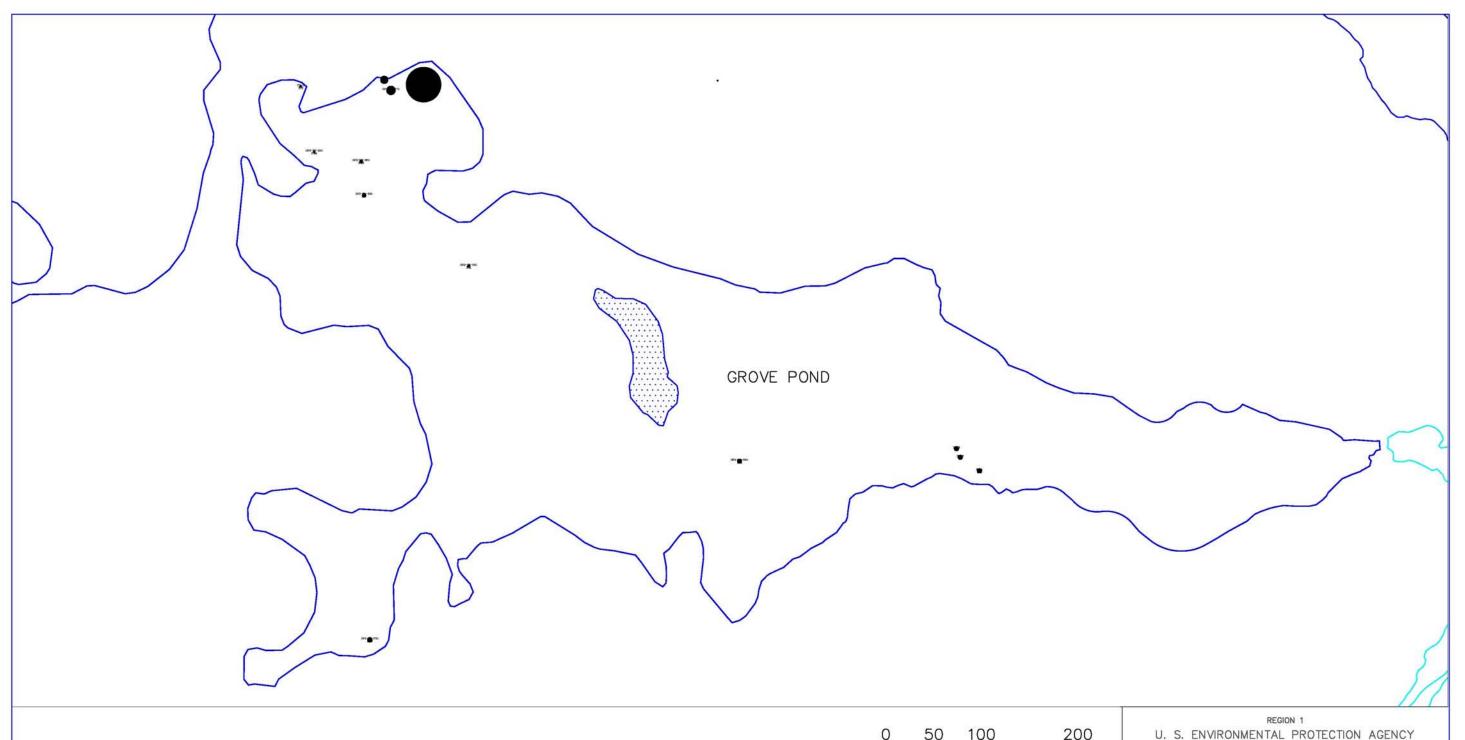

Contract No.: Task Order No.: #1

REGION 1

U.S. ENVIRONMENTAL PROTECTION AGENCY BOSTON, MASSACHUSETTS

EXPANDED SITE INVESTIGATION GROVE AND PLOW SHOP PONDS AYER, MASSACHUSETTS

- 1. Base map originated from the MASSGIS database system.
- 2. Contaminant concentrations reported in milligrams per kilogram (mg/kg).
- 3. The area of the bubbles shown on the figure are proportional to the square root of the contaminant concentration. The largest bubble corresponds to an arsenic concentration of 910 mg/kg. All other smaller bubbles are proportional to the contaminant concentration (Refer to Section 5.2 in the text).


Scale: 1 inch = 100 feet

EXPANDED SITE INVESTIGATION GROVE AND PLOW SHOP PONDS AYER, MASSACHUSETTS

BOSTON, MASSACHUSETTS

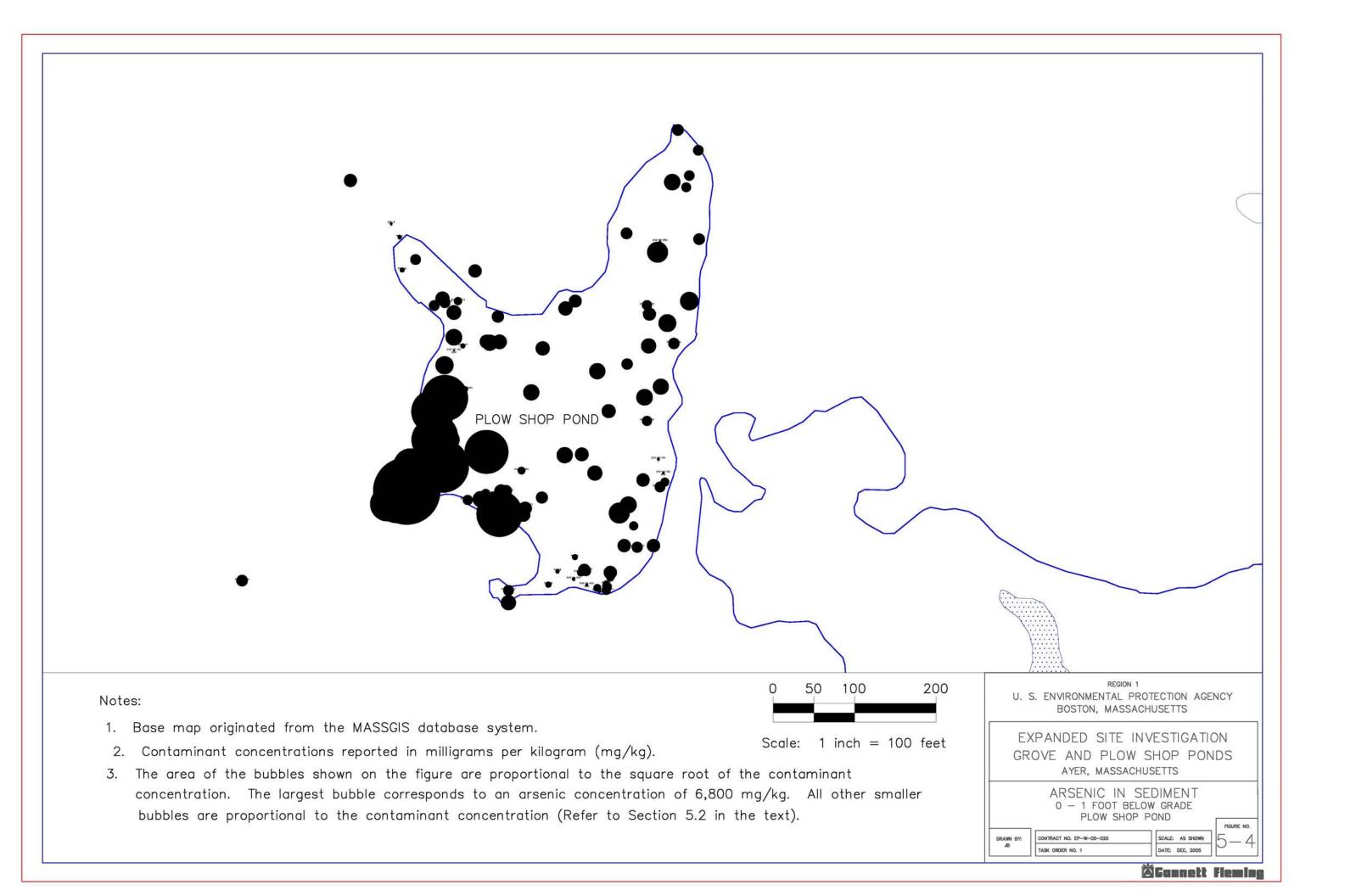
ARSENIC IN SEDIMENT 0 - 1 FOOT BELOW GRADE GROVE POND

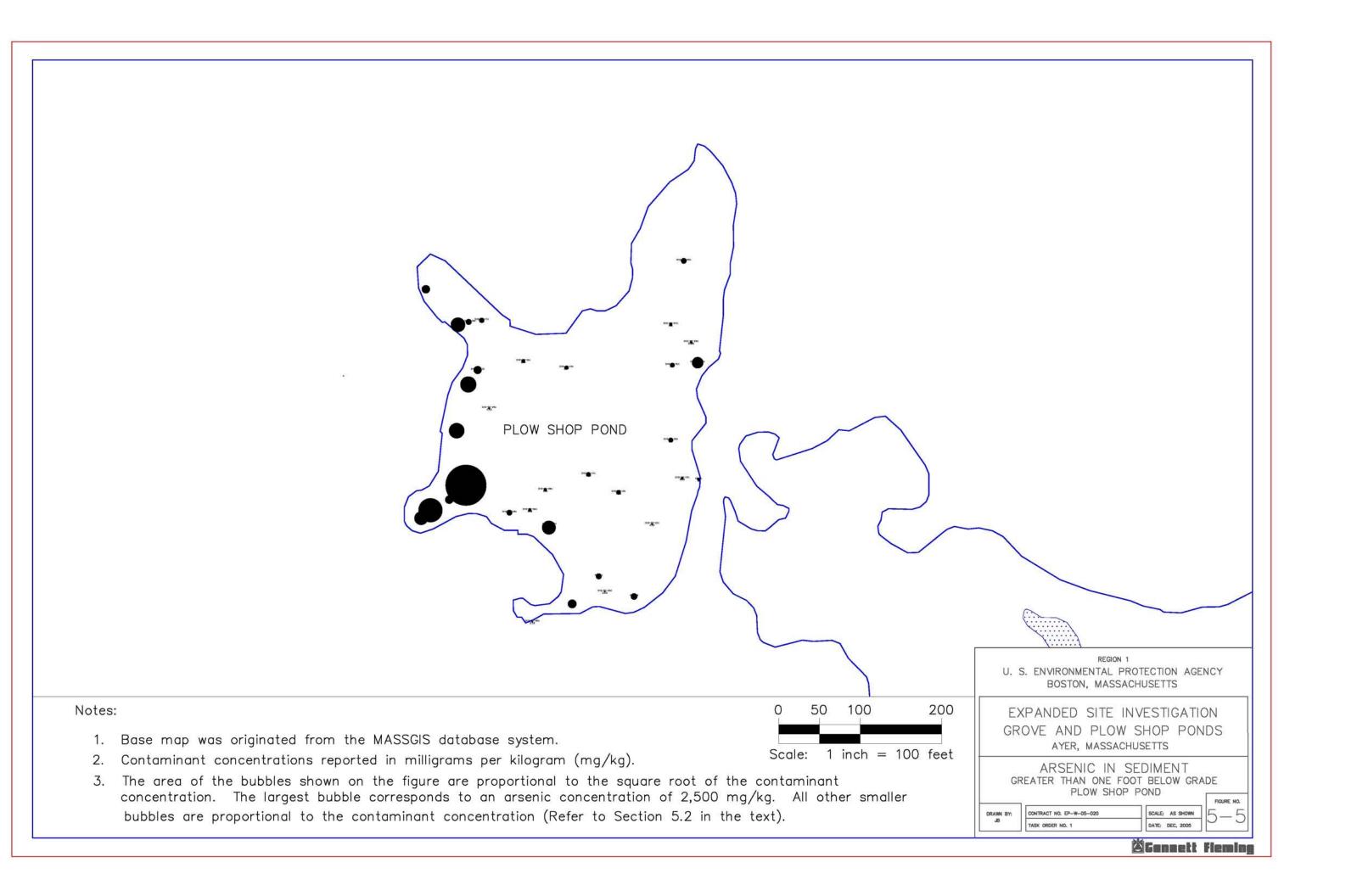
CONTRACT NO. EP-W-05-020

- 1. Base map originated from the MASSGIS database system.
- 2. Contaminant concentrations reported in milligrams per kilogram (mg/kg).
- 3. The area of the bubbles shown on the figure are proportional to the square root of the contaminant concentration. The largest bubble corresponds to an arsenic concentration of 1,300 mg/kg. All other smaller bubbles are proportional to the contaminant concentration (Refer to Section 5.2 in the text).

U. S. ENVIRONMENTAL PROTECTION AGENCY BOSTON, MASSACHUSETTS

GROVE AND PLOW SHOP PONDS


AYER, MASSACHUSETTS


Scale: 1 inch = 100 feet

ARSENIC IN SEDIMENT
GREATER THAN ONE FOOT BELOW GRADE
GROVE POND

DRAWN BY: CONTRACT NO. EP-W-05-020 SCALE: AS SHOWN
TASK ORDER NO. 1 DATE: DEC. 2005

🛎 Gannett Fleming

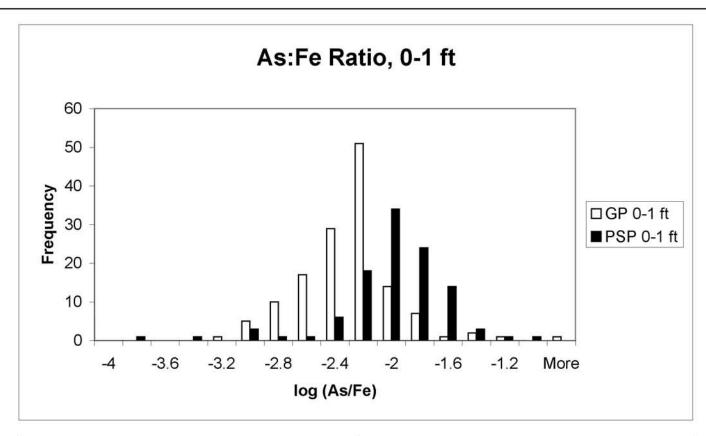


FIGURE NO.: FIGURE 5-6

ARSENIC AND IRON RATIO
0 -1 FOOT BELOW GRADE
GROVE AND PLOW SHOP PONDS

Contract No.:
EP-W-05-020

REGION 1

U.S. ENVIRONMENTAL PROTECTION AGENCY
BOSTON, MASSACHUSETTS

EXPANDED SITE INVESTIGATION
GROVE AND PLOW SHOP PONDS

AYER, MASSACHUSETTS

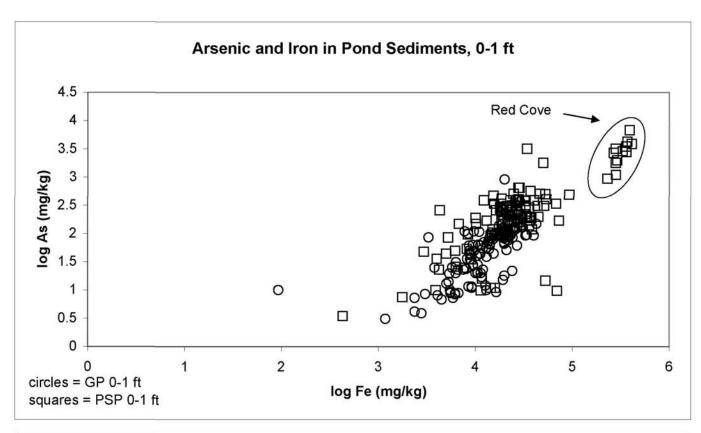
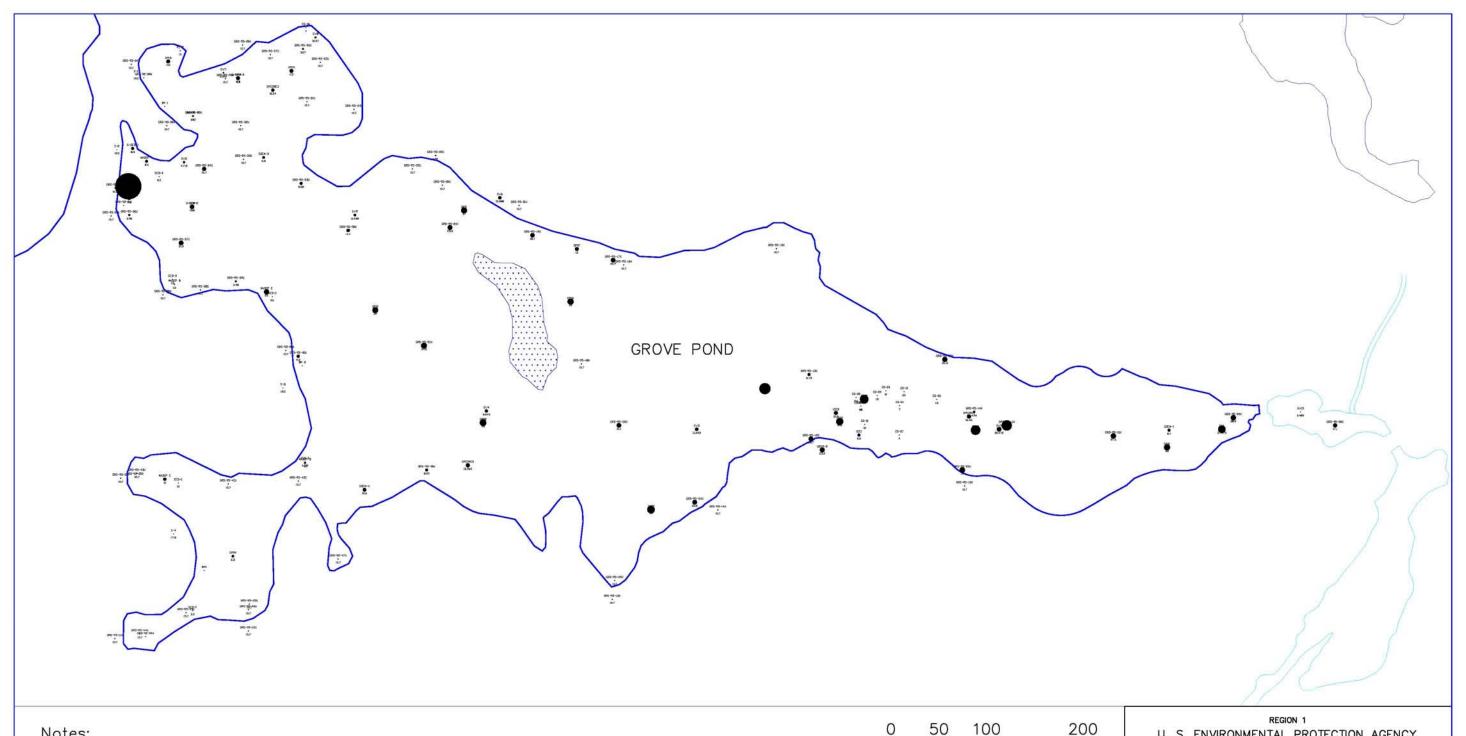


FIGURE NO.: FIGURE 5-7

ARSENIC vs. IRON IN SHALLOW SEDIMENT
0 -1 FOOT BELOW GRADE
GROVE AND PLOW SHOP PONDS

Contract No.:
EP-W-05-020


REGION 1

U.S. ENVIRONMENTAL PROTECTION AGENCY
BOSTON, MASSACHUSETTS

EXPANDED SITE INVESTIGATION
GROVE AND PLOW SHOP PONDS

AYER, MASSACHUSETTS

- 1. Base map originated from the MASSGIS database system.
- 2. Contaminant concentrations reported in milligrams per kilogram (mg/kg).
- 3. The area of the bubbles shown on the figure are proportional to the square root of the contaminant concentration. The largest bubble corresponds to a cadmium concentration of 730 mg/kg. All other smaller bubbles are proportional to the contaminant concentration (Refer to Section 5.2 in the text).

U. S. ENVIRONMENTAL PROTECTION AGENCY BOSTON, MASSACHUSETTS

EXPANDED SITE INVESTIGATION GROVE AND PLOW SHOP PONDS AYER, MASSACHUSETTS

> CADMIUM IN SEDIMENT 0 - 1 FOOT BELOW GRADE GROVE POND

CONTRACT NO. EP-W-05-020

Scale: 1 inch = 100 feet

當Gannett Fleming

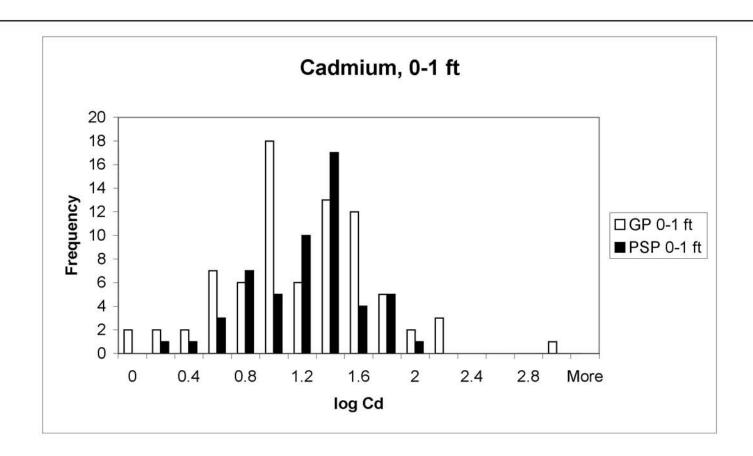
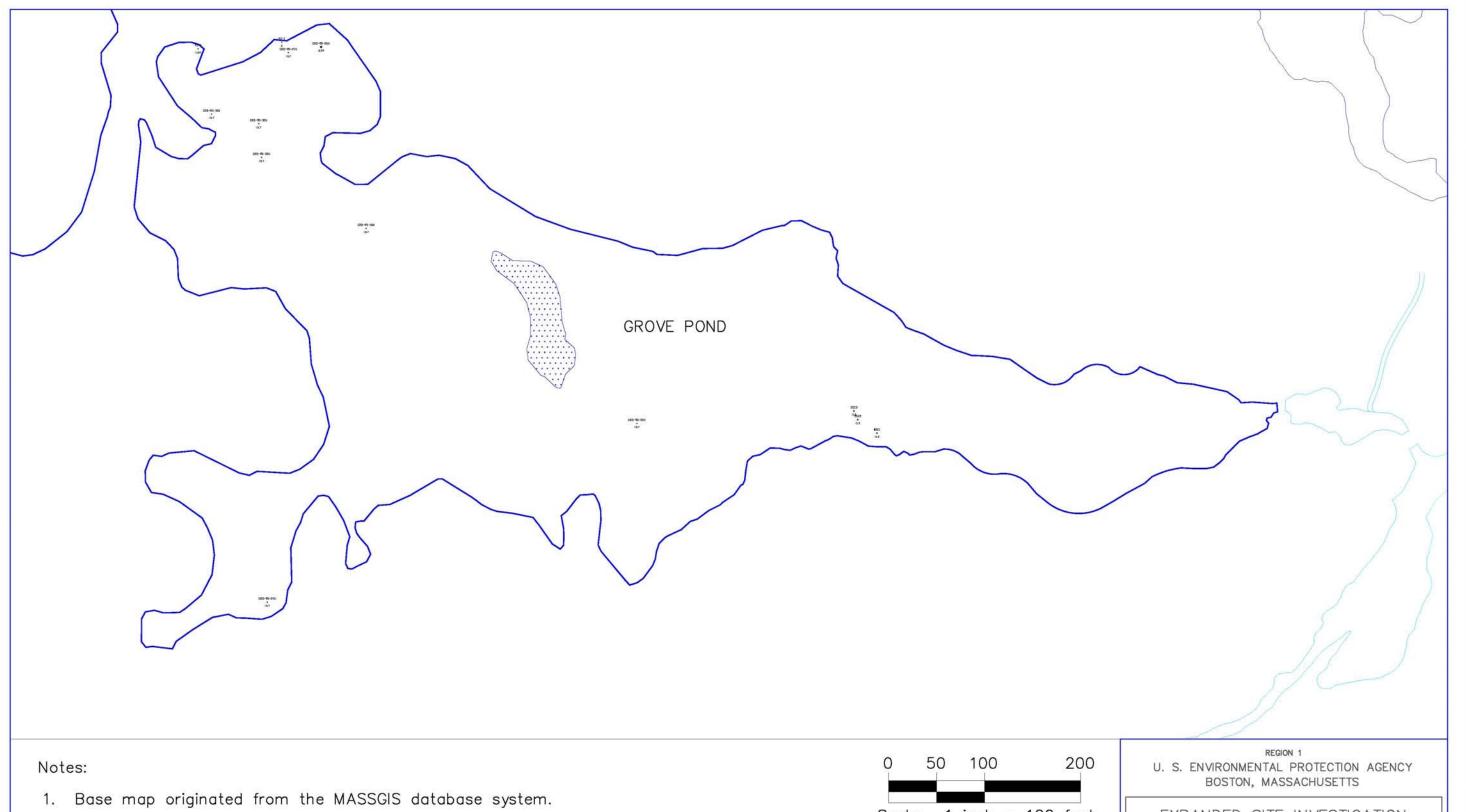


FIGURE NO.: FIGURE 5-9

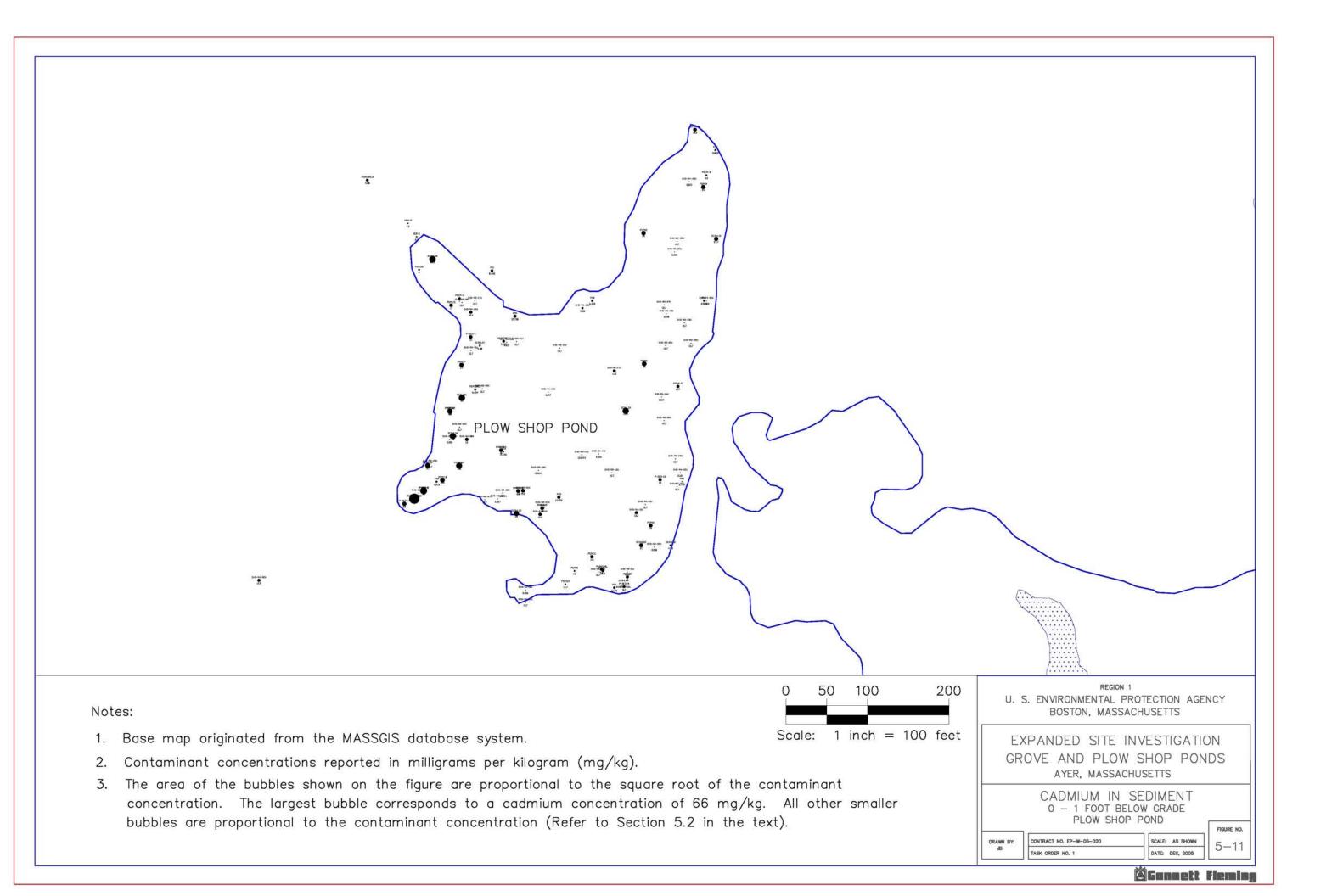

HISTOGRAMS OF CADMIUM CONCENTRATIONS
IN SHALLOW SEDIMENT (0-1 ft.)
GROVE AND PLOW SHOP PONDS

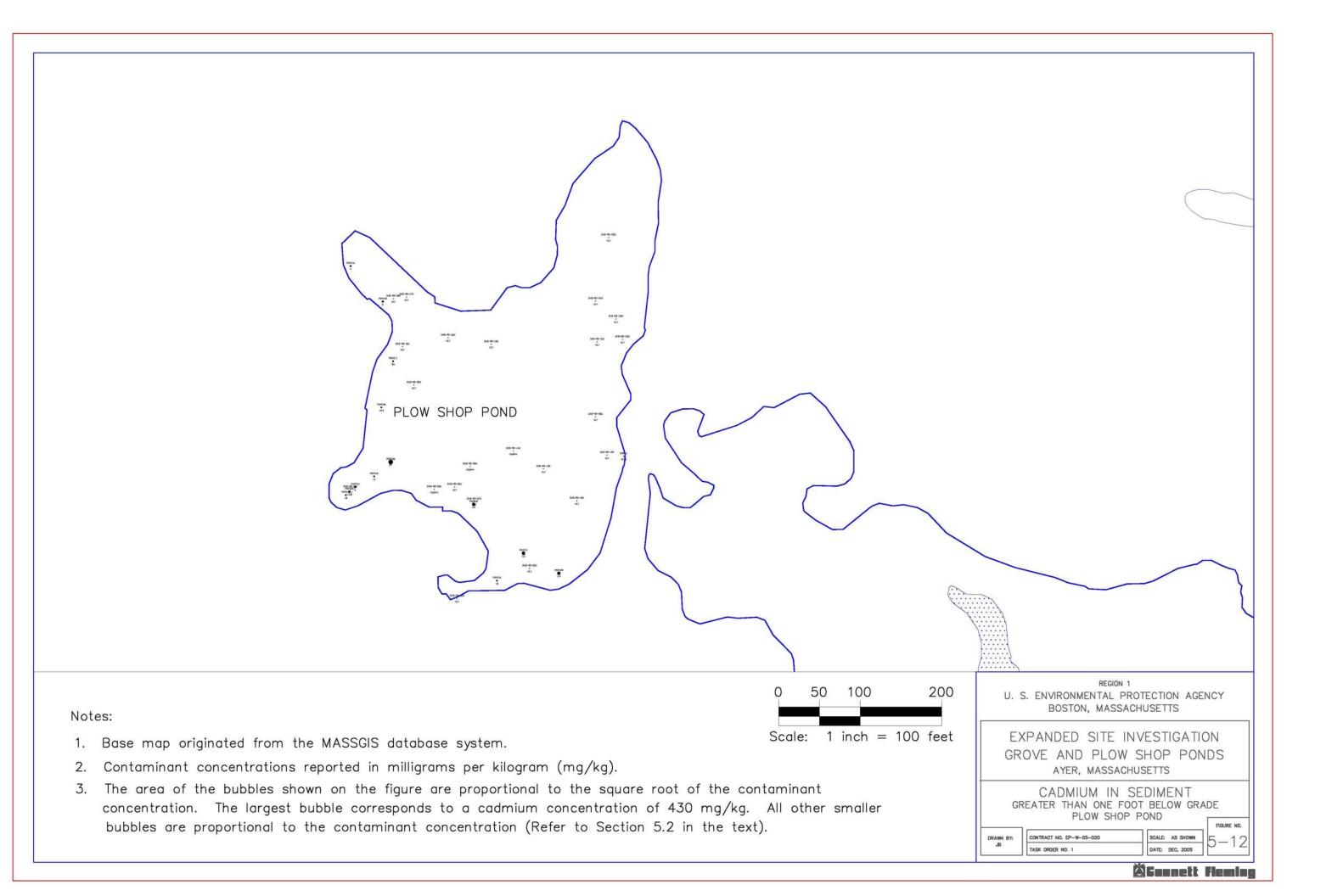
Contract No.: Task Order No.: EP-W-05-020 #1

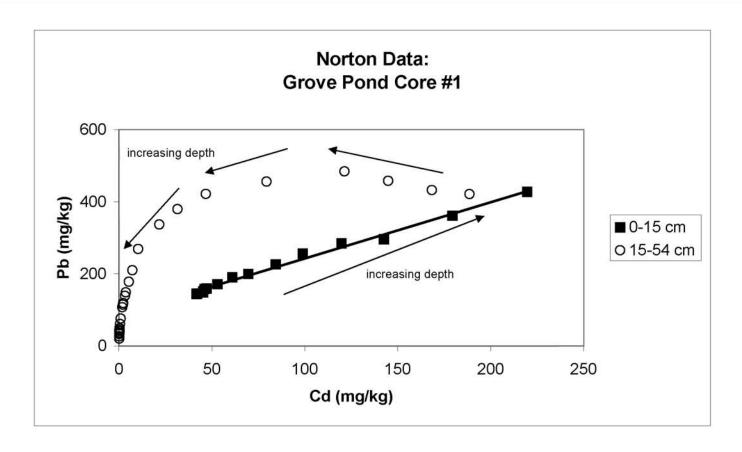
REGION 1
U.S. ENVIRONMENTAL PROTECTION AGENCY
BOSTON, MASSACHUSETTS

EXPANDED SITE INVESTIGATION
GROVE AND PLOW SHOP PONDS
AYER, MASSACHUSETTS

- 2. Contaminant concentrations reported in milligrams per kilogram (mg/kg).
- 3. The area of the bubbles shown on the figure are proportional to the square root of the contaminant concentration. The largest bubble corresponds to a cadmium concentration of 3.59 mg/kg. All other smaller bubbles are proportional to the contaminant concentration (Refer to Section 5.2 in the text).


Scale: 1 inch = 100 feet


EXPANDED SITE INVESTIGATION GROVE AND PLOW SHOP PONDS AYER, MASSACHUSETTS


CADMIUM IN SEDIMENT GREATER THAN ONE FOOT BELOW GRADE GROVE POND

CONTRACT NO. EP-W-05-020 SCALE: AS SHOWN DATE: DEC, 2005

Ganaett Fleming

FIGURE NO.: FIGURE 5-13		REGION 1 U.S. ENVIRONMENTAL PROTECTION AGENCY
CADMIUM vs. LEAD NORTON DATA GROVE POND CORE #1		BOSTON, MASSACHUSETTS
		EXPANDED SITE INVESTIGATION GROVE AND PLOW SHOP PONDS
Contract No.:	Task Order No.:	AYER, MASSACHUSETTS
EP-W-05-020	#1	7.5

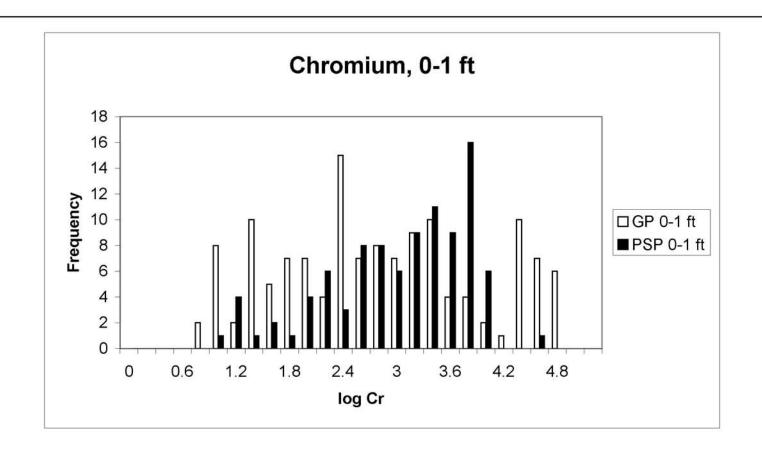
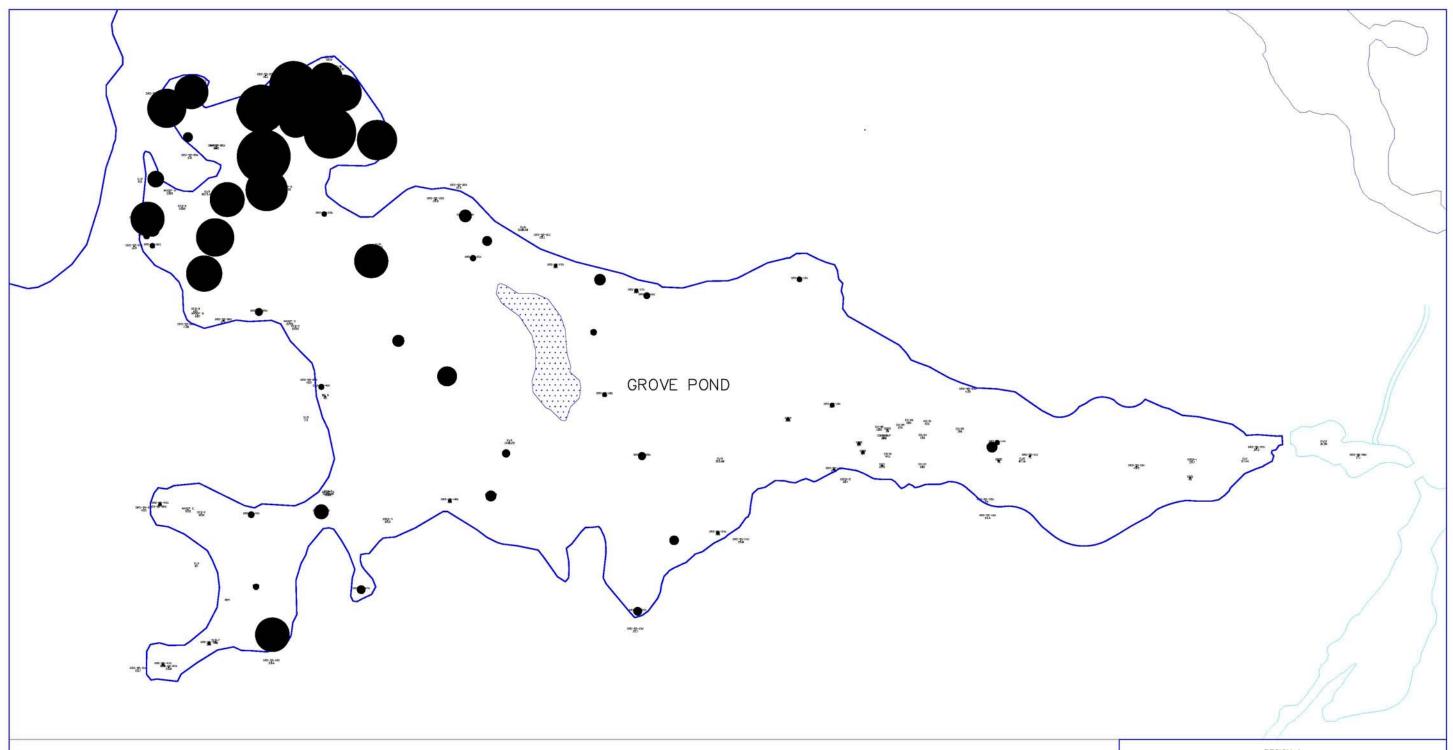


FIGURE NO.: FIGURE 5-14

HISTOGRAMS OF CHROMIUM CONCENTRATIONS
IN SHALLOW SEDIMENT (0-1 ft.)
GROVE AND PLOW SHOP PONDS

Contract No.:


EP-W-05-020

Task Order No.: #1 **REGION 1**

U.S. ENVIRONMENTAL PROTECTION AGENCY BOSTON, MASSACHUSETTS

EXPANDED SITE INVESTIGATION GROVE AND PLOW SHOP PONDS AYER, MASSACHUSETTS

- 1. Base map originated from the MASSGIS database system.
- 2. Contaminant concentrations reported in milligrams per kilogram (mg/kg).
- 3. The area of the bubbles shown on the figure are proportional to the square root of the contaminant concentration. The largest bubble corresponds to a chromium concentration of 52,000 mg/kg. All other smaller bubbles are proportional to the contaminant concentration (Refer to Section 5.2 in the text).

REGION 1

100

Scale: 1 inch = 100 feet

200

U. S. ENVIRONMENTAL PROTECTION AGENCY BOSTON, MASSACHUSETTS

GROVE AND PLOW SHOP PONDS
AYER, MASSACHUSETTS

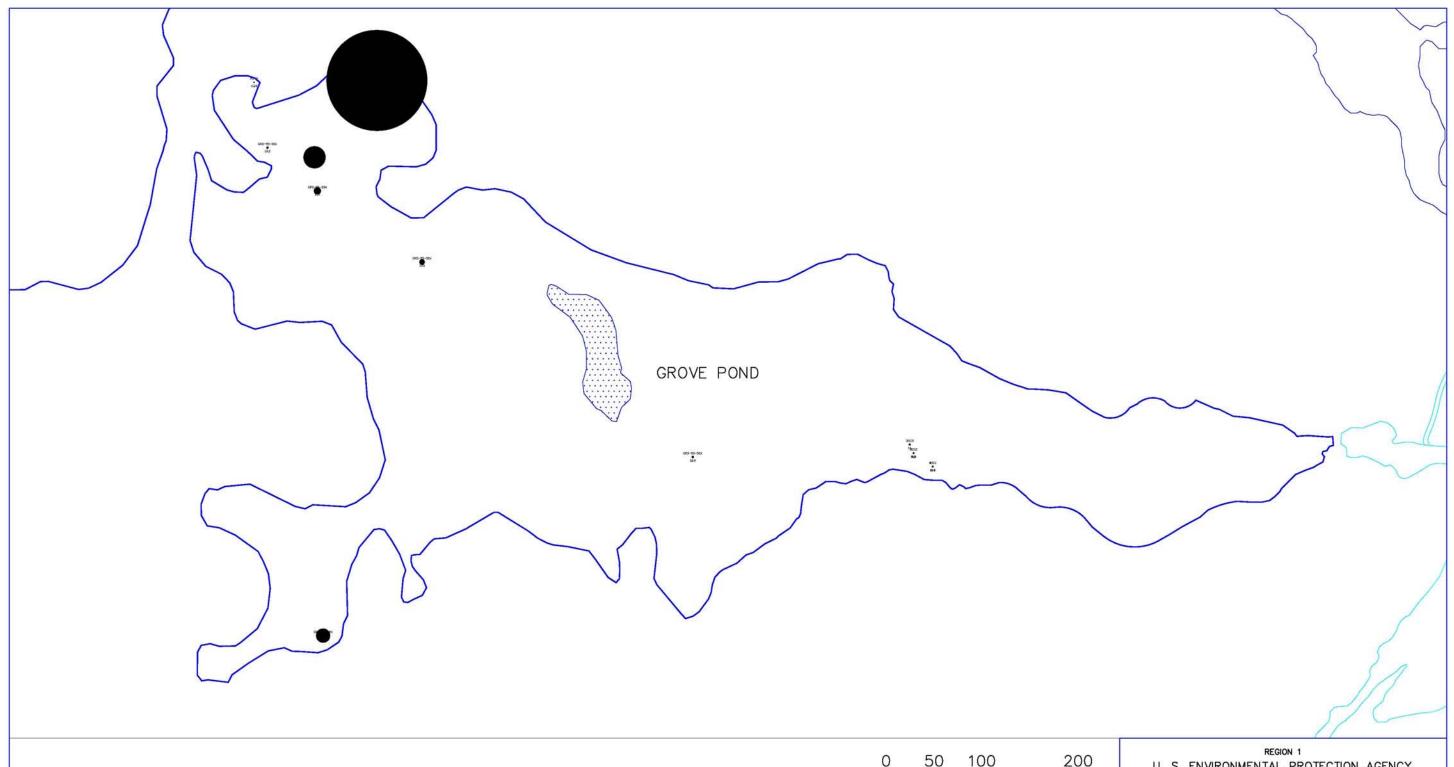
CHROMIUM IN SEDIMENT 0 - 1 FOOT BELOW GRADE GROVE POND

GROVE POND

ORAWN BY:

ORAWN BY:

TASK ORDER NO. 1


GROVE POND

SCALE: AS SHOWN
DATE: DEC, 2005

FIGURE NO.

5-15

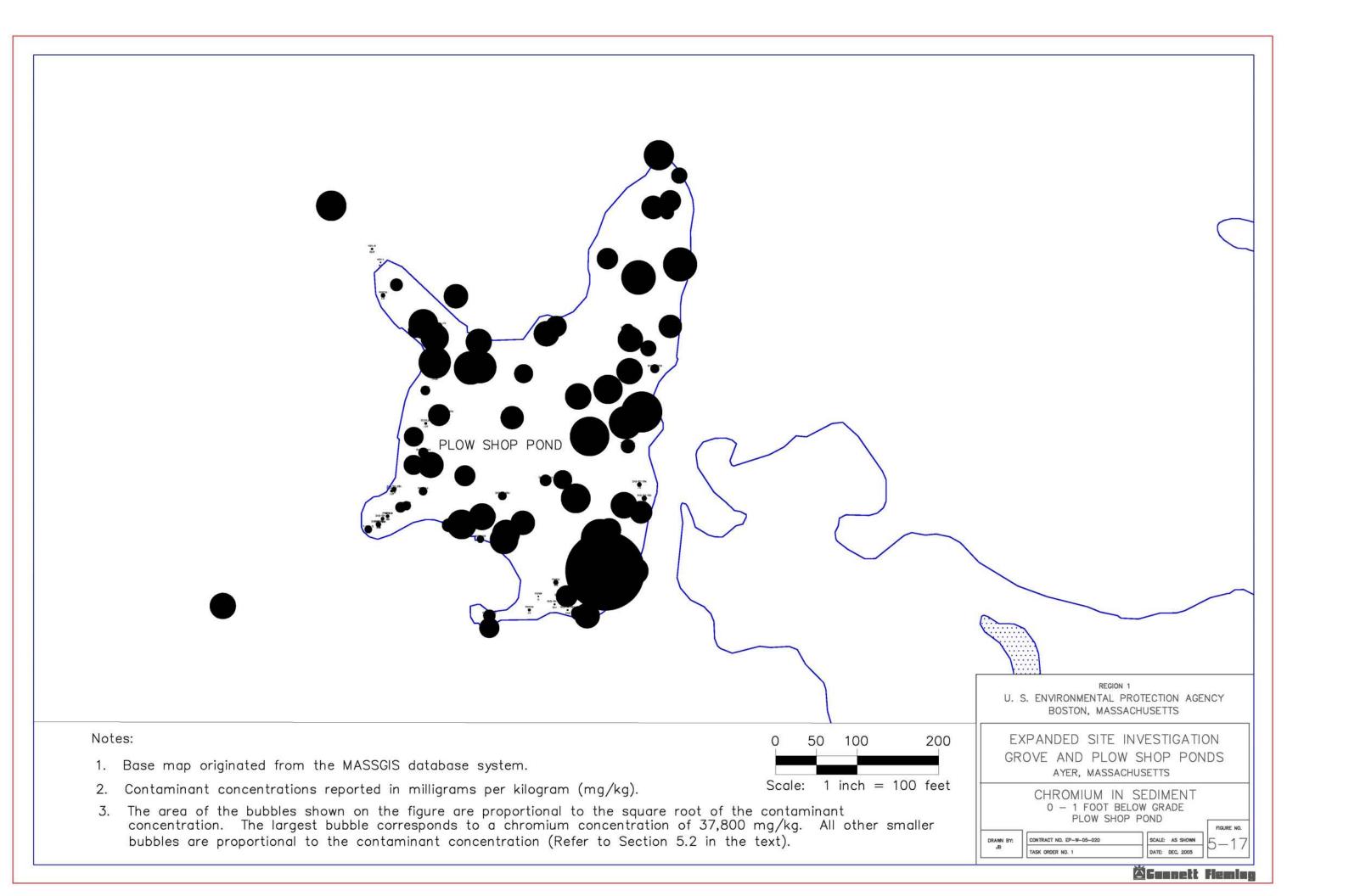
ÄCannett Fleming

- 1. Base map originated from the MASSGIS database system.
- 2. Contaminant concentrations reported in milligrams per kilogram (mg/kg).
- 3. The area of the bubbles shown on the figure are proportional to the square root of the contaminant concentration. The largest bubble corresponds to a chromium concentration of 44,000 mg/kg. All other smaller bubbles are proportional to the contaminant concentration (Refer to Section 5.2 in the text).

U. S. ENVIRONMENTAL PROTECTION AGENCY BOSTON, MASSACHUSETTS

EXPANDED SITE INVESTIGATION
GROVE AND PLOW SHOP PONDS
AYER, MASSACHUSETTS

CHROMIUM IN SEDIMENT
GREATER THAN ONE FOOT BELOW GRADE
GROVE POND

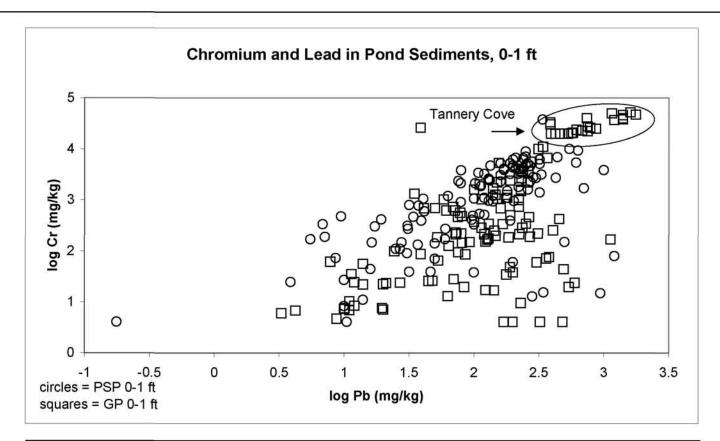

DRAWN BY:

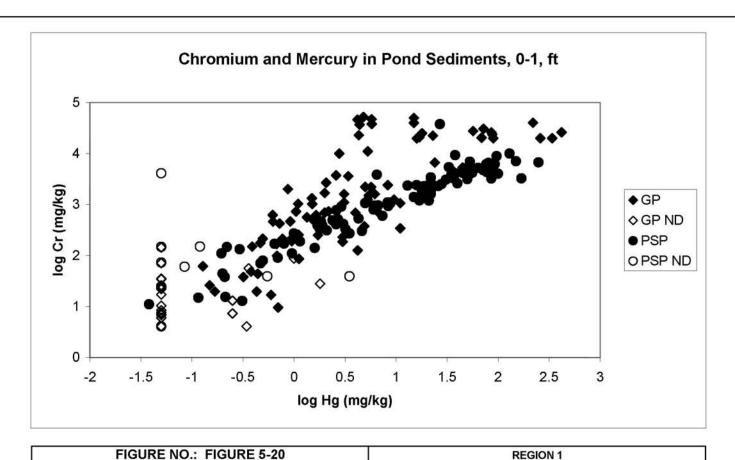
Scale: 1 inch = 100 feet

 CONTRACT NO. EP-W-05-020
 SCALE: AS SHOWN

 TASK ORDER NO. 1
 DATE: DEC, 2005

ÖCannett Fleming




FIGURE NO.: FIGURE 5-19

CHROMIUM vs. LEAD IN SHALLOW SEDIMENT
0 -1 FOOT BELOW GRADE
GROVE AND PLOW SHOP PONDS

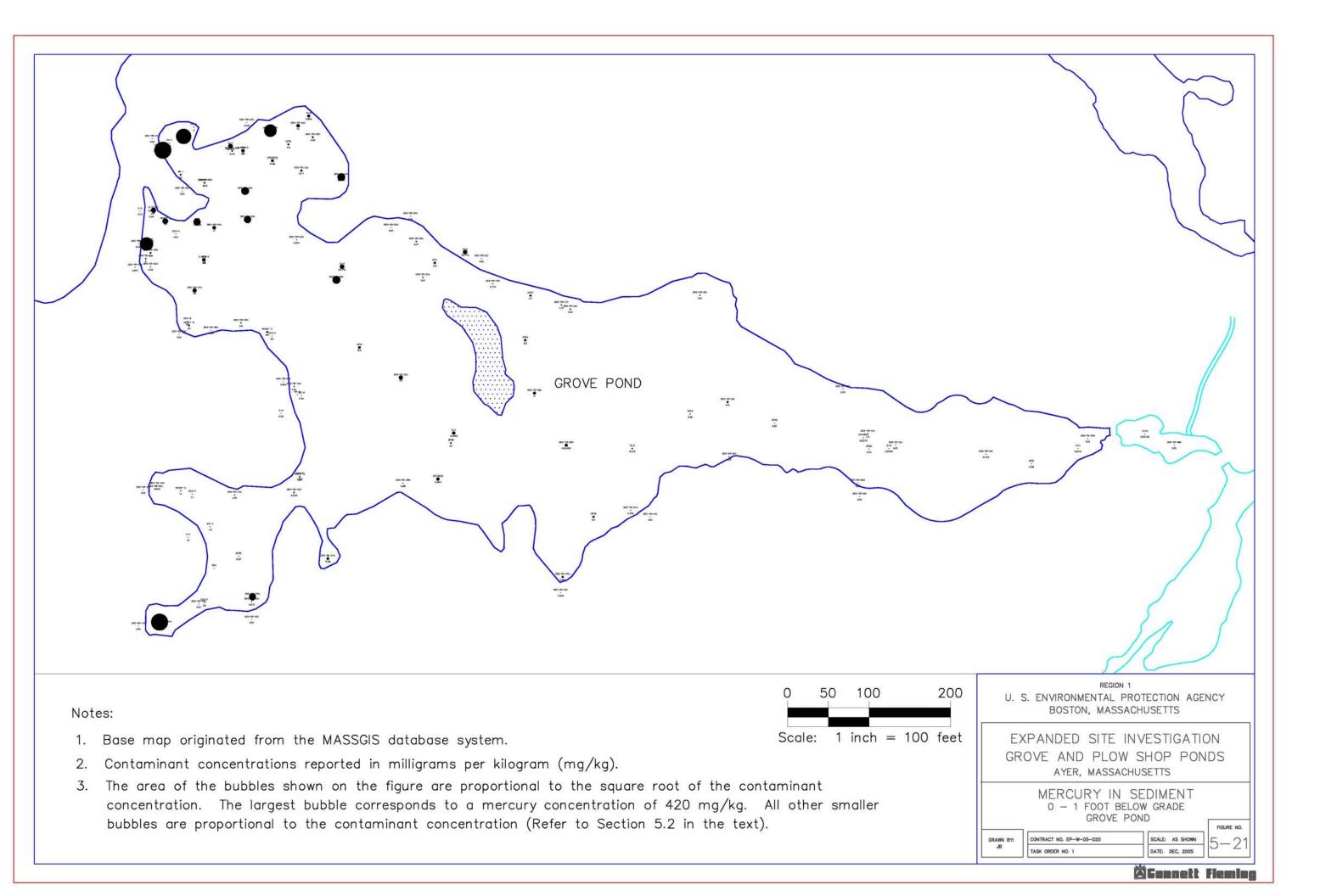
Contract No.:
EP-W-05-020

REGION 1
U.S. ENVIRONMENTAL PROTECTION AGENCY
BOSTON, MASSACHUSETTS
EXPANDED SITE INVESTIGATION
GROVE AND PLOW SHOP PONDS
AYER, MASSACHUSETTS

U.S. ENVIRONMENTAL PROTECTION AGENCY

CHROMIUM vs. MERCURY IN SHALLOW SEDIMENT
0 -1 FOOT BELOW GRADE
GROVE AND PLOW SHOP PONDS

EXPANDED SITE INVESTIGATION
GROVE AND PLOW SHOP PONDS


Contract No.:

Task Order No.:

AYER, MASSACHUSETTS

Contract No.: Task Order No.: EP-W-05-020 #1

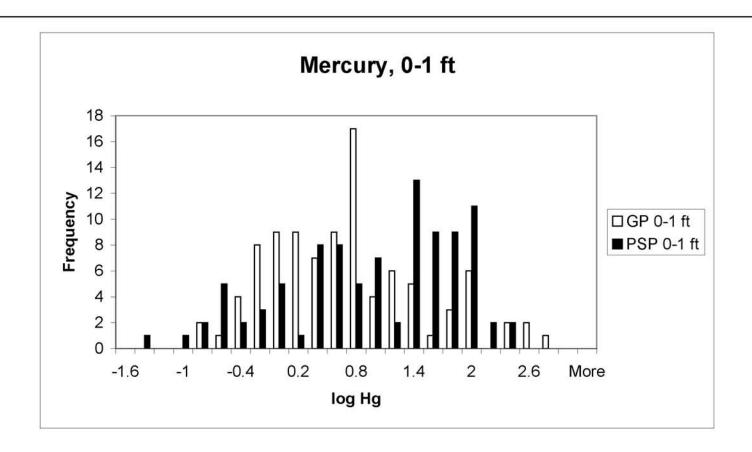


FIGURE NO.: FIGURE 5-22

HISTOGRAMS OF MERCURY CONCENTRATIONS
IN SHALLOW SEDIMENT (0-1 ft.)
GROVE AND PLOW SHOP PONDS

Contract No.: Task Order No.: EP-W-05-020 #1

REGION 1
U.S. ENVIRONMENTAL PROTECTION AGENCY
BOSTON, MASSACHUSETTS

EXPANDED SITE INVESTIGATION GROVE AND PLOW SHOP PONDS AYER, MASSACHUSETTS

Notes:

- 1. Base map originated from the MASSGIS database system.
- 2. Contaminant concentrations reported in milligrams per kilogram (mg/kg).
- 3. The area of the bubbles shown on the figure are proportional to the square root of the contaminant concentration. The largest bubble corresponds to a mercury concentration of 150 mg/kg. All other smaller bubbles are proportional to the contaminant concentration (Refer to Section 5.2 in the text).

U. S. ENVIRONMENTAL PROTECTION AGENCY BOSTON, MASSACHUSETTS

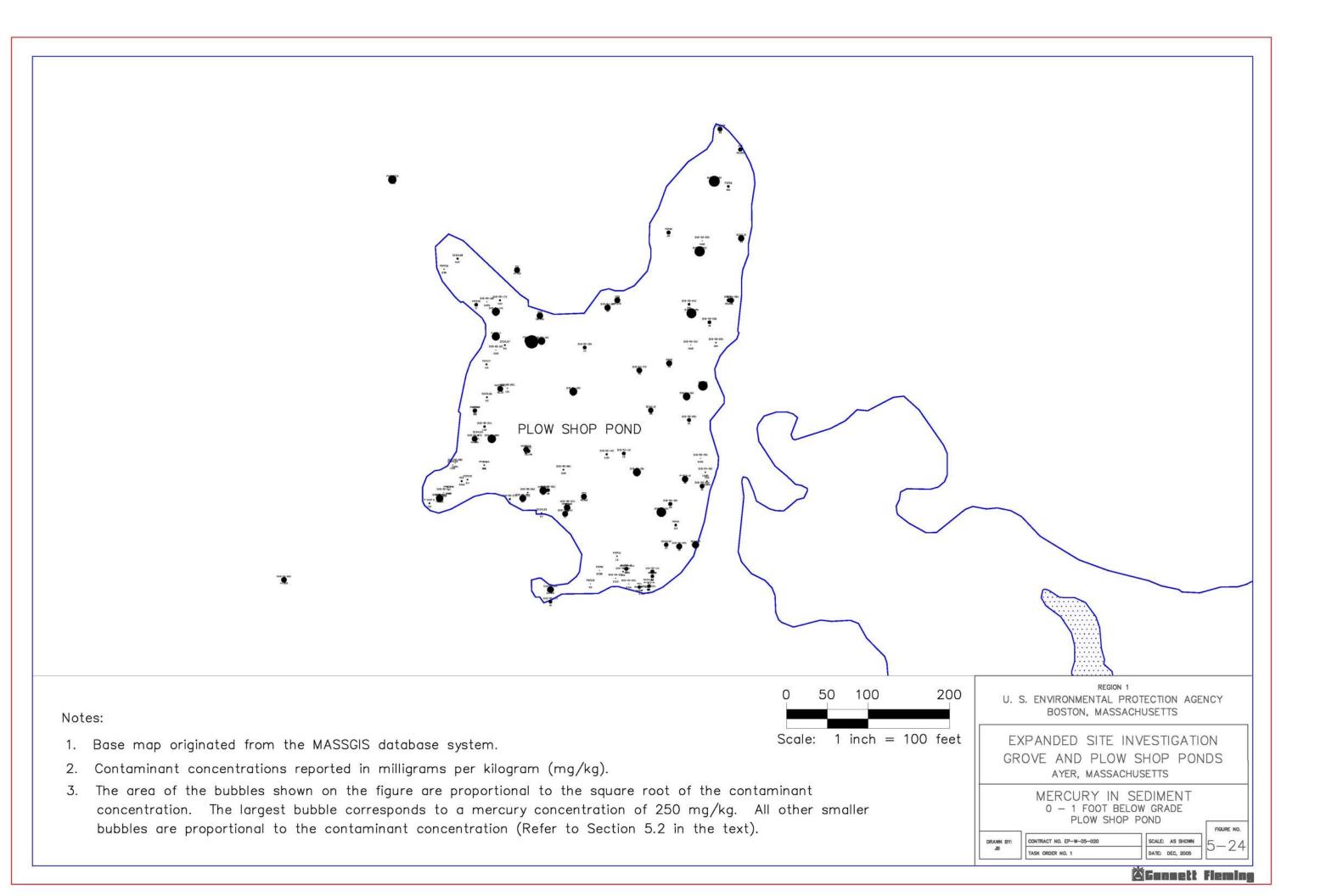
Scale: 1 inch = 100 feet

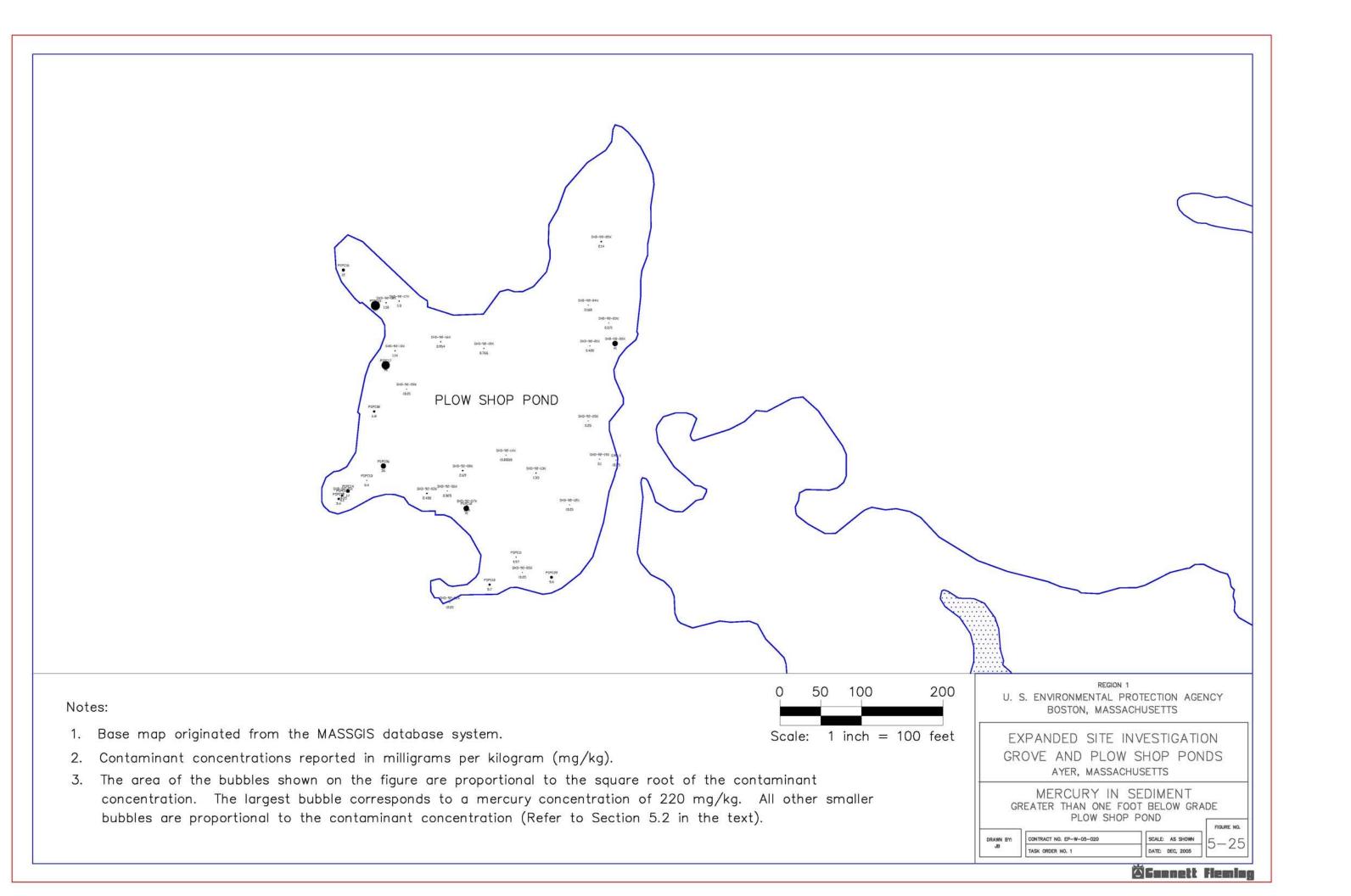
GROVE AND PLOW SHOP PONDS
AYER, MASSACHUSETTS

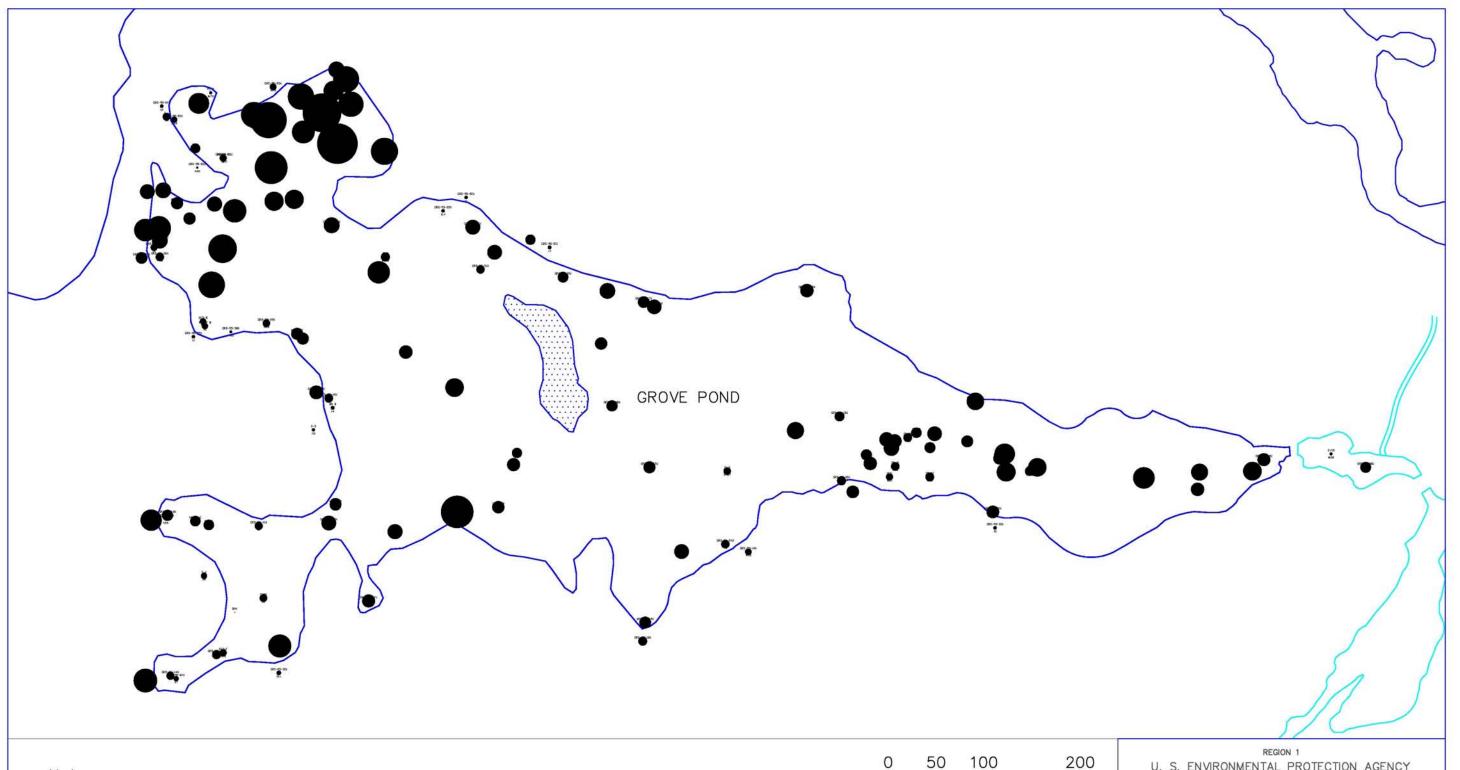
MERCURY IN SEDIMENT
GREATER THAN ONE FOOT BELOW GRADE
GROVE POND

DRAWN BY:

JB


CONTRACT NO. EP-W-05-020
TASK ORDER NO. 1


DATE: DEC, 2005


FIGURE NO. 5

2 3

ÄGannett Fleming

Notes:

1. Base map originated from the MASSGIS database system.

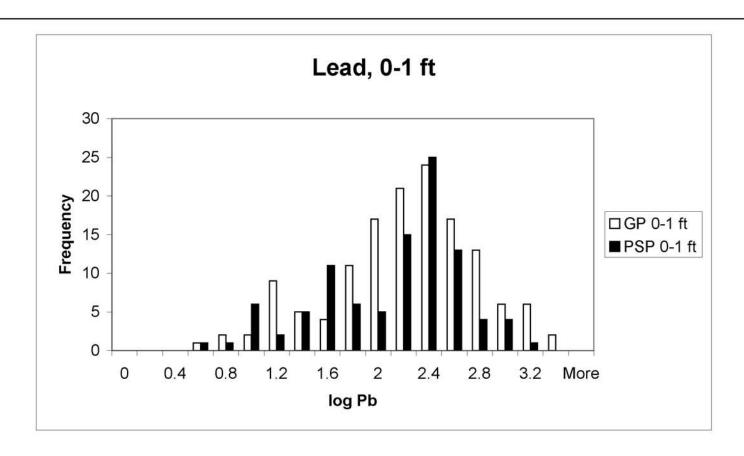
2. Contaminant concentrations reported in milligrams per kilogram (mg/kg).

3. The area of the bubbles shown on the figure are proportional to the square root of the contaminant concentration. The largest bubble corresponds to a lead concentration of 1,760 mg/kg. All other smaller bubbles are proportional to the contaminant concentration (Refer to Section 5.2 in the text).

U. S. ENVIRONMENTAL PROTECTION AGENCY BOSTON, MASSACHUSETTS

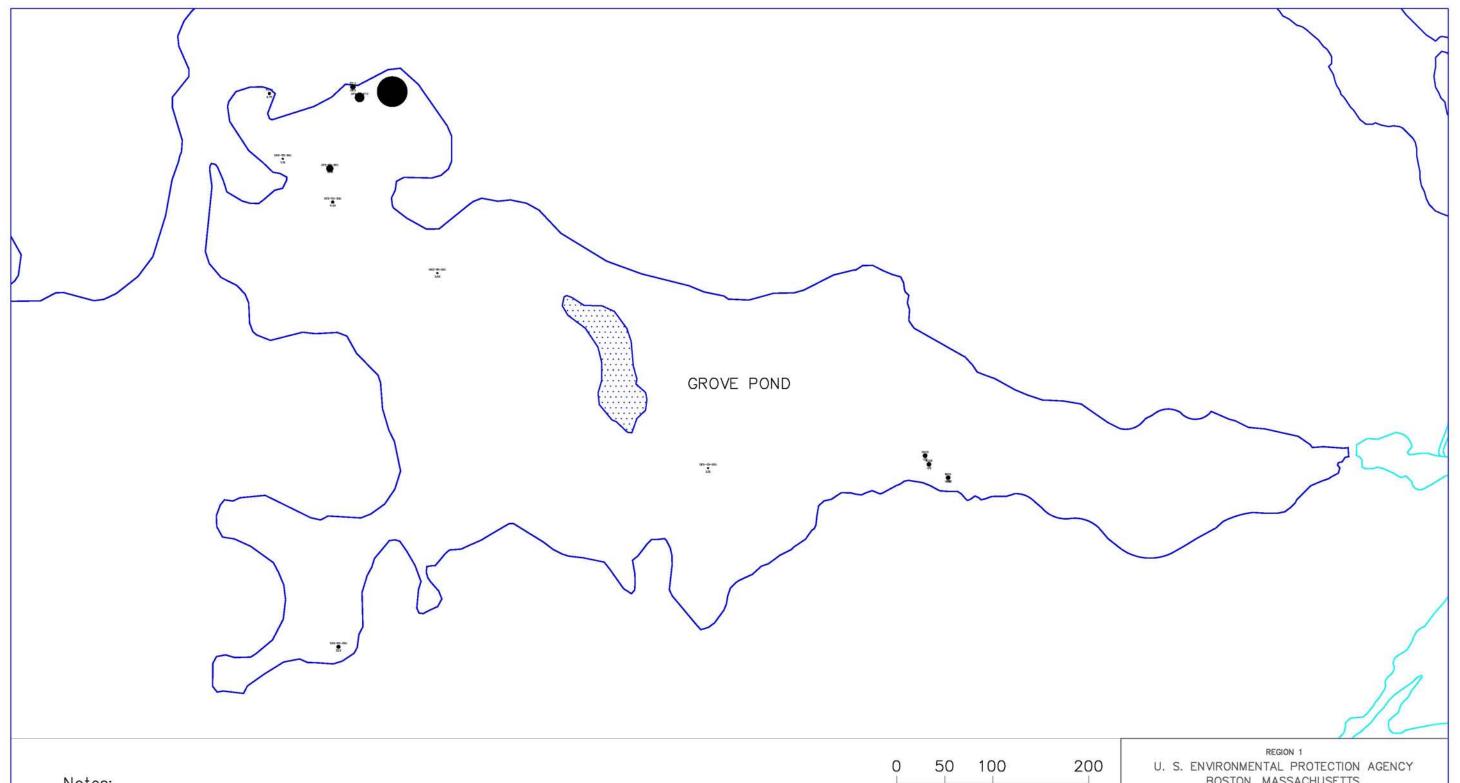
EXPANDED SITE INVESTIGATION
GROVE AND PLOW SHOP PONDS
AYER, MASSACHUSETTS

LEAD IN SEDIMENT 0 - 1 FOOT BELOW GRADE GROVE POND

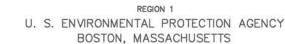

DRAWN BY:

Scale: 1 inch = 100 feet

| CONTRACT NO. EP-W-05-020 | SCALE: AS SHOWN | DATE: DEC, 2005

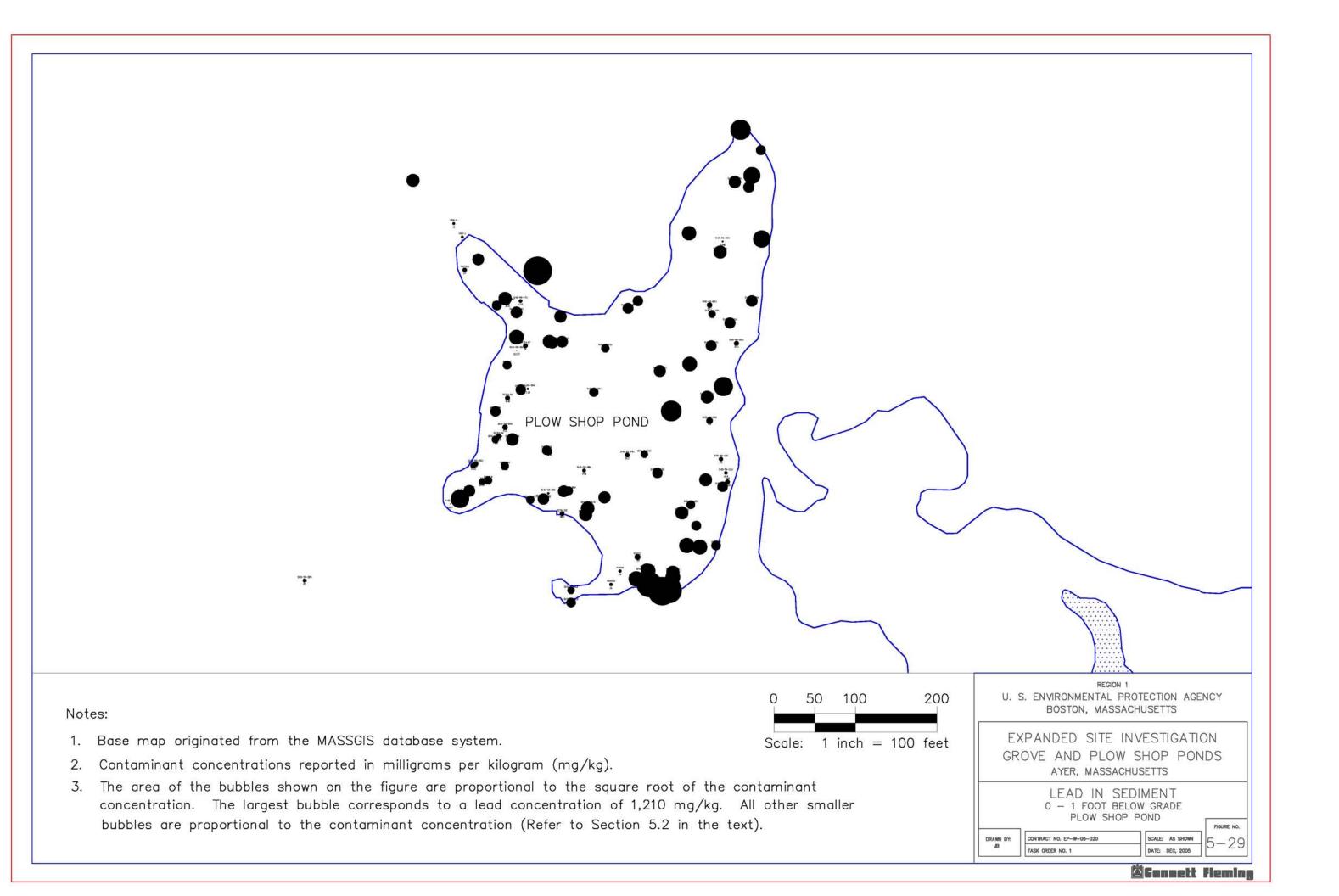

5-26

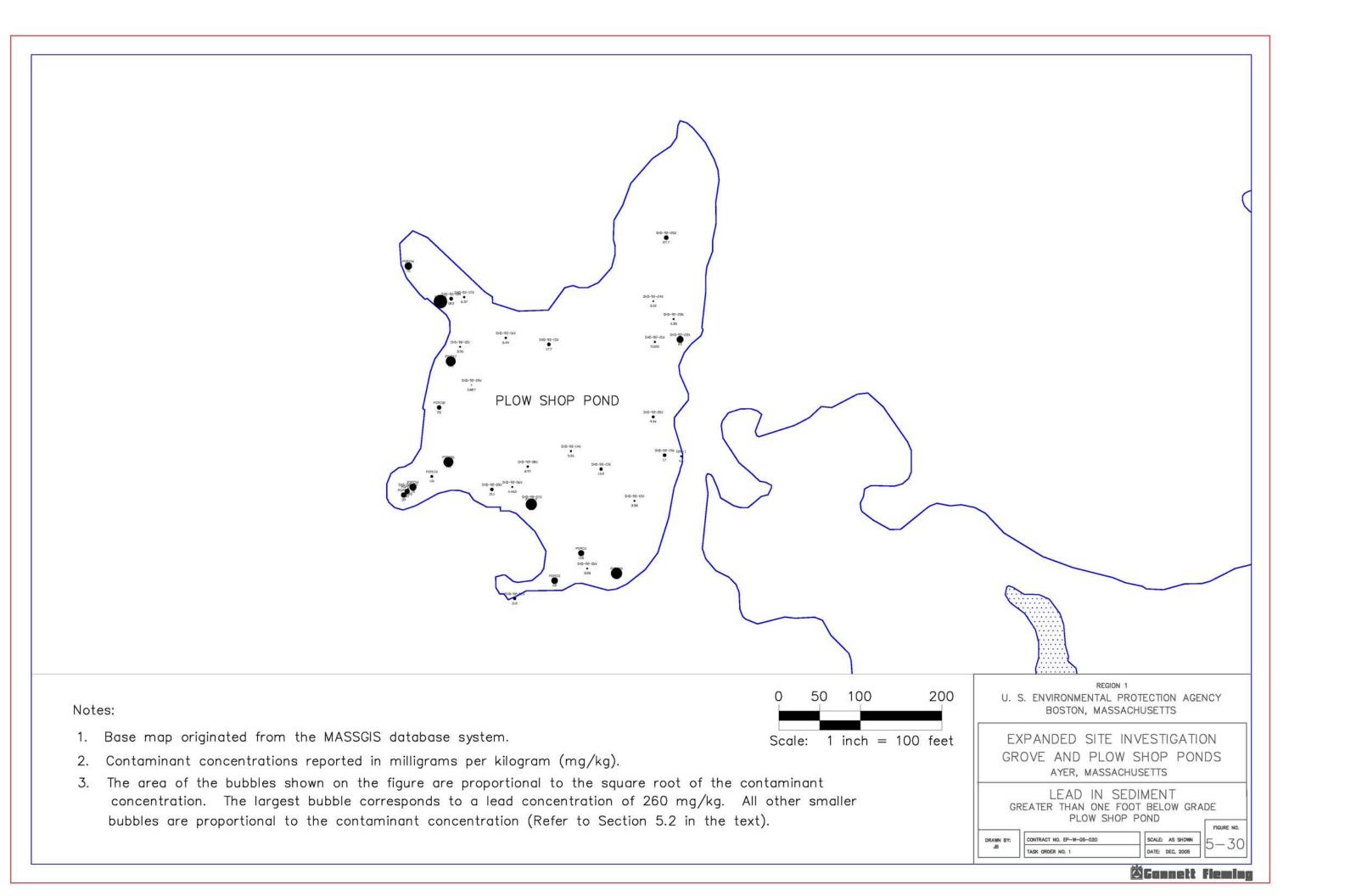
Gannett Fleming


FIGURE NO.: FIGURE 5-27		REGION 1 U.S. ENVIRONMENTAL PROTECTION AGENCY
HISTOGRAMS OF LEAD CONCENTRATIONS IN SHALLOW SEDIMENT (0-1 ft.)		BOSTON, MASSACHUSETTS
GROVE AND PLOW SHOP PONDS		EXPANDED SITE INVESTIGATION GROVE AND PLOW SHOP PONDS
Contract No.: EP-W-05-020	Task Order No.: #1	AYER, MASSACHUSETTS

Notes:

- 1. Base map originated from the MASSGIS database system.
- 2. Contaminant concentrations reported in milligrams per kilogram (mg/kg).
- 3. The area of the bubbles shown on the figure are proportional to the square root of the contaminant concentration. The largest bubble corresponds to a lead concentration of 1,000 mg/kg. All other smaller bubbles are proportional to the contaminant concentration (Refer to Section 5.2 in the text).


Scale: 1 inch = 100 feet


EXPANDED SITE INVESTIGATION GROVE AND PLOW SHOP PONDS AYER, MASSACHUSETTS

LEAD IN SEDIMENT
GREATER THAN ONE FOOT BELOW GRADE
GROVE POND

CONTRACT NO. EP-W-05-020 SCALE: AS SHOWN DATE: DEC, 2005

Eannett Fleming

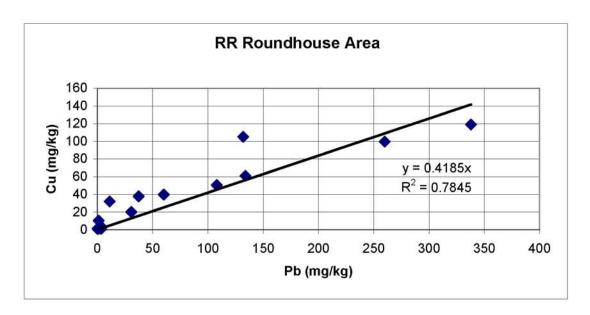
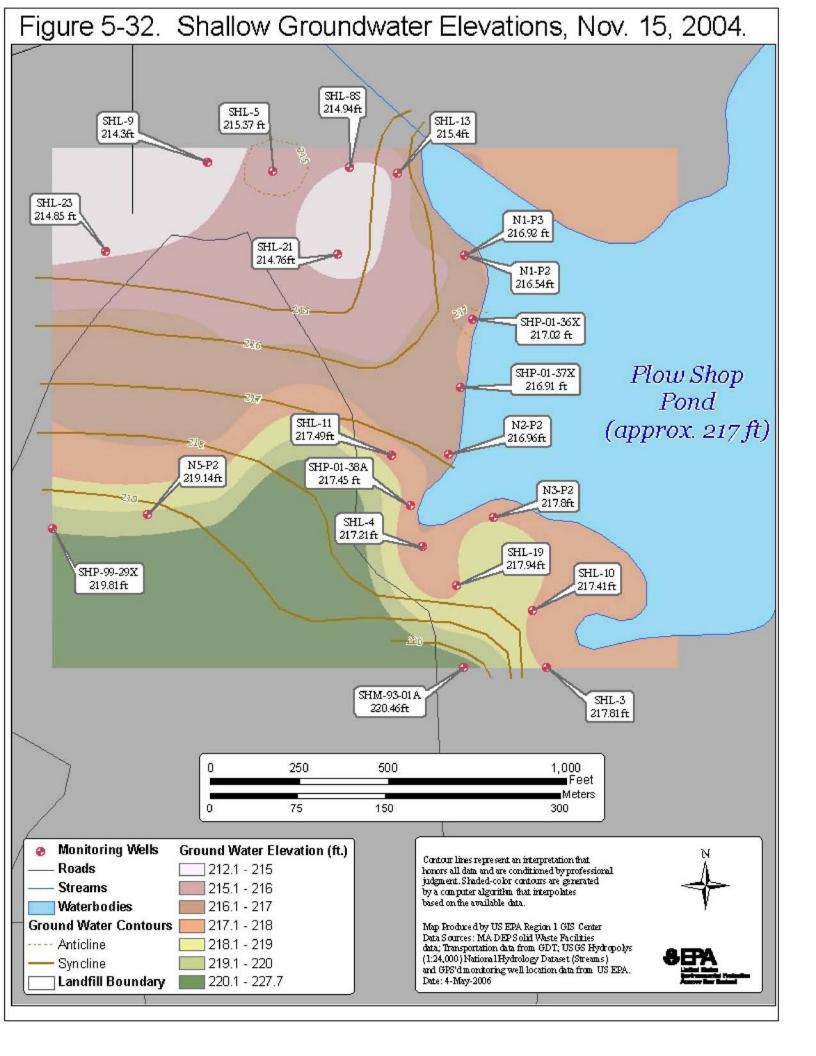
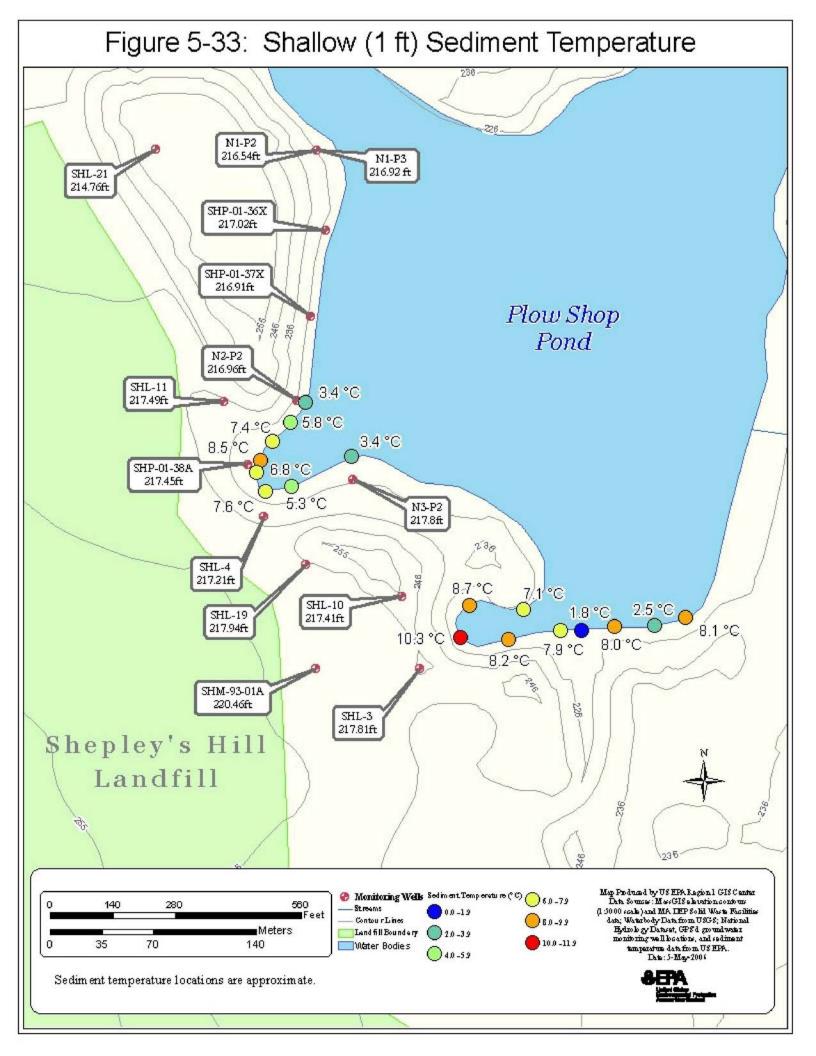


FIGURE NO.: FIGURE 5-31

COPPER vs. LEAD IN SHALLOW SEDIMENT ADJACENT TO THE RAILROAD ROUNDHOUSE 0 -1 FOOT BELOW GRADE


Contract No.: Task Order No.: EP-W-05-020 #1


REGION 1

U.S. ENVIRONMENTAL PROTECTION AGENCY BOSTON, MASSACHUSETTS

EXPANDED SITE INVESTIGATION GROVE AND PLOW SHOP PONDS AYER, MASSACHUSETTS

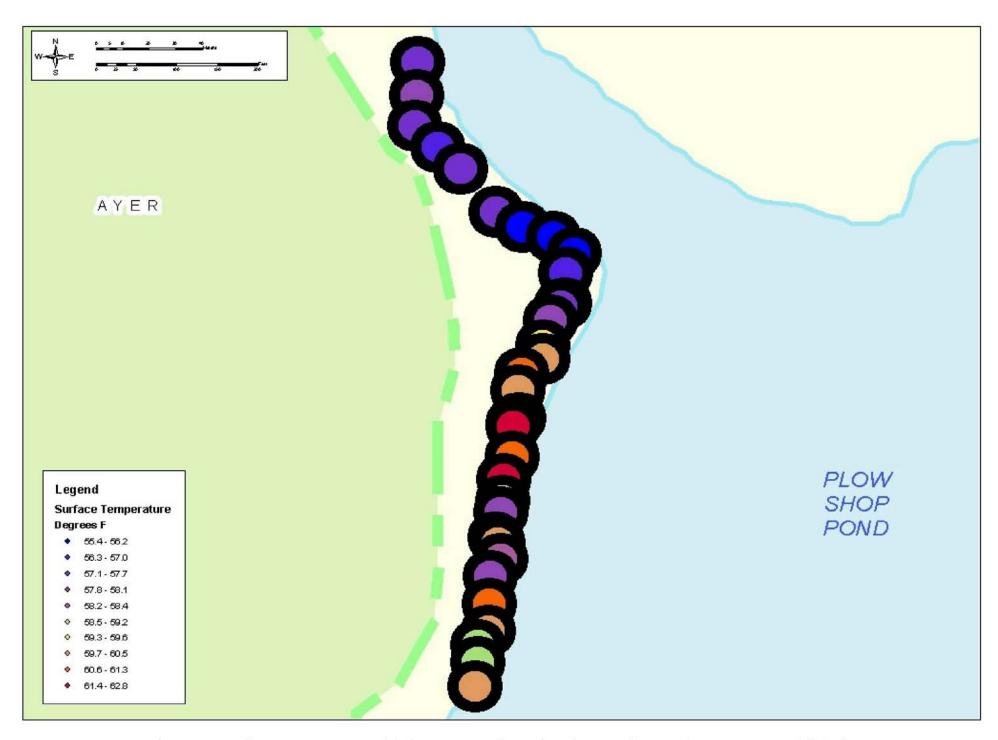
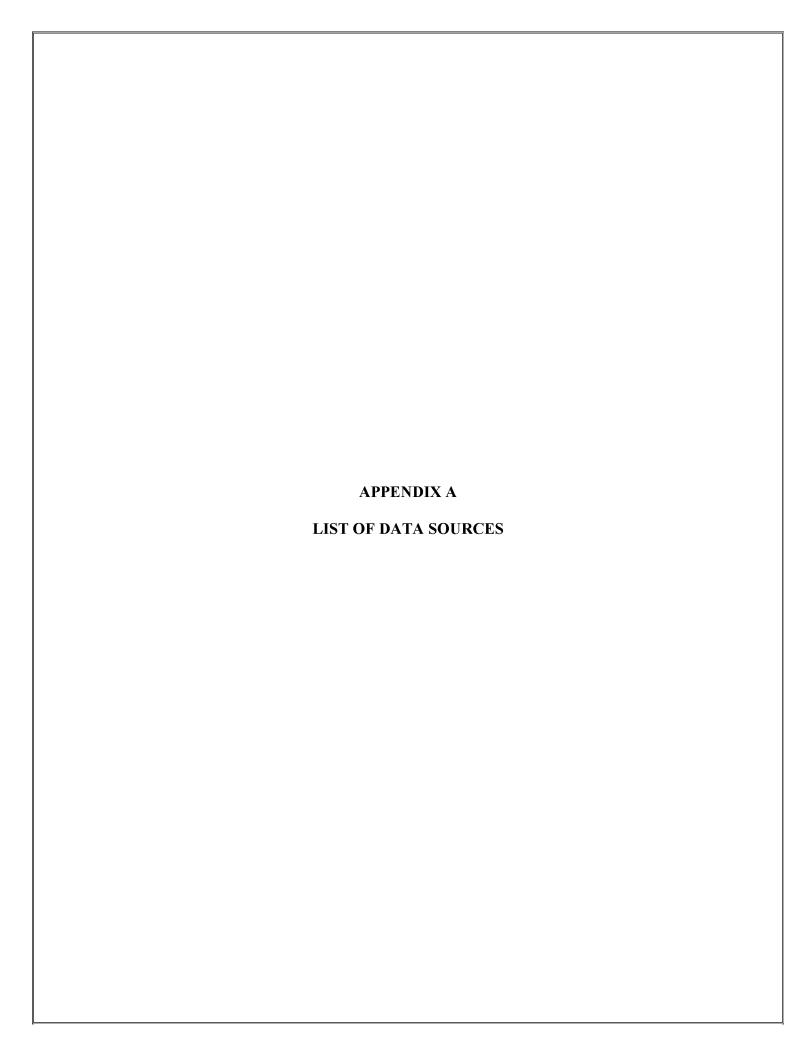



Fig. 5-34: Sediment temperature 1 ft below water-sediment interface, April, 2005 (EPA, 2005, unpublished).

List of Data Sources Grove Pond and Plow Shop Pond ESI

Notations:

- [1] GF/Newton
- [2] BRAC Library
- [3] GF/NH
 - 1. February 1985. 21E Site Assessment, Bligh Street, Ayer, Massachusetts. IEP, Inc., (Northborough, MA). Six test pits were excavated on the former tannery property. Groundwater and soil samples were analyzed for inorganics; Ba, Hg, Pb, Se, and Cr were found to be in excess of MCLs in groundwater; As, Ba, Cu, Hg were elevated in soil (Cr was not analyzed).

[1] [2]

2. April 1993. Final Remedial Investigation Report for Areas of Contamination 4, 5, 18, 40, Fort Devens, Massachusetts. Prepared for the U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland by Ecology and Environment, Inc. (E&E). RI at Fort Devens Group 1A Sites. Surface water and sediment samples were collected from Plow Shop Pond and analyzed for VOCs, pesticides, and inorganics. Chloroform and methylene chloride were found in several water samples; Cu, Ag, Zn exceeded Ambient Water Quality Criteria (AWQC). Sediments were analysed for organics, metals, and TOC, and were found to be high in metals; low concentrations were reported for PAHs and VOCs. Two sediment-water sample pairs were collected from the Nonacoicus Brook wetlands. The surface water inorganics were similar to concentrations in Plow Shop Pond surface water; sediments did not report unusually high inorganics.

[1] [2]

3. January 1993. Town of Ayer, Massachusetts Grove Pond Wells Hydrogeologic Investigation and Zone II Aquifer Mapping. Camp Dresser & McKee Inc. Contains MODFLOW results from May 1992 and Sept. 1992 pump tests; Zone II delineation; sensitivity analysis; water budget; conceptual hydrologic model; particle track simulation; groundwater chemistry for 3 sampling events during pump test in September 1992.

[1] [3]

4. June 1993. UST Closure Report, New England Telephone Company Garage, Sandy Pond Road, Ayer, MA. Prepared by EnviroTEL, Inc. for New England Telephone, Boston, MA. This site is too distant to have an impact to the study area.

[1]

5. September 1993. Concentrations of mercury and other environmental contaminants in fish from Grove Pond, Ayer, Massachusetts, US Fish and Wildlife. Fish filets from Grove Pond were analyzed for inorganics that included Hg, Cr, As, Pb, and PCBs. Four samples exceeded World Health Organization limits for Pb; one sample exceeded FDA action level for Hg, and low PCBs were found in some.

[1][2]

6. December 1993. Final Remedial Investigation Addendum Report, Data Item A009. Vol. I of IV, Report Text. Prepared by ABB-ES, Inc., for US Army Environmental Center, Aberdeen Proving Ground, Maryland.

Collected supplemental samples from Plow Shop Pond, Nonacoicus Brook Wetland, and Grove Pond to fill identified data gaps; also discusses data from Plow Shop Pond, Shepley's Hill Landfill, Cold Spring Brook Landfill, New Cranberry Pond, and Nonacoicus Brook wetlands.

Grove Pond: Data from five surface water and five surface sediment samples; analytes included PAL VOCs, SVOCs, pesticides, PCBs, explosives, inorganics. No organics were reported; highest concentrations of inorganics, including As, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Zn, were found in sediments from the pond's northwest corner. Of these, As, Cr, Cu, Pb, Pb, and Hg were found to be in excess of the Ontario Sediment Guidance (OSG) Serious Effect Level.

Plow Shop Pond: 68 sediment samples at 25 locations. Analytes included inorganics, pesticides, PCBs, TOC. Concluded that Plow Shop Pond sediments are contaminated with As, Ba, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn. The former tannery, Shepley's Hill Landfill, and former railroad roundhouse were identified as probable contributors. A fish community study, fish tissue contaminant study, and macroinvertebrate studies were also conducted as part of supplemental RI.

Nonacoicus Brook Wetland: surface soil and shallow groundwater samples taken from four shallow, hand-dug pits immediately north of SHL. Analyzed for VOCs, pesticides, PCBs, explosives, and inorganics. No PAL organics reported from groundwater, but Ba, Ca, K, Mn, Pb, and Zn were contaminants in groundwater. In soils, no VOCs, PCBs, or explosives were reported; low concentrations of DDE and DDT. 20 PAL inorganics detected, concentrations of 16 exceeded background levels at least once. Be, Cr, Cu, Hg, Ag, Zn considered contaminants in soil samples; Cr and Hg highest near Nonacoicus Brook.

Railroad roundhouse area: three shallow soil samples and one pond sediment sample; some low concentrations of SVOCs, and elevated levels of As, Sb, Cu, and Pb.

Vol. II of IV, Appendix A-G.

Vol. III of VI, Appendix H. Laboratory QC results.

Vol. IV of IV, Appendices I-Z. Contains background Devens soil and groundwater concentrations (metals); RI sediment summaries (Shepley's Hill and Cold Spring Brook Landfills).

[1] [2] [3]

7. March 1994. *Interim Comprehensive Site Assessment, Ayer Municipal Landfill, Groton – Harvard Road Volume 1 –* Text

Volume II – Round 1 sampling results - DEP did not have

Volume III – Round 2 sampling results did not get section 4.

[1]

8. April 1994. Site Assessment Report, Boston & Maine Railroad Property, Fort Devens, Ayer, Massachusetts. Prepared by ERM for Boston & Maine Corporation. During this investigation of the Hill Yard for Guilford Transportation, 8 groundwater-monitoring wells were installed, and soil and sediment samples were taken from Grove Pond adjacent to the Yard. Results from groundwater and soil samples did not pose any problems, but elevated levels of As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn were found in sediment.

[1]

9. June 1994, Sampling and Analysis Report, Bligh Street Facility. Green Environmental. Surface soil sampling and metals analysis at tannery site in response to a January 1994 NOR. 30 surface soil samples but no analytes found (samples were from fill after the 1961 fire).

[1]

10. October 1994. Final Railroad Roundhouse Supplemental Site Investigation Work Plan, Data Item A004. Prepared by ABB-ES, Inc., for US Army Environmental Center, Aberdeen Proving Ground, Maryland.

This document contains March 1993 surface soil sampling results (organics, pesticides, inorganics, TOC).

[3]

11. December 1, 1994 (October 1994), *Grove Pond Field Investigation*. Prepared by Metcalf & Eddy for MADEP. Six Grove Pond surface water and sediment samples were collected; surface water was analyzed for VOCs, SVOCs, pesticides/PCBs, TAL metals, suspended and dissolved solids, and hardness. Sediments were analyzed for VOCs, SVOCs, pesticides/PCBs, TAL metals, TOC, grain size, and percent solids. Low levels of some pesticides were found, and As, Cd, Cr, Cu, Pb, and Hg exceeded Ontario Sediment Guidance (OSG) criteria.

[1]

12. December 1994. Phase I – Initial Site Investigation Plastic Distributing Corporation, Bligh Street Facility, Ayer, MA. Quincy, MA. Green Environmental, Phase I investigation of the tannery site. Four soil borings were

taken during the installation of four shallow monitoring wells between the filledin cove and the former tannery site, and five subsurface soil samples were collected from borings in the same area. Elevated concentrations of metals were found in soil, and both metals and organics were found in groundwater (TPH, As, Ba, Cr, Pb, Hg in soil; As, Cr, Pb, Hg, xylene, TCE in groundwater).

[1] [2]

13. February 1995. *Final Feasibility Study: Shepley's Hill Landfill Operable Unit, Data Item A009.* Prepared by ABB-ES, Inc., for US Army Environmental Center, Aberdeen Proving Ground, Maryland.

This study includes discussion and analysis of remedial alternatives, summary of groundwater modeling results.

[1] [3]

14. February 1995. *Final Grove Pond Site Investigation Work Plan, Data Item A004*. Prepared by ABB-ES, Inc., for US Army Environmental Center, Aberdeen Proving Ground, Maryland.

Tabulated data from Dec. 93 RI are contained in this document.

[1] [3]

15. February 1995. Final Feasibility Study Shepley Hill Landfill. [1]

16. April 1995. *RAO Statement and Supporting Documentation*. Prepared by Handex of NE, Inc. for NYNEX, Boston, MA.

[1]

17. April 1995. Lower Cold Spring Site Investigation Data Package.

The December 1995 report updates this report

[1]

18. May 1995. Detailed Flow Model for Main and North Post, Fort Devens, Massachusetts. Prepared by Engineering Technologies Associates, Inc. (ETA) for commander, US Army Toxic and Hazardous Materials Agency. Ellicott City, Maryland.

This report documents a numerical model for the basewide groundwater hydrology, including a Zone II delineation for the Devens Grove Pond water-supply wells.

[3]

19. June 1995. Final Delivery Order Work Plan: Predesign Investigations, Areas of Contamination (AOCs) 4, 5, and 18, Shepley's Hill Landfill, Fort Devens, Massachusetts. Prepared by Stone & Webster Environmental Technology & Services for US Army Corps of Engineers, New England Division.

[3]

20. September 1995. *Railroad Roundhouse Supplemental Site Investigation, Data Item A009.* Prepared by ABB-ES, Inc., for US Army Environmental Center, Aberdeen Proving Ground, Maryland.

Four shallow sediment samples were collected for confirmation of the 1993 data. In addition, 46 shallow soil samples were taken from 15 test pits and analyzed for SVOCs, inorganics, and TOC. Two new water-table monitoring wells were installed downgradient of the roundhouse, and two rounds of sampling two existing and the two new wells were conducted. Analytes included SVOCs and total and dissolved metals.

In sediment data, low levels of 13 SVOCs were reported. In addition, exceedances of sediment criteria for As, Cr, Cu, Fe, Pb, Hg, Ni, and Zn were found; it was concluded that disposal of maintenance by-products near pond was responsible for elevated Sb, Cu, and Pb. Soils from the maintenance by-products disposal area also reported As (barely), Ba, Cr, Cu, Pb, V, Sn, Zn higher than background. Concentrations of inorganics from soil samples taken near the railroad roundhouse and turntable area were not exceptionally high in comparison to background values. Groundwater samples did not indicate evidence of siterelated contamination. Preliminary Risk Evaluations indicated potential risk to human health and to ecological receptors due to SVOCS and the presence of elevated levels of inorgranics (Sb, As, Cu, Pb, and Sn) in soils and near-shore sediments. The observed levels of Sb, Cu, and Pb are attributed to disposal of maintenance by-products. It is noted that the Army uses site-specific background concentrations to evaluate contamination at the roundhouse site, according to the Massachusetts Contingency Plan (MCP) definition of "background," which includes "...fill materials containing...coal ash." The MCP definition thus precludes the identification of elements uniquely attributable to coal ash as COPCs.

[1] [3]

21. October 1995. *Draft Plow Shop Pond and Grove Pond Sediment Evaluation, Data Item A009*. Prepared by ABB Environmental Services, Inc., for US Army Environmental Center, Aberdeen Proving Ground, Maryland.

Vol. I, Sections 1.0 - 8.0. Summary of previous risk assessments; toxicity testing; and field investigation results: Grove Pond sediments (SVOCs, pesticides, PCBs, metals, Hg, TOC), surface soils and surface waters; Plow Shop Pond sediments (metals, pH, TOC, Hg), pore water (metals, Hg), and acid-volatile sulfides and simultaneously extracted metals.

Analyses are reported for 65 sediment samples from 48 locations at Grove Pond; 71 sediment samples from 28 locations in Plow Shop Pond. Grove Pond sediment samples reported exceedances of As (up to 1300 $\mu g/g$), Cr (47000 $\mu g/g$), Pb (up to 1760 $\mu g/g$), and Hg (220 $\mu g/g$). The Preliminary Risk Evaluation (PRE) conducted by Army at that time reported that these four metals exceeded human health screening values.

Vol. II, Appendices A-M: details of toxicity testing, water quality parameters, grain size analysis, data quality evaluation.
[1] [3]

22. December 1995. Draft Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill, Fort Devens, Massachusetts. Prepared by Stone & Webster Environmental Technology & Services for US Army Corps of Engineers, New England Division.

Establishes baseline concentrations in downgradient groundwater (VOCs and inorganics, data in Appendix B); data are from RI sampling in Aug. and Dec. 1991 and supplemental RI sampling in March and June 1993.

[3]

23. December 1995. Monitoring Well Installation Final Work Plan: Shepley's Hill Landfill Areas of Contamination (AOCs) 4, 5, and 18, Fort Devens, Massachusetts. Prepared by Stone & Webster Environmental Technology & Services for US Army Corps of Engineers, New England Division.

[3]

- 24. December 1995. Lower Cold Spring Brook Site Investigation Report, Data Item A009, prepared by ABB-ES for US Army.
 [1] [2]
 - 25. March 1996. Groundwater Model Update Report, Predesign Investigations, Areas of Contamination (AOCs) 4, 5, and 18, Shepley's Hill Landfill, Fort Devens, Massachusetts. Prepared by Stone & Webster Environmental Technology & Services for US Army Corps of Engineers, New England Division.

Contains revisions to previous MODFLOW results, boring logs, slug test results, daily reports.

[3]

- 26. March 1996. *Close out Report Shepley Hill Landfill*.
- 27. January 1997. 1996 Annual Report Shepley Hill Landfill.

Gannett Fleming, Inc.

28. January 1997. Letter Report: Revised Zone II Delineations for Devens Water Supply Wells. January 20, 1997. From Earth Tech to A. Delaney, Municipal Engineer.

Modified previous Zone II delineation (determined from MODFLOW results)

[3]

29. June 1997. *Hartnett Tannery Site, Ayer, Middlesex County, Massachusetts Site File*. Prepared by Roy F. Weston, Inc. for EPA. Soil samples were collected from 19 pits on PDC property. Findings included PCBs (110 mg/kg) in one pit; also, As, Cr, Cu, Pb, Hg, Ni, V, and Zn were reported above background concentrations in one or more samples. Maximum values reported for these elements are: As, 5520 mg/kg; Cr, 18000 mg/kg; Cu, 2560 mg/kg; Pb, 618 mg/kg; Hg, 4.3 mg/kg, Ni, 50.6 mg/kg, V, 161 mg/kg; and Zn, 867 mg/kg.

[1]

30. August 1997. Data reported to Massachusetts DEP. PDC Surficial Soil Sampling: EPA 24 surface soil samples were collected and analyzed for metals and PCBs. No PCBs reported, and metals appeared to be low except for one sample.

[1]

31. August 1997. Data reported to Massachusetts DEP. Town of Ayer Grove Pond water-supply well sampling by the Ayer Department of Public Works. Raw water was sampled but found to contain no inorganics exceeding MCLs.

[1]

32. December 1997. *Plow Shop Pond and Grove Pond Ecological Impact Evaluation, Fort Devens, Massachusetts*. Prepared by TRC Environmental Corporation for MADEP. TRC conducted an ecological evaluation of Grove Pond and Plow Shop Pond and concluded that metals concentrations in sediments would likely impact ecological receptors.

[1]

- 33. February 1998. Draft Five Year Review: Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts. Prepared by Stone & Webster Environmental Technology & Services for US Army Corps of Engineers, New England Division.
 - Contains groundwater-monitoring results: groundwater elevations for 5 years; chemical data only for spring and fall 1997.

[3]

34. April 1998. Memo to J. Regan (MADEP) from S. Heim (TRC ecologist), Review of AVS/SEM Sampling Results, Grove Pond Sediment, Fort Devens, Massachusetts. Ten sediment samples from Grove Pond were collected and analyzed for acid-volatile sulfide and simultaneously extractable metals (AVS/SEM). All samples exceeded sediment criteria for Cr, and five samples

exceeded criteria for Pb. Samples with the highest metals concentrations came from locations near the tannery site, e.g. Cr at 24931 mg/kg; Pb at 437 mg/kg.

[1][2]

35. August 1998: ATSDR consultation for Fish and Sediments. ATSDR concluded that residents of the Town of Ayer are not at risk due to limited exposure. A fish advisory went into effect, and Grove Pond was posted "Catch-and-Release."

[2]

36. August 1998. Final 5 year Review- Shepley Hill Landfill.

[1]

37. August 1998. Evaluation of Health Concerns Associated with Drinking Water from Grove Pond Wells, Fort Devens, Ayer, Middlesex County, Massachusetts. US Department of Health and Human Services, Public Health Service, ATSDR. In this consultation regarding groundwater from the Town of Ayer Grove Pond water-supply wells, ATSDR concluded that residents of the Town of Ayer are not at risk of exposure to harmful levels of metals from the water-supply wells, and future problems were not anticipated.

[2]

38. November 1998. Surface Water & Sediment Sampling Fort Devens Superfund Site Ayer, MA. Submitted to EPA by ESAT.

[1]

39. 1999. USEPA Screening Level Ecological Risk Assessment, Fort Devens, Ayer, Massachusetts. USEPA, Region 1 New England, Office of Environmental Measurement and Evaluation.

Surface water and sediment samples were collected from Grove Pond, Plow Shop Pond, and Nonacoicus Brook.

[1] [3]

40. October 21, 1999. Field Work and Analytical Results, PDC, Ayers. Environmental Compliance Services (ECS) installed 5 MWs & 2 seepage meters at the PDC site (RTN 2-10138) and summarized the investigation in a memo format. Unknown if the investigation was performed for DEP or for privately. Included in the memo is: soil descriptions, gw elevations & analytical results for metals, PCBs, pesticides, EPH & SVOCs.

[1]

41. July 2000. *Phase II Subsurface Investigation, One Bligh Street, Ayer, Massachusetts*. Prepared for Nextel Communications by Sage Environmental. Two soil borings were sampled during installation of two groundwater-monitoring wells. Groundwater was analyzed for EPH, VOCs, PCBs, and 13 metals. Soils exceeded MADEP Method 1, S-2 standards for As and Hg. In groundwater, exceedances of the MCP Method 1, GW-2/GW-3 standard for Pb were found.

[1] [3]

- 42. July 2000. *Draft Shepley Hill Landfill Supplemental Groundwater Investigation*. [1] [2]
 - 43. September 2000. Limited Environmental Investigation, Plastic Distribution Company, One Bligh Street, Ayer, Massachusetts. Prepared by Environmental Compliance Services, Inc., for MADEP.

MADEP Phase II investigation of Hartnett Tannery was completed in September 2000. Data from surface water, sediments, monitoring wells, soil borings, piezometers, and seepage meters are reported.

[1] [3]

44. September 2000. Trace Element Exposure in Benthic Invertebrates from Grove Pond, Plow Shop Pond, and Nonacoicus Brook, Ayer, Massachusetts. Prepared by US Fish and Wildlife Service for USEPA in response to a request by EPA for a limited screening-level contaminant study of mussels and crayfish. The investigators found As, Cd, Cr, and Hg in all mussel samples, and Hg in 9 samples out of 12. In crayfish, As, Cd, Hg, and Pb were not found to be elevated compared to results reported in scientific literature.

[1] [3]

45. September 2000. *RAM Plan for 30 Faulkner Drive, Ayer, MA*. Prepared by ENSTRAT Strategic Environmental Services for MADEP.

[1]

46. January 2001. *Data Report, Metals in Frog Tissue*. U.S. EPA Office of Environmental Measurement and Evaluation, Lexington, MA. February 2001.

Frog tissue analyses are reported.

[1]

47. January 2001. *Study Area 71 Former Railroad Roundhouse Site, Various Removal Actions-Phase II, Devens, Massachusetts*. Prepared by Roy F. Weston for the U.S. Army Corps of Engineers.

This is the final closure report. Under a separate report, the U.S. Army intends to perform a site-specific risk evaluation to support a No Further Action Decision. [1] [2] [3]

48. April 2001. Final Report Bioavailability and Potential Effects of Mercury and Selected Other Trace Metals on Biota in Plow Shop and Grove Ponds, Fort Devens, Massachusetts. Prepared by T. A. Haines and J. R. Longcore (USGS) for EPA.

Analyses of surface water, sediment, invertebrates, tree swallow tissues are reported.

[1]

49. April 2001. RTC on Draft Shepley Hill Landfill Supplemental Groundwater Investigation

[1]

50. May 2001. Shepley Hill Landfill Long Term Monitoring and Maintenance – 2000 Annual Report. Includes RTC on 1999 Annual Report.

[1]

51. August 2001. Paleolimnological Assessment of Grove and Plow Shop Ponds, Fort Devens, Ayer, Massachusetts. Prepared for USEPA by Norton, S.A. (University of Maine).

In this study, cores from Grove, Plow Shop, and Spectacle Ponds were analyzed for stable Pb isotopes, and As, Cd, Cr, Hg, Ni, Pb, and Zn content. Conclusions state that high accumulation rates and elevated concentrations in Grove and Plow Shop Ponds indicate anthropogenic impact. The report also concluded that As is entering Plow Shop Pond from the southwestern side; Cd, Ni, Pb, and Zn enter the system from the eastern end of, or upstream of, Grove Pond; and Cr, Cu, and Hg come from the Tannery cove of Grove Pond.

[1] [3]

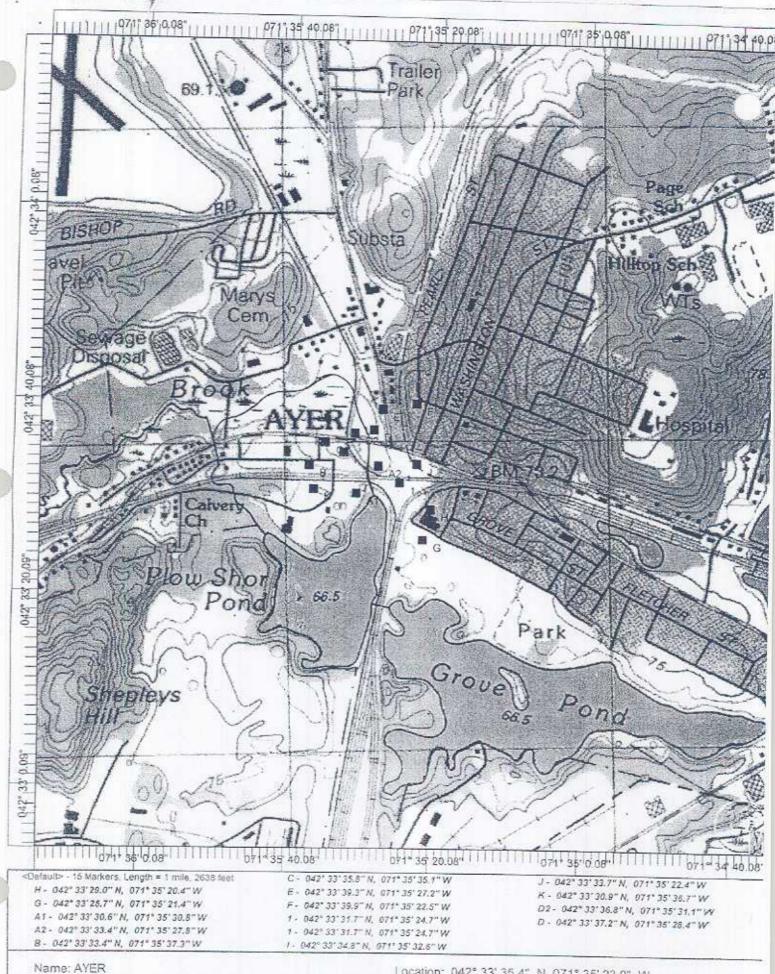
52. August 2001. Semi-Annual Groundwater Analytical Data Report, Spring 2001, Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts. Prepared by Department of Army New England District, Corps of Engineers, Concord, Massachusetts

[1] [2]

53. January 2002. Draft No Further Action Decision Under CERCLA, Study Area 71, Railroad Roundhouse, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for U.S. Army Corps of Engineers by Harding ESE, Inc..

In this study, the human health & ecological risk evaluation is included.

[1]


54. February 2002. Revised Draft Shepley's Hill Landfill Supplemental Groundwater Investigation, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for U.S. Army Corps of Engineers by Harding ESE, Inc. – 2 volumes

[3]

- 55. May 1999 Phase I Work Plan through March 2002 Grove Pond Arsenic Investigation --- Phase I report (GF, 1999) includes data for metals, anions and alkalinity, and water quality parameters from 68 groundwater samples. Phase I activities involved only the Town of Ayer production wells, which were added to the Town water-supply system in July 1998; four existing monitoring wells (installed for a pump test in 1992) screened at the production horizon; two existing monitoring wells on MNG property; and eight surface water samples from Grove Pond. Arsenic was detected at low levels (< 10 µg/L) in surface waters and in the production wells at levels of ~20 to 30 µg/L. Phase II (GF, 2002) installed five new monitoring wells, with screen depths varying from the top of the water table to within bedrock. Close-interval sampling of soil and groundwater was conducted during installation of three of these monitoring wells and from a borehole in the pond, offshore from the production wells. Hydraulic characteristics were determined from slug tests performed during well installation and from grain-size analyses. Results show marked heterogeneity in the aquifer. Conductivity is generally lower in the upper 40 feet of the aguifer, due to higher silt content, and higher through the sand-gravel interval in which the Town wells are screened. Groundwater chemistry is also consistent with the hydraulic properties of the aguifer. The upper ~40 feet are characterized by low oxidationreduction potential (ORP); below ~45 feet, ORP is positive (through the screened interval) but becomes reducing again near and into bedrock. Dissolved arsenic increases with depth in the upper 40 feet, to a maximum of 189 µg/L around 45 feet below ground surface, and drops to levels near detection limits below this The correlation between groundwater ORP, arsenic, and iron points strongly toward reductive dissolution of ferric oxyhydroxide coatings on aquifer material, with subsequent release of sorbed constituents, as the mechanism responsible for the observed arsenic in the Town wells. The ultimate arsenic source has been tentatively attributed to arsenic-bearing sulfide minerals (pyrite and cobaltite), which have been identified in samples of bedrock from beneath these wells. Glacial and post-glacial physical and mechanical weathering of these sulfide phases is postulated to have resulted in the present-day distribution of arsenic and other metals through the aquifer.
- 56. Data from U.S. EPA investigations in 2004 and 2005. Grove Pond data included 6 surface water samples (total and dissolved metals, pesticides/PCBs), 15 sediment samples (metals), 3 sediment samples (metals, pesticides/PCBs, and PAHs), 4 fish samples (metals and pesticides/PCBs), and toxicity data for surface water invertebrates, benthic invertebrates, and fish. Plow Shop Pond data included 10 surface water samples (total and dissolved metals, pesticides/PCBs),

28 sediment samples (metals), 11 sediment samples (metals, pesticides/PCBs, and PAHs), 4 fish samples (metals and pesticides/PCBs), and toxicity data for surface water invertebrates, benthic invertebrates, and fish. Flannagan Pond data included 1 surface water sample (total and dissolved metals, pesticides/PCBs), 2 sediment samples (metals, pesticides/PCBs, and PAHs), 3 fish samples (metals and pesticides/PCBs), and toxicity data for surface water invertebrates, benthic invertebrates, and fish.

Gannett Fleming, Inc.

Date: 11/9/101

Scale: 1 inch equals 1000 feet

1949 SANBORN MAP

- B&M Rail Road Passenger Station and freight house located to the east-northeast of Plow Shop Pond.
- Al: G.V. Moore Lumber Company located to the northwest of Plow Shop Pond, property abuts the ponds edge.
- A2: G.V. Moore Lumber Company located to the north of Plow Shop Pond along the north side of the railroad tracks. This property lies along the eastern and western banks of a tributary draining into Plow Shop Pond.
- B: Cabinet Manufacturer located to the northwest of Plow Shop Pond on Shirley Street.
- C: Plastic Goods Storage located to the northwest of Plow Shop Pond on Mechanic Street.
- D: E.O. Proctor Garage (repair shop) with attached movie theater to the north and photo shop to the east. Located to the north of Plow Shop Pond along the north side of West Main Street along the east bank of an un-named tributary draining into Plow Shop Pond.
- E: Coal Yard Farm Service Company located to the north of Plow Shop Pond.
- F: Chandler Machine Company located to the northeast of Plow Shop Pond.
- G: Ayer Tanning Company, Inc. located to the east of Plow Shop Pond and north of Grove Pond.
- H: International Purchasing Company Rope Storage. North of the tannery on Bleigh Road facility consists of three main buildings including a paper pulp storage building.
- J: Paint Tin Shop located to the north of Plow Shop Pond
- K: Vacant

*The area to the north of Grove Pond and west of School and Flannagan Ponds is primarily residential.

- B&M Rail Road Passenger Station and freight house located to the east-northeast of Plow Shop Pond.
- Al: L.W. Phelps Sawmill Upper Mill located to the northwest of Plow Shop Pond, property abuts the ponds edge.
- A2: L. W. Phelps Wooden Box Factory Lower Mill located to the north of Plow Shop Pond along the north side of the railroad tracks. This property lies along the eastern and western banks of an un-named tributary draining into Plow Shop Pond.
- B: Data unclear on Sanborn Map but appears to have changed from a cabinet manufacturer to a wholesaler of some type.
- C: ARMY YMCA Main Hall located to the northwest of Plow Shop Pond on Mechanic Street.
- D: E.O. Proctor Garage (repair shop) in a plaza with a movie theater to the north. Located to the north of Plow Shop Pond along the north side of West Main Street along the eastern bank of an un-named tributary draining into Plow Shop Pond.
- E: J. Cushing Coal Yard located to the north of Plow Shop Pond.
- F: Unoccupied building "to be a machine shop".
- G: Eugene Barry and Sons Tannery located to the east of Plow Shop Pond and north of Grove Pond.
- H: Ayer Machine Tool Company (not in operation) located north of the tannery on Bleigh Road.
- K: Faye Phipps Company Wholesale Hardware.
 - * The area to the north of Grove Pond and west of School and Flannagan Ponds is primarily residential.

- B&M Rail Road Passenger Station and freight house located to the east-northeast of Plow Shop Pond.
- Al: L.W. Phelps Sawmill Upper Mill located to the northwest of Plow Shop Pond, property abuts the ponds edge.
- A2: L. W. Phelps Box Factory Lower Mill located to the north of Plow Shop Pond along the north side of the railroad tracks. This property lies along the eastern and western banks of an un-named tributary draining into Plow Shop Pond.
- B: Vacant lot.
- C: Vacant lot.
- D: Small un-named garage and maintenance shop along the eastern bank of an unnamed tributary draining into Plow Shop Pond.
- D2: Fredrick Whitney Carriage House (with paint or print shop unclear on map).
- E: A.E. Lawrence and Sons Coal Shop located to the north of Plow Shop Pond.
- F: Vacant lot
- G: Eugene Barry and Sons Tannery located to the east of Plow Shop Pond and north of Grove Pond.
- H: Chandler Company Manufacturer of special machinery located north of the tannery on Bleigh Road.
- Standard Oil Co. Depot south of Shirley Street.
- Tobacco shop and restaurant on Merchants Way, north of Plow Shop Pond.
- K: Hayhes Piper Company Cider Manufacturer located to the east of L.W. Phelps Lower Mill.
 - * The area to the north of Grove Pond and west of School and Flannagan Ponds is primarily residential.

SANBORN MAP REVIEW GROVE AND PLOW SHOP PONDS

General Services Agreement

- * The 1902 Sanborn Map shows Plow Shop Pond extending further north almost to the railroad tracks (prior to filling of the pond). This map also identifies the tributary leading to Plow Shop Pond from the north as Nanacanicus Brook.
- B&M Rail Road Passenger Station and freight house located to the east-northeast of Plow Shop Pond.
- Al: L.W. Phelps Sawmill Upper Mill located to the northwest of Plow Shop Pond, property abuts the ponds edge (waste shed on the banks of the pond). Also, K + C Manufacturer Company manufacturers wood rims for bicycles and automobiles building located to the east of L.W. Upper Mill.
- A2: L. W. Phelps Box Factory Lower Mill located to the north of Plow Shop Pond. This property lies along the eastern and western banks of Nanacanicus Brook. North of L.W. Lower Mill is E.O. Proctor Machine Shop and Bicycle Repair.
- B: Fitchburg Rail Road Round House.
- C: Vacant lot.
- D: Vacant lot.
- D2: Fredrick Whitney Carriage House.
- E: Carriage Farm.
- G: Eugene Barry and Sons Tannery located to the east of Plow Shop Pond and north of Grove Pond.
- H: Chandler Company, manufacturer of special machinery and Ayer Preserving Company located further north on Bleigh Street.
- I: J. T. Pillman Preserve Co. located along the west side of Nanacanicus Brook.
 - * The area to the north of Grove Pond and west of School and Flannagan Ponds is primarily residential. Also, the Nashoba Manufacturer of Dyelne Mordant was located somewhere along the western banks of Plow Shop Pond (near a wooden bridge) the exact location could not be determined from the map.

1897 SANBORN MAP

- * Both Plow Shop and Grove Ponds were identified on this map as Tannery Pond.
- B&M Rail Road Passenger Station with freight house and coal sheds are located to the east-northeast of Plow Shop Pond.
- Al: L.W. Phelps Sawmill Upper Mill located to the northwest of Plow Shop Pond, property abuts the ponds edge (waste shed on the banks of the pond). Also, Chris H. Moulton Shoe factory was located to the east of L.W. Upper Mill.
- A2: L. W. Phelps Box Factory Lower Mill located to the north of Plow Shop Pond along the north side of the railroad tracks. This property lies along the eastern and western banks of Nanacanicus Brook.
- B: Fitchburg Rail Road Round House.
- C: Vacant lot.
- D: Vacant lot.
- D2: Fredrick Whitney Carriage House.
- E: Carriage House.
- G: Alley Brothers Place Tannery located to the east of Plow Shop Pond and north of Grove Pond.
- H: Ayer Foundry Company. Northeast of the foundry was Sigsbeen Company and E.O. Proctor Machine Shop all located north of the tannery on Bleigh Road.
- Whitcher Pillman Company Preserves Manufacturer located along the west side of an un-named tributary to Plow Shop Pond.
- K: W.J. Piper Company Vinegar Manufacturer.
- * Area to the north of Grove Pond and west of School and Flannagan Ponds is primarily residential. Also, the Nashoba Manufacturer of DyeInc Mordant was located somewhere along the western banks of Plow Shop Pond (near a wooden bridge) the exact location could not be determined from the map.

dass,

- *Both Plow Shop and Grove Ponds were identified on this map as Tannery Pond
- B&M Rail Road Passenger Station with freight house and coal sheds located to the east-northeast of Plow Shop Pond.
- Al: L.W. Phelps Sawmill Upper Mill located to the northwest of Plow Shop Pond, property abuts the ponds edge (waste shed on the banks of the pond). Also, Chris H. Moulton Shoe factory was located to the east of L.W. Upper Mill.
- A2: L. W. Phelps Lumber Yard located to the north of Plow Shop Pond along the north side of the railroad tracks. This property lies along the eastern and western banks of an un-named brook.
- B: Fitchburg Rail Road Round House.
- C: Vacant lot.
- D: Vacant lot.
- D2: Fredrick Whitney Carriage House.
- E: Carriage House.
- G: Alley Brothers Place Tannery located to the east of Plow Shop Pond and the north of Grove Pond.
- H: D.L. G. H Chandler Foundry.
- Vacant lot.
- K: W.J. Piper Company Vinegar Manufacturer.
 - *Area to the north of Grove Pond and west of School and Flannagan Ponds is primarily residential.

- * Both Plow Shop and Grove Ponds were identified on this map as Tannery Pond and the tributary was identified as Moss Brook.
- B&M Rail Road Passenger Station with freight house and coal sheds located to the east-northeast of Plow Shop Pond.
- Al: No coverage.
- A2: L. W. Phelps Saw Mill and Ayer Furniture Company. These properties lie along the eastern and western banks of Moss Brook.
- B: Fitchburg Rail Road Round House.
- C: Vacant lot.
- D: Vacant lot.
- D2: Fredrick Whitney Carriage House.
- E: Furniture Store.
- G: Alley Brothers Place Tannery located to the east of Plow Shop Pond and north of Grove Pond.
- H: Briggs and Kelly Foundry and Machine Shop.
 - * The area to the north of Grove Pond and west of School and Flannagan Ponds is primarily residential.

FINAL

HUMAN HEALTH RISK ASSESSMENT

GROVE POND AND PLOW SHOP POND AYER, MASSACHUSETTS

May 2006

Prepared for:

USEPA Region 1 Contract EP-W-05-020 Task Order #01

Prepared by:

Gannett Fleming, Inc. 207 Senate Avenue Camp Hill, PA 17011

TABLE OF CONTENTS

	D
1.0 INTRODUCTION	PAGE
2.0 HAZARD IDENTIFICATION	
3.0 EXPOSURE ASSESSMENT	
4.0 TOXICITY ASSESSMENT	
5.0 RISK CHARACTERIZATION	
6.0 UNCERTAINTY ANALYSIS	27
7.0 SUMMARY AND CONCLUSIONS	29
References	32
<u>FIGURES</u>	
FIGURE 1 SITE LOCATION MAP	
FIGURE 2 NEAR SHORE SEDIMENT LOCATIONS	
FIGURE 3 FISH FILLET RESULTS COMPARED TO WHOLE BODY RESULTS	
FIGURE 4 CONCEPTUAL SITE MODEL- RAGS D TABLE 1	
TABLES	
TABLE 2-1 COMPARISON OF NEAR SHORE SEDIMENT RESUTLS WITH ALL SEDIM	MENT RESULTS
TABLE 2-2 COMPARISON OF FILLET TO WHOLE FISH- GROVE POND	IENT RESCETS
TABLE 2-3 COMPARISON OF FILLET TO WHOLE FISH- PLOW SHOP POND	
TABLE 2-4 SAMPLE SUMMARY FOR BASELINE HUMAN HEALTH RISK ASSESSMEN	NT
TABLES 2-5 -2-10 OCCURRENCE, DISTRIBUTION, AND SELECTION OF COPCS (RA	AGS D TABLE 2S)
TABLES 3-1 – 3-6 EXPOSURE POINT CONCENTRATIONS (RAGS D TABLE 3S)	,
TABLE 3-7 – 3-14 VALUES USED FOR DAILY INTAKE CALCULATIONS (RAGS D T	ABLE 4S)
TABLE 3-15 DERMAL ABSORPTION FRACTION FROM SOIL	
TABLE 3-16 DERMAL WORKSHEET	
TABLE 4-1 NONCANCER TOXICITY DATA (RAGS D TABLE 5)	
TABLE 4-2 CANCER TOXICITY DATA (RAGS D TABLE 6)	
TABLE 5-1 CUMULATIVE RISK SUMMARY BY RECEPTOR- GROVE POND	
TARLE 5-2 CHMHLATIVE RISK SHMMARY RV RECEPTOR- PLOW SHOP POND	

APPENDICES

- A RESPONSES TO EPA COMMENTS FROM AUGUST 2005
- **B** CALCULATION VERIFICATION SHEETS
- C Intake calculations, risk calculations, Rags D table 9s, Rags D Table 10s
- D LEAD RESULTS- ADULT LEAD MODEL AND IEUBK MODEL

1.0 INTRODUCTION

The U.S. Environmental Protection Agency (USEPA) directed Gannett Fleming, Inc. (Gannett Fleming) to prepare this Human Health Risk Assessment (HHRA) Report as part of the Grove and Plow Shop Ponds Expanded Site Investigation (ESI). This report is in response to the Task Order #01 to Contract EP-W-05-020, Remedial Oversight of Activities at Fort Devens Plow Shop and Grove Ponds. The objective of the human health risk assessment is to provide a quantitative estimate of risk posed to humans potentially exposed to Grove Pond and Plow Shop Pond. The location of this site is shown on Figure 1.

To assess potential public health risks, three major aspects of chemical contamination and exposure must be considered: 1) the presence of chemicals with toxic characteristics; 2) the existence of pathways by which human receptors may contact site-related chemicals; and 3) the presence of human receptors. The absence of any of these three aspects would result in an incomplete exposure pathway and an absence of quantifiable risk.

The human health risk assessment consists of five major components:

- <u>Hazard Identification</u>: Evaluate data usability, data quality and select contaminants of potential concern (COPC) (Section 2.0)
- Exposure Assessment: Identify potential receptor populations and completed exposure pathways. Determine exposure point concentrations for all COPCs, and present exposure equations and input parameters to be used to estimate chemical intakes (Section 3.0)
- <u>Dose-Response Assessment</u>: Identify chemical-specific toxicity criteria to be used for quantifying potential human risks. (Section 4.0)
- <u>Risk Characterization</u>: This section presents methods for calculating noncarcinogenic and carcinogenic risks for each receptor and provides summaries of the results of the site-specific risk evaluations. (Section 5.0)
- <u>Uncertainty Analysis</u>: Discuss both inherent and study-specific uncertainties in the risk assessment process and potential impacts on risk assessment conclusions. (Section 6.0)

The HHRA was performed following standard USEPA guidelines including the following documents:

- Risk Assessment Guidance for Superfund (RAGS), Volume I, Part A (USEPA, 1989)
- RAGS, Volume I, Part D (USEPA, 1998)
- RAGS, Volume I, Part E, Dermal Risk Assessment Interim Guidance (USEPA, 2004)
- Standard Default Exposure Factors (USEPA, 1991)
- Exposure Factors Handbook (USEPA, 1997a)
- Calculating Upper Confidence Limits for Exposure point Concentrations at Hazardous

Waste Sites (USEPA, 2002)

Supplemental Guidance to RAGS: Region 1 Risk Updates 1 through 5

Additional guidance was obtained from Massachusetts Department of Environmental Protection (MADEP) (MCP 1994, 1995, 1996a,b, 1997, 1988, 1999, 2000, 2002a,b,c) to supplement USEPA guidance. A complete list of references for the human health risk evaluation is provided at the end of this chapter. The majority of the tables to be included in this section are analogous to the standard tables required by the recent Risk Assessment Guidance for Superfund: Part D (RAGS Part D) (USEPA, 1998). Data fields to be included in the tables presented in this risk assessment include the majority of data fields specified in the RAGS Part D guidance. The five human health risk assessment components are presented in the following sections.

2.0 HAZARD IDENTIFICATION

The goal of the hazard identification step is to develop a list of chemicals of potential concern (COPCs) for each environmental medium under consideration. Data for the human health risk assessment were obtained from a number of studies. Data were evaluated for data quality, data validation procedures were reviewed for historical data or performed for 2004-2005 data and suitable data were then compiled into a data set to be used for identification of COPCs.

2.1 Data Evaluation

For the Grove Pond site, data evaluation was performed in two stages. As part of the *Data Gap Evaluation Report* (Gannett Fleming, 2002) investigations of the study area and surrounding properties were evaluated for data quality. The majority of the reports were obtained from the BRAC library located at Fort Devens. Other sources of reports included the MADEP Central Regional office and the Town of Ayer public library. Approximately 55 documents were acquired and are maintained in the Gannett Fleming library in Newton, Massachusetts. A listing of these documents with brief descriptions is included in Appendix D of the *Data Gap Evaluation Report* (Gannett Fleming, 2002). The historical data considered for use in this HHRA were obtained from studies deemed useable for risk assessment in the *Data Gap Evaluation Report* (Gannett Fleming, 2002), supplemental samples were collected in 2004 and 2005 to address data gaps previously identified. Data used in this human health risk assessment represent a compilation of the historical data identified as suitable for use in the *Data Gap Evaluation Report* (Gannett Fleming, 2002) and the data collected as part of the Expanded Site Investigation (ESI) by Gannett Fleming in 2004 and 2005.

For the historical data, the laboratory analytical data were reviewed for data quality and usability for this risk assessment (DURA). The DURA process, a multi-step process designed by USEPA (1989) and (1992 a,b) involves assessing overall data quality and the usability of data for performing a

quantitative risk assessment and selection of COPCs for the human health risk assessment (HHRA). However, because the majority of the reports used for database input did not include laboratory analytical reports, it was not possible to complete all the formal DURA steps for the HHRA.

Some historical reports lacked analytical reports for each sample. However, the data were deemed usable owing to the original source (usually the US Army Environmental Center) and purpose (data were collected to support Remedial Investigations for this area). Where analytical reports were not available, summary tables found within the reports were used to compile results. In some cases, contaminant concentrations from summary tables represented laboratory method detection limits; however, if there were no notes in the summary tables indicating detection limits, the concentration was entered into the database.

Due to the absence or availability of original laboratory data, the data evaluation process for historical data was truncated to two major steps with the overall objective being to ensure data of sufficient quality to be used to assess potential risks to human health. Simplified, the data evaluation process was performed to two steps:

- 1) Gather all data available from the site investigation and sort by medium, and
- 2) Validate and evaluate the data submitted by the laboratory to evaluate acceptability for use in the human health risk assessment. The following section discusses the data validation evaluation.

2.2 Data Validation

The purpose of the validation review that was conducted as part of the *Data Gap Evaluation Report* (Gannett Fleming, 2002) was to evaluate the general quality of each data set and to determine the usability of the data for the HHRA. Many reports were used to assemble the analytical database. These reports were reviewed to determine and evaluate:

- 1. The level of data validation or review performed at the time the data were generated,
- 2. The analytical protocols and laboratories utilized, and
- 3. The availability of Quality Assurance (QA) and Quality Control (QC) information.

The review conducted was similar to an USEPA Region 1 Tier 1 data validation (USEPA, 1996d) review in that one of the goals was to determine whether there was enough information provided to conduct a higher level of data validation, if desired. Review of actual QA/QC data (matrix spike recoveries, etc.) was not performed during this evaluation, nor were any data qualifiers assigned.

The analytical data were generated over a period of 10 to 11 years, by various laboratories, and for many different reasons and entities. The documentation available for each of the data sets is as

varied as the sources. It should be noted that none of the data appears to have undergone formal data validation as per USEPA data validation guidelines (USEPA, 1996d). In order to be able to justify combining any of these data sets, minimum usability criteria were implemented to complete this review. Data were determined to be usable for HHRA purposes under the following conditions:

- 1. USEPA-approved or equivalent laboratory methods were used,
- 2. Data were generated by an USEPA laboratory or under the Army Corp of Engineers analytical and review protocols,
- 3. Enough QA/QC information was provided in the report to perform a Tier II level data validation at some future time, or
- 4. USEPA had already reviewed and accepted the data.

If none of the above conditions were met, the data set was assigned a "Not Acceptable" data usability code for use in the HHRA. As demonstrated in the *Data Gap Evaluation Report* (Gannett Fleming, 2002) the vast majority of the historical data were determined to be usable for characterizing the nature and extent of contamination based on the minimum usability criteria. However, not all data were considered usable in the human health risk assessment for various reasons. For example, the human health risk assessment does not utilize data from samples that were field filtered or collected to support ecological studies. For more detail regarding the quality and usability of the historical data can be found in the *Data Gap Evaluation Report*, *Appendix G* (Gannett Fleming, 2002).

2.3 Data Compilation

The historical analytical data and the data collected as part of the ESI were subdivided into two study areas to assist in risk management decisions. The study areas are Grove Pond and Plow Shop Pond.

The scope of this project has been limited to pond-related media only. This decision was reached through discussions with the USEPA and as specified in the USEPA Task Request for this project (Contract EP-W-05-020 Task Order #01). While groundwater has been collected at the site, risks associated with this medium will not be included in the HHRA as there is no direct exposure to groundwater in the pond area. The primary purpose of evaluating groundwater in the ESI was to assess the impacts of groundwater discharges to the ponds. Because the surface water and sediment are included in the HHRA for risk quantification, the impacts of groundwater to surface water and sediment are being addressed indirectly. Soil was also not evaluated as part of the HHRA. After considerable discussion, it was decided that soils adjacent to the pond would not be considered as pond-related media.

The media of concern considered in this HHRA include:

Surface water

- Sediment, and
- Fish tissue

All surface water samples, which passed the data evaluation, were included in this risk assessment. The decision to use all surface water samples was based on the fact that a receptor may potentially contact any point of surface water in the pond from a boat. In addition, surface water mixes over time and therefore, it would be appropriate to develop exposure point concentrations based on all samples collected. However, further consideration was needed regarding the appropriate subset of data to use for sediment and fish tissue.

For sediments, two possible data sets were considered for use: all sediment sampling points and a subset of data sampling points identified as near-shore sediments. It was decided that while sediment samples were collected throughout both ponds, the sediments most likely to be available for exposure on a routine basis are those located within the near shore area. The near-shore sediment area is defined as the area reaching approximately 75 feet into each pond, as shown on Figure 2. If wading were to occur, it is likely, given the mucky consistency of the sediments and the density of the vegetation, that a receptor would not wade farther into the pond than 75 feet from shore. The selection of this area for evaluation does represent an uncertainty and a comparison of analytical results between all sediments and near shore sediments is presented in the uncertainty section of this risk assessment. A comparison of the near shore sediment results to all sediment results is presented in Table 2-1.

Fish tissue results were available for fillet samples and whole body samples. Typically, analytical results from fillet samples are used in a human health risk assessment since humans primarily consume fish fillets rather than whole fish (USEPA 1997a). Although the results for fish fillets were somewhat old (data were from the early 1990s), the differences between fillet results and whole body results were great enough that it would not have been appropriate to combine fillet and whole fish data (see Table 2-2 and Table 2-3). As can be seen in Table 2-2 detection frequencies are similar in Grove Pond fish between fillets (60% detected) and whole body (64% detected) but, as shown in Table 2-3, were lower in fish from Plow Shop Pond fillets (33% detected) compared to whole body results (52% detected). Of possibly greater importance, it appears that concentrations in fillet samples were most commonly four times lower in fillets than in whole body samples (see Figure 3 and Tables 2-2 and 2-3). Thus, the use of whole body samples, given that the fish ingestion habits of humans are relatively well defined and do not include ingestion of whole fish, would likely have resulted in a high bias to the risk results. To avoid this possible inaccuracy, only fish fillet results have been used in this human health risk assessment. The ramifications of the selection of the fillet data only for use in the quantitative risk assessment will be further discussed in the uncertainty section.

Table 2-4 presents a summary of all samples used in the risk assessment for sediment, surface water and fish tissue media in Grove Pond and Plow Shop Pond. The citations for the studies from which historical data were obtained are also presented in this table.

2.4 Selection of Chemicals of Potential Concern

This section presents the selection of Chemicals of Potential Concern (COPC) for all environmental media utilized in the human health risk assessment. The selection of COPC was conducted in accordance with USEPA (1989, 1994) guidance. The process is designed to narrow the focus of the risk assessment to those contaminants that may pose a threat to human health. The criteria used to limit the list of contaminants for future consideration is described below.

Selection Criteria

Several steps were involved in identifying COPCs for further risk analysis.

Risk-Based Screening. Contaminants were screened against risk-based screening concentrations in order to further focus the risk assessment on the compounds that may have a toxic effect on human receptors. Concentrations of chemicals which are below their respective risk-based screening value were not retained for further evaluation in the risk assessment. USEPA Region 9 Preliminary Remediation Goals (PRGs) were used as the human health screening criteria (USEPA Region 9, 2004). The PRGs are screening values that are compiled by using toxicity information to calculate contaminant concentrations that will result in a Hazard Index of 1 or an excess lifetime cancer risk or 1 E-6. If a contaminant has both carcinogenic and non-carcinogenic toxic effects, the lower concentration was selected. In accordance with USEPA Region 1 guidance, PRG values for noncarcinogens were divided by 10 in order to account for the potential additive noncarcinogenic effects. The PRG values available online at the USEPA Region 9 website were used to screen the data in the database. If screening values were not available, the screening value of a similar chemical was used as a surrogate screening value, if appropriate. Values from surrogate chemicals used in the COPC screening process are listed in all RAGS D Table 2s.

Surface water concentrations detected in the study area were screened versus tap water PRG values. Sediment concentrations detected in the study area were screened versus residential soil PRG values. Because USEPA Region 9 has not published PRGs for fish tissue, USEPA Region 3 risk-based concentrations (RBCs) for fish tissue were used (USEPA Region 3, 2005). No comparison to background concentrations was performed.

Frequency of Detection. Chemicals may be deleted from further consideration in the risk assessment if they are infrequently detected (USEPA, 1989) or if the infrequent detection is shown not to be indicative of a "hot spot." Contaminants detected infrequently at high concentrations are typically indicative of a hot spot, or highly localized area of contamination. Hot spot data should be evaluated in the risk assessment and are not eliminated from further consideration. However,

contaminants detected infrequently and at low concentrations may be an analytical artifact and should not be carried through the risk assessment. Typically, a detected contaminant in less than 5% of at least 20 samples at a low concentration may be considered for removal from further consideration in the risk assessment, provided that the contaminant is not expected to be present based upon historic activities in the site.

Nutrients. Essential human dietary nutrients were eliminated as COPC. USEPA guidance considers calcium, chloride, iodine, magnesium, phosphorous, potassium and sodium, as essential nutrients. These essential nutrients were not retained for further evaluation in the risk assessment. However, the effect of omitting these chemicals from the quantitative risk analysis is discussed in the uncertainty section of this report.

Lead. In the case of lead, insufficient information exists to develop risk-based screening values. Therefore, the USEPA screening value (USEPA, 1994a) of 400 mg/kg was used to screen soils and sediments. This screening value was selected in accordance with USEPA Region 1 guidance (USEPA, November 1996). No screening was performed for lead found in surface water or fish fillet samples.

Re-inclusion of COPCs. RAGS A discusses the need for a potential reinclusion step during the COPC screening process. Constituents screened may need to be re-included as a COPC for a variety of reasons. For this risk assessment, if one carcinogenic polynuclear aromatic hydrocarbon (PAH) was retained during COPC screening then all carcinogenic PAHs were included as COPCs. Carcinogenic PAHs derive their toxicity from equivalency factors based on the toxicity of benzo(a)pyrene. Therefore, the effects of all carcinogenic PAHs are additive and it is not appropriate to evaluate only a subset of the carcinogenic PAHs present.

The results of the screening process are presented in Tables 2-5 through 2-10. Metals, PAHs, PCBs and DDT/DDD/DDE have been identified as the primary COPCs in surface water, sediment, and fish tissue.

Data Management

In developing a data set for COPC screening, several data management decisions were needed in order to process the data. Field duplicates were screened on the maximum value of a duplicate pair. For development of average concentrations for the data set, the duplicates values were averaged then input as a single result. This procedure prevents over representing a single location.

Elevated nondetected values can result if the sample requires dilution. Sample dilutions may be needed owing to matrix interference or if one constituent is present at a greatly elevated concentration. If a nondetected value exceeded two times the maximum the nondetected value was not used in the data set. This procedure was used to avoid the situation where the maximum value was not an actual detected value but rather a diluting-derived nondetected result.

3.0 EXPOSURE ASSESSMENT

Exposure is defined as the contact of a receptor with a chemical or physical agent (USEPA 1989). An exposure assessment is the determination or estimation (qualitative or quantitative) of the magnitude, frequency, duration, and route of exposure. An exposure assessment is composed of the following steps:

- Characterization of the environmental setting (Section 3.1)
- Summary of the nature and extent of contamination (Section 3.2)
- Identification of potential receptors and exposure pathways (Section 3.3)
- Estimation of exposure concentrations (Section 3.4)
- Estimation of chemical intakes (Section 3.5)

3.1. Characterization of the Environmental Setting

A summary of the specific aspects of the environmental setting, as they relate to the human health risk assessment, is presented below. Characterization of the physical setting includes current land uses and characteristics of site with regard to the human health risk assessment. The purpose of this discussion is to identify media that human receptors may contact while at Grove Pond or Plow Shop Pond and provide a general understanding of the human exposure setting.

Grove Pond

Grove Pond is roughly triangular in shape and covers about 60 acres. The northern shore includes the location of the Plastic Distributing Company (PDC, location of former tannery operations), Pirone Park owned by the Town of Ayer, and residential properties. The southeastern shore is bordered by property owned by the Town of Ayer. The southern shore is also bordered by property owned by Fort Devens. Within this area are Devens' water supply wells, which are currently active with treatment. Immediately beyond the Devens' shoreline is the Massachusetts National Guard. The western edge of the pond is formed by the railroad causeway, owned and operated by Guilford Transportation (formerly Boston & Maine Railroad, B&MRR).

Grove Pond is shallow, with maximum water depth approximately 5 to 6 feet, and the water is frequently eutrophic, or well nourished by aquatic plant nutrients. The pond bottom consists largely of a thick mat of decomposing vegetation. Grove Pond receives drainage from Balch Pond, as well as from Cold Spring Brook and Bowers Brook, and discharges through a culvert on the western edge of the pond into Plow Shop Pond. Cold Spring Brook is downgradient of Devens. Bowers Brook connects into Cold Spring.

Recreational features of the pond include a playground, a boat ramp with use restrictions and "Catch and Release" fishing. The area is designated "Catch and Release" for recreational fishing. However,

witnesses have observed the local population retaining caught fish, presumably for consumption. Expected recreational activities would include fishing and wading. Dense vegetation typically present on the pond surface would make Grove Pond unattractive for swimming. There are water supply wells and a water treatment plant adjacent to Grove Pond at the southern end.

Plow Shop Pond

Plow Shop Pond is located downstream and to the west of Grove Pond. Surface water flows from Grove Pond to Plow Shop Pond through a culvert. Plow Shop Pond is also a shallow pond and is approximately 30 acres. The central portion of the pond is approximately 8 feet deep, and the deepest portion of the pond is reported to be at the northeast arm of the pond. The water level is controlled by a dam located at the northwest corner of the pond where it forms Nonacoicus Brook and its associated wetlands, which in turn flows approximately 1.5 miles northwest into the Nashua River. Plow Shop Pond is similar to Grove Pond in regards to the aquatic community; however, Plow Shop Pond is smaller and slightly deeper, and the aquatic vegetation tends to be less dense than Grove Pond. (USFW, September 2000)

The northern shore of Plow Shop Pond is bordered by commercial businesses. The eastern shore is the Guilford Transportation railroad causeway. The southern and western shores include the former railroad roundhouse, and woodland and grassland associated with Shepley's Hill Landfill.

Plow Shop Pond is used recreationally for fishing. Dense vegetation typically present on the pond surface would make Plow Shop Pond unattractive for swimming. There are no residences along the pond shore nor are any water supply wells located along Plow Shop Pond. The area is designated "Catch and Release" for recreational fishing. However, witnesses have observed the local population retaining caught fish, presumably for consumption.

3.2 Summary of the Nature and Extent of Contamination

Both the Grove Pond and Plow Shop Pond surface water and sediments were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), metals, PCBs and pesticides. The ESI Report describes in detail the nature and extent of contamination for these classes of compounds therefore, a brief summary is presented here to provide a general perspective of contaminant distribution in these ponds.

Grove Pond

The analytical results for the Grove Pond sediments indicate that the most frequently analyzed and detected class of chemicals included metals, followed by pesticides and PCBs (i.e. primarily DDD, DDE, and DDT). SVOCS and VOCs were the most infrequently detected compounds.

In surface water the most widely and frequently detected class of compounds were metals. The SVOC bis(2-ethylhexyl)phthalate was also detected. This constituent is a common laboratory

contaminant. Although this constituent was not flagged as blank qualified during data validation, it is possible that its presence is related to lab-based contamination rather than from a release of hazardous material into surface water. This is likely given the relatively low solubility of bis(2-ethylhexyl)phthalate in water.

Constituents found in fish include metals, PCBs and DDD/DDE.

Plow Shop Pond

The analytical results for the Plow Shop Pond sediments indicate that the most frequently analyzed and detected class of chemicals included metals, followed by polycyclic aromatic hydrocarbons (PAHs). Pesticides, VOCs and PCBs were the most infrequently detected compounds found only at concentrations which did not exceed screening values.

In surface water the most widely and frequently detected class of compounds were metals followed by detections of two VOCs (i.e., likely laboratory artifacts) and one pesticide.

Metals and DDE were the major constituents detected in fillet portion of fish from Plow Shop Pond.

<u>Summary of Conceptual Site Model Development for Arsenic, Cadmium, Chromium, Mercury</u> and Lead

Section 5.0 of the ESI Report presents the fate and transport analysis and conceptual site model for the sources of arsenic, cadmium, chromium, mercury and lead in Grove Pond and Plow Shop Pond sediments. The results of this section are paraphrased below.

- Arsenic levels were found to be elevated in sediments from both Grove Pond and Plow Shop Pond. The source for the arsenic was concluded to be accumulation from groundwater discharge, with elevation in Red Cove sediment probably owing to reduced groundwater from the direction of Shepley's Hill Landfill.
- Cadmium levels were determined to be elevated in sediments but no-pond related source was identified. General anthropogenic input was determined to be the likely source of elevated cadmium in sediments.
- Chromium levels were found to be elevated in sediments from both Grove Pond and Plow Shop Pond. The levels were strongly attributed to waste discharges from the former tannery located on the northwestern shore of Grove Pond.
- Mercury levels were determined to be elevated in sediments from both Grove Pond and Plow Shop Pond. Also, elevated mercury concentrations were correlated with elevated chromium concentrations.
- Lead levels were not found to be elevated in sediments on a pond-wide bases for either pond. However, sediment concentrations of lead were found to be locally elevated in the Tannery Cove in Grove Pond and adjacent to the former railroad roundhouse in Plow Shop Pond.

3.3 Estimation of Exposure Point Concentrations

According to USEPA guidance (December 1989, May 1992, September 1995, December 2002), risk assessments are conducted using a representative Exposure Point Concentration (EPC). For this risk assessment, Exposure Point Concentrations (EPCs) were calculated for COPCs only.

Ideally, the EPC should be the true average concentration within the exposure unit. The true population mean concentrations of the COPCs at a contaminated site are often unknown, and are frequently estimated by the respective sample means based upon the data collected from the site under investigation. In order to address the uncertainties associated with the estimates of the true unknown mean concentrations of the COPCs, appropriate 95% upper confidence limits (UCLs) of the respective unknown means are frequently used in many environmental applications. The computation of an appropriate 95% UCL of practical merit depends upon the data distribution and the skewness associated with the data set under study. The USEPA program ProUCL can be used to compute an appropriate UCL of the unknown population mean using a discernible probability distribution (e.g., normal, lognormal, gamma) and/or a suitable non-parametric distribution-free method.

In December 2002, the USEPA revised the Guidance Document to Calculate the Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites (OSWER 9285.670). ProUCL, Version 3.0 consists of all parametric and non-parametric UCL computation methods as described in this revised USEPA UCL Guidance Document.

ProUCL computes parametric UCLs based upon a normal, lognormal, and a gamma distribution. ProUCL also computes UCLs using several nonparametric methods. The computation of an appropriate UCL of the unknown population mean depends upon the data distribution, therefore goodness-of-fit tests need to be performed to assess the data distribution before using one of the UCL computation methods available in ProUCL. Based upon an appropriate data distribution and the associated skewness, ProUCL provides recommendations about one or more 95% UCL computation methods that may be used to estimate the unknown mean concentration of a COPC (USEPA 2004). In the development of 95% UCL values for this project, the recommendations provided by the ProUCL program were used.

In accordance with Region 1 guidance (USEPA Region 1, 1994), the 95% UCLs were compared to the maximum concentration found for each analyte and the smaller of the two was chosen as the EPC and used for the dose calculations. In cases where the data set was small, the maximum concentration was used as the exposure point concentration.

Tables 3-1 through 3-6 present the 95% Upper Confidence Limits (UCLs), the Maximum Concentrations and the EPC selected for each COPC evaluated in each media evaluated.

3.4 Identification of Receptors and Potential Exposure Pathways

An exposure pathway describes the course a chemical or physical agent takes from the source to the exposed individual. A complete exposure pathway generally consists of three elements: (1) a source or chemical release from a source, (2) an exposure point where contact can occur, and (3) (4) an exposure route (i.e., ingestion) at the contact point. If any component is missing, the pathway is deemed incomplete and not quantitatively evaluated in the risk assessment (USEPA, 1989). Elimination of exposure pathways may occur based on professional judgment and evaluation of site-specific conditions, for example if the probability of exposure occurring is low or if the impact of the exposure pathway is expected to minor in comparison to other exposure pathways (USEPA, 1989).

CSM

Figure 4 presents the conceptual site model (CSM) for the project site to assist in the identification of the completed exposure pathways to site-related contamination. The CSM identifies the primary sources of contamination, receiving media, and exposure media, which allows for the identification of potential exposure pathways.

Grove Pond

Based on the information presented earlier, the primary contaminant sources associated with Grove Pond include historical discharge of tannery wastes from a former tannery, and potential effects from a landfill that was formerly located between the tannery and Grove Pond. In addition, north of the tannery were a former foundry and machine shop. East of the former tannery, is Pirone Park, where landfilling may have occurred in the past. Other potential sources of contamination to the pond are: stormwater runoff from the Guilford Transportation railroad yard and causeway on the southern/western shore; historical infilling of portions of the pond's perimeter; inflow from Cold Spring Brook and Balch Pond; and runoff from Fort Devens and the Town of Ayer. Extensive apple orchards lie within the drainage basin for the pond, and historical application of arsenic-containing pesticides has been suggested as a potential contaminant source. The contribution of arsenic and other metals to pond-bottom sediments by discharging groundwater may be significant.

Plow Shop Pond

Plow Shop Pond is bordered to the north by commercial properties. Historical records indicate that a lumber company, northwest of the pond had been in operation since 1887 and at least until 1949. Other potential sources of contamination to the pond are stormwater runoff from the Guilford Transportation railroad and the former Railroad Roundhouse; historical infilling of portions of the pond's perimeter; and Shepley's Hill Landfill.

Identification of Exposure Pathways

The CSM, Figure 4 presents the potential receptors and exposure pathways to be evaluated in this risk assessment. The most likely current and future receptors associated with the two ponds include

recreational users and recreational fishermen. Since subsistence fishing may be occurring, a current subsistent fisherman is also evaluated. In addition to fish consumption, the recreational users would be exposed to contaminants in surface water and near-shore sediments while wading or fishing in Grove Pond.

Selection of Exposure Parameters

The exposure parameters selected are intended to determine the Reasonable Maximum Exposure (RME) for each receptor scenario under current site conditions. The RME is the highest exposure that is reasonably expected to occur at a site.

USEPA has established default exposure assumptions for quantifying theoretical exposure doses of site contaminants. When default exposure parameters were not available, parameters were determined based on professional judgment to reflect the specific conditions at the site.

Default exposure assumptions were selected from the following sources:

- USEPA, 1989: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.
- USEPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.
- USEPA, 1994: USEPA, Region 1, Risk Update #2, August 1994.
- USEPA, 1995: Supplemental Guidance to RAGS: Region IV Bulletins, Human Health Risk Assessment, EPA Region 4, Atlanta, GA, November 1995
- USEPA, 1997: EPA Exposure Factors Handbook, 1997.
- USEPA, 2004: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part E, Supplement Guidance for Dermal Risk Assessment, Final Guidance.

All exposure parameters for the RME exposure scenarios are presented in Tables 3.7 through 3.14. Site-specific factors which were determined based on professional judgment are discussed below.

Recreational User and Fisherman

It is assumed that the recreational user and fisherman make three visits per week, during the warmer months of May through September (65 visits per year). The recreational user is assumed to spend approximately 4 hours during each visit to Grove Pond.

The child recreational exposure duration is 6 years, from age 1-6. In order to complete the 30 year exposure duration, the adult exposure was assumed to be 24 years.

There is no default sediment ingestion rate; therefore, the default soil ingestion rate of 100 mg/day was selected as the sediment ingestion rate for the adult receptors. A sediment ingestion rate of 200 mg/day was selected for the child receptors.

The only default values available for ingestion of surface water while wading are presented by USEPA Region 4. Therefore, the surface water ingestion rate of 0.01 l/hour as presented by USEPA Region 4 was selected for the recreational adult receptor. The surface water ingestion rate of 0.05 l/hour as presented by USEPA Region 4 was selected for the recreational child receptor.

Recreational and Subsistence Fisherman

It is assumed that all of fish consumption for both groups of fisherman is from fish caught in Grove Pond or Plow Shop Pond. Therefore, the fraction ingestion is assumed to be 1.

3.5 Estimation of Exposure Doses and Intakes

The next step in the estimation of exposure is to determine the chemical-specific exposures for each pathway identified to be a complete exposure pathway. Exposure estimates are expressed in terms of the mass of the substance in contact with the body per unit body weight per unit time, typically mg of substance/kg of body weight per day. These exposures are termed "intakes" and are equivalent to administered or applied doses. These calculated intakes are expressed as the amount of chemical at the exchange boundary (i.e., skin, lungs, gut) and available for absorption. The administered or applied dose is not equivalent to the amount of substance actually absorbed into the bloodstream. In the case of dermal exposure, intakes are multiplied by an absorption factor to determine the amount of the substance actually absorbed into the blood stream.

Calculation of intake factors or the daily dose for each chemical and receptor was performed for the appropriate exposure pathway (e.g. inhalation, ingestion, dermal). The equations are presented in Tables 3-7 through 3-14.

Dermal exposure requires the determination of absorbed doses rather than applied doses. For sediments or soils, literature-based chemical-specific dermal absorption factors are used in the development of the absorbed dose. The dermal absorption fraction values or ABS_d are presented in Table 3-15.

For exposure to surface water, the development of absorbed doses is more complex. First the amount of chemical absorbed per body area per day must be determined. This value is called the DA_{event} . Table 3-16 presents the derivation of DA_{event} values for each COPC found in Grove Pond or Plow Shop Pond surface water. DA_{event} values are combined with other intake values to obtain the daily absorbed dose (as shown in RAGS D Table 4s).

4.0 TOXICITY ASSESSMENT

The purpose of the toxicity assessment is to weigh available evidence regarding the potential for particular contaminants to cause adverse effects in exposed individuals and to provide, where

possible, an estimate of the relationship between the extent of exposure to a contaminant and the increased likelihood of adverse effects (USEPA, 1989). The toxicity assessment is composed of two parts:

- Hazard Identification Hazard identification is the process of determining whether the exposure to a contaminant can cause an increase in the incidence of a particular adverse health effect. Hazard identification also involves characterizing the nature and strength of the evidence that adverse effects may occur as a result of exposure to an agent.
- Dose Response Evaluation Does response evaluation is the process of quantitatively evaluating the toxicity information and characterizing the relationship between the dose of the contaminant received and the incidence of adverse health effects in the receptors. From this quantitative dose-response relationship, toxicity values can be derived to estimate the potential for adverse effects in receptors that may have been exposed to different concentrations of the specific agent.

Exposure to carcinogenic and non-carcinogenic toxic contaminants is responsible, by definition, for creating different toxic endpoints or effects. There are also differences in the biological processes through which carcinogenic and non-carcinogenic contaminants can cause adverse effects to a receptor. Therefore, the evaluation of carcinogenic and non-carcinogenic health effects are evaluated separately in human health risk assessments. The methods used to derive toxicity values for carcinogens and non-carcinogens are discussed below.

The toxicity factors (i.e., RfDs and CSFs) used in this risk assessment reflect the most current toxicological information available from the following hierarchy of sources (USEPA, 2003a):

- 1. Integrated Risk Information System (IRIS) (USEPA, 2004a).
- 2. Provisional Peer-Reviewed Toxicity Values (PPRTVs) (USEPA, 2004c).
- 3. Other sources, including but not limited to:
 - National Center for Environmental Assessment (NCEA), presented in Region III's RBC Table (USEPA Region 3, 2005).
 - Office of Environmental Health Hazard Assessment (OEHHA) (Cal/EPA, 2004).
 - Health Effects Assessment Summary Tables (HEAST) (USEPA, 1997b).
 - Values withdrawn from IRIS or HEAST (presented in Region III's RBC Table (USEPA, 2004e).
 - Agency for Toxic Substances and Disease Registry (ATSDR), minimal risk levels (MRLs)(2004).

Noncarcinogenic toxicity values used in the risk assessment are provided in Table 4-1. Information regarding target organ effects is also presented in these tables. Carcinogenic toxicity values and weight of evidence information are presented in Table 4-2.

Quantitative risk assessment cannot be performed for chemicals without chronic toxicity values. COPCs without toxicity values were evaluated qualitatively in the Uncertainty Discussion, Section 5.4 of this risk assessment. In some cases, toxicity information from a chemically and toxicologically similar may be used as a surrogate. Cases in which surrogate toxicity values are clearly indicated in the toxicity tables.

4.1 Noncarcinogenic Dose Response

A number of chemicals have been determined to have toxic effects other than carcinogenesis, such as respiratory illness, skin irritation, etc. In addition, chemicals may also be carcinogenic in addition to other toxic endpoints. The evaluation of noncancer effects (USEPA 1989) involves:

- Qualitative identification of the adverse effect(s) associated with the chemical; these may differ depending on the duration (acute or chronic) or route (oral or inhalation) of exposure
- Identification of the critical effect for each duration of exposure (i.e., the first adverse effect that occurs as dose is increased)
- Estimation of the threshold dose for the critical effect for each duration of exposure
- Development of an uncertainty factor, i.e., quantification of the uncertainty associated with interspecies extrapolation, intraspecies variation in sensitivity, severity of the critical effect, slope of the dose-response curve, and deficiencies in the database, in regard to developing an RfD for human exposure
- Identification of the target organ for the critical effect for each route of exposure

The potential for noncarcinogenic health effects resulting from exposure to chemicals is assessed by comparing an exposure estimate (intake or dose) to a Reference Dose (RfD). RfDs are estimates (with uncertainty spanning perhaps an order of magnitude or greater) of a daily exposure level for the human population, including sensitive subpopulations, that is likely to be without an appreciable risk of deleterious effects during a lifetime. The RfD is expressed in units of mg/kg-day, and represents a daily intake of a contaminant per kilogram of body weight that is not sufficient to cause the threshold effect of concern. An RfD is specific to the chemical, the route of exposure, and the duration over which the exposure occurs. Separate RfDs are represented for ingestion, dermal, and inhalation pathways.

RfDs are expressed as the administered dose. However, exposure estimates for the dermal pathway are expressed as an absorbed dose. Therefore, it is usually necessary to adjust oral toxicity values from administered to absorbed doses in order to evaluate the dermal exposure pathway. Dermal RfDs are derived from the corresponding oral values, provided there is no evidence to suggest that

dermal exposure induces exposure route-specific effects that are not appropriately modeled by oral exposure data. Oral toxicity values are adjusted to account for oral absorption efficiencies of the specific chemical. Oral absorption efficiency values are referred to as Gastrointestinal Absorption Factors (ABS_{GI}). Chemical-specific GAF values may be available from toxicological resources, such as ATSDR Toxicological Profiles, and should be used when available.

In the derivation of a dermal RfD, the oral RfD is multiplied by the gastrointestinal absorption factor (ABS_{GI}), expressed as a decimal fraction. The resulting dermal RfD, therefore, is based on absorbed dose. The RfD based on absorbed dose is the appropriate value with which to compare a dermal dose, because dermal doses are expressed as absorbed rather than exposure dose.

RfD values are derived for both chronic and subchronic exposure. Under the assumption of monotoxicity (incidence, intensity, or severity of effects can increase but can not decrease, with increasing magnitude or duration of exposure), a chronic RfD may be considered sufficiently protective for subchronic exposure, but a subchronic RfD may not be protective for chronic exposure. Given the exposure durations involved in the scenarios at the site, chronic RfDs were used for the purposes of this risk assessment. Noncancer toxicity values are provided in Tables 4-1

Target Organ Toxicity

As a matter of science policy, USEPA assumes dose-and effect- additivity for noncarcinogenic effects (USEPA, 1989). This assumption provides the justification for adding the hazard quotients (HQ) or HIs in the risk characterization for noncancer effects resulting from exposure to multiple chemicals, pathways or media. USEPA (1989), however, acknowledges that adding all HQ and HI values may overestimate hazard, because the assumption of additivity is probably appropriate only for those chemicals that exert their toxicity by the same mechanism.

Mechanism of toxicity data sufficient for predicting additivity with a high level of confidence are available for very few chemicals. In the absence of such data, USEPA (1989) assumes that chemicals that act on the same target organ may do so by the same mechanism of toxicity, e.g., target organ serves as a surrogate for mechanism of toxicity. When the total HI for all media for a receptor exceeds 1 due to the contributions of several chemicals, it is appropriate to segregate the chemicals by route of exposure and mechanism of toxicity (i.e., target organ) and estimate separate HI values for each. Segregated target organ Hazard Indices for COPCs are provided in Appendix C, Tables C-29 through C-36 of this report.

As a practical matter, since human environmental exposures are likely to involve near-or subthreshold doses, the target organ chosen for a given chemical is the one associated with the critical effect. If more than one organ is affected at the threshold, the more severely affected organ is chosen. The target organ is also selected on the basis of duration of exposure (i.e., the target organ for chronic or subchronic exposure to low or moderate doses is selected rather than the target organ for

acute exposure to high doses) and route of exposure. Because dermal RfD values are derived from oral RfD values, the oral target organ is adopted as the dermal target organ. For some chemicals, no target organ is identified. This occurs when no adverse effects are observed or when adverse effects such as reduced longevity or growth rate are not accompanied by recognized organ- or system-specific functional or morphologic alteration.

4.2 Carcinogenic Dose-Response

A number of chemicals are known, and many more are suspected, to be human carcinogens. The evaluation of potential carcinogenicity of a chemical includes both a qualitative and a quantitative aspect (USEPA 1989). The qualitative aspect is a weight-of-evidence evaluation of the likelihood that a chemical might induce cancer in humans. The EPA weight-of-evidence classification is a system for characterizing the extent to which the available data indicate that an agent is a human carcinogen (USEPA, 1989). USEPA (1989) currently recognizes six weight-of-evidence classifications for carcinogenicity.

- Group A Human Carcinogen. Human data are sufficient to identify the chemical as a human carcinogen.
- Group B1 Probable Human Carcinogen. Human data indicate that a causal association is credible, but alternative explanations can not be dismissed.
- Group B2 Probable Human Carcinogen. Human data are insufficient to support a causal association, but testing in animals support a causal association.
- Group C Possible Human Carcinogen. Human data are inadequate or lacking, but animal data suggest a causal association, although the studies have deficiencies that limit interpretation.
- Group D Not Classifiable as to Human Carcinogenicity. Human and animal data are lacking or inadequate.
- Group E Evidence of Noncarcinogenicity to Humans. Human data are negative or lacking, and adequate animal data indicate no association with cancer.

USEPA (1989) assumes that a small number of molecular events can create changes in a single cell that can lead to uncontrolled cellular proliferation and eventually to clinical cancer. This hypothesized mechanism for carcinogenesis is referred to "nonthreshold," because there is believed to be essentially no threshold below which harmful effects may possibly occur as a result of exposure.

The toxicity value for carcinogenicity, called a cancer slope factor (CSF), is an estimate of carcinogen potency. Potency estimates are developed only for chemicals in Groups A, B1, B2, and C (known or suspected carcinogens), and only if data are sufficient. The potency estimates are statistically derived from the dose-response curve from the best human or animal studies of the chemical. The CSFs should always be accompanied by the weight-of-evidence classification to indicate the strength of the evidence that the agent is a human carcinogen (USEPA, 1989). The CSF is usually described as the "excess risk" per unit dose above the rate that might normally be expected in the general population.

The CSF is expressed as risk per mg/kg-day. To be appropriately conservative, the CSF is usually the 95 percent upper-bound on the slope of the dose-response curve extrapolated from high (experimental) doses to the low-dose range expected in environmental exposure scenarios.

The oral CSF is usually derived directly from the experimental dose data, because oral dose is usually expressed as mg/kg-day. When the test chemical is administered in the diet or drinking water, oral dose first must be estimated from the test chemical in the food or water, food or water intake data, and body weight data.

CSFs are expressed as the administered dose. However, exposure estimates for the dermal pathway are expressed as an absorbed dose. Therefore, it is usually necessary to adjust oral toxicity values from administered to absorbed doses in order to evaluate the dermal exposure pathway. Dermal CSFs are derived from the corresponding oral values, provided there is no evidence to suggest that dermal exposure induces exposure route-specific effects that are not appropriately modeled by oral exposure data. Oral toxicity values are adjusted to account for oral absorption efficiencies of the specific chemical. Oral absorption efficiency values are referred to as Gastrointestinal Absorption Factors (ABS_{GI}). Chemical-specific ABS_{GI} values may be available from toxicological resources, such as ATSDR Toxicological Profiles, and should be used when available.

The dermal CSF is derived by dividing the oral CSF by the ABS_{GI} . The oral CSF is divided, rather than multiplied, by the ABS_{GI} because CSFs are expressed as reciprocal dose. The USEPA weight-of-evidence group and the oral, dermal and inhalation CSFs for COPC are presented in Table 4-2.

4.3 Compound-Specific Dose - Response

Carcinogenic PAHs.

The toxicity assessment for carcinogenic PAHs (cPAHs) may be performed with a Toxic Equivalence Factor (TEF) methodology. The toxicity of carcinogenic PAHs is based on a relative potency of each compound to that of benzo(a)pyrene. Cancer slope factors adjusted using TEFs are presented in Table 4-2. As discussed above, all carcinogenic PAHs were retained as COPCs in any medium where at least one carcinogenic PAH exceeded its screening value.

5.0 RISK CHARACTERIZATION

Risk characterization is the combination of the results of the exposure assessment and toxicity assessment to yield a quantitative expression of risk for the exposed receptors. This quantitative expression is the probability of developing cancer, or a nonprobabilistic comparison of estimated dose with a reference dose for noncancer effects. Quantitative estimates are developed for individual chemicals, exposure pathways, and exposure media for each receptor. The risk characterizations presented in this risk assessment are based on the Reasonable Maximum Exposure (RME) scenario and are generally used to guide risk management decisions.

This section presents estimates of risk for the relevant pathways and receptors for each scenario as described in previous sections. All chemicals of concern were evaluated by the determination of non-cancer Hazard Quotients (HQ) and Cancer Risks. Section 5.1 presents the methodology used to calculated noncancer hazards and cancer risks. Section 5.2 discusses cumulative non-cancer health risks and cumulative cancer risks. Section 5.3 discusses the evaluation procedures used in the evaluation of lead.

Generally, risk characterization follows the methodology prescribed by USEPA (1989a), as modified by more recent information and guidance. The USEPA methods are, appropriately, designed to be health-protective, and tend to overestimate, rather than underestimate, risk. The risk results are generally overly conservative, because risk characterization involves multiplication of the conservatism built into the estimation of source-term and exposure-point concentrations, the exposure (intake) estimates, and the toxicity dose-response assessments.

Although some chemicals induce both cancer and noncancer effects, the risks for each endpoint are calculated separately.

5.1 Cancer Risks

For carcinogens, risks are estimated as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to the potential carcinogen.

Cancer Risk Calculation Equation:

$$ILCR_i = CDI_i * CSF_i$$

Where:

- ILCR_i = Incremental Lifetime Cancer Risk for chemical "i," expressed as a unitless probability
- CDI_i = Calculated Average Daily Intake of chemical "i" expressed as an average daily dose in (mg/kg-day)
- CSF_i = Inhalation cancer slope factor for chemical "i" in (mg/kg-day)⁻¹

Individual chemical-specific cancer risks are summed to estimate the total incremental individual lifetime cancer risk for simultaneous exposure to several carcinogens. The risk summation technique does not presume any synergistic or antagonistic chemical interactions. This assumption may result in either an underestimation or overestimation of the actual risk that may result from actual exposure to multiple substances.

The cancer risk calculations for all receptors are presented in Appendix C in Tables C-1 through C-24. Tables C-1 though C-24 illustrate the development of the intake values and hazard quotients by each medium. Tables C-25 through C-28 present a RAGS D Table 9-style summary of cancer risks for the recreational adult and child receptors for Grove Pond and Plow Shop Pond. These receptors were evaluated for cancer risks from exposure to multiple media including sediments, surface water and fish tissue.

5.2 Non-cancer Risks

The Hazard Quotient (HQ) is the potential for noncarcinogenic effects as a result of exposure. The HQ is a ratio of exposure over a specified period of time to a reference dose derived for a similar period of time. As a rule, the greater the value of the HQ above unity (HQ>1), the greater the level of concern.

Estimating risk or hazard by considering only one chemical at a time might significantly underestimate the risks associated with simultaneous exposures to several COPCs. To assess the potential for noncarcinogenic effects posed by more than one COPC, a Hazard Index (HI) is then calculated. The HI is equal to the sum of the hazard quotients.

The following risk equations were used to calculate hazard quotient (HQ):

Hazard Quotient Calculation Equation:

$$\frac{HQ_i = CDI_j}{RfD_i}$$

Where:

HQ_i = Hazard Quotient for chemical "i" (unitless)

CDI_i = Calculated Average Daily Intake of chemical "i" expressed as an average daily dose in (mg/kg-day)

RfD_i = Reference Dose of chemical "i" in (mg/kg-day)

The hazard index (HI) describes the overall potential for noncarcinogenic effects posed by more than one chemical. The approach assumes that simultaneous exposures to several chemicals could produce an adverse effect. The HI is generated by summing the individual HQs for all the COPCs. The magnitude of the adverse effect is assumed to be proportional to the sum of the ratios of the subthreshold exposures to acceptable exposures. As with the individual hazard quotients, there is a potential for adverse health effects when the HI exceeds one (1).

Hazard Indices were segregated by target organ and associated critical effect. This approach more appropriately results in identification of endpoints that reflect adverse effects on the same organ system by the same mechanism. Segregation of HI requires identification of the major effect(s) of each COPC. The target organ effect was selected based on the target organ corresponding to the oral RfD listed in IRIS and HEAST or information in ATSDR profiles. In cases where a COPC affects more than one target organ, the HI was used to calculate the target organ effect for each target organ it affects.

The noncancer risk calculations for all receptors are presented in Appendix C. Tables C-1 though C-24 illustrate the development of the intake values and hazard quotients by each medium. Tables C-25 through C-28 present a RAGS D Table 9-style summary of HIs for the recreational adult and child receptors for Grove Pond and Plow Shop Pond. These receptors were evaluated for noncancer hazards from exposure to multiple media including sediments, surface water and fish tissue.

5.3 Lead

Because of its unique toxicological properties, lead requires an alternate evaluation than that performed for non-carcinogenic or carcinogenic chemicals. The output and summary results for the lead evaluation are presented in Appendix D. Output includes RAGS D adult lead worksheets, Adult lead model print outs, RAGS D IEUBK lead model worksheets, IEUBK lead model tabular output and IEUBK probability density function graphs for blood lead.

Adult Recreational Receptor

For the recreational adult receptor, risks from exposure to lead were calculated using the USEPA Adult Lead Model, dated 5/19/03 (USEPA 1996). This approach determines the 95th percentile

blood lead concentration among fetuses born to women having exposures to the soil concentration present at the Site. The calculated value is then compared with the threshold blood level for lead of 10 ug/dL which the USEPA has established as being associated with no adverse effects in children. Site-specific EPCs for lead, representing the arithmetic average, for sediment were used in the evaluations of Grove Pond and Plow Shop Pond sediment. Threats from surface water and fish ingestion could not be evaluated for this receptor because currently the model is designed only to consider soils/sediment. The geometric standard deviation for a heterogeneous population was selected as a conservative assumption. Site-specific values for both the exposure frequency of 65 days/year and the averaging time of 152 days a year were used. Model literature on evaluating intermittent exposure to lead indicates that exposures should not be annualized and that models are suitable for use when exposure exceeds three months (see USEPA 2004d). Therefore, exposure for the five month exposure periods of May to September was used as the averaging time. A site-specific sediment ingestion rate of 100 mg/day as shown in the RAGS D Table 4s was used in this modeling as well.

Child Recreational Receptor

An RfD is not available with which to evaluate the toxicity of oral exposure to lead. It is generally agreed that the young child is the most sensitive receptor for exposure to lead. Therefore, evaluating the child recreational receptor exposed to the levels of lead found in the media of interest at the Site provides a worst-case snapshot of the impact of lead. The USEPA (1994b) Integrated Exposure Uptake Biokinetic Model (IEUBK) integrates exposure to lead from various sources to estimate mean blood lead concentrations for the first 7 years of a child's life, and predicts the statistical variation about the mean. The IEUBK model is used to evaluate lead in the various media at the Site. For the recreational child receptor, risks from exposure to lead were calculated using the Integrated Exposure Uptake Biokinetic (IEUBK) Model, version 1.0 build 261.

Exposure input values included arithmetic mean lead concentrations from sediment in Grove Pond and Plow Shop Pond, default drinking water values since arithmetic mean surface water values from both Ponds were less than the default drinking water value and arithmetic mean fish tissue values for fish from Grove Pond. Lead in fish was not a COPC for Plow Shop Pond. Model defaults were used for soil bioavailability and ingestion rate. Because the exposure being evaluated was anticipated to occur regularly over a five or nine month period, no time-adjusted input was needed as discussed in the USEPA guidance in intermittent exposure to lead (see USEPA 2004d). Fish tissue was included by assuming that 41 out of 273 meat meals or 15% of meat meals consisted of Grove Pond Fish. This value was derived from assuming that the recreational child consumed one meal of Grove Pond caught fish per week for nine months of the year (39 weeks).

Child Subsistence Angler Receptor

For the subsistence child angler receptor in Grove Pond, risks from exposure to lead were also calculated using the Integrated Exposure Uptake Biokinetic (IEUBK) Model, version 1.0 build 261. Input parameter values for this receptor were identical to those of the child recreational receptor with

one exception. Fish tissue was included by assuming that 273 out of 273 meat meals or 100% of meat meals consisted of Grove Pond Fish. This value was derived from assuming that the recreational child consumed seven meals of Grove Pond caught fish per week for nine months of the year (39 weeks). Because the exposure being evaluated was anticipated to occur regularly over a five or nine month period, no time-adjusted input was needed as discussed the USEPA guidance in intermittent exposure to lead (see USEPA 2004d).

5.4 Oualitative Risk Results

Cumulative Cancer Risks

In order to assess the potential risks the estimated chronic intakes for each pathway are multiplied by the cancer slope factor or the unit risk (used in some inhalation pathways). These results are presented for each pathway in the column entitled Risk in the Tables included in Appendix C. Risks calculated for each chemical are summed to a cumulative risk in each table. RAGS D Table 10s which highlight individual chemical risk drivers are also presented in Appendix C. Cumulative risk summaries by receptor are presented in Table 5-1 for Grove Pond media and Table 5-2 for Plow Shop Pond media.

Grove Pond (see Table 5-1). Cumulative risks from exposure to fish tissue resulted in risks greater than the USEPA specified risk threshold range of 1E-4 to 1E-6 for the adult subsistence angler. Risks equaled 2E-4. The risk drivers (chemicals with risks greater than 1E-6) included PCBs, DDD and DDE. Risks for all other receptors were within the USEPA-specified risk range. However, risks to both the recreational adult and the recreational child equaled the upper end of this range (1E-4). Risk drivers included arsenic and PAHs in sediment, arsenic and bis(2-ethylhexyl)phthalate in surface water and PCBs in fish. Cumulative risks to the child subsistence angler equaled 7E-5.

Plow Shop Pond (see Table 5-2). Cumulative risks from exposure to sediment, surface water and fish resulted in risks greater than the USEPA specified risk threshold range of 1E-4 to 1E-6 for the recreational adult (4E-4) and recreational child receptors (4E-4). The risk drivers included arsenic and PAHs in sediments and arsenic in surface water and fish. Cumulative risks from exposure to fish tissue resulted in risks greater than the USEPA specified risk threshold range of 1E-4 to 1E-6 for the adult subsistence angler. Risks equaled 5E-4. The risk drivers (chemicals with risks greater than 1E-6) included arsenic and DDE. Risks the child subsistence angler equaled the upper end of this range (1E-4). Risk drivers included arsenic and DDE in fish.

Cumulative Non-Cancer Health Risks

In order to assess the potential adverse health effects associated with chronic exposures to site receptors, the estimated chronic intakes for each pathway are compared to the acceptable

concentration for each constituent, which is the RfD. These comparisons are ratios of the estimated daily exposure to the RfD and are presented for each pathway in the column entitled Hazard Quotient (HQ) in Appendix C. Hazard Quotients calculated for each chemical are summed to a Hazard Index (HI) in each table.

In the summing of individual HQs, assumptions are made including: the chemicals act in an additive fashion rather than synergistically or antagonistically; the chemicals act on similar organ systems and with similar modes of action. The veracity of these assumptions will impact the accuracy of the hazard estimate developed in this risk characterization.

Grove Pond (see Table 5-1). As shown in Table 5-1, for all receptors evaluated, noncancer hazards exceeded the USEPA-specified risk threshold of one (1). Risk drivers, meaning chemicals with individual HQs in excess of one, for at least one receptor included arsenic in sediment, manganese in surface water and mercury and PCBs in fish.

Plow Shop Pond (see Table 5-2). As shown in Table 5-2, for all receptors evaluated, noncancer hazards exceeded the USEPA-specified risk threshold of one (1). Risk drivers, meaning chemicals with individual HQs in excess of one, for at least one receptor included arsenic and chromium in sediment, arsenic in surface water and mercury and vanadium in fish.

Lead

Results of the lead evaluations are presented in Appendix D and summarized in Tables 5-1 for Grove Ponds and 5-2 for Plow Shop Pond. The blood lead threshold has been established by USEPA as a probability value of no greater than a 5% chance of blood lead exceeding 10 ug/dL for the fetus, as evaluated with the adult lead model, or for the child, as evaluated with the IEUBK model. For Grove Pond, only the child subsistence angler was found to have risks in excess of this threshold. In Plow Shop Pond lead was not a COPC in fish. Neither the adult or child recreational receptors had lead risks that exceeded the associated threshold values.

6.0 UNCERTAINTY ANALYSIS

6.1 Inherent Sources of Uncertainty

Since the assumptions and other aspects of risk assessments are intended to be conservative, some degree of uncertainty is inherent to the process. Inherent sources of uncertainty typically relate to four areas:

- 1.) the data evaluation process
- 2.) the exposure assessment;
- 3.) the toxicity assessment;

4.) the risk characterization.

Inherent sources of uncertainty relating to the data evaluation process include:

- Field Sampling location bias: sample locations were biased toward areas of highest contamination
- Use of one-half the detection limit for all non-detected values when calculating 95% UCLs of the mean
- Lack of consideration of source depletion, natural degradation or attenuation of COPCs over time
- Limitations on the determination of background conditions

Inherent sources of uncertainty relating to the exposure assessment include:

- Assumption that exposure scenarios and contact with affected media will occur
- Selection of the 95% UCL of the mean or the maximum concentration for the exposure point concentration
- Assumption of frequent, routine exposure over prolonged durations
- Use of default exposure values for physiological parameters such as skin surface area, inhalation rate and soil ingestion rates
- Assumption that some pathways are negligible in comparison to others

Inherent sources of uncertainty relating to the toxicity analysis include:

- Use of published RfDs and SFs derived by standard USEPA methods
- Derivation of dermal SFs and RfDs using ABS_{GI} values
- Derivation of toxicity values for cPAHs based on TEFs
- Lack of toxicity values for some chemicals or exposure routes
- Assumption of 100% bioavailability of COPCs from sediment
- Assessment of mercury, which was measured analytically as total mercury, using the oral RfD for mercuric chloride rather than the oral RfD for methylmercury

Inherent sources of uncertainty relating to the risk characterization include:

- Assumption of additivity of toxicological effects
- Risk characterization does not consider antagonistic or synergistic effects. Little information is available to determine the potential for antagonism or synergism for the COPCs. Therefore, this uncertainty cannot be discussed for its impact on the risk assessment, since it may either underestimate or overestimate potential human health risk.

6.2 Site-Specific Sources of Uncertainty

In addition to the uncertainties inherent in the risk assessment process, there are typically uncertainties associated with site-specific information, contaminants or conditions. The following site-specific sources of uncertainty apply to this site:

Data Set Used

These risk results were based upon a data set derived from multiple studies conducted over a 13 year period. Older data may not be indicative of current conditions. However, it is assumed that the direction of bias with this uncertainty would be conservative in that it is not anticipated that conditions in the Ponds would have become more contaminated over time.

Sediment COPC Selection

Since screening values are not available for sediment, residential soil screening values were used in the selection of COPCs for sediment. This is considered a conservative approach which may actually overestimate potential risks.

Surface Water COPC Selection

Since screening values are not available for surface water, tap water screening values were used in the selection of COPCs for surface water. This is considered a conservative approach which may actually overestimate potential risks.

Uncertainties related to Iron and Copper

Risk screening indicated that copper and iron exceeded the EPA Region 9 PRG for residential soil in both ponds. Iron, but not copper, in surface water exceeded the Region 9 PRGs for residential drinking water in both ponds. The toxicity values for iron and copper were derived based on concentrations needed to protect against a deficiency of the compound, rather than on quantitative assessments related to the hazard posed by overexposure to these metals. In fact, USEPA Region I does not advocate quantitatively evaluating exposures and risks of these metals owing to the uncertainty of these toxicity values (USEPA, 1999). Because of the uncertainty of the toxicity information for iron and copper, any risks from exposure to these metals should be considered suspect and greatly overestimated. The uncertainties related to the toxicity values for iron and copper indicate that the potential risks may be greatly overestimated. Therefore, further actions based on concentrations of iron or copper in sediment and surface water seem unwarranted.

Uncertainties related to Background

Many metals occur naturally. Metals in this HHRA were not eliminated as COPCs based on background conditions. As such, risk values reported in this risk assessment include some contribution from background related metals. Since determination of statistically bounded background concentrations is beyond the scope of this investigation, it is not possible to quantify the contribution of background metals to the risk results obtained.

7.0 SUMMARY AND CONCLUSIONS

7.1 Summary of Risk Characterization

Prepared by Gannett Fleming, Inc. May. 2006

Tables 5-1 and 5-2 and Appendix C, Tables C-29 through C-36 present summaries of the cancer risks and noncancer hazard indices which exceeded EPA acceptance criteria for each receptor evaluated in the risk assessment. These tables identify the chemicals which are driving the risks and present the hazard indices segregated by target organ. Section 6.0 presented the uncertainties associated with the risk evaluations and presented rationale for consideration in determining the chemicals of concern for this site which may require further evaluation and action.

7.2 Conclusions

Grove Pond

The human health risk assessment evaluated risks to four receptors: a recreational adult, recreational child, subsistence angler adult and subsistence angler child. Media considered in the recreational receptor evaluations included sediment, surface water and fish tissue. The only medium used in the evaluation of risks to the subsistence angler receptors was fish tissue. For Grove Pond, the carcinogenic risk threshold of 1E-4 was equaled for the recreational adult and recreational child. This threshold was exceeded for the subsistence angler adult. Carcinogenic risk for the subsistence angler child was found to be between 1E-5 and 1E-4. The non-cancer Hazard Index (HI) risk threshold of one (1) was exceeded for all receptors.

Carcinogenic risk drivers, defined as chemicals with risks in excess of 1E-6, for the recreational receptors included arsenic (surface water and sediment), PAHs (sediment), phthalates (surface water) and PCBs (fish tissue). Noncarcinogenic risk drivers, defined as chemicals with hazard quotients (HQs) in excess of one (1), for the recreational receptors included arsenic (sediment), manganese (surface water), mercury (fish tissue), and PCBs (fish tissue).

Carcinogenic risk drivers for the subsistence angler included PCBs, DDD and DDE. Noncarcinogenic risk drivers included mercury and PCBs.

Risk thresholds from potential exposure to lead found in environmental media were not exceeded for recreational adults or children but were exceeded for the subsistence angler child receptor.

Plow Shop Pond

Human health risk assessment results for Plow Shop Pond were similar to those from Grove Pond. For Plow Shop Pond, the carcinogenic risk threshold of 1E-4 was exceeded for the recreational adult and recreational child. This threshold was equaled for the subsistence angler adult. Carcinogenic risk for the subsistence angler child was found to be between 1E-5 and 1E-4. The non-cancer Hazard Index (HI) risk threshold of one (1) was exceeded for all receptors.

Carcinogenic risk drivers for the recreational receptors included arsenic (surface water, sediment and fish tissue), PAHs (sediment) and PCBs (fish tissue). Noncarcinogenic risk drivers, defined as chemicals with hazard quotients (HQs) in excess of one (1), for the recreational receptors included arsenic (sediment, surface water), chromium (sediment), and mercury (fish tissue).

Carcinogenic risk drivers for the subsistence angler included arsenic and DDD. Noncarcinogenic risk drivers included mercury and vanadium.

Risk thresholds from potential exposure to lead found in environmental media were not exceeded for recreational adults or children. Lead was not a chemical of potential concern in fish tissue from Plow Shop Pond.

Evaluation of Results

This section compares human health risk results to the findings of the fate and transport/environmental chemistry evaluation performed for this study. Of this risk drivers identified in the human health risk assessment, the metals arsenic, chromium, mercury and lead appear to be related to identifiable sources within Grove and Plow Shop Ponds including areawide groundwater for arsenic. Vanadium and manganese have not been identified as metals with clear Pond-related sources. It is possible that elevated levels of these metals and associated risks occur as a result of mobilization of naturally occurring metals by reduced groundwater that enters the ponds from the direction of Shepley's Hill Landfill or other areas.

Organic constituents identified as risk drivers include PAHs, PCBs and DDT breakdown products. While these chemicals are clearly anthropogenically-related, multiple sources for these chemicals appear applicable. Sources may have included upstream contamination, stormwater runoff, atmospheric deposition as well as contributions from the former tannery and railroad roundhouse located on the shores of these ponds. Currently, it is not possible to clearly attribute the contribution levels of these sources to the concentrations observed. However, it does not appear that groundwater is a contributor of organic constituents to the Ponds.

REFERENCES

Gannett Fleming, Inc. 2002. Data Gap Report. Prepared for USEPA Region 1.

MADEP. April, 1994. Background Documentation for the Development of the MCP Numerical Standards. Office of Research and Standards and the Bureau of Waste Site Cleanup.

MADEP. April, 1995. Guidance for Disposal Site Risk Characterization in Support of the Massachusetts Contingency Plan, Draft. Office of Research and Standards and the Bureau of Waste Site Cleanup.

MADEP. October, 1997. Massachusetts Contingency Plan 310 CMR 40.0000. Bureau of Waste Site Cleanup.

MADEP. April 2002a. Technical Update: Calculation of an Enhanced Soil Ingestion Rate.

MADEP. April 2002b. Technical Update: Weighted Skin-Soil Adherence Factors.

MADEP. May 2002e. Technical Update: Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil.

USEPA, 1989.U.S. Environmental Protection Agency (EPA), 1989, Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A), Interim Final, Office of Emergency and Remedial Response, Washington, DC, EPA/540/1-89/002.

USEPA, 1991.U.S. Environmental Protection Agency (EPA), 1991, EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.

USEPA, 1992a. U.S. Environmental Protection Agency (EPA), 1992, Guidance for Data Usability in Risk Assessment, Office of Emergency and Remedial Response, Washington, DC, Publication 9285.7-09A, April 1992.

USEPA, 1992b. U.S. Environmental Protection Agency (EPA), 1992, Supplemental Guidance to RAGS: Calculating the Concentration Term, Office of Solid Waste and Emergency Response, May 1992. Volume 1, Number 1, Publication 9285.7-081.

USEPA, 1994a. U.S. Environmental Protection Agency (EPA), 1994, Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities, OSWER Directive 9355.4-12, July 14, 1994.

Prepared by Gannett Fleming, Inc. May, 2006

USEPA, 1994b. U.S. Environmental Protection Agency (EPA), 1994. Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children. February 1994.

USEPA, 1995.U.S. Environmental Protection Agency (EPA), 1995, Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment, EPA Region 4, Atlanta, GA, November, 1995.

USEPA, 1996a. U.S. Environmental Protection Agency (EPA), 1996, Proposed Guidelines for Carcinogen Risk Assessment, Office of Research and Development, Washington, DC, EPA/600/P-92/003C.

USEPA, 1996b. USEPA, 1996. "Recommendations of the Technical Review Workgroup for Lead for an Interim Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil.", December. 1996

USEPA, 1996c. U.S. Environmental Protection Agency (EPA), 1996, EPA Soil Screening Guidance: Technical Background Document, Office of Solid Waste and Emergency Response, Washington, DC, EPA/540/R-95/128.

USEPA, 1997a. U.S. Environmental Protection Agency (EPA), 1997, Exposure Factors Handbook: An Update to Exposure Factors Handbook, EPA/600/8-89 - May 1989, Vols. I-III, Office of Research and Development, Washington, DC, EPA/600/P-95/002Fa.

USEPA, 1997b. U.S. Environmental Protection Agency (EPA), 1997, Health Effects Assessment Summary Tables (HEAST), 1997 and Annual Updates.

USEPA, 1998.U.S. Environmental Protection Agency (EPA), 1998, RAGS, Volume I, Part D Supplemental Guidance to RAGS: Standard Risk Assessment Tables, OSWER, EPA/540/R-97/003.

USEPA, 1999. U.S. Environmental Protection Agency, Region 1 Risk Updates #5, September 1999.

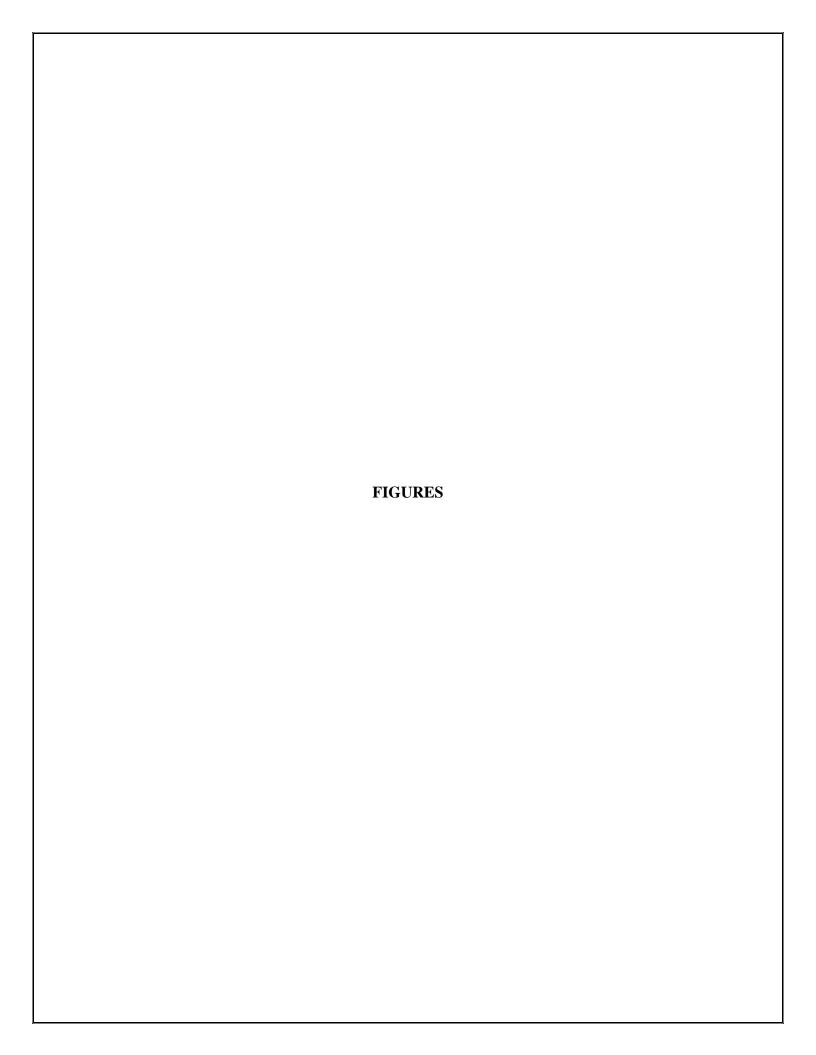
USEPA 2002. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites, OSWER 9285.6-10, December 2002.

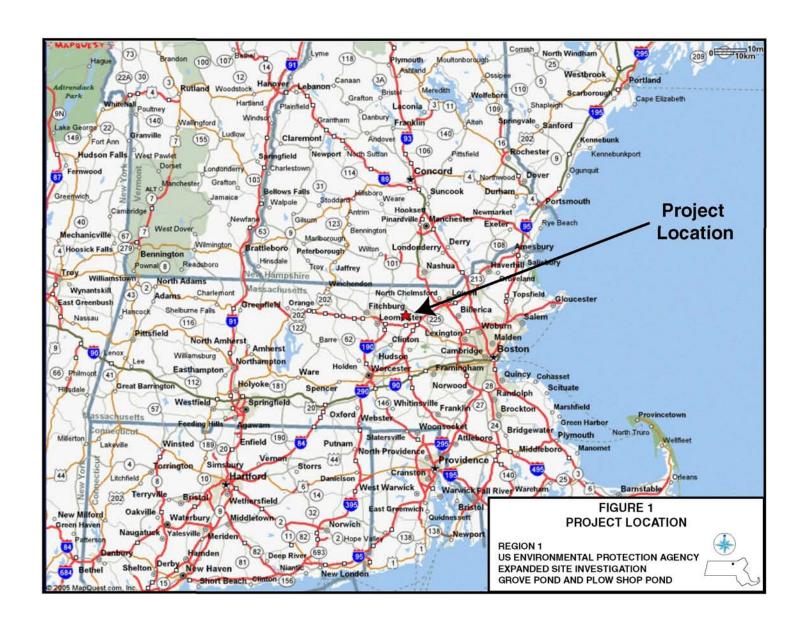
USEPA. 2004a. Region 9 Preliminary Remediation Goals (PRGs) Table 2004 Update. Prepared by S.J. Smucker, Technical Support Section, EPA Region IX, Sacramento, CA. October 8, 2004.

USEPA. 2004b. Provisional Peer-Reviewed Toxicity Values for Superfund (PPRTVs). On Line Database [hhpprtv.ornl.gov]. Office of Superfund Remediation and Technology Innovation, Washington, DC. Revised March 15, 2004.

USEPA. 2004c. Risk Assessment Guidance for Superfund (RAGS). Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Final. EPA/540/R/99/005. NTIS No. PB99 963312. Office of Superfund Remediation and Technology Innovation, Washington, DC. July 2004.

USEPA. 2004d. Assessing Intermittent or Variable Exposures at Lead Sites. OSWER 9285.7-76, EPA-540-R-03-008.


USEPA 2004e. Fact Sheet: ProUCL Version 3.0 Statistical Software to Compute Upper Confidence Limits of the Unknown Population Mean. www.epa.gov/nerlesd1/tsc


USEPA. 2005. IRIS-Integrated Risk Information System. Office of Health and Environmental Assessment, Cincinnati, Ohio


USEPA. Region 1. 1992 to 1999. Supplemental Guidance to RAGS: Region 1 Updates, Toxicity Assessment.

USEPA. Region 4, November, 1995. Supplemental Guidance to RAGS: Region 4 Bulletins, Toxicity Assessment.

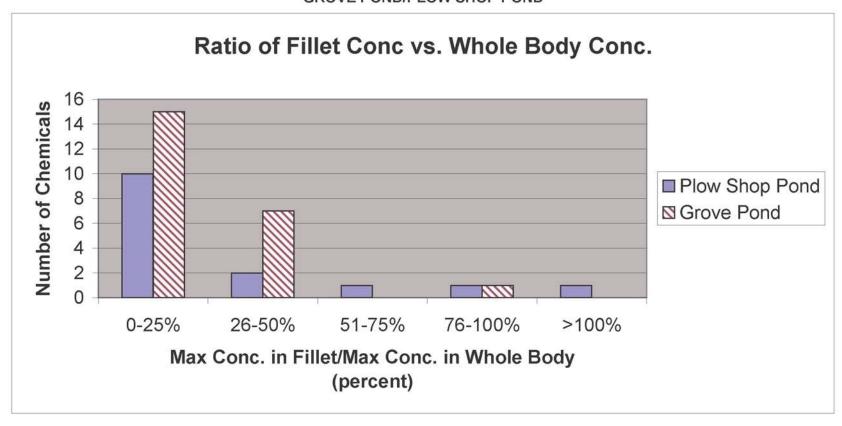

USEPA, Region 3, 2005. EPA Region III RBC Table. 4/7/2005.

FIGURE 3 COMPARISON OF FILLET TO WHOLE FISH TISSUE RESULTS GROVE POND/PLOW SHOP POND

FIGURE 4 SELECTION OF EXPOSURE PATHWAYS RAGS D TABLE 1 GROVE POND and PLOW SHOP POND

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
Current	Surface Water	Surface Water	Grove Pond	Recreational User	Adult	Ingestion	Quant	Onsite receptor may be exposed to surface water during recreational activities.
						Dermal	Quant	Onsite receptor may be exposed to surface water during recreational activities.
					Child	Ingestion	Quant	Onsite receptor may be exposed to surface water during recreational activities.
						Dermal	Quant	Onsite receptor may be exposed to surface water during recreational activities.
		Air	Volatilization of VOCs	Recreational User	Adult	Inhalation	None	This pathway presents a negligible risk to receptor. VOCs are not prevalent in pond surface water.
					Child	Inhalation	None	This pathway presents a negligible risk to receptor. VOCs are not prevalent in pond surface water.
	Near-shore Sediment	Sediment	Grove Pond	Recreational User	Adult	Ingestion	Quant	Onsite receptor may be exposed to sediment during wading-related recreational activities.
						Dermal	Quant	Onsite receptor may be exposed to sediment during wading-related recreational activities.
					Child	Ingestion	Quant	Onsite receptor may be exposed to sediment during wading-related recreational activities.
						Dermal	Quant	Onsite receptor may be exposed to sediment during wading-related recreational activities.
	Fish	Fish	Grove Pond	Recreational User	Adult	Ingestion	Quant	Onsite receptor may be exposed to contaminants during fish consumption.
				470 TO 470 SEE	Child	Ingestion	Quant	Onsite receptor may be exposed to contaminants during fish consumption.
Future	Fish	Fish	Grove Pond	Subsistence Fisherman	Adult	Ingestion	Quant	Currently there is no evidence that subsistence fishing occurs in this Pond. However, subsistence fishing, though unlikely, may occur at some point in the future.
					Child	Ingestion	Quant	Currently there is no evidence that subsistence fishing occurs in this Pond. However, subsistence fishing, though unlikely, may occur at some point in the future.

FIGURE 4 SELECTION OF EXPOSURE PATHWAYS RAGS D TABLE 1 GROVE POND and PLOW SHOP POND

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
Current	Surface Water	Surface Water	Plow Shop Pond	Recreational User	Adult	Ingestion		Onsite receptor may be exposed to surface water during recreational activities.
		1 (4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Dermal	Quant	Onsite receptor may be exposed to surface water during recreational activities.
					Child	Ingestion	Quant	Onsite receptor may be exposed to surface water during recreational activities.
						Dermal	Quant	Onsite receptor may be exposed to surface water during recreational activities.
		Air	Volatilization of VOCs	Recreational User	Adult	Inhalation	None	This pathway presents a negligible risk to receptor. VOCs are not prevalent in pond surface water.
					Child	Inhalation	None	This pathway presents a negligible risk to receptor. VOCs are not prevalent in pond surface water.
	Near-shore Sediment	Sediment	Plow Shop Pond	Recreational User	Adult	Ingestion	Quant	Onsite receptor may be exposed to sediment during wading-related recreational activities.
						Dermal	Quant	Onsite receptor may be exposed to sediment during wading-related recreational activities.
					Child	Ingestion	Quant	Onsite receptor may be exposed to sediment during wading-related recreational activities.
						Dermal	Quant	Onsite receptor may be exposed to sediment during wading-related recreational activities.
	Fish	Fish	Plow Shop Pond	Recreational User	Adult	Ingestion	Quant	Onsite receptor may be exposed to contaminants during fish consumption.
					Child	Ingestion	Quant	Onsite receptor may be exposed to contaminants during fish consumption.
Future	Fish	Fish	Plow Shop Pond	Subsistence Fisherman	Adult	Ingestion	Quant	Currently there is no evidence that subsistence fishing occurs in this Pond. However, subsistence fishing, though unlikely, may occur at some point in the future.
					Child	Ingestion	Quant	Currently there is no evidence that subsistence fishing occurs in this Pond. However, subsistence fishing, though unlikely, may occur at some point in the future.

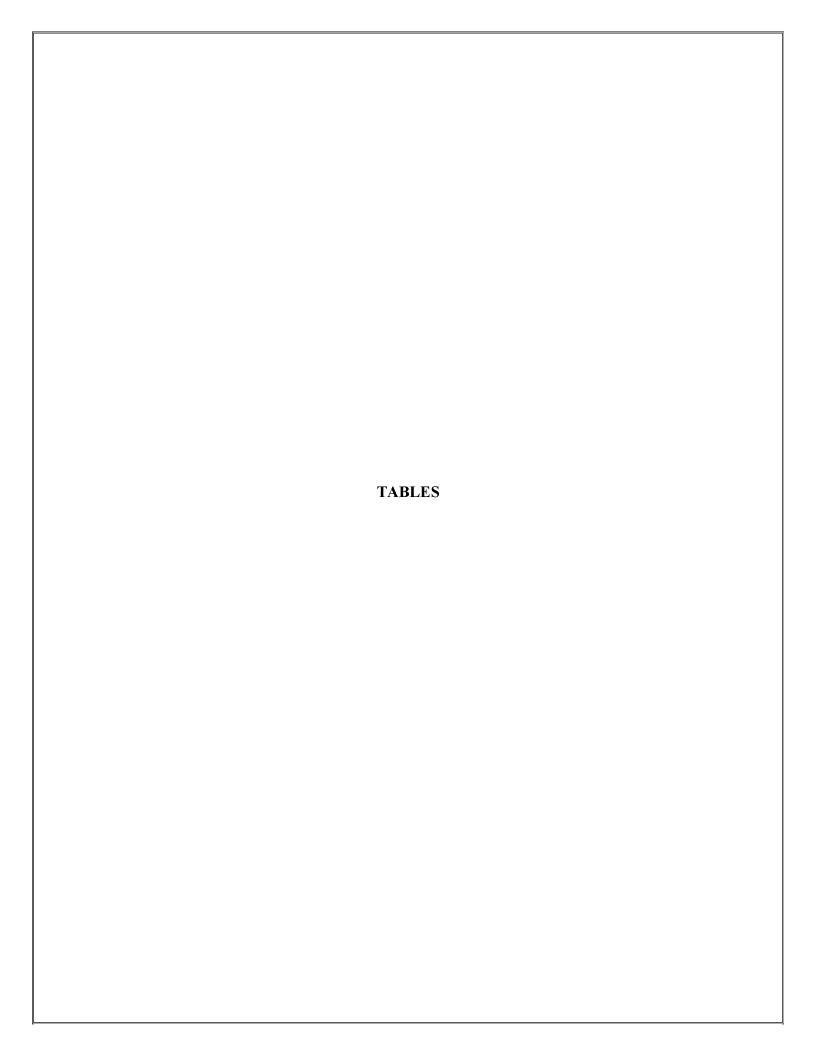


TABLE 2-1

COMPARISION OF NEAR-SHORE SEDIMENT RESULTS WITH ALL SEDIMENT RESULTS

GROVE POND/PLOW SHOP POND

UNITS mg/kg

8						-000		Near shore Avg detect		Near shore 2x	Near shore 1.5x	Near shore 1,25x		
200	Detected	Max	Detect	Min	Detect	Ava	Detect	higher?	Percent	higher?	higher?	higher?	Frequency	of Detectio
	Chemical	All	Near-shore	All	Near-shore	All	Near-shore	at the second					All	Near-sho
2 /	Aluminum	90000	90000	0.54	1.1	1.04E+04	1,09E+04	Ves	104.1	no	60	no	145 / 145	119711
1	Antimony	49.2	49.2	5	- 5	2.13E+01	2.04E+01	по	96.0	no	no	no	19 / 132	147.10
1	Arsenic	1300	1300	2.86	2.86	8.63E+01	8.68E+01	ves	100.6	no	no	no	150 / 160	121 / 13
- 1	Bartum	470	470	7.4	7.4	8.68E+01	8.41E+01	ne	96.9	na	no	no	124 / 143	10171
	Beryssum	14.1	14.1	0.5	0.5	2.59E+00	2.85E+00	yes	109.8	110	tho	no	37 / 137	31 / 11
	Cadmium	730	730	0.489	0.489	2.78E+01	2.51E+01	no-	90.4	no	80	00	87 / 153	64 / 12
- 4-	Celcium	340000	170000	0.51	0.51	1.57E+04	1.21E+04	no	77.6	na	10	no	130 / 130	10471
- 4-	Chromium, total	12000	52000	4.69	4 69	5.28E+03	5.44E+03	yes	103.1	80	110	710	154 / 159	125 / 1
	Cohalt	70	70	2.29	2.29	1.94E+01	1,77E+01	no	91.3	ng	no	700	927140	73 / 11
- 4-	Copper	13000	13000	2.61	2.61	1.42E+02	1.63E+02	yes	114.3	80	00	ne	143 / 147	11771
	Iron	42800	42800	0.87	2	1.39E+04	1,35E+04	no	97.1	700	no no	700	145 / 145	119/1
- 1-	Lead	1780	176D	3.21	3.29	2.44E+02	2.47E+02	yes	101.4	100	no no	70	151 / 159	122 / 1
- 60	Magnesium	5300	5300	184	184	1.82E+03	1.75E+03	no	96.1	na	no no	no	120 / 130	95 / 10
	Manganese	2500	2500	0.39	0.39	5.368 +02	4.77E+02	00	86.9	80	ED.	no	148 / 148	12271
	Moscary	422	422	0.02452	0.02452	2.01E+01	3.31E+01	yes	114.0	10	100	no	108 / 134	84 / 10
	Nickel	86	G9.9	1.98	1.98	2.995 (01	2.76E+01	00	92.3	100	60	80	129 / 145	10571
- 10	Potassium	\$120	4120	100	100	1.03E+03	9.18E+02	rio	89.0	60	DD.	80	60 / 130	48 / 10
-	Selenium	41.2	41.2	0.424	0.424	9 205 +00	7.69E+00	00	83.6	100	no	no	47/140	3971
- 14	Silver	12.4	12.4	0.792	0.702	5.89E+00	5.40E+00	710	91.7	110	60	80	16/74	13/6
	Soften	7020	6370	100	100	2.07E+03	1.90E+03	-70	91.5	no	DD.	da	102 / 130	79 / 10
	Thallium	82.4	82.4	0.1	0.1	2.75E+01	2.21E+01	no	80.3	110	100	80	25 / 121	20 / 9
- 1	Vanadium	140	140	5.1	5.1	3.56E401	3.28E+01	no	92.3	no no	100	7 10	112 / 141	9271
- 1	Zinc	820	770	3.12	3.12	2 585+02	2.26E+02	no	87.5	110	no	100	140 / 149	110/1
- 10	Mercury, methyl	D07044	0.07044	0.00028	0.00028	2.44E-02	2.73E-02	yes	111.7	no	no	no	147.14	0/0
31	Acenaphthene	1.3	13	0.019	0.019	3.07E-01	3.76E-01	yes	122.2	hū.	00	80	5/42	4 / 48
- 9+	Acenaphthylene	0.22	0.22	0.046	0.048	1.12E-01	1.29E-01	yes	114.8	00	no	no	5.700	4/8
	Anthracene	2.4	2.4	0.081	0.061	6.29E-01	6.81E-01	yos	108.3	100	00	80	11799	10/8
	Henz(a)anthracene	3.4	3.4	0.19	0.10	1.38E+00	1.51E+00	yes	109.4	IIO.	00	80	10709	9/8
	Benza(a)pyrene	2.3	2.3	0.19	0.37	9.31E-01	1.04E+00	yes	111.4	110	no	80	8742	7/4
	Henza(b)fluoranthese	5	5	0.075	0.078	1.638 :00	1.84E+00	yes	113.0	110	00	80	7/91	677
	Benza(ghi)perylene	1.4	1.4	0.028	0.084	8.07E+01	1.00E+00	yes	124.1	00	no	60	5/42	474
- 11	Benzo(k)fluoranthene	4.9	4.9	0.11	0.21	1.30E+00	1.40E+00	yes	107.6	80	00	no .	13/99	1278
- 1	Chrysene	5	5	0.051	0.051	1.59E+00	1.68E+00	yes	105.6	00	no	no no	15 / 90	14/8
-	Dibenz(ah)anthracene	0.73	0.73	0.03	0.03	2.44E-01	3.40E-01	you	139.3	80	00	yes	3/27	2/2
	Fluoranthene	7.1	7.1	0.06	0.06	2.12E+00	2.23E+00	yes	105.4	100	no	no	23 / 99	21/6
- 1	Fluorene	1.1	1.1	0.049	0.049	4 41E-01	5.13E-01	yes	110.2	110	00	100	6/99	5/8
- 1-	Indano(1,2,3-cd)pyrana	2.9	2.9	0.037	0.037	1.34E+00	1.34E+00	no	100.0	7/3	00	00	4/42	4/4
	Methylnaphthalene, 1-	1.1	1.1	1.1	1.1	1.10E+00	1.10E+03	100	100.0	100	no	no .	1/15	17.1
- 44	Methylnaphthalane, 2-	4	4	0.47	0.47	1.45E+00	1.45E+00	70	100.0	86	no no	00	B / 96	9/8
	Naphthalene	30	30	0.034	0.034	3 395 +00	3.60E+00	yes	106.4	no-	no	no	27/99	23.78
- 10	Phenanthrene	7.7	7.7	0.043	0.043	1.47E+00	1.51E+00	yes	102.6	110	no	80	24 / 99	2378
	Pyrene	6.5	6.5	0.059	D.059	1.85E+00	1.94E+00	yes	104.8	80	no	no	30/99	2076
- 1	DDD, p.p'-	2.5	2.5	0.0087	0.0087	2.98E-01	3.04E-01	yes	102.9	100	00	60	44 / 100	40 / 8
	DDE, p.p'-	0.98	0.98	0.01	0.01	1.98E-01	2.04E-01	yes	103.4	no no	60	60	47/100	39 / 8
	DDT, p.g'-	33	1.5	0.01	0.01	3.50E-01	2.69E-01	no.	76.8	no no	00	100	17/100	18/8
	Endrin	0.028	0.028	0.028	0.028	2.80E-02	2.80E-02	no	100.0	00	00	no no	1/85	176
- 1	Benzyl alcohol	19	19	1.7	1.7	1.04E+01	1.04E+01	110	100.0	110	-00	00	2/24	2/2
	Bis(2-ethythexyt) phthalate	49	4.9	0.41	0.41	2.66E+00	2.66E+00	00	100.0	80	00	no	2/15	2/1
	Bromophenyl phenyl ether, 4-	1.7	1.7	1.7	1.7	1.70E+00	1.70E+00	no no	100.0	110	no	80	1/73	1/5
	Butylbunzyl phthalate	3	3	3	3	3.00E+00	3,00E+00		100.0	no no		100	1/86	1/5
	Chlorophonyl phenyl ether, 4-	0.84	0.84	0.84	0.84	8.40E-01	8 40E-01	no no	100.0		no po	80	1/73	175
	Dibenzofuran	0.7	0.84	0.063	0.083	3.48E-01	3.48E-01	4170	100.0	100		no no	5/81	676
- 1-	Di-n-butyl phthalate	8	8.	3.3	3.3	5.65E+00	5.65F+00	nn	100,000,000	na	00	no no	2/88	2/7
	Hexachlorobenzene	1.7		1.7	1.7	1.70E+00	1.70E+00	no	100.0	tio .	no	-	1/73	1/5
- 1	Hexachioropenzene Toluene		1.7					no-	100.0	na na	09	#10		1/2
-	(SAMETHE	0.0042	0.0042	0.0042	0.0042	4.2CE-03	4.20E-63	no	100.0	no	no	no	1/22	1/2

TABLE 2-1 COMPARISION OF NEAR-SHORE SEDIMENT RESULTS WITH ALL SEDIMENT RESULTS GROVE POND/PLOW SHOP POND UNITS mg/kg

	Delivered			w. // == 1				Near shore Avg detect		Near shore 2x	Near shore 1.5x	Near shore 1.25x		
	Detected		Detect	Andrew Street, Square	Detect	Avg	Detect	higher?	Percent	higher?	higher?	higher?	Frequency	of Detection
	Chemical	All	Near-shore	All	Near-shore	All	Near-shore						All	Near-sho
W	Auminum	27000	27000	1		6.70E+03	8.75E+03	yes	100.7	110	no	no	189 / 189	138 / 138
p	Antimony	30,7	30.7	6	5	1.17E+01	1.37E+D1	yes	116.6	110	110	no	10/90	7/71
rl	Arsenic	8800	6800	0.11	0.11	3.90E+02	4.50E+02	yes	115.3	no	no	no	198 / 209	143 / 15
	Barium	370	370	0.16	0.27	8.22E+01	8.80E+D1	yes	107.0	100	no	na	175 / 198	127 / 14
	Beryllium	5.41	5.41	0.4	0.4	1.54E+00	1.59E+00	yes	103.2	no	110	no	33 / 167	27 / 127
	Cadmium	-66	66	0.792	0.792	1.63E+01	1.68E+01	yes	103.1	no	no	ne	69 / 190	54 / 137
	Calcium	31000	34000	0.30	0.39	8.20E+03	8.09E+03	no l	98.6	no.	no	no	187 / 189	136 / 13
	Cheomium, total	37800	37800	6.9	6.9	1.72E+03	1.4GE+03	no	84.6	na	no	110	184 / 209	138 / 15
	Cobalt	59	59	1.5	1.98	1.48E+01	1,47E+01	no	99.4	100	110	710	82 / 170	67 / 126
	Copper	3450	3450	2.6	2.91	1.01E+02	1.20E+02	yes	118.5	fig.	no	710	149 / 192	110 / 14
	Irgn	410000	410000	2.5	2.5	3.79E+04	4.65E+04	yes	122.8	na	ng	710	189 / 189	138 / 13
	Lead	1214.31	1214.31	0.757	0.956	1.28E+02	1.37E+02	yes .	107.8	80	no	00	180 / 200	128 / 15
	Magnesium	\$580	8580	13.6	13.6	1.56E + 03	1.56E+03	yes	100.4	no	nà	no	1747189	129 / 130
	Manganese	54800	54800	16.9	31	1.64E+03	2.006+03	yon	122.3	no	no	00	1887192	137 / 14
	Mercury	.250	130	0.038	0.038	2.28E+01	1.62E+01	no	70.9	110	no	/10	103 7 204	124 / 14
	Nickel	87.8	87.0	4	6.3	2.81E+01	2,74E+01	110	97.6	:00	80	710	125 / 192	93 / 141
	Potassium	2340	2340	90.6	90.6	7.76E+02	7.66E+02	no -	97.4	no	no	110	687.188	557 137
	Selenium	19.2	19.2	0.496	0,496	3.88E+00	4.04E+00	yos.	104.3	00	110	no	54 / 163	33/128
	Silver	2	2	0.589	0.589	1.57E+00	1.45E+00	no	92.2	no	100	no	97.90	77.77
	Sodium	5280	4280	123	123	1.32E+03	1,10E+03	150	83.0	60.	110	710	1367188	B7 / 137
	Thallion	29,4	29.4	19.4	19.7	2.19E+01	2.33E+01	yes	106.6	no	no	, no	5/64	27.56
	Tin	275	275	8.13	8.13	1.33E+02	1.33E+02	no.	100.0	no	110	no	3/4	37.4
	Vanadium	160	166	3.2	3.2	3.39E+01	3.17E+01	no	93.7	80	70	no	917 189	78 / 138
	Zinc	1100	1100	Q	1)	2.01E+02	1.70E+02	n-p	89.4	no	no.	no	1227192	957.141
	Mercury, methyl	0.68189	0.06538	0.00113	0.0057	3.67E-02	3.54E-02	no.	98.7	no	no	no	10/10	878
	Acenaphthene	0.84	0.84	0.0003	0.0003	1.44E-01	1.84E-01	yes	127.5	no.	110	yes	11715	7/11
	Acenaphthylene	0.71	0.71	0.026	0.026	2.00E-01	5.88E-01	80	91.0	110	ng	110	11/11	717
	Anthrocone	3.4	3.4	0.038	0.036	5,62E-01	6:40E-01	yos	113.9	no	no.	no	12/15	8711
	Benz(a)anthracone	7.1	7.1	0.09	0.00	1.22E+00	1,34E+00	yes	109.1	110	no	no	137.28	0 / 23
	Benzo(a)pyrene	6.5	0.5	0.12	0.12	1.25E+00	1.37E+00	you	109.4	no	no	no	11/11	777
	Benzo(b)fluoranthene	11	11	0.12	0.12	2.24E+00	2.23E+00	100	99.8	no.	no	no	12/15	87.11
	Benzo(ghi)perylene	5.2	5.2	0.072	0.072	1.21E+00	1.20E+00	-00	00.0	no	200	00	11/11	717
	(tenzo(k)fluoranthene	3.7	37	0.071	0.071	7.97E-01	8.56E-01	yes	107.5	no.	110	no	32/15	87.51
	Chryseno	8.1	8.1	0.032	0.032	1.66E+00	1.70E+00	you	102.7	100	00	no	13 / 28	97.23
	Dibenz(ah)antivacene	1,3	1.3	0.028	0.028	3.09E-01	3.28F-01	yes	105.5	no	00	no	11/11	717
	Fluoranthone	18	18	0.013	0.013	3.09E+00	3.264,+00	yes	105.4	00	110	rio	14 / 28	10 / 23
	Fluorene	1,9	1.9	0.025	0.025	3.39E-01	3.64E-01	yos	107.4	710	no	no	12/15	87.11
	Indeno(1,2,3-cd)pyresse	4.5	4.5	0.048	0.048	1.04E+00	1.04E+00	yes	100.6	no.	.00	no	31/11	717
	Methylnaphthalene, 2-	2	2	1	1	1.87E+00	1.67E+00	na	100.0	no	.00	.00	3/4	3/4
	Naphthalene	2.4	2.4	0.024	0.024	7.62E-01	8.87E-01	yes	116.4	no	no	no	15/29	11 / 24
	Phenanthrene	10	10	0.13	0.13	1.70E+00	1.88E+00	yes	110.1	no	no	no	15 / 28	11 / 23
	Pyrene	14	14	0.24	0.24	2.55E+00	2.00E+00	yes	105.4	no	no	nó	17 / 28	13 / 23
	PCB 1242	0.11	0.11	0.11	0.11	1.10E-01	1.10E-01	na	100.0	no.	00	no	1/11	1/7
	PCB 1254	0.13	0.13	0.13	0.13	1.30E-01	1.30E-01	no	100.0	no	no	no	1731	117
	PCB 1280	0.05	0.05	0.05	0.05	5.00E-02	5.00E-02	70	100.0	no.	no	Λo	17.11	3.17
	DDD, p.p'-	1.8	1.8	0.013	0.013	2.03E-01	2.51E-01	yes	123.6	no	no	no	16/82	12 / 47
	DDE, p.p'-	1.3	1.3	0.028	0.028	1.52E-01	1.75E-01	yes	114.9	0.0	no	no	21 / 103	16 / 67
	DDT, p.p'-	0.13	0.13	0.0033	0.0033	2.86E-02	3.42E-02	yes	119.4	no	no	no	10/90	87.55
	Heptachlor .	0.092	0.092	0.02	0.02	5.60E-02	5.60E-02	no	100.0	no	no	no	2/24	2/19
	Dibenzofuran	1.8	8.0	0.4	0.4	6.00E-01	6.00E-01	no	100.0	no	no	no	2/4	2/4
	Acetone	2.6	0.54	0.059	0.058	5.23E-01	2.64E-01	no	50.4	no.	00	no	9714	8/13
	Methyl ethyl ketone	0.13	0.13	0.023	0.023	9.02E-02	9.02E-02	na	100.0	no	no	np	5/14	5/13
	Methylane chloride	0.12	0.12	0.021	0.021	6.02E-02	5.64E-02	no	93.7	no	no	no	11/14	10/13
	Trichlorofluoromethane	0.008	0.008	0.008	0.008	8.00E-03	8.00E-03	no	100.0	100	no	no	2/16	2/16

TABLE 2-2 COMPARISON OF FILLET TO WHOLE FISH TISSUE GROVE POND

Chemical	Freq	of	ncy	Fillet % Detected	Whole Frequence	uenc	' I	Concent (mg	Fille ratio	on Range ww)	Concen (m	trati	Body on Range -ww)	Ratio of Fillet Maximum Concentration to Whole Body Maximum Concentration
		_				_	+	Min	\vdash	Max	Min	_	Max	(percent)
Aluminum	18	,	18	100%	30	/ /	2 94%	1.45	_	4.15	1.48	_	20.70	20%
Antimony	10	-	10	10070	0	7	4 0%	_		4.10	(ND0.76	_	ND1.1)	2070
Arsenic	0	,	18	0%	2	/ -		(ND0.078	_	ND 0.117)	0.13		0.13	
Barium	5	-	18	28%	32	-	2 100%	1		0.15	0.17	-	3.68	4%
Beryllium	4	-	18	22%	8	_	2 25%	_	-	0.13	0.17	_	0.99	14%
Boron	4	-	18	22%	15	_	8 54%		-	0.34	0.13	_	1.39	25%
Cadmium	5	-	18	28%	23	_	2 72%		-	0.15	0.03	-	1.02	15%
Calcium		Ė	,,,	2570	0	7	4 0%			0.10	(ND1.5	_	ND2.3)	1070
Chromium, total	18	1	18	100%	32	/ 3	2 100%		_	0.49	0.32	_	1.80	27%
Cobalt	,,,	Ė	1	1.0070	0	7	4 0%	375.6.5375		5.10	(ND0.23	-	ND0.34)	
Copper	18	/	18	100%	32	/ 3	2 100%		-	0.60	0.30	-	1.35	44%
Iron	18	-	18	100%	32	_	2 100%		-	13.88	7.57	-	76.56	18%
Lead	8	1	18	44%	27	_	2 84%		-	0.86	0.16	_	5.02	17%
Magnesium	18	1	18	100%	32	_	2 100%		-	372.40	329.60	-	744.80	50%
Manganese	18	_	18	100%	32		2 100%	+	-	1.41	2.20	-	54.00	3%
Mercury	16	-	18	89%	29	-	2 91%		-	1.04	0.03	-	1.14	91%
Molybdenum	1	1	18	6%	6	_	8 21%		-	0.15	0.14	-	0.51	30%
Nickel	7	1	18	39%	15	-	2 47%		-	0.91	0.11	-	4.85	19%
Potassium					4	/	4 100%				3100.00	-	3400.00	0%
Selenium	13	1	18	72%	28	/ 3	2 88%		-	0.18	0.14	-	0.55	32%
Silver					0	/	4 0%				(ND0.23	-	ND0.34)	
Sodium		\vdash	Т		4	7	4 100%				920.00	-	1500.00	0%
Strontium	18	1	18	100%	28	/ 2	8 100%	0.15	-	4.24	11.68	-	48.48	9%
Thallium					0	1	4 0%				(ND1.5	-1	ND2.3)	
Vanadium	2	1	18	11%	7	/ 3	2 22%	0.12	-	0.16	0.12		0.92	18%
Zinc	18	_	18	100%	32	-	2 100%		-	7.95	10.54	-	42.00	19%
PCBs, total	5	-	18	28%	14	-	8 50%		-	0.15	0.09	-1	0.47	32%
DDD, p,p'-	9	_	18	50%	31		2 97%		-	0.03	0.01	-:	0.13	23%
DDE, p,p'-	15		18	83%	32		2 100%		-	0.07	0.01	πi	0.27	26%
				Fillet			Whole Body	100		Numl	per of Cher	nica	ls	1 mag arman
Average Percent	t Dete	cte	d	60%			64%	Percen	tile:	0-25%	15		Avg	23%
								1		26-50%	7		Min	0%
										51-75%	0		Max	91%
										76-100% >100%	1 0		Median	19%

TABLE 2-3 COMPARISON OF FILLET TO WHOLE FISH TISSUE PLOW SHOP POND

Chemical	Fillet Frequency Detection		Fillet % Detected	Whole E Frequen Detect	сус		Whole Body % Detected	Drawn as an ex-	Fille on R ww)	ange (mg/kg	Whole Body nge (mg/kg Concentration Range (mg/kg-ww)		n Range	Ratio of Fillet Maximum Concentration to Whole Body Maximum Concentration
								Min		Max	Min		Max	(percent)
					\Box									
Aluminum	0 /	10	0%	14	/	19		ND(1.3	-	1.3)	1.6	-	4.5	
Antimony	0 /	10	0%	0		19		ND(1.1	-:	1.1)	ND(0.73	-	1.1)	
Arsenic	2/	10	20%	2	/	19	11%	0.09	70	0.15	0.3	70	103	0%
Barium	0 /	10	0%	19	1	19	100%	ND(0.23	-	0.24)	0.27	-	4.4	
Beryllium	0 /	10	0%	0	/	19	0%	ND(0.04	+0	0.04)	ND(0.04	-	0.089)	
Cadmium	0 /	10	0%	1		19	5%	ND(0.05	-	0.07)	0.09	-	0.09	
Calcium	10 /	10		15	/	19		82.8	47	627	3250	-	48800	1%
Chromium, total	2/	10	20%	18	/	19	95%	0.19	#15	0.24	0.25	- 1	0.99	24%
Cobalt	2/	10	20%	5	/	19	26%	0.11	2	0.11	0.1	2	0.17	65%
Copper	10 /	10	100%	19	1	19	100%	0.08	-:	0.24	0.29	-	1.3	18%
ron	10 /	10	100%	19	7	19	100%	1.7	75.	27	11	-	130	21%
_ead	0 /	10	0%	2	1	18	11%	ND(0.1	-	0.1)	0.16	-	0.18	
Magnesium	10 /	10	100%	19	/	19	100%	252	-0	344	249	-	754	46%
Manganese	1/	10	10%	19	/	19	100%	0.3	-	0.3	5.1		94.7	0%
Mercury	9/	10	90%	18	/	19	95%	0.12	-	4	0.09	47	2.7	148%
Nickel	0 /	10	0%	1	7	19	5%	ND(0.75		0.8)	0.8		0.8	
Potassium				4	/	4		,			3100	2	3400	0%
Selenium	8 /	10	80%	14	1	19	74%	0.11	-:	0.2	0.24	-	0.67	30%
Silver	0 /	10	0%	0	7	19	0%	ND(0.19	70.	0.2)	ND(0.19		0.27)	
Sodium	10 /	10	100%	19	/	19	100%	283	-	509	1080	-	2290	22%
Thallium	0 /	10	0%	0	/	19	0%	ND(0.1	=0.	0.1)	ND(0.1	-1	1.8)	***************************************
Vanadium	1/	10	10%	1	/	19	5%	0.79	-	0.79	0.8	-	0.8	99%
Zinc	10 /	10	100%	19	/	19	100%	3.4	-	6.1	12.1	2	29.6	21%
PCB 1260	0 /	10	0%	5	7	19	26%	ND(0.048		0.1)	0.061		0.33	7/100/00
DDD, p,p'-	0 /	10	0%	10	/	19	53%	ND(0.0095	-	0.021)	0.012	2	0.11	
DDE, p,p'-	2/	10	20%	13	1	19	68%	0.015	-:	0.031	0.015	-	0.38	8%
DDT, p,p'-	0 /	10	0%	3	1	19	16%	ND(0.0095	751	0.021)	0.012	7	0.014	13000
					П									
			Fillet				Whole Body	*		Num	ber of Chem	nical	s	
Average Percent	Detected		33%				52%	Percen	tile:				Avg	34%
										26-50%			Min	0%
										51-75%			Max	148%
													311444	5,000,000
										76-100%	1		Median	21%
								l.		>100%	1			

Location	Sample No	Date	Analyses	Source Id.
Near-shore Sec	liment			
Grove Pond	1SC1	8/1/1999	Metals	Reference 54
Grove Pond	1SC2	8/1/1999	Metals	Reference 54
Grove Pond	1SC3	8/1/1999	Metals	Reference 54
Grove Pond	3SC2	8/1/1999	Metals	Reference 54
Grove Pond	3SC3	8/1/1999	Metals	Reference 54
Grove Pond	4SC1	8/1/1999	Metals	Reference 54
Grove Pond	5SC2	8/1/1999	Metals	Reference 54
Grove Pond	6SC1	8/1/1999	Metals	Reference 54
Grove Pond	8SC1	8/1/1999	Metals	Reference 54
Grove Pond	BHSO3	8/1/1999	Metals	Reference 54
Grove Pond	BM 1	1/1/1992	Metals	Reference 32 (Table 1)
Grove Pond	BM 2	1/1/1992	Metals	Reference 32 (Table 1)
Grove Pond Grove Pond	BM 3 BM 4	1/1/1992	Metals	Reference 32 (Table 1)
Grove Pond	GP01	3/1/2004	Metals Metals	Reference 32 (Table 1) ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	GP05	3/1/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	GP07	3/1/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	GP09	3/1/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	GP11	3/1/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	GP12	3/2/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	GP13	3/2/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	GP14	3/2/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	GP15	3/2/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	GP15 Dup	3/2/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	GPCORE1	9/1/2000	Metals	Reference 54
Grove Pond	GPCORE2	9/1/2000	Metals	Reference 54
Grove Pond	GPCORE3	9/1/2000	Metals	Reference 54
Grove Pond	GRD-92-01X	1/1/1992	Metals	Reference 6 (Table 4-13)
Grove Pond	GRD-92-02X	1/1/1992	Metals	Reference 6 (Table 4-13)
Grove Pond	GRD-92-03X	1/1/1992	Metals	Reference 6 (Table 4-13)
Grove Pond	GRD-92-04X	1/1/1992	Metals	Reference 6 (Table 4-13)
Grove Pond	GRD-92-05X	1/1/1992	Metals	Reference 6 (Table 4-13)
Grove Pond	GRD-95-08X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-09X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond Grove Pond	GRD-95-12X GRD-95-15X	4/1/1995 4/1/1995	Metals, PCBs/Pesticides, SVOCs Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2) Reference 21 (Table 4-2)
Grove Pond	GRD-95-15X GRD-95-16X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-10X GRD-95-17X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-19X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-20X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-22X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-23X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-24X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-24X Dup	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-25X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-26X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-27X	4/1/1995	Metals, Mercury, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-28X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-29X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-30X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-31X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-32X	4/1/1995	Metals, Mercury, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-32X Dup	4/1/1995	Metals, Mercury, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-35X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-36X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-37X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-38X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-39X GRD-95-40X	4/1/1995 4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond Grove Pond	GRD-95-40X GRD-95-41X	4/1/1995	Metals, PCBs/Pesticides, SVOCs Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-41X GRD-95-42X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2) Reference 21 (Table 4-2)
Grove Pond	GRD-95-43X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-43X GRD-95-44X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-45X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-46X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-47X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-48X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-49X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)

Location	Sample No	Date	Analyses	Source Id.
Grove Pond	GRD-95-53X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-54X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRD-95-55X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-2)
Grove Pond	GRS-95-01X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4)
Grove Pond Grove Pond	GRS-95-02X GRS-95-03X	4/1/1995 4/1/1995	Metals, PCBs/Pesticides, SVOCs Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4) Reference 21 (Table 4-4)
Grove Pond	GRS-95-03X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4)
Grove Pond	GRS-95-05X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4)
Grove Pond	GRS-95-06X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4)
Grove Pond	GRS-95-07X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4)
Grove Pond	GRS-95-08X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4)
Grove Pond	GRS-95-08X Dup	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4)
Grove Pond	GRS-95-09X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4)
Grove Pond Grove Pond	GRS-95-10X GRS-95-11X	4/1/1995 4/1/1995	Metals, PCBs/Pesticides, SVOCs Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4) Reference 21 (Table 4-4)
Grove Pond	GRS-95-11X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4)
Grove Pond	GRS-95-13X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4)
Grove Pond	GRS-95-14X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4)
Grove Pond	GRS-95-15X	4/1/1995	Metals, PCBs/Pesticides, SVOCs	Reference 21 (Table 4-4)
Grove Pond	G-SED-1	2/2/2005	Metals, PCBs/Pesticides, PAHs	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	G-SED-3	2/2/2005	Metals, PCBs/Pesticides, PAHs	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	G-SED-3 Dup	2/2/2005	Metals, PCBs/Pesticides, PAHs	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond Grove Pond	GSEM-1 GSEM-2	9/11/1998	Metals Metals	Reference 38 & 39 Reference 38 & 39
Grove Pond	GSEM-4	9/11/1998	Metals	Reference 38 & 39
Grove Pond	GV1	1/1/2001	Metals	Reference 54
Grove Pond	GV10	1/1/2001	Metals	Reference 54
Grove Pond	GV5	1/1/2001	Metals	Reference 54
Grove Pond	GV6	1/1/2001	Metals	Reference 54
Grove Pond	GV7	1/1/2001	Metals	Reference 54
Grove Pond	GV8	1/1/2001	Metals	Reference 54
Grove Pond Grove Pond	GV9 MADEP A	1/1/2001	Metals Metals	Reference 54 Reference 32 (Table 1)
Grove Pond	MADEP B	1/1/1992	Metals	Reference 32 (Table 1)
Grove Pond	MADEP C	1/1/1992	Metals	Reference 32 (Table 1)
Grove Pond	MADEP D	1/1/1992	Metals	Reference 32 (Table 1)
Grove Pond	MADEP E	1/1/1992	Metals	Reference 32 (Table 1)
Grove Pond	MADEP F	1/1/1992	Metals	Reference 32 (Table 1)
Grove Pond	PZ-1	8/4/1999	Metals, PCBs/Pesticides, SVOCs	Reference 40
Grove Pond	PZ-2	8/4/1999	Metals, PCBs/Pesticides, SVOCs	Reference 40
Grove Pond Grove Pond	S-1 S-2	12/22/1993 12/22/1993	Metals, PCBs/Pesticides, SVOCs, VOCs Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 6 Reference 6
Grove Pond	S-3	12/22/1993	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 6
Grove Pond	S-4	12/22/1993	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 6
Grove Pond	SD-01	8/1/1999	Metals	Reference 54
Grove Pond	SD-03	8/1/1999	Metals	Reference 54
Grove Pond	SD-05	8/1/1999	Metals	Reference 54
Grove Pond	SD-06	8/1/1999	Metals	Reference 54
Grove Pond	SD-07	8/1/1999	Metals	Reference 54
Grove Pond Grove Pond	SD-08 SED-A	8/1/1999 10/2/1992	Metals Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 54 Reference 11
Grove Pond	SED-B	10/2/1992	Metals, PCBs/Pesticides, SVOCs, VOCs Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 11
Grove Pond	SED-C	10/2/1992	Metals, PCBs/Pesticides, SVOCs, VCCs	Reference 11
Grove Pond	SED-D	10/1/1992	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 11
Grove Pond	SED-E	10/1/1992	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 11
Grove Pond	SED-F	10/1/1992	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 11
Grove Pond	SED-G	10/1/1992	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 11
Grove Pond	SEDIMENT 1	4/29/1994	PCBs/Pesticides, SVOCs, VOCs	Reference 11
Grove Pond Grove Pond	SEDIMENT 3 SEDIMENT 4	4/29/1994 4/29/1994	PCBs/Pesticides, SVOCs, VOCs PCBs/Pesticides, SVOCs, VOCs	Reference 11 Reference 11
Grove Pond	SEDIMENT 5	4/29/1994	PCBs/Pesticides, SVOCs, VOCs PCBs/Pesticides, SVOCs, VOCs	Reference 11
Grove Pond	SEDIMENT 6	4/29/1994	PCBs/Pesticides, SVOCs, VOCs	Reference 11
Grove Pond	SEDIMENT 7	4/29/1994	PCBs/Pesticides, SVOCs, VOCs	Reference 11
Grove Pond	SW-1	12/22/1993	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 8
Grove Pond	SW-2	12/22/1993	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 8
Grove Pond	SW-3	12/22/1993	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 8
Grove Pond	SW-4	12/22/1993	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 8
Plow Shop Pond	PS1	1/1/2001	Metals	Reference 54
Plow Shop Pond	PS2	1/1/2001	Metals	Reference 54

Location	Sample No	Date	Analyses	Source Id.
Plow Shop Pond	PS4	1/1/2001	Metals	Reference 54
Plow Shop Pond	PS5	1/1/2001	Metals	Reference 54
Plow Shop Pond	PS7	1/1/2001	Metals	Reference 54
Plow Shop Pond	PS8	1/1/2001	Metals	Reference 54
Plow Shop Pond	PS9	1/1/2001	Metals	Reference 54
Plow Shop Pond	P-SED-1	2/1/2005	Metals, PCBs/Pesticides, PAHs	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	P-SED-11	2/1/2005	Metals, PCBs/Pesticides, PAHs	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	P-SED-2	2/1/2005	Metals, PCBs/Pesticides, PAHs	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond Plow Shop Pond	P-SED-3	2/1/2005	Metals, PCBs/Pesticides, PAHs	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	P-SED-4 P-SED-8	2/1/2005 2/1/2005	Metals, PCBs/Pesticides, PAHs Metals, PCBs/Pesticides, PAHs	ongoing EPA Grove Pond/Plow shop Pond study ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	P-SED-9	2/1/2005	Metals, PCBs/Pesticides, PAHs Metals, PCBs/Pesticides, PAHs	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSEM-1	9/11/1998	Metals, PCBS/Pesticides, PARS	Reference 38 & 39
Plow Shop Pond	PSEM-2	9/11/1998	Metals	Reference 38 & 39
Plow Shop Pond	PSEM-3	9/11/1998	Metals	Reference 38 & 39
Plow Shop Pond	PSP02	3/2/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSP02 Dup	3/2/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSP03	3/2/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSP05	3/3/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSP06	3/3/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSP07	3/3/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSP08	3/3/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSP09	3/3/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC05	3/5/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC06	3/5/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC06 Dup	3/5/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC09	3/3/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC10	3/3/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC11	3/4/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC12	3/4/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC13	3/4/2004	Metals, VOCs	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC14	3/4/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC15	3/5/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC16	3/5/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC17	3/5/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC17 Dup	3/5/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC18	3/5/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC19	3/5/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPC19 Dup	3/5/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSPCORE1	9/1/2000	Metals	Reference 54
Plow Shop Pond	PSPCORE2	9/1/2000	Metals	Reference 54
Plow Shop Pond	PSPCORE3	9/1/2000	Metals	Reference 54
Plow Shop Pond	RHD-94-02X	1/1/1994	Metals, PAHs	Reference 20
Plow Shop Pond	RHD-94-03X	1/1/1994	Metals, PAHs	Reference 20
Plow Shop Pond	RHD-94-03X Dup	1/1/1994	Metals, PAHs	Reference 20
Plow Shop Pond	RHD-94-04X RHD-94-05X	1/1/1994 1/1/1994	Metals, PAHs	Reference 20
Plow Shop Pond Plow Shop Pond	SESHL01	1/1/1991	Metals, PAHs	Reference 20
Plow Shop Pond	SESHL01	1/1/1991	Metals, PCBs/Pesticides, SVOCs, VOCs Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 21 (Table 1-2) Reference 21 (Table 1-2)
Plow Shop Pond	SESHL03	1/1/1991	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 21 (Table 1-2)
Plow Shop Pond	SESHL03	1/1/1991	Metals, PCBs/Pesticides, SVOCs, VOCs Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 21 (Table 1-2)
Plow Shop Pond	SESHL05	1/1/1991	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 21 (Table 1-2)
Plow Shop Pond	SESHL06	1/1/1991	Metals, PCBs/Pesticides, SVCCs, VCCs Metals, PCBs/Pesticides, SVCCs, VCCs	Reference 21 (Table 1-2)
Plow Shop Pond	SESHL07	1/1/1991	Metals, PCBs/Pesticides, SVCCs, VCCs	Reference 21 (Table 1-2)
Plow Shop Pond	SESHL08	1/1/1991	Metals, PCBs/Pesticides, SVCCs, VCCs	Reference 21 (Table 1-2)
Plow Shop Pond	SESHL09	1/1/1991	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 21 (Table 1-2)
Plow Shop Pond	SESHL10	1/1/1991	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 21 (Table 1-2)
Plow Shop Pond	SESHL11	1/1/1991	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 21 (Table 1-2)
Plow Shop Pond	SESHL12	1/1/1991	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 21 (Table 1-2)
Plow Shop Pond	SHD-92-01X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-02X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-03X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-03X Dup	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-05X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-06X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
may be an arranged to the second seco	SHD-92-10X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond				
Plow Shop Pond	SHD-92-11X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond Plow Shop Pond Plow Shop Pond Plow Shop Pond	SHD-92-11X SHD-92-17X SHD-92-18X	1/1/1992 1/1/1992 1/1/1992	Metals, PCBs/Pesticides Metals, PCBs/Pesticides Metals, PCBs/Pesticides	Reference 6 (Table 4-5) Reference 6 (Table 4-5) Reference 6 (Table 4-5)

Location	Sample No	Date	Analyses	Source Id.
Plow Shop Pond	SHD-92-19X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-20X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-22X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-23X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-26X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-27X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-28X	1/1/1992	Metals, PCBs/Pesticides	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-29X	1/1/1993	Metals, PCBs/Pesticides, VOCs	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-30X	1/1/1993	Metals, PCBs/Pesticides, VOCs	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-31X	1/1/1993	Metals, PCBs/Pesticides, VOCs	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-92-32X	1/1/1993	Metals, PCBs/Pesticides, VOCs	Reference 6 (Table 4-5)
Plow Shop Pond	SHD-94-01X	4/1/1995	Metals	Reference 21 (Table 4-6)
Plow Shop Pond	SHD-94-02X	4/1/1995	Metals	Reference 21 (Table 4-6)
Plow Shop Pond	SHD-94-03X	4/1/1995	Metals	Reference 21 (Table 4-6)
Plow Shop Pond	SHD-94-05X	4/1/1995	Metals	Reference 21 (Table 4-6)
Plow Shop Pond	SHD-94-06X	4/1/1995	Metals	Reference 21 (Table 4-6)
Plow Shop Pond	SHD-94-07X	4/1/1995	Metals	Reference 21 (Table 4-6)
Plow Shop Pond	SHD-94-09X	4/1/1995	Metals	Reference 21 (Table 4-6)
Plow Shop Pond	SHD-94-14X	4/1/1995	Metals	Reference 21 (Table 4-6)
Plow Shop Pond	SHD-94-15X	4/1/1995	Metals	Reference 21 (Table 4-6)
Plow Shop Pond	SHD-94-18X	4/1/1995	Metals	Reference 21 (Table 4-6)
Plow Shop Pond	SHD-94-20X	4/1/1995	Metals	Reference 21 (Table 4-6)
was a same a same			110000	Drawn and S. W. Visson and S.
Surface Water			1	¥
Grove Pond	G1-2004	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	G2-2004	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	G2-2004 Dup	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	G3-2004	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	G4-2004	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	G5-2004	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	G6-2004	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Grove Pond	GRW-95-06X	4/1/1995	Metals	Reference 21 (Table 4-5)
Grove Pond	GRW-95-07X	4/1/1995	Metals	Reference 21 (Table 4-5)
Grove Pond	GRW-95-08X	4/1/1995	Metals	Reference 21 (Table 4-5)
Grove Pond	GRW-95-09X	4/1/1995	Metals	Reference 21 (Table 4-5)
Grove Pond	GRW-95-09X Dup	4/1/1995	Metals	Reference 21 (Table 4-5)
Grove Pond	GRW-95-10X	4/1/1995	Metals	Reference 21 (Table 4-5)
Grove Pond	GRW-95-11X	4/1/1995	Metals	Reference 21 (Table 4-5)
Grove Pond	GSEM-1	9/9/1998	Metals	Reference 38 & 39
Grove Pond	GSEM-2	9/9/1998	Metals	Reference 38 & 39
Grove Pond	GSEM-3	9/9/1998	Metals	Reference 38 & 39
Grove Pond	GSEM-4	9/9/1998	Metals	Reference 38 & 39
Grove Pond	PZ-1	8/12/1999	Metals	Reference 40
Grove Pond	PZ-1R	11/18/1999	Metals	Reference 40
Grove Pond	PZ-2	8/16/1999	Metals	Reference 40
Grove Pond	PZ-2R	11/19/1999	Metals	Reference 40
Grove Pond	SW001	8/25/1998	Metals	Reference 54
Grove Pond	SW001F	8/25/1998	Metals, Chloride, Sulfate	Reference 54
Grove Pond	SW002	8/25/1998	Metals	Reference 54
Grove Pond	SW002F	8/25/1998	Metals, Chloride, Sulfate	Reference 54
Grove Pond	SW003	8/25/1998	Metals	Reference 54
Grove Pond	SW003F	8/25/1998	Metals, Chloride, Sulfate	Reference 54
Grove Pond	SW004	8/25/1998	Metals	Reference 54
Grove Pond	SW004F	8/25/1998	Metals, Chloride, Nitrate, Sulfate	Reference 54
Grove Pond	SW005	8/25/1998	Metals	Reference 54
Grove Pond	SW005F	8/25/1998	Metals, Chloride, Sulfate	Reference 54
Grove Pond	SW006	8/25/1998	Metals	Reference 54
Grove Pond	SW006F	8/25/1998	Metals, Chloride, Sulfate	Reference 54
Grove Pond	SW008	8/25/1998	Metals	Reference 54
Grove Pond	SW008	2/24/1999	Metals, Chloride, Nitrate, Sulfate	Reference 54
Grove Pond	SW-1	12/22/1993	Metals, Chloride, Nitrate, Sulfate, PCBs/Pesticides, SVOCs, VOCs	Reference 8
Grove Pond	SW-1 PDC	11/18/1999	Metals	Reference 8
	SW-2	12/22/1993	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 8
Grove Pond	SW-2 PDC	11/18/1999	Metals	Reference 8
Grove Pond Grove Pond		1111011000		4 market
Grove Pond		12/22/1993	Metals PCBs/Pesticides SVOCs VOCs	Reference 8
Grove Pond Grove Pond	SW-3	12/22/1993 12/22/1993	Metals, PCBs/Pesticides, SVOCs, VOCs Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 8
Grove Pond Grove Pond Grove Pond	SW-3 SW-4	12/22/1993	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 8
Grove Pond Grove Pond	SW-3			

Location	Sample No	Date	Analyses	Source Id.
Grove Pond	SW-D	10/1/1992	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 11
Grove Pond	SW-E	10/1/1992	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 11
Grove Pond	SW-F	10/1/1992	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 11
Grove Pond	SW-G	10/1/1992	Metals, PCBs/Pesticides, SVOCs, VOCs	Reference 11
Plow Shop Pond	PS1-2004	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PS2-2004	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PS3-2004	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PS4-2004	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PS5-2004	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PS6-2004	11/3/2004	Metals, PCBs/Pesticides	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	PSEM-1	9/11/1998	Metals	Reference 38 & 39
Plow Shop Pond	PSEM-2	9/11/1998	Metals	Reference 38 & 39
Plow Shop Pond	PSEM-3	9/11/1998	Metals	Reference 38 & 39
Plow Shop Pond	PSEM-4	9/11/1998	Metals	Reference 38 & 39
Plow Shop Pond	RCSW1	11/19/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	RCSW2	11/19/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	RCSW3	11/19/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	RCSW4	11/19/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	RED COVE	7/16/2004	Metals	ongoing EPA Grove Pond/Plow shop Pond study
Plow Shop Pond	SW-SHL-01	1/1/1991	Metals, PCBs/Pesticides, VOCs	Reference 21 (Table 1-1)
Plow Shop Pond	SW-SHL-02	1/1/1991	Metals, PCBs/Pesticides, VOCs	Reference 21 (Table 1-1)
Plow Shop Pond	SW-SHL-03	1/1/1991	Metals, PCBs/Pesticides, VOCs	Reference 21 (Table 1-1)
Plow Shop Pond	SW-SHL-04	1/1/1991	Metals, PCBs/Pesticides, VOCs	Reference 21 (Table 1-1)
Plow Shop Pond	SW-SHL-05	1/1/1991	Metals, PCBs/Pesticides, VOCs	Reference 21 (Table 1-1)
Plow Shop Pond	SW-SHL-06	1/1/1991	Metals, PCBs/Pesticides, VOCs	Reference 21 (Table 1-1)
Plow Shop Pond	SW-SHL-07	1/1/1991	Metals, PCBs/Pesticides, VOCs	Reference 21 (Table 1-1)
Plow Shop Pond	SW-SHL-08	1/1/1991	Metals, PCBs/Pesticides, VOCs	Reference 21 (Table 1-1)
Plow Shop Pond	SW-SHL-09	1/1/1991	Metals, PCBs/Pesticides, VOCs	Reference 21 (Table 1-1)
Plow Shop Pond	SW-SHL-10	1/1/1991	Metals, PCBs/Pesticides, VOCs	Reference 21 (Table 1-1)
Plow Shop Pond	SW-SHL-11	1/1/1991	Metals, PCBs/Pesticides	Reference 21 (Table 1-1)
Plow Shop Pond	SW-SHL-12	1/1/1991	Metals, PCBs/Pesticides, VOCs	Reference 21 (Table 1-1)
Plow Shop Pond	SW-SHL-13	1/1/1991	Metals, PCBs/Pesticides, VOCs	Reference 21 (Table 1-1)
Fi-1- Ti (61)	1-4-1			Microsophia de control de descrito de la control de la con
Fish Tissue (fil				
Grove Pond	BBH1F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	BBH2F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	BBH3F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	BBH6F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	LMB10F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	LMB1F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	LMB2F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	LMB3F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	LMB4F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	LMB5F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	LMB6F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	LMB7F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	LMB8F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	LMB9F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	YBH4F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	YBH5F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	YBH7F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Grove Pond	YBH8F	9/25/1992	Metals, PCBs/Pesticides, SVOCs	Reference 5
Plow Shop Pond	PSP05F	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond	PSP06F	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond	PSP07F	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond	PSP07F2	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond	PSP12F	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond	PSP17F	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond	PSP17F2	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond	PSP18F	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond	PSP18F2	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond	PSP19F	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond	PSP19F2	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond	PSP20F	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond	PSP20F2	10/20/1992	Metals, PCBs/Pesticides	Reference 6
Plow Shop Pond Plow Shop Pond	PSP22F PSP23F	10/20/1992 10/20/1992	Metals, PCBs/Pesticides Metals, PCBs/Pesticides	Reference 6 Reference 6

Location	Sample No	Date	Analyses	Source Id.
EFERENCES:		-	Ö	
Number	Date	Company	Title	Prepared for:
5	01-Sep-93	US Fish and Wildlife	Concentrations of Mercury and other Environmental Contaminants in Fish from Grove Pond, Ayer, Massachusetts	
6	01-Dec-93	ABB-ES, Inc.	Final Remedial Investigation Addendum Report, Data Item A009, Volume I of IV, Report Text	US Army Environmental Center
8	01-Apr-94	ERM	Site Assessment Report, Boston & Maine Railroad Property, Fort Devens, Ayer, Massachusetts	Boston & Maine Corporation
11	01-Dec-94		Grove Pond Field Investigation	Metcalf & Eddy for MADEP
20	01-Sep-95	ABB-ES, Inc.	Railroad Roundhouse Supplemental Site Investigation, Data Item A009	US Army Environmental Center
21	01-Oct-95	ABB-ES, Inc.	Draft Plow Shop Pond and Grove Pond Sediment Evaluation, Data Item A009	US Army Environmental Center
32	01-Dec-97	TRC Environmental Corporation	Plow Shop Pond and Grove Pond Ecological Impact Evaluation, Fort Devens, Massachusetts	MADEP
38	01-Nov-98	EPA	Surface Water & Sediment Sampling Fort Devens Superfund Site Ayer, MA	ESAT
39	21-Jun-05	USEPA Region 1	USEPA Screening Level Ecological Risk Assessment, Fort Devens, Ayer, Massachusetts	
40	21-Oct-99	Environmental Compliance Services	Field Work and Analytical Results, PDC, Ayers	
54	01-May-99		Phase I Work Plan through March 2002 Grove Pond Arsenic Investigation	

TABLE 2-5 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN RAGS D TABLE 2 GROVE POND

Scenario Timeframe: Current/Future

Medium: Sediment Exposure Medium: Sediment

		l		ľ					1				r		
Exposure	CAS	Chemical	Minimum	Maximum	Units	Location	Detection	Range of	Concentration	Background	Screening	Potential	Potential	COPC	Rationale for
Point	Number	Orientical	Concentration	Concentration	Office	of Maximum	Frequency	Detection	Used for	Value	Toxicity Value	Contract to the contract to th	Transportation of the second o	Flag	Selection or
Fonte	Nulliber		(Qualifier)	(Qualifier)		Concentration	requerity	Limits	Screening	value	(N/C)	Value	Source	(Y/N)	Deletion
			(1)	(1)		Concentration		Littito	(2)	(3)	(4)	(3)	333130	Cirist	(5)
Near-shore Sediment	7429-90-5	Aluminum	1.1	90000	mg/kg	GRD-95-42X	119-119		90000	N/A	7600 (N)	N/A		Yes	ASL
Traditional Countries in	7440-36-0	Decaration in the Contraction of	5	49.2	mg/kg	PZ-1	14-106	0.03-700	49	N/A	3.1 (N)	N/A		Yes	ASL
	7440-38-2		2.86	1300	mg/kg	GRD-95-26X	121-131	3.12-90	1300	N/A	0.39 (C)	N/A		Yes	ASL
	7440-39-3	Barium	7.4	470	mg/kg	GRD-95-27X	101-117	5.18-70	470	N/A	537 (N)	N/A		No	BSL
	7440-41-7	- C. D. S. D. C.	0.5	14.1	mg/kg	GRD-95-45X	31-111	0.5-14	14	N/A	15 (N)	N/A		No	BSL
	7440-43-9		0.489	730	mg/kg	BM 2	64-124	0.7-16	730	N/A	3.7 (N)	N/A		Yes	ASL
	7440-70-2	Calcium	0.51	170000	mg/kg	G-SED-3 Dup	104-104	VEARITY	170000	N/A	ND	N/A		No	NUT
	7440-47-3	Chromium, total	4.69	52000	mg/kg	GP15	125-130	4.05-28	52000	N/A	22 (N) a	N/A		Yes	ASL
	7440-48-4	1000 C 10	2.29	70	mg/kg	SED-G	73-114	1.42-28	70	N/A	140 (N)	N/A		No	BSL
	7440-50-8	Copper	2.61	13000	mg/kg	BM 2	117-121	3-28	13000	N/A	310 (N)	N/A		Yes	ASL
	7439-89-6	Iron	2	42800	mg/kg	GRD-95-44X	119-119		42800	N/A	2300 (N)	N/A		Yes	ASL
	7439-92-1	Lead	3.29	1760	mg/kg	GRD-95-31X	122-130	10-70	1760	N/A	400 (X)	N/A		Yes	ASL
	7439-95-4	Magnesium	184	5300	mg/kg	GRD-95-41X	95-104	100-373	5300	N/A	ND	N/A		No	NUT
	7439-96-5	Manganese	0.39	2500	mg/kg	G-SED-3 Dup	122-122		2500	N/A	180 (N)	N/A		Yes	ASL
	7439-97-6	Mercury	0.0245	422	mg/kg	GRD-95-44X	84-108	0.05-1.8	422	N/A	2.3 (N)	N/A		Yes	ASL
	7440-02-0	Nickel	1.98	69.9	mg/kg	GRD-95-42X	105-119	1.71-70	69.9	N/A	160 (N)	N/A		No	BSL
	7440-09-7	Potassium	100	4120	mg/kg	SD-08	48-104	100-5600	4120	N/A	ND	N/A		No	NUT
	7782-49-2	Selenium	0.424	41.2	mg/kg	SD-08	39-114	0.25-100	41.2	N/A	39 (N)	N/A		Yes	ASL
	7440-22-4	Silver	0.792	12.4	mg/kg	SD-08	13-63	0.589-16	12.4	N/A	39 (N)	N/A		No	BSL
	7440-23-5	Sodium	100	6370	mg/kg	GRD-95-31X	79-104	98-5600	6370	N/A	ND	N/A		No	NUT
	7440-28-0	Thallium	0.1	82.4	mg/kg	SD-08	20-95	0.1-110	82.4	N/A	0.52 (N)	N/A		Yes	ASL
	7440-62-2	Vanadium	5.1	140	mg/kg	GP14, GP15	92-115	2.8-65.9	140	N/A	7.8 (N)	N/A		Yes	ASL
	7440-66-6	Zinc	3.12	770	mg/kg	GP12	116-123	8.03-8.03	770	N/A	2300 (N)	N/A		No	BSL
	22967926	Mercury, methyl	0.00028	0.07044	mg/kg	GV5	9-9		0.07044	N/A	0.61 (N)	N/A		No	BSL
	83-32-9	Acenaphthene	0.019	1.3	mg/kg	GRS-95-11X	4-40	0.036-2	1,3	N/A	370 (N)	N/A		No	BSL
	208-96-8	Acenaphthylene	0.048	0.22	mg/kg	G-SED-1	4-83	0.033-2	0.22	N/A	370 (N) b	N/A		No	FREQ
	120-12-7	Anthracene	0.081	2.4	mg/kg	GRD-95-15X	10-83	0.033-2	2.4	N/A	2200 (N)	N/A		No	BSL
	56-55-3	Benz(a)anthracene	0.19	3.4	mg/kg	GRD-95-15X	9-83	0.13-7	3.4	N/A	0.62 (C)	N/A		Yes	ASL
	50-32-8	Benzo(a)pyrene	0.37	2.3	mg/kg	GRS-95-11X	7-40	0.13-2.7	2.3	N/A	0.062 (C)	N/A		Yes	ASL
	205-99-2	Benzo(b)fluoranthene	0.075	5	mg/kg	GRS-95-07X	6-75	0.13-8	5	N/A	0.62 (C)	N/A		Yes	ASL
	191-24-2	Benzo(ghi)perylene	0.084	1.4	mg/kg	SW-1	4-40	0.13-3.6	1.4	N/A	230 (N) °	N/A		No	BSL
	1-0-7-0-11-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0	Benzo(k)fluoranthene	0.21	4.9	mg/kg	SW-1	12-83	0.066-3	4.9	N/A	6.2 (C)	N/A		Yes	PAHc
	218-01-9	Chrysene	0.051	5	mg/kg	GRS-95-07X	14-83	0.12-5	5	N/A	62 (C)	N/A	ļ. ,	Yes	PAHc

OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN RAGS D TABLE 2 GROVE POND

Scenario Timeframe: Current/Future

Medium: Sediment Exposure Medium: Sediment

Exposure Point	CAS Number	Chemical	Minimum Concentration	Maximum Concentration	Units	Location of Maximum	Detection Frequency	Range of Detection	Concentration Used for	Background Value	Screening Toxicity Value	Potential ARAR/TBC	Potential ARAR/TBC		Rationale for Selection or
	.,		(Qualifier)	(Qualifier)		Concentration		Limits	Screening		(N/C)	Value	Source	(Y/N)	Deletion
			(1)	(1)					(2)	(3)	(4)	(3)		277	(5)
Near-shore Sediment	53-70-3	Dibenz(ah)anthracene	0.03	0.73	mg/kg	G-SED-3 Dup	2-25	0.13-3.4	0.73	N/A	0.062 (C)	N/A		Yes	ASL
	206-44-0	Fluoranthene	0.06	7.1	mg/kg	SW-1	21-83	0.068-3	7.1	N/A	230 (N)	N/A		No	BSL
	86-73-7	Fluorene	0.049	1.1	mg/kg	GRD-95-15X, GRS-95-11X	5-83	0.033-2	1.1	N/A	270 (N)	N/A		No	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	0.037	2.9	mg/kg	G-SED-3 Dup	4-40	0.13-3.4	2.9	N/A	0.62 (C)	N/A		Yes	ASL
	90-12-0	Methylnaphthalene, 1-	1.1	1.1	mg/kg	S-2	1-15	0.5-5	1.1	N/A	5.6 (N) d	N/A		No	BSL
	91-57-6	Methylnaphthalene, 2-	0.47	4	mg/kg	GRD-95-12X	9-81	0.049-2	4	N/A	5.6 (N) d	N/A		No	BSL
	91-20-3	Naphthalene	0.034	30	mg/kg	GRD-95-26X	23-83	0.037-2	30	N/A	5.6 (N)	N/A		Yes	ASL
	85-01-8	Phenanthrene	0.043	7.7	mg/kg	GRS-95-11X	23-83	0.033-2	7.7	N/A	2200 (N) e	N/A		No	BSL
	129-00-0	Pyrene	0.059	6.5	mg/kg	GRS-95-11X	28-83	0.03-2	6.5	N/A	230 (N)	N/A		No	BSL
	72-54-8	DDD, p,p'-	0.0087 (C)	2.5 (C)	mg/kg	GRD-95-47X	40-84	0.0083-0.36	2.5	N/A	2.4 (C)	N/A		Yes	ASL
	72-55-9	DDE, p,p'-	0.01	0.98 (C,M)	mg/kg	GRD-95-31X, GRD-95-31X	39-84	0.0034-0.36	0.98	N/A	1.7 (C)	N/A		No	BSL
	50-29-3	DDT, p,p'-	0.01	1.5 (C, M)	mg/kg	GRD-95-29X	16-84	0.0033-0.36	1.5	N/A	1.7 (C)	N/A		No	BSL
	72-20-8	Endrin	0.028	0.028	mg/kg	GRD-95-31X	1-69	0.0033-0.36	0.028	N/A	1.8 (N)	N/A		No	FREQ
	100-51-6	Benzyl alcohol	1.7	19	mg/kg	GRS-95-11X	2-23	0.19-4.1	19	N/A	1800 (N)	N/A		No	BSL
	117-81-7	Bis(2-ethylhexyl) phthalate	0.41	4.9	mg/kg	PZ-1	2-15	0.13-2	4.9	N/A	35 (C)	N/A		No	BSL
	101-55-3	Bromophenyl phenyl ether, 4-	1.7	1.7	mg/kg	GRD-95-15X	1-58	0.033-2	1.7	N/A	ND	N/A		No	FREQ
	85-68-7	Butylbenzyl phthalate	3	3	mg/kg	GRD-95-15X	1-51	0.13-7	3	N/A	1200 (N)	N/A		No	FREQ
	7005-72-3	Chlorophenyl phenyl ether, 4-	0.84	0.84	mg/kg	GRD-95-15X	1-58	0.033-2	0.84	N/A	ND	N/A		No	FREQ
	132-64-9	Dibenzofuran	0.063	0.7	mg/kg	GRS-95-07X	6-66	0.035-9.8	0.7	N/A	15 (N)	N/A		No	BSL
	84-74-2	Di-n-butyl phthalate	3.3	8	mg/kg	GRS-95-09X	2-73	0.061-3	8	N/A	610 (N)	N/A		No	FREQ
	118-74-1	Hexachlorobenzene	1.7	1.7	mg/kg	GRD-95-15X	1-58	0.033-2	1.7	N/A	0.30 (C)	N/A		No	FREQ
	108-88-3	Toluene	0.0042	0.0042	mg/kg	SEDIMENT 3	1-21	0.002-0.054	0.0042	N/A	66 (N)	N/A		No	FREQ
	1330-20-7	Xylenes, total	0.0164	0.0164	mg/kg	SEDIMENT 1	1-21	0.002-0.036	0.0164	N/A	27 (N)	N/A		No	FREQ

Notes

(1) Minimum/maximum concentration in data determined to be useable for risk assessment.

Qualifiers: C = unknown

M = unknown

(2) Screening concentration = maximum detected concentration.

(3) Chemicals will not be screened out of or re-included in the risk assessment based on background concentrations or ARARs/TBCs.

(4) U.S. EPA Region IX Preliminary Remedial Goals (PRGs) for residential soil, December 28, 2004.

Value Type: C = carcinogenic (target risk = 1e-6).

N = noncarcinogenic (target HI = 0.1)

X = special health-based value not based on carcinogenic/noncarcinogenic endpoints.

Definitions: ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered.

COPC = Chemical of Potential Concern.

N/A = not applicable.

ND = not determined.

OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN RAGS D TABLE 2 GROVE POND

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium: Sediment

Exposure	CAS	Chemical	Minimum	Maximum	Units	Location	Detection	Panga of	Concentration	Background	Screening	Potential	Potential	CORC	Pationals for
Point	Number	Chemical	DATE SETS FROM LINETE	Concentration		of Maximum	resultant to the second to the	The second second	5-03-03-03-03-03	9.57	Toxicity Value			II .	
			(Qualifier)	(Qualifier)		Concentration	101 (01	Limits	Screening	(3)	(N/C)	Value (3)	Source	(Y/N)	Deletion (5)

(5) Rationale Codes

Selection Reason: ASL = above screening level.

PAHc = carcinogenic PAH (although screening concentration < screening toxicity value, included as COPC due to the cumulative nature of carcinogenic PAHs).

Deletion Reason: BSL = below screening level.

FREQ = frequency of detection (chemical detected in less than 5 percent of samples).

NUT = essential nutrient.

Additional Notes:

^a PRG for hexavalent chromium.

^b PRG for acenaphthene used as a surrogate.

° PRG for pyrene used as a surrogate.

^d PRG for naphthalene used as a surrogate.

* PRG for anthracene used as a surrogate.

OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN RAGS D TABLE 2 GROVE POND

Scenario Timeframe: Current/Future

Medium: Surface Water Exposure Medium: Surface Water

Exposure	CAS	Chemical	Minimum	Maximum	Units	Location	Detection	Range of	Concentration	Background	Screening	Potential	Potential	COPC	Rationale for
Point	Number	Sherriodi	Concentration	Concentration	OTILLO	1710-0-1710-0-1710-1710-1710-1710-1710-	Frequency	Detection	Used for	Value	Toxicity Value	CONTRACTOR CONTRACTOR	Transcondition 1		Selection or
			(Qualifier)	(Qualifier)		Concentration		Limits	Screening		(N/C)	Value	Source	(Y/N)	Deletion
			(1)	(1)					(2)	(3)	(4)	(3)		2 12	(5)
Surface Water	7429-90-5	Aluminum	0.008 (J)	0.176	mg/L	SW001	15-24	0.05-10	0,176	N/A	3.6 (N)	N/A		No	BSL
	7440-38-2	Arsenic	0.000001	0.128	mg/L	PZ-2	18-34	0.00254-10	0.128	N/A	0.000045 (C)	N/A		Yes	ASL
	7440-39-3	Barium	0.00637	11.9	mg/L	GSEM-2	22-30	0.005-0.01	11.9	N/A	0.26 (N)	N/A		Yes	ASL
	7440-70-2	Calcium	0.0088	19700	mg/L	GSEM-2	30-30		19700	N/A	ND	N/A		No	NUT
	7440-47-3	Chromium, total	0.0008 (J)	0.175	mg/L	PZ-1R	12-34	0.003-3	0.175	N/A	0.011 (N) a	N/A		Yes	ASL
	7440-48-4	Cobalt	0.00028	0.00043	mg/L	G6-2004	3-24	0.0002-1.5	0.00043	N/A	0.073 (N)	N/A		No	BSL
	7440-50-8	Copper	0.001 (J)	0.032	mg/L	G2-2004 Dup	8-34	0.0015-1.5	0.032	N/A	0.15 (N)	N/A		No	BSL
	7439-89-6	Iron	0.00012	390	mg/L	GSEM-1	30-30		390	N/A	1.1 (N)	N/A		Yes	ASL
	7439-92-1	Lead	0.0003 (J)	0.027	mg/L	PZ-1	10-34	0.001-5	0.027	N/A	ND	N/A		Yes	NSL
	7439-95-4	Magnesium	0.0017	3300	mg/L	GSEM-2	30-30		3300	N/A	ND	N/A		No	NUT
	7439-96-5	Manganese	0.01	268	mg/L	GSEM-2	30-30		268	N/A	0.088 (N)	N/A		Yes	ASL
	7439-97-6	Mercury	0.0011	0.0011	mg/L	PZ-1	1-23	0.0005-0.001	0.0011	N/A	0.0011 (N)	N/A		No	FREQ
	7440-02-0	Nickel	0.001	0.032	mg/L	PZ-1R	7-28	0.005-6	0.032	N/A	0.073 (N)	N/A		No	BSL
	14797-55-8	Nitrate	0.07	0.3	mg/L	SW-1	3-3		0.3	N/A	1.0 (N)	N/A		No	BSL
		Nitrogen, NO2+NO3	0.0195	0.26	mg/L	GRW-95-10X	5-6	0.01-0.01	0.26	N/A	0.1 (N) b	N/A		Yes	ASL
	7440-09-7	Potassium	0.0013	2500	mg/L	GSEM-1	24-24		2500	N/A	ND	N/A		No	NUT
	7440-23-5	Sodium	0.0224	30500	mg/L	GSEM-1	24-24		30500	N/A	ND	N/A		No	NUT
	7440-66-6	Zinc	0.005 (J)	9,11	mg/L	PZ-1	11-28	0.006-12	9.11	N/A	1.1 (N)	N/A		Yes	ASL
	117-81-7	Bis(2-ethylhexyl) phthalate	0.009	0.051	mg/L	GRW-95-06X	6-13	0.0048-0.01	0.051	N/A	0.0048 (C)	N/A		Yes	ASL

Notes:

(1) Minimum/maximum concentration in data determined to be useable for risk assessment.

Qualifiers: J = estimated

- (2) Screening concentration = maximum detected concentration.
- (3) Chemicals will not be screened out of or re-included in the risk assessment based on background concentrations or ARARs/TBCs.
- (4) U.S. EPA Region IX Preliminary Remedial Goals (PRGs) for tap water, December 28, 2004.

Value Type: C = carcinogenic (target risk = 1e-6).

N = noncarcinogenic (target HI = 0.1)

(5) Rationale Codes

Selection Reason: ASL = above screening level.

NSL = no screening level available.

Deletion Reason: BSL = below screening level.

FREQ = frequency of detection (chemical detected in less than 5 percent of samples).

NUT = essential nutrient.

Additional Notes:

a PRG for hexavalent chromium.

^b PRG for nitrite used as a surrogate.

Definitions:

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered. COPC = Chemical of Potential Concern.

N/A = not applicable.

ND = not determined.

TABLE 2-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN RAGS D TABLE 2 GROVE POND

Scenario Timoframa: Current/Fature

Medium Fish

Exposure Medium: Fish (fliet)

Exposure Pont	GAS Number	Chemical	Minimum Concentration (Qualifier) (1)	Maximum Concentration (Quelifier) (1)	Units	of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening (2)	Background Value (2)	Screening Toxicity Value (N/U) (4)	Potential ARAR/TEC Value (2)	Patental ARAR/TBC Source	COPC Flag (Y/N)	Retionale for Selection of Deletion (5)
Fish (flet)	7429-90-5	Alaminum	1.45	4.15	mg/kg-ww	DOLOF	18-18		4.15	1466	140 (N)	N/A		No	981
	7440-39-3	Bursans	0.00e	0.147	mg5ig ww	Y0117F	5-10	0.08-0.109	0.147	19/A	9.5 (14)	N/A		No	881
	7440-41-7	Berylieni	0.033	0.14	mg/sg-ww	1.828387	4-16	0.016-0.022	0.14	WA	0.27 (N)	N/A		No	BSL
	7440-42-8	Boron	0.152	0.343	mg/kg ww	LM84E	4-10	0.08-0.109	0.343	WA.	27 (N)	N/A		No	BSL
	7440-43-9	Cadmium	0.025	0.153	mg/sg-ww	LM83F	5-18	0.016-0.022	0.151	MIA	0.14 (N)	N2A		Yes	ASL
	7440-47-3	Chromium, total	0.1	0.488	mg/kg/ww	LMB4F	18-18		0.488	N/A	0.41 (N)*	N/A		Yes	ASL
	7440-50-8	Copper	0.111	0.897	mg/kg-ww	YBHSF	18-18		0.597	N/A	5.4 (N)	N/A		No	BSL
	7439-89-6	îrón.	2.82	13.5	mg/kg-ww	YBH7F	19-18		13.9	N/A	41 (N)	NSA		No	BSL
	7439-92-1	Lead	0.0983	0.859	mg/kg-ww	LMB4F	5-16	0.0797-0.1076	0.859	N/A	NO	1094		Yes	NSL
	7435-95-4	Magnesium	214	377	ту%д-үүү	LMB8F	18-18		372	N/A	No	NM.		No	NUT
	7439-96-5	Manganese	0.0715	1.41	mg/kg-ww	LMB10F	19-18		141	N/A	2.7 (N)	N/A,		No	BSL
	7430-07-6	Mercury	0.0522	1.04	mg/cg-ww	CMBSH	16-18	0.0176-0.0168	1.04	N/A	D 041 (N)*	100		Yes	ASL
	7439 98 7	Malytidarum	0.154	0.154	maka ww	LMBSE	1-18	0.0797-0.1097	0.154	N/A	0.68 (N)	N/A		No	851
	7440-02-0	Mickel	0.002	0.007	nigSig ww	LMBME	Z-18	0.0797-0.1089	0.807	746A	2.73(4)	1986		210	BSL
	7782-49-2	Seteram	0.2991	0.178	mg/vg-ww	LMB1F	13-18	0 0003-0 0075	0.179	NKA	0.68 (N)	Non		No.	BSL
	7440-24-6	Strontium	0.150	4.24	mg5ig-ww	YBHZF	19-10		4.24	MA.	81 (N)	1694		No	851
	7440-52-2	Vanadium	0.124	0.164	mig/sig-www	LMB3F	2-18	0.0797-0.1085	0.164	N/A	0.14 (N)	N/5A		Yes	ASL
	7440-66-6	Zinc	3 63	7.95	mg/kg ww	YBH7E	18-16		7.95	N/A	41 (N)	N/A		No	H51
	1336-36-3	PCBs, lotal	0.07	0.15	mg/kg-ww	LM82F	5-18	0.05-0.05	0.15	rtsa.	9.0016 (C)	N54		Yes	ASL
	72-54-8	DDD, p,p'-	0.01	D 03	mg/kg-ww	LMB2F, LMB4F	9-19	0.01-0.01	0.03	N/A	0.013 (C)	NA		Yes	ASL
	72-55-9	DDE, p.p'-	0.01	0.07	maños-www	LMB2F	15-18	0.01-0.01	0.07	N/A	0.0093 (C)	NSA		Yes	ASL

Notes

- (1) Minimum/maximum concentration in data determined to be useable for nsk assessment
- (2) Screening concentration = maximum detected concentration
- (3) Chemicals will not be acreened out of or re-included in the risk assessment based on background concentrations or ARAR/ATECs.
- (4) U.S. EPA Region III Risk-Based Concentrations (RBCs) for fish ingestion, April 7, 2005

Value Type: C = carcinogenic (target risk = 1e-5).

N = noncardinogenic (terget HI = 0.1)

(5) Rationale Codes

Selection Reason: ASI, = above screening level

Deletion Reason: BSL = balow screening level

NUT + essential nutrent.

Additional Notes

NSL = No Screening Levels

* RBC for hexavalent chromium.

* RBC for mercuric crioride.

Definitions: ARAR/TBC - Applicable or Resevant and Appropriate Requirement/To Be Considered.

COPC = Chemical of Patential Concern

NVA = not applicable

ND = net determined.

OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN RAGS D TABLE 2 PLOW SHOP POND

Scenario Timeframe: Current/Future

Medium: Sediment Exposure Medium: Sediment

Exposure	CAS	Chemical	Minimum	Maximum	Units	Location	Detection	Range of	Concentration	Background	Screening	Potential	Potential	COPC	Rationale fo
Point	Number		Concentration	Concentration	. = 7.1132	of Maximum	Frequency	Detection	Used for	Value	Toxicity Value	ARAR/TBC	ARAR/TBC	1.50 0.000. 1.000	Selection or
1.74.00	2.3,415.132.41		(Qualifier)	(Qualifier)		Concentration	3	Limits	Screening		(N/C)	Value	Source	(Y/N)	Deletion
			(1)	(1)					(2)	(3)	(4)	(3)	Soughneed	(X	(5)
Near-shore Sediment	7429-90-5	Aluminum	1	27000	mg/kg	P-SED-3, PSPC14	135-135		27000	N/A	7600 (N)	N/A	Ì	Yes	ASL
	7440-36-0	Antimony	5	30.7	mg/kg	SHD-94-03X	7-71	1.09-500	30.7	N/A	3.1 (N)	N/A		Yes	ASL
	7440-38-2	Arsenic	0.11	6800	mg/kg	PSPC14	140-148	10-50	6800	N/A	0.39 (C)	N/A		Yes	ASL
	7440-39-3	Barium	0.27	370	mg/kg	PSPC14	125-137	5.18-15	370	N/A	537 (N)	N/A		No	BSL
	7440-41-7	Beryllium	0.4	5.41	mg/kg	SHD-92-03X Dup	27-124	0.078-50	5.41	N/A	15 (N)	N/A		No	BSL
	7440-43-9	Cadmium	0.792	66 (J2)	mg/kg	PSPC14	54-129	0.0044-150	66	N/A	3.7 (N)	N/A		Yes	ASL
	7440-70-2	Calcium	0.39	34000	mg/kg	PSPC13	133-135	1300-1300	34000	N/A	ND	N/A		No	NUT
	7440-47-3	Chromium, total	6.9	37800	mg/kg	SESHL02	135-148	0.0074-150	37800	N/A	22 (N) a	N/A		Yes	ASL
	7440-48-4	Cobalt	1.98	59	mg/kg	PSPC13	67-123	1.42-150	59	N/A	140 (N)	N/A		No	BSL
	7440-50-8	Copper	2.91	3450	mg/kg	RHD-94-02X	107-138	0.965-150	3450	N/A	310 (N)	N/A		Yes	ASL
	7439-89-6	Iron	2.5	410000	mg/kg	PSP06	135-135		410000	N/A	2300 (N)	N/A		Yes	ASL
	7439-92-1	Lead	0.956	1214.31	mg/kg	PS1	125-148	0.064-500	1214.31	N/A	400 (X)	N/A		Yes	ASL
	7439-95-4	Magnesium	13.6	8580	mg/kg	SHD-94-15X	126-135	100-100	8580	N/A	ND	N/A		No	NUT
	7439-96-5	Manganese	31	54800	mg/kg	SHD-92-02X	134-138	2.05-84	54800	N/A	180 (N)	N/A		Yes	ASL
	7439-97-6	Mercury	0.038	130	mg/kg	SESHL11	123-145	0.00018-0.05	130	N/A	2.3 (N)	N/A		Yes	ASL
	7440-02-0	Nickel	6.3	87.8	mg/kg	SHD-94-03X	91-138	1.71-300	87.8	N/A	160 (N)	N/A		No	BSL
	7440-09-7	Potassium	90.5	2340	mg/kg	SESHL08	54-134	100-50000	2340	N/A	ND	N/A		No	NUT
	7782-49-2	Selenium	0.496	19.2	mg/kg	SHD-92-20X	31-125	0.1-1000	19.2	N/A	39 (N)	N/A		No	BSL
	7440-22-4	Silver	0.589	2	mg/kg	PSEM-1, PSEM-2, PSEM-3	7-77	0.0061-150	2	N/A	39 (N)	N/A		No	BSL
	7440-23-5	Sodium	123	4280	mg/kg	SHD-94-14X	84-134	52-50000	4280	N/A	ND	N/A		No	NUT
	7440-28-0	Thallium	19.7	29.4	mg/kg	PSEM-1	3-56	18-1000	29.4	N/A	0.52 (N)	N/A		Yes	ASL
	7440-31-5	Tin	8.13	275	mg/kg	RHD-94-02X	3-4	4.9-4.9	275	N/A	4700 (N)	N/A		No	BSL
	7440-62-2	Vanadium	3.2	166	mg/kg	SESHL10	78-135	3.39-150	166	N/A	7.8 (N)	N/A		Yes	ASL
	7440-66-6	Zinc	9 (B)	1100	mg/kg	P-SED-9	94-138	8.03-150	1100	N/A	2300 (N)	N/A		No	BSL
	22967926	Mercury, methyl	0.0057	0.06538	mg/kg	PS1	8-8		0.06538	N/A	0.61 (N)	N/A		No	BSL
	83-32-9	Acenaphthene	0.0063 (J)	0.84	mg/kg	P-SED-9	7-11	0.0091-0.2	0.84	N/A	370 (N)	N/A		No	BSL
	208-96-8	Acenaphthylene	0.026	0.71	mg/kg	P-SED-9	7-7		0.71	N/A	370 (N) b	N/A		No	BSL
	120-12-7	Anthracene	0.038	3.4	mg/kg	P-SED-9	8-11	0.2-0.2	3.4	N/A	2200 (N)	N/A		No	BSL
	56-55-3	Benz(a)anthracene	0.09	7.1	mg/kg	P-SED-9	9-23	0.3-0.8	7.1	N/A	0.62 (C)	N/A		Yes	ASL
	50-32-8	Benzo(a)pyrene	0.12	6.5	mg/kg	P-SED-9	7-7		6.5	N/A	0.062 (C)	N/A		Yes	ASL
	205-99-2	Benzo(b)fluoranthene	0.12	11	mg/kg	P-SED-9	8-11	1-1	11	N/A	0.62 (C)	N/A		Yes	ASL
	191-24-2	Benzo(ghi)perylene	0.072	5.2	mg/kg	P-SED-9	7-7		5.2	N/A	230 (N) °	N/A		No	BSL
	207-08-9	Benzo(k)fluoranthene	0.071	3.7	mg/kg	P-SED-9	8-11	0.3-0.3	3.7	N/A	6.2 (C)	N/A		Yes	PAHc

OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN RAGS D TABLE 2 PLOW SHOP POND

Scenario Timeframe: Current/Future

Medium: Sediment Exposure Medium: Sediment

Exposure	CAS	Chemical	Minimum	Maximum	Units	Location	Detection	Range of	Concentration	Background	Screening	Potential	Potential	COPC	Rationale fo
Point	Number		Concentration	Concentration		of Maximum	Frequency	Detection	Used for	Value	Toxicity Value	ARAR/TBC	ARAR/TBC	Flag	Selection or
			(Qualifier)	(Qualifier)		Concentration		Limits	Screening		(N/C)	Value	Source	(Y/N)	Deletion
			(1)	(1)					(2)	(3)	(4)	(3)			(5)
Near-shore Sediment	218-01-9	Chrysene	0.032	8.1	mg/kg	P-SED-9	9-23	0.45-0.6	8.1	N/A	62 (C)	N/A		Yes	PAHc
	53-70-3	Dibenz(ah)anthracene	0.028	1.3	mg/kg	P-SED-9	7-7		1.3	N/A	0.062 (C)	N/A		Yes	ASL
	206-44-0	Fluoranthene	0.013	18	mg/kg	P-SED-9	10-23	0.3-0.52	18	N/A	230 (N)	N/A		No	BSL
	86-73-7	Fluorene	0.025	1.9	mg/kg	P-SED-9	8-11	0.2-0.2	1.9	N/A	270 (N)	N/A		No	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	0.048	4.5	mg/kg	P-SED-9	7-7		4.5	N/A	0.62 (C)	N/A		Yes	ASL
	91-57-6	Methylnaphthalene, 2-	1	2	mg/kg	RHD-94-02X, RHD-94-03X, RHD-94-03X Dup	3-4	0.2-0.2	2	N/A	5.6 (N) ^d	N/A		No	BSL
	91-20-3	Naphthalene	0.024	2.4	mg/kg	P-SED-9	11-24	0.089-0.42	2.4	N/A	5.6 (N)	N/A		No	BSL
	85-01-8	Phenanthrene	0.13	10	mg/kg	P-SED-9	11-23	0.2-0.41	10	N/A	2200 (N) e	N/A		No	BSL
	129-00-0	Pyrene	0.24	14	mg/kg	P-SED-9	13-23	0.2-0.42	14	N/A	230 (N)	N/A		No	BSL
	53469-21-9	PCB 1242	0.11 (J)	0.11 (J)	mg/kg	P-SED-3	1-7	0.053-0.13	0.11	N/A	0.11 (N)	N/A		No	BSL
	11097-69-1	PCB 1254	0.13	0.13	mg/kg	P-SED-3	1-7	0.053-0.13	0.13	N/A	0.11 (N)	N/A		Yes	ASL
	11096-82-5	PCB 1260	0.05	0.05	mg/kg	P-SED-3	1-7	0.053-0.13	0.05	N/A	0.11 (N)	N/A		No	BSL
	72-54-8	DDD, p,p'-	0.013	1.8	mg/kg	SHD-92-02X	12-44	0.008-0.008	1.8	N/A	2.4 (C)	N/A		No	BSL
	72-55-9	DDE, p,p'-	0.028	1.3	mg/kg	SHD-92-02X	16-64	0.008-0.076	1.3	N/A	1.7 (C)	N/A		No	BSL
	50-29-3	DDT, p,p'-	0.0033 (J)	0.13	mg/kg	SHD-92-28X	8-52	0.0017-0.071	0.13	N/A	1.7 (C)	N/A		No	BSL
	76-44-8	Heptachlor	0.02	0.092	mg/kg	SESHL03	2-19	0.0017-0.012	0.092	N/A	0.11 (C)	N/A		No	BSL
	132-64-9	Dibenzofuran	0.4	0.8	mg/kg	RHD-94-03X, RHD-94-03X Dup	2-4	0.2-0.2	0.8	N/A	15 (N)	N/A		No	BSL
	67-64-1	Acetone	0.058	0.54	mg/kg	SESHL05	8-13	0.01-0.089	0.54	N/A	1400 (N)	N/A		No	BSL
		Methyl ethyl ketone	0.023	0.13	mg/kg	SESHL05, SESHL09	5-13	0.01-0.089	0.13	N/A	2200 (N)	N/A		No	BSL
	75-09-2	Methylene chloride	0.021	0.12	mg/kg	SESHL09	10-13	0.006-0.089	0.12	N/A	9.1 (C)	N/A		No	BSL
	75-69-4	Trichlorofluoromethane	0.008	0.008	mg/kg	SHD-92-30X	2-16	0.006-0.089	0.008	N/A	39 (N)	N/A		No	BSL

Notes

(1) Minimum/maximum concentration in data determined to be useable for risk assessment.

Qualifiers: B = constituent present in associated blank

J = estimated

J2 = estimated

- (2) Screening concentration = maximum detected concentration.
- (3) Chemicals will not be screened out of or re-included in the risk assessment based on background concentrations or ARARs/TBCs.
- (4) U.S. EPA Region IX Preliminary Remedial Goals (PRGs) for residential soil, December 28, 2004.

Value Type: C = carcinogenic (target risk = 1e-6).

N = noncarcinogenic (target HI = 0.1)

X = special health-based value not based on carcinogenic/noncarcinogenic endpoints.

Definitions:

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered. COPC = Chemical of Potential Concern.

N/A = not applicable.

OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN RAGS D TABLE 2 PLOW SHOP POND

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium: Sediment

		,													
Exposure	CAS	Chemical	Minimum	Maximum	Units	Location	Detection	Range of	Concentration	Background	Screening	Potential	Potential	COPC	Rationale for
Point	Number		Concentration	Concentration		of Maximum	Frequency	Detection	Used for	Value	Toxicity Value	ARAR/TBC	ARAR/TBC	Flag	Selection or
			(Qualifier)	(Qualifier)		Concentration		Limits	Screening		(N/C)	Value	Source	(Y/N)	Deletion
			(1)	(1)					(2)	(3)	(4)	(3)			(5)

(5) Rationale Codes

Selection Reason: ASL = above screening level.

PAHc = carcinogenic PAH (although screening concentration < screening toxicity value, included as COPC due to the cumulative nature of carcinogenic PAHs).

Deletion Reason: BSL = below screening level.

NUT = essential nutrient.

Additional Notes:

a PRG for hexavalent chromium.

^b PRG for acenaphthene used as a surrogate.

^c PRG for pyrene used as a surrogate.

^d PRG for naphthalene used as a surrogate.

e PRG for anthracene used as a surrogate.

OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN RAGS D TABLE 2 PLOW SHOP POND

Scenario Timeframe: Current/Future

Medium: Surface Water

Exposure Medium: Surface Water

Exposure	CAS Chemical	Minimum	Maximum	Units	Location	Detection	Range of	Concentration		Screening	Potential			
Point	Number	Concentration	Concentration		of Maximum	Frequency	Detection	Used for	Value	Toxicity Value				Selection or
		(Qualifier)	(Qualifier)		Concentration		Limits	Screening	92.7	(N/C)	Value	Source	(Y/N)	Deletion
		(1)	(1)					(2)	(3)	(4)	(3)			(5)
Surface Water	7429-90-5 Aluminum	0.008 (J)	0.035	mg/L	RED COVE	7-15	0.01-0.02	0.035	N/A	3.6 (N)	N/A		No	BSL
	7440-38-2 Arsenic	0.0014	0.38	mg/L	RED COVE	19-28	0.001-0.01	0.38	N/A	0.000045 (C)	N/A		Yes	ASL
	7440-39-3 Barium	0.00335	0.044	mg/L	RED COVE	28-28		0.044	N/A	0.26 (N)	N/A		No	BSL
	7440-70-2 Calcium	0.012	18.6	mg/L	PSEM-4	28-28	2007-44778 1400-000	18.6	N/A	ND	N/A		No	NUT
	7440-47-3 Chromium, total	0.0008 (J)	0.001	mg/L	PS4-2004, PS5-2004, PS6-2004, RED COVE	7-28	0.002-0.00447	0.001	N/A	0.011 (N) ^a	N/A		No	BSL
	7440-48-4 Cobalt	0.00083	0.00083	mg/L	RCSW4	1-15	0.0002-0.0015	0.00083	N/A	0.073 (N)	N/A		No	BSL
	7440-50-8 Copper	0.001 (J)	0.0487	mg/L	SW-SHL-04	23-28	0.0015-0.00429	0.0487	N/A	0.15 (N)	N/A		No	BSL
	7439-89-6 Iron	0.214	29 (J2)	mg/L	RED COVE	28-28		29	N/A	1.1 (N)	N/A		Yes	ASL
	7439-92-1 Lead	0.0002 (J)	0.0004 (J)	mg/L	PS4-2004, PS6-2004	6-15	0.0002-0.005	0.0004	N/A	ND	N/A		Yes	NSL
	7439-95-4 Magnesium	0.0022	3.3	mg/L	PSEM-4	28-28		3.3	N/A	ND	N/A		No	NUT
	7439-96-5 Manganese	0.00781	0.53	mg/L	RED COVE	28-28		0.53	N/A	0.088 (N)	N/A		Yes	ASL
	7440-02-0 Nickel	0.0008	0.0442	mg/L	SW-SHL-04	18-28	0.006-0.00876	0.0442	N/A	0.073 (N)	N/A		No	BSL
	7440-09-7 Potassium	0.741	3	mg/L	PSEM-4	17-17		3	N/A	ND	N/A		No	NUT
	7440-22-4 Silver	0.000564	0.0036	mg/L	SW-SHL-09	2-28	0.0002-0.003	0.0036	N/A	99966693756E	N/A		No	BSL
	7440-23-5 Sodium	20	25.1	mg/L	PSEM-2	17-17		25.1	N/A	ND	N/A		No	NUT
	7440-66-6 Zinc	0.003 (J)	0.0581	mg/L	SW-SHL-04	14-28	0.008-0.02	0.0581	N/A	1.1 (N)	N/A		No	BSL
	319-84-6 Hexachlorocyclohexane, alpha-	0.000013	0.00007	mg/L	SW-SHL-04	13-19	0.0000275-0.0000275	0.00007	N/A	0.000011 (C)	N/A		Yes	ASL
	67-66-3 Chloroform	0.000996	0.00141	mg/L	SW-SHL-02	6-12	0.00083-0.00083	0.00141	N/A	0.00017 (C)	N/A		Yes	ASL
	75-09-2 Methylene chloride	0.00598	0.00892	mg/L	SW-SHL-12	12-12		0.00892	N/A	0.0043 (C)	N/A		Yes	ASL

Notes:

(1) Minimum/maximum concentration in data determined to be useable for risk assessment.

Qualifiers: J = estimated

(2) Screening concentration = maximum detected concentration.

- (3) Chemicals will not be screened out of or re-included in the risk assessment based on background concentrations or ARARs/TBCs.
- (4) U.S. EPA Region IX Preliminary Remedial Goals (PRGs) for tap water, December 28, 2004.

Value Type: C = carcinogenic (target risk = 1e-6).

N = noncarcinogenic (target HI = 0.1)

(5) Rationale Codes

Selection Reason: ASL = above screening level.

NSL = no screening level available.

Deletion Reason: BSL = below screening level.

NUT = essential nutrient

Additional Notes:

^a PRG for hexavalent chromium.

Definitions:

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered.

COPC = Chemical of Potential Concern.

N/A = not applicable.

ND = not determined

OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN RAGS D TABLE 2 PLOW SHOP POND

Scenario Timeframe: Current/Future

Medium: Fish

Exposure Medium: Fish (filet)

Exposure Point	CAS C Number	Chemical Minimu Concentra (Qualifie (1)	ion Concentration	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening (2)	Background Value (3)	Screening Toxicity Value (N/C) (4)	Potential ARAR/TBC Value (3)	Potential ARAR/TBC Source		Rationale fo Selection of Deletion (5)
Fish (filet)	7440-38-2 Arsenic	0.09	0.15	mg/kg-ww	PSP23F	2-10	0.04-0.16	0.15	N/A	0.0021 (C)	N/A		Yes	ASL
	7440-70-2 Calcium	82.8	627	mg/kg-ww	PSP18F2	10-10		627	N/A	ND	N/A		No	NUT
	7440-47-3 Chromium,	total 0.19	0.24	mg/kg-ww	PSP06F	2-10	0.19-0.2	0.24	N/A	0.41 (N) ⁸	N/A		No	BSL
	7440-48-4 Cobalt	0.11	0.11	mg/kg-ww	PSP18F2, PSP20F2	2-10	0.1-0.1	0.11	N/A	2.7 (N)	N/A		No	BSL
	7440-50-8 Copper	0.08	0.24	mg/kg-ww	PSP20F2	10-10		0.24	N/A	5.4 (N)	N/A		No	BSL
	7439-89-6 Iron	1.7	27	mg/kg-ww	PSP23F	10-10		27	N/A	41 (N)	N/A		No	BSL
	7439-95-4 Magnesium	252	344	mg/kg-ww	PSP17F	10-10		344	N/A	ND	N/A		No	NUT
	7439-96-5 Manganese	0.3	0.3	mg/kg-ww	PSP12F	1-10	0.28-0.3	0.3	N/A	2.7 (N)	N/A		No	BSL
	7439-97-6 Mercury	0.12	4	mg/kg-ww	PSP17F	9-10	0.03-0.03	4	N/A	0.041 (N) b	N/A		Yes	ASL
	7782-49-2 Selenium	0.11 (J)	0.2 (J)	mg/kg-ww	PSP17F2	8-10	0.1-0.18	0.2	N/A	0.68 (N)	N/A		No	BSL
	7440-23-5 Sodium	283	509	mg/kg-ww	PSP20F2	10-10		509	N/A	ND	N/A		No	NUT
	7440-62-2 Vanadium	0.79	0.79	mg/kg-ww	PSP17F	1-10	0.73-0.8	0.79	N/A	0.14 (N)	N/A		Yes	ASL
	7440-66-6 Zinc	3.4	6.1	mg/kg-ww	PSP22F	10-10		6.1	N/A	41 (N)	N/A		No	BSL
	72-55-9 DDE, p,p'-	0.015	0.031	mg/kg-ww	PSP17F2	2-10	0.0096-0.021	0.031	N/A	0.0093 (C)	N/A		Yes	ASL

(1) Minimum/maximum concentration in data determined to be useable for risk assessment. Qualifiers: J = estimated

(2) Screening concentration = maximum detected concentration.

(3) Chemicals will not be screened out of or re-included in the risk assessment based on background concentrations or ARARs/TBCs.

(4) U.S. EPA Region III Risk-Based Concentrations (RBCs) for fish ingestion, April 7, 2005.

Value Type: C = carcinogenic (target risk = 1e-6).

N = noncarcinogenic (target HI = 0.1)

(5) Rationale Codes

Selection Reason: ASL = above screening level. Deletion Reason: BSL = below screening level. NUT = essential nutrient.

Additional Notes:

⁸ RBC for hexavalent chromium.

^b RBC for mercuric chloride.

Definitions: ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered.

COPC = Chemical of Potential Concern.

N/A = not applicable.

ND = not determined.

EXPOSURE POINT CONCENTRATION SUMMARY RAGS D TABLE 3 REASONABLE MAXIMUM EXPOSURE GROVE POND

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium: Near-shore Sediment

Exposure Point	Chemical of	Units	Arithmetic	95% UCL	Maximum Concentration		Exposure	Point Concentration	1
	Potential Concern		Mean	(Distribution)	(Qualifier)	Value	Units	Statistic	Rationale
				(1)				(2)	
Near-shore sediment	Aluminum	mg/kg	11800	20300 (NP)	90000	20300	mg/kg	C97.5	UCL < max
	Antimony	mg/kg	5.45	11.9 (NP)	49.2	11.9	mg/kg	C97.5	UCL < max
	Arsenic	mg/kg	81.0	158 (NP)	1300	158	mg/kg	C97.5	UCL < max
	Cadmium	mg/kg	13.1	48.6 (NP)	730	48.6	mg/kg	C97.5	UCL < max
	Chromium, total	mg/kg	5070	144 (NP)	52000	144	mg/kg	C99	UCL < max
	Copper	mg/kg	153	795 (NP)	13000	795	mg/kg	C97.5	UCL < max
	Iron	mg/kg	13900	19100 (NP)	42800	19100	mg/kg	C97.5	UCL < max
	Lead	mg/kg	227	382 (LN)	1760	227	mg/kg	mean	models specify mean
	Manganese	mg/kg	477	721 (NP)	2500	721	mg/kg	C97.5	UCL < max
	Mercury	mg/kg	24.8	94.4 (NP)	422	94.4	mg/kg	C99	UCL < max
	Selenium	mg/kg	4.86	9.76 (NP)	41.2	9.76	mg/kg	C97.5	UCL < max
	Thallium	mg/kg	8.87	26.4 (NP)	82.4	26.4	mg/kg	C99	UCL < max
	Vanadium	mg/kg	26.8	42.7 (NP)	140	42.7	mg/kg	C97.5	UCL < max
	Benz(a)anthracene	mg/kg	0.401	0.684 (NP)	3.4	0.684	mg/kg	C95	UCL < max
	Benzo(a)pyrene	mg/kg	0.420	0.729 (NP)	2.3	0.729	mg/kg	C95	UCL < max
	Benzo(b)fluoranthene	mg/kg	0.462	0.850 (NP)	5	0.850	mg/kg	C95	UCL < max
	Benzo(k)fluoranthene	mg/kg	0.361	0.839 (NP)	4.9	0.839	mg/kg	C97.5	UCL < max
	Chrysene	mg/kg	0.499	1.10 (NP)	5	1.10	mg/kg	C97.5	UCL < max
	Dibenz(ah)anthracene	mg/kg	0.242	0.263 (N)	0.73	0.263	mg/kg	St	UCL < max
	Indeno(1,2,3-cd)pyrene	mg/kg	0.384	0.641 (NP)	2.9	0.641	mg/kg	C95	UCL < max
	Naphthalene	mg/kg	1.10	3.84 (NP)	30	3.84	mg/kg	C97.5	UCL < max
	DDD, p,p'-	mg/kg	0.147	0.381 (NP)	2.5 (C)	0.381	mg/kg	C97.5	UCL < max

EXPOSURE POINT CONCENTRATION SUMMARY RAGS D TABLE 3 REASONABLE MAXIMUM EXPOSURE

GROVE POND

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium: Near-shore Sediment

Exposure P	int Chemical of	Units	Arithmetic	95% UCL	Maximum Concentration		Exposure	Point Concentration	
	Potential Concern		Mean	(Distribution)	(Qualifier)	Value	Units	Statistic	Rationale
				(1)				(2)	

Notes:

(1) 95-percent upper confidence limit on the mean concentration (USEPA, ProUCL, 2004).

Distribution: LN = lognormal.

N = normal.

NP = non-parametric.

(2) Data statistic used to represent the exposure point concentration.

C95 = 95% Chebyshev (Mean, StdDev) UCL.

C97.5 = 97.5% Chebyshev (Mean, StdDev) UCL.

C99 = 99% Chebyshev (Mean, StdDev) UCL.

H95 = 95% H-UCL.

EXPOSURE POINT CONCENTRATION SUMMARY RAGS D TABLE 3 REASONABLE MAXIMUM EXPOSURE GROVE POND

Scenario Timeframe: Current/Future

Medium: Surface Water

Exposure Medium: Surface Water

Exposure Point	Chemical of	Units	Arithmetic	95% UCL	Maximum Concentration	Exposure Point Concentration			
	Potential Concern		Mean	(Distribution) (1)	(Qualifier)	Value	Units	Statistic (2)	Rationale
Surface Water	Arsenic	mg/L	0.0143	0.0767 (NP)	0.128	0.0767	mg/L	C99	UCL < max
	Barium	mg/L	1.21	6.99 (NP)	11.9	6.99	mg/L	C99	UCL < max
	Chromium, total	mg/L	0.0131	0.0740 (NP)	0.175	0.0740	mg/L	C99	UCL < max
	Iron	mg/L	39.2	69.2 (NP)	390	69.2	mg/L	НВ	UCL < max
	Lead	mg/L	0.00275	0.0117 (NP)	0.027	0.00275	mg/L	mean	models specify mean
	Manganese	mg/L	15.7	112 (NP)	268	112	mg/L	C99	UCL < max
	Zinc	mg/L	1.65	7.19 (NP)	9.11	7.19	mg/L	C99	UCL < max
	Bis(2-ethylhexyl) phthalate	mg/L	0.0153	0.0350 (NP)	0.051	0.0350	mg/L	C95	UCL < max

Notes:

(1) 95-percent upper confidence limit on the mean concentration (USEPA, ProUCL, 2004).

Distribution: N = normal.

NP = non-parametric.

(2) Data statistic used to represent the exposure point concentration.

C95 = 95% Chebyshev (Mean, StdDev) UCL. C99 = 99% Chebyshev (Mean, StdDev) UCL.

HB = Hall's bootstrap UCL.

max = maximum detected concentration.

EXPOSURE POINT CONCENTRATION SUMMARY RAGS D TABLE 3 REASONABLE MAXIMUM EXPOSURE GROVE POND

Scenario Timeframe: Current/Future

Medium: Fish

Exposure Medium: Fish (filet)

Exposure Point	Chemical of	Units	Arithmetic	95% UCL	Maximum Concentration	Expos		e Point Concentration		
	Potential Concern		Mean	(Distribution) (1)	(Qualifier)	Value	Units	Statistic (2)	Rationale	
Fish (filet)	Cadmium	mg/kg	0.0282	0.0736 (NP)	0.151	0.0736	mg/kg	C95	UCL < max	
	Chromium	mg/kg	0.227	0.278 (G)	0.488	0.278	mg/kg	Gap	UCL < max	
	Lead	mg/kg	0.200	0.815 (NP)	0.859	0.200	mg/kg	mean	models specify mean	
	Mercury	mg/kg	0.307	0.497 (G)	1.04	0.497	mg/kg	Gap	UCL < max	
	Vanadium	mg/kg	0.0583	0.0715 (N)	0.164	0.0715	mg/kg	St	UCL < max	
	PCBs, total	mg/kg	0.0464	0.0860 (NP)	0.15	0.0860	mg/kg	C95	UCL < max	
	DDD, p,p'-	mg/kg	0.0114	0.0203 (NP)	0.03	0.0203	mg/kg	C95	UCL < max	
	DDE, p,p'-	mg/kg	0.0214	0.0424 (NP)	0.07	0.0424	mg/kg	C95	UCL < max	

Notes:

(1) 95-percent upper confidence limit on the mean concentration (USEPA, ProUCL, 2004).

Distribution: G = gamma.

N = normal.

NP = non-parametric.

(2) Data statistic used to represent the exposure point concentration.

C95 = 95% Chebyshev (Mean, StdDev) UCL.

C99 = 99% Chebyshev (Mean, StdDev) UCL.

Gap = approximate gamma UCL.

EXPOSURE POINT CONCENTRATION SUMMARY RAGS D TABLE 3 REASONABLE MAXIMUM EXPOSURE PLOW SHOP POND

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium: Near-shore Sediment

Exposure Point	Chemical of	Units	Arithmetic	95% UCL	Maximum Concentration	Exposure Point Con		Point Concentration	1
	Potential Concern		Mean	(Distribution)	(Qualifier)	Value	Units	Statistic	Rationale
				(1)				(2)	
Near-shore sediment	Aluminum	mg/kg	6810	9660 (NP)	27000	9660	mg/kg	C97.5	UCL < max
	Antimony	mg/kg	9.85	17.1 (NP)	30.7	17.1	mg/kg	C97.5	UCL < max
	Arsenic	mg/kg	435	930 (NP)	6800	930	mg/kg	C97.5	UCL < max
	Cadmium	mg/kg	8.28	15.3 (NP)	66 (J2)	15.3	mg/kg	C97.5	UCL < max
	Chromium, total	mg/kg	1360	12200 (LN)	37800	12200	mg/kg	H95	UCL < max
	Copper	mg/kg	97.5	297 (NP)	3450	297	mg/kg	C97.5	UCL < max
	Iron	mg/kg	47500	96300 (NP)	410000	96300	mg/kg	C97.5	UCL < max
	Lead	mg/kg	124	229 (NP)	1210	124	mg/kg	mean	models specify mean
	Manganese	mg/kg	1980	3020 (LN)	54800	3020	mg/kg	H95	UCL < max
	Mercury	mg/kg	13.8	34.7 (NP)	130	34.7	mg/kg	C99	UCL < max
	Thallium	mg/kg	11.9	13.4 (NP)	29.4	13.4	mg/kg	Mod-t	UCL < max
	Vanadium	mg/kg	20.9	35.6 (NP)	166	35.6	mg/kg	C97.5	UCL < max
	Benz(a)anthracene	mg/kg	0.647	3.65 (NP)	7.1	3.65	mg/kg	C99	UCL < max
	Benzo(a)pyrene	mg/kg	1.37	4.67 (G)	6.5	4.67	mg/kg	GAp	UCL < max
	Benzo(b)fluoranthene	mg/kg	1.76	3.90 (G)	11	3.90	mg/kg	GAp	UCL < max
	Benzo(k)fluoranthene	mg/kg	0.18	1.44 (G)	3.7	1.44	mg/kg	GAp	UCL < max
	Chrysene	mg/kg	0.812	4.28 (NP)	8.1	4.28	mg/kg	C99	UCL < max
	Dibenz(ah)anthracene	mg/kg	0.326	0.960 (G)	1.3	0.960	mg/kg	GAp	UCL < max
	Indeno(1,2,3-cd)pyrene	mg/kg	1.04	3.66 (G)	4.5	3.66	mg/kg	GAp	UCL < max

Notes:

(1) 95-percent upper confidence limit on the mean concentration (USEPA, ProUCL, 2004).

Distribution: G = gamma. LN = lognormal.

EXPOSURE POINT CONCENTRATION SUMMARY RAGS D TABLE 3 REASONABLE MAXIMUM EXPOSURE PLOW SHOP POND

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium: Near-shore Sediment

Exposure Point	Chemical of	Units	Arithmetic	95% UCL	Maximum Concentration	Exposure Point Concentration			
	Potential Concern		Mean	(Distribution) (1)	(Qualifier)	Value	Units	Statistic (2)	Rationale

NP = non-parametric.

EXPOSURE POINT CONCENTRATION SUMMARY RAGS D TABLE 3 REASONABLE MAXIMUM EXPOSURE PLOW SHOP POND

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium: Near-shore Sediment

Exposure Point	Chemical of	Units	Arithmetic	95% UCL	Maximum Concentration	Exposure Point Concentration			
	Potential Concern		Mean	(Distribution) (1)	(Qualifier)	Value	Units	Statistic (2)	Rationale

(2) Data statistic used to represent the exposure point concentration.

C97.5 = 97.5% Chebyshev (Mean, StdDev) UCL.

C99 = 99% Chebyshev (Mean, StdDev) UCL.

GAp = approximate gamma UCL.

H95 = 95% H-UCL.

Mod-t = modified Student's-t (adjusted for skewness)

EXPOSURE POINT CONCENTRATION SUMMARY RAGS D TABLE 3 REASONABLE MAXIMUM EXPOSURE PLOW SHOP POND

Scenario Timeframe: Current/Future

Medium: Surface Water

Exposure Medium: Surface Water

Exposure Point	Chemical of	Units	Arithmetic	95% UCL	Maximum Concentration	Exposure Point Concentration			
	Potential Concern		Mean	(Distribution) (1)	(Qualifier)	Value	Units	Statistic (2)	Rationale
Surface Water	Arsenic	mg/L	0.0175	0.151 (NP)	0.38	0.151	mg/L	C99	UCL < max
	Iron	mg/L	1.52	5.97 (NP)	29 (J2)	5.97	mg/L	C95	UCL < max
	Lead	mg/L	0.000322	0.00379 (NP)	0.0004 (J)	0.000322	mg/L	mean	models specify mean
	Manganese	mg/L	0.0862	0.148 (LN)	0.53	0.148	mg/L	H95	UCL < max
	Hexachlorocyclohexane, alpha-	mg/L	0.0000331	0.0000524 (NP)	0.00007	0.0000524	mg/L	C95	UCL < max
	Chloroform	mg/L	0.000795	0.00131 (NP)	0.00141	0.00131	mg/L	C95	UCL < max
	Methylene chloride	mg/L	0.00766	0.00804 (N)	0.00892	0.00804	mg/L	St	UCL < max

Notes:

(1) 95-percent upper confidence limit on the mean concentration (USEPA, ProUCL, 2004).

Distribution: LN = lognormal.

N = normal.

NP = non-parametric.

(2) Data statistic used to represent the exposure point concentration.

C95 = 95% Chebyshev (Mean, StdDev) UCL.

C99 = 99% Chebyshev (Mean, StdDev) UCL.

H95 = 95% H-UCL.

EXPOSURE POINT CONCENTRATION SUMMARY RAGS D TABLE 3 REASONABLE MAXIMUM EXPOSURE PLOW SHOP POND

Scenario Timeframe: Current/Future

Medium: Fish

Exposure Medium: Fish (filet)

Exposure Point	Chemical of	Units	Arithmetic	95% UCL	Maximum Concentration	Exposure Point Concentration			
	Potential Concern		Mean	(Distribution)	(Qualifier)	Value	Units	Statistic	Rationale
				(1)				(2)	
Fish (filet)	Arsenic	mg/kg	0.0498	0.0796 (G)	0.15	0.0796	mg/kg	Gap	UCL < max
	Mercury	mg/kg	1.14	2.59 (G)	4	2.59	mg/kg	Gap	UCL < max
	Vanadium	mg/kg	0.408	0.449 (NP)	0.79	0.449	mg/kg	Mt	UCL < max
	DDE, p,p'-	mg/kg	0.00967	0.0187 (NP)	0.031	0.0187	mg/kg	C95	UCL < max

Notes:

(1) 95-percent upper confidence limit on the mean concentration (USEPA, ProUCL, 2004).

Distribution: G = gamma.

NP = non-parametric.

(2) Data statistic used to represent the exposure point concentration.

C95 = 95% Chebyshev (Mean, StdDev) UCL.

Gap = approximate gamma UCL.

Mt = Mod-t UCL (adjusted for skewness).

VALUES USED FOR DAILY INTAKE CALCULATIONS

RAGS D TABLE 4

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Sediment

Exposure Medium: Sediment
Exposure Point: Sediment
Receptor Population: Recreational

Receptor Age: Adult

Exposure Route	Parameter Code	Parameter Definition	Units	RME Value	RME Rationale/ Reference	Intake Equation/ Model Name
Ingestion	CSD	Chemical concentration in sediment	mg/kg	EPC	Site Specific	CDI (mg/kg-day) =
1	IR	Ingestion rate	mg/day	100	EPA, 1995 (same as soil)	(CSD x IR x FI x EF x ED x CF)/(BW x AT)
	FI	Fraction ingested	unitless	100%	Professional Judgment	
	EF	Exposure Frequency	days/year	65	3 days/week for May-Sept	
	ED	Exposure Duration	years	30	Residential recreational adult	
	CF	Conversion factor	kg/mg	1.00E-06		
	BW	Body weight	kg	70	EPA, 1991	
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989	
	AT-N	Averaging time (Noncancer)	days	10,950	EPA, 1989	
	DAD	Dermally absorbed dose	mg/kg-day	Calculated	EPA 2004	
Dermal	DA _{event}	Absorbed dose per enent	mg/cm ² -event	Calculated	EPA 2004	DAD (mg/kg-day) =
	EF	Exposure Frequency	days/year	65	3 days/week for May-Sept	(DA _{event} x EF x ED x EV x SA)/(BW x AT)
	ED	Exposure Duration	years	30	Residential recreational adult	
	EV	Event Frequency	events/day	1	Professional Judgment	where
	SA	Surface Area	cm ²	4,500	EPA 1997, 2004 (25% of total area)	DA _{event} (mg/cm²-event) =
	BW	Body weight	kg	70	EPA, 1991	CSD x CF x AF x ABS _d
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989	
	AT-N	Averaging time (Noncancer)	days	10,950	EPA, 1989	
	CSD	Chemical concentration in sediment	mg/kg	EPC	Site Specific	
	CF	Conversion factor	kg/mg	1.00E-06		
	AF	Soil-Skin Adherence factor	mg/cm ² -event	1	MADEP (2002-B - sediment)	
	ABS _d	Dermal Absorption fraction	unitless	chemical specific	EPA 2004	

Notes:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1995: Supplemental Guidance to RAGS: Region IV Bulletins, Human Health Risk Assessment, EPA Region 4, Atlanta, GA, November 1995

EPA, 1997: EPA Exposure Factors Handbook, 1997.

EPA, 2004: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final

MADEP 2002-B: Technical Update, Weighted Skin-Soil Adherence Factors.

VALUES USED FOR DAILY INTAKE CALCULATIONS RAGS D TABLE 4

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Medium: Surface Water

Exposure Medium: Surface Water
Exposure Point: Surface Water
Receptor Population: Recreational

Receptor Age: Adult

Exposure Route	Parameter Code	Parameter Definition	Units	RME Value	RME Rationale/ Reference	Intake Equation/ Model Name
Ingestion	Csw	Chemical concentration in surface water	mg/L	EPC	Site Specific	CDI (mg/kg-day) =
	IR	Ingestion rate - wading	l/hour	0.01	EPA, 1995 (10ml/hr)	(CSW x IR x ET x EF x ED)/(BW x AT)
	ET EF	Exposure time Exposure frequency	hours/day days/year	4 65	Professional Judgment Professional Judgment3 days/week for May-Sept	
	ED	Exposure duration	years	30	Residential recreational adult	
	BW	Body weight	kg	70	EPA, 1991	
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989	
<u> </u>	AT-N	Averaging time (Noncancer)	days	10,950	EPA, 1989	
	DAD	Dermally absorbed dose	mg/kg-day	Calculated	EPA 2004	
Dermal	DA _{event}	Absorbed dose per unit body surface/day	mg/cm ² -event	Calculated	EPA 2004	DAD (mg/kg-day) =
	EV	Event Frequency	events/day	1	Professional Judgment	(DA _{event} x EV x ED x EF x SA)/(BW x AT)
	ED EF	Exposure duration Exposure frequency	years days/year	30 65	Residential recreational adult Professional Judgment3 days/week for May-Sept	
	SA	Surface area	cm ²	4,500	EPA 1997, 2004 (25% of total area)	For organics:
	BW	Body weight	kg	70	EPA, 1991	if t _{event} is less than or equal to t* then:
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989	DA _{event} (mg/cm ² -event) =
	AT-N	Averaging time (Noncancer)	days	5,110	EPA, 1989	2 x FA x Kp x C _{SW} x CF x (SQRT(6 x tau _{event} x t _{event} /PI))
	FA	Fraction absorbed water	unitless	1	EPA 2004 (assume no desquamation)	if t _{event} is greater than t* then:
	Kp	Permeability coefficient	cm/hour	Chemical specific		
	C _{sw}	Chemical concentration in surface water	mg/L	EPC	Site Specific	
	CF	Conversion factor	L/cm³	0.001	Converts L to cm ³	
	tau _{event} t _{event} Pl t*	lag time per event Event Duration Value of Pi Time to reach steady-state (hr) = 2.4 x tau _{event}	hours/event hours/event unitless hours/event	Chemical specific 4 3.14 Chemical specific	 Professional Judgment 	For inorganics: DA _{event} (mg/cm²-event) = Kp x C _{SW} x CF x t _{event}

VALUES USED FOR DAILY INTAKE CALCULATIONS RAGS D TABLE 4

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Surface Water

Exposure Medium: Surface Water
Exposure Point: Surface Water
Receptor Population: Recreational

Receptor Age: Adult

Notes:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1995: Supplemental Guidance to RAGS: Region IV Bulletins, Human Health Risk Assessment, EPA Region 4, Atlanta, GA, November 1995 http://www.epa.gov/region4/waste/ots/healtbul.htm

EPA, 1997: EPA Exposure Factors Handbook, 1997.

EPA, 2004: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final

VALUES USED FOR DAILY INTAKE CALCULATIONS

RAGS D TABLE 4

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Fish

Exposure Medium: Fish
Exposure Point: Fish

Receptor Population: Recreational

Receptor Age: Adult

Exposure Route	Parameter Code	Parameter Definition	Units	RME Value	RME Rationale/ Reference	Intake Equation/ Model Name
Ingestion	CS _{fish}	Chemical concentration in fish tissue	mg/kg	EPC	Site Specific	CDI (mg/kg-day) =
	IR _{fish}	Fish ingestion rate	g/meal-day	227	EPA, 2000 (8 oz portion for and adult)	$(CS_{fish} \times IR \times FI \times EF \times ED \times CF)/(BW \times AT)$
	l	Fraction ingested Exposure Frequency	unitless meal-days/year	1 41	Professional Judgment 1.05 meal/week (EPA, 1997-Table 10-63/ 90th percentile) for 9 temperate months of the year (39 weeks)	
	ED	Exposure Duration	years	30	Residential recreational adult	
	CF	Conversion factor	kg/g	1.00E-03		
	вw	Body weight	kg	70	EPA, 1991	
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989	
	AT-N	Averaging time (Noncancer)	days	10,950	EPA, 1989 (ED * 365)	

Notes:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1997: EPA Exposure Factors Handbook, 1997.

EPA, 2000: Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories: Volume II Risk Assessment and Fish Consupmption Limits, Third Edition.

VALUES USED FOR DAILY INTAKE CALCULATIONS

RAGS D TABLE 4

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Sediment

Exposure Medium: Sediment

Exposure Point: Sediment

Receptor Population: Recreational User

Receptor Age: Child

		Parameter Definition				
Exposure Route			Units	RME	RME	Intake Equation/
	Code			Value	Rationale/	Model Name
ļ					Reference	
Ingestion	CSD	Chemical concentration in sediment	mg/kg	EPC	Site Specific	CDI (mg/kg-day) =
	IR	Ingestion rate	mg/day	200	EPA, 1995 (same as soil)	(CSD x IR x FI x EF x ED x CF)/(BW x AT)
\\	FI	Fraction ingested	unitless	100%	Professional Judgment	Ì
	EF	Exposure Frequency	days/year	65	3 days/week for May-Sept	
	ED	Exposure Duration	years	6	Used EPA 1991 value for residential child	
	CF	Conversion factor	kg/mg	1.00E-06		
	ВW	Body weight	kg	15	EPA, 1991	
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989	
	AT-N	Averaging time (Noncancer)	days	2,190	EPA, 1989	
	DAD	Dermally absorbed dose	mg/kg-day	Calculated	EPA 2004	
Dermal	DA _{event}	Absorbed dose per enent	mg/cm ² -event	Calculated	EPA 2004	DAD (mg/kg-day) =
	EF	Exposure Frequency	days/year	65	3 days/week for May-Sept	(DA _{event} x EF x ED x EV x SA)/(BW x AT)
	ED	Exposure Duration	years	6	Used EPA 1991 value for residential child	
	EV	Event Frequency	events/day	1	3	where
	SA	Surface Area	cm ²	1,650	25% of the average (male and female) of 50 th percentile total body surface areas for age = 0 to	
					6 years (LISEDA 2004)	DA _{event} (mg/cm ² -event) =
	5).4.			45		
	BW	Body weight	kg	15	,	CSD x CF x AF x ABS _d
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989	
	AT-N	Averaging time (Noncancer)	days	2,190	EPA, 1989	
	CSD	Chemical concentration in sediment	mg/kg	EPC	Site Specific	
	CF	Conversion factor	kg/mg	1.00E-06		
	AF	Soil-Skin Adherence factor	mg/cm ² -event	1	MADEP (2002-B - sediment)	
	ABS _d	Dermal Absorption fraction	unitless	chemical specific	EPA 2004	

Notes:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1995: Supplemental Guidance to RAGS: Region IV Bulletins, Human Health Risk Assessment, EPA Region 4, Atlanta, GA, November 1995

EPA, 1997: EPA Exposure Factors Handbook, 1997.

EPA, 2004: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final MADEP 2002-B: Technical Update, Weighted Skin-Soil Adherence Factors.

TABLE 3-11 VALUES USED FOR DAILY INTAKE CALCULATIONS RAGS D TABLE 4 FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Surface Water

Receptor Population: Recreational User

Receptor Age: Child

Exposure Route	Parameter Code	Parameter Definition	Units	RME Value	RME Rationale/ Reference	Intake Equation/ Model Name
Ingestion	CSW	Chemical concentration in surface water	mg/L	EPC	Site Specific	CDI (mg/kg-day) =
	IR	Ingestion rate - wading	l/hour	0.05	EPA, 1995 (50ml/hr)	(CSW x IR x ET x EF x ED)/(BW x AT)
	ET EF	Exposure Time Exposure Frequency	hours/day days/year	4 65	Professional Judgment Professional Judgment3 days/week for May-Sept	
	ED	Exposure Duration	years	6	EPA, 1991	
	BW	Body weight	kg	15	EPA, 1991	
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989	
	AT-N	Averaging time (Noncancer)	days	2,190	EPA, 1989	
	DAD	Dermally absorbed dose	mg/kg-day	Calculated	EPA 2004	
Dermal	DA _{event}	Absorbed dose per unit body surface/day	mg/cm ² -event	Calculated	EPA 2004	DAD (mg/kg-day) =
	EV	Event Frequency	events/day	1	Professional Judgment	(DA _{event} x EV x ED x EF x SA)/(BW x AT)
	ED EF	Exposure duration Exposure frequency	years days/year	6 65	Recreational child Professional Judgment3 days/week for May-Sept	
	SA	Surface area	cm ²	1,650	EPA 1997, 2004 (25% of total area)	For organics:
	BW	Body weight	kg	15	EPA, 1991	if t _{event} is less than or equal to t* then:
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989	DA _{event} (mg/cm ² -event) =
	AT-N	Averaging time (Noncancer)	days	2,190	EPA, 1989	2 x FA x Kp x C _{SW} x CF x (SQRT(6 x tau _{event} x t _{event} /PI))
	FA	Fraction absorbed water	unitless	1	EPA 2004 (assume no desquamation)	
	Кр	Permeability coefficient	cm/hour	Chemical specific		
	Csw	Chemical concentration in surface water	mg/L	EPC	Site Specific	
	CF	Conversion factor	L/cm ³	0.001	Converts L to cm ³	
	tau _{event}	lag time per event	hours/event	Chemical specific		For inorganics:
	t _{event}	Event Duration	hours/event	4	Professional Judgment	DA _{event} (mg/cm²-event) =
	PI	Value of Pi	unitless	3.14		Kp x C _{SW} x CF x t _{event}
	t*	Time to reach steady-state (hr) = 2.4 x tau _{event}	hours/event	Chemical specific		

TABLE 3-11 VALUES USED FOR DAILY INTAKE CALCULATIONS RAGS D TABLE 4

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Surface Water

Receptor Population: Recreational User

Receptor Age: Child

Exposure Route Pa	I	Parameter Definition	Units	RME Value	RME Rationale/ Reference	Intake Equation/ Model Name
-------------------	---	----------------------	-------	--------------	--------------------------------	--------------------------------

Notes:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1995: Supplemental Guidance to RAGS: Region IV Bulletins, Human Health Risk Assessment, EPA Region 4, Atlanta, GA, November 1995 http://www.epa.gov/region4/waste/ots/healtbul.htm

EPA, 1997: EPA Exposure Factors Handbook, 1997.

EPA, 2004: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final

VALUES USED FOR DAILY INTAKE CALCULATIONS

RAGS D TABLE 4

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Fish

Exposure Medium: Fish Exposure Point: Fish

Receptor Population: Recreational

Receptor Age: Child

Exposure Route	Parameter Code	Parameter Definition	Units	RME Value	RME Rationale/ Reference	Intake Equation/ Model Name
Ingestion	CS _{fish}	Chemical concentration in fish tissue	mg/kg	EPC	Site Specific	CDI (mg/kg-day) =
	IR _{fish}	Fish ingestion rate	g/meal-day	85	EPA, 2000 (3 oz portion for a child)	(CS _{fish} x IR x FI x EF x ED x CF)/(BW x AT)
		Fraction ingested Exposure Frequency	unitless meal-days/year	1 41	Professional Judgment 1.05 meal/week (EPA, 1997-Table 10-63/ 90th percentile) for 9 temperate months of the year (39 weeks)	
	ED	Exposure Duration	years	6	Residential recreational child	
	CF	Conversion factor	kg/g	1.00E-03		
	BW	Body weight	kg	15	EPA, 1991	
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989	
	AT-N	Averaging time (Noncancer)	days	2,190	EPA, 1989	

Notes:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1997: EPA Exposure Factors Handbook, 1997.

EPA, 2000: Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories: Volume II Risk Assessment and Fish Consupmption Limits, Third Edition.

VALUES USED FOR DAILY INTAKE CALCULATIONS

RAGS D TABLE 4

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Fish

Exposure Medium: Fish
Exposure Point: Fish

Receptor Population: Subsistence

Receptor Age: Adult

Exposure Route	Parameter Code	Parameter Definition	Units	RME Value	RME Rationale/ Reference	Intake Equation/ Model Name
Ingestion	CS _{fish}	Chemical concentration in fish tissue	mg/kg	EPC	Site Specific	CDI (mg/kg-day) =
	IR_{fish}	Fish ingestion rate	g/meal-day	227	EPA, 2000 (8 oz portion for and adult)	(CS _{fish} x IR x FI x EF x ED x CF)/(BW x AT)
	FI EF	Fraction ingested Exposure Frequency	unitless meal-days/year	1 273	Professional Judgment Assumed 7 meals/week for 9 temperate months of the year (39 weeks)	
	ED	Exposure Duration	years	30	EPA 1991 for Residential adult	
	CF	Conversion factor	kg/g	1.00E-03		
	вw	Body weight	kg	70	EPA, 1991	
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989	
	AT-N	Averaging time (Noncancer)	days	10,950	EPA, 1989	

Notes:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1997: EPA Exposure Factors Handbook, 1997.

EPA, 2000: Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories: Volume II Risk Assessment and Fish Consuproption Limits, Third Edition.

VALUES USED FOR DAILY INTAKE CALCULATIONS

RAGS D TABLE 4

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Fish

Exposure Medium: Fish
Exposure Point: Fish

Receptor Population: Subsistence

Receptor Age: Child

Exposure Route	Parameter Code	Parameter Definition	Units	RME Value	RME Rationale/ Reference	Intake Equation/ Model Name
Ingestion	CS _{fish}	Chemical concentration in fish tissue	mg/kg	EPC	Site Specific	CDI (mg/kg-day) =
	IR_{fish}	Fish ingestion rate	g/meal-day	85	EPA, 2000 (3 oz portion for a childt)	(CS _{fish} x IR x FI x EF x ED x CF)/(BW x AT)
	FI EF	Fraction ingested Exposure Frequency	unitless meal-days/year	1 273	Professional Judgment Assumed 7 meals/week for 9 temperate months of the year (39 weeks)	
	ED	Exposure Duration	years	6	EPA 1991 for Residential child	
	CF	Conversion factor	kg/g	1.00E-03		
	BW	Body weight	kg	15	EPA, 1991	
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989	
	AT-N	Averaging time (Noncancer)	days	10,950	EPA, 1989	

Notes:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1996: EPA Soil Screening Guidance: Technical Background Document, May 1996.

EPA, 2000: Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories: Volume II Risk Assessment and Fish Consupmption Limits, Third Edition.

TABLE 3-15 DERMAL ABSORPTION FRACTION FROM SOIL GROVE POND/PLOW SHOP POND

	Dermal Absorption Fraction	
Compound	(ABS _d)	Notes
Aluminum	NQ- Addressed as an uncertainty	
Antimony	NQ- Addressed as an uncertainty	
Arsenic	0.03	
Barium	NQ- Addressed as an uncertainty	
Cadmium (in solid media)	0.001	
Cadmium (in water)	NA	
Chromium, total	NQ- Addressed as an uncertainty	
Copper	NQ- Addressed as an uncertainty	
Iron	NQ- Addressed as an uncertainty	
Lead	NQ- Addressed as an uncertainty	
Manganese (in sediment or water)	NQ- Addressed as an uncertainty	
Manganese (in food)	NQ- Addressed as an uncertainty	
Mercury	NQ- Addressed as an uncertainty	
Selenium	NQ- Addressed as an uncertainty	
Thallium	NQ- Addressed as an uncertainty	
Vanadium	NQ- Addressed as an uncertainty	
Zinc	NQ- Addressed as an uncertainty	
Chloroform	NQ- Addressed as an uncertainty	
Hexachlorocyclohexane, alpha-	0.04	
Methylene chloride	NQ- Addressed as an uncertainty	
Benz(a)anthracene	0.13	
Benzo(a)pyrene	0.13	
Benzo(b)fluoranthene	0.13	
Benzo(k)fluoranthene	0.13	
Chrysene	0.13	
Dibenz(ah)anthracene	0.13	
Indeno(1,2,3-cd)pyrene	0.13	
Naphthalene	0.13	
Bis(2-ethylhexyl) phthalate	0.1	
PCB 1254	0.14	
PCBs, total	0.14	а
DDD, p,p'-	0.03	а
DDE, p,p'-	0.03	

Note:

(1) Source: EPA 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final

(a) Surrogate value from DDT

Dermal Worksheet

Intermediate Variables for Calculating DA (event) GROVE POND/PLOW SHOP POND

Calculation of DA event for Surface Water

Dermal	DA _{event}	Absorbed dose per unit body surface/day	mg/cm ² -event	Calculated	EPA 2004
	FA	Fraction absorbed water	unitless	1	EPA 2004 (assume no desquamation)
	Кр	Permeability coefficient	cm/hour	Chemical specific	==
	CSW	Chemical concentration in surface water	mg/L	EPC	Site Specific
	CF	Conversion factor	L/cm ³	0.001	Converts L to cm ³
	tau _{event}	lag time per event	hours/event	Chemical specific	
	t _{event}	Event Duration	hours/event	4	Professional Judgment
	PI	Value of Pi	unitless	3.14	22
	t*	Time to reach steady-state (hr) = 2.4 x tau _{event}	hours/event	Chemical specific	
		1.0			

DA event for Organics

where t_{event} is less than or equal to t* then:

Equation 1

DA_{event} (mg/cm²-event) =

2 x FA x Kp x C_{SW} x CF x (SQRT(6 x tau_{event} x t_{event}/PI))

where tevent is greater than t* then:

Equation 2

If
$$t_{event} > t^*$$
, then: $DA_{event} = FA \times K_p \times C_w \left[\frac{t_{event}}{1+B} + 2 \tau_{event} \left(\frac{1+3 B+3 B^2}{(1+B)^2} \right) \right]$ x CF

Organic COPCs in Surface water	t _{event}	t*		t*>t event	Equation to Use for DA event		Chem Specific Factor1	FA	1.		Chem Specific Csw		Factor2	tau _{event}	t _{event}	PI	В
Grove Pond				Charles .	in an one	ON THE CONTROL OF						1317.000.00		0.0000		25 75 75	
Bis(2-ethylhexyl) phthalate		4	39.93	Yes	Equation 1	1.97E-05	2		1	2.50E-02	0.0350	0.001	6	16.64	4	3.142	0.2
Plow Shop Pond						100000000000000000000000000000000000000						10-0.1010111				0.001/0.01/0	
Hexachlorocyclohexane, alpha-	1	4	10.97	Yes	Equation 1	6.81E-09	2		1	1.10E-02	0.0000524	0.001	6	4.57	4	3.142	0.1
Chloroform		4	1.19	No	Equation 2	4.45E-08	2		1	6.80E-03	0.00131	0.001	6	0.5	4	3.142	
Methylene chloride		4	0.76	No	Equation 2	1.31E-07	2		1	3.50E-03	0.00804	0.001	6	0.32	4	3.142	0

Dermal Worksheet

Intermediate Variables for Calculating DA(event) GROVE POND/PLOW SHOP POND

Calculation of DA event for Surface Water DA event for Inorganics

 DA_{event} (mg/cm²-event) = Kp x C_{SW} x CF x t_{event}

Inrganic				Source of	Chem Specific	Chem Specific	
COPCs in Surface water	tevent		DA event	Кр	Кр	Csw	CF
Grove Pond							
Arsenic	4		3.07E-07	default	0.001	0.0767	0.001
Barium	4		2.80E-05	default	0.001	6.99	0.001
Chromium, total	4		5.92E-07	experimental	0.002	0.0740	0.001
Iron	4		2.77E-04	default	0.001	69.2	0.001
Lead	4		4.68E-08	default	0.001	0.0117	0.001
Manganese	4		4.48E-04	default	0.001	112	0.001
Zinc	4		1.73E-05	experimental	6.00E-04	7.19	0.001
Plow Shop Pond							
Arsenic	4		6.04E-07	default	0.001	0.151	0.001
Iron	4		2.39E-05	default	0.001	5.97	0.001
Lead	4		1.52E-09	default	0.001	0.000379	0.001
Manganese	4		5.92E-07	default	0.001	0.148	0.001

TABLE 4-1 NON-CANCER TOXICITY DATA -- ORAL/DERMAL RAGS D TABLE 5 GROVE POND / PLOW SHOP POND

Chemical of Potential	Chronic/ Subchronic	Oral	RfD	Oral Absorption Efficiency for Dermal	Absorbed Rf	D for Dermal 2)	Primary Target	Combined Uncertainty/Modifying	RfD:Tar	get Organ(s)
Concern		Value	Units	(ABS _{GI}) (1)	Value	Units	Organ(s)	Factors	Source(s)	Date(s)
Aluminum	Chronic	1.00E+00	mg/kg/day	1.00	1.00E+00	mg/kg-day	Central nervous system	100	PPRTV	3/15/2004
Antimony	Chronic	4.00E-04	mg/kg/day	0.15	6.00E-05	mg/kg-day	Blood	1000	IRIS	8/29/2005
Arsenic	Chronic	3.00E-04	mg/kg/day	1.00	3.00E-04	mg/kg-day	Skin	3	IRIS	8/29/2005
Barium	Chronic	2.00E-01	mg/kg/day	0.07	1.40E-02	mg/kg-day	Cardiovascular system, kidney	300	IRIS	8/29/2005
Cadmium (in solid media)	Chronic	1.00E-03	mg/kg/day	0.025	2.50E-05	mg/kg-day	Kidney	10	IRIS	8/29/2005
Cadmium (in water)	Chronic	5.00E-04	mg/kg/day	0.05	2.50E-05	mg/kg-day	Kidney	10	IRIS	8/29/2005
Chromium, total	Chronic	3.00E-03	mg/kg/day	0.013	3.90E-05	mg/kg-day	Gastrointestinal system	900	IRIS ª	8/29/2005
Copper	Chronic	3.70E-02	mg/kg/day	1.00	3.70E-02	mg/kg-day	Gastrointestinal system	2	HEAST ^b	7/1/1997
Iron	Chronic	3.00E-01	mg/kg/day	1.00	3.00E-01	mg/kg-day	Gastrointestinal system	NQ	NCEA	12/28/2004
Lead	NA	NA	NA	1.00	NA	NA	Central nervous system	NA	IRIS	8/29/2005
Manganese (in sediment or water)	Chronic	2.40E-02	mg/kg/day	0.04	9.60E-04	mg/kg-day	Central nervous system	3	IRIS°	8/29/2005
Manganese (in food)	Chronic	1.40E-01	mg/kg/day	0.04	5.60E-03	mg/kg-day	Central nervous system	1	IRIS	8/29/2005
Mercury	Chronic	3.00E-04	mg/kg/day	0.07	2.10E-05	mg/kg-day	Immune system	1000	IRIS ^d	8/29/2005
Selenium	Chronic	5.00E-03	mg/kg/day	1.00	5.00E-03	mg/kg-day	entral nervous system, Liver, Ski	3	IRIS	8/29/2005
Thallium	Chronic	6.60E-05	mg/kg/day	1.00	6.60E-05	mg/kg-day	Liver	3000	PRG	12/28/2004
Vanadium	Chronic	1.00E-03	mg/kg/day	0.03	2.60E-05	mg/kg-day	Whole body	NQ	NCEA	12/28/2004
Zinc	Chronic	3.00E-01	mg/kg/day	1.00	3.00E-01	mg/kg-day	Blood	3	IRIS	8/29/2005
Chloroform	Chronic	1.00E-02	mg/kg/day	1.00	1.00E-02	mg/kg-day	Liver	100	IRIS	8/29/2005
Hexachlorocyclohexane, alpha-	Chronic	5.00E-04	mg/kg/day	1.00	5.00E-04	mg/kg-day	Kidney, Liver	NQ	NCEA	12/28/2004
Methylene chloride	Chronic	6.00E-02	mg/kg/day	1.00	6.00E-02	mg/kg-day	Liver	100	IRIS	8/29/2005
Benz(a)anthracene	NA	NA	NA	1.00	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	NA	NA	NA	1.00	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	NA	NA	NA	1.00	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	NA	NA	NA	1.00	NA	NA	NA	NA	NA	NA
Chrysene	NA	NA	NA	1.00	NA	NA	NA	NA	NA	NA
Dibenz(ah)anthracene	NA	NA	NA	1.00	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	NA	NA	NA	1.00	NA	NA	NA	NA	NA	NA
Naphthalene	Chronic	2.00E-02	mg/kg/day	1.00	2.00E-02	mg/kg-day	Whole body	3000	IRIS	8/29/2005
Bis(2-ethylhexyl) phthalate	Chronic	2.00E-02	mg/kg/day	1.00	2.00E-02	mg/kg-day	Liver	1000	IRIS	8/29/2005
PCB 1254	Chronic	2.00E-05	mg/kg/day	1.00	2.00E-05	mg/kg-day	Immune system, Eyes, Skin	300	IRIS	8/29/2005
PCBs, total	Chronic	2.00E-05	mg/kg/day	1.00	2.00E-05	mg/kg-day	Immune system, Eyes, Skin	300	IRIS ^f	8/29/2005
DDD, p,p'-	Chronic	2.00E-03	mg/kg/day	1.00	2.00E-03	mg/kg-day	Liver	100	PPRTV	8/29/2005

TABLE 4-1

NON-CANCER TOXICITY DATA -- ORAL/DERMAL

RAGS D TABLE 5

GROVE POND / PLOW SHOP POND

Chemical of Potential	Chronic/ Subchronic			Oral Absorption Efficiency for Dermal		D for Dermal 2)	Primary Target	Combined Uncertainty/Modifying	RfD:Target Organ(s)		
Concern		Value	Units	(ABS _{GI}) (1)	Value	Units	Organ(s)	Factors	Source(s)	Date(s)	
DDE, p,p'-	Chronic	2.00E-03	mg/kg/day	1.00	2.00E-03	mg/kg-day	Liver	100	PPRTV ^g	8/29/2005	

Notes:

(1) Source: EPA 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final

(2) From EPA 2004-- $RfD_{ABS} = RfD_o x ABS_{GI}$

Additional Notes:

^a Hexavalent chromium used as a surrogate.

Definitions: HEAST = Health Effects Assessment Summary Table.

IRIS = Integrated Risk Information System.

NA = not available.

NQ = not quantified

NCEA = National Center for Environmental Assessment.

PRG = USEPA Region 9 Preliminary Remediation Goals.

PPRTV = Provisional Peer Reviewed Toxicity Value.

^b MCLG (1.3 mg/L) * 2 L/day / 70 kg.

^c Assumes 50% dietary intake.

^d Mercuric chloride used as a surrogate.

^f PCB 1254 used as a surrogate.

^g p,p'-DDD used as a surrogate.

TABLE 4-2 CANCER TOXICITY DATA -- ORAL/DERMAL RAGS D TABLE 6

GROVE POND / PLOW SHOP POND

Chemical of Potential	Oral Cancer	Slope Factor	Oral Absorption Efficiency for Dermal		er Slope Factor	Weight of Evidence/ Cancer Guideline	0	ral CSF
Concern	Value	Units	(ABS _{GI}) (1)	Value	Units	Description (3)	Source(s)	Date(s)
Aluminum	NC	NC	1.00	NC	NC	NC	NC	NC
Antimony	NC	NC	0.15	NC	NC	NC	NC	NC
Arsenic	1.50E+00	(mg/kg-day) ⁻¹	1.00	1.50E+00	(mg/kg-day) ⁻¹	A	IRIS	8/29/2005
Barium	NC	NC	0.07	NC	NC	NC	NC	NC
Cadmium (in solid media)	NC	NC	0.025	NC	NC	NC	NC	NC
Cadmium (in water)	NC	NC	0.025	NC	NC	NC	NC	NC
Chromium, total	NC	NC	0.013	NC	NC	NC	NC	NC
Copper	NC	NC	1.00	NC	NC	NC	NC	NC
Iron	NC	NC	1.00	NC	NC	NC	NC	NC
Lead	NA	NA	1.00	NA	NA	B2	IRIS ª	8/29/2005
Manganese (in sediment or water	NC	NC	0.04	NC	NC	NC	NC	NC
Manganese (in food)	NC	NC	0.04	NC	NC	NC	NC	NC
Mercury	NC	NC	0.07	NC	NC	NC	NC	NC
Selenium	NC	NC	1.00	NC	NC	NC	NC	NC
Thallium	NC	NC	1.00	NC	NC	NC	NC	NC
Vanadium	NC	NC	0.03	NC	NC	NC	NC	NC
Zinc	NC	NC	1.00	NC	NC	NC	NC	NC
Chloroform	NA	NA	1.00	NA	NA	B2	IRIS ^c	8/29/2005
Hexachlorocyclohexane, alpha-	6.30E+00	(mg/kg-day) ⁻¹	1.00	6.30E+00	(mg/kg-day) ⁻¹	B2	IRIS	8/29/2005
Methylene chloride	7.50E-03	(mg/kg-day) ⁻¹	1.00	7.50E-03	(mg/kg-day) ⁻¹	B2	IRIS	8/29/2005
Benz(a)anthracene	7.30E-01	(mg/kg-day) ⁻¹	1.00	7.30E-01	(mg/kg-day) ⁻¹	B2	NCEA	12/28/2004
Benzo(a)pyrene	7.30E+00	(mg/kg-day) ⁻¹	1.00	7.30E+00	(mg/kg-day) ⁻¹	B2	IRIS	8/29/2005
Benzo(b)fluoranthene	7.30E-01	(mg/kg-day) ⁻¹	1.00	7.30E-01	(mg/kg-day) ⁻¹	B2	NCEA	12/28/2004
Benzo(k)fluoranthene	7.30E-02	(mg/kg-day) ⁻¹	1.00	7.30E-02	(mg/kg-day) ⁻¹	B2	NCEA	12/28/2004
Chrysene	7.30E-03	(mg/kg-day) ⁻¹	1.00	7.30E-03	(mg/kg-day) ⁻¹	B2	NCEA	12/28/2004
Dibenz(ah)anthracene	7.30E+00	(mg/kg-day) ⁻¹	1.00	7.30E+00	(mg/kg-day) ⁻¹	B2	NCEA	12/28/2004
Indeno(1,2,3-cd)pyrene	7.30E-01	(mg/kg-day) ⁻¹	1.00	7.30E-01	(mg/kg-day) ⁻¹	B2	NCEA	12/28/2004
Naphthalene	NC	NC	1.00	NC	NC	С	IRIS	8/29/2005
Bis(2-ethylhexyl) phthalate	1.40E-02	(mg/kg-day) ⁻¹	1.00	1.40E-02	(mg/kg-day) ⁻¹	B2	IRIS	8/29/2005
PCB 1254	2.00E+00	(mg/kg-day) ⁻¹	1.00	2.00E+00	(mg/kg-day) ⁻¹	B2	IRIS ^b	8/29/2005
PCBs, total	2.00E+00	(mg/kg-day) ⁻¹	1.00	2.00E+00	(mg/kg-day) ⁻¹	B2	IRIS ^b	8/29/2005
DDD, p,p'-	2.40E-01	(mg/kg-day) ⁻¹	1.00	2.40E-01	(mg/kg-day) ⁻¹	B2	IRIS	8/29/2005

TABLE 4-2

CANCER TOXICITY DATA -- ORAL/DERMAL

RAGS D TABLE 6

GROVE POND / PLOW SHOP POND

Chemical of Potential	Oral Cancer Slope Factor		Oral Cancer Slope Factor Oral Absorption Efficiency for Dermal			er Slope Factor	Weight of Evidence/ Cancer Guideline	Oral CSF	
Concern	Value	Units	(ABS _{GI}) (1)	Value	Units	Description (3)	Source(s)	Date(s)	
DDE, p,p'-	3.40E-01	(mg/kg-day) ⁻¹	1.00	3.40E-01	(mg/kg-day) ⁻¹	B2	IRIS	8/29/2005	

Notes:

- (1) Source: EPA 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final
- (2) From EPA 2004-- $SF_{ABS} = SF_o / ABS_{GI}$
- (3) Weight-of-evidence for classifying the chemical as a human carcinogen.
 - A = human carcinogen (sufficient evidence from epidemiologic studies to support a causal association between exposure and cancer in humans).
 - B2 = probable human carcinogen (sufficient evidence of carcinogenicity in animals and inadequate data in humans).
 - C = possible human carcinogen (limited evidence of carcinogenicity in animals and no data in humans).

Additional Notes:

^a USEPA recommends that a numeric estimate of carcinogenicity not be used.

^b RME cancer slope factor for PCBs with high risk and persistence.

^c USEPA considers the oral reference dose protective against cancer.

Definitions: IRIS = Integrated Risk Information System.

NC = not carcinogenic.

NCEA = National Center for Environmental Assessment.

RME = reasonable maximum exposure.

TABLE 5-1
CUMULATIVE RISK SUMMARY BY RECEPTOR
GROVE POND

Receptor	Medium	Cancer Risk	Chemicals with Risks Greater than 1E-6	Noncancer Hazard Index	Chemicals with Hazard Quotients Greater than 1	Lead Result
Recreational Adult	Sediment	7.E-05	arsenic, benzo(a)pyrene, dibenz(ah)anthracene	0.6	none	Theshold not exceeded
	Surface Water	9.E-06	arsenic, bis(2-ethylhexyl)phthalate	12.5	manganese	NA
	Fish	3.E-05	PCBs, total	2.3	PCBs, total	NA
	Total	1.E-04		15.3		NA
Recreational Child	Sediment	6.E-05	arsenic, benzo(a)pyrene	4.0	arsenic	
	Surface Water	2.E-05	arsenic	22.0	manganese	Theshold not exceeded
	Fish	1.E-05	PCBs, total	4.0	mercury, PCBs, total	
	Total	1.E-04		30.1	:==:	
Subsistance Angler Adult	Fish	2.E-04	PCBs, total DDD, p,p'- DDE, p,p'-	15.1	mercury PCB, total	NA
Subsistance Angler Child	Fish	7.E-05	PCBs, total DDD, p,p'- DDE, p,p'-	5.3	mercury PCB, total	Theshold exceeded

TABLE 5-2 CUMULATIVE RISK SUMMARY BY RECEPTOR PLOW SHOP POND

Receptor	Medium	Cancer Risk	Chemicals with Risks Greater than 1E-6	Noncancer Hazard Index	Chemicals with Hazard Quotients Greater than 1	Lead Result
Recreational Adult	Sediment	4.E-04	arsenic benzo(a)pyrene benzo(b)fluoranthene dibenz(ah)anthracene indeno(1,2,3-cd)pyrene	3.1	arsenic chromium	Theshold not exceeded
	Surface Water	1.E-05	arsenic	0.1	None	NA
	Fish	2.E-05	arsenic	3.4	mercury	NA
	Total	4.E-04	==	6.7	22	NA
Recreational Child	Sediment Surface Water	4.E-04 5.E-05	arsenic benzo(a)pyrene benzo(b)fluoranthene dibenz(ah)anthracene indeno(1,2,3-cd)pyrene arsenic	21.0	arsenic chromium arsenic	Theshold not exceeded
	Fish	7.E-06	arsenic	6.0	mercury	Not a COPC
	Total	4.E-04		28.3		NA
Subsistance Angler Adult		1.E-04	arsenic DDE, p,p'-	22.7	mercury vanadium	Not a COPC
Subsistance Angler Child	Fish	5.E-05	arsenic DDE, p,p'-	7.9	mercury	Not a COPC

Responses to EPA comments on Draft Human Health Risk Exposure Parameters Comments received August 9, 2005

EPA COMMENTS:

1. Tables 1, 4 and un-numbered adolescent surface water table: There are some discrepancies between the equations in the tables and the dermal guidance. Specifically, DAevent should be mg/cm2-day rather than mg/m3-day. Fraction absorbed (FA) is missing. The conversion factor (CF, 1/cm3) should be replaced by t event (hr/day). Please see box 3.2, 3.3, and 3.4 in the dermal guidance. Please provide an example calculation that can be checked by reference to the appendix in the guidance.

RESPONSE: GF has updated all equations to match those included in the Final RAGS:E guidance. Typographical errors in the units were corrected. GF has included an example of the calculations performed in Appendix B of the human health risk assessment.

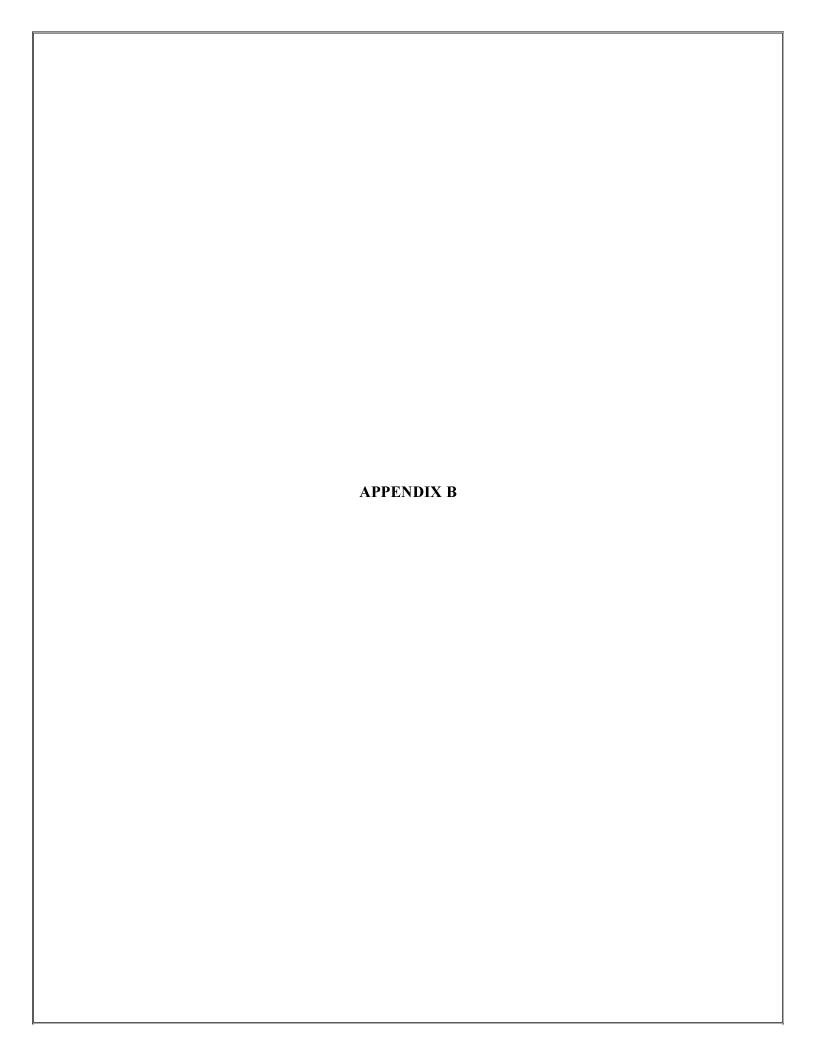
2. <u>Tables 2, 5, and un-numbered adolescent sediment table</u>: The dermal equation should be replaced by the dermal equation for soil contact from the dermal guidance (box 3.11 and 3.12). Please provide an example calculation that can be checked by reference to the appendix in the guidance.

RESPONSE: GF has updated all equations to match those included in the Final RAGS:E guidance. GF has included an example of the calculations performed in Appendix B of the human health risk assessment.

3. <u>Tables 2, 5, and un-numbered adolescent sediment table</u>: Although the dermal equations will be replaced per item no. 2 above, the conversion factor in the dermal part of these tables should have been 1.00E-06 kg/mg, rather than 1.00E-06 l/cm3.

RESPONSE: Typographical errors in the units have been corrected.

4. <u>Tables 2,5, and un-numbered adolescent sediment table</u>: Please provide a copy or URL for EPA, 1995 (Region IV bulletin) and a paragraph supporting this selection.


RESPONSE: The URL for the cited values is: http://www.epa.gov/region4/waste/ots/healtbul.htm
This reference has been included in the footnotes of the listed tables.

5. <u>Tables 6</u>: In the rationale column, change "Residential recreational adult" to "Residential recreational child"

RESPONSE: GF has changed the term "Residential recreational adult" to "Residential recreational child" in Table 6.

6. <u>Tables 3 & 6</u>: In the RME Value column, round 40.95 to 41.

RESPONSE: GF has rounded the value for exposure frequency from 40.95 meals per year to 41 meals per year in these tables.

Exposure Point: Sediment

Receptor Population: Recreational

Receptor Age: Adult

CDI (mg/kg-day) = (CSD x IR x FI x EF x ED x CF)/(BW x AT)

Ingestion	CSD	Chemical concentration in sediment	mg/kg	EPC
	IR	Ingestion rate	mg/day	100
il i	FI	Fraction ingested	unitless	100%
	EF	Exposure Frequency	days/year	65
	ED	Exposure Duration	years	30
	CF	Conversion factor	kg/mg	1.00E-06
	BW	Body weight	kg	70
	AT-C	Averaging time (Cancer)	days	25,550
	AT-N	Averaging time (Noncancer)	days	10,950

mg/kg-day=mg/kg+ mg/kg-day

mg/kg-day = mg/kg-day

mg/kg-day = mg/kg-day

(DI (mg/kg-day) = (SD + 100 + 1 + 65 + 36 + 1 = -6 70 + 25,550

CDI (mg/kg-day) = (SD + 109 = -7

RISK RESULT EXAMPLE CALCULATION

Aseric Grove Pond: EPC = 158 ng 1 kg, CSF = 1.5 (mg 1 kg day) 1

CDI = 158 ng 1 kg * 1.09 E - 7 = 1.72 E - 5 mg 1 kg - day

CDI = 158 ng 1 kg * 1.09 E - 7 = 1.72 E - 5 mg 1 kg - day

Risk = 1.72 E - 5 mg 1 kg day + 1.5 (mg/kg day) = 2.58 E - 5

Exposure Point: Surface Water Receptor Population: Recreational

Receptor Age: Adult

CDI (mg/kg-day) =

(CSW x IR x ET x EF x ED)/(BW x AT)

Ingestion	C _{sw}	Chemical concentration in surface water	mg/L	EPC
	IR	Ingestion rate - wading	l/hour	0.01
!	ET	Exposure time	hours/day	4
1	EF	Exposure frequency	days/year	65
1	ED	Exposure duration	years	30
:	BW	Body weight	kg	70
	AT-C	Averaging time (Cancer)	days	25,550
	AT-N	Averaging time (Noncancer)	days	10,950

DIMENSIONAL ANALYSIS

INTAKE FACTOR EXAMPLE CALCULATION

RISK RESULT EXAMPLE CALCULATION

Asenic, Grove Pond: EPC = 0.0767 mg/L, CSFo = 1.5 (mg/kg/day) CDI = 0.076 × 4.36 E - 5 = 3.31 E - 6

Risk = 3.31 E - 6 × 1.5 = 5.0 E - 6

Exposure Point: Fish

Receptor Population: Recreational

Receptor Age: Adult

CDI (mg/kg-day) =

(CSfish x IR x FI x EF x ED x CF)/(BW x AT)

Ingestion	CS _{fish}	Chemical concentration in fish tissue	mg/kg	EPC
	IR _{fish}	Fish ingestion rate	g/meal-day	227
	FI	Fraction ingested	unitless	1
	EF	Exposure Frequency	meal-days/year	41
	ED	Exposure Duration	years	30
	CF	Conversion factor	kg/g	1.00E-03
	BW	Body weight	kg	70
	AT-C	Averaging time (Cancer)	days	25,550
	AT-N	Averaging time (Noncancer)	days	10,950

ing | Kg day = mg | Kg tday

mg | Kg day = mg | Kg tday

mg | Kg day = mg | Kg tday

[INTAKE FACTOR EXAMPLE CALCULATION]

(DI (mg/kg-day) = (Spish + 207 + 1 + 41 + 30 + 15 - 3)

70 + 25,550

(DI (mg/kg-day) + (Spish + 1.56 E - 4)

RISK RESULT EXAMPLE CALCULATION

PCBs Grove Pond: EPC= 0.086 mg/kg, (SF=20(mg/kg-day))

LDI= 0.086 + 1.56 E-4 = 1.34 E-5 (mg/kg-day)

Risk = 1.34 E-5 mg/kg'day # 2.0 (mg/kg-day)-1
Risk = 2.69 E-5

Exposure Point: Sediment

Receptor Population: Recreational

Receptor Age: Adult

DAD (mg/kg-day) =

(DAevent x EF x ED x EV x SA)/(BW x AT)

where:

DAevent (mg/cm2-event) = CSD x CF x AF x ABSd

	DAD	Dermally absorbed dose	mg/kg-day	Calculated
Dermal	DA_{event}	Absorbed dose per enent	mg/cm ² -event	Calculated
	EF	Exposure Frequency	days/year	65
	ED	Exposure Duration	years	30
	EV	Event Frequency	events/day	1
	SA	Surface Area	cm ²	4,500
	BW	Body weight	kg	70
	AT-C	Averaging time (Cancer)	days	25,550
	AT-N	Averaging time (Noncancer)	days	10,950
	CSD	Chemical concentration in sediment	mg/kg	EPC
	CF	Conversion factor	kg/mg	1.00E-06
	AF	Soil-Skin Adherence factor	mg/cm ² -event	1
	ABS₀	Dermal Absorption fraction	unitless	chemical specific

DIMENSIONAL ANALYSIS

1) Aevent (mg/cm²-event)= mg/kg + hl/mg + mg/cm²-event + unitless = mg/cm²-event mg to dofs/yell + years + events + cm = mg

kg.day

Kg.day

INTAKE FACTOR EXAMPLE CALCULATION

DAevent = (SD+15-6+1+3E-2=35-8+CSD Argenic, ABSd= 3E-2 DAD = DAeunt * 65 + 30 + 1 + 4500 = DAevent + 4.91

Arsenic, Grove Port EPC= 158 mg/kg, CSF (mg/kg-day)-1

DAD(mg/kg)day= 158 + 3E-8 + 4.91

DAD = 2,33 E-5

Pask= 2.33E-5 + 1.5 (mg/kg day) = 3.49E-5

Exposure Point: Surface Water Receptor Population: Recreational

Receptor Age: Adult

DAD (mg/kg-day) = (DAevent x EV x ED x EF x SA)/(BW x AT) Where DA_{event} (mg/cm²-event) = See Three possible equations

Calculation of DA event for Surface Water

DA event for Organics

where t_{event} is less than or equal to t^* then:

Equation 1 DA_{event} (mg/cm²-event) = $2 \times FA \times Kp \times C_{SW} \times CF \times (SQRT(6 \times tau_{event} \times t_{event}/PI))$

where t_{event} is greater than t* then:

Equation 2

If
$$t_{event} \ge t^*$$
, then: $DA_{event} = FA \times K_p \times C_w \left[\frac{t_{event}}{1+B} + 2 \tau_{event} \left(\frac{1+3B+3B^2}{(1+B)^2} \right) \right]$ x CF

DA event for Inorganics

$$DA_{event}$$
 (mg/cm²-event) =
Kp x C_{SW} x CF x t_{event}

			event	
Dermal	DA _{event}	Absorbed dose per unit body surface/day	mg/cm ² -day	Calculated
	FA	Fraction absorbed water	unitless	1
	Kp	Permeability coefficient	cm/hour	Chemical specific
	C _{sw}	Chemical concentration in surface water	mg/L	EPC
	CF	Conversion factor	L/cm ³	0.001
	tau _{event}	lag time per event	hours/event	Chemical specific
	t _{event}	Event Duration	hours/event	4
	Pt	Value of Pi	unitless	3.14
ll .	t*	Time to reach steady-state (hr) = 2.4 x tau _{even}	hours/event	Chemical specific

Exposure Point: Surface Water Receptor Population: Recreational

Receptor Age: Adult

DIMENSIONAL ANALYSIS

mg/cmevent = c/n/hosh+ mg/4 tom365 Egl - Devent organic = mg/em2-event Int " mg/4 of hours/event + hours] 4 de INTAKE FACTOR EXAMPLE CALCULATION Example using Bis (2-ethylnexyl) phthalate at Grove Pond For DA event using organics equation 1 DAevent = 2*1 + 2.5E-2 + 0.035 + 0.001 * V where Kp=2.5F-2 towerent=1664 DA event= 1.97E-5 Example using Chloroform at Plow Shop Pond DAevent = 1 x 6.8 15 - 3 x 0.00131 1/10 B = 0 CF = 0.001 DA event = 4.45 E -8 cw = 0.00131 toout = 4 tanevert = 0.5 Example using arsente in Grove Fond DAevent = 0.001 x 0.0767 x 0.001 x 4 KP=0.001 DAcount = 3.1E-7 Csw = 0.0767 CF = 0.001 tevent = 4

Exposure Point: Surface Water Receptor Population: Recreational

Receptor Age: Adult

Verification of DAD

DAD (mg/kg-day) = (DAevent x EV x ED x EF x SA)/(BW x AT)

	DAD	Dermally absorbed dose	mg/kg-day	Calculated
Dermal	DA _{event}	Absorbed dose per unit body surface/day	mg/cm ² -event	Calculated
	EV	Event Frequency	events/day	1
	ED	Exposure duration	years	30
	EF	Exposure frequency	days/year	65
	SA	Surface area	cm ²	4,500
	BW	Body weight	kg	70
	AT-C	Averaging time (Cancer)	days	25,550
	AT-N	Averaging time (Noncancer)	days	5,110

DAD (mg |kg-day) = mg |cy/2-evolt + top = yells x tolys

= mg | kg day

= mg | kg day

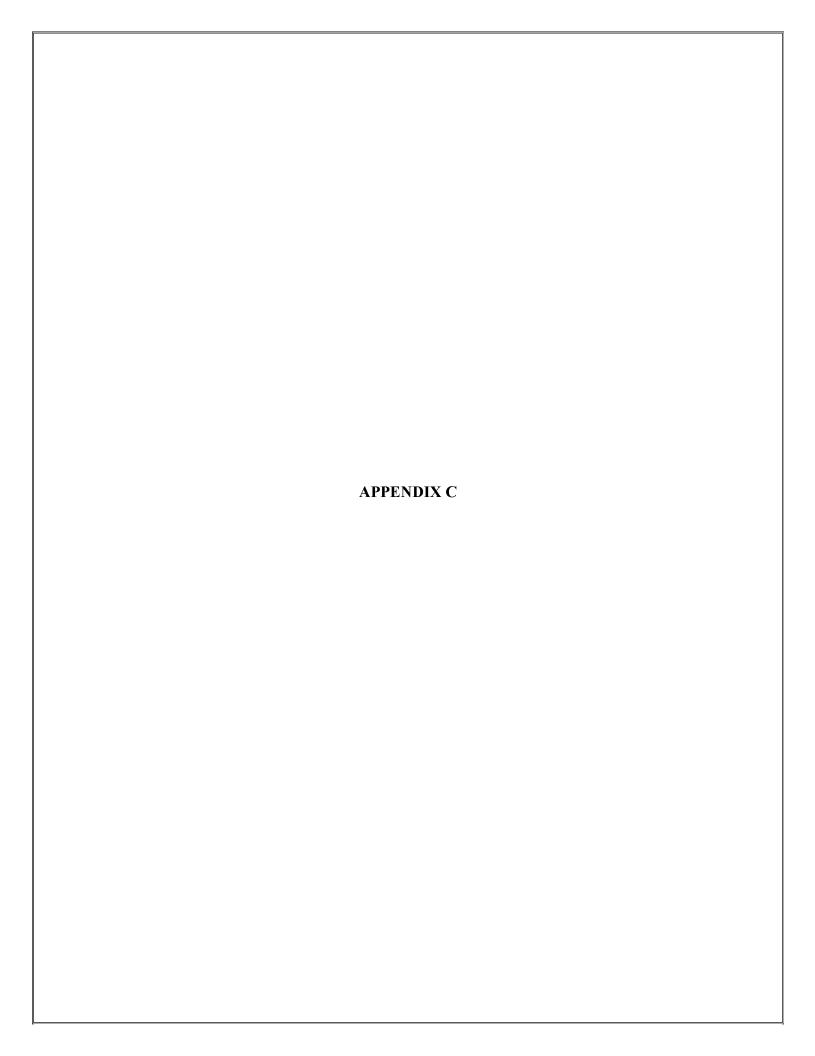
INTAKE FACTOR EXAMPLE CALCULATION

DAD (mg/kg·day) = DA event + 1 + 30 × 65 × 4500

70 × 25,550

DAD (ng/kg·day) = DA event × 4.91

RISK RESULT EXAMPLE CALCULATION


Arsenic, Grove Pand, SW, See DAD on Arsenic from Page 2, CSF, = 1.5 (mg/kg/kg)

Arsenic, Grove Pand, SW, See DAD on Arsenic from Page 2, CSF, = 1.5 (mg/kg/kg)

DAD (mg/kg kay) = 3.1 = .7 + 4.91

DAD 1.52 = -6

RISK = 1.52 = -6

RAGS D TABLE 4

VALUES USED FOR DAILY INTAKE CALCULATIONS FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Medium: Sediment Exposure Medium: Sediment Exposure Point: Sediment

Receptor Population: Recreational

Receptor Age: Adult

Exposure Route	Parameter Code	Parameter Definition	Units	RME Value	RME Rationale/ Reference	Intake Equation/ Model Name	Irtake Fact	ors	1	imes
Ingestion	CSD	Chemical concentration in sediment	mg/kg	EPC	Site Specific	CDI (mg/kg-day) =				
-auth	IR	Ingestion rate	mg/day	100	EPA, 1986 (same as soil)	(CSD x IR x FI x EF x ED x CF)(BW x AT)				
	FI	Fraction ingested	unitless	100%	Professional Judgment					
	EF	Exposure Frequency	days/year	65	3 days/week for May-Sept					
	ED	Exposure Duration	years	30	Residential recreational adult		Intaka Factor-no			
	CF	Conversion factor	kg/mg	1.00E-06	- 0.0			2.56E-07	X	EPC
	BW	Body weight	kg	70	EPA, 1901		Intake Factor-can			
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989			1.10E-07	X	EPC
	AT-N	Averaging time (Nanoancer)	days	10,953	EPA, 1969					
	DAD	Dermally absorbed dose	mg/kg-day	Calcutated	EPA 2004		Intaké Factor	-		
Dermal	DA _{ester}	Absorbed cose per enent	mg/cm²-event	Calculated	EPA 2004	DAD (mg/kg-day) =				
	EF	Exposure Frequency	days/year	65	3 days/week for May-Sept	(DA _{ween} x EF x ED x EV x SA)/(BW x AT)	Intake factor 2-NG			
	ED	Exposure Duration	years	30	Residential recreational adult.			1.15E+01	Х	DA
	EV	Event Frequency	events/day	1	Professional Judgment	where	Intake factor 2-can			
	SA	Surface Area	cm ²	4,500	EPA 1997, 2004 (25% of total area)	DA _{e-ext} (mg/cm ² -event) =		4.93E+00	X	DA
	BW	Body weight	kg	70	EPA, 1991	CSD x CF x AF x ABS _{tf}				
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989		DA event			
	AT-N	Averaging time (Noncancer)	days	10,050	EPA, 1989		Intake Fector 1-NC			
	CSD	Chemical concentration in sediment	mg/kg	EPC	Site Specific		The state of the s	1.00E-06	X EPC	X ABS
	CF	Conversion factor	kg/mg	1,00E-06	44.					
	AF	Solf-Sidn Adherence factor	nig/cm²-event	1	MADEP (2002-B - sediment)		The same of	1.00E-06	X EPC	X ABS
	ABS.	Dermal Absorption fraction	unitiess	chemical specific	EPA 2004					

Notes

EPA, 1999: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/S40/1-89/002.

EPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9265,6-03, March 25, 1991.

EPA, 1995. Supplemental Guidance to RAGS: Region IV Bulletins, Human Health Risk Assessment, EPA Region 4, Atlanta, GA, November 1995.

EPA, 1997; EPA Exposure Factors Handbook, 1997.

EPA, 2004; Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final

MADEP 2002-B: Technical Update, Weighted Skin-Soil Adherence Factors.

RAGS D TABLE 4

VALUES USED FOR DAILY INTAKE CALCULATIONS

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timetrame: Current
Medium: Surface Water
Exposure Medium: Surface Water
Exposure Point: Surface Water
Receptor Population: Recreational
Receptor Age: Adult

xposure Route	Parameter Code	Parameter Definition	Units	FIME Value	Retionals/ Retionals/ Reference	Intake Equation/ Model Name	letake Factors	Times
Ingestion	Can	Chemical concentration in surface water	mg/L	EPC	São Specific	CDI (mg/kg-day) =		
	iR	ingestion rate - wading	thour	0.01	EPA, 1995 (10mi/hr)	(CSW x IR x ET x EF x ED)(BW x AT)		
	ET	Exposure time	hours/day	4.	Professional Judgment			
	EF	Exposure frequency	days/year	65	Professional Judgment-3 days/week for May-Sept			
	ED	Exposure deration	yours	30	Residential recreational adult		Intake Factor-no	
	BW	Body weight	kg	70	EPA, 1991		1.02E-04	XEPC
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1089		Intakia Factor-con	
	AT-N	Averaging time (Nencancer)	days	10,950	EPA, 1989		4.396-05	XEPG
	DAD	Demsally absorbed dose	mg/kg-day	Calculated	EPA 2004		Ionsine Factor	
Dermit	DA	Absorbed does per unit body surface/day	region ³ -event	Cisloutated	EPA 2004	OAD (mg/kg-day) =		
	EV	Event Frequency	events/day	- 1	Professional Judgment	(DA _{read} x EV x ED x EF x SA)(BW x AT)		
	ED	Exposure duration	years	30	Residuesal recreational adult		Intake fector 2-NC	
	EF	Exposure frequency	daystynar	85	Professional Judgment-3 days/week for May-Sept		2.45E+01	X DA _{esci}
	SA	Surface area	cm ³	4,500	EPA 1997, 2004 (25% of total area)	For organics:	intake factor 2-can	
	BW	Body weight	kg kg	Ya	EPA, 1991	if t _{ener} is less than or equal to if then:	4.91E+00	X DA
	AT-C	Averaging time (Ceecer)	days	25,550	EPA, 1989	DA _{send} (mg/cm ² -event) =		
	AT-N	Averaging time (Noncescer)	daya	5,110	EPA, 1989	2 x FA x Kp x C _{EN} x CF x (SQRT(8 x tma_x x t_max)P(I))	DA event	
	FA	Fraction absorbed water	unitiess	4	EPA 2004 (assume no desquamation)	If t _{error} is greater than it then:	See separate sheet	
	Кр	Permeability conflicient	cm/hour	Chemical specific		NI III NI	The second second	
	Con	Clammical concentration in surface water	mot.	EPC	Site Specific			
	CF	Conversion factor	L/om*	0.001	Converts L to cm *			
	filtions.	tag time per event	hours/event.	Chemical specific	**	For learganica:	I PIE	
	Loren	Event Duration	hours/avent	4	Professional Judgment	DA _{most} (mg/om ² -event) =		
	Pi	Value of Ps	unitiess	3.14	44	Kp x Cser x CF x I _{most}		
	r	Time to reach steady-state (hr) = 2.4 x tay	hours/event	Chemical specific		Control of the Contro		

Notes

EPA, 1989: Risk Assessment Goldanos for Superfund. Vol. 1: Human Health Evaluation Manual, Part A, OERR, EPA/540/1-89/002.

EPA, 1991; EPA Human Haath Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors," OSWER Directive 9285,5-03, March 25, 1991

EPA, 1995 Supplemental Guidance to RAGS: Region IV Bulletins, Human Heatth Risk Assessment, EPA Region 4, Atlanta, GA, November 1995 http://www.epa.gov/region4/wasterols/hoat/bull-htm

EPA, 1997: EPA Exposure Factors Handbook, 1997.

EPA, 2004. Risk Assessment Gustance for Superfund Volume I. Human Health Evaluation Manual (Part E, Superium tal Guidance for Denmal Reik Assessment) Final

RAGS D TABLE 4

VALUES USED FOR DAILY INTAKE CALCULATIONS FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Fish

Exposure Medium: Fish Exposure Point: Fish

Receptor Population: Recreational

Receptor Age: Adult

exposure Route	Parameter Code	Parameter Definition	Units	RME Value	RME Rationale/ Reference	Intake Equation/ Model Name	Intake Factors	Times
Ingestion	CS _{sub}	Chemical concentration in fish tissue	mg/kg	EPC	Site Specific	CDI (mg/kg-day) =		
	IR _{Ests}	Fish ingestion rate	g/meal-day	227	EPA, 2000 (8 oz portion for and adult)	(CS _{bh} x IR x FI x EF x ED x CF)(BW x AT		
	FI	Fraction ingested	unidess	1	Professional Judgment			
	EF	Exposure Frequency	meal-days/year	41	1,05 meal/week (EPA, 1997-Table 10-63/ 90th percentile) for 9 temperate months of the year (39 weeks)			
	ED	Exposure Duration	years	30	Residential recreational adult		Intako Factor-no	
	CF	Conversion factor	Ng/g	1.00E-03	**		3.64E-04	X EPC
	BW	Body weight	ka	70	EPA, 1991		Intako Factor-can	
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989		1.56E-04	X EPC
	AT-N	Averaging time (Noncancer)	days	10,950	EPA, 1989 (ED * 365)			

Notes:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manuel, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1997: EPA Exposure Factors Handbook, 1997.

EPA, 2000: Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Volume It Risk Assessment and Fish Consupration Limits, Third Edition.

RAGS D TABLE 4

VALUES USED FOR DAILY INTAKE CALCULATIONS FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timelrame; Current Medium: Sedment Exposure Medium: Sediment Exposure Point: Sediment Receptor Population: Recreational User Receptor Age: Child

хрошин Ясиба	Parsmeter Code	Parameter Definition	Parameter Definition Units		RME Rationale/ Reference	Intake Equation/ Model Name	Intake Factors		Times
Ingestion	CSD	Chemical concentration in sedment	mg/kg	EPC	Site Specific	CDI (reg/kg-day) =			
	IR	Ingestion rate	mg/day	200	EPA, 1995 (same as soil)	(CSD x IR x FI x EF x ED x CF)/(BW x AT			
	FI	Fraction ingested	unitless	100%	Professional Judgment				
	EF	Exposure Frequency	days/year	65	3 days/week for May-Sept				
	ED	Exposure Duration	years	6:	Used EPA 1991 value for residential child		Intake Factor-no		
	CF	Conversion factor	kg/mg	1,00E-06	4.			2.395-06	XEPC
	BW	Body weight	kg	15	EPA, 1991		Intake Factor-can		
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989			2.05E-07	X EPC
	AT-N	Averaging time (Nancancer)	days	2,190	EPA, 1989				
	DAD	Dermally absorbed dose	mg/kg-day	Calculated	EPA 2004		Intake Factor		
Dermal	DA _{even}	Absorbed dose per enent	ing/cm²-event	Calculated	EPA 2004	DAD (mg/kg-day) =			
110.40	EF	Exposure Frequency	days/year	65	3 days/week for May-Sept	(DA _{ment} x EF x ED x EV x SA)/(BW x AT)	Intake factor 2-NC		
	ED	Exposure Duration	years	6	Used EPA 1991 value for residential child			1.97E+01	X DA _{vere}
	EV	Event Frequency	events/day	1	The state of the s	where	Intake factor 2-can		
	SA	Surface Area	cm ²	1,850	25% of the average (male and female) of 50°				
					percentile total body surface areas for age = 0 to fi years (USEPA, 2004).	DA _{mer} (mg/cm ² -event) =		1.69E+00	X DA _{men}
	DW	Body weight	No	15	CONTRACTOR OF THE CO	CSD x CF x AF x ABS _d			27 (27) (80.81)
	AT-C	Averaging time (Cancer)	days	25.550	EPA 1989	1	Ineve Ad		
	AT-N	Averaging time (Noncancer)	days	2,190	EPA 1989		Intake Factor 1-NC		
	CSD	Chemical concentration in sediment	mg/kg	EPC	Site Specific			1.00E-06	X EPC X ABS
	CF	Conversion factor	kg/mg	1,00E-06				1	o examination
	AF	Sall-Skin Adherence factor	mg/ore ² -event	1	MADEP (2002-B - sediment)			1.00E-06	X EPC X ABS
	ABS.	Dermal Absorption fraction	unitless	chemical specific	EPA 2004				

Notes:

EPA, 1989. Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A, OERR, EPA/540/1-89/002.

EPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1995: Supplemental Guidance to RAGS: Region IV Bullatins, Human Health Risk Assessment, EPA Region 4, Atlanta, GA, November 1995

EPA, 1997; EPA Exposure Factors Handbook, 1997.

EPA, 2004: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final MADEP 2002-B. Technical Update, Weighted Skin-Soil Adherence Factors.

TABLE C-5 RAGS D TABLE 4 VALUES USED FOR DAILY INTAKE CALCULATIONS FORT DIEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timefrana: Current Medium: Surface Water Exposure Medium: Surface Water Exposure Point Surface Water Receptor Population: Recreational User Receptor Age: CHId

spouve Route	Parameter Code	Parameter DuSables	Linits	RME Value	RME Reticusiei Reference	Intake Equation/ Model Nüme	Intoke Factors	Times
Ingestion	DSW	Chemical concentration in surface water	mgs.	EPG	(title Specific	CDI (mg/sg-day) =		
	IR.	Ingestion rais - wading	ahone	0.05	EPA, 1995 (Merchi)	(CSW x FR x ET x EF x ED)(DW x AT)		
		Exposure Frequency	hours/day days/year	65	Professional Judgment -3 days/week for May-Sapt			
	ED	Exposure Duction	printer	6	EPA, 1991		Intake Factorino	
	BW	Body weight	kg	15	EPA, 1991		2.395-03	XEPC
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989		Intoke Fador-can	
	AT-N	Averaging time (Noncancer)	days	2,190	EPA, 1989		2.05E-04	XEPC
	DAD	Demaily absorbed dose	mg/kg-day	Calculated	EPA 2004	production of the second	intaka Factor	
Central	DA	Absorbed dose per unit body surface/day	mg/cm ² -event	Calculated	EPA 2004	DAD (mg/kg-day) =	The state of the s	
	EV	Event Frequency	elyents/day	+	Professional Judgment	(DA _{mes} × EV × ED × EF × SAY(BW × AT)		
	EF EF	Exposum director Exposum trequency	years days/year	6 65	Fierreational divid Protessional Judgmeré-3 days/week for May-Sept		Intake factor 2-NC	X DA _{mes}
	8A	Surface area	cm*	1,650	EPA 1697, 2004 (25% of total area)	For organics	Intake factor 2-cun	Constant
	BW	Body weight	Vg.	16	EPA, 1991	() types is less than or equal to t* then:	1.68E+00	X DA _{ment}
	AT-C	Averaging time (Cancer)	days	25,550	EPA 1989	DA _{mare} (org/cm ⁴ -event) =		
	AT-N	Averaging time (Noncencer)	days	2,190	EPA, 1989	2 x FA x Kp x C _{9W} x CF x (SQRT(6 x tsu _{men} x t _{max} P(I))	DA event	
	FA	Fraction absorbed water	unitiesa	1	EPA 2004 (assume no desquarration)		See separate Sheet	
	Кр	Permostility coefficient	cm/hour.	Chemical specific				
	Csw	Chemical concentration in surface water	mg/L	EPO	Site Specific			
	CF	Convenien factor	Lien*	0.001	Converts I, to cm ³			
	35U _{drace}	lag time per event	hours/event	Chamical specific		For integration:		
	loser	Event Duration	haurs/event	4	Professional Judgment	DA _{eere} (mg/cm²-event) =		
	19	Value of PS	unitiess	3.14	188	Kp x C _{SM} x CF x t _{mee}		
	r	Time to reach steady-state (fr) = 2.4 x tourout	hoursdevent	Chamical specific	41			

Notes

EPA, 1989: Risk Assessment Guidance for Superland, Vol. 1: Haman Health Evaluation Manual, Part A. OERR. EPA/510/1-89/002.

EPA, 1961: EPA Human Health Evaluation Morual, Supplemental Guidence: "Standard Default Exposure Factors." OSWER Directive 9255.6-03, March 25, 1991.

EPA, 1995: Supplemental Guidance to RAGS: Region IV Bulletins, Human Health Role Assessment, EPA Region 4, Allanca, CIA, November 1995 http://www.eps.gov/region4/easterots/houltbut.htm

EPA, 1997: EPA Exposure Factors Handbook, 1997.

EPA, 2004: Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part E. Supplemental Guidance for Domina Risk Assessment) Final

RAGS D TABLE 4

VALUES USED FOR DAILY INTAKE CALCULATIONS FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Fish

Exposure Medium: Fish

Exposure Point: Fish

Receptor Population: Recreational

Receptor Age: Child

Exposure Route	Parameter Code	Parameter Definition	Units	RME Value	RME Reference	Intake Equation! Model Name	Intake Factors	Times
Ingestion	CSte	Chemical concentration in fish tissue	mg/kg	EPC	Site Specific	CDI (mg/kg-day) =		
	IR _{tut}	Fish ingestion rate	g/meal-day	85	EPA, 2000 (3 oz portion for a child)	(CS _{feb} x IR x FI x EF x ED x CF)/(BW x AT)		
	FI EF	Frection ingested Exposure Frequency	unitiess meal-days/year	1 41	Professional Judgment 1.05 meahweek (EPA, 1997-Table 10-63/ 90th percentile) for 9 temperate morths of the year (39 weeks)			
	ED	Exposure Duration	years	- 6	Residential recreational child		Intake Factor-no	
	CF	Conversion factor	kg/g	1.00E-03	24		6.37E-04	X EPC
	BW	Body weight	kg	15	EPA, 1991		Intake Factor-can	
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989		5.46E-05	X EPC
	AT-N	Averaging time (Noncancer)	days	2,190	EPA, 1989			

Notes:

EPA, 1989: Risk Assessment Guidance for Superfund, Vol. 1; Human Health Evaluation Manual, Part A. OERR, EPA/540/1-89/002,

EPA, 1991; EPA Human Health Evaluation Manual, Supplemental Guidance; "Standard Default Exposure Factors," OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1997; EPA Exposure Factors Handbook, 1997.

EPA, 2000: Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories: Volume II Risk Assessment and Fish Consuproption Limits, Third Edition,

RAGS D TABLE 4

VALUES USED FOR DAILY INTAKE CALCULATIONS FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Fish

Exposure Medium: Fish

Exposure Point Fish

Receptor Population: Subsistence

Receptor Age; Adult

Exposure Route	Parameter Code	Parameter Definition	Units	RME Value	RME Retionale/ Reference	Intako Equation/ Model Name	Intake Factors	Times
Ingestion	CS _{Int}	Chemical concentration in fish tissue	mg/kg	EPC	Site Specific	CDI (mg/kg-day) =		
	IRten	Fish ingestion rate	g/meal-day	227	EPA, 2000 (8 oz portion for and adult)	(CS _{tas} x IR x FI x EF x ED x CF)/(BW x AT)		
	FI	Fraction ingested	unitiess	1	Professional Judgment			
	EF	Exposure Frequency	meal-days/year	273	Assumed 7 meals/week for 9 temperate menths of the year (39 weeks)			
	ED	Exposure Duration	years	30	EPA 1991 for Residential adult		Intake Factor-no	
	CF	Conversion factor	kg/g	1.00E-03	44		2.43E-03	X EPC
	BW	Body weight	kg	70	EPA, 1991		Intake Factor-can	
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989		1.04E-03	X EPC
	AT-N	Averaging time (Noncancer)	days	10,950	EPA, 1989			

Notes:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991; EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors," OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1997: EPA Exposure Factors Handbook, 1997.

EPA, 2000: Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories: Volume II Risk Assessment and Fish Consupreption Limits, Third Edition.

RAGS D TABLE 4

VALUES USED FOR DAILY INTAKE CALCULATIONS FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Medium: Fish

Exposure Medium, Fish Exposure Point: Fish

Receptor Population; Subsistance

Receptor Age: Child

xposure Route	Parameter Code	Parameter Definition	Units	RME Value	RME Rationale/ Reference	Intake Equation/ Model Name	Intake Factors	Times
Ingestion	CS _{ten}	Chemical concentration in lish tissue	mg/kg	EPC	Site Specific	CDI (mg/kg-day) =		of the state of
	IR _{tel}	Fish ingestion rate	g/meal-day	85	EPA, 2000 (3 oz portion for a childt)	(CS _{tat} , x IR x FI x EF x ED x CF)/(BW x AT)		
	F100 E	Fraction ingested Exposure Frequency	unitless moal-days/year	1 273	Professional Judgment Assumed 7 meals/week for 9 temperate months of the year (39 weeks)			
	ED	Exposure Duration	years	6	EPA 1991 for Residential shift		Intako Factor-no	
	CF	Conversion factor	kg/g	1.00E-03	77		8.48E-04	X.EPC
	BW.	Body weight	kg	15	EPA, 1991		listake Factor-can	
	AT-C	Averaging time (Cancer)	days	25,550	EPA, 1989		3.63E-04	X EPC
	AT-N	Averaging time (Noncancer)	days	10,950	EPA, 1989			

Notes:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: EPA Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03, March 25, 1991.

EPA, 1996; EPA Soil Screening Guidance: Technical Background Document, May 1996.

EPA, 2000: Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories: Volume II Risk Assessment and Fish Consupration Limits, Third Edition.

TABLE C-9 Grove Pond Recreational Adult Sediment

		EPC		Cancer Risk Calculations							
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intal	(e	CSF	/Unit Risk	Cancer Risk	
1-15,000.00						Value	Units	Value	Units	38843	
Ingestion	Aluminum	20300	mg/kg	1.10E-07		2.23E-03		NC	NG		
and a second	Antimony		mg/kg	1.10E-07		1.30E-06		NC	NC		
	Arsenic		mg/kg	1,10E-07		1.73E-05		1,50E+00	(mg/kg-day)-1	2.60E-0	
	Barium		mg/kg	1.10E-07		0.00E+00		NC	NG		
	Cadmium (in solid media)	48.6	mg/kg	1.10E-07		5.33E-06		NC	NC		
	Cadmium (in water)		0.00			111000000		NC	NC		
	Chromium, total	144	ma/ka	1.10E-07		1.58E-05		NC	NC		
	Copper	795	mg/kg	1,10E-07		8.72E-05		NO	NC		
	fron		mg/kg	1.10E-07		2.09E-03		NC	NC		
	Lead		mg/kg	1.10E-07		4.19E-05		NA	NA		
	Manganese (in sediment or water)	721	mg/kg	1,10E-07		7.90E-05		NC	NC		
	Manganese (in food)		mg/kg	1.10E-07		0.00E+00		NC	NC		
	Mercury		mg/kg	1.10E-07		1.03E-05		NC	NC		
	Selenium		mg/kg	1.10E-07		1.07E-06		NC	NC		
	Thallium	26.4	mg/kg	1.10E-07		2.89E-06		NC	NC		
	Vanadium	42.7	mg/kg	1.10E-07		4.68E-06		NC	NC		
	Zinc		mg/kg	1.10E-07		0.00E+00		NC	NC		
	Chloroform	0	mg/kg	1.10E-07		0.00E+00		NA	NA		
	Hexachlorocyclohexane, alpha-	0	mg/kg	1,10E-07		0.00E+00		6.30E+00	(mg/kg-day)-1	0.00E+0	
	Methylene chloride	0	mg/kg	1.10E-07		0.00E+00		7.50E-03	(mg/kg-day)-1	0.00E+0	
	Benz(a)anthracene	0.684	mg/kg	1.10E-07		7.50E-08		7.30E-01	(mg/kg-day)-1	5.47E-0	
	Benzo(a)pyrene	0.729	mg/kg	1,10E-07		7.99E-08		7.30E+00	(mg/kg-day)-1	5.83E-0	
	Benzo(b)fluoranthene	0.85	mg/kg	1.10E-07		9.32E-08		7.30E-01	(mg/kg-day)-1	6.80E-0	
	Benzo(k)fluoranthene	0.839	mg/kg	1.10E-07		9.20E-08		7.30E-02	(mg/kg-day)-1	6.71E-0	
	Chrysene	1.1	mg/kg	1.10E-07		1.21E-07			(mg/kg-day)-1	8.80E-1	
	Dibenz(ah)anthracene	0.263	mg/kg	1.10E-07		2.88E-08		7.30E+00	(mg/kg-day)-1	2.10E-0	
	Indeno(1,2,3-cd)pyrene	0.641	mg/kg	1.10E-07		7.03E-08		7.30E-01	(mg/kg-day)-1	5.13E-0	
	Naphthalene	3.84	mg/kg	1.10E-07		4.21E-07		NC	NC		
	Bis(2-ethylhexyl) phthalate	0	mg/kg	1,10E-07		0.00E+00		1.40E-02	(mg/kg-day)-1		
	PCB 1254		mg/kg	1.10E-07		0.00E+00			(mg/kg-day)-1	0.00E+0	
	PCBs, total	0	mg/kg	1.10E-07		0.00E+00			(mg/kg-day)-1	0.00E+00	
	DDD, p,p'-	0.381	mg/kg	1.10E-07		4.18E-08		2,40E-01	(mg/kg-day)-1	1.00E-08	
	DDE, p,p'-	0	mg/kg	1.10E-07		0.00E+00			(mg/kg-day)-1	0.00E+0	
Total										2.70E-0	

TABLE C-9 Grove Pond Recreational Adult Sediment

		EPC						Cancer	Risk Calcu	lations	
Exposure	List of Chemicals of Potential Concern	Value	Units	Intake Factor		Other	Intal	(0	CSF	/Unit Risk	Cancer
							Value	Units	Value	Units	
				Intake Factor	DA event factor	ABSd	Intal	(0	CSF	/Unit Risk	Cancer Risk
Dermal	Aluminum	20300	rng/kg	4.93E+00	1.00E-06	·	#VALUE!		NC.	NC	
	Antimony	11.9	rng/kg	4.93E+00	1.00E-06	-	#VALUE!		NC.	NC	
	Arsenic	158	mg/kg	4.93E+00	1.00E-06	3.00E-02	2.34E-05		1.50E+00	(mg/kg-day)-1	3.51E-0
	Barium	0	mg/kg	4.93E+00	1.00E-06	19.79mod s. n. comes	#VALUE!		NC	NC	
	Cadmium (in solid media)	48.6	rng/kg	4.93E+00	1,00E-06	1.00E-03	2.40E-07		NC	NC	
	Cadmium (in water)		The flee	1		NA			NG	NC	
	Chromium, total	144	mg/kg	4.93E+00	1.00E-06	No. of the local deal deal of the local deal deal of the local dea	#VALUE!		NC.	NC	
	Copper	795	mg/kg	4.93E+00	1.00E-06		#VALUE!		NC	NC .	
	iron	19100	mg/kg	4.93E+00	1.00E-06	NAME OF TAXABLE PARTY.	#VALUE!		NC.	NC	
	Lead	382	mg/kg	4.93E+00	1.00E-06	in introduction	#VALUE!		NA:	NA	
	Manganese (in sediment or water)	721	mg/kg	4.93E+00	1.00E-06	Notice to a second	#VALUE!		NC	NC	
	Manganese (in food)		mg/kg	4.93E+00	1.00E-06		#VALUE!		NC	NC	
	Mercury	94.4	mg/kg	4.93E+00	1.00E-06		#VALUE!		NC	NC	
	Selenium	9.76	mg/kg	4.93E+00	1.00E-06		#VALUE!		NC	NC	
	Thallium	26.4	mg/kg	4.93E+00	1.00E-06	Conservation and the least of t	#VALUE!		NC	NC	
	Vanadium	42.7	mg/kg	4.93E+00	1.00E-06		#VALUE!		NC	NC	
	Zinc	0	mg/kg	4.93E+00	1.00E-06		#VALUE!		NC	NC	
	Chloroform		mg/kg	4.93E+00	1.00E-06		#VALUE!		NA	NA	
	Hexachlorocyclohexane, alpha-		mg/kg	4.93E+00		4.00E-02	0.00E+00		6.30E+00	(mg/kg-day)-1	
	Methylene chloride		mg/kg	4.93E+00	1.00E-06		#VALUE!			(mg/kg-day)-1	
	Benz(a)anthracene		mg/kg	4.93E+00	1.00E-06	1.30E-01	4.39E-07			(mg/kg-day)-1	3.20E-0
	Benzo(a)pyrene	0.729	mg/kg	4.93E+00	1.00E-06	1.30E-01	4.68E-07			(mg/kg-day)-1	3.41E-0
	Benzo(b)fluoranthene		mg/kg	4.93E+00	1.00E-06	1.30E-01	5.45E-07			(mg/kg-day)-1	3.98E-0
	Benzo(k)fluoranthene		mg/kg	4.93E+00	1.00E-06	1.30E-01	5,38E-07			(mg/kg-day)-1	3.93E-0
	Chrysene		mg/kg	4.93E+00	1.00E-06	1.30E-01	7.05E-07			(mg/kg-day)-1	5.15E-0
	Dibenz(ah)anthracene		mg/kg	4.93E+00	Control of the Control of the Control		1.69E-07			(mg/kg-day)-1	1.23E-0
	Indeno(1,2,3-cd)pyrene		mg/kg	4.93E+00			4.11E-07			(mg/kg-day)-1	3.00E-0
	Naphthalene		mg/kg	4.93E+00			2.46E-06		NC	NC	0.002
	Bis(2-ethylhexyl) phthalate		mg/kg	4.93E+00	1 1 1 1	A STATE OF THE PARTY OF THE PAR	0.00E+00		The second second	(mg/kg-day)-1	
	PCB 1254		maka	4.93E+00			0.00E+00			(mg/kg-day)-1	0.00E+0
	PCBs, total		mg/kg	4.93E+00	4 4 10 10 10 10 10 10		0.00E+00			(mg/kg-day)-1	0.00E+0
	DDD, p.p'-		mg/kg	4.93E+00			5.64E-08			(mg/kg-day)-1	1.35E-0
	DDE, p.p'-		mg/kg	4.93E+00	The second secon		0.00E+00			(mg/kg-day)-1	0.00E+0
											4.08E-0
Grand Total											6.78E-0

TABLE C-9 Grove Pond Recreational Adult Sediment

		EPC					Cancer	Risk Calcula	ations	
Exposure	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	ike	CSF/	Unit Risk	Cancer Risk
				N. C. Connection		Value	Units	Value	Units	

TABLE C-9 Grove Pond Recreational Adult Sediment

		EPC				Non-Car	ncer Hazard	Calculations		
Exposure	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	ike	Rff	D/RfC	Hazard Quotient
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13 (500 500 10)					Value	Units	Value	Units	
Ingestion	Aluminum	20300	mg/kg	2.56E-07		5.19E-03	mg/kg-day	1.00E+00	mg/kg/day	5.19E-03
	Antimony	11.9	mg/kg	2.56E-07		3.04E-06	mg/kg-day	4.00E-04	mg/kg/day	7.61E-03
	Arsenic	158	mg/kg	2.56E-07		4.04E-05	mg/kg-day		mg/kg/day	1,35E-01
	Barium	0	mg/kg	2.56E-07		0.00E+00	mg/kg-day	2.00E-01	mg/kg/day	0.00E+00
	Cadmium (in solid media)	48.6	mg/kg	2.56E-07		1.24E-05	mg/kg-day	1.00E-03	mg/kg/day	1.24E-02
	Cadmium (in water)		1000	2.56E-07		0.00E+00	mg/kg-day	5.00E-04	mg/kg/day	0.00E+00
	Chromium, total	144	mg/kg	2.56E-07		3.68E-05	mg/kg-day		mg/kg/day	1.23E-02
	Copper	795	mg/kg	2,56E-07		2.03E-04	mg/kg-day		mg/kg/day	5.50E-03
	Iron	19100	mg/kg	2.56E-07		4.89E-03	mg/kg-day	3.00E-01	mg/kg/day	1.63E-02
	Lead	382	mg/kg	2.56E-07		9.77E-05	mg/kg-day	NA	NA	
	Manganese (in sediment or water)	721	mg/kg	2.56E-07		1.84E-04	mg/kg-day	2.40E-02	mg/kg/day	7.68E-03
	Manganese (in food)		mg/kg	2.56E-07		0.00E+00	mg/kg-day	1.40E-01	mg/kg/day	0.00E+00
	Mercury	94.4	mg/kg	2.56E-07			mg/kg-day	3.00E-04	mg/kg/day	8.05E-02
1	Selenium		mg/kg	2.56E-07		2.50E-06	mg/kg-day	5.00E-03	mg/kg/day	4.99E-04
	Thallium	26.4	mg/kg	2.56E-07		6.75E-06	mg/kg-day	6.60E-05	mg/kg/day	1.02E-01
	Vanadium	42.7	mg/kg	2.56E-07		1.09E-05	mg/kg-day		mg/kg/day	1.09E-02
	Zino	0	mg/kg	2.56E-07		0.00E+00	mg/kg-day	3.00E-01	mg/kg/day	0.00E+00
	Chloroform	0	mg/kg	2.56E-07			mg/kg-day	1.00E-02	mg/kg/day	0.00E+00
	Hexachlorocyclohexane, alpha-	0	mg/kg	2.56E-07		0.00E+00	mg/kg-day	5.00E-04	mg/kg/day	0.00E+00
	Methylene chloride	0	mg/kg	2.56E-07		0.00E+00	mg/kg-day	6.00E-02	mg/kg/day	0.00E+00
	Benz(a)anthracene	0.684	mg/kg	2.56E-07		1.75E-07	mg/kg-day	NA	NA	The same of the same of
	Benzo(a)pyrene	0.729	mg/kg	2.56E-07		1.86E-07	mg/kg-day	NA	NA:	
	Benzo(b)fluoranthene	0.85	mg/kg	2,56E-07		2.17E-07	mg/kg-day	NA	NA	
	Benzo(k)fluoranthene	0.839	mg/kg	2.56E-07		2.15E-07	mg/kg-day	NA	NA	0
	Chrysene	1.1	mg/kg	2.58E-07		2.81E-07	mg/kg-day	NA	NA	
	Dibenz(ah)anthracene	0.263	mg/kg	2.56E-07		6.73E-08	mg/kg-day	NA	NA	
	Indeno(1,2,3-cd)pyrene	0.641	mg/kg	2.56E-07		1.64E-07	mg/kg-day	NA.	NA	10 10
	Naphthalene	3.84	mg/kg	2.56E-07		9.82E-07	mg/kg-day		mg/kg/day	4.91E-05
	Bis(2-ethylhexyl) phthalate	0	mg/kg	2.56E-07		0.00E+00	mg/kg-day	2.00E-02	mg/kg/day	0.00E+00
	PCB 1254		mg/kg	2.56E-07		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00
	PCBs, total	0	mg/kg	2,56E-07		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00
	DDD, p,p'-	0.381	mg/kg	2.56E-07		9.75E-08	mg/kg-day		mg/kg/day	4.87E-05
	DDE, p,p'-		mg/kg	2.56E-07		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00
Total				io /						3.98E-01

TABLE C-9 Grove Pond Recreational Adult Sediment

		EPC					Non-Ca	incer Hazard	Calculations		
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other		Int	ake	R	fD/RfC	Hazard Quotient
							Value	Units	Value	Units	
				Intake Factor	DA event factor	ABSd	Int	ake	R	fD/RfC	Hazard Quotient
Dermal	Aluminum Antimony Arsenic Barium Cadmium (in solid media) Cadmium (in water) Chromium, total Copper Iron Lead Manganese (in sediment or water) Marganese (in food) Mercury Selenium Thallium Vanadium Zino Chloroform Hexachlorocyclohexane, alpha- Methylene chloride Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(ah)anthracene Indeno(1,2,3-cd)pyrene Naphthalene Bis(2-ethylhexyl) phthalate PCB 1254	158 0 48.6 144 795 19100 382 721 0 94.4 9.76 26.4 42.7 0 0 0 0.684 0.729 0.85 0.839 1.1 1 0.263 0.641 3.84	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1.15E+01	1.00E-06 1.00E-06 1.00E-06 1.00E-06	3.00E-02 1.00E-03 NA 4.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	#VALUE! 5.59E-07 #VALUE! 1.02E-06 1.26E-06 1.26E-06 3.94E-07 9.59E-07 6.75E-06 0.00E+00	mg/kg-day	6.00E-0 3.00E-0 1.40E-0 2.50E-0 3.90E-0 3.70E-0 3.00E-0 0.5.60E-0 2.10E-0 5.00E-0 3.00E-0 1.00E-0 6.00E-0 NA	of mg/kg-day	0.00E+00
	PCBs, total DDD, p,p'- DDE, p,p'-	0.381	mg/kg mg/kg mg/kg	1.15E+01 1.15E+01 1.15E+01	1.00E-06 1.00E-06 1.00E-06	3.00E-02	1.32E-07	mg/kg-day mg/kg-day mg/kg-day	2.00E-0	5 mg/kg-day 3 mg/kg-day 3 mg/kg-day	0.00E+00 6.58E-00 0.00E+00 2.05E-01
Grand Total											6.01E-0

Target organ across all exposure pathways: Central nervous system = Target organ across all exposure pathways: Blood = Target organ across all exposure pathways: Skin = Target organ across all exposure pathways: Cardiovascular system = Target organ across all exposure pathways: Kidney = Target organ across all exposure pathways: Gatrointestinal System = Target organ across all exposure pathways: Immune system = Target organ across all exposure pathways: Liver =

1.34E-02 7.61E-03 3.17E-01 0.00E+00 3.48E-02 3.41E-02 8.05E-02 1.02E-01 TABLE C-9 Grove Pond Recreational Adult Sediment

		EPC			Non-Ca	ncer Hazard Ca	alculations		
Exposure Route	List of Chemicals of Potential	List of Chemicals of Potential Concern	Value Units Other	Intake			RIC	Hazard	
(1.17.41.00)	- 1515-001-01-01-01-01-01-01-01-01-01-01-01-01		No. a.		Value	Units	Value	Units	- Internation
				Target	organ across all expo	sure pathways:	Whole body/gro	wth =	1.13E-0

TABLE C-10 Grove Pond Recreational Adult Surface Water

		EPC					Cancor	Risk Calcula	itions	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intak	0	CSF/	Unit Risk	Cancer Risk
7.44.44						Value	Units	Value	Units	27,000
ngestion	Aluminum	0	mg/L	4.39E-05		0.00E+00		NC	NC	
	Antimony		mg/L	4.39E-05		0.00E+00		NC	NC	
	Arsenic	0.0767		4.39E-05		3.36E-06		1.50E+00	(mg/kg-day)-1	5.05E-0
	Barium	6.99	mg/L	4.39E-05		3.07E-04		NC	NC	
	Cadmium (in solid media)		mg/L	4.39E-05		0.00E+00		NC	NC	
	Cadmium (in water)		mg/L			The state of the s		NC	NC	
	Chromium, total	0.074	mg/L	4.39E-05		3.25E-06		NC	NC	
	Copper	0	mg/L	4.39E-05		0.00E+00		NC	NC	
	Iron	69.2	mg/L	4.39E-05		3.03E-03		NC	NC	
	Lead	0.0117		4.39E-05		5.13E-07		NA	NA	
	Manganese (in sediment or water)	112	mg/L	4.39E-05		4.91E-03		NC	NC	
	Manganese (in food)	0	mg/L	4.39E-05		0.00E+00		NC	NC	
	Mercury		mg/L	4.39E-05		0.00E+00		NC.	NC .	
	Selenium	0	mg/L	4.39E-05		0.00E+00		NC	NC	
	Thallium	0	mg/L	4.39E-05		0.00E+00		NC	NC	
	Vanadium		mg/L	4.39E-05		0.00E+00		NC	NC	
	Zinc	7.19	mg/L	4.39E-05		3.15E-04		NC	NC	
	Chloroform	0	mg/L	4.39E-05		0.00E+00		NA	NA.	
	Hexachlorocyclohexane, alpha-	0	mg/L	4.39E-05		0.00E+00		6.30E+00	(mg/kg-day)-1	0.00E+0
	Methylene chloride	0	mg/L	4.39E-05		0.00E+00		7.50E-03	(mg/kg-day)-1	0.00E+0
	Benz(a)anthracene	0	mg/L	4.39E-05		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0
	Benzo(a)pyrene		mg/L	4.39E-05		0.00E+00		7.30E+00	(mg/kg-day)-1	0.00E+0
	Benzo(b)fluoranthene	0	mg/L	4,39E-05		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0
	Benzo(k)fluoranthene	0	mg/L	4.39E-05		0.00E+00		7.30E-02	(mg/kg-day)-1	0.00E+0
	Chrysene	0	mg/L	4.39E-05		0.00E+00		7.30E-03	(mg/kg-day)-1	0.00E+0
	Dibenz(sh)anthracene		mg/L	4.39E-05		0.00E+00		7.30E+00	(mg/kg-day)-1	0.00E+0
	Indeno(1,2,3-cd)pyrene		mg/L	4.39E-05		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0
	Naphthalene	0	mg/L	4.39E-05		0.00E+00		NC	NC	
	Bis(2-ethylhexyl) phthalate		mg/L	4.39E-05		1.53E-06		1.40E-02	(mg/kg-day)-1	2.15E-0
	PCB 1254		mg/L	4.39E-05		0.00E+00			(mg/kg-day)-1	0.00E+0
	PCBs, lotal		mg/L	4.39E-05		0.00E+00			(mg/kg-day)-1	0.00E+0
	DDD, p.p*-		mg/L	4.39E-05		0.00E+00			(mg/kg-day)-1	0.00E+0
	DDE, p.p'-		mg/L	4,39E-05		0.00E+00			(mg/kg-day)-1	0.00E+00
Total										5.07E-06

TABLE C-10 Grove Pond Recreational Adult Surface Water

		EPC						Cance	r Risk Calcula	itions	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor		Other	Intal	10	CSF/	Unit Risk	Cancer Risk
							Value	Units	Value	Units	
				Intake Factor	DA event		Intal	ke	CSF/	Unit Risk	Cancer
Dermal	Aluminum		mg/L	4.91E+00	0.00E+00		0.00E+00		NC	NC	
	Antimony		mg/L	4.91E+00	0.00E+00		0.00E+00		NC	NC	
	Arsenic	0.0767		4.91E+00	3.07E-07		1.51E-06		1.50E+00	4	2.26E-06
	Barium		mg/L	4.91E+00	2.80E-05		1.37E-04		NC	NC	
	Cadmium (in solid media)	0	mg/L	4.91E+00	0.00E+00		0.00E+00		NC	NC	
	Cadmium (in water)			A SHARE	0.00E+00		0.00E+00		NC	NC	
	Chromium, total	0.074	mg/L	4.91E+00	5.92E-07		2.90E-06		NC	NC	
	Copper		mg/L	4.91E+00	0.00E+00		0.00E+00		NC	NC	
	Iron	69.2	mg/L	4.91E+00	2.77E-04		1.36E-03		NC	NC	
	Lead	0.0117	mg/L	4.91E+00	4.68E-08		2.30E-07		NA	NA	
	Manganese (in sediment or water)	112	mg/L	4.91E+00	4.48E-04		2.20E-03		NC	NC	
	Manganese (in food)	0	mg/L	4.91E+00	0.00E+00		0.00E+00		NC	NC	
	Mercury	0	mg/L	4.91E+00	0.00E+00		0.00E+00		NC	NC	
	Selenium	0	mg/L	4.91E+00	0.00E+00		0.00E+00		NG	NC	
	Thallium	0	mg/L	4.91E+00	0.00E+00		0.00E+00		NC	NC	
	Vanadium	0	mg/L	4.91E+00	0.00E+00		0.00E+00		NC	NC	
_	Zinc	7,19	mg/L	4.91E+00	1.73E-05		8.47E-05		NC	NC	
	Chloroform	0	mg/L	4.91E+00	0.00E+00		0.00E+00		NA	NA	
	Hexachlorocyclohexane, alpha-	0	mg/L	4.91E+00	0.00E+00		0.00E+00		6,30E+00	(mg/kg-day)-1	
	Methylene chloride	0	mg/L	4.91E+00	0.00E+00		0.00E+00		7.50E-03	(mg/kg-day)-1	0.00E+00
	Benz(a)anthracene		mg/L	4.91E+00	0.00E+00		0.00E+00		7,30E-01	(mg/kg-day)-1	
	Benzo(a)pyrene		mg/L.	4.91E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.00E+00
	Benzo(b)fluoranthene		mg/L	4.91E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.00E+00
	Benzo(k)fluoranthene		mg/L	4.91E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.00E+00
	Chrysene		mg/L	4.91E+00	0.00E+00		0.00E+00		7.30E-03	(mg/kg-day)-1	0.00E+00
100	Dibenz(ah)anthracene		mg/L	4.91E+00	0.00E+00		0.00E+00		7.30E+00	(mg/kg-day)-1	0.00E+00
	Indeno(1,2,3-cd)pyrene	0	mg/L	4.91E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.00E+00
	Naphthalene	0	mg/L	4.91E+00	0.00E+00		0.00E+00		NC	NC	00000000
11	Bis(2-ethylhexyl) phthalate	0.035	ma/L	4.91E+00	1,97E-05		9.68E-05			(mg/kg-day)-1	1,36E-06
	PCB 1254		mg/L	4.91E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.00E+00
	PCBs, total		mg/L	4.91E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.00E+00
	DDD, p.p'-		mg/L	4.91E+00			0.00E+00			(mg/kg-day)-1	0.00E+00
-	DDE, p.p'-		mg/L	4.91E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.00E+00
											3.61E-06
Grand Total											8.68E-06

TABLE C-10 Grove Pond Recreational Adult Surface Water

		EPC				Non-Car	cor Hazard	Calculations		
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	ke	RII	D/RfC	Hazard Quotient
1,000						Value	Units	Value	Units	
ngestion	Aluminum	0	mg/L	1.02E-04		0.00E+00	mg/kg-day	1.00E+00	mg/kg/day	0.00E+00
	Antimony	0	mg/L	1.02E-04		0.00E+00	mg/kg-day	4.00E-04	mg/kg/day	0.00E+0
	Arsenic	0.0767	mg/L	1.02E-04			mg/kg-day	3.00E-04	mg/kg/day	2.62E-0
	Barium	6.99	mg/L	1.02E-04		7.15E-04	mg/kg-day		mg/kg/day	3.58E-03
	Cadmium (in solid media)	0	mg/L	1.02E-04			mg/kg-day	1.00E-03	mg/kg/day	0.00E+0
	Cadmium (in water)		mg/L	1.02E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00
	Chromium, total	0.074	mg/L	1.02E-04	1	7.57E-06	mg/kg-day		mg/kg/day	2.52E-0
	Copper	0	mg/L	1.02E-04	1	0.00E+00	mg/kg-day		mg/kg/day	0.00E+00
	tron	69.2	mg/L	1.02E-04		7.08E-03	mg/kg-day		mg/kg/day	2.36E-02
	Lead	0.0117	ma/L	1.02E-04			mg/kg-day	NA	NA	2.000,000,000,000
	Manganese (in sediment or water)		mg/L	1.02E-04			mg/kg-day	2.40E-02	mg/kg/day	4.77E-0
	Manganese (in food)		ma/L	1.02E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00
	Mercury	0	mg/L	1.02E-04			mg/kg-day		mg/kg/day	0.00E+00
	Selenium		mg/L	1.02E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Thallium		mg/L	1.02E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Vanadium		mg/L	1.02E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00
	Zinc	7.19		1.02E-04			mg/kg-day		mg/kg/day	2.45E-03
	Chloroform	0	mg/L	1.02E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00
	Hexachlorocyclohexane, alpha-	0	mg/L	1.02E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00
	Methylene chloride		mg/L	1.02E-04			mg/kg-day		mg/kg/day	0.00E+00
	Benz(a)anthracene	0	mg/L	1.02E-04			mg/kg-day	NA	NA	3.03.22.03
	Benzo(a)pyrene		mg/L	1.02E-04			mg/kg-day	NA	NA:	
	Benzo(b)fluoranthene		mg/L	1.02E-04			mg/kg-day	NA	NA	12
	Benzo(k)fluoranthene		mg/L	1.02E-04			mg/kg-day	NA	NA	
	Chrysene		mg/L	1.02E-04			mg/kg-day	NA	NA	1
	Dibenz(ah)anthracene		mg/L	1.02E-04		0.00E+00	mg/kg-day	NA	NA	
	Indeno(1,2,3-cd)pyrene		mg/L	1.02E-04		0.00E+00	mg/kg-day	NA	NA	
	Naphthalene		mg/L	1.02E-04			mg/kg-day	2.00E-02	mg/kg/day	0.00E+00
	Bis(2-ethylhexyl) phthalate	0.035	mg/L	1.02E-04		3,58E-06	mg/kg-day		mg/kg/day	1.79E-0
	PCB 1254		mg/L	1.02E-04			mg/kg-day		mg/kg/day	0.00E+00
	PCBs, total		mg/L	1.02E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00
	DDD, p.p'-		mg/L	1.02E-04			mg/kg-day		mg/kg/day	0.00E+00
	DDE, p,p'-		mg/L	1.02E-04	1		mg/kg-day		mg/kg/day	0.00E+00
Total										5.36E-01

TABLE C-10 Grove Pond Recreational Adult

		EPC				Non-Ca	ncer Hazard	Calculations		
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Int	ake	Rff	D/RIC	Hazard Quotient
	A STATE OF THE STA			1000000		Value	Units	Value	Units	
				Intake Factor	DA event		ake		D/RfC	Hazard Quotient
Dermal	Aluminum		mg/L	2.45E+01	0.00E+00		mg/kg-day	1.00E+00	mg/kg-day	
	Antimony	0.71	mg/L	2.45E+01	0.00E+00	Lat No. 13 A LOCK THE REAL PRINT	mg/kg-day		mg/kg-day	100000000000000000000000000000000000000
	Arsenic	0.0767		2.45E+01	3.07E-07		mg/kg-day		mg/kg-day	2.51E-0
	Barium	6.99		2.45E+01	2.80E-05		mg/kg-day		mg/kg-day	4.90E-0
	Cadmium (in solid media)	0	mg/L	2.45E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0
	Cadmium (in water)			2.45E+01	0.00E+00		mg/kg-day		mg/kg-day	
	Chromium, total	0.074		2.45E+01	5.92E-07		mg/kg-day		rng/kg-day	3.72E-0
	Copper	0	mg/L	2,45E+01	0.00E+00		mg/kg-day	3,70E-02	mg/kg-day	
	Iron		mg/L	2.45E+01	2.77E-04		mg/kg-day		mg/kg-day	2.26E-02
	Lead	0.0117		2.45E+01	4.68E-08		mg/kg-day	NA	NA	
	Manganese (in sediment or water)	112	mg/L	2.45E+01	4.48E-04		mg/kg-day		mg/kg-day	1.14E+0
	Manganese (in food)	0	mg/L	2.45E+01	0.00E+00		mg/kg-day	5.60E-03	mg/kg-day	
	Mercury	0	mg/L	2.45E+01	0.00E+00		mg/kg-day	2.10E-05	mg/kg-day	
	Selenium	0	mg/L	2.45E+01	0.00E+00		mg/kg-day		mg/kg-day	
	Thallium	0	mg/L	2.45E+01	0.00E+00		mg/kg-day	6.60E-05	mg/kg-day	
	Vanadium		mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day	2.60E-05	mg/kg-day	THE COURSE
	Zinc	7.19	mg/L	2.45E+01	1.73E-05	4.23E-04	mg/kg-day		mg/kg-day	1.41E-03
	Chloroform	0	mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day	1.00E-02	mg/kg-day	
	Hexachlorocyclohexane, alpha-	0	mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day		mg/kg-day	1
	Methylene chloride		mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day	6.00E-02	mg/kg-day	
	Benz(a)anthracene	0	mg/L	2.45E+01	0.00E+00		mg/kg-day	NA	NA	
	Benzo(a)pyrene	0	mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day	NA	NA	
	Benzo(b)fluoranthene	0	mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day	NA	NA	
	Benzo(k)fluoranthene	0	mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day	NA	NA	
	Chrysene	0	mg/L	2.45E+01	0.00E+00		mg/kg-day	NA	NA	
	Dibenz(ah)anthracene	0	mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day	NA	NA.	
	Indeno(1,2,3-cd)pyrene	0	mg/L	2.45E+01	0.00E+00		mg/kg-day	NA	NA	
	Naphthalene	0	mg/L	2,45E+01	0.00E+00	0.00E+00	mg/kg-day	2.00E-02	mg/kg-day	0.00E+0
	Bis(2-ethylhexyl) phthalate	0.035	mg/L	2.45E+01	1.97E-05	4.84E-04	mg/kg-day		mg/kg-day	2.42E-03
	PCB 1254	0	mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day	2.00E-05	mg/kg-day	0.00E+0
	PCBs, total	0	mg/L	2.45E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0
	DDD, p.p'-		mg/L	2.45E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0
	DDE, p.p'-		mg/L	2.45E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0
			1				17			1,19E+0
Grand Total										1.25E+0

Target organ across all exposure pathways: Central nervous system = 1.19E+01
Target organ across all exposure pathways: Blood = 3.86E-03
Target organ across all exposure pathways: Skin = 5.12E-02
Target organ across all exposure pathways: Cardiovasoular system = 5.26E-02
Target organ across all exposure pathways: Cardiovasoular system = 0.00E+00
Target organ across all exposure pathways: Catrontestinal System = 4.21E-01
Target organ across all exposure pathways: Immune system = 0.00E+00
Target organ across all exposure pathways: Liver = 2.44E-02
Target organ across all exposure pathways: Whole body/growth = 0.00E+00

TABLE C-11 Grove Pond Recreational Adult Fish

		EPC					Cancer	Risk Calcul	ations	
Exposure	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intak	(e	CSF	/Unit Risk	Cancer
CARL MATE	No. of the last of			110000000		Value	Units	Value	Units	
Ingestion	Aluminum	0	mg/kg	1.56E-04		0.00E+00		NC	NC	
7	Antimony	0	mg/kg	1.56E-04		0.00E+00		NC	NC.	
	Arsenic	0	mg/kg	1.56E-04		0.00E+00		1.50E+00	(mg/kg-day)-1	0.00E+0
	Barlum	0	mg/kg	1.56E-04		0.00E+00		NC	NC	
	Cadmium (in solid media)	0.0736	mg/kg	1.56E-04		1.15E-05		NC	NC	
	Cadmium (in water)		0, 00					NC	NC	
	Chromium, total	0.278	mg/kg	1.56E-04		4.34E-05		NC	NC	
	Copper		mg/kg	1.56E-04		0.00E+00		NC	NC	
	Iron	0	mg/kg	1.56E-04		0.00E+00		NC	NC.	
	Lead	0.815	mg/kg	1.56E-04		1.27E-04		NA	NA	
	Manganese (in sediment or water)	0	mg/kg	1.56E-04		0.00E+00		NC	NC	
	Manganese (in food)	0	mg/kg	1.56E-04		0.00E+00		NC	NC	
	Mercury		mg/kg	1.56E-04		7.76E-05		NC	NC	
	Selenium	0	mg/kg	1.56E-04		0.00E+00		NC	NC	
	Thallium		mg/kg	1.56E-04		0.00E+00		NC	NC	
	Vanadium	0.0715		1.56E-04		1.12E-05		NC	NC	
	Zinc		mg/kg	1.56E-04		0.00E+00		NC	NC	
	Chloroform		mg/kg	1.56E-04		0.00E+00		NA	NA	
	Hexachlorocyclohexane, alpha-		mg/kg	1.56E-04		0.00E+00		6.30E+00	(mg/kg-day)-1	0.00E+0
	Methylene chloride		mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benz(a)anthracene		mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(a)pyrene		mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(b)fluoranthene		mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(k)fluoranthene		mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Chrysene		mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Dibenz(ah)anthracene		mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Indeno(1,2,3-cd)pyrene		mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Naphthalene		mg/kg	1.56E-04		0.00E+00		NC	NC	
	Bis(2-ethylhexyl) phthalate		mg/kg	1.56E-04		0.00E+00		1.40E-02	(mg/kg-day)-1	
	PCB 1254		mg/kg	1.56E-04	The state of	0.00E+00			(mg/kg-day)-1	0.00E+0
	PCBs, total		mg/kg	1.56E-04		1,34E-05			(mg/kg-day)-1	2.69E-0
	DDD, p.p'-	0.0203		1.56E-04		3.17E-06			(mg/kg-day)-1	7.61E-0
	DDE, p.p'-	0.0424		1.56E-04	- 1	6.62E-06			(mg/kg-day)-1	2.25E-0
Total										2.99E-0
Grand Total						0 -	- 3		9	2,99E-0

TABLE C-11 Grove Pond Recreational Adult Fish

		EPC				Non-Ca	ncer Hazard	Calculations		
Exposure	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	ika	Rf	D/RfC	Hazard Quotient
						Value	Units	Value	Units	The second
Ingestion	Aluminum	0	mg/kg	3.64E-04	_	0.00E+00	mg/kg-day	1.00E+00	mg/kg/day	0.00E+0
3	Antimony		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0
	Arsenic		mg/kg	3.64E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Barium		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0
	Cadmium (in solid media)	0.0736		3.64E-04			mg/kg-day		mg/kg/day	2.68E-0
	Cadmium (in water)	1,000		3.64E-04			mg/kg-day		mg/kg/day	0.00E+0
	Chromium, total	0.278	mg/kg	3.64E-04			mg/kg-day	3.00E-03	mg/kg/day	3.38E-0
	Copper		mg/kg	3.64E-04			mg/kg-day	3.70E-02	mg/kg/day	0.00E+0
	Iron	0	mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0
	Lead		mg/kg	3.64E-04			mg/kg-day	NA	NA	DECEMBER 100
	Manganese (in sediment or water)		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0
	Manganese (in food)		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0
	Mercury		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	6.03E-0
	Selenium	0 mg/kg		3.64E-04			mg/kg-day	5.00E-03 mg/kg/day		0.00E+0
	Thallium		mg/kg	3.64E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Vanadium	0.0715	mg/kg	3.64E-04			mg/kg-day		mg/kg/day	2.60E-0
	Zinc	0	mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+00
	Chloroform	0	mg/kg	3.64E-04		0.00E+00	mg/kg-day	1.00E-02	mg/kg/day	0.00E+0
	Hexachiorocyclohexane, alpha-	0	mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0
	Methylene chloride	0	mg/kg	3.64E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Benz(a)anthracene	0	mg/kg	3.64E-04		0.00E+00	mg/kg-day	NA	NA	
	Benzo(a)pyrene	0	mg/kg	3.64E-04		0.00E+00	mg/kg-day	NA.	NA	
	Benzo(b)fluoranthene		mg/kg	3.64E-04			mg/kg-day	NA	NA	
	Benzo(k)fluoranthene		mg/kg	3.64E-04		0.00E+00	mg/kg-day	NA	NA	
	Chrysene	0	mg/kg	3.64E-04		0.00E+00	mg/kg-day	NA	NA	
	Dibenz(ah)anthracene	0	mg/kg	3.64E-04		0.00E+00	mg/kg-day	NA	NA	
	Indeno(1,2,3-cd)pyrene	0	mg/kg	3.64E-04			mg/kg-day	NA	NA	
	Naphthalene	0	mg/kg	3.64E-04			mg/kg-day	2.00E-02	mg/kg/day	0.00E+0
	Bis(2-ethylhexyl) phthalate	0	mg/kg	3.64E-04		0.00E+00	mg/kg-day	2.00E-02	mg/kg/day	0.00E+0
	PCB 1254	0	mg/kg	3.64E-04		0.00E+00	mg/kg-day	2.00E-05	mg/kg/day	0.00E+0
	PCBs, total	0.086	mg/kg	3.64E-04		3.13E-05	mg/kg-day		mg/kg/day	1.57E+0
	DDD, p,p'-	0.0203	mg/kg	3,64E-04			mg/kg-day	2.00E-03	mg/kg/day	3.70E-0
	DDE, p,p'-	0.0424	mg/kg	3.64E-04		1.54E-05	mg/kg-day	2.00E-03	mg/kg/day	7.72E-0
Total				2						2.27E+00
Grand Total										2.27E+00

Target organ across a	exposure pathways:	Central nervous systen
Target organ across a	Il exposure pathways:	Blood =
Target organ across a	Il exposure pathways:	Skin =
Target organ across a	Il exposure pathways:	Cardiovascular system
Target organ across a	Il exposure pathways:	Kidney =
Target organ across a	Il exposure pathways:	Gatrointestinal System
Target organ across a	Il exposure pathways:	Immune system =
Target organ across a	Il exposure pathways:	Liver =
Target organ across a	Il exposure pathways:	Whole body/growth =

TABLE C-12 Grove Pond Recreational Child Sediment

		EPC		Cancer Risk Calculations								
Exposure	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intake		CSF	Unit Risk	Cancer Risk		
100000	() () () () () () () () () ()					Value	Units	Value	Units			
Ingestion	Aluminum	20300	mg/kg	2.05E-07		4.15E-03		NC	NC			
	Antimony	11.9	mg/kg	2.05E-07		2.44E-06		NC	NC			
	Arsenic		mg/kg	2.05E-07		3.23E-05		1.50E+00	(mg/kg-day)-1	4.85E-05		
	Barlum	0	mg/kg	2.05E-07		0.00E+00		NC	NC			
	Cadmium (in solid media)	48.6	mg/kg	2.05E-07		9.95E-06		NC	NC			
	Cadmium (in water)		10000000	SERVICE OF STREET		2000		NC	NG			
	Chromium, total	144	mg/kg	2.05E-07		2.95E-05		NC	NC			
	Copper		mg/kg	2.05E-07		1.63E-04		NC	NC			
	Iron		mg/kg	2.05E-07		3.91E-03		NC	NC			
	Lead		mg/kg	2.05E-07		7.82E-05		NA	NA			
	Manganese (in sediment or water)	721	mg/kg	2.05E-07		1.48E-04		NC	NC			
	Manganese (in food)		mg/kg	2.05E-07		0.00E+00		NC .	NC			
N. 1	Mercury		mg/kg	2.05E-07		1.93E-05		NC	NC			
	Selenium		mg/kg	2.05E-07		2.00E-06		NC	NC			
	Thallium		mg/kg	2.05E-07		5.40E-06		NC	NC			
	Vanadium		mg/kg	2.05E-07		8.74E-06		NC	NC			
	Zinc		mg/kg	2.05E-07		0.00E+00		NC	NC			
	Chloroform	0	mg/kg	2.05E-07		0.00E+00		NA	NA			
	Hexachlorocyclohexane, alpha-	0	mg/kg	2.05E-07		0.00E+00		6.30E+00	(mg/kg-day)-1	0.00E+00		
	Methylene chloride	0	mg/kg	2.05E-07		0.00E+00			(mg/kg-day)-1	0.00E+00		
	Benz(a)anthracene	0.684	mg/kg	2.05E-07		1.40E-07		7.30E-01	(mg/kg-day)-1	1.02E-07		
	Benzo(a)pyrene	0.729	mg/kg	2.05E-07		1.49E-07			(mg/kg-day)-1	1.09E-06		
	Benzo(b)fluoranthene	0.85	mg/kg	2.05E-07		1.74E-07			(mg/kg-day)-1	1.27E-07		
	Benzo(k)fluoranthene	0.839	mg/kg	2.05E-07		1.72E-07		7.30E-02	(mg/kg-day)-1	1.26E-08		
	Chrysene		mg/kg	2.05E-07		2.25E-07			(mg/kg-day)-1	1.64E-09		
	Dibenz(ah)anthracene	0.263	mg/kg	2.05E-07		5.38E-08			(mg/kg-day)-1	3.93E-07		
	Indeno(1,2,3-cd)pyrene	0.641	mg/kg	2.05E-07		1.31E-07		7.30E-01	(mg/kg-day)-1	9.58E-08		
	Naphthalene	3.84	mg/kg	2.05E-07		7.86E-07		NC	NC			
	Bis(2-ethylhexyl) phthalate	0	mg/kg	2.05E-07		0.00E+00		1.40E-02	(mg/kg-day)-1	0.00E+00		
	PCB 1254		mg/kg	2.05E-07		0.00E+00			(mg/kg-day)-1	0.00E+00		
	PCBs, total	0	mg/kg	2.05E-07		0.00E+00			(mg/kg-day)-1	0.00E+00		
	DDD, p.p'-	0.381	mg/kg	2.05E-07		7.80E-08			(mg/kg-day)-1	1.87E-08		
	DDE, p,p'-	0	mg/kg	2.05E-07		0.00E+00			(mg/kg-day)-1	0.00E+00		
Total										5.03E-05		

TABLE C-12 Grove Pond Recreational Child Sediment

		EPC		Cancer Risk Calculations								
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor		Other	Intake		CSF/	Unit Risk	Cancer Risk	
	A SAMULATION OF THE SAMULATION			- Carrier			Value	Units	Value	Units		
				Intake Factor	DA event factor	ABSd	Intake		CSF/	Unit Risk	Cancer Risk	
Dermal	Aluminum		mg/kg	1.69E+00	1.00E-06	The second secon	#VALUEI		NC	NC		
	Antimony		mg/kg	1.69E+00	1.00E-06	\$100 m 24 m 27 112 110 110 110 110 110 110 110 110 110	#VALUE!		NC	NC		
	Arsenia		mg/kg	1.69E+00		3.00E-02	8,00E-06		1.50E+00	(mg/kg-day)-1	1.20E-0	
	Barlum		mg/kg	1.69E+00	1.00E-06		#VALUE!		NC	NC		
	Cadmium (in solid media)	48.6	mg/kg	1.69E+00	1.00E-06	1.00E-03	8.21E-08		NC	NC		
	Cadmium (in water)	234		4 005 00	4 port po	NA			NC	NC		
	Chromium, total		mg/kg	1.69E+00			#VALUE!		NC	NC		
	Copper		mg/kg	1.69E+00	1.00E-06	A STATE OF THE PARTY OF THE PAR	#VALUE!		NC	NC		
	Iron		mg/kg	1.69E+00	1.00E-06		#VALUE!		NC	NC		
	Lead		mg/kg	1.69E+00	1.00E-06	Print Print Day Comment of the	#VALUE!		NA	NA		
	Manganese (in sediment or water)		mg/kg	1.69E+00	1.00E-06		#VALUE!		NC	NC		
	Manganese (in food)		mg/kg	1.69E+00	1.00E-06		#VALUE!		NC	NC		
	Mercury	94.4	mg/kg	1.69E+00	1.00E-06		#VALUE!		NC	NC		
	Selenium	9.76	mg/kg	1,69E+00	1.00E-06	est bonesis is to someon	#VALUE!		NC	NC		
	Thallium	26.4	mg/kg	1.69E+00	1.00E-06	145 * Street # (4	#VALUE!		NC	NC		
	Vanadium	42.7	mg/kg	1.69E+00	1.00E-06		#VALUE!		NC	NC		
	Zinc	0	mg/kg	1.69E+00	1.00E-06		#VALUE!		NC	NC		
	Chloroform	0	mg/kg	1.69E+00	1.00E-06		#VALUE!		NA	NA		
	Hexachlorocyclohexane, alpha-	0	mg/kg	1.69E+00	1.00E-06	4.00E-02	0.00E+00		6.30E+00	(mg/kg-day)-1		
	Methylene chloride	0	mg/kg	1.69E+00	1.00E-06		#VALUE!			(mg/kg-day)-1		
	Benz(a)anthracene		mg/kg	1.69E+00		1.30E-01	1.50E-07			(mg/kg-day)-1		
	Benzo(a)pyrene		mg/kg	1.69E+00		1.30E-01	1.60E-07			(mg/kg-day)-1	1.17E-0	
	Benzo(b)fluoranthene		mg/kg	1.69E+00		1.30E-01	1.87E-07		7.30E-01	(mg/kg-day)-1	1.36E-0	
	Benzo(k)fluoranthene		mg/kg	1,69E+00		1,30E-01	1.84E-07		7 30F-02	(mg/kg-day)-1	1.34E-0	
	Chrysene		mg/kg	1.69E+00		1.30E-01	2.41E-07		7.30F-03	(mg/kg-day)-1	1.76E-0	
	Dibenz(ah)anthracene		mg/kg	1.69E+00	The second secon	1.30E-01	5.77E-08			(mg/kg-day)-1	4.21E-0	
	Indeno(1,2,3-cd)pyrene		mg/kg	1.69E+00		1.30E-01	1.41E-07			(mg/kg-day)-1	1.03E-0	
	Naphthalene		mg/kg	1.69E+00		1.30E-01	8.43E-07		NC	NC	1.000	
	Bis(2-ethylhexyl) phthalate		mg/kg	1.69E+00		1.00E-01	0.00E+00		NACTION 1	(mg/kg-day)-1		
	PCB 1254	0	mg/kg	1.69E+00		1.40E-01	0.00E+00			(mg/kg-day)-1	0.00E+0	
		0	mg/kg	1.69E+00		1.40E-01	0.00E+00			(mg/kg-day)-1	0.00E+0	
	PCBs, total		mg/kg	1.69E+00		3.00E-02	1.93E-08			(mg/kg-day)-1	4.63E-0	
	DDD, p,p'-			1000 1000 1000 100 V	A STATE OF THE PARTY AND ADDRESS OF THE PARTY	3.00E-02	0.00E+00					
	DDE, p,p'-	0	mg/kg	1.69E+00	1.00E-06	5.00E-02	0,000,000		3,406-01	(mg/kg-day)-1	0.00E+0	
											1.39E-0	
Grand Total						1					6.42E-0	

TABLE C-12 Grove Pond Recreational Child Sediment

		EPC		Non-Cancer Hazard Calculations								
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	- I	ntake	Rf	D/RfC	Hazard Quotient		
11.50.5150	NAME OF THE PERSON OF THE PERS			1,023,02		Value	Units	Value	Units			
Ingestion	Aluminum	20300	mg/kg	2.39E-06		4.85E-02	mg/kg-day	1,00E+00	mg/kg/day	4.85E-02		
	Antimony	11.9	mg/kg	2.39E-06		2.84E-05	mg/kg-day	4.00E-04	mg/kg/day	7.10E-0		
	Arsenic	158	mg/kg	2,39E-06		3.77E-04	mg/kg-day	3.00E-04	mg/kg/day	1,26E+0		
	Barium	0	mg/kg	2.39E-06		0.00E+00	mg/kg-day	2.00E-01	mg/kg/day	0.00E+0		
	Cadmium (in solid media)	48.6	mg/kg	2.39E-06		1.16E-04	mg/kg-day		mg/kg/day	1.16E-0		
	Cadmium (in water)		E-180	2,39E-06		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0		
	Chromium, total	144	mg/kg	2.39E-06			mg/kg-day		mg/kg/day	1.15E-0		
	Copper	795	mg/kg	2.39E-06			mg/kg-day	3.70E-02	mg/kg/day	5.13E-02		
	Iron		mg/kg	2.39E-06		4.56E-02	mg/kg-day		mg/kg/day	1.52E-0		
	Lead	382	mg/kg	2.39E-06		9.12E-04	mg/kg-day	NA	NA	112022		
	Manganese (in sediment or water)		mg/kg	2,39E-06		1.72E-03	mg/kg-day	2.40E-02	mg/kg/day	7.17E-02		
	Manganese (in food)		mg/kg	2.39E-06			mg/kg-day		mg/kg/day	0.00E+0		
	Mercury		mg/kg	2,39E-06			mg/kg-day		mg/kg/day	7.51E-0		
	Selenium		mg/kg	2.39E-06		2.33E-05	mg/kg-day		mg/kg/day	4.66E-03		
	Thallium	26.4	mg/kg	2,39E-06		6.30E-05	mg/kg-day		mg/kg/day	9.55E-0		
	Vanadium		mg/kg	2.39E-06		1.02E-04	mg/kg-day		mg/kg/day	1.02E-0		
	Zinc		mg/kg	2,39E-06			mg/kg-day		mg/kg/day	0.00E+0		
	Chloroform		mg/kg	2,39E-06			mg/kg-day		mg/kg/day	0.00E+0		
	Hexachlorocyclohexane, alpha-		mg/kg	2,39E-06		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0		
	Methylene chloride		mg/kg	2,39E-06		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0		
	Benz(a)anthracene		mg/kg	2,39E-06		1.63E-06	mg/kg-day	NA	NA	100000000000000000000000000000000000000		
	Benzo(a)pyrene	0.729	mg/kg	2,39E-06		1.74E-06	mg/kg-day	NA	NA			
	Benzo(b)fluoranthene	0.85	mg/kg	2.39E-06			mg/kg-day	NA	NA			
	Benzo(k)fluoranthene	0.839	mg/kg	2,39E-06		2.00E-06	mg/kg-day	NA	NA			
	Chrysene		mg/kg	2.39E-06			mg/kg-day	NA	NA			
	Dibenz(ah)anthracene		mg/kg	2.39E-08			mg/kg-day	NA	NA			
	Indena(1,2,3-cd)pyrene		mg/kg	2.39E-06		1.53E-06	mg/kg-day	NA	NA	1		
	Naphthalene		mg/kg	2.39E-08		9.17E-06	mg/kg-day	2.00E-02	mg/kg/day	4.58E-04		
	Bis(2-ethylhexyl) phthalate		mg/kg	2.39E-06		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0		
	PCB 1254	0	mg/kg	2.39E-08		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0		
	PCBs, total		mg/kg	2,39E-06		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00		
	DDD, p.p'-		mg/kg	2.39E-06		9.10E-07	mg/kg-day		mg/kg/day	4.55E-04		
	DDE, p,p'-		mg/kg	2.39E-06			mg/kg-day		mg/kg/day	0.00E+00		
Total										3.70E+00		

TABLE C-12 Grove Pond Recreational Child Sediment

		EPC		Non-Cancer Hazard Calculations									
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other		ti	ntake	R	D/RfC	Hazard Quotient		
				11-			Value	Units	Value	Units			
				Intake Factor	DA event factor	ABSd	la	ntake	R	D/RfC	Hazard Quotient		
Dermal	Aluminum	20300	mg/kg	1.97E+01	1.00E-06		#VALUE!	mg/kg-day	1.00E+0	0 mg/kg-day			
	Antimony	11.9	mg/kg	1.97E+01	1.00E-06	-	#VALUE!	mg/kg-day	6.00E-0	5 mg/kg-day			
	Arsenic	158	mg/kg	1.97E+01	1.00E-06	3.00E-02	9.34E-05	mg/kg-day		4 mg/kg-day	3.11E-0		
	Barium		mg/kg	1.97E+01	1.00E-06	-	#VALUE!	mg/kg-day	1.40E-0	2 mg/kg-day	1		
	Cadmium (in solid media)	48.6	mg/kg	1.97E+01	1.00E-06		9.57E-07	mg/kg-day		5 mg/kg-day	3,83E-0		
	Cadmium (in water)			1.97E+01	1.00E-06		#VALUE!	mg/kg-day		5 mg/kg-day			
	Chromium, total		mg/kg	1.97E+01	1.00E-06		#VALUE!	mg/kg-day	3.90E-0	5 mg/kg-day			
	Copper		mg/kg	1,97E+01	1.00E-06		#VALUE!	mg/kg-day		2 mg/kg-day			
	Iron	19100	mg/kg	1,97E+01	1.00E-06	In the second of the	#VALUE!	mg/kg-day	3.00E-0	1 mg/kg-day			
	Lead	382	mg/kg	1.97E+01		-	#VALUE!	mg/kg-day	NA	NA			
	Manganese (in sediment or water)	721	mg/kg	1.97E+01	1.00E-06		#VALUE!	mg/kg-day	9.60E-0	4 mg/kg-day			
	Manganese (in food)	0	mg/kg	1.97E+01	1.00E-06	0.10-01-0-000	#VALUE!	mg/kg-day	5.60E-0	3 mg/kg-day			
	Mercury	94.4	mg/kg	1.97E+01	1.00E-06	-	#VALUE!	mg/kg-day	2.10E-0	5 mg/kg-day			
	Selenium	9.76	mg/kg	1.97E+01	1.00E-06	di tatana in in samunia	#VALUE!	mg/kg-day	5.00E-0	3 mg/kg-day			
V	Thallium	26.4	mg/kg	1.97E+01	1.00E-06	-	#VALUE!	mg/kg-day	6.60E-0	5 mg/kg-day			
	Vanadium	42.7	mg/kg	1,97E+01	1.00E-06	di tahan i wa pinang	#VALUE!	mg/kg-day	2.60E-0	5 mg/kg-day			
	Zinc	0	mg/kg	1.97E+01	1.00E-06	-	#VALUE!	mg/kg-day		1 mg/kg-day			
	Chloroform	0	mg/kg	1.97E+01	1.00E-06	de Administration	#VALUE!	mg/kg-day	1.00E-0	2 mg/kg-day			
	Hexachlorocyclohexane, alpha-		mg/kg	1.97E+01	1.00E-06	4.00E-02	0.00E+00	mg/kg-day	5.00E-0	4 mg/kg-day			
	Methylene chloride	0	mg/kg	1.97E+01	1.00E-06		#VALUE!	mg/kg-day	6.00E-0	2 mg/kg-day			
1 10	Benz(a)anthracene		mg/kg	1.97E+01	1.00E-06	1.30E-01	1.75E-06	mg/kg-day	NA.	NA			
	Benzo(a)pyrene	0.729	mg/kg	1.97E+01	1.00E-06	1.30E-01		mg/kg-day	NA	NA			
	Benzo(b)fluoranthene		mg/kg	1.97E+01	1.00E-06	1.30E-01	2.18E-06	mg/kg-day	NA	NA			
	Benzo(k)fluoranthene	0.839	mg/kg	1.97E+01	1.00E-06	1.30E-01	2.15E-06	mg/kg-day	NA.	NA			
	Chrysene	1.1	mg/kg	1.97E+01	1.00E-06	1.30E-01		mg/kg-day	NA	NA			
	Dibenz(ah)anthracene		mg/kg	1.97E+01	1.00E-06	1.30E-01		mg/kg-day	NA	NA			
	Indeno(1,2,3-cd)pyrene		mg/kg	1.97E+01	1.00E-06	1.30E-01	1.64E-06	mg/kg-day	NA	NA			
	Naphthalene		mg/kg	1,97E+01	1.00E-06	1.30E-01	9.83E-06	mg/kg-day	2.00E-0	2 mg/kg-day	4.92E-0		
	Bis(2-ethylhexyl) phthalate	0		1,97E+01	1.00E-06			mg/kg-day		2 mg/kg-day	0.00E+0		
	PCB 1254	0	C100770050000000000000000000000000000000	1.97E+01	1.00E-06	1,40E-01		mg/kg-day		5 mg/kg-day	0.00E+0		
	PCBs, total	0	mg/kg	1.97E+01	1.00E-06		0.00E+00	mg/kg-day		5 mg/kg-day	0.00E+0		
	DDD, p.p'-		mg/kg	1,97E+01	1.00E-06	100 to 10	2.25E-07	mg/kg-day		3 mg/kg-day	1.13E-0		
	DDE, p.p'-		ma/ka	1,97E+01	1.00E-06		0.00E+00	mg/kg-day		3 mg/kg-day	0.00E+0		
	The state of the s		25.00	120 E 121	100000	250 M(10)	100000000000000000000000000000000000000		0.755,571,5		0,,,,,,,		
										The state of	3.50E-0		
Grand Total	- 100						100				4.05E+0		
The state of the state of								1			10000000		
					Targ	et organ ac	ross all expo	suré pathway	s: Central nervo	us system =	1.25E-0		
					Taro	et organ ac	mss all eyno	sure pathway	s: Blood =	SHOULD THE SHOULD SHOUL	7,10E-0		

Target organ across all exposure pathways: Central nervous system = 1.25E-01
Target organ across all exposure pathways: Blood = 7.10E-02
Target organ across all exposure pathways: Skin = 1.57E+00
Target organ across all exposure pathways: Cardiovascular system = 0.00E+00
Target organ across all exposure pathways: Kidney = 1.54E-01
Target organ across all exposure pathways: Galrointestinal System = 3.18E-01
Target organ across all exposure pathways: Immune system = 7.51E-01
Target organ across all exposure pathways: Liver = 9.56E-01
Target organ across all exposure pathways: Whole body/growth = 1.03E-01

TABLE C-13 Grove Pond Recreational Child Surface Water

		EPC					Cancer	Risk Calcul	lations	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intal	(e	CSF	/Unit Risk	Cancer Risk
						Value	Units	Value	Units	- 500000
Ingestion	Aluminum	0	mg/L	2.05E-04		0.00E+00		NC	NG	
	Antimony		mg/L	2.05E-04		0.00E+00		NC	NC	
	Arsenic	0.0767		2.05E-04		1.57E-05			(mg/kg-day)-1	2,35E-0
	Barium		mg/L	2.05E-04		1.43E-03		NC	NC	
	Cadmium (in solid media)	0	rng/L	2.05E-04		0.00E+00		NC	NC	
	Cadmium (in water)		mg/L	CHEST SERVICE		200 mm 1 4 4 4		NC	NC	
	Chromium, total	0.074	mg/L	2.05E-04		1.51E-05		NC	NC	
	Copper	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Iron	69.2	mg/L	2.05E-04		1.42E-02		NC	NC	
	Lead	0.0117		2.05E-04		2.39E-06		NA	NA	
	Manganese (in sediment or water)	112	mg/L	2.05E-04		2.29E-02		NC	NC	
	Manganese (in food)	0		2.05E-04		0.00E+00		NC	NC	
	Mercury	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Selenium	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Thallium	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Vanadium	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Zinc	7,19	mg/L	2.05E-04		1.47E-03		NC	NC	
	Chloroform	0	mg/L	2.05E-04		0.00E+00		NA	NA	
	Hexachlorocyclohexane, alpha-	0	mg/L	2.05E-04		0.00E+00		6.30E+00	(mg/kg-day)-1	0.00E+0
	Methylene chloride		mg/L	2.05E-04		0.00E+00		7.50E-03	(mg/kg-day)-1	0.00E+0
	Benz(a)anthracene	0	mg/L	2.05E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(a)pyrene	0	mg/L	2.05E-04		0.00E+00		7.30E+00	(mg/kg-day)-1	0.00E+0
	Benzo(b)fluoranthene	0	mg/L	2.05E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(k)fluoranthene	0	mg/L	2.05E-04		0.00E+00		7.30E-02	(mg/kg-day)-1	0.00E+0
	Chrysene	.0	mg/L	2.05E-04	1 1	0.00E+00		7.30E-03	(mg/kg-day)-1	0.00E+0
	Dibenz(ah)anthracene	0	mg/L	2.05E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Indeno(1,2,3-cd)pyrene	0	mg/L	2.05E-04		0.00E+00		7,30E-01	(mg/kg-day)-1	0.00E+0
	Naphthalene	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Bis(2-ethylhexyl) phthalate	0.035	mg/L	2.05E-04		7.16E-06		1.40E-02	(mg/kg-day)-1	1.00E-0
	PCB 1254	0	mg/L	2.05E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	PCBs, total	0	mg/L	2.05E-04		0.00E+00		2.00E+00	(mg/kg-day)-1	0.00E+0
	DDD, p.p'-	0	mg/L	2.05E-04		0.00E+00		2.40E-01	(mg/kg-day)-1	0.00E+0
	DDE, p,p'-	0	mg/L	2.05E-04		0.00E+00		3.40E-01	(mg/kg-day)-1	0.00E+00
Total										2.36E-0

TABLE C-13 Grove Pond Recreational Child Surface Water

		EPC						Cancer	Risk Calcul	ations	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor		Other	Inta	ko	CSF	/Unit Risk	Cancer Risk
				TANKS.	3		Value	Units	Value	Units	200
	J			Intake Factor	DA event		inta	ke	CSF	/Unit Risk	Cancer
Dermal	Aluminum	0	mg/L	1.68E+00	0.00E+00		0.00E+00		NC	NC	
	Antimony	0	11129	1.68E+00	0.00E+00		0.00E+00		NC	NC	
	Arsenio	0.0767	mg/L	1.68E+00	3.07E-07		5.15E-07		1.50E+00	(mg/kg-day)-1	7.73E-0
	Barium	6.99	mg/L	1.68E+00	2.80E-05		4.69E-05		NC	NC	
	Cadmium (in solid media)	0	mg/L	1.68E+00	0.00E+00		0.00E+00		NC	NC .	
	Cadmium (in water)		-		0.00E+00		0.00E+00		NC	NC	
	Chromium, total	0.074	mg/L	1.68E+00	5.92E-07		9.94E-07		NC	NC	
	Copper	0	mg/L.	1.68E+00	0.00E+00	1	0.00E+00		NC	NC	
	Iron	69.2	mg/L	1.68E+00	2.77E-04		4.65E-04		NC	NC	
	Lead	0.0117	mg/L	1.68E+00	4.68E-08		7.86E-08	11	NA	NA	
	Manganese (in sediment or water)		mg/L	1.68E+00	4.48E-04		7.52E-04		NC	NC	
	Manganese (in food)	0	mg/L	1.68E+00	0.00E+00		0.00E+00		NC	NC	
	Mercury		mg/L	1.68E+00	0.00E+00		0.00E+00		NC	NC	
	Selenium		mg/L	1.68E+00	0.00E+00		0.00E+00		NC	NC	
	Thallium		mg/L	1.68E+00	0.00E+00		0.00E+00		NC	NC	
	Vanadium	0		1.68E+00	0.00E+00		0.00E+00		NC	NC	
	Zinc	7,19	mg/L	1.68E+00	1.73E-05		2.90E-05		NG	NC	
	Chloroform	0	mg/L	1.68E+00	0.00E+00		0.00E+00		NA	NA	
	Hexachlorocyclohexane, alpha-	0	mg/L	1.68E+00	0.00E+00		0.00E+00	1	6.30E+00	(mg/kg-day)-1	
	Methylene chloride	0	mg/L	1.68E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benz(a)anthracene		mg/L	1.68E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.000
	Benzo(a)pyrene	0	mg/L	1.68E+00	0.00E+00		0.00E+00		7.30E+00	(mg/kg-day)-1	0.00E+0
	Benzo(b)fluoranthene		mg/L	1.68E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(k)fluoranthene		mg/L	1.68E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.00E+0
	Chrysene		mg/L	1.68E+00	0.00E+00		0.00E+00		7.30F-03	(mg/kg-day)-1	0.00E+0
	Dibenz(ah)anthracene		mg/L	1.68E+00	0.00E+00		0.00E+00		7.30E+00	(mg/kg-day)-1	0.00E+0
	Indeno(1,2,3-cd)pyrene		mg/L	1.68E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.00E+0
	Naphthalene		mg/L	1.68E+00			0.00E+00		NC.	NC	5.002.0
	Bis(2-ethylhexyl) phthalate		mg/L	1.68E+00			3.31E-05		The state of the s	(mg/kg-day)-1	4.64E-0
	PCB 1254		mg/L	1.68E+00	0.00E+00		0.00E+00		2.00F+00	(mg/kg-day)-1	0.00E+0
	PCBs, total		mg/L	1.68E+00	0.00E+00		0.00E+00		2.00E+00	(mg/kg-day)-1	0.00E+0
	DDD, p,p'-		mg/L	1.68E+00	0.00E+00		0.00E+00	7		(mg/kg-day)-1	0.00E+0
	DDE, p.p'-		mg/L	1.68E+00	0.00E+00		0.00E+00			(mg/kg-day)-1	0.00E+0
					-/		- 1				1.24E-0
Grand Total							-				2,49E-0

TABLE C-13 Grove Pond Recreational Child Surface Water

		EPC		E.		Non-Ca	ncer Hazard	Calculations		
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	ike	Rff	D/RfC	Hazard Quotient
						Value	Units	Value	Units	
ngestion	Aluminum	0	mg/L	2.39E-03		0.005+00	mg/kg-day	1.00E+00	mg/kg/day	0.00E+00
ingestion	Antimony		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Arsenic	0.0767		2.39E-03			mg/kg-day	3.00E-04	mg/kg/day	6.10E-0
	Barium		mg/L	2.39E-03			mg/kg-day		mg/kg/day	8.34E-0
	Cadmium (in solid media)		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Cadmium (in water)		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Chromium, total	0.074		2.39E-03			mg/kg-day		mg/kg/day	5.89E-0
	Copper		mgA.	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Iron		mg/L	2.39E-03			mg/kg-day		mg/kg/day	5.51E-0
	Lead	0.0117		2.39E-03		2.79F-05	mg/kg-day	NA S.COL-OI	NA	5.010.0
	Manganese (in sediment or water)	112	mg/L	2.39E-03	10	2.67F-01	mg/kg-day	The state of the s	mg/kg/day	1.11E+0
	Manganese (in food)		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Mercury		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Selenium		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Thallium		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Vanadium		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Zinc		mg/L	2.39E-03			mg/kg-day		mg/kg/day	5.72E-0
	Chloroform		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Hexachlorocyclohexane, alpha-		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Methylene chloride		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Benz(a)anthracene		mg/L	2.39E-03			mg/kg-day	NA O.OOL-OZ	NA	0.000.10
	Benzo(a)pyrene		mg/L	2.39E-03			mg/kg-day	NA	NA	
	Benzo(b)fluoranthene		mg/L	2.39E-03			mg/kg-day	NA	NA	
	Benzo(k)fluoranthene		mg/L	2.39E-03			mg/kg-day	NA	NA	
	Chrysene		mg/L	2.39E-03			mg/kg-day	NA	NA	
	Dibenz(ah)anthracene		mg/L	2.39E-03			mg/kg-day	NA	NA	
	Indeno(1,2,3-cd)pyrene		mg/L	2.39E-03			mg/kg-day	NA	NA	
	Naphthalene		mg/L	2.39E-03			mg/kg-day	7.00.4	mg/kg/day	0.00E+0
	Bis(2-ethylnexyl) phthalate	0.035		2.39E-03			mg/kg-day		mg/kg/day	4.18E-0
	PCB 1254		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	PCBs, total		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	DDD, p.p'-		mg/L	2.39E-03		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	DDE, p,p*-		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+00
	Current belon	0	ingri	2.00100		0.002100	ingling-only	2.002-03	mandrany	0.000
Total	The second second									1.25E+01

TABLE C-13 Grove Pond Recreational Child Surface Water

		EPC				Non-Ga	ancer Hazard	Calculations		
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Int	ako	Rf	D/RfC	Hazard Quotient
						Value	Units	Value	Units	PO 18.1907
				Intake Factor	DA event	1000	ake	Rf	D/RfC	Hazard Quotient
Dermal	Aluminum		mg/L	1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	
	Antimony		mg/L	1.96E+01	0.00E+00		mg/kg-day	6.00E-05	mg/kg-day	
	Arsenic	0.0767		1.96E+01	3.07E-07		i mg/kg-day	3.00E-04	mg/kg-day	2.00E-0
	Barium		mg/L	1.96E+01	2.80E-05		mg/kg-day	1.40E-02	mg/kg-day	3.91E-0
	Cadmium (in solid media)	0	mg/L	1,96E+01	0.00E+00	0.00E+00	mg/kg-day	2.50E-05	mg/kg-day	0.00E+0
	Cadmium (in water)			1,96E+01	0.00E+00	0.00E+00	mg/kg-day	2.50E-05	2,50E-05 mg/kg-day	
	Chromium, total	0.074	mg/L	1.96E+01	5.92E-07		mg/kg-day	3.90E-05 mg/kg-day	2.97E-0	
1.75	Copper	0	mg/L	1.96E+01	0.00E+00	0.00E+80	mg/kg-day	3,70E-02	mg/kg-day	10000
	Iron	69.2 mg/L		1.96E+01	2.77E-04		mg/kg-day	3.00E-01 mg/kg-d	mg/kg-day	1.81E-0
	Lead	0.0117	mg/L	1.96E+01	4.68E-08	9.17E-07	mg/kg-day	NA	NA	100000000000000000000000000000000000000
	Manganese (in sediment or water)	112	mg/L	1.96E+01	4.48E-04	8.78E-03	mg/kg-day	9.60E-04	mg/kg-day	9.14E+0
	Manganese (in food)	0	mg/L	1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	E 45-40 X X
M	Mercury	0 mg/L		1.96E+01	0.00E+00	0.00E+00	mg/kg-day		mg/kg-day	
	Selenium	0 mg/L		1.96E+01	0.00E+00	0.00E+00	mg/kg-day	5.00E-03 mg/kg-day		
	Thallium	0 mg/L		1.96E+01	0.00E+00		mg/kg-day	6.60E-05	mg/kg-day	
	Vanadium	0 mg/L		1.96E+01	0.00E+00	0.00E+00	mg/kg-day		mg/kg-day	
	Zing	7.19	mg/L	1.96E+01	1.73E-05	3.38E-04	mg/kg-day	3.00E-01	mg/kg-day	1.13E-0
	Chloroform	0	mg/L	1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	
	Hexachiorocyclohexane, alpha-	0		1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	
	Methylene chloride	0		1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	
	Benz(a)anthracene	0	mg/L	1.96E+01	0.00E+00		mg/kg-day	NA	NA	
	Benzo(a)pyrene		mg/L	1,96E+01			mg/kg-day	NA	NA	
	Benzo(b)fluoranthene		mg/L	1.96E+01	0.00E+00		mg/kg-day	NA	NA	
	Benzo(k)fluoranthene		mg/L	1.96E+01	LICE TO DESCRIPTION OF THE PERSON OF THE PER		mg/kg-day	NA	NA	
	Chrysene		mg/L	1.96E+01			mg/kg-day	NA	NA	
	Dibenz(ah)anthracene	0	mg/L	1.96E+01	0.00E+00		mg/kg-day	NA	NA	
	Indeno(1,2,3-cd)pyrene	0	mg/L	1.96E+01	0.00E+00		mg/kg-day	NA	NA	
	Naphthalene	0	mg/L	1.96E+01	DC18600033365480003350		mg/kg-day	D65960	mg/kg-day	0.00E+0
	Bis(2-ethylhexyl) phthalate	0.035	ma/L	1.96E+01	1.97E-05		mg/kg-day		mg/kg-day	1.93E-0
	PCB 1254		mg/L	1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0
	PCBs, total		mg/L	1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0
	DDD, p,p*-		mg/L	1.96E+01			mg/kg-day		mg/kg-day	0.00E+0
	DDE, p.p'-		mg/L	1.96E+01	CALL TO A CONTRACT OF THE PARTY		mg/kg-day		mg/kg-day	0.00E+0
				To the						9,54E+0
Grand Total				-						2.20E+0

Target organ across all exposure pathways: Central nervous system =	2.03E+01
Target organ across all exposure pathways: Blood =	5.83E-02
Target organ across all exposure pathways: Skin =	6.30E-01
Target organ across all exposure pathways: Cardiovascular system =	1.23E-01
Target organ across all exposure pathways: Kidney =	0.00E+00
Target organ across all exposure pathways: Gatrointestinal System =	9.25E-01
Target organ across all exposure pathways: Immune system =	0.00E+00
Target organ across all exposure pathways: Liver =	2.35E-02
Target organ across all exposure pathways: Whole body/growth =	0,00E+00

TABLE C-14 Grove Pond Recreational Child Fish

		EPC	0	Cancer Risk Calculations							
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intal	(0	CSF	/Unit Risk	Cancer Risk	
						Value	Units	Value	Units		
Ingestion	Aluminum	0	mg/kg	5.46E-05		0.00E+00	_	NC	NC		
and and and	Antimony		mg/kg	5.46E-05		0.00E+00		NC	NC		
	Arsenic		mg/kg	5.46E-05		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Barium		mg/kg	5.46E-05		0.00E+00		NC	NC NC	0.002.0	
	Cadmium (in solid media)	0.0736		5.46E-05		4.02E-06		NC	NC		
	Cadmium (in water)	-16000	10.850.95	- In-Re				NC	NC		
	Chromium, total	0.278	mg/kg	5.46E-05		1,52E-05		NC	NC		
	Copper		mg/kg	5.46E-05		0.00E+00		NC	NC		
	Iron		mg/kg	5.46E-05		0.00E+00		NC	NC		
	Lead		mg/kg	5.46E-05		4.45E-05		NA	NA		
	Manganese (in sediment or water)	0	mg/kg	5.46E-05		0.00E+00		NC	NC		
	Manganese (in food)		mg/kg	5.46E-05		0.00E+00		NC	NC		
	Mercury	0.497	mg/kg	5.46E-05		2.71E-05		NC	NC		
	Selenium		mg/kg	5.46E-05		0.00E+00		NC	NC		
	Thallium		mg/kg	5.46E-05		0.00E+00		NC	NC		
	Vanadium	0.0715	mg/kg	5.46E-05		3.90E-06		NC	NC		
	Zinc	0	mg/kg	5.46E-05		0.00E+00		NC	NC		
	Chloroform	0	mg/kg	5.46E-05		0.00E+00		NA.	NA		
	Hexachlorocyclohexane, alpha-		mg/kg	5.46E-05		0.00E+00		6.30E+00	(mg/kg-day)-1	0.00E+0	
	Methylene chloride	0	mg/kg	5.46E-05		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Benz(a)anthracene	0	mg/kg	5,46E-05		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Benzo(a)pyrene	0	mg/kg	5.46E-05		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Benzo(b)fluoranthene		mg/kg	5.46E-05		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0	
	Benzo(k)fluoranthene		mg/kg	5.48E-05		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Chrysene	0	mg/kg	5.46E-05		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Dibenz(ah)anthracene	0	mg/kg	5.46E-05		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Indeno(1,2,3-cd)pyrene	0	mg/kg	5.46E-05		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0	
	Naphthalene	0	mg/kg	5.46E-05		0.00E+00		NC	NC		
	Bis(2-ethylhexyl) phthalate	0	mg/kg	5.46E-05		0.00E+00		1,40E-02	(mg/kg-day)-1		
	PCB 1254	0	mg/kg	5.46E-05		0.00E+00			(mg/kg-day)-1	0.00E+0	
	PCBs, total	0.086	mg/kg	5.46E-05		4.69E-06			(mg/kg-day)-1	9.38E-0	
	DDD, p.p'-	0.0203	mg/kg	5.46E-05		1.11E-06			(mg/kg-day)-1	2.66E-0	
	DDE, p,p'-	0.0424	mg/kg	5,46E-05		2.31E-06			(mg/kg-day)-1	7.87E-0	
Total										1.04E-0	
Grand Total										1.04E-05	

TABLE C-14 Grove Pond Recreational Child Fish

		EPC				Non-Ca	ncor Hazard	Calculations		
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	ake	RI	D/RfC	Hazard Quotient
- Contract				-		Value	Units	Value	Units	inga sangara
Ingestion	Aluminum	0	mg/kg	6.37E-04		0.005+00	mg/kg-day	1.005+00	mg/kg/day	0.00E+0
ingoscion	Antimony		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Arsenia		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Barium		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Cadmium (in solid media)		mg/kg	6.37E-04			mg/kg-day	2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	mg/kg/day	4.68E-0
	Cadmium (in water)	0.0100	reduch.	6.37E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Chromium, total	0.278	mg/kg	6.37E-04		1.77F-04	mg/kg-day		mg/kg/day	5.90E-0
	Copper		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Iron		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Lead		mg/kg	6.37E-04			mg/kg-day	NA STOOL S	NA	0.000
	Manganese (in sediment or water)		mg/kg	6.37E-04			mg/kg-day	The second secon	mg/kg/day	0.00E+0
	Manganese (in food)		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Mercury		mg/kg	6.37E-04		3.16E-04	mg/kg-day		mg/kg/day	1.05E+0
	Selenium		mg/kg	6.37E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Thallium		mg/kg	6.37E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Vanadium		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	4,55E-0
	Zinc		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Chloroform		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Hexachlorocyclohexane, alpha-		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Methylene chloride		mg/kg	6,37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Benz(a)anthracene		mg/kg	6.37E-04			mg/kg-day	NA	NA	11000000
	Benzo(a)pyrene		mg/kg	6.37E-04		0.00E+00	mg/kg-day	NA	NA	
	Benzo(b)fluoranthene		mg/kg	6.37E-04		0.00E+00	mg/kg-day	NA	NA	
	Benzo(k)fluoranthene	0	mg/kg	6.37E-04			mg/kg-day	NA	NA	
	Chrysene	0	mg/kg	6.37E-04		0.00E+00	mg/kg-day	NA	NA	
	Dibenz(ah)anthracene	0	mg/kg	6.37E-04			mg/kg-day	NA	NA	
	Indeno(1,2,3-cd)pyrene	0	mg/kg	6.37E-04		0.00E+00	mg/kg-day	NA.	NA	
	Naphthalene	0	mg/kg	6.37E-04		0.00E+00	mg/kg-day	2.00E-02	mg/kg/day	0.00E+0
	Bis(2-ethylhexyl) phthalate	0	mg/kg	6.37E-04		0.00E+00	mg/kg-day	2.00E-02	mg/kg/day	0.00E+0
	PCB 1254	0	mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	PCBs, total	0.086	mg/kg	6.37E-04			mg/kg-day		mg/kg/day	2.74E+0
	DDD, p,p'-	0.0203	mg/kg	6.37E-04			mg/kg-day	2.00E-03	mg/kg/day	6.46E-0
	DDE, p.p'-		mg/kg	6.37E-04		2.70E-05	mg/kg-day	2.00E-03	mg/kg/day	1.35E-0
Total										3.96E+0
Grand Total				- 1			7			3.96E+0

Target organ across all exposure pathways: Central nervous system = Target organ across all exposure pathways: Blood = Target organ across all exposure pathways: Skin = Target organ across all exposure pathways: Cardovascular system = Target organ across all exposure pathways: Kidney = Target organ across all exposure pathways: Gatrointestinal System = Target organ across all exposure pathways: Immune system = Target organ across all exposure pathways: Liver = Target organ across all exposure pathways: Liver =

0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.68E-02 5.90E-02 3.79E+00 2.00E-02 4.55E-02

TABLE C-15 Grove Pond Subsistance Adult Fish

		EPC					Cancer	Risk Calcul	ations	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intak	(e	CSF	/Unit Risk	Cancer
						Value	Units	Value	Units	2.573.10
Ingestion	Aluminum	0	mg/kg	1.04E-03		0.00E+00		NC	NC	
	Antimony		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Arsenic		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+0
	Barium		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Cadmium (in solid media)	0.0736		1.04E-03		7.65E-05		NC	NC	
	Cadmium (in water)							NC	NC	
	Chromium, total	0.278	mg/kg	1.04E-03		2.89E-04		NC	NC	
	Copper		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Iron		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Lead		mg/kg	1.04E-03		8.47E-04		NA	NA	
	Manganese (in sediment or water)		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Manganese (in food)		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Mercury		mg/kg	1.04E-03		5.17E-04		NC	NC	
	Selenium		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Thallium		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Vanadium	0.0715		1.04E-03		7.43E-05		NC	NC	
	Zinc		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Chloroform		mg/kg	1.04E-03		0.00E+00		NA	NA	
	Hexachlorocyclohexane, alpha-		mg/kg	1.04E-03		0.00E+00		The second secon	(mg/kg-day)-1	0.00E+0
	Methylene chloride		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benz(a)anthracene		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(a)pyrene		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(b)fluoranthene		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(k)fluoranthene		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+0
	Chrysene		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+0
	Dibenz(ah)anthracene		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+0
	Indeno(1,2,3-cd)pyrene		ma/kg	1.04E-03		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0
	Naphthalene		mg/kg	1.04E-03		0.00E+00		NC NC	NC NC	0.002.0
	Bis(2-ethylhexyl) phthalate		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	
	PCB 1254		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+0
	PCBs, total		mg/kg	1.04E-03		8.94E-05			(mg/kg-day)-1	1.79E-0
	DDD, p,p'-		mg/kg	1.04E-03		2.11E-05			(mg/kg-day)-1	5.06E-0
	DDE, p,p'-		mg/kg	1.04E-03		4.41E-05			(mg/kg-day)-1	1.50E-0
Total										1,99E-0
Grand Total										1.99E-0

TABLE C-15 Grove Pond Subsistance Adult Fish

		EPC		Non-Cancer Hazard Calculations									
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	Intake	Rff	D/RfC	Hazard Quotient			
o i to fundamento						Value	Units	Value	Units				
Ingestion	Aluminum	0	mg/kg	2.43E-03		0.00E+00	mg/kg-day	1.00E+00	mg/kg/day	0.00E+00			
	Antimony	0	ma/kg	2.43E-03		0.00E+00	mg/kg-day	4.00E-04	mg/kg/day	0.00E+00			
	Arsenic	0	mg/kg	2.43E-03				3.00E-04	mg/kg/day	0.00E+00			
	Barium	0	mg/kg	2.43E-03		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00			
	Cadmium (in solid media)	0.0736	mg/kg	2.43E-03					mg/kg/day	1.79E-0			
	Cadmium (in water)			2.43E-03					mg/kg/day	0.00E+00			
	Chromium, total	0.278	mg/kg	2.43E-03		6.74E-04	mg/kg-day		mg/kg/day	2,25E-01			
	Copper		mg/kg	2.43E-03					mg/kg/day	0.00E+00			
	Iron	0	mg/kg	2.43E-03					mg/kg/day	0.00E+00			
	Lead	0.815	mg/kg	2.43E-03				NA	NA				
	Manganese (in sediment or water)		mg/kg	2.43E-03		0.00E+00	ma/ka-day		mg/kg/day	0.00E+00			
	Manganese (in food)		mg/kg	2.43E-03		0.00E+00	mo/kg-day	1.40E-01	mg/kg/day	0.00E+00			
	Mercury		mg/kg	2.43E-03					mg/kg/day	4.02E+00			
	Selenium		mg/kg	2.43E-03					mg/kg/day	0.00E+00			
	Thallium		mg/kg	2.43E-03					mg/kg/day	0.00E+00			
	Vanadium	0.0715		2.43E-03					mg/kg/day	1.73E-01			
	Zing		mg/kg	2,43E-03				3.00E-01	mg/kg/day	0.00E+00			
	Chloroform		mg/kg	2.43E-03					mg/kg/day	0.00E+00			
	Hexachlorocyclohexane, alpha-		mg/kg	2.43E-03					mg/kg/day	0,00E+00			
	Methylene chloride		mg/kg	2,43E-03			mg/kg-day		mg/kg/day	0.00E+00			
	Benz(a)anthracene		mg/kg	2.43E-03			mg/kg-day	NA	NA	3.500			
	Benzo(a)pyrene		mg/kg	2.43E-03			mg/kg-day	NA	NA				
	Benzo(b)fluoranthene		mg/kg	2.43E-03			mg/kg-day	NA	NA				
	Benzo(k)fluoranthene		mg/kg	2.43E-03			mg/kg-day	NA.	NA				
	Chrysene		mg/kg	2.43E-03		0.00E+00	mg/kg-day	NA	NA				
	Dibenz(ah)anthracene		mg/kg	2.43E-03			mg/kg-day	NA	NA				
	Indeno(1,2,3-cd)pyrene		mg/kg	2.43E-03			mg/kg-day	NA	NA				
	Naphthalene		mg/kg	2.43E-03			mg/kg-day		mg/kg/day	0.00E+00			
	Bis(2-ethylhexyl) phthalate		mg/kg	2.43E-03			mg/kg-day		mg/kg/day	0.00E+00			
	PCB 1254		mg/kg	2.43E-03		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00			
	PCBs, total		mg/kg	2.43E-03			mg/kg-day		mg/kg/day	1.04E+01			
	DDD, p,p'-	0.0203		2.43E-03			mg/kg-day		mg/kg/day	2.46E-02			
	DDE, p,p'-		mg/kg	2.43E-03			mg/kg-day		mg/kg/day	5.14E-02			
Total										1.51E+01			
Grand Total				be the second						1.51E+01			

	And the second second
Target organ across all exposure pathways: Central nervous system =	0.00E+00
Target organ across all exposure pathways: Blood =	0.00E+00
Target organ across all exposure pathways; Skin =	0.00E+00
Target organ across all exposure pathways: Cardiovascular system =	0.00E+00
Target organ across all exposure pathways: Kidney =	1.79E-01
Target organ across all exposure pathways: Gatrointestinal System =	2.25E-01
Target organ across all exposure pathways: Immune system =	1.44E+01
Target organ across all exposure pathways; Liver =	7.60E-02
Target organ across all exposure pathways: Whole body/growth =	1.73E-01
	Name and Address of the Owner, when the Owner,

TABLE C-16 Grove Pond Subsistance Child Fish

		EPC					Cancer	Risk Galcul	ations	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intak	0	CSF	/Unit Risk	Cancer Risk
333462				10000		Value	Units	Value	Units	1335
Ingestion	Aluminum	0	mg/kg	3.63E-04		0.00E+00	_	NC	NC	
	Antimony		mg/kg	3.63E-04		0.00E+00		NC	NC	
	Arsenic		mg/kg	3.63E-04		0.00E+00		1.50E+00	(mg/kg-day)-1	0.00E+0
	Barium		mg/kg	3.63E-04		0.00E+00		NC	NC	
	Cadmium (in solid media)	0.0738	mg/kg	3.63E-04		2.67E-05		NC	NC	
	Cadmium (in water)		0.5019					NC	NC	
	Chramium, total	0.278	mg/kg	3.63E-04		1.01E-04		NC	NC	
	Copper		mg/kg	3.63E-04		0.00E+00		NC	NC	
	Iron		mg/kg	3.63E-04		0.00E+00		NC	NC	
	Lead		mg/kg	3.63E-04		2.96E-04		NA	NA	
	Manganese (in sediment or water)		mg/kg	3.63E-04		0.00E+00		NC	NC	
	Manganese (in food)		mg/kg	3.63E-04		0.00E+00		NC	NC	
	Mercury		mg/kg	3.63E-04		1.81E-04		NC	NC	
	Selenium		mg/kg	3.63E-04		0.00E+00		NC	NC	
	Thallium		mg/kg	3.63E-04		0.00E+00		NC	NC	
	Vanadium		mg/kg	3.63E-04		2.60E-05		NC	NC	
	Zinc		mg/kg	3.63E-04		0.00E+00		NC	NC	
	Chloroform		mg/kg	3.63E-04		0.00E+00		NA	NA	
	Hexachlorocyclohexane, alpha-		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Methylene chloride		ma/ka	3.63E-04		0.00E+00		7.50E-03	(mg/kg-day)-1	0.00E+0
	Benz(a)anthracene		mg/kg	3.63E-04		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0
	Benzo(a)pyrene		mg/kg	3.63E-04		0.00E+00		7 30E+00	(mg/kg-day)-1	0.00E+0
	Benzo(b)fluoranthene		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(k)fluoranthene		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Chrysene		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Dibenz(ah)anthracene		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Indeno(1,2,3-cd)pyrene		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Naphthalene		mg/kg	3.63E-04		0.00E+00		NC.	NC	0.000.0
	Bis(2-ethylhexyl) phthalate		mg/kg	3,63E-04		0.00E+00		The state of the s	(mg/kg-day)-1	
	PCB 1254		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	PCBs, total		mg/kg	3.63E-04		3.12E-05			(mg/kg-day)-1	6.25E-0
	DDD, p.p'-		mg/kg	3.63E-04		7.37E-06			(mg/kg-day)-1	1.77E-0
	DDE, p.p'-		mg/kg	3.63E-04		1,54E-05			(mg/kg-day)-1	5.24E-0
Total										6.95E-0
Grand Total										6.95E-0

TABLE C-16 Grove Pond Subsistance Child Fish

		EPC		Non-Cancer Hazard Calculations									
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	ika	Rft)/RfC	Hazard Quotient			
200000						Value	Units	Value	Units				
Ingestion	Aluminum	0	mg/kg	8.48E-04		0.00E+00	mg/kg-day	1.00E+00	mg/kg/day	0.00E+00			
me ransan	Antimony		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+0			
	Arsenic		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00			
	Barium		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+0			
	Cadmium (in solid media)	0.0736		8.48E-04			mg/kg-day		mg/kg/day	6.24E-0			
	Cadmium (in water)		103889	8,48E-04			mg/kg-day		mg/kg/day	0.00E+00			
	Chromium, total	0.278	mg/kg	8.48E-04			mg/kg-day		mg/kg/day	7.86E-02			
	Copper		mg/kg	8.48E-04			mg/kg-day	3.70E-02	mg/kg/day	0.00E+00			
	Iron		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00			
	Lead		mg/kg	8.48E-04			mg/kg-day	NA	NA	0.000			
	Manganese (in sediment or water)		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00			
	Manganese (in food)		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00			
	Mercury		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	1.40E+00			
	Selenium		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00			
	Thallium	0	mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00			
	Vanadium	0.0715		8.48E-04			mg/kg-day		mg/kg/day	6.06E-02			
	Zinc		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+0			
	Chloroform		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00			
	Hexachlorocyclohexane, alpha-	0	mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00			
	Methylene chloride		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00			
	Benz(a)anthracene		mg/kg	8.48E-04			mg/kg-day	NA O.OOL.OZ	NA	0.00E+00			
	Benzo(a)pyrene		mg/kg	8.48E-04			mg/kg-day	NA.	NA				
	Benzo(b)fluoranthene	0	mg/kg	8.48E-04			mg/kg-day	NA	NA				
	Benzo(k)fluoranthene		mg/kg	8.48E-04			mg/kg-day	NA.	NA				
	Chrysene		mg/kg	8.48E-04			mg/kg-day	NA	NA				
	Dibenz(ah)anthracene		mg/kg	8.48E-04			mg/kg-day	NA NA	NA				
	Indeno(1,2,3-cd)pyrene		mg/kg	8.48E-04		0.000=00	mg/kg-day	NA NA	NA				
	Naphthalene		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00			
			mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00			
	Bis(2-ethylhexyl) phthalate PCB 1254		mg/kg	8.48E-04	111		mg/kg-day		mg/kg/day	0.00E+00			
			mg/kg	8,48E-04				2.00E-03	mg/kg/day	3.64E+00			
	PCBs, total DDD, p,p'-		mg/kg	8.48E-04			mg/kg-day mg/kg-day		mg/kg/day mg/kg/day	8.60E-03			
	DDE, p.p'-		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	1.80E-02			
Total										5.28E+00			
Grand Total				V V						5.28E+00			

Target organ across all exposure pathways; Central nervous system =	0.00E+00
Farget organ across all exposure pathways: Blood =	0.00E+00
Farget organ across all exposure pathways: Skin =	0.00E+00
Target organ across all exposure pathways: Cardiovascular system =	0.00E+00
Farget organ across all exposure pathways: Kidney =	6.24E-02
Farget organ across all exposure pathways: Galrointestinal System =	7.86E-02
Target organ across all exposure pathways: Immune system =	5.05E+00
Target organ across all exposure pathways: Liver =	2.66E-02
Target organ across all exposure pathways: Whole body/growth =	6.06E-02

TABLE C-17 Plow Shop Pond Recreational Adult Sediment

		EPC					Cance	r Risk Calcula	ations	
Exposure	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	ke	CSF/	Unit Risk	Cancer
	15/100.75%					Value	Units	Value	Units	1,000
ngestion	Aluminum	9660	mg/kg	1.10E-07		1.06E-03		NC	NC	
and the same	Antimony		mg/kg	1.10E-07		1.87E-06		NC	NC	
	Arsenic	930	mg/kg	1.10E-07		1.02E-04		1.50E+00	(mg/kg-day)-1	1.53E-0
	Barlum	0	mg/kg	1.10E-07		0.00E+00		NC	NC	
	Cadmium (in solid media)	15.3	mg/kg	1,10E-07		1.68E-06		NC	NC	
	Cadmium (in water)		-			1000000		NC	NC	
	Chromium, total	12200	mg/kg	1.10E-07		1.34E-03		NC	NC	
	Copper		mg/kg	1.10E-07		3.26E-05		NC	NC	
	Iron	96300	mg/kg	1.10E-07		1,06E-02		NC	NC	
	Lead		mg/kg	1.10E-07		2.51E-05		NA	NA	
	Manganese (in sediment or water)		mg/kg	1.10E-07		3.31E-04		NC	NC	
	Manganese (in food)		mg/kg	1.10E-07		0.00E+00		NC	NC	
	Mercury		mg/kg	1,10E-07		3,80E-06		NC	NC	
	Selenium		mg/kg	1,10E-07		0.00E+00		NC	NC	
	Thallium		mg/kg	1.10E-07		1.47E-06		NC	NC	
	Vanadium		mg/kg	1.10E-07		3.90E-06		NC	NC	
	Zinc	0	ma/ka	1,10E-07		0.00E+00		NC	NC	
	Chloroform	0	ma/kg	1,10E-07		0.00E+00		NA	NA	
	Hexachlorocyclohexane, alpha-	0	mg/kg	1.10E-07		0.00E+00		6.30E+00	(mg/kg-day)-1	0.00E+0
	Methylene chloride		mg/kg	1,10E-07		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benz(a)anthracene	3,65	mg/kg	1.10E-07		4.00E-07			(mg/kg-day)-1	2,92E-0
	Benzo(a)pyrene		mg/kg	1.10E-07		5.12E-07			(mg/kg-day)-1	3.74E-0
	Benzo(b)fluoranthene		mg/kg	1.10E-07		4.28E-07			(mg/kg-day)-1	3.12E-0
	Benzo(k)fluoranthene		mg/kg	1.10E-07		1.58E-07			(mg/kg-day)-1	1.15E-0
	Chrysene		mg/kg	1.10E-07		4.69E-07			(mg/kg-day)-1	3.43E-0
	Dibenz(ah)anthracene		mg/kg	1.10E-07		1.05E-07			(mg/kg-day)-1	7.68E-0
	Indeno(1,2,3-cd)pyrene		mg/kg	1.10E-07		4.01E-07			(mg/kg-day)-1	2.93E-0
	Naphthalene		mg/kg	1.10E-07		0.00E+00		NC	NC	2.002
	Bis(2-ethylhexyl) phthalate		ma/kg	1.10E-07		0.00E+00			(mg/kg-day)-1	0.00E+0
	PCB 1254		mg/kg	1.10E-07		0.00E+00			(mg/kg-day)-1	0.00E+0
	PCBs, total		mg/kg	1.10E-07		0.00E+00			(mg/kg-day)-1	0.00E+0
	DDD, p.p'-		mg/kg	1.10E-07		0.00E+00			(mg/kg-day)-1	0.00E+0
	DDE, p,p'-		mg/kg	1.10E-07		0.00E+00			(mg/kg-day)-1	0.00E+0
Total										1.58E-0

TABLE C-17 Plow Shop Pond Recreational Adult Sediment

		EPC						Cance	r Risk Calcul	ations	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor		Other	Inta	ke	CSF/	Unit Risk	Cancer Risk
10000							Value	Units	Value	Units	1.550
				Intake Factor	DA event factor	ABSd	Inta	ke	CSF/	Unit Risk	Cancer Risk
Dermal	Aluminum Antimony Arsenic Barium Cadmium (in solid media) Cadmium (in water) Chromium, total Copper Iron Lead Manganese (in sediment or water) Manganese (in feod) Mercury Selenium Thallium Vanadium Zinc Chloroform Hexachlorocyclofiexane, alpha- Methylene chloride Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(ah)anthracene Indeno(1.2,3-od)pyrene	17.1 930 0 15.3 12200 297 96300 229 3020 0 34.7 0 13.4 36.6 0 0 0 3.65 4.67 3.9 1.44 4.28 0.96 3.66	mg/kg	4.93E+00 4.93E+00	1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06	0.03 0.001 NA 0.001 0.04 0.13 0.13 0.13 0.13 0.13 0.13 0.13	#VALUE! #VALUE! 1,38E-04 #VALUE! 7,55E-08 #VALUE! 2,34E-06 3,00E-06 9,24E-07 2,74E-06 6,16E-07 2,35E-06		NC NC NC NC NC NC NC NC NC NC NC NC NC N	NC NC (mg/kg-day)-1 NC	2.19E-0 1.83E-0 6.74E-0 4.49E-0 1.71E-0
	Naphthalene Bis(2-ethylhexyl) phthalate PCB 1254 PCBs, total DDD, p,p'- DDE, p,p'-	0 0 0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	4.93E+00 4.93E+00 4.93E+00 4.93E+00 4.93E+00	1.00E-06 1.00E-06 1.00E-06 1.00E-06	0.1 0.14 0.14 0.03	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00		2.00E+00 2.00E+00 2.40E-01	NC (mg/kg-day)-1 (mg/kg-day)-1 (mg/kg-day)-1 (mg/kg-day)-1 (mg/kg-day)-1	0.00E+0 0.00E+0 0.00E+0
Grand Total											2.36E-0 3.95E-0

TABLE C-17 Plow Shop Pond Recreational Adult Sediment

		EPC				Non-	Cancer Haza	rd Calculations		
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	In	take	RfL)/RfC	Hazard Quotlent
11873557						Value	Units	Value	Units	No. and Sales and
ngestion	Aluminum	9660	mg/kg	2.56E-07		2.47E-03	mg/kg-day	1.00E+00	mg/kg/day	2.47E-0
- FLORE LINE IN	Antimony		mg/kg	2.56E-07		4.37E-06	mg/kg-day	4.00E-04	mg/kg/day	1.09E-0
	Arsenic		mg/kg	2.56E-07			mg/kg-day	3.00E-04	mg/kg/day	7.93E-0
	Barlum	0	mg/kg	2.56E-07			mg/kg-day		mg/kg/day	0.00E+0
	Cadmium (in solid media)	15.3	ma/kg	2.56E-07			mg/kg-day		mg/kg/day	3.91E-0
	Cadmium (in water)	110000		2.56E-07			mg/kg-day		mg/kg/day	0.00E+0
	Chromium, total	12200	mg/kg	2.56E-07		3.12E-03	rng/kg-day		mg/kg/day	1.04E+0
	Copper		mg/kg	2.56E-07			mg/kg-day		mg/kg/day	2.05E-0
	Iron	96300		2.56E-07			mg/kg-day		mg/kg/day	8.21E-0
	Lead		mg/kg	2.56E-07		5.86E-05	mg/kg-day	NA	NA	4,4,4
	Manganese (in sediment or water)		mg/kg	2.56E-07		7.73E-04	mg/kg-day	THE RESIDENCE OF THE RESIDENCE	mg/kg/day	3.22E-0
	Manganese (in food)		rng/kg	2.56E-07			mg/kg-day		mg/kg/day	0.00E+0
	Mercury		mg/kg	2.56E-07			mg/kg-day		mg/kg/day	2.96E-0
	Selenium		mg/kg	2.56E-07			mg/kg-day	5.00E-03	mg/kg/day	0.00E+
	Thallium		mg/kg	2.56E-07			mg/kg-day	6.60F-05	mg/kg/day	5.19E-4
	Vanadium		mg/kg	2.56E-07			mg/kg-day		mg/kg/day	9,11E-0
	Zinc		mg/kg	2.58E-07	104/		mg/kg-day		mg/kg/day	0.00E+
	Chloroform		mg/kg	2.56E-07			mg/kg-day		mg/kg/day	0.00E+
	Hexachlorocyclohexane, alpha-		mg/kg	2.56E-07			mg/kg-day		mg/kg/day	0.00E+
	Methylene chloride		mg/kg	2.56E-07			mg/kg-day		mg/kg/day	0.00E+
	Benz(a)anthracene		mg/kg	2.56E-07		9.34E-07	mg/kg-day	NA	NA	0.000
	Benzo(a)pyrene		mg/kg	2.56E-07			mg/kg-day	NA	NA	
	Benzo(b)fluoranthene		mg/kg	2.56E-07			mg/kg-day	NA	NA	
	Benzo(k)fluoranthene		mg/kg	2.56E-07			mg/kg-day	NA	NA.	
	Chrysene		mg/kg	2.56E-07			mg/kg-day	NA NA	NA	
	Dibenz(ah)anthracene		mg/kg	2.56E-07	- K		mg/kg-day	NA	NA	1
	Indeno(1,2,3-cd)pyrene		mg/kg	2.56E-07			mg/kg-day	NA	NA	
	Naphthalene		mg/kg	2.56E-07			mg/kg-day		mg/kg/day	0.00E+
	Bis(2-ethylhexyl) phthalate		mg/kg	2.56E-07			mg/kg-day		mg/kg/day	0.00E+
	PCB 1254		mg/kg	2.56E-07		0.005+00	mg/kg-day		mg/kg/day	0.00E+0
	PCBs, total		mg/kg	2.56E-07			mg/kg-day		mg/kg/day mg/kg/day	0.00E+0
	DDD, p.p'-		mg/kg	2.56E-07			mg/kg-day			0.750/2007/2007
				2.56E-07			mg/kg-day mg/kg-day		mg/kg/day	0.00E+0
	DDE, p,p'-	U	mg/kg	2.502-07		0.002400	mg/kg-day	2:00E-03	mg/kg/day	0.00E+0
Fotal										2.06E+0

TABLE C-17 Plow Shop Pond Recreational Adult Sediment

		EPC					Non-	Cancer Haza	rd Calculation	is	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other			take		D/RfC	Hazard Quotient
							Value	Units	Value	Units	
				Intake Factor	DA event factor	ABSd	In	take	R	D/RfC	Hazard Quotlent
Dermal	Aluminum		mg/kg	1,15E+01	1.00E-06			mg/kg-day	1.00E+0	0 mg/kg-day	
	Antimony		mg/kg	1.15E+01	1.00E-06	Language 11 (17 April 27)		mg/kg-day		5 mg/kg-day	
	Arsenia		mg/kg	1,15E+01		3.00E-02		mg/kg-day		4 mg/kg-day	1.07E+0
	Barium		mg/kg	1,15E+01	1.00E-06	Contract Con		mg/kg-day		2 mg/kg-day	
	Cadmium (in solid media)	15.3	mg/kg	1,15E+01		1.00E-03		mg/kg-day		5 mg/kg-day	7.04E-0
	Cadmium (in water)			1.15E+01	1.00E-06			mg/kg-day		5 mg/kg-day	
	Chromium, total		mg/kg	1.15E+01	1.00E-06		#VALUE!	mg/kg-day		5 mg/kg-day	
	Copper		mg/kg	1.15E+01	1.00E-06		#VALUE!	mg/kg-day		2 mg/kg-day	
	Iron		mg/kg	1.15E+01	1.00E-06		#VALUE!	mg/kg-day		1 mg/kg-day	
	Lead		mg/kg	1.15E+01			#VALUE!	mg/kg-day	NA	NA	
	Manganese (in sediment or water)		mg/kg	1,15E+01	1.00E-06		#VALUE!	mg/kg-day		4 mg/kg-day	
	Manganese (in food)		mg/kg	1.15E+01	1.00E-06		#VALUE!	mg/kg-day		3 mg/kg-day	
	Mercury		mg/kg	1.15E+01			#VALUE!	mg/kg-day		5 mg/kg-day	1
	Selenium		mg/kg	1.15E+01	1.00E-06	Committee of the second second	#VALUE!	mg/kg-day		3 mg/kg-day	
	Thallium		mg/kg	1.15E+01	1.00E-06		#VALUE!	mg/kg-day		5 mg/kg-day	
	Vanadium		mg/kg	1.15E+01	1.00E-06		#VALUE!	mg/kg-day		5 mg/kg-day	
	Zinc	0	mg/kg	1.15E+01	1.00E-06		#VALUE!	mg/kg-day		1 mg/kg-day	
	Chloroform		mg/kg	1.15E+01	1.00E-06			mg/kg-day		2 mg/kg-day	
	Hexachlorocyclohexane, alpha-		mg/kg	1,15E+01	1.00E-06			mg/kg-day		4 mg/kg-day	0.00E+0
	Methylene chloride		mg/kg	1,15E+01	1,00E-06	The state of the s		mg/kg-day	6.00E-0	2 mg/kg-day	
	Benz(a)anthracene		mg/kg	1.15E+01	1.00E-06			mg/kg-day	NA	NA	
	Benzo(a)pyrene		mg/kg	1.15E+01	1.00E-06			mg/kg-day	NA	NA	
	Benzo(b)fluoranthene		mg/kg	1.15E+01	1.00E-06			mg/kg-day	NA	NA	
	Benze(k)fluoranthene		mg/kg	1.15E+01	1.00E-06			mg/kg-day	NA	NA	
	Chrysene		/mg/kg	1.15E+01	1.00E-06			mg/kg-day	NA	NA	
	Dibenz(ah)anthracene		mg/kg	1.15E+01	I POSACIONO DE PRODUCTORA			mg/kg-day	NA	NA	
	Indeno(1,2,3-cd)pyrene		mg/kg	1.15E+01	1.00E-06			mg/kg-day	NA	NA	Timesia ta
	Naphthalene		mg/kg	1,15E+01	1.00E-06			mg/kg-day		2 mg/kg-day	0.00E+0
	Bis(2-othylhexyl) phthalate		mg/kg	1.15E+01	1.00E-06	The Control of the Co		mg/kg-day		2 mg/kg-day	0.00E+0
	PCB 1254		mg/kg	1.15E+01	1.00E-06			mg/kg-day		5 mg/kg-day	0.00E+0
	PCBs, total		mg/kg	1,15E+01	1.00E-06			mg/kg-day		5 mg/kg-day	0.00E+0
	DDD, p.p'-		mg/kg	1.15E+01	1.00E-06	I POSSOCIOTO I CONTROL DE LA C		mg/kg-day		3 mg/kg-day	0.00E+0
	DDE, p.p'-	0	mg/kg	1.15E+01	1.00E-06	3.00E-02	0.00E+00	mg/kg-day	2.00E-0	3 mg/kg-day	0.00E+00
											1.08E+0
Grand Total											3.14E+00

Target organ across all exposure pathways: Central nervous system =
Farget organ across all exposure pathways: Blood =
Farget organ across all exposure pathways: Skin =
Target organ across all exposure pathways: Cardiovascular system =
Farget organ across all exposure pathways: Kidney =
Farget organ across all exposure pathways: Gatrointestinal System =
Farget organ across all exposure pathways: Immune system =
Target organ across all exposure pathways: Liver =
Farget organ across all exposure pathways Whole body/growth =

3.47E-02 1.09E-02 1.86E+00 0.00E+00 1.10E-02 1.12E+00 2.96E-02 5.19E-02 9.11E-03

TABLE C-18 Plow Shop Pond Recreational Adult Surface Water

		EPC					Cance	r Risk Calcula	tions	
Exposure	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intak	e	CSF/	Unit Risk	Cancer Risk
1,00,0						Value	Units	Value	Units	ision.
ngestion	Aluminum	0	mg/L	4.39E-05		0.00E+00		NC	NC	
	Antimony	0	mg/L	4.39E-05		0.00E+00		NC	NC	
	Arsenia	0.151	mg/L	4.39E-05		6.62E-06		1.50E+00	(mg/kg-day)-1	9,93E-0
	Barium		mg/L	4.39E-05		0.00E+00		NC	NC	
	Cadmium (in solid media)	0	mg/L	4.39E-05		0.00E+00		NC.	NC	
	Cadmium (in water)		mg/L			100000000000000000000000000000000000000		NC	NC .	
	Chromium, total	0	mg/L	4.39E-05		0.00E+00		NC	NC .	
	Copper	0	mg/L	4.39E-05		0,00E+00		NC	NC	
	Iron		mg/L	4.39E-05		2.62E-04		NC:	NC I	
	Lead	0.000379		4.39E-05		1.66E-08		NA	NA	
	Manganese (in sediment or water)	0.148	mg/L	4.39E-05		6.49E-06		NC.	NC.	
	Manganese (in food)		mg/L	4.39E-05		0.00E+00		NC	NC	
	Mercury	0	mg/L	4.39E-05		0.00E+00		NC	NC	
	Selenium	0	mg/L	4.39E-05	10	0.00E+00		NC	NC	
	Thallium	0	mg/L	4.39E-05		0.00E+00		NC	NC	
	Vanadium	0	mg/L	4.39E-05		0.00E+00		NC	NC	
	Zinc	0	mg/L	4.39E-05		0.00E+00		NC .	NC	
	Chloroform	0.00131	mg/L	4.39E-05		5.74E-08		NA	NA	
	Hexachlorocyclohexane, alpha-	5.24E-05	mg/L	4.39E-05		2.30E-09			(mg/kg-day)-1	1.45E-0
	Methylene chloride	0.00804		4.39E-05		3.53E-07		7.50E-03	(mg/kg-day)-1	2.64E-0
	Benz(a)anthracene	0	mg/L	4:39E-05		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0
	Benzo(a)pyrene	0	mg/L	4.39E-05		0.00E+00		7.30E+00	(mg/kg-day)-1	0.00E+0
	Benzo(b)fluoranthene	0	mg/L	4.39E-05		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(k)fluoranthene	0	mg/L	4.39E-05		0.00E+00		7.30E-02	(mg/kg-day)-1	0.00E+0
	Chrysene	0	mg/L	4.39E-05		0.00E+00		7.30E-03	(mg/kg-day)-1	0.00E+0
	Dibenz(ah)anthracene	0	mg/L	4.39E-05		0.00E+00		7.30E+00	(mg/kg-day)-1	0.00E+0
	Indeno(1,2,3-cd)pyrene	0	mg/L	4.39E-05		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0
	Naphthalene		mg/L	4.39E-05		0.00E+00		NC	NC	
	Bis(2-ethylhexyl) phthalate	0	mg/L	4.39E-05		0.00E+00		1.40E-02	(mg/kg-day)-1	0.00E+0
	PCB 1254		mg/L	4.39E-05		0.00E+00		2.00E+00	(mg/kg-day)-1	0.00E+0
	PCBs, total		mg/L	4.39E-05		0.00E+00			(mg/kg-day)-1	0.00E+00
	ODD, p.p'-	0	mg/L	4.39E-05		0.00E+00		2.40E-01	(mg/kg-day)-1	0.00E+00
	ODE, p.p'-	0	mg/L	4.39E-05		0.00E+00		3,40E-01	(mg/kg-day)-1	0.00E+00
Total										9.95E-06

TABLE C-18 Plow Shop Pond Recreational Adult Surface Water

	W	EPC						Cance	r Risk Calcula	tions	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor		Other	Intal	ke	CSFA	Jnit Risk	Cancer
1,50,410				12.00			Value	Units	Value	Units	0.000000
				Intake Factor	DA event		Inta	ke	CSF/I	Jnit Risk	Cancer Risk
Dermal	Aluminum Antimony Arsenic Barium Cadmium (in solid media) Cadmium (in water) Chromium, total Copper Iron Lead Manganese (in sediment or water) Manganese (in food) Mercury Setenium Thallium Vanadium Zinc Chloroform Hexachlorocyclohexane, alpha- Methylene chloride Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene	0.151 0 0 0 0 5.97 0.000379 0.148 0 0 0 0 0 0.00131 5.24E-05 0.00804	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	4.91E+00 4.91E+00	0.00E+00 0.00E+00 6.04E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.39E-05 1.52E-09 5.92E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.45E-08 6.81E-09 1.31E-07 0.00E+00 0.00E+00 0.00E+00		0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.17E-04 7.44E-09 2.90E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00		NC 1.50E+00 NC NC NC NC NC NC NC NC NC NC NC NC NC	NC NC (mg/kg-day)-1 NC	2.11E-0 4.80E-0 0.00E+0 0.00E+0 0.00E+0
Grand Total	Chrysene Dibenz(ah)anthracene Indeno(1,2,3-cd)pyrene Naphthalene Bis(2-ethylhexyl) phthalate PCB 1254 PCBs, total DDO, p.p'- DDE, p.p'-	0 0 0 0 0 0	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	4.91E+00 4.91E+00 4.91E+00 4.91E+00 4.91E+00 4.91E+00 4.91E+00 4.91E+00	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00		0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00		7.30E-03 7.30E+00 7.30E-01 NC 1.40E-02 2.00E+00 2.40E-01	(mg/kg-day)-1 (mg/kg-day)-1 (mg/kg-day)-1 NC (mg/kg-day)-1 (mg/kg-day)-1 (mg/kg-day)-1 (mg/kg-day)-1 (mg/kg-day)-1 (mg/kg-day)-1	0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+1 1.48E-0

TABLE C-18 Plow Shop Pond Recreational Adult Surface Water

		EPC		Non-Cancer Hazard Calculations								
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	Intake		D/RfC	Hazard Quotient		
10.00						Value	Units	Value	Units			
ngestion	Aluminum	0	mg/L	1.02E-04		0.00E+00	mg/kg-day	1,00E+00	mg/kg/day	0.00E+0		
igestion	Antimony		mg/L	1.02E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Arsenic	0.151	mg/L	1.02E-04			mg/kg-day		mg/kg/day	5.15E-0		
	Barium	0	mg/L	1.02E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Cadmium (in solid media)		mg/L	1.02E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Cadmium (in water)		mg/L	1.02E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0		
	Chromium, total	0	mg/L	1.02E-04			mg/kg-day		rng/kg/day	0.00E+0		
	Copper	0	mg/L	1.02E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0		
	Iron	5.97	mg/L	1.02E-04		6.11E-04	mg/kg-day	3.00E-01	mg/kg/day	2.04E-0		
	Lead	0.000379	mg/L	1.02E-04			mg/kg-day	NA	NA			
	Manganese (in sediment or water)	0.148	mg/L	1.02E-04		1.51E-05	mg/kg-day	2.40E-02	mg/kg/day	6.31E-0		
	Manganese (in food)		mg/L	1.02E-04			mg/kg-day	1,40E-01	mg/kg/day	0.00E+0		
	Mercury	0	mg/L	1.02E-04		0.00E+00	mg/kg-day	3.00E-04	mg/kg/day	0.00E+0		
	Selenium		mg/L	1.02E-04		0.00E+00	mg/kg-day	5.00E-03	mg/kg/day	0.00E+0		
	Thallium	0	mg/L	1.02E-04		0.00E+00	mg/kg-day	8.60E-05	mg/kg/day	0.00E+0		
	Vanadium	0	mg/L	1.02E-04		0.00E+00	mg/kg-day	1.00E-03	mg/kg/day	0.00E+0		
	Zinc	0	mg/L	1.02E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Chloroform	0.00131	rng/L	1.02E-04		1.34E-07	mg/kg-day		mg/kg/day	1.34E-0		
	Hexachlorocyclohexane, alpha-	5.24E-05		1.02E-04		5.36E-09	mg/kg-day	5.00E-04	mg/kg/day	1.07E-0		
	Methylene chloride	0.00804	mg/L	1.02E-04		8.23E-07	mg/kg-day	6.00E-02	mg/kg/day	1.37E-0		
	Benz(a)anthracene	0	mg/L	1.02E-04			mg/kg-day	NA	NA			
	Benzo(a)pyrene	0	mg/L	1.02E-04	1	0.00E+00	mg/kg-day	NA.	NA			
	Benzo(b)fluoranthene	- 0	mg/L	1.02E-04		0.00E+00	mg/kg-day	NA	NA			
	Benzo(k)fluoranthene	0	mg/L	1.02E-04			mg/kg-day	NA	NA			
	Chrysene	0	mg/L	1.02E-04		0.00E+00	mg/kg-day	NA	NA			
	Dibenz(ah)anthracene	0	mg/L	1.02E-04		0.00E+00	mg/kg-day	NA	NA			
	Indeno(1,2,3-cd)pyrene	0	mg/L	1.02E-04		0.00E+00	mg/kg-day	NA	NA			
	Naphthalene	0	mg/L	1.02E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0		
	Bis(2-ethylhexyl) phthalate		mg/L	1.02E-04		0.00E+00	mg/kg-day	2.00E-02	mg/kg/day	0.00E+0		
	PCB 1254		mg/L	1.02E-04		0.00E+00	mg/kg-day	2.00E-05	mg/kg/day	0.00E+00		
	PCBs, total		mg/L	1.02E-04			mg/kg-day		mg/kg/day	0.00E+00		
	DDD, p,p'-	-0	rng/L	1.02E-04			mg/kg-day	2.00E-03	mg/kg/day	0.00E+00		
	DDE, p,p'+	0	mg/L	1.02E-04		0.00E+00	mg/kg-day	2.00E-03	mg/kg/day	0.00E+00		
Total										5.42E-02		

TABLE C-18 Plow Shop Pond Recreational Adult Surface Water

		EPC		Non-Cancer Hazard Calculations								
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	100	R	Hazard Quotient			
						Value	Units	Value	Units			
			22	Intake Factor	DA event	Inta	Pilipi		D/RfC	Hazard Quotient		
Dermal	Aluminum		mg/L	2.45E+01	0.00E+00		mg/kg-day		0 mg/kg-day	100		
	Antimony		mg/L	2.45E+01	0.00E+00		mg/kg-day		5 mg/kg-day	100		
	Arsenic	0,151		2.45E+01	6.04E-07	1.48E-05	mg/kg-day		4 mg/kg-day	4.94E-0		
	Barium		mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day		2 mg/kg-day	0.00E+0		
	Cadmium (in solid media)	0	mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day	2.50E-0	5 mg/kg-day	0.00E+0		
	Cadmium (in water)		1011	2,45E+01	0.00E+00		mg/kg-day	2.50E-0	5 mg/kg-day			
	Chromium, total	0	mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day	3.90E-0	5 mg/kg-day	0.00E+0		
	Copper	0	mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day		2 mg/kg-day	1		
	Iron	5.97	mg/L	2.45E+01	2.39E-05	5.86E-04	mg/kg-day	3.00E-0	1 mg/kg-day	1.95E-0		
	Lead	0.000379		2.45E+01	1.52E-09	3.72E-08	mg/kg-day	NA:	NA	2000000		
	Manganese (in sediment or water)	0.148	mg/L	2.45E+01	5.92E-07	1.45E-05	mg/kg-day	9.60E-0	4 mg/kg-day	1.51E-0		
	Manganese (in food)		mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day		3 mg/kg-day	1		
	Mercury	0	mg/L	2.45E+01	0.00E+00		mg/kg-day		5 mg/kg-day	10		
	Selenium	0	mg/L	2.45E+01	0.00E+00	0.00E+00	mg/kg-day		3 mg/kg-day			
	Thallium		mg/L	2.45E+01	0.00E+00		mg/kg-day		5 mg/kg-day			
	Vanadium	0	mg/L	2.45E+01	0.00E+00		mg/kg-day	(4/20333300000000000000000000000000000000	5 mg/kg-day			
	Zinc	0	mg/L	2.45E+01	0.00E+00		mg/kg-day		1 mg/kg-day	0.00E+0		
	Chloroform	0.00131		2.45E+01	4.45E-08		mg/kg-day		2 mg/kg-day	1.09E-0		
	Hexachlorocyclohexane, alpha-	5.24E-05		2.45E+01	6.81E-09		mg/kg-day		mg/kg-day	3.34E-0		
	Methylene chloride	0.00804	1000	2.45E+01	1.31E-07		mg/kg-day		2 mg/kg-day	5.34E-0		
	Benz(a)anthracene		ma/L	2.45E+01	0.00E+00		mg/kg-day	NA	NA	Wiscone's		
	Benzo(a)pyrene		mg/L	2.45E+01	0.00E+00		mg/kg-day	NA	NA			
	Benzo(b)fluoranthene		mg/L	2.45E+01	0.00E+00		mg/kg-day	NA	NA			
	Benzo(k)fluoranthene		mg/L	2,45E+01	0.00E+00	0.00E+00	mg/kg-day	NA	NA			
	Chrysene		mg/L	2.45E+01	0.00E+00		mg/kg-day	NA	NA			
	Dibenz(ah)anthracene		mg/L	2.45E+01	0.00E+00		mg/kg-day	NA	NA			
	Indeno(1,2,3-cd)pyrene		mg/L	2.45E+01	0.00E+00		mg/kg-day	NA	NA			
	Naphthalene		mg/L	2.45E+01	0.00E+00		mg/kg-day		2 mg/kg-day	0.00E+0		
	Bis(2-ethylhexyl) phthalate		mg/L	2.45E+01	0.00E+00		mg/kg-day		2 mg/kg-day	0.00E+0		
	PCB 1254		mg/L	2.45E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0		
	PCBs, total		mg/L	2.45E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0		
	DDD, p,p'-		mg/L	2.45E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0		
	DDE, p.p.		mg/L	2.45E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0		
	- South Re	100	0.35		A.S. M. B. A.S.			100000000000000000000000000000000000000		200		
			-							6,70E-0		
Grand Total										1.21E-0		

Target organ across all exposure pathways: Central nervous system =	1.58E-02
Target organ across all exposure pathways: Blood =	0.00E+00
Target organ across all exposure pathways: Skin =	1.01E-01
Target organ across all exposure pathways: Cardiovascular system =	0.00E+00
Target organ across all exposure pathways: Kidney =	3.45E-04
Target organ across all exposure pathways: Gatrointestinal System =	3.99E-03
Target organ across all exposure pathways: Immune system =	0.00E+00
Target organ across all exposure pathways: Liver =	1.90E-04
Target organ across all exposure pathways: Whole body/growth =	0.00E+00

TABLE C- 19 Plow Shop Pond Recreational Adult Fish

		EPC		Cancer Risk Calculations							
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intake		CSF/Unit Risk		Cancer	
UNDIVADE						Value	Units	Value	Units	13197	
Ingestion	Aluminum	0	mg/kg	1.56E-04		0.00E+00		NC	NC		
114	Antimony		mg/kg	1.56E-04		0.00E+00		NC	NC		
	Arsenic	0.0796		1.56E-04		1.24E-05		1.50E+00	(mg/kg-day)-1	1.86E-0	
	Barium	0	mg/kg	1.56E-04		0.00E+00		NC	NC	1000000	
	Cadmium (in solid media)		mg/kg	1.56E-04		0.00E+00		NC	NC		
	Cadmium (in water)							NC	NC		
	Chromium, total	- 0	mg/kg	1.56E-04		0.00E+00		NC	NC		
	Copper		mg/kg	1.56E-04		0.00E+00		NC	NC		
	Iron		mg/kg	1.56E-04	1	0.00E+00		NC	NC		
	Lead		mg/kg	1.56E-04		0.00E+00		NA	NA		
	Manganese (in sediment or water)	0	mg/kg	1.56E-04		0.00E+00		NC	NC		
	Manganese (in food)		mg/kg	1.56E-04	1	0.00E+00		NC	NC		
	Mercury		mg/kg	1.56E-04		4.04E-04		NC	NC		
	Selenium		mg/kg	1.56E-04		0.00E+00		NC	NC		
	Thallium		mg/kg	1.56E-04		0.00E+00		NC	NC		
	Vanadium		mg/kg	1.56E-04		7.01E-05		NC	NC		
	Zino	0	mg/kg	1.56E-04		0.00E+00		NC	NC		
	Chloroform	0	mg/kg	1.56E-04		0.00E+00		NA	NA		
	Hexachlorocyclohexane, alpha-	0	mg/kg	1.56E-04		0.00E+00		6.30E+00	(mg/kg-day)-1	0.00E+0	
	Methylene chloride		mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Benz(a)anthracene		mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Benzo(a)pyrene	C	100000000000000000000000000000000000000	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Benzo(b)fluoranthene	0	mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Benzo(k)fluoranthene		mg/kg	1.56E-04		0.00E+00		7.30E-02	(mg/kg-day)-1	0.00E+0	
	Chrysene		mg/kg	1,56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Dibenz(ah)anthracene		mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Indeno(1,2,3-cd)pyrene	0	mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0	
	Nachthalene	0	mg/kg	1.56E-04		0.00E+00		NC	NC	200 C C C C C C C C C C C C C C C C C C	
	Bis(2-ethylhexyl) phthalate		mg/kg	1.56E-04		0.00E+00		1.40E-02	(mg/kg-day)-1		
	PCB 1254	0	mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0	
	PCBs, total	0	mg/kg	1.56E-04		0.00E+00			(mg/kg-day)-1	0.00E+0	
	DDD, p.p'-		mg/kg	1.56E-04		0.00E+00		2,40E-01	(mg/kg-day)-1	0.00E+0	
	DDE, p,p'-	0.0187		1.56E-04		2.92E-06			(mg/kg-day)-1	9.93E-0	
Total										1.96E-0	
Grand Total										1.96E-0	

TABLE C- 19 Plow Shop Pond Recreational Adult Fish

		EPC		Non-Cancer Hazard Calculations								
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intake		Rff)/RfC	Hazard		
III COLOR						Value	Units	Value	Units			
Ingestion	Aluminum	0	mg/kg	3.64E-04		0.00E+00	mg/kg-day	1.00E+00	mg/kg/day	0.00E+0		
	Antimony	0	mg/kg	3.64E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0		
	Arsenic	0.0796		3.64E-04			mg/kg-day		mg/kg/day	9.67E-0		
	Barium	0 mg/kg		3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Cadmium (in solid media)	0	mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Cadmium (in water)		0.0	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Chromium, total	0 mg/kg		3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Copper	0 mg/kg		3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Iron		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Lead		mg/kg	3.64E-04			mg/kg-day	NA	NA	0.002.0		
	Manganese (in sediment or water)	0 mg/kg		3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Manganese (in food)	0 mg/kg		3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Mercury	2.59 mg/kg		3.64E-04			mg/kg-day		mg/kg/day	3.14E+0		
	Selenium	0 mg/kg		3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Thallium		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Vanadium		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	1.64E-0		
	Zinc		mg/kg	3.64E-04			mg/kg-day	SCHOOL STORY	mg/kg/day	0.00E+0		
	Chloroform		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Hexachlorocyclohexane, alpha-		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Methylene chloride		mg/kg	3,64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	Benz(a)anthracene		mg/kg	3,64E-04			mg/kg-day	NA	NA	0.000		
	Benzo(a)pyrene		mg/kg	3.64E-04			mg/kg-day	NA	NA			
	Benzo(b)fluoranthene		mg/kg	3.64E-04			mg/kg-day	NA	NA			
	Benzo(k)fluoranthene		mg/kg	3.64E-04			mg/kg-day	NA	NA			
	Chrysene		mg/kg	3.64E-04			mg/kg-day	NA	NA			
	Dibenz(ah)anthracene		mg/kg	3.64E-04			mg/kg-day	NA	NA			
	Indeno(1,2,3-od)pyrene		mg/kg	3.64E-04			mg/kg-day	NA:	NA			
	Naphthalene		mg/kg	3.64E-04			mg/kg-day	2.00E-02	mg/kg/day	0.00E+0		
	Bis(2-ethylhexyl) phthalate		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	PCB 1254		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	0.00E+0		
	PCBs, total		mg/kg	3.64E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0		
	DDD, p.p'-		mg/kg	3.64E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0		
	DDE, p,p'-		mg/kg	3.64E-04			mg/kg-day		mg/kg/day	3.41E-0		
Total										3.41E+00		
Grand Total										3.41E+00		

Target organ across all exposure pathways: Central nervous system = Target organ across all exposure pathways: Blood = Target organ across all exposure pathways: Skin = Target organ across all exposure pathways: Cardiovascular system = Target organ across all exposure pathways: Kidney = Target organ across all exposure pathways: Gatrontestinal System = Target organ across all exposure pathways: Immune system = Target organ across all exposure pathways: Liver = Target organ across all exposure pathways: Whole body/growth =

0.00E+00 0.00E+00 9.67E-02 0.00E+00 0.00E+00 3.14E+00 3.41E-03 1.64E-01

TABLE C-20 Plow Shop Pond Recreational Child Sediment

		EPC		Cancer Risk Calculations								
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intake		CSF/	Cancer Risk			
						Value	Units	Value	Units	Man		
Ingestion	Aluminum	9660	mg/kg	2.05E-07		1.98E-03		NC	NC			
	Antimony	17.1	mg/kg	2.05E-07		3.50E-06		NC	NC			
	Arsenic		mg/kg	2.05E-07		1.90E-04		1.50E+00	(mg/kg-day)-1	2.85E-0		
	Barium	0	mg/kg	2.05E-07		0.00E+00		NC	NC			
	Cadmium (in solid media)	15.3	mg/kg	2.05E-07		3.13E-06		NC	NC			
	Cadmium (in water)							NC	NC			
	Chromium, total	12200	mg/kg	2.05E-07		2.50E-03		NC	NC			
	Copper	297	mg/kg	2.05E-07		6.08E-05		NC	NC			
	Iron	96300	mg/kg	2.05E-07		1,97E-02		NC	NC			
	Lead	229	mg/kg	2.05E-07		4.69E-05		NA	NA			
	Manganese (in sediment or wa	3020	mg/kg	2.05E-07		6.18E-04		NC	NC			
	Manganese (in food)		mg/kg	2.05E-07		0.00E+00		NC	NC			
	Mercury	34.7	mg/kg	2.05E-07		7.10E-06		NC	NC			
	Selenium	0	mg/kg	2.05E-07		0.00E+00		NC	NC			
	Thallium	13.4	mg/kg	2.05E-07		2.74E-06		NC	NC			
	Vanadium	35.6	mg/kg	2.05E-07		7.29E-06		NC	NC			
	Zinc	0	mg/kg	2.05E-07		0.00E+00		NC	NC			
	Chloroform		mg/kg	2.05E-07		0.00E+00		NA	NA			
	Hexachlorocyclohexane, alpha		mg/kg	2.05E-07		0.00E+00		6.30E+00	(mg/kg-day)-1	0.00E+0		
	Methylene chloride		mg/kg	2.05E-07		0.00E+00			(mg/kg-day)-1	0.00E+00		
	Benz(a)anthracene	3.65	mg/kg	2.05E-07		7.47E-07		7.30E-01	(mg/kg-day)-1	5.45E-07		
	Benzo(a)pyrene	4.67	mg/kg	2.05E-07		9.56E-07		7.30E+00	(mg/kg-day)-1	6.98E-06		
	Benzo(b)fluoranthene	3.9	mg/kg	2.05E-07		7.98E-07			(mg/kg-day)-1	5.83E-07		
	Benzo(k)fluoranthene		mg/kg	2.05E-07		2.95E-07		7.30E-02	(mg/kg-day)-1	2.15E-08		
	Chrysene		mg/kg	2.05E-07		8.76E-07		7.30E-03	(mg/kg-day)-1	6.39E-09		
	Dibenz(ah)anthracene		mg/kg	2.05E-07		1.96E-07		7.30E+00	(mg/kg-day)-1	1.43E-06		
	Indeno(1,2,3-cd)pyrene		mg/kg	2.05E-07		7.49E-07			(mg/kg-day)-1	5,47E-07		
	Naphthalene		mg/kg	2.05E-07		0.00E+00		NC	NC			
	Bis(2-ethylhexyl) phthalate		mg/kg	2.05E-07	1	0.00E+00		1,40E-02	(mg/kg-day)-1	0.00E+00		
	PCB 1254		mg/kg	2.05E-07		0.00E+00			(mg/kg-day)-1	0.00E+00		
1	PCBs, total		mg/kg	2.05E-07		0.00E+00			(mg/kg-day)-1	0.00E+00		
	DDD, p.p'-		mg/kg	2.05E-07		0.00E+00			(mg/kg-day)-1	0.00E+00		
	DDE, p.p'-	0	mg/kg	2.05E-07	- X	0.00E+00		3.40E-01	(mg/kg-day)-1	0.00E+00		
Total										2,96E-04		

TABLE C-20 Plow Shop Pond Recreational Child Sediment

		EPC		Cancer Risk Calculations								
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor		Other	Intal	(e	CSF/	Unit Risk	Cancer Risk	
Nite and Colors	Section Sectio			100.51.107.1			Value	Units	Value	Units		
				Intake Factor	DA event factor	ABSd	Intal	ce	CSFI	Unit Risk	Cancer Risk	
Dermal	Aluminum	9660	mg/kg	1.69E+00	1.00E-06	n) represent the second	#VALUE!		NC	NC		
	Antimony	17.1	mg/kg	1.69E+00	1.00E-06	c) mental to a recorded	#VALUE!		NC	NC		
	Arsenic		mg/kg	1.69E+00	1.00E-06	0.03	4.71E-05		1.50E+00	(mg/kg-day)-1	7.07E-0	
	Barium		mg/kg	1.69E+00	1.00E-06	-	#VALUE!		NC	NC		
	Cadmium (in solid media)		mg/kg	1.69E+00	1.00E-06	0.001	2.58E-08		NC	NC		
	Cadmium (in water)			111020071100	The same of	NA			NC	NC		
	Chromium, total	12200	mg/kg	1.69E+00	1.00E-06		#VALUE!		NC	NC		
	Copper		mg/kg	1.69E+00			#VALUE!		NC	NC		
	Iron		mg/kg	1.69E+00	1.00E-06		#VALUE!		NC	NC		
	Lead		mg/kg	1.69E+00		HS Attend to translate	#VALUE!		NA	NA		
	Manganese (in sediment or wa		mg/kg	1.69E+00		-L Amount on Amount	#VALUE!		NC	NC		
	Manganese (in food)		mg/kg	1,69E+00		to bloom a consult	#VALUE!		NC	NC		
	Mercury		mg/kg	1.69E+00	The second secon	-1 000000000000000000000000000000000000	#VALUE!		NC	NC		
	Selenium		mg/kg	1.69E+00	A STATE OF THE PARTY OF THE PAR	or Monte of court	#VALUE!		NC	NC		
	Thallium		mg/kg	1.69E+00			#VALUE!		NC	NC		
	Vanadium		mg/kg	1,69E+00	ARTER OF THE PARTY		#VALUE!		NC	NC		
	Zinc		mg/kg .	1.69E+00			#VALUE!		NC	NC		
	Chloroform		mg/kg	1.69E+00			#VALUE!		NA	NA		
	Hexachlorocyclohexane, alpha		mg/kg	1.69E+00			0.00E+00		7, 40, 4	(mg/kg-day)-1		
	Methylene chloride		mg/kg	1.69E+00			#VALUE!		7.50E-03	(mg/kg-day)-1		
	Benz(a)anthracene		mg/kg	1.69E+00	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO PERSON NAMED	A THEORY OF THE REAL PROPERTY OF	8.01E-07		7.30E-01	(mg/kg-day)-1		
			mg/kg	1.69E+00			1.02E-06			(mg/kg-day)-1	7.48E-0	
	Benzo(a)pyrene Benzo(b)fluoranthene		mg/kg	1.69E+00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8.56E-07			(mg/kg-day)-1	6.25E-0	
	Benzo(k)fluoranthene		mg/kg	1.69E+00			3.16E-07		7.30E-01	(mg/kg-day)-1	2.31E-0	
	Chrysene		mg/kg	1.69E+00		12.2.2.2.2.2.1	9.39E-07		7.30E-02	(mg/kg-day)-1	6.86E-0	
	Dibenz(ah)anthracene		mg/kg	1.69E+00	THE RESERVE OF THE PARTY OF THE	5015 (C.E.)	2.11E-07		7.30E-03	(mg/kg-day)-1	1.54E-0	
				1.69E+00			8.03E-07					
	Indeno(1,2,3-cd)pyrene		mg/kg	1.69E+00	I I I I VALCINETA POPULATO	CM/ACC	0.00E+00		NC	(mg/kg-day)-1 NC	5.86E-0	
	Naphthalene		mg/kg	1.69E+00	11.20.000.000.000.000.000	7.5.7			Annual Control of the Park of the	The same of the sa		
	Bis(2-ethylhexyl) phthalate		mg/kg	1.69E+00	The state of the state of the state of		0.00E+00 0.00E+00			(mg/kg-day)-1	D. COLT. O	
	PCB 1254		mg/kg				11750000 Co.			(mg/kg-day)-1	0.00E+0	
	PCBs, total		mg/kg	1.69E+00			0.00E+00			(mg/kg-day)-1	0.00E+0	
	DDD, p,p'-		mg/kg	1,69E+00	The state of the s	Control of the Contro	0.00E+00		2.40E-01	(mg/kg-day)-1	0.00E+0	
	DDE, p,p'-	0	mg/kg	1.69E+00	1.00E-06	0.03	0.00E+00		3.40E-01	(mg/kg-day)-1	0.00E+0	
											8.09E-0	
Grand Tota											3.77E-0	

TABLE C-20 Plow Shop Pond Recreational Child Sediment

	And the same of the same of	EPC				Non-C	Cancer Hazai	d Calculations		
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	10	ntake	Rff	D/RfC	Hazard Quotient
						Value	Units	Value	Units	
Ingestion	Aluminum	9660	mg/kg	2.39E-06		2.31E-02	mg/kg-day	1.00E+00	mg/kg/day	2.31E-0
	Antimony		mg/kg	2.39E-06			mg/kg-day		mg/kg/day	1.02E-0
	Arsenic		mg/kg	2.39E-06			mg/kg-day		mg/kg/day	7,40E+0
	Barium		mg/kg	2.39E-06			mg/kg-day		mg/kg/day	0.00E+0
	Cadmium (in solid media)		mg/kg	2.39E-06		3.65E-05	mg/kg-day	1.00E-03	mg/kg/day	3.65E-0
	Cadmium (in water)			2.39E-06		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Chromium, total	12200	mg/kg	2.39E-06			mg/kg-day	3.00E-03	mg/kg/day	9,71E+0
	Copper		mg/kg	2.39E-06			mg/kg-day		mg/kg/day	1.92E-03
	Iron	96300	mg/kg	2.39E-06			mg/kg-day		mg/kg/day	7.66E-0
	Lead		mg/kg	2.39E-06		5.47E-04	mg/kg-day	NA	NA	
	Manganese (in sediment or wa		mg/kg	2.39E-06		7.21E-03	mg/kg-day		mg/kg/day	3.00E-0
	Manganese (in food)		mg/kg	2.39E-06			mg/kg-day	1.40E-01	mg/kg/day	0.00E+0
	Mercury		mg/kg	2.39E-06			mg/kg-day		mg/kg/day	2.76E-0
	Selenium		mg/kg	2.39E-06			mg/kg-day		mg/kg/day	0.00E+0
	Thallium	13.4	mg/kg	2.39E-06		3.20E-05	mg/kg-day	6.60E-05	mg/kg/day	4.85E-0
	Vanadium		mg/kg	2.39E-06		8.50E-05	mg/kg-day	1.00E-03	mg/kg/day	8.50E-02
	Zinc		mg/kg	2.39E-06		0.00E+00	mg/kg-day	3.00E-01	mg/kg/day	0.00E+00
	Chloroform	0	mg/kg	2.39E-06			mg/kg-day		mg/kg/day	0.00E+0
	Hexachlorocyclohexane, alpha		mg/kg	2.39E-06		0.00E+00	mg/kg-day		mg/kg/day	0,00E+0
	Methylene chloride	0	mg/kg	2.39E-06		0.00E+00	mg/kg-day	6.00E-02	mg/kg/day	0.00E+0
	Benz(a)anthracene		mg/kg	2.39E-06			mg/kg-day	NA	NA	Digital Market N. W.
	Benzo(a)pyrene		mg/kg	2.39E-06		1.11E-05	mg/kg-day	NA	NA	
	Benzo(b)fluoranthene	3.9	mg/kg	2.39E-06		9.31E-06	mg/kg-day	NA	NA	
	Benzo(k)fluoranthene		mg/kg	2.39E-06		3.44E-06	mg/kg-day	NA	NA	
	Chrysene		mg/kg	2.39E-06			mg/kg-day	NA	NA	
	Dibenz(ah)anthracene		mg/kg	2.39E-06			mg/kg-day	NA	NA	
	Indeno(1,2,3-cd)pyrene	3.66	mg/kg	2.39E-06			mg/kg-day	NA	NA	
	Naphthalene	0	mg/kg	2.39E-06		0.00E+00	mg/kg-day	2.00E-02	mg/kg/day	0.00E+00
	Bis(2-ethylhexyl) phthalate	0	mg/kg	2.39E-06		0.00E+00	mg/kg-day	2.00E-02	mg/kg/day	0.00E+00
	PCB 1254		mg/kg	2.39E-06		0.00E+00	mg/kg-day	2.00E-05	mg/kg/day	0.00E+0
	PCBs, total		mg/kg	2,39E-06	-		mg/kg-day		rng/kg/day	0.00E+0
	DDD, p.p'-		mg/kg	2.39E-06			mg/kg-day		mg/kg/day	0.00E+00
	DDE, p,p'-	0	mg/kg	2.39E-06			mg/kg-day		mg/kg/day	0.00E+00
Total										1.92E+01

TABLE C-20 Plow Shop Pond Recreational Child Sediment

		EPC		Non-Cancer Hazard Calculations										
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other		1	ntake	Rf	D/RfC	Hazard Quotient			
	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT						Value	Units	Value	Units	7/224			
				Intake Factor	DA event factor	ABSd	1	ntake	Rf	D/RfC	Hazard Quotient			
Dermal	Aluminum Antimony Arsenic Barium Cadmium (in solid media) Cadmium (in water) Chromium, total Copper Iron Lead Manganese (in sediment or wa Manganese (in food) Mercury Selenium Thallium Vanadium Zinc Chloroform Hexachlorocyclohexane, alpha Methylene chloride Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(ah)anthracene Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Nachthalene	17.1 930 0 15.3 12200 297 96300 229 3020 0 34.7 0 13.4 35.6 0 0 0 3.65 4.67 3.9 1.44 4.28 0.96 3.66	mg/kg	1.97E+01 1.97E+01	1.00E-06	3.00E-02 1.00E-03 NA 4.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01	#VALUEI 3.01E-07 #VALUEI #VALUEI #VALUE! 1.000E+000 #VALUE! 9.35E-06 1.10E-05 9.99E-06 3.69E-06 9.37E-06	mg/kg-day	6.00E-0: 3.00E-0: 1.40E-0: 2.50E-0: 3.90E-0: 3.70E-0: 3.00E-0: 5.60E-0: 2.10E-0: 5.00E-0: 3.00E-0: 1.00E-0: 5.00E-0: 6.00E-0: NA NA NA NA NA NA NA NA NA	mg/kg-day	1.83E+00 1.21E-00			
Grand Tota	Bis(2-efhylhexyl) phthalate PCB 1254 PCBs, total DDD, p,p'- DDE, p,p'-	0 0	mg/kg mg/kg mg/kg mg/kg mg/kg	1.97E+01 1.97E+01 1.97E+01 1.97E+01 1.97E+01	1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06	1.40E-01 1.40E-01 3.00E-02	0.00E+00 0.00E+00 0.00E+00 0.00E+00	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	2.00E-00 2.00E-00 2.00E-00 2.00E-00	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 1.84E+0 2.10E+0			

Target organ across all exposure pathways: Central nervous system = 3.23E-01
Target organ across all exposure pathways: Blood = 1.02E-01
Target organ across all exposure pathways: Skin = 9.23E+00
Target organ across all exposure pathways: Cardiovascular system = 0.00E+00
Target organ across all exposure pathways: Kidney = 4.86E-02
Target organ across all exposure pathways: Immune system = 1.05E+01
Target organ across all exposure pathways: Liver = 4.85E-01
Target organ across all exposure pathways: Whole body/growth = 8.50E-02

TABLE C-21 Plow Shop Pond Recreational Child Surface Water

		EPC					Cance	r Risk Calcula	tions	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intak	(0	CSF/I	Jnit Risk	Cancer Risk
- Trouis						Value	Units	Value	Units	1,11,510
Ingestion	Aluminum	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Antimony		mg/L	2.05E-04		0.00E+00		NC	NC	
	Arsenic		mg/L	2.05E-04		3.09E-05		1.50E+00	(mg/kg-day)-1	4.64E-0
	Barlum	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Cadmium (in solid media)		mg/L	2.05E-04		0.00E+00		NC	NC .	
	Cadmium (in water)		mg/L			I CLOVE TO		NC	NC	
	Chromium, total	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Copper		mg/L	2.05E-04		0.00E+00		NC	NC .	
	tron	5.97	mg/L	2.05E-04		1.22E-03		NC	NC	
	Lead	0.000379	mg/L	2.05E-04		7.76E-08		NA	NA	
	Manganese (in sediment or water)		mg/L	2.05E-04		3.03E-05		NC	NC	
	Manganese (in food)	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Mercury	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Selenium	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Thallium	0	mg/L	2.05E-04		0.00E+00		NC .	NC	
	Vanadium		mg/L	2.05E-04		0.00E+00		NC	NC	
	Zino	0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Chloroform	0.00131	mg/L	2.05E-04		2.68E-07		NA	NA	
	Hexachlorocyclohexane, alpha-	5.24E-05	mg/L	2.05E-04		1.07E-08		6.30E+00	(mg/kg-day)-1	6.76E-0
	Methylene chloride	0.00804	mg/L	2.05E-04		1.65E-06		7,50E-03	(mg/kg-day)-1	1.23E-0
	Benz(a)anthracene	0	mg/L	2.05E-04		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0
	Benzo(a)pyrene	0	mg/L	2.05E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(b)fluoranthene		mg/L	2.05E-04		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0
	Benzo(k)fluoranthene	.0	mg/L	2.05E-04		0.00E+00		7.30E-02	(mg/kg-day)-1	0.00E+0
	Chrysene		mg/L	2.05E-04		0.00E+00		7.30E-03	(mg/kg-day)-1	0.00E+0
	Dibenz(ah)anthracene	0	mg/L	2.05E-04		0.00E+00		7.30E+00	(mg/kg-day)-1	0.00E+0
	Indeno(1,2,3-cd)pyrene	0	mg/L	2.05E-04		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0
	Naphthalene	.0	mg/L	2.05E-04		0.00E+00		NC	NC	
	Bis(2-ethylhexyl) phthalate	0	mg/L	2.05E-04		0.00E+00		1.40E-02	(mg/kg-day)-1	0.00E+0
	PCB 1254		mg/L	2.05E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	PCBs, total		mg/L	2.05E-04		0.00E+00		2.00E+00	(mg/kg-day)-1	0.00E+00
	DDD, p.p'-		mg/L	2.05E-04		0.00E+00		2.40E-01	(mg/kg-day)-1	0.00E+00
	DDE, p,p'-	0	mg/L	2.05E-04		0.00E+00		3.40E-01	(mg/kg-day)-1	0.00E+00
Total	are and a sale									4.64E-05

TABLE C-21 Plow Shop Pond Recreational Child Surface Water

		EPC						Cance	r Risk Calcula	tions	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor		Other	Intal	ke	CSF/U	Jnit Risk	Cancer Risk
Electron P. M.		U		Allower or C			Value	Units	Value	Units	17/50000
				Intake Factor	DA event		Intal	ke	CSF/L	Cancer Risk	
Dermal	Aluminum Antimony Arsenic Barium Cadmium (in solid media) Cadmium (in water) Chromium, total Copper Iron Lead Manganese (in sediment or water) Mercury Selenium Thallium Vanadium Zinc Chloroform Hexachlorocyclohexane, aipha- Methylene chloride Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(ah)anthracene Indeno(1,2,3-cd)pyrene Naphthalene	0.151 0.0151 0.000379 0.148 0.000379 0.148 0.00000 0.00131 5.24E-05 0.00804	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Factor 1.68E+00	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.39E-05 1.52E-09 5.92E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.45E-08 6.81E-09 1.31E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00		0.00E+00 0.00E+00 1.01E-06 0.00E+00	RE	NC N	NC NC (mg/kg-day)-1 NC	7.21E-00 1.64E-00 1.64E-00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
	Bis(2-ethylhexyl) phthelate PCB 1254 PCBs, total DDD, p,p'- DDE, p,p'-	0 0	District Constitution	1.68E+00 1.68E+00 1.68E+00 1.68E+00 1.68E+00	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00		0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00		1.40E-02 2.00E+00 2.00E+00 2.40E-01	(mg/kg-day)-1 (mg/kg-day)-1 (mg/kg-day)-1 (mg/kg-day)-1 (mg/kg-day)-1	0.00E+0 0.00E+0 0.00E+0 0.00E+0
Grand Total			_								1.59E-0 4.80E-0

TABLE C-21 Plow Shop Pond Recreational Child Surface Water

		EPC				Non-Car	ncer Hazard	Calculations		
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	iko	Rff	D/RfC	Hazard Quotient
tionite.						Value	Units	Value	Units	
Ingestion	Aluminum	0	mg/L	2.39E-03		0.00E+00	mg/kg-day	1.00E+00	mg/kg/day	0.00E+0
	Antimony		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Arsenic	0.151		2.39E-03			mg/kg-day		mg/kg/day	1.20E+0
	Barium		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Cadmium (in solid media)		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Cadmium (in water)		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Chromium, total	0	mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Copper		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Iron		mg/L	2.39E-03			mg/kg-day		mg/kg/day	4,75E-0
	Lead	0.000379		2.39E-03			mg/kg-day	NA	NA	111 3.11.4
	Manganese (in sediment or water)	0.148		2.39E-03			mg/kg-day		mg/kg/day	1,47E-0
	Manganese (in food)		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Mercury		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Selenium		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	Thallium		mg/L	2.39E-03		0.00E+00	mg/kg-day	6.60E-05	mg/kg/day	0.00E+0
	Vanadium		mg/L	2.39E-03		0.00E+00	mg/kg-day	1.00E-03	mg/kg/day	0.00E+0
	Zinc		mg/L	2.39E-03			mg/kg-day	3.00E-01	mg/kg/day	0.00E+0
	Chloroform	0.00131		2.39E-03		POO 07471	mg/kg-day		mg/kg/day	3.13E-0
	Hexachlorocyclohexane, alpha-	5.24E-05		2.39E-03			mg/kg-day		mg/kg/day	2.50E-0
	Methylene chloride	0.00804		2.39E-03			mg/kg-duy		mg/kg/day	3.20E-0
	Benz(a)anthracene		mg/L	2.39E-03		0.00E+00	mg/kg-day	NA	NA	1 152750250.70
	Benzo(a)pyrene		mg/L	2.39E-03		0.00E+00	mg/kg-day	NA	NA:	
	Benzo(b)fluoranthene	0	mg/L	2.39E-03			mg/kg-day	NA	NA	
	Benzo(k)fluoranthene	1000	mg/L	2.39E-03		0.00E+00	mg/kg-day	NA	NA	
	Chrysene		mg/L	2.39E-03		0.00E+00	mg/kg-day	NA	NA	
	Dibenz(ah)anthracene	0	mg/L	2.39E-03			mg/kg-day	NA	NA	1 -
	Indeno(1,2,3-cd)pyrene		mg/L	2.39E-03		0.00E+00	mg/kg-day	NA	NA	
	Naphthalene		mg/L	2.39E-03		0.00E+00	mg/kg-day	2.00E-02	mg/kg/day	0.00E+0
	Bis(2-ethylhexyl) phthalate		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+0
	PCB 1254	15.04	mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+00
	PCBs, total		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+00
	DDD, p,p'-		mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+00
	DDE, p,p'-	0.00	mg/L	2.39E-03			mg/kg-day		mg/kg/day	0.00E+00
Total										1.26E+00

TABLE C-21 Plow Shop Pond Recreational Child Surface Water

		EPC				Non-Ca	ncer Hazard	Calculations		
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Int	ake	Rf	D/RfG	Hazard Quotient
						Value	Units	Value	Units	
				Intake Factor	DA event		ake	100	D/RIC	Hazard Quotient
Dermal	Aluminum		mg/L	1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	
	Antimony		mg/L	1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	1
	Arsenic	0.151		1,96E+01	6.04E-07		mg/kg-day		mg/kg-day	3.94E-0
	Barium	11.0	mg/L	1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0
	Cadmium (in solid media)	0	mg/L	1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0
	Cadmium (in water)	2.00		1.96E+01	0.00E+00		mg/kg-day	2,50E-06	mg/kg-day	
	Chromium, total	0	mg/L	1.96E+01	0.00E+00	0.00E+00	mg/kg-day	3.90E-05	mg/kg-day	0.00E+0
	Copper	0	mg/L	1.96E+01	0.00E+00	0.00E+00	mg/kg-day	3,70E-02	mg/kg-day	
	tron	5.97	mg/L	1.96E+01	2.39E-05		mg/kg-day	3.00E-01	mg/kg-day	1.56E-0
	Lead	0.000379	mg/L	1.96E+01	1.52E-09	2.97E-08	mg/kg-day	NA	NA	352-455-5
	Manganese (in sediment or water)	0.148 mg/L		1.96E+01	5.92E-07	1,16E-05	mg/kg-day	9.60E-04	mg/kg-day	1.21E-0
	Manganese (in food)	0 mg/L		1.96E+01	0.00E+00		mg/kg-day	5.60E-03	mg/kg-day	13.39 2.00
	Mercury	0	mg/L	1.96E+01	0.00E+00	0.00E+00	mg/kg-day		mg/kg-day	
	Selenium	0 mg/L		1.96E+01	0.00E+00	0.00E+00	mg/kg-day		mg/kg-day	
	Thallium	0 mg/L		1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	
	Vanadium	0	mg/L	1,96E+01	0.00E+00		mg/kg-day		mg/kg-day	
	Zinc	0	mg/L	1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0
	Chloroform	0.00131	ma/L	1.96E+01	4.45E-08		mg/kg-day		mg/kg-day	8,72E-0
	Hexachlorocyclohexane, alpha-	5.24E-05	ma/L	1.96E+01	6.81E-09		mg/kg-day		mg/kg-day	2.67E-0
	Methylene chloride	0.00804		1.96E+01	1.31E-07		mg/kg-day		mg/kg-day	4.26E-0
	Benz(a)anthracene	0	mg/L	1.96E+01	0.00E+00		mg/kg-day	NA	NA	1000
	Benzo(a)pyrene	0	mg/L	1.96E+01	0.00E+00	0.00E+00	mg/kg-day	NA	NA	. Is
	Benzo(b)fluoranthene		mg/L	1.96E+01	0.00E+00		mg/kg-day	NA	NA	
	Benzo(k)fluoranthene		mg/L	1.96E+01	0.00E+00		mg/kg-day	NA	NA	
	Chrysene		mg/L	1.96E+01	0.00E+00		mg/kg-day	NA	NA	1
	Dibenz(ah)anthracene		mg/L	1,96E+01	0.00E+00		mg/kg-day	NA	NA	
	Indeno(1,2,3-cd)pyrene		mg/L	1.96E+01	0.00E+00		mg/kg-day	NA	NA	
	Naphthalene		mg/L	1,96E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0
	Bis(2-ethylhexyl) phthalate		mg/L	1.96E+01	0.00E+00		mg/kg-day	2.00E-02	mg/kg-day	0.00E+0
	PCB 1254		mg/L	1.96E+01	0.00E+00	0.00E+00	mg/kg-day		mg/kg-day	0.00E+0
	PCBs, total		mg/L	1.96E+01	0.00E+00	0.00E+00	mg/kg-day		mg/kg-day	0.00E+0
	DDD, p.p'-		mg/L	1.96E+01	0.00E+00		mg/kg-day	2.005-03	mg/kg-day	0.00E+0
	DDE, p,p'-		mg/L	1.96E+01	0.00E+00		mg/kg-day		mg/kg-day	0.00E+0
	Male and the				1					5.35E-0
Grand Total										1.32E+0

Farget organ across all exposure pathways: Central nervous system =	2.68E-02
Farget organ across all exposure pathways: Blood =	0.00E+00
Farget organ across all exposure pathways: Skin =	1.24E+00
Farget organ across all exposure pathways; Cardiovascular system =	0.00E+00
Farget organ across all exposure pathways; Kidney =	5.17E-04
Farget organ across all exposure pathways: Gatrointestinal System =	4.91E-02
Farget organ across all exposure pathways; Immune system =	0.00E+00
Farget organ across all exposure pathways: Liver =	7.63E-04
Farget organ across all exposure pathways: Whole body/growth =	0.00E+00

TABLE C-22 PLOW SHOP POND Recreational Child

7-1-		EPC					Cance	r Risk Calcula	itions	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intak	ce e	CSF/	Unit Risk	Cancer Risk
						Value	Units	Value	Units	20000
Ingestion	Aluminum	0	mg/kg	5.46E-05		0.00E+00		NC	NC	
	Antimony		mg/kg	5.46E-05		0.00E+00		NC	NC	
	Arsenia		mg/kg	5.46E-05		4.34E-06		1.50E+00	Control of the Contro	6.51E-0
	Barium		mg/kg	5.48E-05		0.00E+00		NC	NC C	0,016.0
	Cadmium (in solid media)		mg/kg	5.46E-05		0.00E+00		NC	NC	
	Cadmium (in water)					0.00.00		NC	NC	
	Chromium, total	0	mg/kg	5.46E-05		0.00E+00		NC	NC	
-	Copper		mg/kg	5.46E-05		0.00E+00		NC	NC	
	Iron		mg/kg	5.48E-05		0.00E+00		NC	NC	
	Lead		mg/kg	5.46E-05		0.00E+00		NA	NA	
	Manganese (in sediment or water)		mg/kg	5.46E-05		0.00E+00		NC	NC	
	Manganese (in food)		mg/kg	5.46E-05		0.00E+00		NC	NC	
	Mercury		mg/kg	5.46E-05		1,41E-04		NC	NC	
	Selenium		mg/kg	5.46E-05		0.00E+00		NC	NC NC	
	Thallium		mg/kg	5.46E-05		0.00E+00		NC	NC NC	
	Vanadium		mg/kg	5.46E-05		2.45E-05		NC	NC NC	
	Zinc		mg/kg	5.46E-05		0.00E+00		NC	NC NC	
	Chloroform		mg/kg	5.46E-05		0.00E+00		NA	NA	
	Hexachlorocyclohexane, alpha-		mg/kg	5.46E-05		0.00E+00		111111111111111111111111111111111111111	(mg/kg-day)-1	0.00E+00
	Methylene chloride		mg/kg	5.46E-05		0.00E+00			(mg/kg-day)-1	0.00E+00
	Benz(a)anthracene		mg/kg	5.46E-05		0.00E+00			(mg/kg-day)-1	0.00E+00
			mg/kg	5.46E-05		0.00E+00			(mg/kg-day)-1 (mg/kg-day)-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Benzo(a)pyrene		mg/kg	5.46E-05		0.00E+00				0.00E+00
	Benzo(b)fluoranthene		mg/kg	5.46E-05		0.00E+00			(mg/kg-day)-1	0.00E+00
	Benzo(k)fluoranthene			5.46E-05		0.00E+00			(mg/kg-day)-1	0.00E+00
	Chrysene		mg/kg	5.46E-05		0.00E+00			(mg/kg-day)-1	0.00E+00
	Dibenz(ah)anthracene		mg/kg	5.46E-05		0.00E+00			(mg/kg-day)-1	0.00E+00
	Indeno(1,2,3-cd)pyrene		mg/kg	5.46E-05		0.00E+00		NC	(mg/kg-day)-1	0.00E+00
	Naphthalene		mg/kg	ATTOM FOR A STATE OF					NG	
	Bis(2-ethylhexyl) phthalate		mg/kg mg/kg	5.46E-05 5.46E-05		0.00E+00 0.00E+00		1.40E-02	(mg/kg-day)-1	0.000
	PCB 1254			F8316/77/897		10 1 Cranto Con 10 7 7 7 1		2.00E+00	(mg/kg-day)-1	0.00E+00
	PCBs, total		mg/kg mg/kg	5.46E-05 5.46E-05		0.00E+00 0.00E+00			(mg/kg-day)-1	0.00E+00
	DDD, p.p'-			. TESTERSTON		The state of the s			(mg/kg-day)-1	0.00E+00
	DDE, p,p'-	0.0187	mg/kg	5,46E-05		1.02E-06		3.40E-01	(mg/kg-day)-1	3,47E-07
Total										6.86E-06
Grand Total						11				6.86E-06

TABLE C-22 PLOW SHOP POND Recreational Child Fish

		EPC				Non-Ca	ncer Hazard	Calculations		
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	ike	Rff	O/RfC	Hazard Quotient
7,499000						Value	Units	Value	Units	
Ingestion	Aluminum	0	mg/kg	6.37E-04		0.00E+00	mg/kg-day	1.00E+00	mg/kg/day	0.00E+00
	Antimony	0	mg/kg	6.37E-04		0.00E+00	mg/kg-day	4.00E-04	mg/kg/day	0.00E+0
	Arsenic	0.0796	mg/kg	6.37E-04		5.07E-05	mg/kg-day	3.00E-04	mg/kg/day	1.69E-0
	Barium	0	mg/kg	6.37E-04			mg/kg-day	2.00E-01	mg/kg/day	0.00E+0
	Cadmium (in solid media)	0	mg/kg	6.37E-04		0.00E+00	mg/kg-day	1.00E-03	mg/kg/day	0.00E+0
	Cadmium (in water)		and a	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Chromium, total	0	mg/kg	6.37E-04			mg/kg-day	3,00E-03	mg/kg/day	0.00E+0
	Copper	0	mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Iron	0	mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Lead	0	mg/kg	6.37E-04			mg/kg-day	NA	NA	
	Manganese (in sediment or water)	.0	mg/kg	6.37E-04			mg/kg-day	2.40E-02	mg/kg/day	0.00E+0
	Manganese (in food)		mg/kg	6.37E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Mercury		mg/kg	6.37E-04		1,65E-03	mg/kg-day		mg/kg/day	5.50E+0
	Selenium		mg/kg	6.37E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Thallium		mg/kg	6.37E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Vanadium		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	2.86E-0
	Zinc		mg/kg	6.37E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Chloroform	0	mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Hexachlorocyclohexane, alpha-		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Methylene chloride	0	mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	Benz(a)anthracene		mg/kg	6.37E-04			mg/kg-day	NA	NA	
	Benzo(a)pyrene		mg/kg	6.37E-04			mg/kg-day	NA	NA	
	Benzo(b)fluoranthene		mg/kg	6.37E-04			mg/kg-day	NA	NA	
	Benzo(k)fluoranthene		mg/kg	6.37E-04			mg/kg-day	NA	NA	
	Chrysene		mg/kg	6.37E-04			mg/kg-day	NA	NA	
	Dibenz(ah)anthracene		mg/kg	6.37E-04			mg/kg-day	NA	NA	
	Indeno(1,2,3-cd)pyrene		mg/kg	6.37E-04			mg/kg-day	NA	NA	
	Naphthalene		mg/kg	6.37E-04			mg/kg-day	2.00E-02	mg/kg/day	0.00E+0
	Bis(2-ethylhexyl) phthalate	0	mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	PCB 1254	0	mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+00
	PCBs, total		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+00
	DDD, p,p'-		mg/kg	6.37E-04			mg/kg-day		mg/kg/day	0.00E+0
	DDE, p.p'-	0.0187	mg/kg	6.37E-04			mg/kg-day		mg/kg/day	5.95E-03
Total										5.96E+00
Grand Total							-			5.96E+00

Target organ across all exposure pathways: Central nervous system =	0.00E+00
Target organ across all exposure pathways: Blood =	0.00E+00
Target organ across all exposure pathways: Skin =	1.69E-01
Target organ across all exposure pathways: Cardiovascular system =	0.00E+00
Target organ across all exposure pathways: Kidney =	0.00E+00
Target organ across all exposure pathways: Gatrointestinal System =	0.00E+00
Target organ across all exposure pathways: Immune system =	5.50E+00
Target organ across all exposure pathways: Liver #	5.95E-03
Target organ across all exposure pathways: Whole body/growth =	2.86E-01

TABLE C-23 Plow Shop Pond Subsistance Adult Fish

		EPC					Cance	r Risk Calcula	ations	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intak	(0	CSF/	Unit Risk	Cancer
						Value	Units	Value	Units	1358)
ngestion	Aluminum		mg/kg	1.04E-03		0.00E+00		NC	NC	
ingesiion.	Antimony		mg/kg	1.04E-03		0.00E+00		NC	NC.	
	Arsenic		mg/kg	1.04E-03		8.27E-05			(mg/kg-day)-1	1.24E-0
	Barium		mg/kg	1.04E-03		0.00E+00		NC	NC	1.6.15
	Cadmium (in solid media)		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Cadmium (in water)					0.000		NC	NG	
	Chromium, total		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Copper		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Iron		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Lead		mg/kg	1.04E-03		0.00E+00		NA	NA	
	Manganese (in sediment or water)		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Manganese (in food)		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Mercury		mg/kg	1.04E-03		2.69E-03		NC	NC	
	Selenium		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Thallium		mg/kg	1.04E-03		0.00E+00		NC	NC	
N.	Vanadium		mg/kg	1.04E-03		4.67E-04		NC	NC -	
	Zinc		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Chloroform		mg/kg	1.04E-03		0.00E+00		NA	NA	
	Hexachlorocyclohexane, alpha-		mg/kg	1.04E-03		0.00E+00		6.30E+00	(mg/kg-day)-1	0.00E+
	Methylene chloride		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+
	Benz(a)anthracene		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+
	Benzo(a)pyrene		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+
	Benzo(b)fluoranthene		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+
	Benzo(k)fluoranthene		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+
	Chrysene		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+
	Dibenz(ah)anthracene	0	mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+
	Indeno(1,2,3-cd)pyrene		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+
	Naphthalene		mg/kg	1.04E-03		0.00E+00		NC	NC	
	Bis(2-ethylhexyl) phthalate		mg/kg	1.04E-03		0.00E+00		1.40E-02	(mg/kg-day)-1	
	PCB 1254	(mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+
	PCBs, total		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+
	DDD, p,p'-		mg/kg	1.04E-03		0.00E+00			(mg/kg-day)-1	0.00E+0
	DDE, p,p'-		mg/kg	1.04E-03		1.94E-05			(mg/kg-day)-1	6.61E-0
Total										1,31E-0
Grand Total			-							1.31E-0

TABLE C-23 Plow Shop Pond Subsistance Adult

		EPC				Non-Ca	ncer Hazard	Calculations		
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inte	ike	Rff)/RfC	Hazard
	Company Company					Value	Units	Value	Units	
Ingestion	Aluminum	0	mg/kg	2.43E-03		0.00E+00	mg/kg-day	1.00E+00	mg/kg/day	0.00E+0
	Antimony	0	mg/kg	2.43E-03		0.00E+00	mg/kg-day	4.00E-04	mg/kg/day	0.00E+0
	Arsenic	0.0796		2.43E-03		1.93E-04	mg/kg-day		mg/kg/day	6.44E-0
	Barium	0	mg/kg	2,43E-03		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Cadmium (in solid media)	0	mg/kg	2,43E-03		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Cadmium (in water)			2.43E-03			mg/kg-day		mg/kg/day	0.00E+0
	Chromium, total	0	mg/kg	2.43E-03			mg/kg-day		mg/kg/day	0.00E+0
	Copper		mg/kg	2,43E-03			mg/kg-day	3.70E-02	mg/kg/day	0.00E+0
	Iron		mg/kg	2,43E-03			mg/kg-day		mg/kg/day	0.00E+0
	Lead		mg/kg	2.43E-03		0.00E+00	mg/kg-day	NA	NA	
	Manganese (in sediment or water)		mg/kg	2.43E-03		0.00E+00	mg/kg-day	2.40F-02	mg/kg/day	0.00E+0
	Manganese (in food)		mg/kg	2.43E-03		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	Mercury		mg/kg	2.43E-03			mg/kg-day		mg/kg/day	2.09E+0
	Selenium		mg/kg	2.43E-03			mg/kg-day		mg/kg/day	0.00E+0
	Thallium		mg/kg	2,43E-03			mg/kg-day		mg/kg/day	0.00E+0
	Vanadium		mg/kg	2.43E-03		1.09E-03	mg/kg-day		mg/kg/day	1.09E+0
	Zinc		mg/kg	2.43E-03			mg/kg-day		mg/kg/day	0.00E+0
	Chloroform		mg/kg	2.43E-03			mg/kg-day		mg/kg/day	0.00E+0
	Hexachlorocyclohexane, alpha-		mg/kg	2,43E-03			mg/kg-day		mg/kg/day	0.00E+0
	Methylene chloride		mg/kg	2.43E-03			mg/kg-day		mg/kg/day	0.00E+0
	Benz(a)anthracene		mg/kg	2.43E-03			mg/kg-day	NA	NA	Old Dia
	Benzo(a)pyrene		mg/kg	2.43E-03			mg/kg-day	NA	NA	
	Benzo(b)fluoranthene		mg/kg	2.43E-03			mg/kg-day	NA.	NA	
	Benzo(k)fluoranthene		mg/kg	2.43E-03		0.00E+00	mg/kg-day	NA	NA	1
	Chrysene		mg/kg	2.43E-03			mg/kg-day	NA.	NA	
	Dibenz(ah)anthracene		mg/kg	2.43E-03			mg/kg-day	NA	NA	
	Indeno(1,2,3-cd)pyrene		mg/kg	2.43E-03		0.00E+00	mg/kg-day	NA.	NA	
	Naphthalene		mg/kg	2.43E-03		0.00E+00	mg/kg-day	THE RESIDENCE OF THE PARTY.	mg/kg/day	0.00E+0
	Bis(2-ethylhexyl) phthalate		mg/kg	2.43E-03		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00
	PCB 1254		mg/kg	2,43E-03		0.00E+00	mg/kg-day		mg/kg/day	0.00E+0
	PCBs, total		mg/kg	2.43E-03			mg/kg-day		mg/kg/day	0.00E+0
	DDD, p.p'-		mg/kg	2.43E-03			mg/kg-day		mg/kg/day	0.00E+0
	DDE, p.p'-		mg/kg	2.43E-03			mg/kg-day		mg/kg/day	2.27E-0
Total										2.27E+0
Grand Total										2.27E+0

Target organ across all exposure pathways: Central nervous system = 0.00E+00
Target organ across all exposure pathways: Blood = 0.00E+00
Target organ across all exposure pathways: Skin = 6.44E-01
Target organ across all exposure pathways: Cardiovascular system = 0.00E+00
Target organ across all exposure pathways: Kidney = 0.00E+00
Target organ across all exposure pathways: Galrointestinal System = 0.00E+00
Target organ across all exposure pathways: Liver = 2.29E+01
Target organ across all exposure pathways: Liver = 2.27E-02
Target organ across all exposure pathways: Whole body/growth = 1.09E+00

TABLE C- 24Plow Shop Pond Subsistance Child Fish

		EPC					Cance	r Risk Calcula	tions	
Exposure Route	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Intak	(6	CSF/	Jnit Risk	Cancer Risk
2000000000	ALCONOMIC CO.					Value	Units	Value	Units	100000
	Aluminum	-	mg/kg	3.63E-04		0.00E+00		NC	NC	
Ingestion	Antimony		mg/kg	3.63E-04		0.00E+00			NC NC	
	Arsenic		mg/kg	3.63E-04		2.89E-05			(mg/kg-day)-1	4.34E-0
	Barium		ma/ka	3.63E-04		0.00E+00			NC	4.34E-0
	Cadmium (in solid media)		mg/kg	3.63E-04		0.00E+00			NC	
	Cadmium (in water)		mgang	3,03E-04		0.002,400			NG	
	Chromium, total		mg/kg	3.63E-04		0.00E+00			NG	
	PER STANCE OF ST		mg/kg	3.63E-04		0.00E+00			NG NG	
	Copper	Č	mg/kg	3.63E-04		0.00E+00		NC	NC	
	Lead		mg/kg	3.63E-04		0.00E+00			NA	
	Manganese (in sediment or water)		mg/kg	3.63E-04		0.00E+00			NC I	
	Manganese (in food)		mg/kg	3.63E-04		0.00E+00			NC NC	
	Mercury		mg/kg	3.63E-04		9,41E-04		NC	NC NC	
	Selenium		mg/kg	3.63E-04		0.00E+00			NC I	
	Thallium		mg/kg	3.63E-04		0.00E+00			NC I	
	Vanadium		mg/kg	3.63E-04	1000	1.63E-04			NC	
	Zinc		ma/kg	3.63E-04		0.00E+00			NC NC	
	Chloroform		mg/kg	3.63E-04		0.00E+00		NA	NA	
	Hexachlorocyclohexane, alpha-		mg/kg	3.63E-04		0.00E+00		17 12 4 T	(mg/kg-day)-1	0.00E+0
	Methylene chloride		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benz(a)anthracene		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(a)pyrene		mg/kg	3.63E-04		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0
	Benzo(b)fluoranthene		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Benzo(k)fluoranthene		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	Chrysene		mg/kg	3.63E-04	11/	0.00E+00			(mg/kg-day)-1	0.00E+0
	Dibenz(ah)anthracene		mg/kg	3.63E-04		0.00E+00		7.30E+00	(mg/kg-day)-1	0.00E+0
	Indeno(1,2,3-cd)pyrene		mg/kg	3.63E-04		0.00E+00		7.30E-01	(mg/kg-day)-1	0.00E+0
	Naphthalene	Č	mg/kg	3.63E-04		0.00E+00		NC P.SSE-ST	NC	0.00E+0
	Bis(2-ethylhexyl) phthalate		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	
	PCB 1254		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	PCBs, total	Č	mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	DDD, p.p'-		mg/kg	3.63E-04		0.00E+00			(mg/kg-day)-1	0.00E+0
	DDE, p,p'-		mg/kg	3.63E-04		6.79E-06			(mg/kg-day)-1	2.31E-0
Total										4.57E-0
Grand Total										4.57E-0

TABLE C- 24Plow Shop Pond Subsistance Child Fish

		EPC				Non-Ca	ncer Hazard	Calculations		
Exposure	List of Chemicals of Potential Concern	Value	Units	Intake Factor	Other	Inta	ike	Rf	D/RfC	Hazard Quotient
						Value	Units	Value	Units	
Ingestion	Aluminum	0	mg/kg	8.48E-04		0.00E+00	mg/kg-day	1.00E+00	mg/kg/day	0.00E+0
ingestion	Antimony		mg/kg	8.48E-04	711		mg/kg-day		mg/kg/day	0.00E+0
	Arsenic	0.0796		8,48E-04			mg/kg-day		mg/kg/day	2.25E-0
	Barium		mg/kg	8,48E-04			mg/kg-day		mg/kg/day	0.00E+0
	Cadmium (in solid media)		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+0
	Cadmium (in water)		militaria	8.48E-04			mg/kg-day		mg/kg/day	0.00E+0
	Chromium, total	.0	mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+0
	Copper		mg/kg	8.48E-04		0.00E+00	mg/kg-day		mg/kg/day	0.00E+00
	Iron		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00
	Lead		mg/kg	8,48E-04			mg/kg-day	NA S.OUE-U	ingregicaly	0.006+0
	Manganese (in sediment or water)		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	D.00E+00
				8.48E-04						LINE BOUT TOTALCO
	Manganese (in food)		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00
	Mercury		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	7.32E+00
	Selenium		mg/kg				mg/kg-day	5.00E-03	mg/kg/day	0.00E+00
	Thallium		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00
	Vanadium		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	3.81E-01
	Zinc		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00
	Chloroform		mg/kg	8,48E-04			mg/kg-day	1.00E-02	mg/kg/day	0.00E+00
	Hexachlorocyclohexane, alpha-		mg/kg	8.48E-04			mg/kg-day	5.00E-04	mg/kg/day	0.00E+00
	Methylene chloride		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00
	Benz(a)anthracene		mg/kg	8.48E-04			mg/kg-day	NA	NA	
	Benzo(a)pyrene		mg/kg	8.48E-04			mg/kg-day	NA.	NA	
	Benzo(b)fluoranthene		mg/kg	8.48E-04		0.00E+00	mg/kg-day	NA	NA	
	Benzo(k)fluoranthene		mg/kg	8.48E-04			mg/kg-day	NA	NA	
	Chrysene		mg/kg	8.48E-04			mg/kg-day	NA	NA	
	Dibenz(ah)anthracene		mg/kg	8.48E-04			mg/kg-day	NA	NA	
	Indeno(1,2,3-cd)pyrene		mg/kg	8.48E-04			mg/kg-day	NA	NA	
	Naphthalene		mg/kg	8,48E-04			mg/kg-day		mg/kg/day	0.00E+00
	Bis(2-ethylhexyl) phthalate		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00
	PCB 1254		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00
	PCBs, total		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00
	DDD, p,p'-		mg/kg	8.48E-04			mg/kg-day		mg/kg/day	0.00E+00
	DDE, p,p'-	0.0187	mg/kg	8.48E-04		1.59E-05	mg/kg-day	2.00E-03	mg/kg/day	7.93E-03
Total										7.93E+00
Grand Total										7.93E+00

Target organ across all exposure pathways: Central nervous system = Target organ across all exposure pathways: Blood = Target organ across all exposure pathways: Skin = Target organ across all exposure pathways: Cardiovascular system = Target organ across all exposure pathways: Kidney = Target organ across all exposure pathways: Gatointestinal System = Target organ across all exposure pathways: Immune system = Target organ across all exposure pathways: Liver = Target organ across all exposure pathways: Whole body/growth =

0.00E+00 0.00E+00 2.25E-01 0.00E+00 0.00E+00 0.00E+00 7,32E+00 7,93E-03 3.81E-01

TABLE C-25 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Réceptor Population: Recreational

Medium	Expanuro	Exposure	Chemical		Corci	ogenic Risk			Non-Car	cinogenic Haza	rd Quotient	
	Medium	Point	of Potential Concorn	Ingestion	Inhalation	Dormal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhaladion	Dermal	Exposure Routes Tola
Inemibel	Sediment	Near-shore Grove Pond Sediment	Aluminum	0.00E+00		0.00E+00	0.00E+00		5.19E-03		0.00E+00	5,19E-03
			Antimony	0.00E+00		0.00E+00	0.00E+00		7.61E-03		0.00E+00	7.61E-03
			Arsonic	2.60E-05		3.51E-05	6.11E-05		1.35E-01		1.82E-01	3.17E-01
			Barium	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Cadmium (in solid media)	0.00E+00	1	0.00E+00	0.00E+00	1	1.24E-02		2.24E-02	3.48E-02
			Cadmium (in water)	0.00E+00		0.00E+00	0.00E+00		0,00E+00		0.00E+00	0.00E+00
			Chromium, total	0.00E+00		0.00E+00	0.00E+00		1.23E-02		0.00E+00	1.23E-02
			Copper	0.00E+00		0.00E+00	0.00E+00		8.500-00		0.00E+00	5.50E-03
1			Iron	0.00E+00		0.00E+00	0.00E+00	1	1,63E-02		0.00£+00	1.63E-02
			Lead	0.03E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Manganese (in sediment or water)	0.00E+00		0.00E+00	0.00E+00		7,68E-03		0.00E+00	7.68E-03
			Manganese (in food)	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00€+00	0.00€+00
-		-	Mercury	0.00E+00		0.00E+00	0.00E+00		8.05E-02		0.00E+00	8.05E-02
			Selenium	0.00E+00	Arry 1	0.00E+00	0.00E+00		4.99E-04	- 1	0.00E+00	4.99E-04
3-			Thallium	0.00E+00		0.00E+00	0.00€+00		1.02E-01		9.00E+00	1.02E-01
			Vanadium	0.00E+00		0.00E+00	0.00E+00		1.09E-02		0.00E+00	1.09E-02
			Zinc	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Chloroform	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Hexachteropydohexane, alpha-	0.00€+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Methylene chloride	0.00E+00		0.00E+00	0.00E+00		0.00€+00		0.00€+00	0.00E+00
1			Benz(a)anthracens	5.47E-08		3.20E-07	3.76E-07		0.00E+00		0.00E+00	0.00E+00
			Benzo(a)pyrene	5.83E-07		3.41E-06	4.00E-06	1	0.00€+00		0.00E+00	0.00E+00
			Benzo(b)fuoranithene	6.806-08		3.98E-07	4.66E-07		0.00E+00		0.00E+00	0.00E+00
			Benzo(k)fluorantherie	6.71E-09		3.93E-08	4.60E-08		0.00E+00		0.00E+00	0.00E+00
			Chrysene	8.80E-10		5.15E-09	6.03E-09		0.00E+00		0.00E+00	0.00E+00
			Dibenz(ah)anfhracens	2.10E-07		1.23E-06	1.44E-06		0.00E+00		0.00E+00	0.00E+00
			Indenc(1,2,3-cd)pyrene	5,13E-08		3.00E-07	3.51E-07		0.00E+00		0.00E+00	0.00E+00
			Naphthaleno	0.00E+00		0.00E+00	0.00E400		4.91E-05		2.87E-04	3.36E-04
			Bis(2-ethylhexyl) phthalate	0.00E+00		0.00E+00	0.00E=00		0.00E+00		0.00E+00	0.00E+00
			PCB 1254	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			PC8s, total	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00

TABLE C-25 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Recreational

Medium	Exposure	Exposure	Chemical		Carcin	regenic Risk		1	Non-Car	cinogenic Haza	d Quotient	
	Medium	Point	of Potential Concern	Ingestion	Inhalation	Dormal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Roules Tota
			DOD, p.p'-	1,00E-08		1.35E-08	2.36E-08		4.87E-05		8.59E-05	1,15E-04
			ΟΟΕ, ρ.p'-	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+0
	Exposure Medium Total						6.8E-05					6.0E-01
	Surface Water	Grove Pond Surface Water	Aluminum	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Antimony	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
- 0			Arsenic	5.05E-06		2.26E-06	7.30E-06		3E-02		2.51E-02	5.12E-0
ì			Sarkim	0.00E+00		0.00E+00	0.00E+00		4E-03		4.90E-02	5.26E-0
			Cadmium (in solid media)	0.00E+00		0.00E+00	0.00E+00	1	0E+00		8.00E+00	0.00E+0
			Cadmium (in water)	0.00E+00		0.00E+00	0.0001+00		0E+00		0.00E+00	0.00E+0
	- V		Chromium, total	0.00E+00		0.00E+00	0.00E+00		3E-03		3.72E-01	3.75E-0
			Copper	0.00E+00		0.00E+00	0.00E+00		dE+00		0.00E+00	0.00E+0
			tron	0.00E+00		0.00E+00	0.00E+00		2E-02		2.26E-02	4.62E-0
			Lead	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Manganese (in sediment or water)	0.00E+00		0.00E+00	0.00E+00		5E-01		1.14E+01	1,19E+0
			Manganese (in food)	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Mercury	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Selenium	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Thellium	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Vanadium	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Zino	0.00E+00		0.00€+00	0.00E+00		2E-03		1,41E-03	3.86E-0
			Chioroform	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Hexachlorocyclohexane, alpha-	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Methylene chioride	0,00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Benz(a)anthracene	0.00€+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Benzo(a)pyrene	0.00E+00		0.00E400	0.00E+00		0E+00		0.00E+00	0.00E+0
			Benzo(b)fluoranthene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E40
			Benzo(k)fluoranthene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Chrysene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Oibenz(ah)anthracens	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	D.00E+D
			Indeso(1,2,3-cd)pyrene	0.00E+00		0.00E+00	0.00E+00		0E+90		0.00E+00	0.00E+00
		1	Naphthalene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.000 *00	0.00E+00

TABLE C-25 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Recreational

Medium	Exposure	Exposure	Chemical	-	Carci	nogenic Risk			Non-Car	rcinogenic Haza	nd Quotient	
	Modium	Polit	of Potential Concern	ingestion	Inhalation	Dormal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Tota
			Bis(2-ethylhexyl) phthalate	2.15E-08		1.36E-06	1.38E-06		2E-04		2.42E-02	2.44E-02
			PC8 1254	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			PCBs, total	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			DDD, p.p'-	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			DDE, p.p'-	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
	Exposure Medium Total						8,7E-06					1.26+01
sh Tissue	Fish Tissue	Fish Tissue- Grove Pond	Auminum	0.00E+00			0.00E+00		0E+00			0.00E+00
			Antimony	0.00E+00			0.00E+00		0E+00			0.00E+00
			Arsenio	0.00E+00			0.00E+00		0E+00			0.00E+00
			BONANTS	0.00E+03			0.00E+00		0E+60			0.00E+00
			Cadmium (In solid media)	0.00E+00			0.00E+00		3E-02			2.68E-02
			Cadmium (in water)	0.00E+00			0.00E+00		0E+00	-		0.00E+00
			Chronium, total	0.00E+D0			0.00€+00		3E-02			3.36E-02
			Copper	0.00E+00			0.00€+00		0E+00			0.00E+00
			Iron	0.00E+00			0.00E+00		0E+00			0.00E+00
			Lead	0.00E+00			0.00E+00		0E+00			0.00E+00
			Manganese (in sediment or water)	0.00€+00	5		0.00E+00		0E+00			0.00E+00
			Manganese (in food)	0.00E+00			0.00E+00		0E+00			0.00E+00
			Mercury	0.00€+00			0.00E+00		6E-01			6.03E-01
			Selenium	0.00E+00			0.00E+00		0E+00			0.000+00
		In the second	Theilliam	0.00E+00			0.00E+00		0E+00	- 3		0.00E+00
			Vanadium	0.00E+00			0.00E+00		3E-02			2.60E-02
		1	Zinc	0.00E+00	0		0.00E+00		0E+00			0.00E+00
			Chloroform	0.00E+00			0.00E+00		0E+00			0.00E+00
			Hexachlorocyclohexane, alpha-	0.00E+00			0.00E+00		0E+00			0.00E+00
			Methylene chloride	0.00E+00			0.00E+00		0E+00	-		0.00E+00
			Benz(a)anthracene	0.00E+D0			0.00E+00		0E+00			0.00E+00
		D	Benzo(a)pyrane	0.00E+00	1		0.00E+00		0E+00			0.00E+00
			Benzo(b)fluoranthene	0.00E+00			0.00E+00		0E+00			0.00E+00
			Benzo(k)fluoranthone	0.00E+00			0.00E+00		0E+00			0.00E+0

TABLE C-25 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Receptor Population. Recreational

Receptor Age: Adult

Medium	Exposure	Exposuro	Ghernical		Carcin	togenis Risk			Non-Ca	rcinogenic Hazar	d Quotient	
	Medium	Point	of Potential Concern	Ingustion	Inhalation	Dennal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Durmal	Exposure Routes Total
			Chrysene	0.00E+00			0.00€+00		0E+00	50		0.00E+00
			Dibenz(ah)anthracene	0.00E+00			0.00E+00		0E+00			0.00E+00
			Indenc(1,2,3-od)pyrene	0.00E+00			0.00E+00		0E+00			0.00E+00
			Naphthalene	0.00E+00			0.00E+00		0E+00			0.00E+00
			Bis(2-ethylfrexyl) phthalate	0.00€+00			0.00E+00		0E+00			0.00E+00
			PCB 1254	0.00€+00			0.00E+00		0E+00			0.00E+00
			PCBs, total	2.69E-05			2.69E-05		2E+00			1.57E+00
			DDD, p.p'-	7.61E-07			7.61E-07		4E-03			3.70E-03
			DDE, p.p'-	2.25E-08			2.25E-06		86-03			7,726-03
i.	xposure Medium Total						3.0E-05					2.3E+00

Target organ across all exposure pathways: Central norvous system = 1.19E+01 Terget organ across all exposure pathways: Blood = 1,15E-02 Target organ across all exposure pathways: Skin = 3.68E-01 Target organ across all exposure pathways: Cardiovascular system # 5.26E-02 Target organ across all exposure pathways: Kidney = 8.16E-02 Target organ across all exposure pathways: Gatrointestinal System = 4.89E-01 Target organ across all exposure pathways; immune system = 2.25E+00 Targol organ across all exposure pathways: Liver = 1,38E-01 Target organ across all exposure pathways: Whole body/growth = 3.73E-02

edin

1.1E-04

Total Hazards Across all Media

1.5E+01

TABLE C-26 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPC® RAGS TABLE 9 RME

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timetrame: Current Receptor Population: Recreational

Medium	Exposure	Exposure	Chemical		Carci	nogenic Risk			Non-Car	cinogonic Haza	nd Qualient	
	Mediam	Point	of Potential Concern	Ingestion	Inhafation	Dermal	Exposure Routes Total	Primary Target Organ(s)	ingestion	Inhalation	Dormai	Exposure Roules Tota
ediment	Sediment	Near-shore Grove Pond Sediment	Aluminum	0.00E+00		0.00E+00	0.00E+00		4.85E-02		0.00E+00	4.85E-02
			Antimony	0.00E+00		0.00E+00	0.00E+00		7.10E-02		0.00E+00	7,10E-02
			Arsenic	4.85E-05		1.20E-05	6.05E-05		1.26E+00		3,11E-01	1.57E+00
			Barium	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Cadmium (in solid media)	0.00E+00		0.00E+00	0.00E+00		1.16E-01		3.83E-02	1.54E-01
			Cadmium (in water)	0.00E+B0		0.00E+00	0.00€+00		0.00E+00		0.00E+00	0.00E+00
			Chromium, total	0.00E+00		0.00E+00	0.00E+00		1,15E-01	0 -	0.00E+00	1.15E-01
			Copper	0.00E+00		0.00E+00	0.00€+00		5.13E-02		0.00E+00	5.13E-02
		-1	tron	0.00E+00		0.00E+00	0.00E+00		1.52E-01		0.00E+00	1.52E-01
			Lood	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Manganese (in sediment or water)	0.00E+00	- 4	0,00E+00	0.00€+00		7.17E-02		0.00E+00	7.17E-02
- 1			Manganese (in food)	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.03E+00	0.00E+00
			Mercury	0.00E+00		0.00E+00	0.00E+00		7.51E-01		0.00E+00	7.51E-01
			Selenium	0.00E+00	k	0.00E+00	0.00E+00		4.66E-03		0.00E+00	4.66E-03
			Thatium	0.00E+00		0.00E+00	0.00E+00		9.55E-01		0.00E+00	9.55E-01
			Vanadium	0.00E+00		0.00E+00	0.00E+00		1.02E-01		0.00€+00	1.02E-01
			Zinc	0.00E+00		0.00E+00	0.00E+08		0.00E+00		0.00E+00	0.00E+00
- 4			Chleroform	0.00E+00		0.00E+00	0.00€+00		0.00E+00		0,00E+00	0,00E+00
			Hexachlorocyclohexane, alpha-	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0,00E+00	0.00E+00
			Methylene chloride	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Benz(a)anthracene	1.02E-07		0.00E+00	1.02E-07		0.00E+00		0.00E+00	0.00E+00
			Bonzo(a)pyrene	1.09E-06		1.17E-06	2.26E-06		0.00E+00		0.00E+00	0.00E+00
			Benzo(b)fluoranthene	1.27E-07		1.36E-07	2.63E-07		0.00E+00		0.00E+00	0.00E+00
			Benze(k)fluoranthene	1.25E-08		1.34E-09	2.60E-08		0.00E+00		0.00E+00	0.00E+00
			Chrysene	1,64E-09		1.76E-09	3.41E-09		0.00E+00		0.00E+00	0.00E+00
			Dibenz(ah)anthracene	3.93E-07		4.21E-07	8,14E-07		0.00E+00		0.00E+00	0.00E+00
			Indeno(1,2,3-cd)pyrens	9.58E-08		1.03E-07	1.98E-07		0.00E+00	100	0.00E+00	0.00E+00
			Naphthalene	0.00E+00		0.00E+00	6.00E+00		4.58E-04		4.92E-04	9.50E-04
			Bis(2-ethythexyl) phthalate	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			PCB-1254	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			PCBs, total	0.00€+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+0

TABLE C-26 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Receptor Population: Recreational

Medium	Exposure	Exposure	Chemical	_	Cercir	openio Risk		ļ.,	Non-Cor	cinogenic Haza	rd Quotient	
	Medium	Paint	of Potential Concorn	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Tola
			DOD, p.p'-	1.87E-08		4.63E-09	2.33E-08		4.55E-04		1,13E-04	5.67E-04
			DOE, p,p'-	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0,00E+00	0.00E+00
	Exposure Medium Total						6.4E-05					4.0E+00
	Surface Water	Grove Pond Surface Water	Aluminum	0.00E+00		0.00E+00	0.00€+00		0E+00		0.00E+00	0.00E+00
			Antimony	0.00E+00		0.00E+00	0,00€+00		0E+00		0.00E+00	0.00€+00
			Arsenic	2,35E-05		7.73E-07	2.43E-05	1	6E-01		2.00E-02	6.30E-01
			Barium	0.00E+00		0.00€+00	0.00E+00		66-02		3.91E-02	1,23E-01
			Cadmium (in solid media)	0.00E+00		0.00E+00	0.00E+00		0E+00		0.60E+00	0.00E+00
			Cadmium (in water)	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
	- W-		Chromium, total	0.00E+00		0:00E+00	0.00E+00		6E-62		2.97E-01	3.56E-01
			Copper	0.00E+00		0.00E+00	0.00E+00		0€+00		0,00E+00	0.00E+D
			tron.	0.00E+00		0.00E+00	0.00E+00		6E-01		1,81E-02	5.69E-0
			Lead	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Manganese (in sediment or water)	0.00E+00		0.00E+00	0.00E+00		1E+01		9,14E+00	2.03E+0
			Manganese (in food)	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Mercury	0.00E+00		0.00E+00	0.00€+00		0E+00		0.00E+00	0.00E+0
			Sekinkim	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+03	0.00E+0
			Thalium	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Vanadium	0.00€+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Zinc	0,00€+00		0.00€+00	0.00E+00		6E-02		1,13E-03	5.83E-02
			Chloroform	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00€+00	0.000+00
			Hexachtorocyclohexane, alpha-	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Methylene chloride	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Benz(a)anthracene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			Benzo(a)pyrene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00€+00
			Benzo(b)fluoranthone	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
	1 10		Benzo(k)fluoranthene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0,00E+00
	Chrysene Dibonz(ah)anthracene	Chrysene	0.00E+00		0.00E+00	0.00€+00		0E+00	1	0.00E+00	0.00E+00	
		0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00		
			Indeno(1,2,3-cd)pyrene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.000+00
			Naphthalone	0.00E+00		6.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0

TABLE C-26 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Receptor Population: Recreational

Medium	Exposure	Exposure	Chemical		Carcii	rogenic Risk			Non-Ca	rcinogenic Haza	rd Quotient	
	Madium	Point	of Potential Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Tota
			Bis(2-sthylhoxyl) phthalate	1.00€-07		4.64E-07	5,64E-07		4E-03		1.93E-02	2.35E-02
			PCB 1254	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			PCBs, total	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			000, p,p*-	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			ODE, p.p'-	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
	Exposure Medium Total						2.5E-05				4	2.2E+01
Tissue	Fish Tissue	Fish Tissue- Grove Pond	Aluminum	0.00E+00			0.00E+00		0E+00			0.00E+0
			Antimony	0.00E+00			0.00E+00		06+00			0.00E+00
			Amonic	0.00E+00			0.00E+00		0E+00		8 ()	0.00E+00
			Barkum	0.00E+00			0.00E+00		0E+00			0.00E+D
			Cadmium (in solid media)	0.00E+00			0.00E+00		6E-02			4.68E-02
			Cadmium (in water)	0.00E+00			0.00E+00		0E+00		THE COLUMN	0.00E+0
			Chromium, total	0.00E+00	B - 1		0.00E+00		6E-02			5.90€-02
			Copper	0.00E+00		- 1	0.00E+00		0E+00			0.00E+0
			Iron	0.00E+00			0.00E+00		0E+00			0.00E+00
			Lead	0.00E+00			0.00E+00		0E+00			0.00E+00
			Manganese (in sediment or water)	0.00E+00			0.00E+00		0E+00			0.00E+00
			Manganese (in food)	0.00E+00			0.00E+00		0E+00			0.00E+00
			Morcary	0.00E+00			0.00E+00		1E+00			1.05E+00
			Selenium	0.00E+00			0.00E+00		0E+00			0.00E+00
			Thattium	0.00E+00			0.00E+00		0E+00			0.00E+00
			Varadium	0.00E+00			0.00E+00		5E-02			4.55E-02
			Zinc	0.00E+00			0.00E+00		0E+00			0.00E+00
			Chloroform	0.00E+00			0.00E+00		0E+00			0.00E+00
			Hexachlorocyclohexane, alpha-	0.00E+00			0.00E+00		0E+00			0.00E+00
			Methylene chloride	0.00E+00			0.00E+00		0E+00			0.00E+00
		Benz(a)anthracene	Benz(a)anthracene	0.00E+00			0.00E+00		0E+00			0.00E+00
	-		Benzo(a)pyrene	0.00E+00			0.00€+00		0E+00			0.00E+00
			Bonzo(b)fluorantherse	0.00E+00			0.00E+00		0E+00			0.00E+00
			Benzolkiflugranthene	0.00E+00			0.00E+00		0E+00			0.00E+00

TABLE C-26 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current

Receptor Population: Recreational

Receptor Age, Child

Medium	Exposure	Exposure	Chemical	-	Carcir	ogenic Rink			Non-Car	reinogenic Hazar	d Quotient	
	Medium	Point	of Potential Concern	Ingestion	Inhalation	Dormal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Tota
			Chrysene	0.00E+00			0.00€+00		0E+00			0.00E+00
			Dibenz(ah)anthracene	0.00E+00			0.00€+00		0E+00			0.00E+00
			Indeno(1,2,3-cd)pyrene	0.00E+00			0.00€+00		0E+00			0.00E+00
			Naphthalone	0.00E+00			0.00E+00		0E+00			0.00E+00
			Bis(2-ethylhexyl) phthalate	0.00E+00			0.00E+00		0E+00	-		0.00E+00
			PC8 1254	0.00E+00			0.00E+00		0E+00			0.00E+00
			PCBs, total	9.38E-08			9,38E-00		3E+00			2.74E+00
			DDD, p.p'-	2.66E-07			2.66E-07		6E-03			6.46E-03
			DDE, p.p'-	7.87E-07			7.87E-07		1E-02			1,35E-02
	Exposure Medium Total						1.0E-05					4.0E+00

Total Risk Across all Media

1.0E-04	Total Hazards Across all Media	3.0E+01
	Receptor Hi Total	
Target organ acro	oss all exposure pathways: Contral nervous system =	2.04E+01
Target organ acro	ss all exposure pethways: Blood =	1.29E-01
Target organ acro	nss all exposure pathways; Skin =	2.20E+00
Target organ acro	ss all exposure pathways: Cardiovascular system =	1.23E-01
Target organ son	oss all exposure pathways: Kidney =	2.01E-01
Target organ acro	oss all exposure pathways. Galrointestinal System =	1.30E+00
Target organ acro	oss all exposure pathways: Immune system =	4,54E+00
Target organ acro	oss all exposure pathways: Liver =	9.995-01
Target organ acro	ss all exposure pathways: Whole body/growth =	1.48E-01

TABLE C-27 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Recreational

Medium	Exposure	Ехропие	Chemical		Carci	ogenic Risis			Non-Car	rcinogenic Haza	d Quotient	
	Medium	Point	of Potential Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Tota
iedment	Segment	Near-share Plow Shap Pond	Aluminum	0.00E+00		0.00E+00	0.00E+00		2.47E-03		0.00E+00	2.47E-03
			Antimorty	0.00E+00		0.00€+00	0.00E+00		1,09E-02		0.00E+00	1.09E-02
			Arsenio	1.53E-04	- 00	2.06E-04	3.59E-04		7.93E-01		1.07E+00	1.86E+00
			Barium	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Cadmium (in solid media)	0.00E+00		0.00E+90	0.00E+00		3.91E-03		7.04E-03	1.10E-02
			Cadmium (in water)	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Chromium, total	0.00E+00		0.00E+00	0.000+00		1.04E+00		0.00E+00	1.04E+03
			Copper	0.00E+00		0.00E+00	0.00E+00		2.05E-03		0.00E+00	2.06E-03
			tron	0.00E+00		0.00E+00	0.00E+00		8.215-02		0.00E+00	8.21E-02
			Load	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Manganase (in sediment or water)	0.00E+00		0.00E+00	0.00E+00		3.22E-02		0.000+00	3.22E-02
			Manganese (in food)	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Mercury	0.00E+06		0.00E+00	0.00E+00		2.95E-02		0.00€+00	2.96E-02
			Selenium	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00€+00	0.00E+00
			Thalliam	0.00E+00		0.00E+00	0.00E+00		5.19E-02		0.00E+00	5.19E-02
			Vanadum	0.00E+00		0.00E+00	0.00E+00		9.11E-03		0.00€+00	9.11E-03
			Zine	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Chloraform	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Hexachlorocyclohexane, alpha-	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Methylene chloride	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Benzia)anthracene	2.92E-07		0.00E+00	2.92E-07		0.00E+00		0.00E+00	0.00E+00
			Benzo(a)pyrane	3.74E-06		2.19E-05	2.56E-05		0.00E+00		0.00E+00	0.00E+00
			Benze(b)fluoranthene	3.12E-07		1.83E-06	2.145-06		0.00€+00		0.00E+00	0.00E+00
			Benzo(k)fluoranthena	1.15E-08		6.74E-08	7.89E-08		0.00E+00		0.00E+00	0.00E+00
			Chrysane	3.43E-09		2.005-08	2.35E-08		0.00E+00	1	0.00E+00	0.00E+00
			Dibenz(ah)anthracene	7.68E-07		4.49E-06	5.26E-06		0.00E+00		0.00E+00	9.00E+00
			Indeno(1,2,3-cd)pyrene	2.93E-07		1.715-06	2.01E-06		0.00E+00		0.00E+00	0.00E+00
			Naphthalene	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Bis(2-ethylhexyl) phthalate	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
		100	PCB 1254	0.00E+00	- 1	0.00E+00	0.00E+00		0,00E+00		0.00E+00	0,00E+00
			PCBs, total	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			DDD, p.p'-	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00

TABLE C-27 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPC® RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Recreational

Medium	Exposure	Exposure	Chemical		Cardi	nogenic Risk		-	Non-Ce	rcinogenic Haza	rd Quotient	
	Medium	Point	of Potential Concern	Ingestion	Intralation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dormal	Exposure Routes Tota
			DOE, p.p'-	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
	Exposure Medium Total				THE STATE OF THE S		3.9E-04					3.1E+00
	Surface Water	Plow Shop Pand Surface Water	Aluminum	0.00E+00		0.00E+00	9,00E+00		0E+00		0.00E+00	0.00E+00
			Antimony	0.00E+00		0.00E+00	0.000=+00		0E+00		0.00E+00	0.00E+00
			Arsenic	9.93E-08		4,45E-06	1,44E-05		5E-02		4.94E-02	1.01E-01
			Barium	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			Cadmium (in solid media)	0.00€+00		0.00€+00	0.00E+00		ÓE+00		0.00E+00	0.00E+0
			Cadmium (in water)	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00€+0
			Chromium, total	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Copper	0.00E+00		0.00€+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			\$rors	0.00E+00		0.0002+00	0:00E+00		2E-03		1.95E-03	2.99E-0:
			Lead	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Manganese (in sediment or water)	0.00E+00		0.00E+00	0.00E+00		6E-04		1.51E-02	1.58E-0:
			Manganese (in food)	0.00€+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Mercury	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00€+00	0.00E+0
			Selenium	0.00E+00		0.00E+00	0.00E+00	10	0E+00		0.00E+00	0.00E+0
			Thalium	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Variadium	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Zinc	0.00E+00		0.00E+00	0.00E+00	1	0E+00		0.00E+00	0.00E+0
			Chleroform	0.00E+00		0.00E+00	0.00E+00		1E-05		1.09E-04	1.235-0
			Hexactriorocyclohexane, eipha-	1,45E-08		2.11E-07	2.25E-07		16-05		3,34E-04	3.45E-0
			Meltrytene chloride	2.64E-09		4.80E-09	7,46E-09		1E-05		5.34E-05	6.71E-00
			Benz(a)anthracene	0.00€+00		0.00E+00	0.00€+00		0E+00		0.00E+00	0.00E+0
			Benza(a)pyrene	0.00€+00		0.00E+00	0.00€+00		0E+00		0.00E+00	0.00E+0
			Berizo(b)/luoranthene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Benzo(k)fluoranthene	0.00€+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Chrysene	0.00E+00		0.00E+00	0,00E+00		0E+00		0.00E+00	0.00E+0
			Dibenz(ah)anthracene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			Indeno(1,2,3-cd)pyrene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.000=+00
			Naphthalene	0,00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Bis(2-ethylhexyl) phihalate.	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			PCB 1254	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.000.00

TABLE C-27 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Recreational

Medium	Exposure	Exposure	Chemidal		Cwci	negenic Risk		-	Non-Ca	rdnogenic Haza	rd Quotient	
	Medium	Paint	of Potential Concern	Ingestion	Inhalation	Doernal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Tota
			PCBs, total	0.00E+00		0.00E+00	0.00E+00		0E+00		0,00E+00	0.00E+00
			DDD, p,p'-	0.00E+00		0.008+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			DDE, p.p'-	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
	Exposure Medium Total						1.5E-05					1.2E-01
h Tissue	Fish Tissue	Fish Tissue- Plow Shop Pond	Aluminum	0.00E+00			0.00E+00		0E+00			0.00E+00
			Antimony	0.00€+00			0.00E+00		0E+00			0.00E+00
			Arsenic	1.86E-05			1.86E-06		1E-01			9.67E-02
			Backers	0.00E+00			0.00E+00		0E+00			0.00E+00
			Cadmium (in solid media)	0.00E+00			0.00E+00		00+30			0.00E+00
			Cadmium (in water)	0.00€+00			0.00E+00		0E+00			0.00E+00
			Chromium, total	0.00E+00			0.00E+00		0E+00			0.00E+00
			Copper	0.00E+00			0.00E+00		0E+00			0.00E+00
			tron	0.00E+00			0.00E+00		0E+00			0.00E+00
			Lead	0.00E+00			0.00E+00	100	0E+00			0.00E+00
			Manganese (in sediment or water)	0.00E+08			0.00E+00		GE+00			0.00E+00
		Y	Manganese (in food)	0.00E+00			0.00E+00		0E+00		n n	0.00E+00
			Mercury	0.00E+00			0.00E+00		3E+00			3.14E+00
			Selenium	0.00E+00			0.00E+00		0E+00			0.000+00
			Thatium	0.00E+00			0.00E+00		0E+00			0.00E+00
			Variadium	0.00E+00			0.00E+00		2E-01			1.04E-01
	La		Zinc	0.00E+00			0.00E+00		0E+00			0.00E+00
			Chloroform	0.00E+00			0.00E+00		0E+00			0.00E+00
			Hexachlorocyclohexane, alpha-	0.00E+00			0.00E+00		0E+00			0.00E+00
			Methylene chloride	0.00E+00			0.00E+00		0E+00			0.00E+00
			Benz(a)anthracene	0.00E+00			0.00E+00		0E+00		_	0.00E+00
			Benzo(a)pyrene	0.00E+00			0.00E+00		0E+00		1	0.00E+00
			Benzo(b)fluoranthene	0.00E+00			0.00E+00		0E+00			0.00E+00
			Benzo(k)fluoranthene	0.00E+00			0.00E+00		0E+00			D.DCE+00
			Chrysene	0.00E+00			0.00E+80		0E+00			0.00E+00
			Dibenz(ah)enthracene	0.00E+00			0.005+00		0E+00			0.00E+00
			Indeno(1,2,3-cd)pyrene	0.00E+00			0.00E+00		0E+00	,		0.00E+00
			Naphthalone	0.00E+00			0.00E+00		0E+00			0.00E+00

TABLE C-27 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timefreme: Current Receptor Population: Recreational Receptor Age: Adult

Medium	Exposure	Exposure	Chemical		Carcin	ogenic Risk			Non-Ca	rcinogenio Hazar	d Quotient	
	Medium	Point	of Potential Concern	Ingestion	Inhalation	Dormal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Demal	Exposure Routes Tota
			Bis(2-othylhexyl) phthalate	0.50E+00			0.00E+00		0E+00			0.00E+00
- 1			PCB 1254	0.00E+00			0.00E+00		0E+00			0.00E+00
- 1			PCBs, total	0.00E+03			0.00E+00		0E+00			0.00E+00
			DDD, p.p"-	0.00E+00			0.00E+00		0E+00			0.00E+00
			DDE, p,p'-	9.93E-07			9.93E-07		3E-03			3.41E-03
	Exposure Medium Total						2.0E-05					3.4E+00

Total Risk Acress all Media 4.3E-04 Total Hazarda Across all Media 6.7E+00 Receptor HI Total Target organ across all exposure pathways: Central norvous system = 5,04E-02 Target organ across all exposure pathways: Blood = 1.09E-02 Target organ across all exposure portiways: Skin = 2.06E+00 Target organ across all exposure pathways: Cardiovascular system = 0.00E+00 Target organ across all exposure pathways: Kidney = 1.13E-02 Target organ across all exposure pathways: Gatrointestinal System = 1.135+00 Terget organ across all exposure pathways: Immune system = 3.17E+00 Target organ across all exposure pathways: Liver = 5.55E-02 Target organ across all exposure pathways: Whole bodylgrowth = 1.736-01

TABLE C-28 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Recreational Receptor Age: Child

Medium	Exposure	Exposure	Chemical		Carde	rogenia Risk			Non-Car	tinogenic Haza	rd Quotient	
	Mediam	Point	of Potential Concern	Ingestion	Inhalation	Domal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhatation	Dermal	Exposure Routes Tota
ediment	Sediment	Near-shore Plow Shop Pond	Aluminum	0.00E+00		0,00E+00	0.00E+00		2.31E-02		0.00E+00	2.31E-02
			Antimony	0,00E+00		0.00E+00	0.00E+00		1.02E-01		0.00E+00	1.02E-01
			Arsenic	2.85E-04		7.07E-05	3.56E-04		7.40E+00	7	1.83E+00	9.23E+00
			Barium	0.00E+00		0.00E+00	0,00€±00		0.00E+00		0.00E+00	0.00E+00
			Cadmium (in solid media)	0.00E+00		0.00E+00	0.00€+00		3.65E-02		1.21E-02	4.86E-02
			Cadmium (in water)	0.00E+00		0.00E+00	0,00E+00		0.00E+00		0.00E+00	0.00E+00
			Chromium, total	0.00E+00		0.00E+00	0.00E+00		9.71E+00		0.00E+00	9.71E+00
			Copper	0.00E+00		0.00E+00	0,00E+00		1.92E-02		0.00E+00	1.92E-02
			Iron	0.00E+00		0.00E+00	0.00E+00		7.66E-01		0.00E+00	7.66E-01
			Lead	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Manganese (in sediment or water)	0.00E+00		0.00E+00	0.00E+00		3.00E-01		0.00E+00	3.00E-01
			Manganese (in food)	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.006+00	0.00E+00
-			Mercury	0.00E+00		0.00E+00	0.00E+00	1	2.76E-01		0.00E+00	2.76E-01
			Selenium	0.00E+00		0.00E+00	0.000+300.0		0.00E+00		0.00E+00	0.00E+00
			Thallium	0.00E+00		0.00E+00	0.00E+00		4.85E-01		0.00E+00	4.85E-01
			Vanadium	0.00E+00		0.00E+00	0.00E+00		8.50E-02		0.00E+00	8.50E-02
			Zinc	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Chloroform	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Hexachlorocyclohexana, alpha-	0.00E+00		0.00E+00	0.005+00		0.00E+00		0.00E+00	0.00E+00
- 1			Methylene chloride	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Bonz(a)anthracens	5.48E-07		0.00E+00	5.45E-07		0.00E+00		0.00E+00	0.00E+00
			Benzo(a)pyrene	0.98E-05		7.48E-06	1.45E-05		0.00E+00		0.00E+00	0.00E+00
			Borszo(b)fluoranthona	5.83E-07		6.26E-07	1.215-06		0.00E+00		0.00E+00	0.00E+00
			Benzo(k)/luoranthene	2.15E-08		2.31E-08	4.46E-08		0.00E+00		0.00E+00	0.00E+00
			Chrysene	6,39E-09		6.86E-09	1.33E-09	70	0.00E+00		0.00E+00	0.00E+00
			Dibenz(sh)anthracene	1.43E-06		1.54E-06	2.97E-06		0.00E+00		0.00E+00	0.00E+00
			Indeno(1,2,3-cd)pyrene	5,47E-07		5.86E-07	1.13E-06		0.00E+00		0.00E+00	0.00E+00
			Naphthalone	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			Bis(2-ethylhexyl) phthalate	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			PCB 1254	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			PCBs, total	0.09E+09		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00

TABLE C-28 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timetrame: Current Receptor Population: Recreational

Medium	Exposure	Exposure	Chemical		Carcin	ogenic Risk			Non-Car	cinogenio Haza	rd Qualient	
	Modium	Point	of Potential Concern	Ingestion	Inhatation	Dermai	Exposure Routes Total	Primary Target Organ(s)	Ingustion	Inhalation	Dermal	Exposure Routes Tota
			DDD, p.p'-	0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00	0.00E+00
			DDE, p,p'-	0.00E+00		0.00E+00	0.00E+03		0.00E+00		0.00E+00	0.00E+00
	Exposure Medium Total						3,8E-04					2.1E+01
	Surface Water P	Now Shop Pond Surface Water	Numinum	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+D0	0.00E+00
			Antimony	0.00E+00		0.00E+00	0,00E+00		0E400		0.00E+D0	0.00E+00
			Arsenic	4.64E-05		1.52E-06	4.79E-05		1E+00		3.94E-02	1.24E+00
			Barkim	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Cadmium (in solid media)	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.000+00
- 1			Cadmium (in water)	0.006+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
-			Oltromium, Iotal	0.00E+00		0.000+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Copper	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			tron	0.00E+00		0.00E+00	0.00E+00		5E-02		1.56E-03	4.91E-02
			Lead	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Manganese (in sediment or water)	0.00E+00		0.00E+00	0.00E+60		1E-02	- 5	1.21E-02	2.68E-02
			Manganose (in food)	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
- 1			Mercury	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Selenium	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Thelium	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00€+0
			Variadium	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00€+0
			Zina	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+D0	0.000+00
			Chloroform	0.00E+00		0.00€+00	0.00E+00		3E-04		8.72E-05	4.00E-04
			Hexactilorocyclohexane, alpha-	6,76E-08		7.21E-08	1.40E-07		3E-04		2.67E-04	5.17E-0
			Methylene chloride	1.23E-06		1.64E-09	1.40E-08		3E-04		4.26E-05	5.638-04
			Benz(a)anthracene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Berzo(a)pyrene	0.00€+00		0.00E+00	0.00E+00		0E+00		0.00€+00	0.00E+0
			Benzo(b)fluoranthene	0.00€+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0
			Benzo(k)fluoranthene	0.00€+00		0.00E+03	0.00E+00		0E+00		0.00E+00	0.00E+00
			Chrysene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+06
			Dibenz(ah)anthracene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			Indeno(1,2,3-cd)pyrena	0.00E+00		0.00E+00	0.00E+00		00+00		0.00€+00	0.00E+00
			Naphthalene	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+0

TABLE C-28 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Recreational

Medium	Exposure	Exposure	Chemical		Carole	ogenic Risk			Non-Cor	rcinogunia Haza	nt Quotient	
	Medium	Point	of Patential Concorn	Ingestion	Inhalation	Donnal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	inhalation	Dermal	Exposure Routes Tota
			Bis(2-ethylhexyl) phthalate	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
	li li		PCB 1254	0.00E+00		0,00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			PCBs, total	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			DOD, p.p'-	0.00E+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+00
			DDE, p.p'-	0.000+00		0.00E+00	0.00E+00		0E+00		0.00E+00	0.00E+IX
	Exposure Modum Total						4.8E-05					1.3E+00
sh Tissue	Fish Tissue	Fish Tissue- Plow Shop Pond	Aluminum	0.00E+00			0.00E+00		0E+00			0.00E+00
			Antimony	0.00E+00			0.00E+00		0E+00	U	,	0.00E+00
			Ansenic	6,51E-06			6.51E-06		2E-01			1.09E-01
1 4			Barium	0.00E+00			0.00E+00		0E+00			0.00E+00
			Cadmium (in solid media)	0.00€+00			0.00E+00		DE+00			0.00E+06
			Cadmium (in water)	0.00E+00			0,00E+00		0E+00			0.00E+00
			Ctyromium, total	0.00E+00			0.G0E+00	1	0€+00			0.00E+00
			Copper	0.00E+00			0.00E+00		0E+00		- 1 (I	0.00E+00
			fron	0.00E+00			0.00E+00		0E+00	- 1		0.00E+00
			Lead	0.00E+00			0,00€+00		0E+03			0.00E+00
			Manganese (in sediment or water)	0.00E+00			0,00€+00		0E+00			0.00E+00
			Mangenese (in food)	0.00E+00			0.00E+00		0E+00			0.00E+00
			Morcury	0.00E+00			0.000+00		5E+00			5.50E+00
			Selenium	0.00E+00			0.00E+00		0E+00			0.00E+00
			Thelium	0.00E+00			0.00E+00	1	0E+00			0.00E+00
			Vanadium	0.00€+00			0.00E+00		3E-01			2.86E-01
			Zinc	0.00E+00			0.00E+00		0E+00			0.00E+00
			Chloroform	0,00E+00			0.00E+00		0E+00			0.00E+00
			Hexachiorocyclohexans, alpha-	0.00E+00			0.00E+00		0E+00			0.00E+00
			Methylene chlorida	0.00E+00			0.00E+00	0	0E+00			0.00E+00
			Benz(a)anthracene	0.00E+00			0.00E+00		0E+00			0.00€+00
			Banzo(a)pyrene	0.00E+00			0.00E+00		0E+00			0.00E+00
			Benzo(e)fluoranthene	0.00E+00			0.00E+00		0E+00			0.00E+00
			Borzo(k)fluoranthens	0.00E+00			0.000+00		0E+00			0.00E+0

TABLE C-28 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs RAGS TABLE 9 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timefranie: Current Receptor Population, Recreational

Receptor Age: Child

Medium	Expenure	Exposure	Chemical		Carcir	egenic Risk			Non-Car	elnogenic Hazar	d Quotient	
	Medium	Point	of Potential Concern	Ingestion	inhalation	Dermal	Exposure Roules Total	Primary Terget Organ(s)	Ingestion	Inheration	Dermal	Exposure Routes Tota
			Chrysene	0.00E+00			0.00E+00		0E+00			0.00E+09
			Dibenz(ah)anthracene	0.00E+00			0.00E+00		0E+00			0.00E+00
			Indeno(1,2,3-cd)pyrene	0.00E+00			0.00E+00		0E+00			0.00E+00
			Naphthalene	0.00E+00			0.00E+00		0E+00			0.00E+00
			Bis(2-ethy/hexyl) phthalate	0.00E+00			0.00E+00		0E+00			0.00E+00
			PCB 1254	0.00E+00			0.00E+00		0E+00			0.00E+00
			PCBs, total	0.0000+000			0.00E+00		0E+00			0.00E+00
			DDD, p.p'-	0.00E+00			0.00E+00		0E+00			0.00€+00
			DDE, p,p'-	3.47E-07			3,47E-07		6E-03			5.95E-03
	Exposure Medium Total						6.96-06					6.0E+00

Total Risk Across all Media

4.3E-04

Total Hazards Across all Media

2.8E+01

3.2E-01

1.0E-01

9.2E+00

0.0E+00

4.9E-02

1.0E+01

2.6E-01

4.8E-01

8.5E-02

Target organ across all exposure pathways: Central nervous system =
Target organ across all exposure pathways: Blood =
Target organ across all exposure pathways: Skin =
Target organ across all exposure pathways: Cardiovascular system =
Target organ across all exposure pathways: Kidnøy =
Target organ across all exposure pathways: Calrointestinal System =
Target organ across all exposure pathways: Instrume system =
Target organ across all exposure pathways: Livor =
Target organ across all exposure pathways: Livor =
Target organ across all exposure pathways: Whole body/growth =

TABLE G-29 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPC# RAGG TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Recrustional

Medium	Екроини	Exposure	Chemical			Cartinoga	mic Risk				Non-Cartific	geric Hazard Ou	location and a	
	Modum	Point	of Potential Concern	ingration	Inhaletion	Demisi	Exposure Routes Total	greater than 15-6	Primary Yarget Organi(s)	ingestion	trealation	Damial	Exposure Routes Total	greater than
iment	Sediment	Near-shore Grove Pond Endirent	Aluminum	0.00E+00		0.00E+00.	C CGE+C0			5.19E-03		0.00E+00	5.196-03	-
			Antamony	0.00E+00		0.00E+00	0.00E+00			7.61E-03		0.0000+000	7.61E-03	
			Arsonia	2.60E-05		3.51E-05	6.11E-05	Yes		1.35E-01		1.826-01	3.17E-01	
			Banism	0.00E+00		0.00E+00	C.00E+00			0.00E+00		0.002+00	0.00E+00	
			Cadmium (in solid media)	0.00E+00		0.00E+00	0.00E+00	-		1,24E-02		2.24E-02	3.48E-02	- 32
			Cadmium (in water)	0.00E+00		0.00E+00	0.00E+00	_		0.00E+00	14	0.00E+00	0.00E+00	1
			Chromium, total	0.00E+00		0.00E+00	C.00E+00			1,23E-02		0.00E+00	1.23E-02	
			Соррег	0.00E+00		0.00E+00	0.00E+00			5.50E-03		0.005400	5.505-03	
			iron	0.00E+00		0.00E+00	0.00E+00			1.63E-02		0.00E+00	1.635-02	1 22
			Lead	0.00E+00		0.06E+06	0,00E+00			0.005+00		9.00E+00	0.000+00	
			Mangariese (in sediment or water)	0.00E+00		0.000-00	0,00E+00			7,68E-03		0.00E+00	7,68E-03	
			Manganoss (in food)	0.68E+00		0.00E+00	0.00E+00			0.0001400		0.00E+00	0.000+00	-
			Mercury	0.000[+000		0.000+00	0.000+00			8.050-02		0.000+00	8.055-02	
			Seleniam	0.600:+00		0.000.00	0,00€+00			4,005-04		0.000 +00	4.995-04	
			Thalkam	0.00E+00		0.00E+00	0.00E+00			1.026-01		0.00E+00	1.02E-01	
			Vanacium	0.00E+00		0.00E+00	0.00E+00			1.095-02		0.00E+00	1,09€-62	
			Znc	0.00E+00		0.00E+00	0.00E+00			0.00E+00		0.000+00	0.00E+00	
_			Chloroform	0.00E+00		C.00E+00	0,00E+00	1000		0.00E+00		0.006+00	0.00E+00	
			Hexachlorocyclohexane, alpha-	0.00E+00		0.00E+00	0.005+00			0.00E+00		0.00E+00	0.00E+00	
			Methylene chloride	0.00E+00		0.00E+00	0.00E+00			0.00E+00		0.00E+00	n.ooE+00:	
			Benzia)enthracene	5,47E-08		3.20E-07	3.75E-07			0.00E+00		0.000+00	0.00E+00	1.5
			Senzota yyrene	5.83E-07		3.41E-06	4.00E-00	Yes		0.00E+00		0.00E+00	0.00€+00	
			Benzeib'sluoranthone	6.80E-C8		3.95E-07	4.66E-07	_		0.00E+00		0.00E+00	0.000+00	
			Benzeikliftscrinthene	6,716-09		3,930-08	4.000-88			0.00E+00		0.00E+00	0.00E+00	
			Onysene	8.800-10		5.156-00	0.036-03			0.00E+00		0.00€+00	0.000+00	
			Ditransjalijanihraosee	2.10E-07		1,216-06	1.446-08	Ven		0.0001400		0.000100	0.000+00	
			indeno(1,2,3-od)pyrene	5.13E-08		3.00E-07	3.540-07			0.000+00		B.00E+00	0.000+00	
			Nachthalene	0.006+00		0.005+00	8.00E+00			4.01E-05		2.870-04	3.38E-04	
			filia(2-ethytheogt) phthable	0.00E+00		0.00E+00	0.00E+00	-		0.00E+00		0.00E+00	0.00E+00	
			PCB 1254	0.00E+00		0.00E+00	0.00€+00	5.6		0.00E+00		0.00E+00	0.00E+00	-
			PCBs, total	0.00E+00		0.005+00	0.005+00			0.00E+00		0.00E+00	0.00E+C0	1
			000, p.p/-	1.00E-08		1.36E-08	2.36E-08			4.87E-05		6.58E-05	1.156-04	
			DOE, 0.01-	0.00E+00		0.80E+00	0.000+00			0.00E+00		0.00E+00	0.00E+00	1.00
	Exposure Medium Total	-					0.8E-05	Yes					6.0E-01	-

TABLE C-29 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPC'S RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframa: Currert Receptor Population: Recreational Receptor Age: Adult

Modium	Exponent	Exposure	Chemical			Cartifoge	mic flick				Mon-Carcino	genic Hazard Chi	ctieck	
	Mediaro	Pent	of Potential Concern	Ingestion	Inhestica	Dermat	Exposure Flautes Total	greater than 16-6	Primary Target Organits:	Ingestion	Inhatation	Chermal	Exposure Routes Total	greater than
	Surface Water	Grove Fond Surface Water	Atuniquen	8.005+00		0.000:000	0.000+00	-		CE+00		0.000+00	0.00E+00	
			Actionary	8.00E+00		0.00E+00	0.00E+00			GE+90		0.00E+00	0.00E+00	
			Arsenia	5.05E-05		2.26E-06	7.36E-08	Yes		3E-02		2.51E-02	5.12E-02	
			Bariom	0.00E+00		0.00E+00	0.00E+08	-	1	4E-03		4.90E-02	5.26E-02	
			Cadmium (in solid media)	0.00E+00		0.00E+00	0.00E+08			0E+00		8,00E+90	0.00E+00	
			Codmam (51 water)	0.00E+00		0.00E+00	0.005+00			0E+00		0.00€+00	0.00E+00	
			Chromium, total	0.00E+00		0.00E+00	0.005+00			3E-03		3.72E-01	3,75E-01	
			Copper	0.00E+00		0.00E+00	8,000+00	-		0E+00		0.00E+00	0.00E+00	
			lion	0.00E+00		0.000000	8.00E+00			2E-02		2.260-02	4,625-02	
			Lead	0.00E+00	- 1	8,00E+00	0.00E+00			0E+00		0.00E+00	0.006+00	
			Manganese (in sediment or water)	8.000+00		0.00E+00	0.00E+00			86-01		1,146+01	1.190+01	Yes
- 4			Manganese (in frod)	0.00€+00		0.000+000	O 00E+00			00+30		0.000100	0.000+00	77.540.
			Marcury	0.00€+00		0.000+00	0.006+00	-		DE+00		0.00E+00	0.000+00	
			Selectors.	0.000=00		0.0089+00	0.00E+00			00+00	- 8	0.00E+00	0.000+00	- 1
			Thetium	0.00E+00		0.00E+00	0.00€+00			0E+00		0.00E+00	0.00E+00	
			Vanadism	0.00E+00		0.00E+00	0.00E+00			CE+00		0.00E+00	0.00E+00	
			Zina	0.60E+00		0.00€+00	0.00E+00			2E-03		1.41E-03	3.66E-02	-
			Chloroform	0.00E+00		0.00E+00	0.00E+00			0E+00		0.00€+00	0.00E+00	1
			Hexachlorocyclohexana, alpha-	0.00€+00		0.00E+00	0.00E+00			0E+00		0.00E+00	0.00E+00	
			Methylene chloride	0.00E+00		0.00E+00	0.00E+00			DE+08		0.00E+00	0.00E+00	
			Benejajanifracene	0.00E+00		0.00E+00	0.00E+00			0E+00		0.00E+00	0.00€+00	
			Benzo(a)pyrenn	0.006+00		0.000:+00	0.00E+00			0E+00		0.000400	0.00E+00	
			Benze(b)tworanthene	0.005+00		0.000-300.0	6.00E+00			0€+00		0.00E+00	0.00E+00	1 100
			flenzo@fluorunthone	0.005+00	-	0.00E+00	0.00E+00			06+00		6.00E+80	0.00E+00	-
			Chrysene	0.005+00		6.00E+00	0.0001400 -			6E+00		0.006+00	0.000+00	
			Othersgahlanthracene	0.00E+00		0.000+00	0.000+00		7	8E+00		0.000100	0.000 +00	16
			Induno(1,2,3-od);ymms	0.000100		0.000+00	0.00E+00	2 0		0E+06		9.00E+00	0.00E+00	-
			Naphthalane	0.00E+60		0.00E+00	0.000+00			0E+00		0.00E+00	0.00E+00	-
			Bis(2-ethylhexyl) phthalate	2.155-06		1.36E-06	1.385-06	Ves		25-04		2.42E-02	2.44E-02	
			PCB 1254	0.00E+00		0.00E+00	0.00E+00			0E+00		0.00E+00	0.00€+00	
			PCBs, total	0.00E+00		0.00E+00	0.00E+00	3		0E+00		0.00E+00	0.00E+00	-
			000, p.p'-	0.00E+00		0.00E+00	0.00E+00			0E+00		8.00E+00	0.00E+00	-
			DDE 8.0°-	0.00E+00		6.60E+00	0.00E+00			0E+00		0.00E+00	0.00E+00	-
	Exposure Medium Total		1,				6.7E-05	Yes					1.2E+01	Yes

TABLE C-29

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS

RAGS TABLE 10 RME

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Science Transfermer Current Receptor Population: Recressional Receptor Agic Adult

Median	Exposure	Execurs	Chemical	_	-	Cerchog	eréa Alieir				Non-Carcino	genis Frazzed Os	otient	
	Modium	Point	of Potential Concern	Ingestion	Inhalatun	Dermst	Exposure Routes Total	greater than 16-6	Primary Tanget Organ(s)	Inguistion.	Inheration	Deemal	Exposure Routes Total	greater than
h Timese	Fish Tissus	Fish Tisque-Grave Pond	Alaminam	0.00E+00			0.00E+00			00+00			0.00E+00	
			Antmony	0.00E+00			0.00E+00	-		0E+00			0.00E+00	
			Arsonic	0.00E+00			0.00E+00			0E+00			0.00E+00	
			Barlum	0.00E+00			0.00E+00			0E+00			0.90E+00	100
			Cadmium (in solid media)	0.00E+00			0.00E+00			3E-02			2.68E-02	
			Cadrolum (in water)	0.00E+08			0.00E+00			0E+00			0.00E+00	675
			Chromium, total	0.000+00			0.00E+00			3E-02			3.38E-02	-
			Copper	0.005+00			0.00E+00			CE+00			0.00E+00	
			Iron	0.000+00			0.00E+00			0E+90	111		0.00E+00	
			Lead	0.005+00			0.00E+00	100		0E+00			6.00E+00	-
			Management (in sediment or water)	0.005+00			0.00E+00			0E+00			8.00E+00	4
			Manganese (in foot)	0.000100			0.00E+00		7	0E+00			0.000+00	-
		100	Mercury	0.000+00			0.000 +00	141		8E-01				-
			Selenian	0.00E+00			8,00E+00			0E+00			6.83E-01	- 1
										02700			0.00E+00	-
			Thefiam	0.00E+00			0.00E+00			OE+00			0.002+00	
			Variadian	6.00E+00			0.00E+00	-		3E-02			2.50E-02	
			Zino	6.00E+00			0.00E+00	-		6E+90			0.00E+00	
			Chicroform	0.00E+00			0.00E+00	1921		0E+00			0.006+00	
			Haxactiorocyclohecane, alpha-	0.00E+00			0.00E+00	4		0E+00			0.00E+00	
			Mediylene chioride	0.00€+00			0.00E+00	- 1		0E+06			0.00E+00	
			Benz(a)andiracene	0.08E+00			0.00E+00	-		0E+00			0.00E+00	
			Benzo(a)pymne	0.08E+00			0.00E+00			OE+00			0.005+00	
			Benzo(b)fluorantherm	0.00E+00			0.90E+00			0E+00			8.000+00	
			Benzo(k)/Nurranthone	0.00E+08			0.00E+50			0E+00			8.00E+00	
			Chrysons	0.0000+000			0.000+00			6E+00			0.0001+00	-
			Otherse(stylanthracens	6.00E+66			0.000+00		1	0E+C6			0.00€+00	-
			indenc(1,2,3-od)cyrene	6,000+00			0.00E+00			0F+00			0.00E+00	-
			Naphthalene	6,00E+00			0.000+00			06+00			0.00E+00	-
			(8 s)2-ethythexy6) phthalata	0.00E+00			0.00E+00			0E+00				
			PCB 1254	0.00E+00			0.00E+00	- 5 1		0E+00			0.000+00	
			PCBs, total	2.69E-05			2.89E-05	Yes		2E+00			0.00E+00	
			DDD, p,p'+	7.61E-07			7.61E-07			4E-03			1.57E+00	Yes
			DDE, p.p'-	2.25E-06			2.26E-08	Yes		8E-03			3.70E-03	
	ixposure Medium Total			2000		-	3 0E-05	Yes		85-U3			7.72E-03	0.75

TABLE C-29 SUMMARY OF RECEPTOR BISKS AND HAZARDS FOR COPC# RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Sconade Timeframe: Current Receptor Population: Recreational Receptor Age: Adult

Medium	Exposure	Exposum	Chenroal			Certinog	onic Hisk				Non-Carcino	pervic Hazard Ou	polient	
	Medura	Point	of Potential Concern	Ingestion	Ashqialiga	Demai	Exposure Routes Total	greater than 15-6	Primary Target Organ(s)	Ingestion	Inhelation	Demat	Exposure Boutes Total	greater than

Turget organ across all exposure pathways: Central nervous system = 1.2E+01 Target organ across all exposure pathways: Blood = 1.1E-02 Tergel organ across all exposure pethways: Skin = 3.7E-01 Target organ across all exposure pathways: Cardiovascular system = 5.3E-02 Torpet organ across all exposure pultwoys: Kidney + 6.2E-02 Target organ across all exposure politimays: Gatroidestinal System = 4.96-01 Target organ across all exposure pathways: Immune system = 2.3E+00 Torget organ across all exposure pathways: Liver = 1.40-01 Terpet organ across all exposure patternys: Whole bodylgrowth + 3.7E-02

TABLE C-30 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPC® RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scensero Timeframe: Current Receptor Population: Recreational Receptor Age: Child

Median	Exposure Medium	Exposure	of Potential Content	_		Carching	mis Risk		Non-Carcinogenic Hazard Quotient						
				Ingestion	Inhalation	Dermal	Exposure Routes Total	greater than \$5-6	Primary Target Organiya)	Ingustion	Inhalation	Demei	Exposure Rockes Total	Genator Trays	
iroent	Sedannik	Near-shore Grove Pond (lediment	Alaminum	0.0001+00		0.00E+00	0.00E+00	-		4.850-02		0.00E+00	4.85E-02	-	
			Antimony	0.00E+00		0.00E+00	0.00E+00			7.10E-02		0.00E+00	7.16E-02		
			Appenen	4.88E-06		1.206-05	6.05E-05	Yes		1.20E+00		3,11E-01	1.57E+06	Yes	
- 41			Barium	0.66E+00		0.00E+00	0.00E+00			0.00E+00		0.00E+00	0.00E+00	-	
			Cadmum (in solid media)	0.00E+00		0.00E+00	0.00E+00		0	1.16E-01		3.836-02	1,54E-01		
- 1			Cadmium (in water)	0.00E+00		0.00E+00	0.00E+00	_		0.00E+00		0.00E+00	0.00E+00		
			Chromium, total	0.00E+00		0.00E+00	0.00E+00	-		1.15E-01		0.00E+00	1,155-01		
			Copper	0.00E+00		0.00E+00	0.00E+00			5.13E-02		0.00E+00	5,135-02		
			iron	0.00E+00		0.00E+00	0.00E+00			1.52E-61		0.00E+00	1.525-01	-	
			Lead	0.00E *00		9,00E+00	0.00E+00	-		0.00€+00		0.00E+00	0.00E+00		
			Menganese (in sediment or water)	0.00E+00		0.00E+00	0.00E+00			7.17E-02		8.00E+00	7,170-02		
			Manganese (in food)	0.000 + 00		0.00E+00	0.00E+00			0.000100		0.00€+00	0.00E+00	0.59	
- 1			Minoury	0,00E+90		0.00E+00	0.00E+G0			7.516-01		0.00E+00	7.51E-01		
			Seenue	0.00E+00		0:00E+00	0.00E+00			4.006-03		0.00E+00	4.665-03	-32	
			Thalken	0.00E+00		6.00E+00	0.00E+00			0.556-01		0.00E400	9.55E-01		
			Vanadium	0.000(+00		8.000.400	0.00E+00	- 0		1.02E-01	1.0	0.00E+00	1.02E-01		
			Znc	0.00E+00		0.00E+00	0.00E+00			U.00E+90		0.008300.0	0.00E+00		
			Chloroform	0.00E+00		0.00E+00	8.00E+00			8.00E+00		0.00E+00	0.00E+00	100	
- 1			Hexachierocyclohexane, sigha-	0.00E+00		0.00E+00	8.00E+00			8.00E+00		0.00E+00	0.00E+C0		
			Metrylene chloride	0.00E+00		0.00E+80	0.00E+00			0.00E+00		0.00E+00	0.00E+08	-	
4 - 1			Benzjalanthracene	1.025-07		0.00€+00	1.02E-07			0.00E+00		0.00E+00	0.00E+00	3	
			Benzolaloyene	1.09E-06		1.17E-06	2.26E-06	Yes		0.00E+00		0.00E+00	0.00E+00		
			Benzo(b)/lugranthene	1.27E-07		1.366-07	2.63E-07			0.00E+00		0.00€+00	0.00E+00	- 3	
			Barco(k)fuorustiens	1.255-00		1.346-00	2.60E-08			0.00E+00		0.00E+00	0.00E+00	100	
100			Chrysene	1.646-00		1,795-09	3.41E-09			0.00E+08		0.00E+00	0.000=+00	100	
			Dinenz(en)enthincens	3.905-07		4.210-07	8.14E-07			0.000100	100	0.0001+00	0.0001+00	4	
			Indeno(1.2.3-od)cyrene	9.586-08		1.03E-07	1.985-07			0.0001+00		0.0001+00	0.000+00	- 51	
			Nagridousions	0.00E+00		0.005+00	0.00E+CG			4.580-04	- 1	4.926-04	0.50E-04		
			Bis(2-ethylhesyl) phyhaiste	0.000+00		0.00E+00	6.68E+C6	- 6		0.00E+00		0.000+00	0.00E+00		
			PC8 1254	0.00E+00		0.00E+00	0.00E+00			0.00€+00		8.00E+00	0.000+00		
			PCBs, total	0.00E+00		0.00E+00	0.00E+00		-	0.00E+00		0.00E+00	0.00€+00	-	
			000, 0.0%	1.87E-08	-	4.63E-00	2.53E-08	-		4.55E-04		1.13E-04	5.67E-04		
			DDE_0.0'-	0.00E+00		0.00E+00	0.00E+00	- 5		0.00E+00		0.00E+00	0.00E+00	-	
	Exposure Medium Tota		Participation of the Control of the				6.4F-06	Yes		(SPSS) 73(S)	-	2.002-00	4.06+00	Yes	

TABLE C-36 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Currect Receptor Population: Recreational Receptor Age: Child

ledium	Exposure Medium	Exposure Point	Chambos of Potential Contones			Camnog	roic Risk		Non-Carcinogenia Hazard Quatern						
				Ingestion	Inhabition	Decemb	Expeture Position Total	greater than 16-6	Primary Target Organiu)	ingestion	Printation	Dermal	Exposure Routes Total	greater that	
	Sinface Water	Grove Pond Surface Water	Acceptant	0.00E+00		0.00E+00	0.000+00	-		08.00		0.00E+00	0.00E+00		
			Animony	0.00E+00		0.00E+00	8.000(+00)	1		0E+00.		0.00E+00	0.00E+99		
			Asanc	2.35€-05		7.735-07	2.43E-05	Yes		85-91		2.00E-02	6.36E-01		
			Bactom	0.00E+00		0.00E+00	0.00E+00	-		8E-02		3.91E-02	1.23E-01		
			Cadhiom (in sold media)	0.00E+00		0.00E+00	0.00E+00			CE+00		0.00E+00	0.00E+00		
			Cedmum (in water)	0.00E+00		0.00E+00	0.00E+00		19	0E+00		0.00E+00	0.00E+00		
			Chromium, total	0.00€+00		0.00E+00	0.00E+00			6E-02		Z.97E-01	3.56E-01		
			Сорриг	0.00E+00		0.000-00	0.00€+00			@E+06		0.00E+00	0.000=00		
			ion	0.00E+00		6.00E+00	0.000=+00			6E-01		1.81E-02	5.69E-01		
			Lead	0,600-00		0.00E+00	0.00€+00	2		0E+00		0.00E+00	0.00E+00		
			Manganese (in esciment or water)	0.00€+00		0.000=00	0.000+00			1E+01		9.140+00	Z03E+01	Yes	
			Marganese (in food)	0.00€+00		0.00€+00	0.000:+000		100	00+30		0.0001+00	0.000+00	1	
- 1			Mercury	0.000+00		0.00E+00	0.6601+00			001100		0.00E+00	0.000+00	-	
			Belenium	0.005+00		0.0001400	0.80E+00			dE+00	-	0.00E+00	0.000:+00		
			Thatken	0.002+00		0.00E+00	0.005+00			0E=00		0.00E+00	8.000+00	- 5	
			Vanadium	0.00E+00		0.00E+30	0.90E+00			0E+00		0.00E+00	0.00E+00	-	
			Zino	0.00E+00		0.00E+00	0.00E+00			65-02		1,136-03	5.83E-02	-	
			Crioreform	0.005+00		0.00E+00	8.00E+90			0E+00		0.00E+00	0.00E+00	-	
			Historioryclohestere, aigha-	0.00E+00		0.00E+00	0.00E+00		1 - 9	€E+00	100	0.00E+00	0.00E+00		
			Methylene chloride	0.00E+00		0.00E+00	0.00E+00			CE+00		0.00E+00	0.00E+00	- 7	
			Benz(a)arithmiciene	0.00E+00		9.60E+00	0.00E+00			0E+00		0.00E+00	0,00E+00	-	
			Benro(a)pyrene	0.00E+00		0.00€+00	0.00E+00			0E+00		0.00E+00	0.00€+00		
			Hento(b)/funcionthensis	0.006+00		0.00E+00	0.00E+00			0E+00		0,00€+00	0.000+00	-	
			Benro(k)Sugranitere	0.000+00		0.00E+00	0.00E+00			0E+00		0.00E+00	0.00E+00		
			Chrysnon	0.000+00		0.00E+00	0.000=+00			00+00		0.00E+00	0.000.000		
7			Disonz(ah)anthracene	0.005+00		0.00E+00	6,00E+00		7	08+00		0.000100	0.00E+00		
			Indeno(1,2,3-ort)pyrene	0.000:400		0.00E+00	0.00(100.0		15	00100		0.00E+00	0.002+00		
			Nechtinians	0.00E+00		0.000+00	0.0001100		- 1	6E+00		0.00E+00	0.00€+00		
			Bio(2-ethy/hexyO phrhatate	1.00E-07		4.64E-07	5.64E-67			4E-03		1.93E-02	2.356-62		
			PCB 1264	0.00E+00		0.005+00	0.00E+00	12		0E+00		6-00E+00	0.00E+00	-	
			PCBs, lotel	0.00€+00		0.00E+00	0.00E+00			0E+00		0.00E+00	0.00E+00	*	
_			DOD, p.p'-	0.000=00		0.005+00	0.00E+00		0	DE+00		0.00E+00	0.00E+00	*	
			DOE, p.p.	0.00E+00		0.00E+00	0.00E+00		700	0E+00		0.00E+00	C.00E+00	353	
	Exposure Medium Total		Programme and the second	1000			2.5E-05	Yes		90.100	_	- COLCO	2:2E+01	Yes	

TABLE C-30 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeltame: Current

Receptor Population: Recreational Receptor Age; Child

Medium	Exposure Medium	Exposure Point	Chemical of Potentol Conzers			Cauding	erilo Risk	_	Non-Cersivogenic Hezard Quotient						
				Ingestion	Inhelation	Demai	Exposure Routes Total	greater than 15-G	Primary Target Organics	Inquation	Inhelation	Dermai	Exposure Footes Total	Greater Hose	
Tience	Fish Tissus	Fish Tissue- Grove Pond	Aluminum	0.000+00			0.000:+00	-	-	0E+00			0.00E+00	121	
			Antmony	0.00E+00			0.00E+00	-		0E+06			0.0000+00		
			Arsenio	0.00E+00			0.00E+00			0E+00			0.000+00		
			Bartum	0.00E+00			0.00E+00	-		0E+00			0,00E+00	52	
			Cadmium (in solid media)	0.00E+00			0.00E+00			5E-02		1	4.68E-02		
			Cadmium (in writer)	0,00E+00			0.00E+00			0E+00			0.00€+00	100	
			Chromium, total	0.00E+00			0.00E+00			8E-02			5 90E-02		
			Copper	0.00E+00			0.00E+00			0E+00		-	0.00E+00	1	
			(sca	0.00E+00			0.00E+00	-		0E+00			0.00E+00		
			Load	0.00E+00			0.00E+00			0E+00			0.00E+00		
			Manganase (in sediment or water)	0.00E+00			0.000=+00			0E+00			0.00000		
			Manganane (in food)	0.000+00			0.00E+00			OE+00			0.0007+00	13	
			Mercury	0.000(+00			0.000+00			15100			1.05E+00	Yes	
			Seienium	0.00E=08			0.000+00	-		OE+80			0.00E+00	-	
			Thatiom	0.00E+00			0,000,00	-		06100			0.000 +00		
			Veradian	0.00E+00			0,000+90			6E-02			4.55E-02		
			Zino .	6,08E+00			0,00€+00			0E+00			0.00E+00		
_			Chloroform	0.80E+00			0.00€+00			0E+00		100	0.00E+00		
			Hexachiorocyclohexane, alpha-	0.00E+00			0.000+00			0E+00			0.00€+00		
			Metrylene chloride	0.00E+00			0.00€+00	3		0E+00			0.00E+00	- 3	
			Benz(a)astivacene	0.00€+00			0.00€+00			0E+00			0.00E+00		
			Benzo(a)pyrene	0.005+00	10		0.00€+00			0E+00			0.00E+00	100	
			Benzo(b)Buorandheee	0.00E+00	1		0.000+00			0E+00			9.00E+00		
			Bergo(k)fluoranthene	0.005+00			0.005+00			0E+00			0.00E+00.		
			Chrysene	0.00€+00			0.000+00			0E+00			0.000+00		
1			Ditenz(ah)anthrecene	0.00E+00			0.000+00			DE+00			0.000+00		
			Indana(1,2,3-od)pymnu	0.005+00			0.00E+00			00+00			0.000+00		
			Naphthaisma	0.005+00			0.000+00			00+00			0.606+00		
			Eis(2-etsylhexyl) phthalate	0.000=+00			0.005+00			∂E+99			0.00E+00		
		- 900	PCB 1254	0.005+00			0.00E+00			0E+00			0.000+00	7	
			POBs, total	9.38E-05			9.38E-06	Yes		3E+00			2.74E+00	Yat	
			DDD, p.p'-	2.66E-07			2,66E-07			6E-03			6.465-00		
1			CDE, p.p°-	7.87E-07			7,87E-07			1E-02			1.35E-02	- 3	
	Expanera Medium Tetal						1.0E-05	Yes					4.0E+00	Yes	

TABLE C-30 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Recreational Receptor Age: Child

Medium	Exposure	Exposure	Chemical			Cardeog	enic Risk				Non-Carolina	noic Hezard Q.	antient	
	Madiper	Point	of Potential Concern	Ingestices	Irriatation	Dennud	Exposure Routes Total	greater then 1E-6	Primary Tanget Organ(s)	ingestion.	Protetion	Donal	Exposure Flootes Total	greater then 1

Target organ across all exposure pathways: Central nervous system =
Target organ ocross all exposure pathways: Blood =
Target organ ocross all exposure pathways: Sion =
Target organ ocross all exposure pathways: Cardistriancular system =
Target organ ocross all exposure pathways: Gadointestinal System =
Target organ ocross all exposure pathways: Gadointestinal System =
Target organ ocross all exposure pathways: Immuse system =
Target organ ocross all exposure pathways: Liver =
Target organ ocross all exposure pathways: Liver =
Target organ ocross all exposure pathways: Liver =

2.04E+01

1.29E-01

220E+00

1.23E-01

2.01E-01

1.38E+00

4.54E+00

0.0002401

1.456-01

TABLE C-31

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS

RAGS TABLE 10 RME

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timetrame: Current Receptor Population: Subsistence Receptor Age: Adult

Modlum	Exposine	Exposure	Chemical			Carcinegen	o Risk				Non-Careinog	enic Hazard Quo	tient.	
	Modium	Point	of Patential Concerns	Ingestion	Intratation	Durnal	Exposure Houtes Total	greater than 16-9	Primary Yarget Organia)	Ingestion	Inhalation	Dormal	Exposure Routes Total	greater then
in .	From fillet	Grove Pond	Ahamanum	0.00E+00			0.00E+00	-		0.00E+00			0.00E+00	
		111111111111111111111111111111111111111	Antimony	0.00E+00			0.00E+00			0.00E+00			0.00E+00	
1			Arsenic	0.00E+00			0.00E+00			0.00E+00			0.00E+00	
			Barkum	0.00E+00			0,00E+00			0.00E+00			0.00E+80	
			Cadmium (in solid media)	0.00E+00			0.00E+00			1.79E-01			1.79E-01	
			Cadmium (in water)	0.00E+00			0.00E+00			0.00E+00			0.00E+00	
			Chromium, total	0.00E+00			0.00E+00			2.25E-01			2.25E-01	
			Copper	0.00E+00			0.00E+00			0.00E+00			0.00E+00	-
			inon	0.00E+00			0.00E+00			0.00E+00			0.00E+00	-
			Lead	0.00E+00			0.00E+00			0.00E+00			0.00E+00	-
_			Manganese (in sediment or water	0.00E+00			0.00E+00	- 7		0.00E+00			0.00E+00	-
			Manganese (in food)	0.00€+00			0.00E+00			0.00E+00			0.00E+00	==
			Mercury	0.00E+00			0.00E+00	7.		4.02E+00			4.02E+00	Yes
1			Betenium	0.00E+00	4		0.00E+00			0.00E+00			0.00E+00	Yes.
			Thallari	0.00E+00			0.00E+00	-20		0.00E+00		0.00	0.00E+00	00.7
			Vacadum	0.00E+00			0.00€+00	-		1.73E-01				-
				0.00E+00			0.00E+00						1.736-01	-
			Zino Chioroform	0.00E+00	0 1		0.00E+00	*		0.00E+00		1	0.00E+00	100
										0.00E+00			0.00E+00	-
			Haxachioracyclohaxana, alpha-	0.00E+00			0.00E+00	- 14		0.00E+00			0.00E+00	
			Methylene choride	0.00E+00			0.00E+00	-		0.00E+00			0.00E+00	
			Benz(n)enthracene	0.000+00			0.00E+00	-		0.00E+00		100	0.00E+00	-
		10	Benzo(a)pyrene	0.00€+60			0.00E+00	-		0.00E+00		7	0.00E+00	-
			Benzo(b)duoranthene	0.00E+00	100		0.00E+00	-		0.00E+00			0.00E+00	-
			Benzo(k)fluoranthene	0.00E+00			0.00E+00	-		0.00E+00			0.00E+00	
			Chrysene	0.00E+C0			0.00E+00	- 1		0.00E+00		0.00	0.00E+00	
			Dibenz(ah)anthracene	0.00E+00			0.00E+00	_		0.00E+00		11 11	0.00E+00	
			Indeno(1,2,3-cd)pyrene	0.00E+00			0.00E+00	12		0.00E+00			0.00E+00	
- 1			Naphthalene	0.00E+00			0.00E+00			0.00E+00			0.00E+00	100
			Bis(2-othyltiexyl) phthalate	0.00E+00			0.00E+00			0.00€+00			0.00E+00	1
			PCB 1254	0.00E+00			0.00E+00			0.00€+00	U.		0.00E+00	
			PCBs, total	1.79E-04			1.79E-04	Yes		1.04E+01			1.84E+01	Yes
			DDD, p.p'-	5,06E-06			5,06E-96	Yes		2.46E-02			2.466-02	
			DOE, pur-	1.506-05			1.50E-05	Yes		5.14E-02			5.14E-02	-
	Exposure Medium T		1				2.0E-04	Yes		-			1.5E+01	Yes

Target organ across all exposure pathways. Control nervous system = Terget organ across all exposure pathways: Blood = Target organ across all exposure polloways: Skin = Target organ across all exposure pathways: Cardiovascular system =
Target organ across all exposure pathways: Kohey =
Target organ across all exposure pathways: Kohey =
Target organ across all exposure pathways: Gatraintestinal System =
Target organ across all exposure pathways: Immane system = Target organ across at exposure pathways. Liver = Target organ across at exposure pathways. Whole bodylgrowth =

0.00E+00

0.00E+00

0.00E+00

0.00E+00 1.79E-01 2,25E-01 1,44E+01

7.60E-02 1.73E-01

TABLE C-32 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Subsistence Receptor Age: Child

Medium	Exposure	Exposure	Chemical			Carcinogen	ic Risk				Non-Careinog	penic Hazard Que	tient	
	Medkam	Point	of Polental Concern	Ingestion	Inhabition	Dermal	Exposure Routes Total	greater than 16-6	Pomary Target Organ(s)	Ingestion	Inhalation	Demai	Exposure Routes Total	greater than
571	Fish filet	Grove Flond	Aumirum	0.00E+00			0.00E+00			0.005+00			0.00E+00	
		and and and	Antimony	0.00E+00			0.005+00			0.00E+00			0.00E+00	
			Arsenio	0.00E+00			0.00E+00			0.00E+00			0.00E+00	- 3
			Barium	0.00E+00			0.00E+00			0.00E+00			0.00E+00	
			Cadmium (in solid media)	0.00E+00			0.00E+00	-		1.79E-01			6.24E-02	-
			Cadmium (in water)	0.005+00			0.00E+00			0.00E+00			0.00E+00	
			Chromum, total	0.00E+90			0.00E+00	-		2.25E-01		100	7.86E-02	-
			Copper	0.00E+00			0.00E+00			0.00E+00			0.000=+00	-
		1	Iron	0.00E+00			0.0000+000			0.00E+00			0.00E+00	- 14
			Lead	0.00E+00			0.00E+00	-		0.00E+00			0.00E+00	-
			Manganese (in sedment or water	0.00E+00			0.00E+00			0.00E+00			0.00E+00	: **
			Manganese (in Soud)	0.00E+00			0.00E+00	-		0.00E+00			0.00E+00	
			Mercury	0.00E+00			0.00E+00			4.02E+00			1.406+00	Ves
			Selentare	0.00E+00			0.00E+00			0.00E+00				Yes
			Thatligg	0.00E+80			0.00E+00	4.		0.00E+00			0.00E+00	-
			Vanadien	0.00E+00			0.00E+00	197		1.73E-01			0.00E+00	
			Zinc	0.00E+00			0.00E+00	100					6.06E-02	-
			Chloroform	0.00E+00			0.00E+00			0,00E+00			0.00E+00	-
			The state of the s					-		0.00E+00			0.00E+00	92
			Hexachlorocyclohoxane, alpha-	0.00E+00			0.00E+00			0.00E+00			0.00E+00	
			Methylene shloride	0.00E+00			0.00€+00	-		0.00E+00			D.00E+00	-
			Benz(a)anthracene	0.00€+00			0.00E+00	-		0.00E+00			0.00E+00	-
			Benzo(a)pyrene	0.00E+00			0.00E+00			0.00E+00			0.00E+00	
			Benzo(b)flucranthene	0.00E+00			0.00E+00			0.00E+00			0.00E+00	
-			Benzo(k)fluoranihene	0.00E+00			0.00E+00			0.00E+00			0.00E+00	-
		1	Chrysane	0.00E+00			0.00E+00	-		0.00E+00			0.00E+00	
			Dibenz(ah)anthracene	0.00E+00			0.00E+00	-		0.00E+00			0.00E+00	
			Indens(1,2,3-cd)pyrenii	0.00E+00			0.00E+00			0.00E+00			0.00E+00	
			Naphthalese	0.00E+00			0.00E+00			0.00E+00			6.00E+00	
			Bis(2-othythexyt) phthalate	0.00E+00			0.00E+00			0.00E+00			0.00E+00	-
			PCB 1254	0.00E+00			0.00E+00			0.00E+00			0.000+00	
			PCEs, total	8.25E-05			6.256-05	Yes		1.04E+01			3.64E+00	Yes
			DDD, p.p'-	1.77E-05			1.77E-06	Yes	100	2.46E-02			8.606-03	
			DDE, p.a'-	5.24E-05			5.24E-06	Yes	1	5.14E-02			1.80E-02	-
		_1					6.9E-05	200		THE RESERVE AND ADDRESS OF			100000	(Sec)

Target organ across all exposure pathways: Central nervous system = Target organ across all exposure pathways: Blood = Target organ across at exposure pathways: Cardovascular system = Target organ across at exposure pathways; Cardovascular system = Target organ across at exposure pathways; Kidney = Target organ across at exposure pathways; Gatrointestinal System = Target organ across at exposure pathways; Limmune aystem = Target organ across at exposure pathways. Liver = Target organ across at exposure pathways. Whole bodylgrowth =

0.00E+00
0.00E+00
0.00E+00
0.00E+00
6.24E-62
7.86E-02
5.05E+00
2,66E-02
6.06E-02

TABLE C-33

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

RAGS TABLE 10 RME

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Receptorisi Receptor Age: Adult

Medium	Exposure	Exposure	Chemical			Carcinoge	role Risk				Non-Carcino	perio Hazard Gr.	tretto	
	Medam	Point	of Potential Concern	Ingestice to	chalation	Demai	Exposure Rodes Total	grouter from 1E-6	Primary Target Organ(s)	Irgantion	Irhabilion	Demid	Exposure Routes Total	greater Fran
iment.	Bediment	Near-shore Plow Stop Fond	Alumentum	0.60E+00		0.00€+00	0.00E+00			2.47E-03		0.00E+00	2.47E-03	
			Artimony	0.00E+00		0.00E+60	0.00E+C0	-		1.06E-02		0.00E+00	1.09E-02	
			Atsonic	1.53E-04		2.06E-04	3.59E-04	Yes		7.90E-01		1.07E+00	1.86E+00	Yes
			Barum	0.03E+00		0.00E+00	0.00E+00	-		0.00E+00		0.00E+00	0.00E+00	
			Cadmium (in solid media)	0.00E+00		0.00E+00	0.00E+00		1	3.91E-03		7.04E-03	1.10E-02	
			Cadmium (in water)	0.00E+00		0.00E+00	0.00E+00			0.00E+00		0.00E+00	0.00E+00	
			Chromium, total	0,00E+00		0.80E+00	0.00E+00	100		1.04E+00		0.00E+00	1.04E+00	Yes
			Copper	0,00E+00		0.00E+00	0.00=+00			2.05E-03		0.00E+00	2.05E-03	
			tron	0.00E+00		0.00E+00	8,80E+06			6.21E-02		0.00E+00	8.21E-02	
			Leaf	0.00E+00		0.00E+00	0.00E+00			0.00E+00		0.00E+00	0.00E+00	2
			Manganese (in sediment or water)	0.00E+00		0.00E+00	9.00E+00			3.226-62		0.000 +00	3.225-02	
			Manganese (in food)	0.000+00		0.005+00	0.0001+00			0.00E+00		0.00E+00	0.00E+00	
			Maccury	0.0000+00		0.000:+00	0.00E+00			2.065-62		0.000+00	2.9005-02	
- 1			Selecium	0.00€+00		0.0000+00	0.00(100.0			0.0001+00		0.000+60	8.00E+00	
			Theliam	0.00E+00		0.00E+00	0.00E+00			8.195-02		0.00€+00	5.196-02	
			Variation	0.00E+00		0,00E+00	8:00E+00	-		0.11E-03		0.00E+00	9.11E-09	
			Zinc	0.00E+00		0.00E+00	0.00000			0.00E+00		0.00E+00	0.00F+00	9
			Chioroform	0.00E+00		0.00E+00	0,00E+00			0.00E+00		6.00€+00	8.00E+60	
			Hazamkomcyckhesane, alpha-	0.00E+00		0.006+00	0.00E+00			0.00E+00		6.00E+00	0.00E+00	
			Mothylene chloride	0.00E+00		0.00E+00	0.00E+00			0.00E+00		0.00E+00	0.00E+00	
			Benz(a)anthracene	2.92E-07		0.00E+00	2.92E-07		1 2	0.00E+00		0.00E+00	0.006+00	
			Denzo(alpyrene	3.746-06		2.19E-05	2.56E-05	Yes		0.00E+00		0.00E+00	0.000+90	
			Benzo/ojfurninihene	3.12E-07		1.83E-00	2.146-09	Yes		0.0001+00		0.00E+00	0.00E+00	
			BenzoOxfluoranthene	1.15E-08		0.740-00	7.890-09			0.00E+00		B DCE+00	0.000+00	
			Chrysene	3,436-09		2.00E-08	2.350-00		- 5	0.00E+00		0.000(+000	0.008+00	
			(Checc(sh)anthrapeee	7.680-07		4.496-06	5.26C-00	Yes		0.0001+00		3.00E+00	0.00€+00	
			Indeno(1,2,3-cd)pyrene	2.936-07		1.716-00	2.016-00	Yes		0.000+000		0.000 +00	0.000(+00	
			Naghthalana	0.00E+00		0.00E+00	0.00E+00			0 c0E+00		0.00E+00	0.00E+00	
			His(2-ethy besyl) phillianata	0.000=00		0.00E+00	0.000+00			0.00E+00		0.00E+00	0.896+00	
			PCB 1254	0.005+00		0.00E+00	0.00E+00			0.00E+00		0.00E+00	0.00E+00	
			PCBs, total	0.00E+00		0.00E+00	0.00E+00			0.00E+C0		0.00E+00	C.00E+C0	
			DDD, p,p'-	0.00E+00		0.00E+00	0.00E+00	-		0.00E+00		0.00E+00	0.00E+00	
- 0			DDE, p.g-	0.00E+00		0.00E+00	0.00E+00	-		0.00E+00		0.00E+00	0.00E+00	
	Exposure Medium Total		Annual Control			-	3.9F-04	Yes		The section		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.1E+00	Yes

TABLE C-33 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS RAGS TABLE 10 BME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scansife Timelrame: Current Receptor Papulation: Recreational Receptor Adm. Adult

Modum	Exponum	Exposure	Chemical			Certinoge	nic Risk				Non-Cardino	onic Hazard Qu	otient	
	Meduni	Pulit	of Potential Concern	Ingustion	trésisten	Demai	Exposury Rostes Total	greater than 16-6	Primary Target Organias	Ingretion	Inhalation	Demai	Exposure Rocton Total	greater trus
	Eurlage Water	Plow Stop Pond Burface Water	Aluminum	0.00E+00		0.000+000	0.00E+00			0E+00		0.00E+00	0.0000+000	-
- 1			Aptinony	C.80E+00		0.00E+00	0.005+00	-		00+00		0.00€+00	0.00E+00	177
			Arsevic	9,93E-06		4.45E-66	1.44E-05	Yes		6E-02		4.94E-02	1,015-01	
			9arlum	0.00E+00		0.00€+00	0.00E+00	-		00+00		0.00E+00	0.00E+00	
			Cadmium (in solid media)	0,00€+00		9.00E+00	0.00E+00			0E+00		0.00E+00	0.00E+00	
			Cadmium (in water)	0.00E+00		0.00E+00	0.00€+00			0E+00		0.00E+00	9.00E+00	
			Chromium, total	0,00E+00		0.00E+00	0.00E+00			0E+00		0.00E+00	0.00E+00	- 3
			Copper	0.005+00		9.00E+00	0.000+00			0E+00		0.00E+00	0.00E+00	
			teon	0.00E+00		0.605+00	0.00E+00			2E-03		1.982-03	3.99E-01	
			Load	0.00E+00		0.00E+00	0.00E+00		1	0E+00		0.00E+00	0,000=00	
			Manganose (is sodiment or water)	0.00E+00		0.00E+00	0.08E+00			60.64		1.61E-02	1.58E-02	1 3
			Mengarrese (in food)	0.000 +60		0.000+00	0.006+00	-		CE+00	. 6	0.000+00	0.0001400	
- 1			Morcury	0.000 +00		0.006+00	0.00E+00			0E+00		0.0001+00	0.000+00	
			Selenken	0.000+90		0.0001+00	0.000:+00			0E+00		0.00E+00	0.00E+00	
			Trialium	0.008+00		0.000 100	0.005+00		- N	0E+00		0.00E+00	0.00E+00	
			Varuelare	0.00E+00		0.00E+00	0.00E+00			0E+00		0.00E+00	0.00E+00	
1			Zino	0.006.400	- 1	0.00E+00	8.00E+00			0E+80		0.00E+00	0.00E+00	
			Chiorofoette	0.00E+00		0.00E+00	8.00E+00	_		1E-65		1.09E-04	1.235-04	
			Hexacriorocyclchexane, alpha-	1.45E-08		2.11E-07	2.25E-07			1E-05		3.34E-84	3,458-04	
			Methylene chicade	2.64E-09		4.60E-09	7.45E-09		1	1E-05		5.34E-05	5.71E-05	
- 1		The second second	Bengajanthracene	0.00E+00		0.00€+00	0.00E+00			0E+00		0.00E+00	0.00E+00	-
			Benzo(nipyrens	0.00€+00		0.005+00	0.000+00			0E+00		0.00E+00	0.00F+00	-
			Elenzo(b)fluoranthene	0.00000		0.0003400	0.00E+00			0E+00		0.00E+00	0.006+00	
			thenco(ic/Nuorantheras	6.00E+00		0.006+00	0.00E+00			9E+60		0.00E+60	0.00E+00	
			Chrysonn	0.00E+00		0.00E+00	0.000:+00			00+00		0.00E+00	0.0001+00	
			Dibenzjanjanihracene	8,00E+00		0.000:400	0.00E+00		V 1	06+00		0.0001+00	0.000 +00	13
			testerect.2.3 cdayrene	8.000/00		0.005+00	0.00E+cc			OE+00		0.00E+90	0.00E+00	
			Naphtwiese	9.006+00		0.005+00	0.00E+00			CE+00		0.00E+00	9.00E+00	1 33
			Bls(2-atty/haxyl) prohabide	0.00E+00		0.00€+90	0.00E+00			0E+00		0.00E+00	0.00E+00	
			PC8 1254	0.00E+00		0.00E+00	0.00€+00			0E+00		0.00E+00	0.00E+00	-
-			PCBs fotal	0.00E+00		0.00E+00	0.00E+00			0E+00		0.00E+00	0.00E+00	
100			DDD, 0.0'-	0.005+00		0.00E+00	0.005+00			0E+00		0.00E+00	0.000=00	
			DDE 9,6'-	0.00E+00		0.006+00	0.00€+00			0E+00		0.00E+00	0.00E+00	-
	Exposure Medium Total						1.6E-05	Yes					1.26-01	-

TABLE C-33 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPC+ RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timefrane: Current Receptor Population: Recreational Receptor Age: Adult

Medium	Exposure	Ехрович	Chemical			Cardnop	onk: Ruk				Non-Certinop	genic Hazand Ox	rations	
	Nedum	Post	of Polential Conteen	Ingeston	inhatation	Dermal	Exposure Posites Total	greater than 15-6	Primary Target Organ(s)	Ingeston	Intralidion	Dormal	Exposure Routes Total	greater than
h Tissue	Fish Tayun	Fish Tissue: Plow Shop Pond	Alummum	0.0000+000			0.00E+00	-		0E+00			0.006+00	
			Antimony	0.008+90			0.00E+00	-	1	0E+00			0.00E+00	
			Arsonic	1.86E-05	7	- 1	1.88E-05	Yes		16-01			9.67E-02	
			Bartum	0.00E+00			0.00E+00			0E+00			0.00E+00	
			Cadmium (in sold media)	0.00E+00			0.00E+00			(E+00	0.0		0.00E+00	
			Cadmium (in water)	0.00E+00			0.00E+00	-		QE+00			0.00€+00	
			Chronium, total	0.00E+00			0.00E+00			0E+00	11		0.00E+00	
			Copper	0.00E+00			0.00€+00	-		9E+00			0.00E+00	
			lion	0.00E+00			0.006+00			0E+00			0.00E+00	
			Lead	0.0001+00			0.000100			0E+00			0.00E+00	
- 1			Mangarrese (in sectiment or water)	0.00E+00			0.000(+00)	-	(05+00			0.000+00	
-			Manganese (in food)	0.00E+00			0.0081+00	1 0		00+00			0.0001+00	
			Mercury	0.0001+00			0.065*00	-		50+00			3.14E+00	Yes
			Selenium	0.00E+00			0.002+00			0C+00			8.80E+00	
			Thation	0.00E+00	- 1		0.00E+00			0E+00			0.00E+00	
			Variadum	0.00E+00			0.00E+00	-		2E-01		Page 19	1.64E-01	
			Zinc	0.80E+00			0.00E+00		- 1	0E+00			0.00E+00	
			Chloroform	0.00E+00			0.00€+90			0E+00	1	1	0.00E+00	
			Hasachkrooydahassne, alpha-	0.00€+00			0.00E+00		- 1	0E+00			0.00E+00	- 5
			Methylene chloride	0.00E+00			0.00E+00			0E+00			0.00E+00	
			(Senzia)anthracene	0.00E+00			0.00E+00			0E+00			8,936+93	
			Benzo(a)pyrane	8.00E+00			0.00E+00			CE+C0			0.005+00	
			Benzoth/fluckenthene	0.000+00			0.000+000			0E+00			0.0085+00	
			Benzolkifuorantiene	0.00E+00			0.000-00			0E+00			0.000=+00	
			Chrysman	0.00E+00		1	0.000+00			0E+00			0.000 +00	
			Otheriz(ah)anthracene	0.005+00			0.000+00			0E+00			0.000+00	
			Indene(1,2,3-od)pyrene	0.000=+00			0.006+00			0E+00			0.000+00	
			Propertiene	6 DDE+00			0.00E+00			00+30			0.000+00	
			Bis(2-othytrexy) phthalate	0.00E+00			9.00E+00		1	06+00			0.00E+00	
			PCB 1254	0.00€+00			0.00E+00	- RG -	-	0E+00			0.00E+00	-
			PCBs. Inte	0.00E+00			0.00E+00			0E+00			0.00E+00	- 5
			DDD, p,p-	0.00E+00			0.00E+00			0E+00			0.00E+00	
			DDE p.d'-	9.93E-07			9.93E-07			3E-03			3.41E-03	-
	Exposura Madium Total						2.0E-c6	Yes					3,4E+00	Yes

TABLE C-33

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS

RAGS TABLE 10 RME

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Recressional Receptor Ags. Adult

Medium	Exposure Medium	Exposure	Chemical			Carcinog	wite Risk				Non-Carono	genic Hazerd Qu	pot ani	
12	Medium	Post	of Potential Connen	Ingestion	bratation	Dermal	Exposure Roctes Total	greater than 1E-6	Primary Target Organi(s)	Populari	Inhelation	Dermai	Exposure Routes Total	greater true
				Total Risk Acro	ss all Media	- 1	4.3E-04]		Total Hazards /	Across all Mocia		6.7E+00	
									gan across all expo			system =	5.04E-02	
								Targeton	gan acress all expo	oure pathways:	Blood =	System =	5.04E-02 1.09E-02	
								Target or Target or	gan acress all expo gan across all expo	oure pathways: sure pathways:	Blood = Skn =			
								Target or Target or Target or	gan acress all expo gan across all expo gan across all expo	oure pathways: oure pathways: ours pathways:	Blood = Skin = Cardinvascurur		1.096-02	
								Target or Target or Target or	gan acress all expo gan across all expo	oure pathways: oure pathways: ours pathways:	Blood = Skin = Cardinvascurur		1.09E-02 2.09E+00	
								Target or Target or Target or Target or Target or	gan across all expo gan across all expo gan across all expo gan across all expo gan across all expo	oure pathways sure pathways sure pathways sure pathways sure pathways	Blood = Skin = Cardinvascurur Kidney = Calircinisessus S	system =	1.09E-02 2.09E+00 0.00E+00	
								Target or Target or Target or Target or Target or	gan across all expo gan across all expo gan across all expo gan across all expo	oure pathways sure pathways sure pathways sure pathways sure pathways	Blood = Skin = Cardinvascurur Kidney = Calircinisessus S	system =	1.00E-02 2.00E+00 0.00E+00 1.10E-02 1.13E+00	
								Target or Target or Target or Target or Target or Target or	gan across all expo gan across all expo gan across all expo gan across all expo gan across all expo	oure pathways: oure pathways: oure pathways: oure pathways: oure pathways:	Blood = Skin = Cardin/stacular Kidney = Calrelnterious S Immune system	system =	1.09E-02 2.09E+00 0.00E+00 1.00E-02	

TABLE C-34 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPC# RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scanario Timeframe: Current Receptor Population: Recreational Receptor Aga; Child

Modium	Exposure	Exposure	Chemical			Carcinog	enio Risk				Non-Cardino	genic Hazard Qu	potient.	
	Median	Point	of Posecial Concern	Ingestion	Inhetation	Deemat	Exposure Routes Total	greater fives 16-6	Primary Target Organi(s)	Ingestion	Inhalation	Dermal	Exposure Floures Total	greater than
diment	Sodiment	Near-share Plaw Shop Pond	Aluminum	0.00E+00		0.00E+00	0.00E+00			2.31E-02		0.00E+00	2.31E-02	
			Ardinony	0.00E+00		0.00E+00	0.00E+00			1.02E-01		0.00E+00	1.026-01	
			Arsenia	2.85E-04		7,07E-05	3 58E-04	You		7,49E+00		1,83E+00	9.23E+00	Yes
			Barken	0.00E+00		0.00E+00	0.00E+00	222	1 1	0.00E+00		0.00E+00	0.00E+00	-
			Cádmium (in solid media)	0.00E+00		0.00E+00	0.00E+00		2	3.65E-02		1,21E-02	4.85E-02	
			Cadmium (in water)	0.00E+00		0.00E+00	0.00E+00			0.00E+00		0.00E+00	0.00E+00	
			Chromion, total	0.00E+00		0.00E+00	0.00E+00			9.71E+00		0.00E+00	9.71E+00	Yes
			Copper	0.00E+00		0.00E+00	0.00E+00			1.92E-02		0.00E+00	1.926-02	
			Iron	0.00E+00		0.00E+00	0.00E+00			7.66E-01		0.00E+00	7.66E-01	1.00
			Lead	0.00E+00		0.00E+00	0.000+00			0.000+00		0.00E+00	0.00E+00	- 6
			Manganese (in sediment or water)	0.00E+00		0.00€+00	0.00E+00			0.006-01		0.00E+00	3.006-01	
			Manganese (in food)	0.000 +00		0.00E+00	0.000:00			0.00E+00		0.00E+00	0.005+00	
			Mercury	0.00E+00		0.00E+00	0.006+00			2,766-01		0.00E+00	2.78E-01	-
			Selection	0.00€+00		0.00E+00	0.00E+00			0.00E+00		0.00E+00	0.00E+00	-
			Thallom	0.00E+00		0.00E+00	0.006+00			4.85E-01		0.00E+00	4.856-01	
			Vanadion	0.00E+00		0.00E+00	0.00E+00			8.50E-02		0.00E+00	8.50E-02	
			Zinc	0.00E+00		0.00E+00	0.0000			0.00E+00		0.00E+00	0.00E+00	
			Chloreform	0.00E+00		0.00E+00	0.00E+00			0.00E+00		0.00E+00	0.00€+00	
			Hexachlorocyclohexane, elpha-	0.00E+00		0.00E+00	0.00E+00			0.00E+00		0.00E+00	0.00E+00	13
			Methylene chloride	0.00E+00		0.00E+00	0.006+00			0.00E+00		0.00E+00	0.00E+00	-
			Bentfatarthrations	5.45E-07		0.00E+00	5.45E-07			8.00E+00		0.00E+00	0.00E+00	
			Benzo(alpyrene	6.986-00		7,48E-06	1.45E-05	Yes		0.00E+00		8.00E+00	0.00E+00	-
			Bearn(a)fluorantasas	6.83E-07		0.25E-07	1.216-06	Yes		0.00E+00		0.000+00	0.00E+90	-
			Barza(KS)voranthune	2.15E-08		2,316-00	4.468-00			0.000=+00		0.00E-00	0.005+00	15
			Chrysane	6.39E-00		6.86E-00	1.306-08	-		0.00E+00		0.00E+00	0.00E+00	
			Dibnez abjacybracene	1.43E-00		1,54E-86	2.97E-06	Ves		0.00E+00		0.00E+00	0.005+00	-
			Indiano(1.2,3-od)pyrene	5.47E-07		5.89E-07	1,136-06	Yes		0.00E+00		0.00E+00	0.00E+00	
			Naohthalena	D,00E+00		0.00E+00	0.00E+00	100		0.00E+00		0.00E+00	0.00E+00	1
			Bis(2-ethythexyl) phthatate	0.00E+00		0.00E+00	0.00E+00			0.00E+00	-	0.00E+00	0.00E+00	- 4
			PCB 1254	0.00E+00		0.00E+00	0.00E+00	-		0.00E+00		0.00E+00	0.00E+00	-
			PCBs, total	0.00E+00		0.00E+00	0.00E+00			0.00E+00		0.006+00	11100000000	-
			000, 9,9-	0.00E+00		0.00E+00	0.00E+00		-	0.00E+00		0.00E+00 0.00E+00	0.00E+00	-
			DOE, p.p.	0.00E+00		0.00E+00	0.00E+00	-		0.00E+00		0.00E+00	0.00E+00 0.00E+00	-
	Exposure Medium T		loor the	3.000.00		4,000,100	3.6E-04	Yes		0.000.100		3,30E+00	2.1E+01	Yes

TABLE C-34 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Receptor Age: Child

Medium	Exposure	Exposure	Chamigal			Caronoge	nip Risk		-		Non-Carcino	period Hazard Qu	rotient	
	Medium	Paint	of Potential Concern	Ingestion	behalasion.	Donnal	Experture Rouses Total	greater than 1E-6	Primary Target Organ(s)	Inguston	Inhabition	Dormal	Exposure Routes Total	Greater Cyan
	Surface Water	Plew Shop Pend Surface Water	Auminum	0.00E+00		0.00E+00	0.06E+00			0E+00		0.00E+00	0.00E+00	
			Antimony	0.00E+00		0.00E+00	0.00E+00	_		0E+00		0.00E+00	0.00E+00	
			Arsenic	4.64E-05		1.525-06	4.79E-05	Yes		1E+00		3.94E-02	1.24E+00	Yes
			Barken	0.00E+00		0.0CE+00	0.00E+00	-		0E+00		0.00E+00	0.00E+00	
			Cadmium (in solid media)	0.00E+00		0.00E+00	0.00E+00			0E+00		0.00E+00	0.00E+00	
1			Cadmium (in water)	0.00E+00		0.80E+00	0.00E+00	-		0E+00		0.00E+00	0.00E+00	
			Chromium, total	0.00E+00		0.00E+00	0.00€+00			0E+00		0.00E+00	0.00E+00	
			Copper	0.00E+00		0.00E+00	0.000+00	-	-	0E+00		0.00E+00	0.00E+00	
			Iron	0.00E+00		0.00E+00	D.00E+00			50-02		1.668-00	4.91E-02	
10			Louid	8.80E+90		0.00E+00	0.006+00		1	06+00		0.00E+00	0.000+00	
			Manganese (in sediment or water)	0.008400		0.00E+00	0.006-00			1E-02		1.21E-02	2,686-02	
			Manganesa (in lood)	0.000+00		0.008+00	0.00E+00			0E+00		0.00E+00	0.000+00	
			Moreory	0.00E+00		0.00E+00	0.00E+00			CE+00		0.00E+00	0.00E+00	
- 0			Selenium	0.00E+00		0.80E+00	0.00E+00			CE+00		0.00E+00	0.00E+00	
			Thatiam	0.00E+00		0.00E+00	0.000+000		1	CE+00		0.00E+00	0.00E+00	
			Vanadium	0.00E+00		0,00E+00	0.00E+00			0E+00		0.00E+00	0.00E+00	
			Zinc	0.00E+00		0.00E+00	0.006+00			0E+00		0.00E+00	0.00E+G0	
			Chinectorm	0.00E+00		0.00E+00	8.98E+00			3E-04		8.72E-05	4.00E-04	-
			Hoxachioropydolexane, alpha-	E 76E-08		7.21E-08	1.40E-07			3E-04		2.67E-04	5.17E-04	-
			Methylene chlorida	1.235-08		1.645-09	1.40E-08		1 - 0	3E-04		4.26E-05	3.63E-04	
			Benz(a)anthracene	0.00E+00		0.00E+00	0.00E+00			0€+00		0.00E+00	0.00E+00	
			Banzo(a)pyrene	0.00€+00		0.00E+00	0.00E+00	-		06+00		0.00E+00	0.000+00	-
			Danzo(b)fluoraethone	0.00€+00		0.00E+00	0.000+00			06+00		0.00E=00	0.00E+60	
			Benzo(k)fuorantirece	0.00E+00		0.00E+00	0.000+00			0E+80		0.00€+00	0.000+00	
			Chryseon	0.00E+00		0.00E+00	0.000=00			0E+00	1	8.80E+00	0.00E+00	
			Dibusz(ah)anthraousa	0.006+00		0.00E+00	0.005+00			0E+00		0.00E+00	9.00E+00	- 1
			indeno(1,2,3-od)pyrene	0.00E+00		0.000+00	0.00E+00	8 -		0E+00		0.00E+00	0.005+00	-
			Naphthalene	0.00E+00		0.00E+00	0.00E+00	-		CE+00		0.00E+00	0.00E+00	-
			Bis(2-ethylhexyl) phthainte	0.00E+00		0.00E+00	0.00E+00			0E+00		0.00E+00	0.00E+00	-
			PCB 1254	0.00E+00		0.03E+00	0.000+00			0E+00		0.00E+00	0.00E+00	-
			PCBs, total	0.00E+00		0.00E+00	0.00E+00	-		BE+00		0.00E+00	0.00E+00	7.
			DCD, 9,9'-	0.00E+00		0.00E-00	0.00E+00	180		0E+00	0	0,00E+00	0.00E+00	-
			DDE, p.p.	0.000+00		0.00E+00	0.00E+00			0E+00		0.00E+00	0.00E+00	
	Exposure Medium To		Personal Per	3.000-00		2002.700	4.6E-05	Yes		OC*60		WARRESTON.	1.3E+00	Yes

TABLE C-34 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCE RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scanario Timeframe: Current Receptor Population: Recreational Receptor Age. Chird

Medium	Esposien	Exposure	Chemical		_	Carcinog	erko Fšek				Non-Carcinos	mnic Hazard O	xxxent.	
	Modken	Point	et Ponential Concern	Ingrestico	Inhatesion	Dermal	Exposum Routes Total	greater than 1E-8	Princery Target Organia)	Ingestion	Inhalation	Demial	Exponure Howes Total	greater than
h Tinsuo	Fish Tissue	Fish Tiesue-Plow Steep Pond	Aluminum	0.00E+00			0.00E+65			0E+00			0.00E+00	
		The second secon	Artimony	0.00E+00			0.00€+00		0	0E+00			0.00E+00	
			Arterio	8.51E-06	7 - I		6.51E-06	Yes		26-01			1.69E-01	
			Barium	0.00E+00			0.00E+00			CE+00			0.00E+00	
			Cadmium (in solid media)	0.00E+00			0.00E+00			0E+00			0.00E+00	1
			Codmium (in water)	0,00E+00			0.000+00			0E+00			0.00E+00	
			Chromium, sofal	0.00E+00			0.006+00			0E+00			0.00E+00	
			Соррег	0.00E+00			0.00E+00			0E+00			0.00E+00	-
			Iron	0.006+00			0.000+00			06+00			0.00E+00	
			Load	0.006+00			0.00E+00			00+00			0.00E+00	
			Manganese (in sediment or water)	0.000+00			0.00E+00			06+00			0.00E+00	
			Manganese (in food)	0.00E+00			0.00E+00	1		BE+00			0.000+00	
			Mercury	0.005+00			0.00E+00			5E+03			5.508+00	Y61
			Setenium	0.00E+00			0.00E+00	-		0E+00			0.00E+00	
			Thalliam	0.00E+00			0.00E+00	-		CE+00			0.00E+00	-
			Vanadium	0.00E+00			0.00E+00	-		3E-01			2.86E-01	
			Zinc	0.00E+00			0.00E+00			0E+00			0.00E+00	
			Chloroform	0.00E+00		-11	0.00E+00	-		0E+00			0.00E+00	
			Hexachlorocyclohexane, alpha-	0.00E+00			0.00E+00	-		0E+00			0.00E+00	-
			Methylene chicride	0.00E+00			0.00E+00	200		0E+00			0.00E+00	
			Berz/a)anthracene	0.00E+00			9.00E+00	-		0E+00			0.00E+00	
			Berzo(a)pyrene	0.00E+00			0.00E+00	-		ØE+00			0.00E+CC	
			Benze(b)fluoranthene	B.00E+60			0.000+00			00+00			0.0000+00	-
			Borzoji/Swaarthene	0.000+000			0.00E+00			882+00			0.00E+00	dist.
	·		Chrysene	0.00E+00			0.00E+00	-		0E+00			0.00E+00	185
			Dbenzjahlantracene	0.00E+88			0.00E+00		1	0E+00			0.00E+00	
			Indiano(1,2,3-adipyrene	0.00E+00			0.00E+00	-		0E+00			0.00E+00	
			Naphthalene	0.00E+00			0,00E+00	/		CE+00			0.00E+00	
			Bis (2-ethythexyl) phthalate.	0.00E+00			0.00E+00			0E+00			0.00E+00	
			PCB 1254	0.00E+00			0.006+00	-		0E+00			0.00E+00	
			PCBs, total	0.00E+00			0.00E+00	-		0E+00			0.00E+00	- 5
			DDO, p.p'-	0.00E+00			0,00E+00			0E+00			0.005+00	
			DDE, p.p'-	3.47E-07			3.47E-07			6E-03			5.95E-03	
	Exposure Medium T	otal		1			6.9E-06	Yea					8.0E+00	Ves

TABLE C-34

SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

RAGS TABLE 10 RME

FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timelrame: Current Receptor Population: Recreational Receptor Age: Child

Modum	Exposure Medium	Exposure Point	Of Potential			Carrinog	serie Hisk				Non-Carcinog	penis Hazard Q	outlent	
	on equation	rom	Concern	Ingretion	Inhalation	Dermat	Exposure Routes Total	greater than 16-6	Primary Target Organ(s)	Inquestion	Inhalation	Dormal	Exposure Routes Total	greater than
				Total Rink Acro	oss att Modia	-	4.3E-01			Total Hiszards /	Scross all Media		2.8E+01	
									gan across all expos			system =	3.23E-01	
								Target on	jan across all exper	ere pathways:	Blood =	system =		
								Target org	pan across all exper pan across all exper	sere pathways: sere pathways:	Blood = Skin =		3.23E-01	
								Farget org Farget org Target org	pan across all exper pan across all exper pan across all exper	sure pathways: sure pathways: sure pathways:	Blood = Skin = Cantiovascular :		3.23E-01 1.02E-01	
								Target org Target org Target org Target org	gan across all exper gan across all exper gan across all expos gan across all expos gan across all expos	sare pathways: sare pathways: sure pathways; sure pathways;	Blood = Skin = Cantiovascular s Kidney =	system =	3.23E-01 1.02E-01 9.23E+00	
								Target org Target org Target org Target org Target org	pan across all expension across af expension across af exponsion across all exponsions.	sare pathways; sare pathways; sure pathways; sure pathways; sure pathways;	Blood = Skin = Cardiovascular s Kidney = Catrointestinal S	system =	3.23E-01 1.02E-01 9.23E+00 0.00E+00	
								Target org Target org Target org Target org Target org	gan across all exper gan across all exper gan across all expos gan across all expos gan across all expos	sare pathways; sare pathways; sure pathways; sure pathways; sure pathways;	Blood = Skin = Cardiovascular s Kidney = Catrointestinal S	system =	3.23E-01 1.02E-01 9.23E+00 0.00E+00 4.80E-02	
								Target org Target org Target org Target org Target org Terget org	pan across all expension across af expension across af exponsion across all exponsions.	sare pathways: sare pathways: sure pathways; sure pathways: sure pathways	Blood = Skin = Contiovascular s Kidney = Catrointestinal 3 Income system	system =	3.23E-01 1.02E-01 9.23E+00 0.00E+00 4.60E-02 1.05E+01	

TABLE C-35 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timetrame: Current Receptor Population: Subsistence

Receptor Age: Adult

Madum	Espoinse	Exposure	Chemical	Carrinogenie Riak				Non-Carcinogenic Hazand Quotieni						
	Medium	Polic	of Potential Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	greater than 1E-6	Primary Target Organ(s)	Ingestion	Inhalation	Documal	Ехрокач	growler these
h	Fish Slet	Plow Shop Pend	Alaranum	0.00E+00			0,00E+00		Tonger congulation	0.00E+30			Routes Total	
			Antimony	0.00E+00			0.00E+00	-		0.90E+00			0,00E+00	100
			Arsonic	1.24E-04			1.24E-64	Yes					0.00E+00	
			Barham	0.00E+00			0.00E+00	101		6.44E-01			6.44E-01	12
			Cadmium (in solid media)	0.00E+00			0.00E+00			0.00E+00			0.00E+00	
			Cadmium (in water)	0.00E+00				T.		0.00E+00			0.00E+00	0.1
			Chromium, total	0.005+00			0.00E+00	-		0.00E+00			0.00E+00	
			Copper	0.00E+00			0.00E+00	44		0.00E+00			0.00E+00	
			Iron	0.00E+00			0.00E+00			0.00E+00			0.00E+00	100
			the state of the s				0.00E+00	1-		0.00E+00			0.00E+00	3
			Lasd	0.00E+00			0.00E+00	2	100	0.00E+00			0.00E-00	-
			Manganese (in sediment or water)	8.00E+00			0.00E+00			0.90E+00			0.00E+00	-
			Manganese (in food)	0.00E+00			0.00E+00			0.00E+00			0.002+00	*
			Mercury	0.00E+00			0.005+00			2.09E+01			2.09E+01	76.00
			Solorium	0.00€+00			0.005+00			0.00E+00			CPGD4-27457000	Yea
			Thallian	0.00E+00			0.006+00			0.006+89			0.00E+00 0.00E+00	-
			Vanadken	0.00E+00			0.00E+00			1.090+80				1136
11			Zee	0.00E+00			0.00E+00			0.00E+00			1,09E+00	Yes
- 1			Chéosafarm	0.0001+000			0.00E+00			0.000+00			0.00E+00	-
			Has achlaracycloherane, niphe-	0.000+00			0.00E+00	-		0.00E+00			0.00E+00	-
			Methylana chlorida	0.000+00			0.00E+00						0.00E+00	-
			Benz(alanthmiosne	0.00E+00			0.00E+00	-		0.0000		_	0.00E+00	
			Burac(a)gyrona	0.00E+00			0.00E+00	-		0.00€+00			0.00E+00	
			Borzetb/Nucranthene	0.00E+00			0.00€+00	-		0.00E+00			0.00E+00	
			Berzofk)fluoranthene	0.00E+00			0.00E+00	-		0.000+00			0.00E+00	
			Chrysene	0.00E+00			0.00E+00	-		0.00E+00			0.00E+00	
			Dibenz(ah)unthracene	0.005+00				-		0.00E+00			0.00E+00	
			Indono(1,2,3-ed)pyrana	0.00E+00			0.00E+00	-		0.00E+00			0.00E+00	-
			Nachtulene				0.00E+00	-		0.00E+00			0.00E+00	
			The state of the s	0,00E+00			0.00E+00	-		0.00E+00			0.00E+00	-
			Sis(2-ethythexyl) phthalate	0.00€+00			0.00E+00	-		0.00E+00			0.00E+00	-
			PC8 1254	0.00E+00			0.00E+00	_		0.00E+00			0.00€+00	-
			PC8s, total	0.00E+00			0.00E+00			0.000+00			0.00E+00	-
			000, p.p/-	0.00E+00			0.00E+00			0.00E+00				
			ODE, p.p'-	6.61E-00			6.61E-06	Yes		2.27E-02			0.00E+00	
	Exposure Medium To	rat					1.3E-04			E-A-F-MA			2.27E-02	- 146
							1.30:04	Yes					2.30+01	Yes

Target organ neross oil expense pathways:	Central narrange system =	-
Target organ across all exposum pathways.		-
Target organ across all exposure pathways:	Skin =	-
Target organ across nil exposure pathways:	Cardiovascular system =	-
Target organ across all exposure pathways:	Kidnov =	-
Target organ across all exposure pathways:		-
Target organ across all exposure pathways:		-
Target organ across all exposure pathways:	Liver =	-
Target organ ecross all exposure pathways:		

0.00E+00 0.00E+00 6.44E-01 0.00E+00 0.00E+00

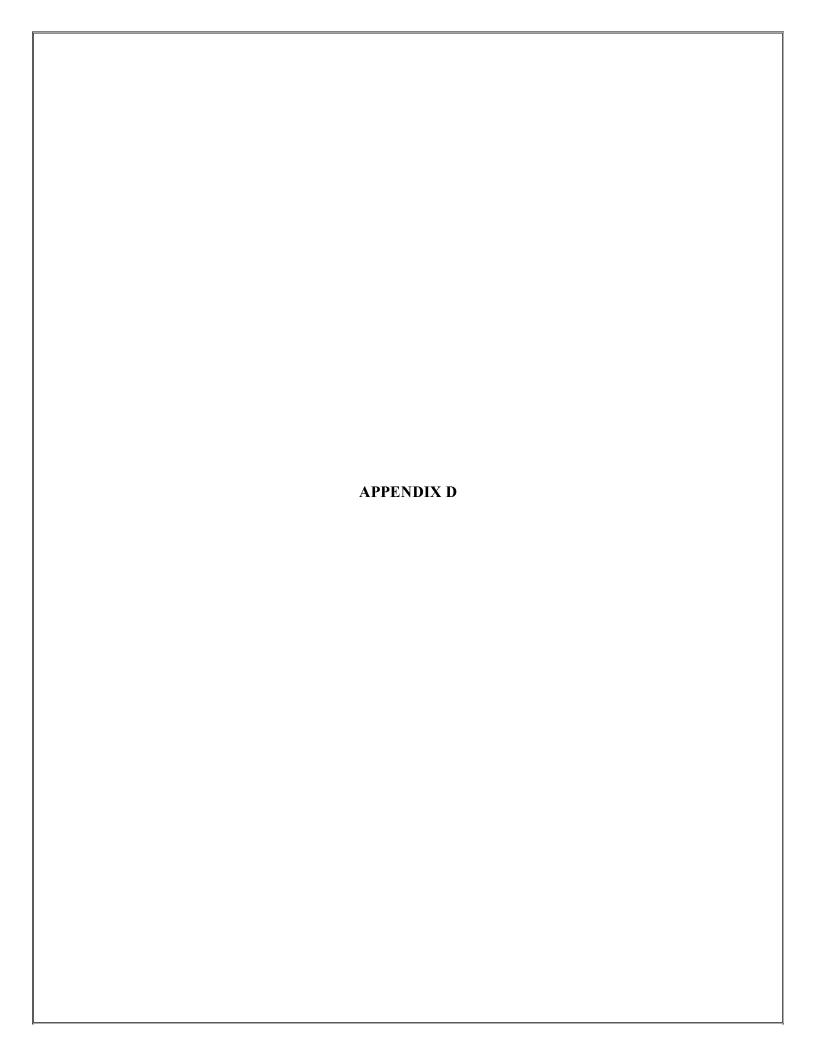

2.09E+01 2.27E-02 1.09E+00

TABLE C-36 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPC6 RAGS TABLE 10 RME FORT DEVENS, PLOW SHOP AND GROVE PONDS, MASSACHUSETTS

Scenario Timeframe: Current Receptor Population: Subsistence Receptor Age: Child

Medium	Exposure	Exposure	Chemical	Carcinogenic Riek					Non-Carcinogenic Hezard Quotent					
		Point	of Potential Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	gmoler than 1E-6	Primary Terget Organ(s)	Ingestion	Anhabition	Dormal	Exposure Router Total	growler than
ish	Fish fillet	Plow Shop Pond	Aluminum	0.00E+00			0.00E+00		- Allert Constitution	0.00E+00			0.00E+00.	
			Antmony	0.00E+00			0.00E+00			0.00E+00				-
			Arsenic	A.34E-06			4.34E-05	Yes		2.25E-01			0.00E+00	-
			Bartum	0.00E+00			0.000:+00	525		0.00E+00			2.25E-01	-
			Cadmium (in solid media)	0.00E+00			0.00E+00			0.00E+00			0.00E+00	-
			Cadmium (in water)	0.00E+00			0.00E+00			0.00E+00			0.00E+00	_
			Chromium, total	0.00E+00			0.00E+00			0.00E+00			0.00€+00	-
			Copper	0.00E+00			0.00E+00	1=1		0.00E+00			0.00E+00	-
			Iron	0.00E+00			0.00E+00			0.00E+00			0.00E+00	2
			Lend	0.00E+00			0.00E+00	-		0.00E+00		1	0.00E+00	11-
			Manganese (in sediment or water	0.00E+00			0.00E+00			0.00E+00			0.005+00	2
			Manganese (in food)	0.00E+00			0.00E+00	7.		0.00E+00			0.00E+00	-
			Mercuty	0.00E+00			0.60E+00						0.00E+00	
			Selenium	0.00E+00			0.00E+00			7.32E+00			7.32E+00	Yes
			Thelium	0.00€+00			0.004300.0	140		0,00E+00			0.00E+00	-
			Vanadium	0.00E+00			0.00E+00	-		0.COE+00			0.00E+00	
			Zinc	0.00E+00			0.000100	255		3.81E-01			3.81E-01	
			Chloroform	0.000=00		-	0.00E+00	1.0		0.00E+00			0.00E+00	
			Hexachlorocyclohexano, apris-	0.00E+05			0.00E+00			0.006+00			0.00E+00	3.0
			Methylone chloride	0.00E+00			0.00E+00	-		0.00E+00			0.00(2+00	
			Benz(a)anthracene	0.00E+00			0.00E+08	-		0.00E+00			0.086+00	
			Berzola)pyrene	0.00E+00			0.00E+00			0.00E+00	- A		0.00E+00	
			Berzolb)fuorenthene	0.00E+00			0.00E+00			0.000+00			0.00E+00	
			Berzo(k)fluoranthene	0.00E+00			0.00E+00	-		0.000+00			0.00E+00	
			Chrysene	0.00E+00			0.00E+00	-		0.00E+00			0.00E+00	
			Dibenz(ah)anthracene	0.00E+00			0.00E+00			0.00E+00			0.00E+00	
			Indeno(1,2,3-od)pyrene	0.00E+00			0.00E+00	-		0.00E+00			0.00E+00	
			Naphthalana	0.00E+00				-		0.00E+00			0.00E+00	
			Bis(2-e/hytheoryt) phthalate	0.00E+00			0.00E+00	-		0.00E+00			0.00E+00	
			PCB 1254	0.00E+00			0.00€+00	-		0.00E+00			0.00E+00	-
			PCBs, total	0.00E+00			0.00E+00	-		0,00E+00		_	0.00E+00	-
							0.00E+00			0.00E+00		_	0.00E+00	-
			D00, p.p'-	0.00E+00			0.00E+00			0.00E+00		- 1	0.000+00	-
-			DDE, p.p.	2.31E-06			2.31E-06	Yes		7.93E-03			7.93E-03	-
6	eposure Medium To	tal .					4.66-05	Yes				-	7.9E+00	You

Target organ across all exposure pathways; Central nervous system =	
	9.00E+00
Target organ across all exposure pathways: Blood =	0.00E+00
Target organ across all exposure pathways: Skin =	2.25E-01
Target organ across all exposure politivays: Cardiovascular system =	0.00E+00
Target organ across all exposure pethways: Kidney =	0.00E+00
Target organ across all exposure pathways: Gatrointestrial System =	0.00E+00
Target organ across all exposure pathways: Immune system =	7.32E+00
Target organ across all exposure pathways: Liver =	7,936-03
Target organ across all exposure pathways: Whole body/growth =	3.81E-01

TABLE D-1 RAGS D ADULT LEAD WORKSHEET Site Name: Ft. Devens, Grove Pond

Receptor: Adult Non-Resident Recreational, Exposure to Sediment

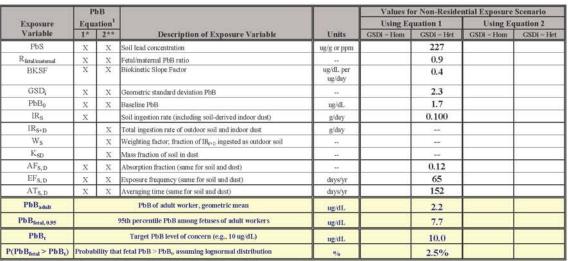
1. Lead Screening Questions

Mediu	used in Model Run		Basis for Lead Concentration Used	Lead So Concen	creening tration	Basis for Lead Screening Level	
m	Value	Units	For Model Run	Value	Units		
Soil	227	mg/kg	Arithmetic mean	400	mg/kg	Recommended Soil Screening Level for Residential receptor	

2. Lead Model Questions

Question	Response
What lead model was used? Provide reference and version	Adult Lead Model dated 5/19/03
If the EPA Adult Lead Model (ALM) was not used provide rationale for model selected.	NA
Where are the input values located in the risk assessment report?	Input values are located in RAGS D Table 3 for EPC and RAGS D Table 4s for exposure factors
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Arithmetic Mean. Data are Located in this Appendix
What was the point of exposure and location?	Grove Pond- Near-Shore Sediment
Where are the output values located in the risk assessment report?	Located in this Appendix
What GSD value was used? If this is outside the recommended range of 1.8-2.1), provide rationale in Appendix <y>.</y>	GSD = 2.3 which is the currently recommended GSD for heterogeneous populations
What baseline blood lead concentration (PbB ₀) value was used? If this is outside the default range of 1.7 to 2.2 provide rationale in Appendix <y></y>	PbB0 = 1.7, This is the current model default
Was the default exposure frequency (EF; 219 days/year) used?	No, EF = 65 days/year but note that AT = 152 days. Guidance on intermittent exposure to lead states that exposure should not be annualized. Therefore exposure for the 5 month exposure period of May to September (equal to 152 days) was used as the AT.
Was the default BKSF used (0.4 ug/dL per ug/day) used?	Yes
Was the default absorption fraction (AF; 0.12) used?	Yes
Was the default soil ingestion rate (IR; 50 mg/day) used?	No. The default value for the residential adult was used equal to 100 mg/day. See RAGS D Table 4s
If non-default values were used for any of the parameters listed above, where are the rationale for the values located in the risk assessment report?	See RAGS D Table 4s

3. Final Result


Medium	Result	Comment/RBRG 1
Soil	Input value of 227 ppm in sediment results in 2.5% of receptors above a blood lead level of 10 ug/d and geometric mean blood lead = 2.2 ug/dL. This does not exceed the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children (fetuses of exposed women) exceeding 10 ug/dL blood lead.	No RBRG was required because risks were not found to be higher than the action level.

^{1.} Attach the ALM spreadsheet output file upon which the Risk Based Remediation Goal (RBRG) was based and description of rationale for parameters used. For additional information, see www.epa.gov/superfund/programs/lead

TABLE D-1 BACKUP GROVE POND SEDIMENT

Calculations of Blood Lead Concentrations (PbBs) U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 05/19/03

Equation 1 does not apportion exposure between soil and dust ingestion (excludes $W_{\!\!c}, K_{SD}$).

When $IR_S = IR_{S+D}$ and $W_S = 1.0$, the equations yield the same PbB_{Set4,0.95}.

*Equation 1, based on Eq. 1, 2 in USEPA (1996).

PbB adult =	$(PbS*BKSF*IR_{S+D}*AF_{SD}*EF_{S}/AT_{SD}) + PbB_0$
PbB _{fetal, 0.95} =	PbB _{sdult} * (GSD _i 1.645 * R)

**Equation 2, alternate approach based on Eq. 1, 2, and A-19 in USEPA (1996).

PbB _{adult} =	$PbS*BKSF*([(IR_{S*D})*AF_S*EF_S*W_S]+[K_{SD}*(IR_{S*D})*(1-W_S)*AF_D*EF_D])/365+PbB_0$
PbB fetal, 0.95 =	PbB _{adult} * (GSD ₁ .1645 * R)

TABLE D-2 RAGS D ADULT LEAD WORKSHEET

Site Name: Ft. Devens, Plow Shop Pond Receptor: Adult Non-Resident Recreational, Exposure to Sediment

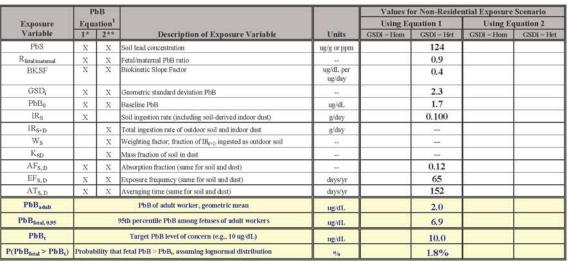
1. Lead Screening Questions

Mediu	docum model real		Basis for Lead Concentration Used	Lead So Concen	creening tration	Basis for Lead Screening Level	
m	Value	Units	For Model Run	Value	Units		
Soil	124	mg/kg	Arithmetic mean	400	mg/kg	Recommended Soil Screening Level for Residential receptor	

2. Lead Model Questions

Question	Response
What lead model was used? Provide reference and version	Adult Lead Model dated 5/19/03
If the EPA Adult Lead Model (ALM) was not used provide rationale for model selected.	NA
Where are the input values located in the risk assessment report?	Input values are located in RAGS D Table 3 for EPC and RAGS D Table 4s for exposure factors
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Arithmetic Mean. Data are Located in This Appendix
What was the point of exposure and location?	Grove Pond- Near-Shore Sediment
Where are the output values located in the risk assessment report?	Located in this Appendix
What GSD value was used? If this is outside the recommended range of 1.8-2.1), provide rationale in Appendix <y>.</y>	GSD = 2.3 which is the currently recommended GSD for heterogeneous populations
What baseline blood lead concentration (PbB ₀) value was used? If this is outside the default range of 1.7 to 2.2 provide rationale in Appendix <y></y>	PbB0 = 1.7, This is the current model default
Was the default exposure frequency (EF; 219 days/year) used?	No, EF = 65 days/year but note that AT = 152 days. Guidance on intermittent exposure to lead states that exposure should not be annualized. Therefore exposure for the 5 month exposure period of May to September (equal to 152 days) was used as the AT.
Was the default BKSF used (0.4 ug/dL per ug/day) used?	Yes
Was the default absorption fraction (AF; 0.12) used?	Yes
Was the default soil ingestion rate (IR; 50 mg/day) used?	No. The default value for the residential adult was used equal to 100 mg/day. See RAGS D Table 4s
If non-default values were used for any of the parameters listed above, where are the rationale for the values located in the risk assessment report?	See RAGS D Table 4s

3. Final Result


Medium	Result	Comment/RBRG 1
Sediment	Input value of 124 ppm in sediment results in 1.8% of receptors above a blood lead level of 10 ug/d and geometric mean blood lead = 2.0 ug/dL. This does not exceed the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children (fetuses of exposed women) exceeding 10 ug/dL blood lead.	No RBRG was required because risks were not found to be higher than the action level.

^{1.} Attach the ALM spreadsheet output file upon which the Risk Based Remediation Goal (RBRG) was based and description of rationale for parameters used. For additional information, see www.epa.gov/superfund/programs/lead

TABLE D-2 BACKUP PLOW SHOP POND SEDIMENT

Calculations of Blood Lead Concentrations (PbBs) U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 05/19/03

Equation 1 does not apportion exposure between soil and dust ingestion (excludes W_i, K_{SD}).

When $IR_S = IR_{S+D}$ and $W_S = 1.0$, the equations yield the same PbB_{Set4,0.95}.

*Equation 1, based on Eq. 1, 2 in USEPA (1996).

PbB adult =	$(PbS*BKSF*IR_{S+D}*AF_{SD}*EF_{S}/AT_{SD}) + PbB_0$
PbB fetal, 0.95 =	$PbB_{adult} * (GSD_i^{1.645} * R)$

**Equation 2, alternate approach based on Eq. 1, 2, and A-19 in USEPA (1996).

PbB _{adult} =	$PbS*BKSF*([(IR_{S*D})*AF_S*EF_S*W_S]+[K_{SD}*(IR_{S*D})*(1-W_S)*AF_D*EF_D])/365+PbB_0$
PbB fetal, 0.95 =	PbB _{adult} * (GSD ₁ .1645 * R)

TABLE D-3 RAGS D IEUBK LEAD WORKSHEET

Site Name: Ft. Devens, Grove Pond Receptor: Recreational Child Exposure to Sediment, Surface Water and Fish

1. Lead Screening Questions

Medium	Lead Concentra Used in M Run		Basis for Lead Concentration Used For Model Run		Lead Screening Concentration Basis for Lead Screening L	Basis for Lead Screening Level	
	Value	Units		Value	Units		
Sediment	227	mg/kg	Average Detected Value	400	mg/kg	Recommended Soil Screening Level	
Water	used drinking water default	ug/L	Average Detected Value	15	ug/L	Recommended Drinking Water Action Level	

2. Lead Model Questions

Question	Response for Residential Lead Model
What lead model (version and date) was used?	Model Version: 1.0 Build 261
Where are the input values located in the risk assessment report?	EPCs are in RAGS D Table 3s, Exposure Factors are in RAGS D Table 4s
What range of media concentrations were used for the model?	Sediment- used arithmetic mean Surface water- EPC was less than default for drinking water so used default value Fish Tissue- used arithmetic mean of fillet data from Grove Pond fish
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Arithmetic mean. EPC data are in RAGS D Table 3s
Was soil sample taken from top 2 cm? If not, why?	Not Applicable
Was soil sample sieved? What size screen was used? If not sieved, provide rationale.	Not Applicable
What was the point of exposure/location?	Grove Pond
Where are the output values located in the risk assessment report?	Located in Appendix
Was the model run using default values only?	No. Site specific EPCs were used for sediment. Fish tissue was included by assuming that 41 out of 273 meat meals or 15% of meat meals consisted of Grove Pond fish. This was derived from assuming that recreational child consume one meal of Grove Pond caught fish per week for 9 temperate months of the year (39 weeks).
Was the default soil bioavailability used?	Yes. Default is 30%
Was the default soil ingestion rate used?	Yes. Default values for 7 age groups are 85, 135, 135, 100, 090, and 85 mg/day
If non-default values were used, where are the rationale for the values located in the risk assessment report?	Located in this table and RAGS Table 4s

 $^{1. \} Attach \ the \ IEUBK \ text \ output \ file \ and \ graph \ upon \ which \ the \ PRG \ was \ based \ as \ an \ appendix. \ For \ additional \ information, see \ \underline{www.epa.gov/superfund/programs/lead}$

3. Final Result

Medium	Result	Comment/PRG 1
Grove Pond Sediment, Surface water, and fish	Input values from sediment, surface water and fish resulted in 2.822% of child recreational receptors above a blood lead level of 10 ug/dL. Geometric mean blood lead = 4.080 ug/dL. This does not exceed the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children exceeding 10 ug/dL blood lead.	No PRG has been developed for this site.

 $^{1. \} Attach \ the \ IEUBK \ text \ output \ file \ and \ graph \ upon \ which \ the \ PRG \ was \ based \ as \ an \ appendix. \ For \ additional \ information, see \ \underline{www.epa.gov/superfund/programs/lead}$

TABLE D-3 BACKUP

Grove Pond

LEAD MODEL FOR WINDOWS Version 1.0

Model Version: 1.0 Build 261

User Name:

Date: September 2005

Site Name: Grove Pond/Plow Shop Pond

Operable Unit: Grove Pond

Run Mode: Research- Recreational child

The time step used in this model run: 1 - Every 4 Hours (6 times a day).

***** Air *****

Indoor Air Pb Concentration: 30.000 percent of outdoor.

Other Air Parameters:

Age	Time Outdoors (hours)	Ventilation Rate (m^3/day)	Lung Absorption (%)	Outdoor Air Pb Conc (ug Pb/m^3)	
.5-1	1.000	2.000	32.000	0.100	
1-2	2.000	3.000	32.000	0.100	
2-3	3.000	5.000	32.000	0.100	
3-4	4.000	5.000	32.000	0.100	
4-5	4.000	5.000	32.000	0.100	
5-6	4.000	7.000	32.000	0.100	
6-7	4.000	7.000	32.000	0.100	

***** Diet *****

Age	Diet Intake(ug/day)

.5-1	6.729
1-2	8.446
2-3	9.542
3-4	9.487
4-5	9.442
5-6	9.954
6-7	10.933
A 1 .	.' D' . 77.1

Alternative Dietary Values

Home grown fruits concentration: 0.000 ug/g Home grown vegetables concentration: 0.000 ug/g

Fish from fishing concentration: 0.200 ug/g

Game animals from hunting concentration: 0.000 ug/g

Home grown fruits factor: 0.000 % of all fruits

Home grown vegetables factor: 0.000 % of all vegetables

Fish from fishing factor: 15.000 % of all meat

Game animals from hunting factor: 0.000 % of all meat

***** Drinking Water *****

Water Consumption:

Age	Water (L/day)	
.5-1	0.200	
1-2	0.500	
2-3	0.520	
3-4	0.530	
4-5	0.550	
5-6	0.580	
6-7	0.590	

Drinking Water Concentration: 4.000 ug Pb/L

***** Soil & Dust *****

Multiple Source Analysis Used

Average multiple source concentration: 168.900 ug/g

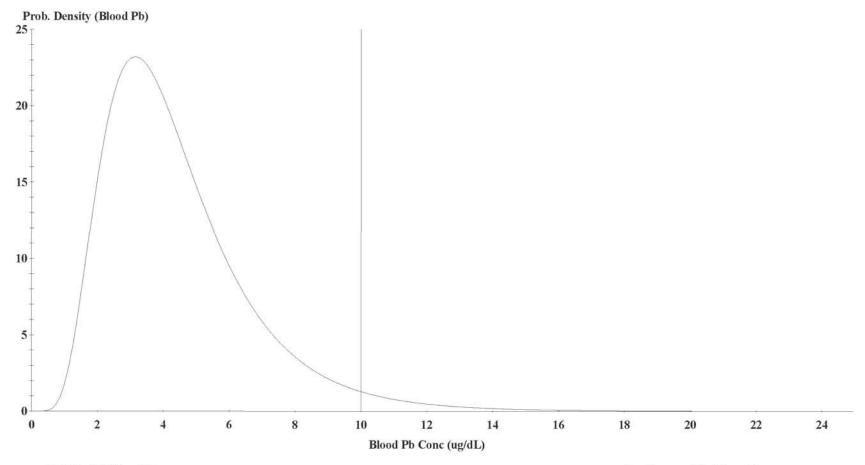
Mass fraction of outdoor soil to indoor dust conversion factor: 0.700 Outdoor airborne lead to indoor household dust lead concentration: 100.000 Use alternate indoor dust Pb sources? No

Age	Soil (ug Pb/g)	House Dust (ug Pb/g)
.5-1	227.000	168.900
1-2	227.000	168.900
2-3	227.000	168.900
3-4	227.000	168.900
4-5	227.000	168.900
5-6	227.000	168.900
6-7	227.000	168.900

***** Alternate Intake *****

Age	Alternate (ug Pb/day
.5-1	0.000
1-2	0.000
2-3	0.000
3-4	0.000
4-5	0.000
5-6	0.000
6-7	0.000

***** Maternal Contribution: Infant Model *****


Maternal Blood Concentration: 2.500 ug Pb/dL

CALCULATED BLOOD LEAD AND LEAD UPTAKES:

Year	Air (ug/day)	Diet (ug/day)	Alternate (ug/day)	Water (ug/day)
.5-1	0.021	3.071	0.000	0.365
1-2	0.034	3.804	0.000	0.901
2-3	0.062	4.345	0.000	0.947
3-4	0.067	4.376	0.000	0.978
4-5	0.067	4.444	0.000	1.036
5-6	0.093	4.722	0.000	1.100
6-7	0.093	5.203	0.000	1.123
Year	Soil+Dust	Total	Blood	
	(ug/day)	(ug/day)	(ug/dL)	
.5-1	4.539	7.996	4.3	
1-2	7.115	11.855	4.9	
2-3	7.193	12.547	4.6	
3-4	7.286	12.706	4.4	
4-5	5.508	11.055	3.8	
5-6	4.996	10.912	3.4	
6-7	4.734	11.153	3.2	

Cutoff = 10.000 ug/dl Geo Mean = 4.080 GSD = 1.600 % Above = 2.822 % Below = 97.178 Age Range = 0 to 84 months Time Step = Every 4 Hours Run Mode = Research Comment = Grove Pond-Rec Child

TABLE D-4 RAGS D IEUBK LEAD WORKSHEET

Site Name: Ft. Devens, Grove Pond Receptor: Subsistence Child Exposure to Sediment, Surface Water and Fish

1. Lead Screening Questions

Medium	Lead Concentra Used in M Run		Basis for Lead Concentration Used For Model Run		Lead Screening Concentration Basis for Lead Screening Le	Basis for Lead Screening Level	
	Value	Units		Value	Units		
Sediment	227	mg/kg	Average Detected Value	400	mg/kg	Recommended Soil Screening Level	
Water	used drinking water default	ug/L	Average Detected Value	15	ug/L	Recommended Drinking Water Action Level	

2. Lead Model Questions

Question	Response for Residential Lead Model
What lead model (version and date) was used?	Model Version: 1.0 Build 261
Where are the input values located in the risk assessment report?	EPCs are in RAGS D Table 3s, Exposure Factors are in RAGS D Table 4s
What range of media concentrations were used for the model?	Sediment- used arithmetic mean Surface water- EPC was less than default for drinking water so used default value Fish Tissue- used arithmetic mean of fillet data from Grove Pond fish
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Arithmetic mean. EPC data are in RAGS D Table 3s
Was soil sample taken from top 2 cm? If not, why?	Not Applicable
Was soil sample sieved? What size screen was used? If not sieved, provide rationale.	Not Applicable
What was the point of exposure/location?	Grove Pond
Where are the output values located in the risk assessment report?	Located in Appendix
Was the model run using default values only?	No. Site specific EPCs were used for sediment. Fish tissue was included by assuming that 273 out of 273 meat meals or 100% of meat meals consisted of Grove Pond fish. This was derived from assuming that the subsistence child angler consumes seven meals of Grove Pond caught fish per week for 9 temperate months of the year (39 weeks).
Was the default soil bioavailability used?	Yes. Default is 30%
Was the default soil ingestion rate used?	Yes. Default values for 7 age groups are 85, 135, 135, 100, 090, and 85 mg/day
If non-default values were used, where are the rationale for the values located in the risk assessment report?	Located in this table and RAGS Table 4s

 $^{1. \} Attach \ the \ IEUBK \ text \ output \ file \ and \ graph \ upon \ which \ the \ PRG \ was \ based \ as \ an \ appendix. \ For \ additional \ information, see \ \underline{www.epa.gov/superfund/programs/lead}$

3. Final Result

Medium	Result	Comment/PRG 1
Grove Pond Sediment, Surface water, and fish	Input values from sediment, surface water and fish resulted in 14.973% of child subsistence angler receptors above a blood lead level of 10 ug/dL. Geometric mean blood lead = 6.141 ug/dL. This exceeds the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children exceeding 10 ug/dL blood lead.	No PRG has been developed for this site. This analysis was performed for EPA for informational purposes only.

 $^{1. \} Attach \ the \ IEUBK \ text \ output \ file \ and \ graph \ upon \ which \ the \ PRG \ was \ based \ as \ an \ appendix. \ For \ additional \ information, see \ \underline{www.epa.gov/superfund/programs/lead}$

TABLE D-4 BACKUP

Grove Pond

LEAD MODEL FOR WINDOWS Version 1.0

Model Version: 1.0 Build 261

User Name:

Date: September 2005

Site Name: Grove Pond/Plow Shop Pond

Operable Unit: Grove Pond

Run Mode: Research- Subsistence angler child

***** Air *****

Indoor Air Pb Concentration: 30.000 percent of outdoor.

Other Air Parameters:

Age	Time Outdoors (hours)	Ventilation Rate (m^3/day)	Lung Absorption (%)	Outdoor Air Pb Conc (ug Pb/m^3)
.5-1	1.000	2.000	32.000	0.100
1-2	2.000	3.000	32.000	0.100
2-3	3.000	5.000	32.000	0.100
3-4	4.000	5.000	32.000	0.100
4-5	4.000	5.000	32.000	0.100
5-6	4.000	7.000	32.000	0.100
6-7	4.000	7.000	32.000	0.100

***** Diet *****

Age	Diet Intake(ug/day)
.5-1	11.560
1-2	22.781
2-3	25.122
3-4	26.014
4-5	26.915
5-6	28.129
6-7	30.509
A 1.	. D 17 1

Alternative Dietary Values

Home grown fruits concentration: 0.000 ug/g Home grown vegetables concentration: 0.000 ug/g Fish from fishing concentration: 0.200 ug/g

Game animals from hunting concentration: 0.000 ug/g

Home grown fruits factor: 0.000 % of all fruits

Home grown vegetables factor: 0.000 % of all vegetables

Fish from fishing factor: 100.000 % of all meat

Game animals from hunting factor: 0.000 % of all meat

***** Drinking Water *****

Water Consumption:

Age	Water (L/day)	
.5-1	0.200	
1-2	0.500	
2-3	0.520	
3-4	0.530	
4-5	0.550	
5-6	0.580	
6-7	0.590	

Drinking Water Concentration: 4.000 ug Pb/L

***** Soil & Dust *****

Multiple Source Analysis Used

Average multiple source concentration: 168.900 ug/g

Mass fraction of outdoor soil to indoor dust conversion factor: 0.700 Outdoor airborne lead to indoor household dust lead concentration: 100.000 Use alternate indoor dust Pb sources? No

3-4	227.000	168.900
4-5	227.000	168.900
5-6	227.000	168.900
6-7	227.000	168.900

***** Alternate Intake *****

Age Alternate (ug Pb/day)

.5-1 0.000

1-2 0.000

2-3 0.000

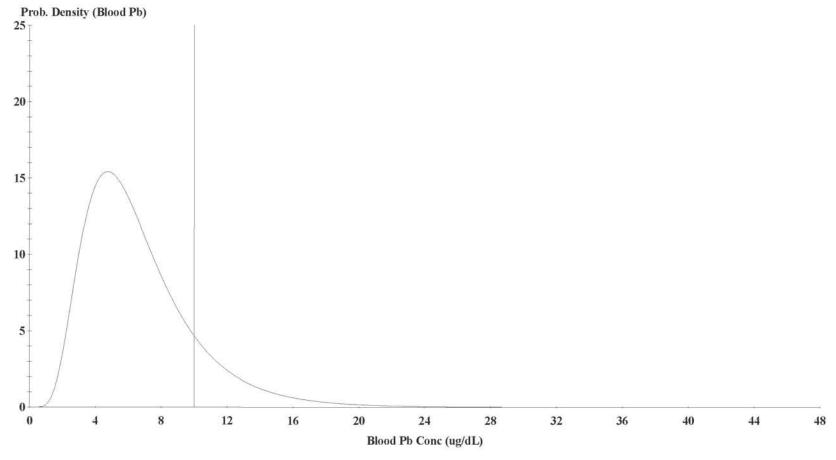
3-4 0.000

4-5 0.000

5-6 0.000

6-7 0.000

***** Maternal Contribution: Infant Model *****


Maternal Blood Concentration: 2.500 ug Pb/dL

CALCULATED BLOOD LEAD AND LEAD UPTAKES:

Year	Air (ug/day)	Diet (ug/day)	Alternate (ug/day)	Water (ug/day)
.5-1	0.021	5.155	0.000	0.357
1-2	0.034	9.754	0.000	0.856
2-3	0.062	10.905	0.000	0.903
3-4	0.067	11.478	0.000	0.935
4-5	0.067	12.151	0.000	0.993
5-6	0.093	12.831	0.000	1.058
6-7	0.093	13.966	0.000	1.080
Year	Soil+Dust	Total	Blood	
	(ug/day)	(ug/day)	(ug/dL)	
.5-1	4.436	9.968	5.4	
1-2	6.764	17.409	7.0	
2-3	6.858	18.729	6.9	
3-4	6.971	19.451	6.7	
4-5	5.283	18.493	6.2	
5-6	4.804	18.787	5.8	
6-7	4.553	19.693	5.5	

Cutoff = 10.000 ug/dl Geo Mean = 6.141 GSD = 1.600 % Above = 14.973 % Below = 85.027 Age Range = 0 to 84 months Time Step = Every 4 Hours Run Mode = Research Comment = Grove Pond-Subsist ChildAngler

TABLE D-5 RAGS D IEUBK LEAD WORKSHEET Site Name: Ft. Devens, Plow Shop Pond Receptor:Recreational Child Exposure to Sediment and Surface Water

1. Lead Screening Questions

Medium	Medium Lead Concentration Used in Model Run Basis for Lead Concentration Used For Model Run		Lead Screening Concentration		Basis for Lead Screening Level	
	Value	Units		Value	Units	
Sediment	used model default	mg/kg	Average Detected Value	400	mg/kg	Recommended Soil Screening Level
Surface Water	used model default	ug/L	Average Detected Value	15	ug/L	Recommended Drinking Water Action Level

2. Lead Model Questions

Question	Response for Residential Lead Model
What lead model (version and date) was used?	Model Version: 1.0 Build 261
Where are the input values located in the risk assessment report?	EPCs are in RAGS D Table 3s, Exposure Factors are in RAGS D Table 4s
What range of media concentrations were used for the model?	Sediment- EPC was less than the default for soil expousre Surface water- EPC was less than default for drinking water so used default value Fish- lead in fish tissue was not a COPC for Plow Shop Pond fish
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Not Applicable
Was soil sample taken from top 2 cm? If not, why?	Not Applicable
Was soil sample sieved? What size screen was used? If not sieved, provide rationale.	Not Applicable
What was the point of exposure/location?	Plow Shop Pond
Where are the output values located in the risk assessment report?	Located in Appendix
Was the model run using default values only?	Yes
Was the default soil bioavailability used?	Yes Default is 30%
Was the default soil ingestion rate used?	Yes Default values for 7 age groups are 85, 135, 135, 100, 090, and 85 mg/day
If non-default values were used, where are the rationale for the values located in the risk assessment report?	Located in this table and RAGS Table 4s

 $^{1. \} Attach \ the \ IEUBK \ text \ output \ file \ and \ graph \ upon \ which \ the \ PRG \ was \ based \ as \ an \ appendix. \ For \ additional \ information, see \ \underline{www.epa.gov/superfund/programs/lead}$

3. Final Result

Medium	Result	Comment/PRG 1
Plow Shop Pond Sediment, Surface water,	Input values from sediment, and surface water resulted in 1.101% of recreational children above a blood lead level of 10 ug/dL. Geometric mean blood lead = 3.409 ug/dL. This does not exceed the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children exceeding 10 ug/dL blood lead.	No PRGs have been developed for this site.

 $^{1. \} Attach \ the \ IEUBK \ text \ output \ file \ and \ graph \ upon \ which \ the \ PRG \ was \ based \ as \ an \ appendix. \ For \ additional \ information, see \ \underline{www.epa.gov/superfund/programs/lead}$

TABLE D-5 BACKUP

Plow Shop Pond

LEAD MODEL FOR WINDOWS Version 1.0

Model Version: 1.0 Build 261

User Name:

Date: September 2005

Site Name: Grove Pond/Plow Shop Pond

Operable Unit: Plow Shop Pond

Run Mode: Research- Recreational Child

The time step used in this model run: 1 - Every 4 Hours (6 times a day).

***** Air *****

Indoor Air Pb Concentration: 30.000 percent of outdoor.

Other Air Parameters:

Age	Time Outdoors (hours)	Ventilation Rate (m^3/day)	Lung Absorption (%)	Outdoor Air Pb Conc (ug Pb/m^3)
.5-1	1.000	2.000	32.000	0.100
1-2	2.000	3.000	32.000	0.100
2-3	3.000	5.000	32.000	0.100
3-4	4.000	5.000	32.000	0.100
4-5	4.000	5.000	32.000	0.100
5-6	4.000	7.000	32.000	0.100
6-7	4.000	7.000	32.000	0.100

***** Diet *****

Age	Diet Intake(ug/day)
.5-1	5.530
1-2	5.780
2-3	6.490
3-4	6.240
4-5	6.010
5-6	6.340
6-7	7.000

***** Drinking Water *****

Water Consumption:

Age	Water (L/day)	Water (L/day)	
.5-1	0.200		
1-2	0.500		
2-3	0.520		
3-4	0.530		
4-5	0.550		
5-6	0.580		
6-7	0.590		

Drinking Water Concentration: 4.000 ug Pb/L

***** Soil & Dust *****

Multiple Source Analysis Used

Average multiple source concentration: 150.000 ug/g

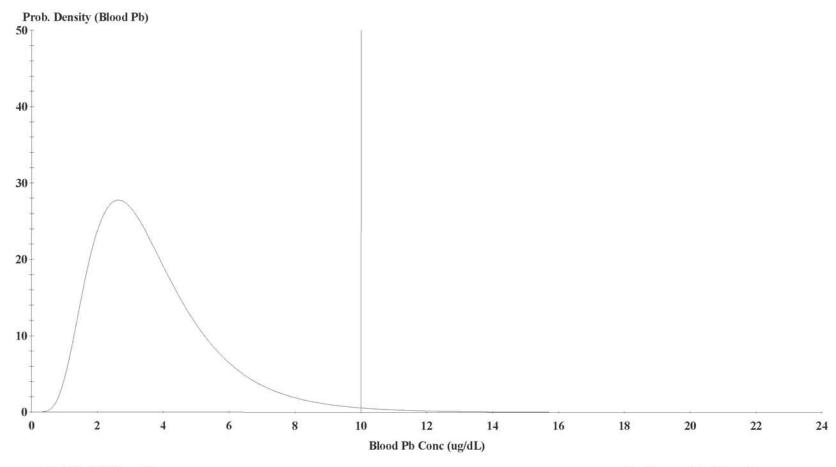
Mass fraction of outdoor soil to indoor dust conversion factor: 0.700 Outdoor airborne lead to indoor household dust lead concentration: 100.000 Use alternate indoor dust Pb sources? No

Age	Soil (ug Pb/g)	House Dust (ug Pb/g)
.5-1	200.000	150.000
1-2	200.000	150.000
2-3	200.000	150.000
3-4	200.000	150.000
4-5	200.000	150.000
5-6	200.000	150.000
6-7	200.000	150.000

***** Alternate Intake *****

Age	Alternate (ug Pb/day)	
.5-1	0.000	
1-2	0.000	
2-3	0.000	
3-4	0.000	
4-5	0.000	
5-6	0.000	
6-7	0.000	

***** Maternal Contribution: Infant Model *****


Maternal Blood Concentration: 2.500 ug Pb/dL

CALCULATED BLOOD LEAD AND LEAD UPTAKES:

Year Air (ug/day)		Diet (ug/day)	Alternate (ug/day)	Water (ug/day)
.5-1 0.021		2.553	0.000	0.369
1-2	0.034	2.647	0.000	0.916
2-3	0.062	3.002	0.000	0.962
3-4	0.067	2.919	0.000	0.992
4-5	0.067	2.863	0.000	1.048
5-6	0.093	3.040	0.000	1.112
6-7	0.093	3.366	0.000	1.135
Year	Soil+Dust	Total	Blood	
Year	Soil+Dust (ug/day)	Total (ug/day)	Blood (ug/dL)	
Year	(ug/day)			
	(ug/day)	(ug/day)	(ug/dL)	
.5-1	(ug/day) 4.061	(ug/day) 7.004	(ug/dL)	
.5-1 1-2	4.061 6.399	(ug/day) 7.004 9.997	(ug/dL) 3.8 4.2	
.5-1 1-2 2-3	4.061 6.399 6.462	7.004 9.997 10.488	(ug/dL) 3.8 4.2 3.9	
.5-1 1-2 2-3 3-4	4.061 6.399 6.462 6.536	7.004 9.997 10.488 10.514	(ug/dL) 3.8 4.2 3.9 3.7	

Cutoff = 10.000 ug/dl Geo Mean = 3.409 GSD = 1.600 % Above = 1.101 % Below = 98.899

Age Range = 0 to 84 months Time Step = Every 4 Hours Run Mode = Research Comment = Plow Shop Pond- Rec Child

FINAL

BASELINE ECOLOGICAL RISK ASSESSMENT

GROVE POND AND PLOW SHOP POND

AYER, MASSACHUSETTS

May 2006

Prepared for:

USEPA Region 1 Contract EP-W-05-020 Task Order #01

Prepared by:

Gannett Fleming, Inc. 199 Wells Avenue, Suite 210 Newton, MA 02459

TABLE OF CONTENTS

EXECUTIVE SUMMARY	. 1
SECTION 1.0: INTRODUCTION	
SECTION 2: SITE DESCRIPTION	12
2.1 Fort Devens Grove Pond and Plow Shop Pond Site Profile	12
2.2 Ecological Setting	13
SECTION 3: DATABASE DEVELOPMENT AND DATA PROCESSING	15
3.1 Introduction	15
3.2 Data Sources 3.2.1 Grove Pond 3.2.2 Plow Shop Pond	16
3.3 Data Quality 3.3.1 Data Sorting 3.3.2 Evaluation of Data Usability 3.3.3 Comparison to Background	17 18
3.4 Compiling Data Sets for Use in the BERA 3.4.1 Data Summarization Methods 3.4.2 Summary Statistics 3.4.3 Data Sets Used in the BERA	19 20
SECTION 4: PROBLEM FORMULATION	21
4.1 Introduction	21
4.2 Site Characterization 4.2.1 Site Exposure Units 4.2.2 Background Exposure Unit	21
4.3 Selecting Contaminants of Potential Concern (COPCs) 4.3.1 Surface Water Benchmarks 4.3.2 Sediment Benchmarks 4.3.3 Media-Specific COPCs 4.3.3.1 Surface Water COPCs	22 23 23

4.3.3.2 Sediment COPCs	24
4.3.3.3 Biota COPCs	24
4.4 Conceptual Site Model (CSM)	25
4.4.1 Exposure Pathways	25
4.4.1.1 Aquatic Exposure Pathways	26
4.4.1.2 Semi-Aquatic Exposure Pathways	26
4.5 Assessment and Measurement Endpoints	26
4.5.1 Selecting Representative Assessment Endpoint Species or Communi	ities 27
4.5.1.1 Macroinvertebrate Communities	
4.5.1.1.1 Water Column Invertebrates	27
4.5.1.1.2 Benthic Invertebrates	28
4.5.1.2 Fish Receptors	28
4.5.1.3 Wildlife Receptors	
4.5.1.3.1 Omnivorous Mammals	
4.5.1.3.2 Piscivorous Mammals	29
4.5.1.3.3 Carnivorous Birds	29
4.5.1.3.4 Piscivorous Birds	29
4.5.1.3.5 Insectivorous Birds	30
4.5.2 Measurement Endpoints	30
4.5.2.1 Water Column Invertebrate Community	
4.5.2.2 Benthic Macroinvertebrate Community	
4.5.2.3 Fish Receptors	31
4.5.2.4 Omnivorous Mammals	
4.5.2.5 Piscivorous Mammals	32
4.5.2.6 Carnivorous Birds	32
4.5.2.7 Piscivorous Birds	33
4.5.2.8 Insectivorous Birds	33
4.6 Weight-of-evidence (WOE) Documentation	33
5.0 ECOLOGICAL EXPOSURE ASSESSMENT	35
5.1 Introduction	35
5261 14: 5 1 : 15	25
5.2 Calculating Ecological Exposures	
5.2.1 Water Column Invertebrates	
5.2.2 Benthic Invertebrates	
5.2.3 Fish	
5.2.4 Wildlife Exposures	
5.2.4.1 Qualitative description of the wildlife food chain models	
5.2.4.1.1 Omnivorous Mammal - Raccoon	
5.2.4.1.2 Piscivorous Mammal - Mink	
5.2.4.1.3 Carnivorous Bird - Black-Crowned Night Heron .	
5.2.4.1.4 Piscivorous Bird - Belted Kingfisher	39

5.2.4.1.5 Insectivorous Bird - Tree Swallow	40
6.0 ECOLOGICAL EFFECTS ASSESSMENT	41
6.1 Selecting Measures of Effect	41
6.2 Methodologies for Assessing Toxicity	41
6.2.1 Selecting Measures of Effect for Water Column Invertebrates	41
6.2.1.1 Benchmark Comparisons	41
6.2.1.2 Toxicity Tests	
6.2.2 Selecting Measures of Effect for Benthic Invertebrates	
6.2.2.1 Benchmark Screening	
6.2.2.2 Toxicity Tests	
6.2.2.3 Critical Body Residue (CBR) Evaluation	. 42
6.2.2.4 Acid Volatile Sulfide/Simultaneously Extracted Metal Evaluation	12
6.2.3 Selecting Measures of Effect for Fish	
6.2.3.1 Benchmark Comparisons	
6.2.3.2 Toxicity Tests	
6.2.3.3 Critical Body Residue (CBR) Evaluation	
6.2.4 Selecting Measures of Effect for Wildlife Receptors	
7.0 ECOLOGICAL RISK CHARACTERIZATION	45
7.1 Introduction	45
7.2 Assessment Endpoint 1: Surface Water Invertebrate Community	45
7.2.1 Measurement Endpoint A: Benchmarks Comparison	
7.2.1.1 Grove Pond	
7.2.1.2 Plow Shop Pond	46
7.2.2 Measurement Endpoint B: Surface Water Toxicity Testing	46
7.2.2.1 Grove Pond	46
7.2.2.2 Plow Shop Pond	
7.2.3 Water Column Invertebrate Community Weight of Evidence Integration	47
7.3 Assessment Endpoint 2: Benthic Invertebrate Community	48
7.3.1 Measurement Endpoint A: Benchmarks Comparison	48
7.3.1.1 Grove Pond	
7.3.1.2 Plow Shop Pond	
7.3.2 Measurement Endpoint B: Sediment Toxicity Testing	
7.3.2.1 Grove Pond	
7.3.2.2 Plow Shop Pond	
7.3.3 Measurement Endpoint C: Critical Body Residue (CBR) Evaluation 7.3.3.1 Grove Pond	
7.3.3.2 Plow Shop Pond	
7.5.5.2 I low Shop I ond	55

7.3.4 AVS/SEM Evaluation	54
7.3.4.1 Grove Pond	
7.3.4.2 Plow Shop Pond	
7.3.5 Previous Benthic Invertebrate Community Risk Characterization	
7.3.6 Benthic Invertebrate Community Weight of Evidence Integration	
7.3.6.1 Grove Pond	
7.3.6.2 Plow Shop Pond	
•	
7.4 Assessment Endpoint 3: Fish Community	
7.4.1 Measurement Endpoint A: Benchmarks Comparison	58
7.4.1.1 Grove Pond	
7.4.1.2 Plow Shop Pond	58
7.4.2 Measurement Endpoint B: Surface Water Toxicity Testing	59
7.4.2.1 Grove Pond	59
7.4.2.2 Plow Shop Pond	59
7.4.3 Measurement Endpoint C: Critical Body Residue (CBR) Evaluation	59
7.4.3.1 Grove Pond	59
7.4.3.2 Plow Shop Pond	61
7.4.4 Fish Community Risk Characterization	62
7.4.5 Fish Community Weight of Evidence Integration	
7.5 Assessment Endpoint 4: Omnivorous Mammal Populations	64
7.5.1.2 Modification of HQs Based on Different Prey Items	
7.5.1.2 Modification of HQs Based on Different Invertebrate	04
Taxa	65
7.5.1.2.2 Modification of HQs Based on Different Fish Species	65
7.5.1.3 Residual Risk Evaluation for the Grove Pond Raccoon	66
7.5.1.4 Chemical-Specific Risk Characterization for the Grove Pond	00
Raccoon	66
7.5.1.5 Summary	
7.5.1.6 Weight of Evidence Integration - Grove Pond	
7.5.2 Plow Shop Pond Raccoon	
7.5.2.1 Measurement Endpoint: HQ based on NOAEL and	
LOAEL TRVs	69
7.5.2.2 Modification of HQs Based on Different Prey Items	
7.5.2.2.1 Modification of HQs Based on Different Invertebrate	
Taxa	70
7.5.2.2.2 Modification of HQs Based on Different Fish Species	71
7.5.2.3 Residual Risk Evaluation for the Plow Shop Pond Raccoon	71
7.5.2.4 Chemical-Specific Risk Characteriz. for Plow Shop Pond	
Raccoon	
7.5.2.5 Summary	74

7.5.2.6 Weight of Evidence Integration - Plow Shop Pond	. 74
7.6 Assessment Endpoint 5: Piscivorous Mammal Populations	. 75
7.6.1 Grove Pond Mink	
7.6.1.1 Measurement Endpoint: HQ based on NOAEL and	
LOAEL TRVs	. 76
7.6.1.2 Modification of HQs Based on Different Prey Items	. 76
7.6.1.2.1 Modification of HQs Based on Different Fish Species	77
7.6.1.3 Residual Risk Evaluation for the Grove Pond Mink	. 77
7.6.1.4 Chemical-Specific Risk Characterization for the Grove	
Pond Mink	. 77
7.6.1.5 Summary	. 77
7.6.1.6 Weight of Evidence Integration - Grove Pond	
7.6.2 Plow Shop Pond Mink	. 78
7.6.2.1 Measurement Endpoint: HQ based on NOAEL and	
LOAEL TRVs	
7.6.2.2 Modification of HQs Based on Different Prey Items	
7.6.2.2.1 Modification of HQs Based on Different Fish Species	
7.6.2.3 Residual Risk Evaluation for the Plow Shop Pond Mink	. 80
7.6.2.4 Chemical-Specific Risk Characteriz. for the Plow Shop	
Pond Mink	
7.6.2.5 Summary	
7.6.2.6 Weight of Evidence Integration - Plow Shop Pond	. 81
7.7 Aggaggment Endnaint 6: Comiyaraya Dird Danylations	02
7.7 Assessment Endpoint 6: Carnivorous Bird Populations	
7.7.1.1 Measurement Endpoint: HQ based on NOAEL and	. 02
LOAEL TRVs	82
7.7.1.2 Modification of HQs Based on Different Prey Items	
7.7.1.2 Modification of HQs Based on Different Invertebrate	. 05
Taxa	83
7.7.1.2.2 Modification of HQs Based on Different Fish Species	
7.7.1.3 Residual Risk Evaluation for the Grove Pond Night Heron	
7.7.1.4 Chemical-Specific Risk Characteriz. for the Grove Pond Black-	
Crowned Night Heron	
7.7.1.5 Summary	
7.7.1.6 Weight of Evidence Integration	. 86
7.7.2 Plow Shop Pond Black-Crowned Nigh Heron	
7.7.2.1 Measurement Endpoint: Hazard Quotients based on NOAEL an	
LOAEL TRVs	
7.7.2.2 Modification of HQs Based on Different Prey Items	
7.7.2.2.1 Modification of HQs Based on Different Invertebrate	
Taxa	. 88
7.7.2.2.2 Modification of HQs Based on Different Fish Species	89
7.7.2.3 Residual Risk Evaluation for the Plow Shop Pond Black-Crown	ned

Night Heron 8	9
7.7.2.4 Chemical-Specific Risk Characterization for the Plow Shop Pond	
Black-Crowned Night Heron 9	
7.7.2.5 Summary	
7.7.2.6 Weight of Evidence Integration - Plow Shop Pond	2
7.8 Assessment Endpoint 7: Piscivorous Bird Populations	
7.8.1 Grove Pond Belted Kingfisher	
7.8.1.1 Measurement Endpoint: Hazard Quotients based on NOAEL and LOAEL TRVs	
7.8.1.2 Modification of HQs Based on Different Prey Items	3
Taxa	4
7.8.1.2.2 Modification of HQs Based on Different Fish Species 9	
7.8.1.3 Residual Risk Evaluation for the Grove Pond Belted Kingfisher 9	
7.8.1.4 Chemical-Specific Risk Characterization for the Grove Pond	٠
Belted Kingfisher	15
7.8.1.5 Summary	
7.8.1.6 Weight of Evidence Integration	
7.8.2 Plow Shop Pond Belted Kingfisher	
7.8.2.1 Measurement Endpoint: Hazard Quotients based on NOAEL and	_
LOAEL TRVs	6
7.8.2.2 Modification of HQs Based on Different Prey Items 9	7
7.8.2.2.1 Modification of HQs Based on Different Invertebrate Taxa	
7.8.2.2.2 Modification of HQs Based on Different Fish Species 9	
7.8.2.3 Residual Risk Evaluation for the Plow Shop Pond Belted	
8	8
7.8.2.4 Chemical-Specific Risk Characterization for the Plow Shop Pond	
Belted Kingfisher 9	
7.8.2.5 Summary	
7.8.2.6 Weight of Evidence Integration	U
7.9 Assessment Endpoint 8: Insectivorous Bird Populations	ıΛ
7.9 Assessment Endpoint 8. Insectivorous Bird Fopulations	
7.9.1.1 Measurement Endpoint: Hazard Quotients based on NOAEL and	1
LOAEL TRVs	١1
7.9.1.2 Chemical-Specific Risk Characterization for the Grove Pond Tree	
Swallow	
7.9.1.3 Summary	
7.9.1.4 Weight of Evidence Integration	
7.9.2 Plow Shop Pond Tree Swallow	
7.9.2.1 Measurement Endpoint: Hazard Quotients based on NOAEL and	۷
LOAEL TRVs	13
7.9.2.2 Chemical-Specific Risk Characterization for the Plow Shop Pond	
Shop I old	

Tree Swallow	04
7.9.2.3 Summary	.05
7.9.2.4 Weight of Evidence Integration	05
7.10 Uncertainty Analysis	.06
7.10.1 Introduction	06
7.10.2 Uncertainties associated with assessing risk to water column	
invertebrates	06
7.10.2.1 Measurement endpoint A: compare surface water EPC to	
benchmarks 1	
7.10.2.2 Measurement endpoint B: surface water toxicity testing 1	06
7.10.3 Uncertainties associated with assessing risk to benthic invertebrates 1	07
7.10.3.1 Measurement endpoint A: compare sediment EPC to	
benchmarks 1	07
7.10.3.2 Measurement endpoint B: sediment toxicity testing 1	07
7.10.3.3 Measurement endpoint C: compare measured tissue residue leve	els
to CBRs 1	.08
7.10.3.4 AVS/SEM Evaluation	09
7.10.4 Uncertainties associated with assessing risk to fish	09
7.10.4.1 Measurement endpoint A: compare surface water EPC to	
benchmarks 1	09
7.10.4.2 Measurement endpoint B: surface water toxicity testing 1	09
7.10.4.3 Measurement endpoint C: compare measured fish tissue residue)
levels to CBRs	09
7.10.5 Uncertainties associated with assessing risk to birds and mammals 1	09
7.10.6 Background and Residual Risk Evaluation	12
CHAPTER 8: SUMMARY AND CONCLUSIONS	13
8.1 Water Column Invertebrates	13
8.1.1 Grove Pond	13
8.1.2 Plow Shop Pond	13
8.2 Benthic Macroinvertebrate Community	13
8.2.1 Grove Pond	
8.2.2 Plow Shop Pond	
8.3 Warm Water Fish Community	14
8.3.1 Grove Pond	
8.3.2 Plow Shop Pond	
8.4 Omnivorous Mammal Populations	14
8.4.1 Grove Pond	
8.4.2 Plow Shop Pond	
8.4.2 Flow Shop Folia	13

8.5 Piscivorous Mammal Populations	115
8.5.1 Grove Pond	115
8.5.2 Plow Shop Pond	115
8.6 Carnivorous Bird Population	115
8.6.1 Grove Pond	115
8.6.2 Plow Shop Pond	
8.7 Piscivorous Bird Populations	116
8.7.1 Grove Pond	116
8.7.2 Plow Shop Pond	116
8.8 Insectivorous Bird Populations	116
8.8.1 Grove Pond	116
8.8.2 Plow Shop Pond	

List of Figures:

Figure 1. Conceptual Site Model for Ecological Exposures in Grove Pond and Plow Shop Pond

List of Tables:

- Table 1. Analytical Data used in BERA Grove Pond
- Table 2. Analytical Dat used in BERA Plow Shop Pond
- Table 3. Selection of COPC in Grove Pond Surface Water
- Table 4. Selection of COPC in Plow Shop Pond Surface Water
- Table 5. Selection of COPC in Grove Pond Sediment
- Table 6. Selection of COPC in Plow Shop Pond Sediment
- Table 7. Assessment and Measurement Endpoints for Grove Pond and Plow Shop Pond Wildlife Receptors
- Table 8. Weight -of-Evidence (WOE) Documentation
- Table 9. Surface Water Biota Hazard Quotients Grove Pond
- Table 10. Surface Water Biota Hazard Quotients Plow Shop Pond
- Table 11. Benthic Invert Hazard Quotients Grove Pond
- Table 12. Benthic Invert Hazard Quotients Plow Shop Pond
- Table 13. Bioaccumulation Factors Grove Pond
- Table 14. Bioaccumulation Factors Plow Shop Pond
- Table 15. Maximum Exposure Point Concentrations Grove Pond
- Table 16. Average Exposure Point Concentrations Grove Pond
- Table 17. Maximum Exposure Point Concentrations Plow Shop Pond
- Table 18. Average Exposure Point Concentrations Plow Shop Pond
- Table 19. Exposure Parameters for Selected Receptors

- Table 20. Critical Body Residues for Invertebrates
- Table 21. Critical Body Residues for Fish
- Table 22. Toxicity Reference Values for Mammals
- Table 23. Toxicity Reference Values for Birds
- Table 24. Surface Water Toxicity Test Results Relative to Surface Water Chemistry Data Grove Pond Invertebrates
- Table 25. Surface Water Toxicity Test Results Relative to Surface Water Chemistry Data Plow Shop Pond Invertebrates
- Table 26. Sediment Toxicity Test Results Relative to Sediment Chemistry Data Grove Pond
- Table 27. Sediment Toxicity Test Results Relative to Sediment Chemistry Data Plow Shop Pond
- Table 28a. Grove Pond Crayfish Tissue Concentrations Compared with Critical Body Residues: Hazard Quotients
- Table 28b. Plow Shop Pond Invertebrate Tissue Concentrations Compared with Critical Body Residues: Hazard Quotients
- Table 29. AVS/SEM Results Grove Pond
- Table 30. AVS/SEM Results Plow Shop Pond
- Table 31. Surface Water Toxicity Test Results Relative to Surface Water Chemistry Data Grove Pond Fish
- Table 32. Surface Water Toxicity Test Results Relative to Surface Water Chemistry Data Plow Shop Pond Fish
- Table 33. Grove Pond Fish Tissue Concentrations Compared with Critical Body Residues: All Species
- Table 34. Grove Pond Fish Tissue Concentrations Compared with Critical Body Residues: Hazard Quotients by Fish Species
- Table 35. Plow Shop Pond Fish Tissue Concentrations Compared with Critical Body Residues: All Species
- Table 36. Plow Shop Pond Fish Tissue Concentrations Compared with Critical Body Residues:

- Hazard Quotients by Fish Species
- Table 37. Maximum Uptake and Hazard Quotient Calculations Grove Pond Raccoon
- Table 38. Average Uptake and Hazard Quotient Calculations Grove Pond Raccoon
- Table 39. Apportionment of Risk Based on Maximum Exposures
- Table 40. Apportionment of Risk Based on Average Exposures
- Table 41. Residual Risk Maximum EPCs
- Table 42. Residual Risk Average EPCs
- Table 43. Maximum Uptake and Hazard Quotient Calculations Plow Shop Pond Raccoon
- Table 44. Average Uptake and Hazard Quotient Calculations Plow Shop Pond Raccoon
- Table 45. Maximum Uptake and Hazard Quotient Calculations Grove Pond Mink
- Table 46. Average Uptake and Hazard Quotient Calculations Grove Pond Mink
- Table 47. Maximum Uptake and Hazard Quotient Calculations- Plow Shop Pond Mink
- Table 48. Average Uptake and Hazard Quotient Calculations Plow Shop Pond Mink
- Table 49. Maximum Uptake and Hazard Quotient Calculations Grove Pond Black Crowned Night Heron
- Table 50. Average Uptake and Hazard Quotient Calculations Grove Pond Black Crowned Night Heron
- Table 51. Maximum Uptake and Hazard Quotient Calculations Plow Shop Pond Black Crowned Night Heron
- Table 52. Average Uptake and Hazard Quotient Calculations Plow Shop Pond Black Crowned Night Heron
- Table 53. Maximum Uptake and Hazard Quotient Calculations Grove Pond Belted
- Table 54. Average Uptake and Hazard Quotient Calculations Grove Pond Belted Kingfisher
- Table 55. Maximum Uptake and Hazard Quotient Calculations Plow Shop Pond Belted Kingfisher

- Table 56. Average Uptake and Hazard Quotient Calculations Plow Shop Pond Belted Kingfisher
- Table 57. Maximum Uptake and Hazard Quotient Calculations Grove Pond Tree Swallow
- Table 58. Average Uptake and Hazard Quotient Calculations Grove Pond Tree Swallow
- Table 59. Maximum Uptake and Hazard Quotient Calculations Plow Shop Pond Tree Swallow
- Table 60. Average Uptake and Hazard Quotient Calculations Plow Shop Pond Tree Swallow
- Table 61. Integrated Risk-Evaluation for Grove Pond
- Table 62. Integrated Risk-Evaluation for Plow Shop Pond
- Table 63 Summary of Potential Risk to Ecological Receptors at Grove Pond and Plow Shop Pond

List of Appendices:

Appendix A. Data Summary Tables for Grove Pond

Appendix B. Data Summary Table for Plow Shop Pond

Appendix C. Data Summary Tables for Flannagan Pond

Appendix D. Toxicity Test Reports for Grove Pond, Plow Shop Pond, and Flannagan Pond

Appendix E. Risk Apportionment for Wildlife Receptors

Appendix F. Adjustment of Hazard Quotients for Wildlife Species based on Taxonomic Differences in Prey Items

Appendix G. Residual Risk Evaluation

Appendix H. Comparison of 1994 and 2005 Toxicity Tests in Plow Shop Pond

Acronyms used in the Baseline Ecological Risk Assessment

AUF Area Use Factor
AVS Acid Volatile Sulfide
BAF Bioaccumulation Factor

BERA Baseline Ecological Risk Assessment
BSAF Biota-Sediment Accumulation Factor
CCC Criterion Continuous Concentration
COPC Chemical of Potential Concern

CSM Conceptual Site Model CBR Critical Body Residue

DDD Dichloro-diphenyl-dichloroethane
DDE Dichloro-diphenyl-dichloroethylene
DDT Dichloro-diphenyl-trichloroethane

ERED Environmental Residue-Effects Database

ER-L Effects Range-Low
ER-M Effects Range-Median
FIR Food Ingestion Rate
HQ Hazard Quotient

EPC Exposure Point Concentration ESI Expanded Site Investigation

EU Exposure Unit LEL Low-Effects Level

LOAEL Lowest Observed Adverse Effects Level

MADEP Massachusetts Department of Environmental Protection

MOU Memorandum of Understanding

NAWQC National Ambient Water Quality Criteria

NOAA National Oceanic and Atmospheric Administration

NOAEL No Observed Adverse Effects Level

NPL National Priorities List

ORNL Oak Ridge National Laboratory
PAH Polycyclic Aromatic Hydrocarbons

PCB Polychlorinated Biphenyls
PDC Plastic Distributing Company
PEC Probable Effects Concentration
PRE Preliminary Risk Evaluation

PUF Plant Uptake Factor

QA/QC Quality Assurance/Quality Control

RR Residual Risk

SAV Secondary Acute Value SCV Secondary Chronic Value SEL Severe-Effects Level

SEM Simultaneously Extracted Metals SQB Sediment Quality Benchmark SVOC Semivolatile Organic Carbon TDD Total Daily Dose

TEC Threshold Effects Concentration

TRV Toxicity Reference Value UCL Upper Confidence Limit

USEPA United States Environmental Protection Agency

VOC Volatile Organic Carbon WOE Weight of Evidence

FINAL

BASELINE ECOLOGICAL RISK ASSESSMENT

GROVE POND AND PLOW SHOP POND

AYER, MASSACHUSETTS

May 2006

Prepared for:

USEPA Region 1 Contract EP-W-05-020 Task Order #01

Prepared by:

Gannett Fleming, Inc. 199 Wells Avenue, Suite 210 Newton, MA 02459

EXECUTIVE SUMMARY

E.1 GENERAL INTRODUCTION

Grove Pond and Plow Shop Pond are located in Ayer, Massachusetts, northeast of the former Fort Devens, currently referred to as Devens. Aquatic organisms in the pond and terrestrial wildlife foraging in the pond may be exposed to the reservoir of contaminants in pond sediment. Contaminants may have originated from activities at the Devens base, other localized activities (e.g. tannery and railroad activities), upgradient sources, or via atmospheric deposition.

This Baseline Ecological Risk Assessment (BERA) was conducted to provide a quantitative estimate of risk posed to ecological receptors potentially exposed to Grove Pond and Plow Shop Pond media. This BERA, which incorporates data from 1991 to 2005 collected through several different investigations in the ponds, was conducted to support the Expanded Site Investigation (ESI).

E.2 RISK ANALYSIS

E.2.1 INTRODUCTION

The conceptual site model (CSM) for Grove Pond and Plow Shop Pond identifies exposure pathways from chemicals in pond sediment, surface water, and biota to aquatic organisms and semi-aquatic wildlife foraging in the pond. Assessment and measurement endpoints were selected based on the CSM. Assessment endpoints represent the ecological resources in the ponds that are to be protected. Measurement endpoints represent quantifiable ecological characteristics that are evaluated to determine if the assessment endpoints are met.

The assessment endpoints for the receptor groups in the ponds are as follows:

- Protection of the long-term health of water column invertebrate populations sublethal and lethal acute toxic effects of chemicals in surface water.
- Protection of benthic macroinvertebrate communities from sublethal and lethal acute toxic effects of chemicals in sediments.
- Protection of the long-term health of local fish populations from sublethal and lethal toxic effects of chemicals in surface waters.

 Protection of omnivorous mammals, carnivorous birds, piscivorous mammals and birds, and insectivorous birds foraging in the pond, to insure that ingestion of chemicals in food items, sediment, and surface water does not have a negative impact on growth, survival, and reproduction.

The measurement endpoints used in this BERA to determine risk are the following:

- Comparison of surface water and sediment concentration data to literature benchmarks protective of aquatic biota.
- Surface water chronic toxicity testing using sensitive freshwater invertebrate and fish species.
- Sediment toxicity testing using sensitive invertebrate species.
- Comparison of aquatic invertebrate and fish tissue residue levels against literature Critical Body Residues (CBRs).
- Food chain modeling to estimate a daily intake for wildlife receptors foraging in the ponds; compared the daily intake with literature toxicity reference values (TRV) to calculate a hazard quotient (HQ).

A Weight of Evidence (WOE) approach was used to interpret the various findings of the risk assessment. A WOE score was given to each measurement endpoint "low-medium" to "high", depending on the strength of the link between the measurement endpoint and its associated assessment endpoint. The WOE score was evaluated along with the estimation of risk for each assessment endpoint in a risk integration step. This risk integration step allowed a determination of the potential for and significance of risk to the various assessment endpoints.

Exposure units are defined in ecological risk assessment to provide an estimate of the area of exposure for a given ecological receptor and to determine how to organize the analytical data. The exposure units for this BERA were 1) Grove Pond, 2) Plow Shop Pond, and 3) Flannagan Pond, the reference site.

The HQ method was used to determine risk for ecological receptors foraging in the ponds. An HQ was calculated for each chemical of potential concern (COPC) by dividing an estimated or measured exposure or dose by a corresponding benchmark or toxicity value. Hazard quotients were determined for benchmarks comparisons, CBR comparisons, and food chain modeling. The HQ method was not used to determine risk in toxicity tests, however, which relied on statistical analyses instead.

Where applicable, potential risk to ecological receptors was determined for the background EU, using the same methods used to determine risk to Grove Pond and Plow Shop Pond receptors. A residual risk (RR) was calculated by dividing the site HQ by the background HQ. If the RR was greater than one, risk for a given COPC could not be attributed to background conditions.

E.2.2 RISK FINDINGS

The results of the risk characterization are summarized in Table ES-1 (Grove Pond) and Table ES-2 (Plow Shop Pond).

ES-1. Summary of Ecological Risks for Grove Pond

Target		Measur	Integrated Risk						
Receptor Group	Published Benchmarks		Laboratory Toxicity Testing		Tissue Residue Analyses		Food Chain Modeling		Interpretation
	WOE	Risk	WOE	Risk	WOE	Risk	WOE	Risk	
water column invertebrates	L-M	L	M	N					Low risk; no unacceptable risk.
fish	L-M	L	M	N	М-Н	L			Low risk; no unacceptable risk.
benthic invertebrates	L-M	Н	М-Н	M	М-Н	L			Medium risk; unacceptable risk.
omnivorous mammals							М-Н	N	No unacceptable risk
piscivorous mammals							М-Н	N	No unacceptable risk.
carnivorous birds							М-Н	Н	High risk; unacceptable risk
piscivorous birds							М-Н	N	No unacceptable risk.
insectivorous birds							М-Н	M	Medium risk; Unacceptable risk unlikely.

Shaded cells indicate that the measurement endpoint was not applicable to the assessment endpoint

WOE = weight of evidence

N=No significant risk identified; L-M = low-medium; M-H = medium-high; H = high

ND = not determined

ES-2. Summary of Ecological Risks for Plow Shop Pond

Target		Measui	Integrated Risk						
Receptor Group	Published Benchmarks		Laboratory Toxicity Testing		Tissue Residue Analyses		Food Chain Modeling		Interpretation
	WOE	Risk	WOE	Risk	WOE	Risk	WOE	Risk	
water column invertebrates	L-M	L	M	N					Low risk; no unacceptable risk.
fish	L-M	L	M	N	М-Н	L		4.13	Low risk; no unacceptable risk.
benthic invertebrates	L-M	Н	М-Н	M	М-Н	L			Medium risk; unacceptable risk.
omnivorous mammals							М-Н	Н	High risk; unacceptable risk
piscivorous mammals							М-Н	N	No unacceptable risk.
carnivorous birds							М-Н	Н	High risk; unacceptable risk
piscivorous birds							М-Н	M	Medium risk; unacceptable risk unlikely.
insectivorous birds						NE	М-Н	M	Medium risk; unacceptable risk unlikely.

Shaded cells indicate that the measurement endpoint was not applicable to the assessment endpoint

WOE = weight of evidence

N=No significant risk identified; L-M = low-medium; M-H = medium-high; H = high ND = not determined

E.2.2.1 Water Column Invertebrate Community

Potential risk to water column invertebrates based on each measurement endpoint was determined to be the following:

A. Benchmark comparison: The benchmark comparison measurement endpoint was given low-medium weight because benchmarks do not identify site-specific risk but are generic in nature. The benchmark comparisons for Grove Pond and Plow Shop Pond revealed low potential risk to surface water invertebrates.

B. Toxicity testing: The toxicity testing measurement endpoint was given a medium weight. The results of the toxicity tests with *Ceriodaphnia dubia* revealed no significant toxicity for surface water invertebrates in Grove Pond and Plow Shop Pond.

Integrating these two lines of evidence, it is unlikely that surface water invertebrates in either of the ponds experience unacceptable risk from exposure to COPCs.

E.2.2.2 Benthic Macroinvertebrate Community

A. Benchmark comparison: The benchmark comparison measurement endpoint was given low-medium weight because benchmarks do not identify site-specific risk but are generic in nature. The benchmark comparisons revealed high potential risk to benthic invertebrates in Grove Pond and Plow Shop Pond.

- B. Toxicity testing: The toxicity testing measurement endpoint was given a medium-high weight. Laboratory toxicity testing of three Grove Pond sediment samples using two benthic invertebrate species resulted in significant growth reductions (but no mortality) in two of the three samples. Testing of 11 Plow Shop Pond sediment samples using the same two species resulted in significant mortality and growth reductions in one sample, and significant growth reductions (but no mortality) in five additional samples.
- C. CBR comparison: The CBR comparison measurement endpoint was given a medium-high weight. The results of the CBR comparison suggested low risk to benthic invertebrates from accumulated COPC in Grove Pond and Plow Shop Pond.

Integrating these results, it was concluded that toxicity testing and the CBR comparisons carried greater weight than did the comparisons to sediment benchmarks. Therefore, while benchmark exceedances alone suggested potential high risk to benthic invertebrates in both ponds,

subsequent lines of evidence indicated that the exceedances did not equate to high risk. The three lines of evidence suggest that benthic invertebrates in Grove Pond were likely to experience medium risk due to potential growth reduction. Benthic invertebrates in Plow Shop Ponds were likely to experience medium risk due to reduced survival at one location and reduced growth at several other locations in the pond

E.2.2.3 Fish Community

A. Benchmark comparison: The benchmark comparison measurement endpoint was given low-medium weight because benchmarks do not identify site-specific risk but are generic in nature. The benchmark comparisons for Grove Pond and Plow Shop Pond revealed low potential risk to fish.

B. Toxicity testing: The toxicity testing measurement endpoint was given a medium weight. The results of the toxicity tests with *Pimephales promelas* revealed no significant toxicity for fish in Grove Pond and Plow Shop Pond.

C. CBR comparison: The CBR comparison measurement endpoint was given a medium-high weight. The results for the CBR comparison in six fish species collected from Grove Pond indicated that three metals (copper, lead, and zinc) exceeded their LOAEL level by small margins (highest average HQ [hazard quotient]_{LOAEL} = 2.9 for copper in bullhead). These results suggested the presence of low risk to fish in Grove Pond.

The results for the CBR comparison in four fish species collected from Plow Shop Pond, indicated that only copper exceeded its LOAEL level by a small margin (highest average HQ_{LOAEL} = 2.5 in bullhead). These results also suggested the presence of low risk to fish in Plow Shop Pond. Integrating these three lines of evidence, the fish community in either Grove Pond or Plow Shop Ponds is not likely to be at substantial risk from exposure to COPCs. The low risk identified by the CBR comparisons would not have community-level impacts because all the LOAEL exceedances were low, and both copper and zinc are under physiological control.

E.2.2.4 Omnivorous Mammals

The raccoon was the target receptor representing omnivorous mammals feeding at the Site. Only one LOE was available to assess risk to this receptor group. Food chain modeling was used to calculate COPC-specific total daily doses (TDD) for comparison to mammalian Toxicity Reference Values (TRVs). Most of the COPC concentrations in the food items used in modeling were based on site-specific measurements or estimates. Hence, this LOE was given a medium-to-high weight.

The results of the HQ calculations indicated it unlikely that omnivorous mammals would experience unacceptable risk from foraging in Grove Pond. However, the potential for high risk was identified for omnivorous mammals foraging in Plow Shop Pond, mainly because of the incidental ingestion of arsenic in pond sediments. There was significant uncertainty associated with this finding, as discussed below.

E.2.2.5 Piscivorous Mammals

The mink was the target receptor representing piscivorous mammals feeding at the Site. Only one LOE was available to assess risk to this receptor group. Food chain modeling was used to calculate COPC-specific TDDs for comparison to mammalian TRVs. Most of the COPC concentrations in the food items used in modeling were based on site-specific measurements or estimates. Hence, this LOE was given a medium-to-high weight.

The results of the HQ calculations indicate that it was not likely that piscivorous mammals would experience unacceptable risk from foraging in Grove Pond or Plow Shop Pond.

E.2.2.6 Carnivorous Birds

The black-crowned night heron was the target receptor representing carnivorous birds feeding at the Site. Only one LOE was available to assess risk to this receptor group. Food chain modeling was used to calculate COPC-specific TDDs for comparison to bird TRVs. Most of the COPC concentrations in the food items used in modeling were based on site-specific measurements or estimates. Hence, this LOE was given a medium-to-high weight.

The results of the HQ calculations indicated the potential for high risk to carnivorous birds foraging in both Grove Pond and Plow Shop Pond, mainly owing to the incidental ingestion of chromium in pond sediments. There was significant uncertainty associated with this finding, as discussed below.

E.2.2.7 Piscivorous Birds

The kingfisher was the target receptor representing piscivorous birds feeding at the Site. Only one LOE was available to assess risk to this receptor group. Food chain modeling was used to calculate COPC-specific TDDs for comparison to bird TRVs. Most of the COPC concentrations in the food items used in modeling were based on site-specific measurements or estimates. Hence, this LOE was given a medium-to-high weight.

The results of the HQ calculations indicated that it was not likely that piscivorous birds foraging in Grove Pond would experience unacceptable risk. However, the potential for medium risk was

identified for piscivorous birds foraging in Plow Shop Pond, owing to excessive levels of methyl mercury in fish.

E.2.2.8 Insectivorous Birds

The tree swallow was the target receptor representing insectivorous birds feeding at the Site. Only one LOE was used to assess risk to this receptor group. Food chain modeling was used to calculate COPC-specific TDDs for comparison to bird TRVs. The COPC concentrations used in modeling were based on the analysis of tree swallow stomach contents. Hence, this LOE was given a medium-to-high weight.

The results of the HQ calculations indicated that insectivorous birds foraging in Grove Pond and Plow Shop Pond would likely experience medium risk, mainly because of the presence of high chromium levels in stomach contents.

E.2.3 MAJOR UNCERTAINTIES

The potential for high risk from sediment ingestion was identified for omnivorous mammals (represented by the raccoon) and carnivorous birds (represented by the black-crowned night heron) foraging in the two Site ponds. Several major uncertainties are associated with these risk estimates.

Firstly, unacceptable risk was identified for the raccoon in Plow Shop Pond because of incidental ingestion of arsenic in sediment. The sediment uptake assumption for the raccoon (9% of the diet) was taken from EPA (1993). Because the value was based on conditions different from those in the ponds, there is uncertainty in the accuracy of this value for Grove Pond and Plow Shop raccoons, or other omnivorous mammals. This uncertainty is particularly important because the unacceptable risk concluded for the raccoon in Plow Shop Pond is due to incidental ingestion of arsenic in sediment. Therefore, the risk assumption relies entirely on the sediment intake assumption for this species.

Similarly, the sediment uptake assumption for the black-crowned night heron (2% of the diet) was based on a best professional judgment. There were no measured values for similar species that could have been used with more confidence; EPA (1993) lists an uptake for other aquatic birds at 2%. This uncertainty is particularly important because the unacceptable risk concluded for the black-crowned night heron in both ponds is due to incidental ingestion of chromium in sediment. Therefore, the risk assumption relies entirely on the sediment intake assumption for this species. For both the raccoon and the night heron, uncertainty is associated with the sediment ingestion rates for another reason. The estimated sediment uptake percentages are potentially overestimated because of the dense vegetative mat that exists throughout the ponds.

Because this mat may act as a barrier between sediment and biota, wildlife receptors may have limited direct exposure to sediment substrate. The incidental ingestion assumptions (e.g., 0.09 for the raccoon and 0.02 for the black-crowned night heron potentially overestimate risk from this pathway.

SECTION 1.0: INTRODUCTION

The U.S. Environmental Protection Agency (USEPA) directed Gannett Fleming, Inc. (Gannett Fleming) to prepare this Baseline Ecological Risk Assessment (BERA) Report as part of the Grove and Plow Shop Ponds Expanded Site Investigation (ESI). This report is in response to the Task Order #01 to Contract EP-W-05-020, Remedial Oversight of Activities at Fort Devens Plow Shop and Grove Ponds. The objective of the BERA is to provide a quantitative estimate of risk posed to ecological receptors potentially exposed to Grove Pond and Plow Shop Pond media.

The BERA evaluated the potential risks to aquatic organisms (benthic invertebrates, water column invertebrates and fish) directly exposed to surface water and sediments in the ponds. The BERA also evaluated potential risk to omnivorous and piscivorous mammals and carnivorous, piscivorous, and insectivorous birds exposed to contaminants in surface water, sediments and aquatic biota in the ponds.

The BERA discussed in this report includes the following general elements:

- a brief overview of the site history and environmental setting,
- a summary of the analytical data for sediments, surface water and aquatic biota collected from Grove Pond and Plow Shop Pond, and
- a risk analysis to quantify the potential impacts of site-related contaminants on the longterm health of benthic invertebrates, water column invertebrates, fish, and wildlife.

The BERA was developed following the general guidelines provided in EPA (1997) and EPA (1998).

1.1 REPORT ORGANIZATION

The BERA report is organized as follows (review to see that this matches with the actual info in the sections):

- Section 2 provides a general description of Grove Pond and Plow Shop Pond, including site history, background information, and the ecological setting.
- Section 3 discusses the analytical database development and data processing. It includes
 discussions on data sources, data quality issues, and compilation of data sets for use in the
 BERA.
- Section 4 covers problem formulation. This section includes discussions on site characterization, selection of contaminants of potential concern (COPC), the conceptual

site model, assessment and measurement endpoints, and the weight-of-evidence documentation.

- Section 5 presents the ecological exposure assessment. This section includes discussions on calculating and quantifying ecological exposures to the various receptor groups.
- Section 6 discusses the ecological effects assessment. This section covers discussions on selecting measures of effect and the methodologies used for deriving toxicity values used in the risk characterization.
- Section 7 presents the ecological risk characterization. This section includes a discussion
 on the risks to the eight assessment endpoints selected during problem formulation and a
 detailed uncertainty analysis.
- Section 8 provides a summary and conclusions.
- Section 9 provides the references used in support of the BERA.

SECTION 2: SITE DESCRIPTION

2.1 FORT DEVENS GROVE POND AND PLOW SHOP POND SITE PROFILE

Grove Pond and Plow Shop Pond are located in Ayer, Massachusetts, northeast of the former Fort Devens currently referred to as Devens. Devens was named to the National Priorities List (NPL) in November 1989. In October 1995, the Army issued a report that summarized all of the information collected to date and performed a Preliminary Risk Evaluation (PRE) in order to qualitatively gauge what risk the ponds were posing to human health and the environment. Primary concerns focused on the impacts from the ponds on Town and Devens drinking water supplies, fish and wildlife resources, and recreational activities such as fishing, hunting, and swimming. The PRE determined that exposure to both Plow Shop and Grove Pond sediments presented both human health and ecological risks.

Pursuant to a Memorandum of Understanding (MOU) signed in September 1997 for the landfill consolidation project, EPA Region I is the lead agency for conducting the remaining investigatory work and the selection and implementation of a remedial action for the ponds. In the late 1990s, EPA, in cooperation with the U.S. Fish and Wildlife, the U.S. Geological Service and the MADEP, embarked on an effort to collect the necessary information to address the data gaps identified in the Army's 1995 report. The data collected from the joint effort is to be used to compile an Expanded Site Investigation (ESI) for both Grove and Plow Shop Ponds. This BERA was written in support of the ESI.

Devens is not the only source of chemical inputs into the ponds. Besides regional atmospheric deposition and groundwater inputs, the ponds receive water from upstream source. Grove and Plow Shop Ponds are the most downstream in a series of six impoundments. In addition, several local features are potential sources of contaminants, including: a former tannery in Tannery Cove in Grove Pond, the Ayer Demolition Landfill adjacent to Tannery Cove, a plastics business on the northwest shore of Grove Pond, Shepley's Hill Landfill to the west of Plow Shop Pond, the Former Railroad Roundhouse on the southern shore of Plow Shop Pond, and a 19th Century industrial facility on the north shore of Plow Shop Pond.

While the southern shore of Grove Pond is bordered by property owned by Fort Devens, the northern shore includes the location of the Plastic Distributing Company (PDC, location of former tannery operations). In addition, the western edge of the pond is formed by the railroad causeway, owned and operated by Guildford Transportation (formerly Boston & Maine Railroad, B&MRR). Grove Pond receives drainage from Balch Pond, as well as from Cold Spring Brook and Bowers Brook, and discharges through a culvert on the western edge of the pond into Plow Shop Pond. Cold Spring Brook is downgradient of Devens. Bowers Brook connects into Cold Spring Brook.

The northern shore of Plow Shop Pond is bordered by commercial businesses to the north. The eastern shore is the Guilford Transportation railroad causeway, which separates Plow Shop Pond from Grove Pond. The southern and western shores include the former railroad roundhouse, and woodland and grassland associated with Shepley's Hill Landfill. At one time, the pond discharged through a canal at a sawmill (now the G. V. Moore Lumber Co.) operating near the pond's northeast corner. This canal is blocked, and the water level is now controlled primarily by a dam in the pond's northwest corner where it forms Nonacoicus Brook and its associated wetlands, which in turn flows approximately 1.5 miles northwest into the Nashua River.

2.2 ECOLOGICAL SETTING

The evaluation of the ecological setting is prerequisite to identifying complete ecological exposure pathways, ecological assessment endpoints, representative ecological receptors, and exposure parameters. The ponds are mostly surrounded by a thin strip of riparian habitat, which could provide cover for the wildlife species evaluated in this BERA. While these receptors might forage in the upland areas as well as in the ponds, the focus of this BERA is the ponds only.

Grove Pond

Grove Pond is a shallow, 60-acre impoundment, the fifth in a chain of ponds in Ayer, MA. The maximum depth of Grove Pond is 5 to 6 feet. The pond has been described as eutrophic (Meirzykowski and Karr 2000). Grove Pond seasonally supports dense growths of rooted vascular aquatic plants and emergent marsh plants (ABB 1995) both of which cover most of its surface. The pond bottom consists of a thick layer of organic sediment and peat up to several feet thick (ABB 1995). Due to its high organic content and eutrophic nature, the pond water experiences seasonal oxygen deficiencies.

Various tree and shrub species fringe the edges of Grove Pond, including red maple (*Acer rubrum*), oak species (*Quercus* spp.), grey birch (*Betula populifolia*), white pine (*Pinus strobus*), sheep laurel (*Kalmia angustifolia*), and swamp azalea (*Rhododendrun viscosum*). Typical herbaceous components include various graminoids, cinnamon fern (*Osmunda cinnamomea*), and sphagnum moss (*Sphagnum* sp.) (ABB 1995).

Grove Pond provides habitat for many species of mammalian wildlife, including raccoon (*Procyon lotor*), mink (*Mustela vison*), muskrat (*Ondrata zibethicus*), and beaver (*Castor canadensis*) (ABB 1995). Species of birds that may be found in the area include belted kingfisher (*Ceryle alcyon*), black-crowned night heron (*Nycticorax nycticorax*), mallard (*Anas platyrhynchos*), wood duck (*Aix sponsa*), great blue heron (*Ardea herodias*), and osprey (*Pandion haliaetus*) (ABB 1995). Green frogs (*Rana clamitans*) and painted turtles (*Chrysemys picta*) have been observed in Grove Pond and it is likely that other reptile and amphibian species

inhabit the area (ABB 1995). Fish species observed in the pond include largemouth bass (*Micropterus salmoides*), bluegill (*Lepomis macrochirus*), bullhead (*Ameiurus* sp.), and chain pickerel (*Esox Niger*) (ABB 1995).

According to the Fort Devens Basewide Biological and Endangered Species Survey (ABB-ES 1993), no state or federally listed rare or endangered species occur in Grove Pond or its floodplain (as cited in ABB 1995).

Plow Shop Pond

Plow Shop Pond is a shallow 29-acre impoundment located just west and downstream of Grove Pond. As an aquatic community, Plow Shop Pond is similar to Grove Pond but is smaller, slightly deeper (maximum depth of 8-10 feet), and has a less dense growth of aquatic vegetation, though seasonally, more than 80% of the pond surface is covered with aquatic macrophytes. The bottom of Plow Shop Pond also consists of a layer of highly organic sediment and peat up to several feet thick.

Plow Shop Pond is eutrophic and has been classified as a floating-leaved deep marsh (E&E 1993 [as cited in ABB 1995]). Emergent aquatic macrophytes in the pond include sweet water lily (*Nymphaea odorata*) and water shield (*Brasenia schreberi*). Submerged macrophytes, primarily marigold (*Megalodonta beckii*), seasonally cover more than 75% of the submerged portions of the pond. The pond bottom consists primarily of highly organic sediments and peat ranging in depth from approximately 1 foot to over 7 feet. Wildlife species using Plow Shop Pond are the same as those using Grove Pond. Fish species in Plow Shop Pond are also similar to those in Grove Pond; in fact, fish can pass freely between the ponds.

SECTION 3: DATABASE DEVELOPMENT AND DATA PROCESSING

3.1 INTRODUCTION

Continuing concerns for potential impacts, from military activities and from local industrial operations, on adjacent bodies of water (e.g. Grove Pond, Plow Shop Pond, and Nonacoicus Brook) and on groundwater in the overburden aquifer in the vicinity have motivated a number of studies on the ponds. Data from these many studies were consolidated and a large data set was established from these various sources

Because these investigations focused on different areas, different media, and different contaminants, a data gap evaluation (Gannett Fleming 2002) was conducted to determine which pieces of information were missing for a more comprehensive evaluation of risk in the ponds. The Data Gap Evaluation identified the need for additional surface water and sediment sampling, sediment and surface water toxicity tests, and fish tissue sampling in both ponds. EPA Region 1 conducted these activities in 2004 and 2005...

EPA conducted this additional surface water, sediment, and fish sampling in 2004 and 2005 in Grove Pond, Plow Shop Pond, and a reference location, Flannagan Pond. Flannagan Pond is an 87-acre impoundment with similar characteristics as the other two ponds.

The locations of most recent sediment samples for chemical analysis and sediment toxicity tests are the following:

Grove Pond: one sample near Tannery Cove because of the high concentrations detected there historically; one sample off the western shore, near Army property, one sample near the middle of the pond.

Plow Shop Pond: two samples within Red Cove because of the historically high concentrations, particularly of arsenic, in this area; two samples along the western shoreline of the pond to capture possible contamination from groundwater discharge from Shepley's Landfill; two samples extending in a transect from Red Cove towards the middle of the pond to capture possible gradients from Red Cove; two samples near the southern shoreline; two samples near the Railroad Roundhouse; and one sample near the inflow from Grove Pond.

3.2 DATA SOURCES

The specific data sources used in support of the current BERA can be summarized as follows:

3.2.1 Grove Pond

Surface water

A total of 20 surface water samples were collected and analyzed for dissolved metals. These samples were collected as part of different investigations from 1993 to 2004.

A total of 31 surface water samples were collected and analyzed for total metals. These samples were collected as part of different investigations from 1992 to 2005.

Sediment

A total of 147 sediment samples were collected and analyzed for metals; 87 samples were also analyzed for pesticides and PCBs; 72 samples were analyzed for PAHs; and 21 were analyzed for VOCs. These samples were collected as part of different investigations from 1992 to 2005.

Aquatic Biota

A total of 97 biological tissue samples were collected from Grove Pond. Thirty- two fish samples were collected in 1992 and 2004 and analyzed for metals, pesticides, and PCBs. Six crayfish samples were collected in 1998 and 2000 and analyzed for metals. The three crayfish samples from 2000 were actually composite samples and the exact number of crayfish collected was not reported. Four composite odonata samples were collected in 2001 and analyzed for metals. Twenty-five frog tissue samples were collected in 1999 and analyzed for metals. Finally, 10 samples of tree swallow stomach contents (boli) were collected in 1999 and analyzed for metals.

3.2.2 Plow Shop Pond

Surface Water

A total of 10 surface water samples were collected and analyzed for dissolved metals. These samples were collected in 2004.

A total of 30 surface water samples were collected and analyzed for total metals. These samples were collected as part of different investigations from 1991 to 2004.

Sediment

A total of 126 sediment samples were collected and analyzed for metals; 56 samples were also analyzed for pesticides and PCBs; 28 samples were analyzed for PAHs; and 13 were analyzed for VOCs. These samples were collected as part of different investigations from 1991 to 2005.

Aquatic Biota

A total of 62 biological tissue samples were collected from Plow Shop Pond. Nineteen fish samples were collected in 1992 and 2004 and analyzed for metals, pesticides, and PCBs. Six mussel samples were collected in 1998 and analyzed for metals. Five crayfish samples were collected in 1998 and 2000 and analyzed for metals. The four crayfish samples from 2000 were actually composite samples and the exact number of crayfish collected was not reported. Four composite odonata samples were collected in 2000 and analyzed for metals. Thirteen frog tissue samples were collected in 1999 and analyzed for metals. Thirteen swallow egg samples were collected in 1998 and 1999 and analyzed for metals. Finally, three samples of tree swallow stomach contents (boli) were collected in 1999 and analyzed for metals.

3.3 DATA QUALITY

The analytical data used for this risk assessment were taken from various studies and were not collected for risk assessment purposes in all cases. This subsection describes how the data from all of the various Grove Pond and Plow Shop Pond investigations were selected for use in the BERA

3.3.1 Data Sorting

Data compiled together from various sources were sorted by environmental medium. The specific media evaluated in the BERA were identified in section 3.2 and included surface water, sediments, and aquatic biota collected from Grove Pond and Plow Shop Pond.

Sediment samples were divided into surficial sediments (0-1 ft deep) and deeper sediments (>1 ft deep). Only the analytical data from surficial sediments were retained because most biological activity occurs within this oxygenated upper layer. In addition, wildlife receptors would be unlikely to come in contact with deep sediments during normal foraging activities.

Surface water samples collected from the two ponds were divided into unfiltered and filtered samples for metals analysis. The unfiltered samples provided data on total metals, that included the dissolved fraction together with the fraction associated with particulate matter. By definition, the filtered samples provided data only on dissolved metals, which have been shown to represent the fraction most toxic to aquatic receptors. Data on both total and dissolved metals were included in the database and used in the BERA. For benchmark screening, only the filtered metal concentrations were compared to surface water ecological benchmarks. For food chain modeling, however, unfiltered metal concentrations were used to better reflect total metal uptake by wildlife receptors drinking surface water from the two ponds.

3.3.2 Evaluation of Data Usability

The results of the chemical analyses of the surface water samples collected from Grove Pond and Plow Shop Pond are provided in Appendices A and B, respectively. The majority of the reports used to establish the database for the present risk assessment did not include laboratory analytical reports. Where analytical reports were not available, summary tables found within the documents were used.

Gannett Fleming, Inc. (GF) conducted a data validation review as part of the Data Gap Evaluation. The purpose of the review was to evaluate the general quality of each data set and determine the usability of the data for the ESI Report. The data were reviewed to evaluate: 1) The level of data validation or review performed at the time the data were generated, 2) the analytical protocols and laboratories used, and 3) the availability of Quality Assurance/Quality Control information. A comprehensive discussion of this review is provided in Section 3.0 of the ESI Report.

Data were determined to be usable for the ESI Report under the following conditions: 1) EPA-approved or equivalent laboratory methods were used, 2) data were generated by an EPA laboratory or under the Army Corps of Engineers analytical review protocols, 3) enough QA/QC information was provided in the report to perform a Tier II level data validation at a future time, or 4) EPA had already reviewed and accepted the data. If none of these conditions were met, the data set was assigned a "Not Acceptable" data usability code and was not used in the ESI Report.

3.3.3 Comparison to Background

In accordance with accepted EPA Region I ecological risk assessment practices, background concentrations were not incorporated into the COPC selection process. Rather, background concentrations were considered as part of the Risk Characterization to identify COPCs that may be influenced by regional or upstream inputs. Residual risks (RRs) were estimated by dividing the risk for analytes measured in the ponds by the risk from these same analytes measured in background samples. This evaluation is presented within the Risk Characterization of the BERA. In addition, a comparison of Grove Pond and Plow Shop Pond data to the background data set is discussed in the Nature and Extent Section of the ESI Report.

The derivation of background HQs for the residual risk evaluation is presented in Appendix G. Surface water, sediment, and fish data from the 2004 and 2005 collection effort in Flannagan Pond (Appendix C) were used to establish background EPCs. There are no background data for invertebrate tissue, frog tissue, swallow eggs, or swallow stomach contents. Background EPCs for non-fish biota were estimated from background sediment concentrations and BSAFs. In order to not overestimate background concentrations in biota and to parallel the approach used for the two ponds, BSAFs were derived from Grove Pond and Plow Shop Pond sediment and

biota data Appendix Tables G-1 through G-4). Four BSAF were derived, one based on maximum EPC for sediment and biota for each pond and one based on average EPCs. This provided a range of BSAFs. The BSAF selected for the background food chain model was the BSAF derived for the sediment concentration closest to the sediment concentration in Flannagan Pond.

Residual risk was calculated by dividing the Grove Pond/Plow Shop Pond HQ by the background HQ.

Risk in Grove Pond and Plow Shop Pond was determined to be due to background conditions if that risk was less than that measured in background (i.e., if RR < 1.0). If the RR was above 1.0, then the site risk exceeded the background risk and the residual risk may have been due to pond-specific contamination.

3.4 COMPILING DATA SETS FOR USE IN THE BERA

The final product of the data evaluation and summarization process is a comprehensive database for use in quantitative risk assessment. Data sets for each pond were developed by compiling analytical results for each medium of interest (i.e., surface water, sediment, aquatic biota) and analyte group (i.e., metals, organics).

3.4.1 Data Summarization Methods

Each data set was summarized to provide the following descriptors:

- maximum detected concentration,
- average detected concentration, and
- frequency of detection (= number of detected values over the number of samples analyzed).

The following procedures were applied to compile data for a particular analyte in a given medium for calculating the summary statistics used in the BERA:

- Results assigned qualifiers indicating that an analyte was positively detected or presumptively present were retained for use "as is" in the risk calculations.
- Results assigned qualifiers indicating that an analyte was not positively detected were retained at one half their detection limit for use in the risk calculations if that analyte was detected in at least one of the samples. An analyte was dropped from further

consideration and not used in the calculations if it was present below its detection limit in all of the samples

- Any results considered of inadequate quality (i.e., data qualified as rejected) were not used in the risk calculations.
- Analytical results for samples collected from the same locations but during different sampling events were considered unique samples and were not averaged together.

3.4.2 Summary Statistics

For all media, an arithmetic mean concentration was calculated for each analyte retained in the database. For samples with a concentration of a particular chemical below the detection limit, ½ the detection limit was used in the calculation of the average concentration.

The maximum concentration value instead of the 95% upper confidence limit (UCL) was used in the risk calculations for each analyte retained in the database. These values were not intended to calculate realistic exposures. Instead, the maximum concentrations were used to provide a worst-case risk ceiling. The actual assessment of risk relied on the mean concentrations.

Appendix A provides the summarized analytical data for surface water, sediment, and biological tissue collected in Grove Pond. Appendix B provides the summarized analytical data for Plow Shop Pond. Appendix C provides the summarized analytical data for the reference condition. Note that Section 4 discusses the process for selecting the contaminant of potential concern (COPCs) identified in these attachments.

3.4.3 Data Sets Used in the BERA

The sources of data used in the BERA are summarized in Table 1 (Grove Pond) and Table 2 (Plow Shop Pond). The data for surface water, sediment, and biological tissues are summarized in Appendices A, B, and C.

SECTION 4: PROBLEM FORMULATION

4.1 INTRODUCTION

The problem formulation for the BERA focuses on developing a conceptual site model (CSM) and identifying appropriate criteria and toxicological benchmarks to select COPCs from the available analytical data. The CSM identifies the presence of complete exposure pathways between site-related contaminant sources and ecological receptors. It also relates assessment and measurement endpoints to characterize ecological exposure (Section 5.0), effects (Section 6.0) and risk characterization (Section 7.0) for Grove Pond and Plow Shop Pond.

This chapter is organized as follows: Section 4.2 summarizes the site characterization and defines the exposure units (EU), Section 4.3 describes the selection process to identify the COPCs used in the risk calculations, Section 4.4 provides the CSM, and Section 4.5 outlines the assessment and measurement endpoints.

4.2 SITE CHARACTERIZATION

The evaluation of the ecological setting is prerequisite to identifying complete ecological exposure pathways, ecological assessment endpoints, representative ecological receptors, and exposure parameters.

4.2.1 Site Exposure Units

Two exposure units are covered in this BERA, Grove Pond and Plow Shop Pond. The locations and ecological setting of each pond is described in Section 2.0. The exposure units are limited by the shoreline; while some ecological receptors forage in upland areas as well as within the ponds, this BERA only focuses on exposure to COPC within pond media.

Throughout both ponds, the aquatic system provides suitable habitat for water column invertebrates, several species of fish, various taxa of benthic invertebrates, reptiles, amphibians, birds, and mammals. The assessment of habitat and identification of organisms likely to forage within these habitats were used to identify representative ecological receptors for the Assessment and Measurement endpoints discussed in Section 4.5.

4.2.2 Background Exposure Unit

The background EU for Grove Pond and Plow Shop Pond is regional aquatic habitats not affected by the local sources of contamination that have released chemicals to the ponds, as discussed in Section 2.0 of the ESI Report. Flannagan Pond was selected as a reference location for targeted sampling in 2004 and 2005 to represent background conditions for the ponds.

4.3 SELECTING CONTAMINANTS OF POTENTIAL CONCERN (COPCs)

COPCs represent a subset of the analytes detected in site media that could potentially affect local ecological receptors. The COPC selection process consisted of comparing maximum analyte concentrations detected in surface water and sediments against conservative published surface water and sediment screening benchmarks. An analyte detected in surface water or sediment was retained as a COPC if its maximum detected concentration exceeded its benchmark.

The essential nutrients calcium, iron, magnesium, potassium and sodium were automatically eliminated as potential COPCs as they are only considered toxic at extremely high concentrations. An analyte detected in surface water or sediment was also retained as a COPC if it did not have a corresponding screening value. All analytes detected in biological tissue samples in Grove Pond and Plow Shop Pond were retained as COPCs.

A basic assumption was made about using sediment benchmarks in selecting COPCs for wildlife receptors that may forage in Grove Pond and Plow Shop Pond. These conservative benchmarks represent concentrations that would not harm benthic organisms chronically exposed to the contaminants. It was assumed that if those concentrations did not harm benthic invertebrates exposed over long periods of time, then it would also not harm wildlife receptors exposed to small amounts via incidental ingestion.

4.3.1 Surface Water Benchmarks

Surface water COPCs were selected for each Site Pond by comparing the maximum detected surface water concentrations to chronic surface water benchmarks obtained from the literature in the following order of preference:

- EPA National Ambient Water Quality Criteria (NAWQC) Criterion Continuous Concentration (CCC) for chronic exposures (EPA 2002). The EPA NAWQC represent concentrations in surface water which, if not exceeded for four consecutive days over a three-year period, are not expected to cause unacceptable harm to aquatic organisms.
- Tier II Secondary Chronic Values (SCV) (Suter and Tsao 1996). The SCVs were developed by the Oak Ridge National Laboratory (ORNL) using a method similar to that used for the NAWQC, except that they are based on a less-complete data set than required for calculating NAWQC.

The ecological benchmarks for surface water are provided in Table 3 (Grove Pond) and Table 4 (Plow Shop Pond). Except as noted in Table 3 and Table 4, comparisons were made between dissolved concentrations of metals and surface water benchmarks, as surface water benchmarks are generally available for dissolved, not total, concentrations. Therefore, while total surface

water concentrations are presented elsewhere, e.g., in the food chain model EPC table and in the data tables for the toxicity tests, these data for total metals were not used to select COPC.

4.3.2 Sediment Benchmarks

Sediment COPCs were selected for each Site Pond by comparing the maximum detected sediment concentrations to conservative no effect sediment benchmarks obtained from the literature in the following order of preference:

- EPA Sediment Quality Benchmarks (SQB) (EPA 1996). The EPA developed these benchmarks for use as screening tools within the Superfund program. They were obtained from diverse sources, some of which are described below.
- MacDonald *et al.* (2000) Threshold Effects Concentrations (TEC). TECs represent values below which harmful effects to benthic invertebrates are unlikely to be observed.
- Ontario Ministry of the Environment Low-Effects Level (LEL) (Persaud *et al.* 1993).
 LELs represent values below which no effects are expected for the majority of sediment dwelling organisms.
- National Oceanic and Atmospheric Administration (NOAA) Effects Range-Low (ER-L)(Long *et al.* 1995). ER-Ls are concentrations measured in estuarine or marine environments below which toxicity to benthic invertebrates rarely occurred.

The EPC and ecological benchmarks for sediments are provided in Table 5 (Grove Pond) and Table 6 (Plow Shop Pond).

4.3.3 Media-Specific COPCs

Ecological COPCs are the analytes detected in site media with concentrations that exceed available conservative benchmarks. Table 3 and Table 4 present the benchmark screening used to select surface water COPCs for Grove Pond and Plow Shop Pond, respectively. Table 5 and Table 6 present the benchmark screening used to select sediment COPCs for Grove Pond and Plow Shop Pond, respectively.

4.3.3.1 Surface Water COPCs

Grove Pond

Three inorganics (aluminum, barium, and manganese) were detected at concentrations that exceeded chronic benchmarks for surface water and were retained as surface water COPC in Grove Pond.

Plow Shop Pond

Four inorganics (aluminum, barium, manganese, and selenium) were detected at concentrations that exceeded chronic benchmarks for surface water and were retained as surface water COPC in Plow Shop Pond.

4.3.3.2 Sediment COPCs

Grove Pond

Nineteen metals (all metals other than essential nutrients), four pesticides, and 18 SVOC (including total PAHs) were selected as sediment COPC in Grove Pond.

Plow Shop Pond

Nineteen metals (all metals other than essential nutrients), two pesticides, two PCBs, 17 SVOC (including total PAHs), one VOC (acetone) were selected as sediment COPC in Plow Shop Pond.

4.3.3.3 Biota COPCs

All chemicals present in biological samples above their analytical detection limit, except for the essential nutrients, were retained as COPCs. Most chemicals detected in biological samples were already identified as sediment COPCs. However, several more were included as biological tissue COPCs:

Grove Pond

One inorganic chemical, strontium, was added as a COPC due to detected concentrations in fish, invertebrate, and frog tissue. Total PCBs was added as a COPC in due to detected concentrations in fish tissue.

Plow Shop Pond

Two inorganic chemicals were added as a COPC in Plow Shop Pond: boron, due to detected concentrations in invertebrate tissue, and strontium, due to detected concentrations in invertebrate and frog tissue.

4.4 CONCEPTUAL SITE MODEL (CSM)

A CSM identifies the sources, media, pathways and exposures evaluated in the BERA, and the relationship between the assessment and measurement endpoints. Its purpose is to illustrate how ecological receptors might come in contact with COPCs associated with releases from the site. The CSM for ecological exposures for Grove Pond and Plow Shop Pond is presented in Figure 1.

The source of chemical stressors to pond receptors is the reservoir of chemical constituents concentrated in surficial sediments, from known and unknown sources in the watershed. Contaminants in sediments can be taken-up via direct contact by benthic organisms. Contaminants in sediments can also be ingested by terrestrial wildlife foraging in shallow parts of the pond. Sediment COPCs that go into solution in the overlying water can be absorbed by water column biota and can also be ingested by wildlife foraging in the pond. Finally, sediment COPCs can also migrate into the aquatic food web, via bioaccumulation in aquatic invertebrates, and become available to foraging aquatic biota as well as terrestrial wildlife.

A CSM for hydrology and geochemistry that describes in more detail the migration pathways from chemical sources to pond sediments and surface water is discussed in the Nature and Extent section of the ESI Report.

4.4.1 Exposure Pathways

Ecological receptors and exposure pathways were evaluated in accordance with the *Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessment* (EPA 1997). Receptor populations that were reasonably anticipated to be exposed to chemicals of concern on the site were identified.

For an exposure pathway to be complete, an ecological receptor must be able to access the media containing site contaminants. Contaminants must also be bioavailable to the receptor through one or more exposure routes. Exposure pathways are generally considered complete when all of the following are present: a chemical that exhibits toxicity, an exposure point, an exposure route, and an ecological receptor. An exposure point is a location of potential contact between an organism and a chemical. The exposure route is the way a chemical comes in contact with an organism (e.g., by ingestion). Ecological receptors can be exposed to chemicals in various media, including: surface water, sediment, surface soil, plants, and aquatic and terrestrial prey

species. This BERA incorporates potential exposure to surface water, sediment, plant, and aquatic prey species.

Ecological receptors at Grove Pond and Plow Shop Pond that may be exposed to contaminants in pond media include aquatic biota (e.g., benthic macroinvertebrates, pelagic macroinvertebrates, and fish) as well as terrestrial/semi-aquatic birds and mammals that feed on pond biota.

4.4.1.1 Aquatic Exposure Pathways

Aquatic biota may be exposed directly to contaminants in surface water, sediments, and pore water. They can also be exposed via ingestion of surface water, sediments, pore water and organisms that have accumulated body burdens of chemicals.

- Organisms exposed primarily to contaminants via direct contact with surface water include planktonic species (e.g., zooplankton) or planktonic and older life stages of larger species (e.g., fish) swimming in the water column.
- Organisms exposed primarily to contaminants via direct contact with sediments or pore water include benthic invertebrates that spend their whole life in and on sediments (e.g., oligochaetes, amphipods, mussels) or juvenile life stages of terrestrial insects (e.g., stone flies, chironomids, mayflies, dragonflies). The amount of exposure experienced by a sediment dweller depends on several factors, including substrate composition (mud, sand, gravel), physical-chemical characteristics (e.g., organic carbon content, dissolved oxygen content, contaminant concentration, flow) and biological requirements (feeding requirements, burrowing vs. surface activities, water velocity requirements).
- Organisms exposed primarily to contaminants via food ingestion may include larger benthic invertebrates such as crayfish, and older life stages of fish.

4.4.1.2 Semi-Aquatic Exposure Pathways

The potential exposure pathways for terrestrial wildlife species associated with aquatic environments in Grove Pond and Plow Shop Pond are ingestion of pond biota and surface water, and sediment via incidental ingestion. Dermal absorption and inhalation were not evaluated in the BERA, as they are not thought to be significant sources of chemical exposure for the ecological receptors evaluated.

4.5 ASSESSMENT AND MEASUREMENT ENDPOINTS

Endpoints were selected to quantify potential risk to ecological receptors that may be exposed to chemicals in Grove Pond and Plow Shop Media. Assessment endpoints are expressions of the

actual ecological value to be protected. The basic criteria for selecting assessment endpoints for this BERA include:

- the ecological resource should have relevance,
- the ecological resource should be susceptible to the stressors of concern,
- the ecological resource should have biological, social, and/or economic value, and
- the ecological resource should be relevant to the risk management goals for the site

Measurement endpoints are the aspects of the ecosystem that are measured to determine if the assessment endpoints are met. For this BERA, assessment and measurement endpoints were selected for aquatic communities and terrestrial wildlife. Assessment and measurement endpoints are presented in Table 7.

4.5.1 Selecting Representative Assessment Endpoint Species or Communities

Because it is not possible to evaluate all parts of the pond ecosystems potentially affected by contamination, this BERA focused on key ecological groups most likely exposed to site-related contaminants

Amphibians and reptiles have been observed in both ponds. However, these receptors were not included in the evaluation because little or no toxicological data exist for use in risk assessment. It was assumed that the embryos and larvae of amphibians would represent the most sensitive life stage to aquatic exposures if the overall sensitivity of those aquatic life stages is assumed to be comparable to that of fish, then the assessment of risk to the latter receptor group would also represent amphibians. For reptiles (e.g., aquatic turtles), the potential for site-related risks was assumed to be no worse than that experienced by fish-eating birds.

4.5.1.1 Macroinvertebrate Communities

Macroinvertebrates are a basic component of all ecological systems. As well as acting as a major food source for higher trophic level organisms, macroinvertebrates play an important role in nutrient recycling and transfer to higher trophic levels. Significant alterations in macroinvertebrate communities could impact the energy cycling at the base of the aquatic food chain.

4.5.1.1.1 Water Column Invertebrates

The other assessment endpoint for aquatic invertebrates is the protection of the long-term health of water column invertebrate populations from sublethal and lethal toxic effects of chemicals in surface waters. Similar to the benthic invertebrates, water column invertebrates (e.g., zooplankton) play a role in the transfer of nutrients from primary consumers to upper trophic

level organisms. They are also an important food source for many aquatic taxa including many species of fish. Chemicals in pond surface water could impair the water column invertebrate communities in the ponds, particularly by harming or eliminating sensitive species.

4.5.1.1.2 Benthic Invertebrates

For benthic invertebrates, the assessment endpoint is the protection of benthic macroinvertebrate communities from sublethal and lethal acute toxic effects of chemicals in sediments. The benthic community provides much important function in aquatic systems. Benthic organisms are a major component of many aquatic organisms, including many species and life stages of fish. Benthic organisms also play a role in the transfer of nutrients from the base of the food chain to higher trophic levels. As well as providing a mechanism for nutrients to reach higher trophic level organisms, benthic invertebrates transfer bioaccumulative chemicals in sediments to higher trophic levels.

Grove Pond and Plow Shop Pond sediments support a wide variety of invertebrate taxa. Chemicals in pond sediments could impair the invertebrate communities in the ponds, particularly by harming or eliminating sensitive species. A less diverse community, dominated by less sensitive species, and /or a less abundant community may result over time. Such a community is less equipped to provide the ecological functions of nutrient transfer and supplying food to upper trophic levels, thereby affecting the aquatic community as a whole.

4.5.1.2 Fish Receptors

The assessment endpoint for fish is the protection of the long-term health of local fish populations from sublethal and lethal toxic effects of chemicals in surface waters. Grove Pond and Plow Shop Pond support a warm water fish community, which includes brown bullhead, yellow bullhead, bluegill, pickerel, and largemouth bass. A healthy aquatic environment should provide such a community with a diverse food base, feeding and spawning areas, refuges for juvenile fish, and other essential environmental services.

The presence of chemicals in Grove Pond and Plow Shop Pond media could impair the local fish community directly in two general ways: 1) mortality of sensitive early lifestages exposed to chemicals dissolved in the water column, or 2) elevated levels of chemicals in the tissues of aquatic biota via food chain uptake which could affect reproduction and the long-term survival of exposed populations.

4.5.1.3 Wildlife Receptors

Several species of birds and mammals have been observed or have the potential to reside near and forage in Grove Pond and Plow Shop Pond. Omnivorous and piscivorous mammals and

carnivorous, piscivorous, and insectivorous birds were evaluated in this BERA. These groups were selected because they area the most likely to experience the highest exposure to site COPC of all wildlife groups.

4.5.1.3.1 Omnivorous Mammals

One mammalian assessment endpoint is the protection of omnivorous mammals foraging in pond shallows, to insure that ingestion of chemicals in food items, sediment, and surface water does not have a negative impact on growth, survival, and reproduction. For omnivorous mammals, the ecological exposure routes of greatest significance are ingestion of fish and other aquatic biota, bird eggs, and water, and inadvertent ingestion of sediment. The raccoon (*Procyon lotor*) was selected as the representative omnivorous mammal species because its foraging habits would bring it into contact with contaminated media and food items and because it is likely to inhabit the site. It was also selected because of its high ingestion of sediment (9 percent of diet).

4.5.1.3.2 Piscivorous Mammals

The other assessment endpoint is the protection of piscivorous mammals foraging in the pond, to insure that ingestion of chemicals in food items, sediment, and surface water does not have a negative impact on growth, survival, and reproduction. For piscivorous mammals foraging in the ponds, the ecological exposure routes of greatest significance are ingestion of fish and water, and inadvertent ingestion of sediment. The mink (Mustela vison) was selected as the representative piscivorous mammal species because its foraging habits would bring it into contact with contaminated media and food items and because it is likely to inhabit the site.

4.5.1.3.3 Carnivorous Birds

One assessment endpoint for birds is the protection of carnivorous birds foraging in pond shallows, to insure that ingestion of chemicals in food items, sediment, and surface water does not have a negative impact on growth, survival, and reproduction. For carnivorous birds foraging in the ponds, the ecological exposure routes of greatest significance are ingestion of fish, other aquatic biota, and water, and inadvertent ingestion of sediment. The black-crowned night heron (*Nycticorax nycticorax*) was selected as the representative avian carnivorous species because its foraging habits would bring it into contact with contaminated media and food items and because it is likely to inhabit the site.

4.5.1.3.4 Piscivorous Birds

A second assessment endpoint for birds is the protection of piscivorous birds foraging in the pond, to insure that ingestion of chemicals in food items and surface water does not have a negative impact on growth, survival, and reproduction. For piscivorous birds foraging in the

ponds, the ecological exposure routes of greatest significance are ingestion of fish and water. The belted kingfisher (Ceryle alcyon) was selected as the representative piscivorous bird species because its foraging habits would bring it into contact with contaminated media and food items and because it is likely to inhabit the site.

4.5.1.3.5 Insectivorous Birds

The last assessment endpoint is protection of insectivorous birds to insure that ingestion of chemicals in food items does not have a negative impact on growth, survival, and reproduction. For insectivorous birds, the ecological exposure route of greatest significance is the ingestion of aquatic insects emerging from the ponds. Because data from tree swallow (*Tachycineta bicolor*) stomach contents are available, this species was selected as the representative species for insectivorous birds

4.5.2 Measurement Endpoints

Measurement endpoints were used to quantify the presence of potential risk to their associated assessment endpoints. The following measurement endpoints were selected for each of the assessment endpoints and their associated risk question.

4.5.2.1 Water Column Invertebrate Community

Protection of the long-term health of water column invertebrate populations from sublethal and lethal toxic effects of chemicals in surface waters. Are the levels of contaminants in surface water sufficiently high to cause biologically significant changes or impair the function of the water column invertebrate community in Grove Pond and Plow Shop Pond?

There are two measurement endpoints for this assessment endpoint:

- 1. Comparison of maximum and average site surface water concentrations to acute and chronic generic surface water benchmarks.
- 2. Surface water chronic toxicity test using the freshwater cladoceran (*Ceriodaphnia dubia*).

4.5.2.2 Benthic Macroinvertebrate Community

Protection of benthic macroinvertebrate communities from sublethal and lethal acute toxic effects of chemicals in sediments. Are the levels of contaminants in sediments sufficiently high

to cause biologically significant changes or impair the function of the benthic community in grove Pond or Plow Shop Pond?

There are three measurement endpoints for this assessment endpoint:

- 1. Comparison of maximum and average site sediment concentrations to no effect and effect generic sediment benchmarks.
- 2. Sediment toxicity testing using a midge (*Hyallela azteca*) and amphipod (*Chironomus tentans*)
- 3. Comparison of maximum and average aquatic invertebrate tissue residue levels against target receptor critical body residues (CBRs)."

The bioavailability of metals was also assessed with acid volatile sulfide (AVS) and simultaneously extracted metal (SEM) data. The AVS/SEM evaluation is not considered a measurement endpoint in a strict sense, however, as it does not provide an actual measurement or estimation of effects. It is, rather, a tool that is used to modify certain aspects of Measurement Endpoints 1 and 2, the assessment of risk posed by inorganic COPC.

4.5.2.3 Fish Receptors

Protection of the long-term health of local fish populations from sublethal and lethal toxic effects of chemicals in surface waters. Are the levels of contaminants within Grove Pond and Plow Shop Pond sufficiently high to cause biologically significant changes or impair the function of the warm water fish community?

There are three measurement endpoints for this assessment endpoint:

- 1. Comparison of site surface water concentrations, or EPC, to the same surface water benchmarks as those used for water column invertebrates.
- 2. Surface water chronic toxicity test using the fathead minnow (*Pimephales promelas*).
- 3. Comparison of measured fish tissue residue levels against fish Critical Body Residues (CBR).

4.5.2.4 Omnivorous Mammals

Protection of omnivorous mammals foraging in pond shallows, to insure that ingestion of chemicals in food items, sediment, and surface water does not have a negative impact on growth, survival, and reproduction. Are the levels of contaminants in surface water and aquatic prey sufficiently high to impair omnivorous mammal populations foraging in Grove Pond and Plow Shop Pond?

The measurement endpoint is the calculation of a hazard quotient (HQ), which is the ratio of the estimated food web uptake of a given chemical to the literature toxicity reference value (TRV). The TRVs used are No Observed Adverse Effects Level (NOAEL)-based benchmarks from Sample *et al.* (1996). For chemicals for which the HQ exceeded 1, this assessment endpoint was not met, and potential deleterious effects on growth, survival, and reproduction in omnivorous mammals foraging in the pond was assumed.

4.5.2.5 Piscivorous Mammals

Protection of piscivorous mammals foraging in the pond, to insure that ingestion of chemicals in food items, sediment, and surface water does not have a negative impact on growth, survival, and reproduction. Are the levels of contaminants in surface water and aquatic prey sufficiently high to impair piscivorous mammal populations foraging in Grove Pond and Plow Shop Pond?

The measurement endpoint is the calculation of a hazard quotient (HQ), which is the ratio of the estimated food web uptake of a given chemical to the literature toxicity reference value (TRV). The TRVs used are No Observed Adverse Effects Level (NOAEL)-based benchmarks from Sample *et al.* (1996). For chemicals for which the HQ exceeded 1, this assessment endpoint was not met, and potential deleterious effects on growth, survival, and reproduction in piscivorous mammals foraging in the pond was assumed.

4.5.2.6 Carnivorous Birds

Protection of carnivorous birds foraging in pond shallows, to insure that ingestion of chemicals in food items, sediment, and surface water does not have a negative impact on growth, survival, and reproduction. Are the levels of contaminants in surface water and aquatic prey sufficiently high to impair carnivorous bird populations foraging in Grove Pond and Plow Shop Pond?

The measurement endpoint is the calculation of an HQ, which is the ratio of the estimated food web uptake of a given chemical to the literature TRV. The TRVs used are NOAEL-based benchmarks from Sample *et al.* (1996). For chemicals for which the HQ exceeded 1, this

assessment endpoint was not met, and potential deleterious effects on growth, survival, and reproduction in carnivorous birds foraging in the pond was assumed.

4.5.2.7 Piscivorous Birds

Protection of piscivorous birds foraging in the pond, to insure that ingestion of chemicals in food items and surface water does not have a negative impact on growth, survival, and reproduction. Are the levels of contaminants in surface water and aquatic prey sufficiently high to impair piscivorous bird populations foraging in Grove Pond and Plow Shop Pond?

The measurement endpoint is the calculation of an HQ, which is the ratio of the estimated food web uptake of a given chemical to the literature TRV. The TRVs used are NOAEL-based benchmarks from Sample *et al.* (1996). For chemicals for which the HQ exceeded 1, this assessment endpoint was not met, and potential deleterious effects on growth, survival, and reproduction in piscivorous birds foraging in the pond was assumed.

4.5.2.8 Insectivorous Birds

Protection of insectivorous birds to insure that ingestion of chemicals in food items does not have a negative impact on growth, survival, and reproduction. Are the levels of contaminants in surface water and aquatic prey sufficiently high to impair insectivorous bird populations foraging in Grove Pond and Plow Shop Pond?

The measurement endpoint for this assessment endpoint is a comparison of the calculated total daily doses against target receptor TRVs using tree swallow stomach contents measured directly as the dietary intake component. The TRVs used are NOAEL-based benchmarks from Sample *et al.* (1996).

4.6 WEIGHT-OF-EVIDENCE (WOE) DOCUMENTATION

The risks to the target receptor groups identified above were assessed using a weight of evidence (WOE) approach (Menzie et al., 1996). This method recognizes that all measurement endpoints do not carry the same weight when it comes to determining ecological risk. Some endpoints are quite qualitative (comparisons with benchmarks) while some are more quantitative (sediment toxicity testing). Risks associated with the more qualitative endpoints are considered less significant than those associated with more quantitative endpoints.

It is therefore important to assign a relative "weight" to the various measurement endpoints selected for assessment endpoint before those endpoints are used in risk characterization. Menzie et al. (1996) describe ten different attributes which, when taken together, can help determine the relative importance of each measurement endpoint. Table 8 summarizes the

BERA endpoints and provides the WOE scoring. The final risk step for each assessment endpoint incorporated the WOE score with the level of risk identified for each measurement endpoint to determine the potential for and significance of risk to the various assessment endpoints.

5.0 ECOLOGICAL EXPOSURE ASSESSMENT

5.1 INTRODUCTION

The ecological exposure assessment involves an estimate of the magnitude of exposure for selected ecological receptors based on the exposure pathways identified in the previous section. In the exposure assessment, the amount of COPCs in environmental media to which receptors are exposed is estimated. In this BERA, exposure point concentrations (EPC) were established for surface water, sediment, and biological tissues in Grove Pond and Plow Shop Pond.

The exposure assessment discusses how chemical exposures in Grove Pond and Plow Shop Pond were measured or modeled for the receptors for which assessment and measurement endpoints were developed: water column invertebrates, sediment biota, fish, mammals and birds.

5.2 CALCULATING ECOLOGICAL EXPOSURES

5.2.1 Water Column Invertebrates

Water column invertebrates are exposed to COPC throughout the water column via direct contact with surface water in the ponds. An estimate of potential exposure was provided by establishing maximum and average EPCs for each surface water COPC. These are shown in Table 9 (Grove Pond) and Table 10 (Plow Shop Pond). To calculated average EPCs, ½ the detection limit was used for non-detected values.

5.2.2 Benthic Invertebrates

Benthic invertebrates are exposed to COPC via direct contact generally within the top few inches of sediment in the ponds. An estimate of potential exposure was provided by establishing maximum and average EPCs in sediment for each sediment COPC. These are shown in Table 11 (Grove Pond) and Table 12 (Plow Shop Pond). To calculated average EPCs, ½ the detection limit was used for non-detected values.

Exposure in invertebrate organisms was also assessed by measuring concentrations of bioaccumulated COPC in tissues. As discussed in Section 3.2.1, in Grove Pond, six crayfish samples were collected in 1998 and 2000 and analyzed for metals. The three crayfish samples from 2000 were actually composite samples and the exact number of crayfish collected was not reported. Four composite odonata samples were collected in 2001 and analyzed for metals. Data from these crayfish and odonata samples are presented in Appendix A. As discussed in Section 3.2.2, in Plow Shop Pond, six mussel samples were collected in 1998 and analyzed for metals. Five crayfish samples were collected in 1998 and 2000 and analyzed for metals. The four crayfish samples from 2000 were actually composite samples and the exact number of crayfish

collected was not reported. Four composite odonata samples were collected in 2000 and analyzed for metals. Data from these mussel and crayfish samples are presented in Appendix B. Tissue EPCs, which were compared against the CBRs, as discussed in Section 6 of the BERA, were derived from the maximum and average concentrations presented in Appendix A and B.

5.2.3 Fish

Fish are exposed to COPC throughout the water column via direct contact with surface water in the ponds. An estimate of potential exposure was provided by establishing maximum and average EPCs for each surface water COPC. These are shown in Table 9 (Grove Pond) and Table 10 (Plow Shop Pond). To calculated average EPCs, ½ the detection limit was used for non-detected values.

Exposure in fish was also assessed by measuring concentrations of bioaccumulated COPC in fish tissue. As discussed in Section 3.2.1, in Grove Pond thirty- two fish samples were collected in 1992 and 2004 and analyzed for metals, pesticides, and PCBs. Data from these fish samples are presented in Appendix A. As discussed in Section 3.2.2, in Plow Shop Pond, nineteen fish samples were collected in 1992 and 2004 and analyzed for metals, pesticides, and PCBs. Data from these fish samples are presented in Appendix B. Tissue EPCs, which were compared against the CBRs, as discussed in Section 6 of the BERA, were derived from the maximum and average concentrations presented in Appendix A and B.

5.2.4 Wildlife Exposures

5.2.4.1 Qualitative description of the wildlife food chain models

The total daily dose, in mg/kg_{bw}-day, is an estimate of the amount of a COPC to which a bird or mammal receptor is exposed through ingestion of dietary items (e.g., fish, invertebrates, frogs, and bird eggs) and water, as well as incidental ingestion of sediment for some receptors. Maximum and average EPCs for dietary components were determined when possible from concentrations measured directly in Grove Pond and Plow Shop Pond abiotic and biological media. For surface water, while concentrations of dissolved metals were used for comparisons with benchmarks, the food chain modeling used the maximum concentrations of either dissolved or total metals. Fish, aquatic invertebrate, frog, tree swallow egg, and tree swallow stomach content data were taken from previous studies, as listed in Section 3.0, and supplemented with fish tissue data collected by EPA in 2004.

For COPC not measured directly in aquatic invertebrate tissue, concentrations in sediments were used with literature biota-sediment accumulation factors (BSAF) to model EPCs in invertebrate tissue. Similarly, all plant EPCs were estimated using sediment concentrations with plant uptake factors (PUF). The BSAF and PUF used in this Ecological Risk Assessment are shown in Table

13 (Grove Pond) and Table 14 (Plow Shop Pond). Literature BSAF are not available for frogs or tree swallow eggs; therefore, for COPC not directly measured in frogs and tree swallow eggs, EPCs for these dietary items were assumed equal to those for aquatic invertebrates. Abiotic and biological EPCs in Grove Pond are shown in Table 15 (maximum EPCs) and Table 16 (Average EPCs). Abiotic and biological EPCs in Plow Shop Pond are shown in Table 17 (maximum EPCs) and Table 18 (Average EPCs).

5.2.4.1.1 Omnivorous Mammal - Raccoon

The Exposure Estimate Equation for the raccoon is:

Exposure (mg/kg-d) =

 $\frac{[FIR[(EPC_{FL} \times FI) + (EPC_{IN} \times IN) + (EPC_{FR} \times FR) + (EPC_{EG} \times EG) + (EPC_{PL} \times PL) + (EPC_{SD} \times EG)}{SD)] + (EPC_{WI} \times WI)] \times AUF}{BW}$

Where:

FIR = Food ingestion Rate (kg/d) EPC_{FI} = EPC in fish tissue (mg/kg)

FI = proportion of raccoon diet consisting of fish (unitless)

 $EPC_{IN} = EPC$ in invertebrate tissue (mg/kg)

IN = proportion of raccoon diet consisting of invertebrates (unitless)

 $EPC_{FR} = EPC$ in frog tissue (mg/kg)

FR = proportion of raccoon diet consisting of frogs (unitless)

 $EPC_{EG} = EPC \text{ in swallow eggs (mg/kg)}$

EG = proportion of raccoon diet consisting of swallow eggs (unitless)

 $EPC_{PL} = EPC$ in plant tissue (mg/kg)

PL = proportion of raccoon diet consisting of plants (unitless)

 $EPC_{SD} = EPC \text{ in sediment (mg/kg)}$

SD = proportion of raccoon diet consisting of incidental sediment ingestion (unitless)

 $EPC_{WI} = EPC \text{ in surface (mg/L)}$

WI = water consumption rate (L/d) AUF = area use factor (unitless)

BW = body weight (kg)

The exposure equation for the raccoon includes ingestion of aquatic biota, sediment, and surface water. To incorporate the available site-specific data collected in Grove Pond and Plow Shop Pond, the diet of the omnivorous raccoon was assumed to consist equally of fish, invertebrates, frogs, eggs, and plants. Values for the above exposure parameters are provided in Table 19.

5.2.4.1.2 Piscivorous Mammal - Mink

The Exposure Estimate Equation for the mink is:

Exposure (mg/kg-d) =

 $\frac{[FIR[(EPC_{FI} \times FI) + (EPC_{SD} \times SD)] + (EPC_{WI} \times WI)] \times AUF}{BW}$

Where:

FIR = Food ingestion Rate (kg/d) EPC_{FI} = EPC in fish tissue (mg/kg)

FI = proportion of mink diet consisting of fish (unitless)

 $EPC_{SD} = EPC \text{ in sediment (mg/kg)}$

SD = proportion of mink diet consisting of incidental sediment ingestion (unitless)

 $EPC_{WI} = EPC \text{ in surface (mg/L)}$

WI = water consumption rate (L/d) AUF = area use factor (unitless)

BW = body weight (kg)

In order to represent piscivorous mammals, the mink is assumed to be 100% piscivorous. The exposure equation for the mink, therefore, includes ingestion of fish, sediment, and surface water only. Values for the above exposure parameters are provided in Table 19.

5.2.4.1.3 Carnivorous Bird - Black-Crowned Night Heron

The Exposure Estimate Equation for the black-crowned night heron is:

Exposure (mg/kg-d) =

 $\frac{[FIR[(EPC_{FI} \times FI) + (EPC_{IN} \times IN) + (EPC_{FR} \times FR) + (EPC_{SD} \times SD)] + (EPC_{WI} \times WI)] \times AUF}{BW}$

Where:

FIR = Food ingestion Rate (kg/d) EPC_{FI} = EPC in fish tissue (mg/kg)

FI = proportion of black-crowned night heron diet consisting of fish (unitless)

 $EPC_{IN} = EPC$ in invertebrate tissue (mg/kg)

IN = proportion of black-crowned night heron diet consisting of invertebrates (unitless)

 $EPC_{FR} = EPC$ in frog tissue (mg/kg)

FR = proportion of black-crowned night heron diet consisting of frogs (unitless)

 $EPC_{SD} = EPC \text{ in sediment (mg/kg)}$

SD = proportion of black-crowned night heron diet consisting of incidental sediment

ingestion (unitless)

 $EPC_{WI} = EPC \text{ in surface (mg/L)}$

WI = water consumption rate (L/d) AUF = area use factor (unitless)

BW = body weight (kg)

The exposure equation for the black-crowned night heron includes ingestion of aquatic biota, sediment, and surface water. To incorporate the available site-specific data collected in Grove Pond and Plow Shop Pond, the diet of the carnivorous black-crowned night heron was assumed to consist equally of fish, invertebrates, and frogs. Values for the above exposure parameters are provided in Table 19.

5.2.4.1.4 Piscivorous Bird - Belted Kingfisher

The Exposure Estimate Equation for the belted kingfisher is:

Exposure (mg/kg-d) =

$\frac{[FIR(EPC_{FI} \times FI) + (EPC_{WI} \times WI)] \times AUF}{BW}$

Where:

FIR = Food ingestion Rate (kg/d) EPC_{FI} = EPC in fish tissue (mg/kg)

FI = proportion of belted kingfisher diet consisting of fish (unitless)

EPC_{WI} = EPC in surface (mg/L)
WI = water consumption rate (L/d)
AUF = area use factor (unitless)

BW = body weight (kg)

In order to represent piscivorous birds, the belted kingfisher is assumed to be 100% piscivorous. The exposure equation for the belted kingfisher, therefore, includes ingestion of fish and surface water only. Values for the above exposure parameters are provided in Table 19.

5.2.4.1.5 Insectivorous Bird - Tree Swallow

The Exposure Estimate Equation for the tree swallow is:

Exposure (mg/kg-d) =

 $\frac{FIR(EPC_{ST}) \times AUF}{BW}$

Where:

FIR = Food ingestion Rate (kg/d)

 $EPC_{ST} = EPC$ in stomach contents (food boli) (mg/kg)

AUF = area use factor (unitless)

BW = body weight (kg)

Tree swallow stomach contents were analyzed in Haines and Longcore (2001) for a limited suite of inorganic contaminants. Because it can be assumed that stomach contents represent all components of the diet, including ingestion of water and sediment, the only EPC used in this equation is that for stomach contents. Values for the above exposure parameters are provided in Table 19.

6.0 ECOLOGICAL EFFECTS ASSESSMENT

The effects assessment explains how a determination of risk was made given the expected exposure concentrations or doses identified in Section 5.0.

6.1 SELECTING MEASURES OF EFFECT

The effects assessment details the methods used to employ the measurement endpoints selected in Section 4.5.2. These endpoints included comparisons of site media concentrations to ecological benchmarks, comparisons with CBRs, toxicity testing of surface water and sediments, and food chain modeling for wildlife receptors.

6.2 METHODOLOGIES FOR ASSESSING TOXICITY

6.2.1 Selecting Measures of Effect for Water Column Invertebrates

Two measurement endpoints were selected for water column invertebrates: 1) a comparison of surface water concentrations with surface water benchmarks and 2) toxicity testing with surface water.

6.2.1.1 Benchmark Comparisons

Potential risk to aquatic organisms from COPC in surface water was evaluated through comparisons of site data with literature-derived toxicity thresholds for chronic and acute effects. The preferred benchmarks are EPA National Ambient Water Quality Criteria (NAWQC) - Criterion Continuous Concentration (CCC) and Criteria Maximum Concentration (CMC) benchmarks (EPA 2002). For chemicals that do not have corresponding NAWQC benchmarks, Tier II Secondary Chronic Values (SCV) and Secondary Acute Values (SAV) (Suter and Tsao 1996) were used for screening. These benchmarks are presented in Table 9 (Grove Pond) and Table 10 (Plow Shop Pond).

6.2.1.2 Toxicity Tests

In addition to a comparison with water quality benchmarks, risk to water column biota was determined by conducting surface water toxicity tests. In 2004, chronic toxicity tests were conducted with six Grove Pond surface water samples and six Plow Shop Pond surface water samples. An 8-day test was conducted with the freshwater cladoceran, *Ceriodaphnia dubia*, with survival and reproduction measured as endpoints. A sample from Flannagan Pond was included as a reference sample. The full toxicity test report is included as Appendix D.

6.2.2 Selecting Measures of Effect for Benthic Invertebrates

Three measurement endpoints were selected for benthic invertebrates: 1) a comparison of sediment concentrations with sediment benchmarks, 2) toxicity testing with sediment, and 3) a comparison of invertebrate tissue data with CBRs. An AVS/SEM evaluation was also conducted to assess the potential for bioavailability of metals in sediments.

6.2.2.1 Benchmark Screening

Potential risk to aquatic organisms from COPC in sediment was evaluated through comparisons of site data with literature-derived toxicity thresholds for low and severe effects. The hierarchy of benchmarks is as follows: EPA Sediment Quality Benchmarks (SQB), MacDonald *et al.* (2000) Threshold Effects Concentrations (TEC) and Probable Effects Concentrations (PEC); Ontario Ministry of the Environment Low-Effects Level (LEL) and Severe-Effects Level (SEL) benchmarks (Persaud *et al.* 1993); and NOAA Effects Range-Low (ER-L) and Effects Range-Median (ER-M) benchmarks (Long *et al.* 1995). These benchmarks are presented in Table 11 (Grove Pond) and Table 12 (Plow Shop Pond).

6.2.2.2 Toxicity Tests

In addition to a comparison with sediment benchmarks, risk to benthic invertebrates was determined by conducting sediment toxicity tests. In 2005, chronic toxicity tests were conducted with three Grove Pond sediment samples and 11 Plow Shop Pond sediment samples. Ten-day tests were conducted with the midge, *Chironomus tentans*, and the amphipod, *Hyallela azteca*. For both test species, survival and growth were measured as endpoints. A sample from Flannagan Pond was included as a reference sample. The full toxicity test report is included as Appendix D.

6.2.2.3 Critical Body Residue (CBR) Evaluation

A third approach for determining potential risk to benthic biota was a comparison of invertebrate body burdens to literature CBRs for invertebrates. In Grove Pond, while data for crayfish and odonata were collected, CBRs are only available for crayfish. The CBR comparison was made, therefore, with crayfish tissue data only. In Plow Shop Pond, while crayfish, mussel, and odonata samples were collected, CBRs were only available for crayfish and mussels. The CBR comparison was made, therefore, with crayfish and mussel tissue data only.

Maximum and average concentrations of chemicals measured directly in Grove Pond and Plow Shop Pond invertebrate samples were compared to CBRs as shown in Table 20. Both NOAEL and LOAEL CBRs were selected from the literature to obtain a range of potential risk estimates.

The source for CBRs was the US Army Corps of Engineers Environmental Residue-Effects Database (ERED).

6.2.2.4 Acid Volatile Sulfide/Simultaneously Extracted Metal Evaluation

The bioavailability of metals was also assessed with acid volatile sulfide (AVS) and simultaneously extracted metal (SEM) data. The AVS/SEM evaluation is not considered a measurement endpoint in a strict sense, however, as it does not provide an actual measurement or estimation of effects. It is, rather, a tool that is used to modify certain aspects of Measurement Endpoints 1 and 2, the assessment of risk posed by inorganic COPC.

To determine if inorganic chemicals in sediments are bioavailable, acid volatile sulfide (AVS) and simultaneously extracted metal (SEM) data were collected in Grove Pond and Plow Shop Pond. Samples were collected by EPA in 2005 and were collocated with samples used in sediment toxicity tests.

The AVS/SEM method for evaluating bioavailability is generally applied to divalent cations (i.e., copper, lead, cadmium, zinc, and nickel). Divalent metals in sediments bind to available AVS depending on metals solubility, the least soluble binding preferentially. These metals bind to available AVS and are sequentially converted to copper sulfide, lead sulfide, cadmium sulfide, zinc sulfide, and nickel sulfide as long as sulfides are available. When the molar sum of divalent cations, or SEM, is less than the molar concentration of available AVS, these metals exist as metal sulfides that are insoluble and not present in sediment pore water. Toxicity is reduced, therefore, in sediments with higher concentrations of AVS than SEM. Conversely, when SEM is greater than AVS, the portion of the SEM in excess of the AVS is potentially bioavailable and toxic.

6.2.3 Selecting Measures of Effect for Fish

Three measurement endpoints were selected for fish: 1) a comparison of surface water concentrations with benchmarks, 2) toxicity testing with surface water, and 3) a comparison of fish tissue data with CBRs.

6.2.3.1 Benchmark Comparisons

Potential risk to fish from COPC in surface water was evaluated through comparisons of site data with literature-derived toxicity thresholds for chronic and acute effects. These literature benchmarks were previously described in Section 4.5.2.1 and presented in Table 9 (Grove Pond) and Table 10 (Plow Shop Pond).

6.2.3.2 Toxicity Tests

In addition to a comparison with water quality benchmarks, risk to fish was determined by conducting surface water toxicity tests. In 2004, chronic toxicity tests were conducted with six Grove Pond surface water samples and six Plow Shop Pond surface water samples. A 7-day test was conducted with the fathead minnow, *Pimephales promelas*, with survival and growth as endpoints. A sample from Flannagan Pond was included as a reference sample. The full toxicity test report is included as Appendix D.

6.2.3.3 Critical Body Residue (CBR) Evaluation

A third approach for determining potential risk to fish was a comparison of whole body burdens to literature CBRs for fish. Maximum and average concentrations of chemicals measured directly in Grove Pond and Plow Shop Pond fish samples were compared to CBRs in fish as shown in Table 21 and Table 7. Both NOAEL and LOAEL CBRs were selected from the literature. The source for CBRs was the US Army Corps of Engineers Environmental Residue-Effects Database (ERED).

6.2.4 Selecting Measures of Effect for Wildlife Receptors

The exposure estimates for wildlife receptors calculated as described in Section 5.2.4 were compared to literature based toxicity reference values (TRV). Total daily doses were compared to literature TRVs to calculate the hazard quotient (HQ

To evaluate potential risks to wildlife receptors from the total daily dose of COPC, TRVs were used for each COPC for each avian and mammalian receptor. The TRV identifies potential adverse effects associated with a dose of a given COPC from oral exposure. The TRV effects reflect the assessment endpoint chosen for the protection of wildlife receptors. If no toxicity information is available for a COPC, and it was not possible to identify TRVs, risks associated with the estimated exposure for the respective COPCs cannot be quantitatively evaluated.

Mammalian TRVs are presented in Table 22 and avian TRVs are presented in Table 23. No observed adverse effects level (NOAEL) and lowest observed adverse effects level (LOAEL) TRVs were obtained primarily from Sample *et al.* (1996). Body weight scaling factors have generally been used for mammals to adjust TRVs based on a receptor's body weight relative to the body weight of the test species. This conversion is not accepted by the EPA Region 1 BTAG, however, and was not conducted for this ecological risk assessment.

7.0 ECOLOGICAL RISK CHARACTERIZATION

7.1 INTRODUCTION

Data on exposure and effects are integrated in the risk characterization to provide estimates of risk to biota of Grove Pond and Plow Shop Pond. The presence of potential risk was assessed for the various receptor groups evaluated in this BERA through several lines of evidence. For surface water invertebrates, potential risk was indicated if HQs based on surface water EPC and chronic and acute benchmarks exceeded 1.0 or if there were significant statistical responses in the toxicity tests. For benthic invertebrates, potential risk was indicated if HQs based on sediment EPC and chronic and acute benchmarks exceeded 1.0, if HQs based on invertebrate tissue EPCs and CBRs exceeded 1.0, or if there were significant statistical responses in the toxicity tests. For fish, potential risk was indicated if HQs based on surface water EPC and chronic and acute benchmarks exceeded 1.0, if HQs based on fish tissue EPCs and CBRs exceeded 1.0, or if there were significant statistical responses in the toxicity tests. For wildlife receptors, potential risk was indicated by HQs based on TDD and TRV greater than 1.0. Both NOAEL and LOAEL TRVs were used to obtain a range of risk values for each COPC. However, the potential for unacceptable risk was assumed to be present only if the average HQ_{LOAEL} exceeded 1.0.

The approach considered to be protective of the greatest number of species in an ecological assessment is the use of conservative criteria that incorporate assumptions likely to overestimate risk in the hazard quotient approach. Based on these assumptions and the above methods, a small number of organic and inorganic chemicals were identified to represent the most significant risk to ecological receptors in and around the ponds.

7.2 ASSESSMENT ENDPOINT 1: SURFACE WATER INVERTEBRATE COMMUNITY

The Assessment Endpoint was Protection of the long-term health of water column invertebrate populations from sublethal and lethal toxic effects of chemicals in surface waters. *Are the levels of contaminants in surface water sufficiently high to cause biologically significant changes or impair the function of the water column invertebrate community in Grove Pond and Plow Shop Pond?*

7.2.1 Measurement Endpoint A: Benchmarks Comparison

The first measurement endpoint involved comparing concentrations of surface water COPC to literature benchmarks for surface water. The resultant HQs for surface water are presented in Table 9 (Grove Pond) and Table 10 (Plow Shop Pond).

7.2.1.1 Grove Pond

Hazard quotients based on maximum EPC and chronic-effects benchmarks were greater than one but less than 10 for aluminum, barium, and manganese. Hazard quotients based on average EPC and chronic-effects benchmarks were slightly greater than one for barium and manganese. No HQs based on acute-effects benchmarks were greater than one.

Based on benchmark screening, there is low potential risk for aquatic biota from chronic exposures but not acute exposures to aluminum, barium and manganese in the water column.

7.2.1.2 Plow Shop Pond

Hazard quotients based on maximum EPC and chronic-effects benchmarks were greater than one but less than 10 for aluminum, barium, manganese, and selenium. Hazard quotients based on average EPC and chronic-effects benchmarks were slightly greater than one for barium, manganese, and selenium. No HQs based on acute-effects benchmarks were greater than one. Based on benchmark screening, there is low potential risk for aquatic biota from chronic exposures but not acute exposures to barium, manganese, and selenium in the water column.

7.2.2 Measurement Endpoint B: Surface Water Toxicity Testing

The second measurement endpoint for surface water invertebrates was surface water chronic toxicity test using the freshwater cladoceran (*Ceriodaphnia dubia*).

7.2.2.1 Grove Pond

To measure potential toxicity directly in Grove Pond surface water, toxicity tests were conducted as detailed in Section 6.2.1.2. Results of toxicity tests with surface water invertebrates are presented in Table 24. Full results of surface water toxicity tests are provided in Appendix D.

Neither survival nor any of the reproduction endpoints (average number of neonates per surviving brood, percent brooders with three or more broods, or average number of neonates for brooders with three or more broods) in *Ceriodaphnia dubia* were significantly affected relative to the reference sample. These results are not surprising given the general lack of exceedances of surface water benchmarks.

7.2.2.2 Plow Shop Pond

To measure potential toxicity directly in Plow Shop Pond surface water, toxicity tests were conducted as detailed in Section 6.2.1.2. Results of toxicity tests with surface water invertebrates are presented in Table 25. Full results of surface water toxicity tests are provided in Appendix D.

Neither survival nor any of the reproduction endpoints (average number of neonates per surviving brood, percent brooders with three or more broods, or average number of neonates for brooders with three or more broods) in *Ceriodaphnia dubia* were significantly affected relative to the reference sample. These results are not surprising given the general lack of exceedances of surface water benchmarks.

7.2.3 Water Column Invertebrate Community Weight of Evidence Integration

The WOE Integration results for water column invertebrates are identical for Grove Pond and Plow Shop Pond, so they are merged in this section.

Assessment Endpoint:

Protect the long-term health of water column invertebrates

Measurement Endpoints:

- A. Compare surface water contaminant concentrations against surface water benchmarks
- B. Assess surface water toxicity using C. dubia

Weight-of-Evidence Integration

	Weight (from Table 8)				
RISK/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High
Yes/High					
Yes/Medium					
Yes/Low		A			
Indeterminate					
No Risk			В		

Summary:

Two lines of evidence were used to assess the potential risk to the surface water invertebrate communities in Grove and Plow Shop Ponds. Comparing surface water COPC concentrations to generic benchmarks identified a potential for low risk, but with a low-medium WOE; measuring surface water toxicity using a sensitive invertebrate species identified no risk, with a medium WOE. Based on this evidence, no potential for significant risk to the surface water invertebrate communities in either Grove Pond or Plow Shop Pond appear to exist.

7.3 ASSESSMENT ENDPOINT 2: BENTHIC INVERTEBRATE COMMUNITY

The Assessment Endpoint was protection of benthic macroinvertebrate communities from sublethal and lethal acute toxic effects of chemicals in sediments. *Are the levels of contaminants in sediments sufficiently high to cause biologically significant changes or impair the function of the benthic community in grove Pond or Plow Shop Pond?*

7.3.1 Measurement Endpoint A: Benchmarks Comparison

The first measurement endpoint involved comparing concentrations of sediment COPC to literature benchmarks for sediment. The resultant HQs for sediment are presented in Table 11 (Grove Pond) and Table 12 (Plow Shop Pond).

7.3.1.1 Grove Pond

Hazard quotients based on maximum sediment EPCs and chronic (low effect) ($HQ_{Max-chronic}$) benchmarks exceeded one for 16 metals, four pesticides, and 17 SVOC. Most of the $HQ_{Max-chronic}$ exceeded 10 and several were greater than 100. The highest $HQ_{Max-chronic}$ were for cadmium (737), chromium (1198) and mercury (2344).

Hazard quotients based on maximum sediment EPCs and acute (severe effect) ($HQ_{Max-acute}$) benchmarks exceeded one for 11 metals, three pesticides, and 10 SVOC. Six of the $HQ_{Max-acute}$ for metals exceeded 10, with those for cadmium (147), chromium (468), and mercury (398) being the highest. Three of the $HQ_{Max-acute}$ for pesticides also exceeded 10. Naphthalene (36) was the only SVOC with an $HQ_{Max-acute}$ greater than 10.

Hazard quotients based on average sediment EPCs and chronic (low effect) ($HQ_{Avg\text{-}chronic}$) benchmarks exceeded one for 14 metals, four pesticides, and 17 SVOC. Five of the $HQ_{Avg\text{-}chronic}$ for metals exceeded 10 with those for barium (118), cadmium (18), chromium (135) and mercury (122) being the highest. Three of the $HQ_{Avg\text{-}chronic}$ for pesticide also exceeded 10 but none of the $HQ_{Avg\text{-}chronic}$ for SVOC were greater than 10.

Hazard quotients based on average sediment EPCs and acute (severe effect) ($HQ_{Avg\text{-acute}}$) benchmarks exceeded one for five metals, with only chromium (53) and mercury (21) having HQs greater than 10. Three of the $HQ_{Avg\text{-acute}}$ for pesticide also exceeded one but only DDD (11) had an HQ greater than 10. Only one SVOC, naphthalene (1.3) had an $HQ_{Avg\text{-acute}}$ greater than one.

The results of the sediment benchmark comparisons suggest that there is potential for risk to benthic invertebrates throughout the pond from exposure to several inorganics, pesticides, and PAHs. The potential for severe risk is also possible but limited to a smaller number of COPCs

and may be localized near known source areas (e.g., within Tannery Cove). The most significant sever-effect levels are potentially associated with chromium, mercury, and DDD as the average concentration of all Grove Pond sediment samples exceeded the benchmarks for severe effects by a large margin for these chemicals.

7.3.1.2 Plow Shop Pond

Hazard quotients based on maximum sediment EPCs and chronic (low effect) (HQ_{Max-chronic}) benchmarks exceeded one for 16 metals, three pesticides, two PCBs, 17 SVOC, and one VOC. Most of the HQ_{Max-chronic} exceeded 10 and several were greater than 100. The highest HQ_{Max-chronic} were for arsenic (695), chromium (871), mercury (1389), and DDE (411).

Hazard quotients based on maximum sediment EPCs and acute (severe effect) ($HQ_{Max-acute}$) benchmarks exceeded one for 10 metals, three pesticides, and 12 SVOC. Six of the $HQ_{Max-acutec}$ for metals exceeded 10, with those for arsenic (206), chromium (341), and mercury (236) being the highest. The $HQ_{Max-acute}$ for DDD (64) and DDE (42) also exceeded 10. None of the $HQ_{Max-acute}$ for SVOC exceeded 10.

Hazard quotients based on average sediment EPCs and chronic (low effect) ($HQ_{Avg\text{-chronic}}$) benchmarks exceeded one for 14 metals, three pesticides, one PCB, and 17 SVOC. Five of the $HQ_{Avg\text{-chronic}}$ for metals exceeded 10 with those for arsenic (55), barium (144), chromium (52) and mercury (150) being the highest. Two of the $HQ_{Avg\text{-chronic}}$ for pesticide also exceeded 10 and one of the $HQ_{Avg\text{-chronic}}$ for SVOC was greater than 10.

Hazard quotients based on average sediment EPCs and acute (severe effect) ($HQ_{Avg-acute}$) benchmarks exceeded one for seven metals, with only arsenic (16), chromium (20) and mercury (25) having HQs greater than 10. Two of the $HQ_{Avg-acute}$ for pesticide also exceeded one but only slightly. Similarly, two of the $HQ_{Avg-acute}$ for SVOC exceeded one but only slightly.

The results of the sediment benchmark comparisons suggest that there is potential for risk to benthic invertebrates throughout the pond from exposure to several inorganics, pesticides, and PAHs. The potential for severe risk is also possible but limited to a smaller number of COPCs. The most significant sever-effect levels are potentially associated with arsenic, chromium, and mercury as the average concentration of all Plow Shop Pond sediment samples exceeded the benchmarks for severe effects by a large margin for these chemicals.

7.3.2 Measurement Endpoint B: Sediment Toxicity Testing

The second measurement endpoint for benthic invertebrates was sediment toxicity testing using a midge (*Hyallela azteca*) and an amphipod (*Chironomus tentans*)

7.3.2.1 Grove Pond

To measure potential toxicity directly in Grove Pond sediment, toxicity tests were conducted as detailed in Section 6.2.2.2. Toxicity test results and a presentation of sediment chemistry in toxicity test samples are presented in Table 26. The full toxicity test report is included in Appendix D. Results of the sediment toxicity tests suggest that COPC in Grove Pond may cause chronic toxicity in benthic invertebrates.

In a ten-day exposure, *Hyallela azteca* did not experience increased mortality relative to the Flannagan Pond reference location. Growth in *H. azteca* was negatively affected, however, in one sample, Grove-Sed-3 (in the Tannery Cove area). The average biomass in this sample was 0.07 mg dry weight (dw), which was significantly less than that at the reference site (0.111 mg dw).

Similarly, survival in *C. tentans* was not significantly affected in Grove Pond samples. Growth, however, was affected in sample Grove-Sed-2 (south of Tannery Cove), with average biomass in the sample (0.81 mg dw) significantly lower than that in the reference sample (0.95 mg dw).

An evaluation of toxicity test results and associated chemical concentrations does not reveal a clear culprit causing the observed effects in the two samples. In Grove-Sed-3, the only sample in which an effect on H. azteca growth was observed, seven inorganics were detected at concentrations higher than in samples where toxicity was not observed and exceeding benchmarks (five exceeded severe effect benchmarks). Two pesticides, DDD, and DDE were also detected in this sample at concentrations higher than in the other samples and exceeding severe effect benchmarks.

In Grove-Sed-2, the only sample in which an effect on *C. tentans* growth was observed, seven inorganics were detected at concentrations greater than benchmarks (three exceeded severe effect benchmarks). Several PAHs also exceeded benchmarks, as did DDE. None of these metals or organic chemicals was detected at concentrations greater than in the other samples.

While one or more of these chemicals may be responsible for the observed effect in *H. azteca* and *C. tentans*, the results are somewhat ambiguous given that negative effects were not observed in *C. tentans* in Grove-Sed-3 or in *H. azteca* in Grove-Sed-2. Given that the COPC concentrations did not generate toxic responses consistently, and given that the effects, while statistically significant, were not great in magnitude, these results may not equate to unacceptable risk for benthic invertebrates. Overall, the potential risk associated with this measurement endpoint is considered medium based on observed sublethal responses in two of the three sediment samples from Grove Pond.

7.3.2.2 Plow Shop Pond

To measure potential toxicity directly in Plow Shop Pond sediment, toxicity tests were conducted as detailed in Section 6.2.2.2. Toxicity test results and a presentation of sediment chemistry in toxicity test samples are presented in Table 27. The full toxicity test report is included in Appendix D. Results of the sediment toxicity tests suggest that COPC in Plow Shop Pond may cause chronic lethal and sublethal toxicity in benthic invertebrates.

In a ten-day exposure, *Hyallela azteca* experienced a significant decrease in survival (49% survival) in one sample (Plow-Sed-9) relative to the Flannagan Pond reference location (95% survival). Further, growth in *H. azteca* was negatively affected in six samples, Plow-Sed-1 through Plow-Sed-4, Plow-Sed-9, and Plow-Sed-11, relative to the reference sample. The average biomass (dry weight) in these samples was 0.08 mg, 0.075 mg, 0.075 mg, 0.065 mg, 0.033 mg, and 0.078 mg, respectively. All weights were significantly less than that at the reference site (0.111 mg).

Survival in *C. tentans* was also significantly decreased in Plow-Sed-9 (45% survival) relative to the reference sample (100% survival). In addition, *C. tentans* growth was negatively affected in Plow-Sed-9 but not in any other samples. Average dry biomass in the sample (0.082 mg) was significantly lower than that in the reference sample (0.95 mg).

An evaluation of toxicity test results and associated chemical concentrations reveals a clear pattern for one sample but less clear results for other samples. Sediment was consistently toxic in Plow-Sed-9, adjacent to the Railroad Roundhouse. The most likely cause of toxicity in this sample is PAHs. Concentrations of PAHs were greater than low-effect and severe-effect benchmarks and were much higher than in other samples. PAHs in this area present unacceptable risk to benthic invertebrates.

In addition to the toxic effects observed adjacent to the Railroad Roundhouse, significant effects on *H. azteca* growth were observed in five samples along the western shore of Plow Shop Pond. Arsenic, barium, and manganese exceeded benchmarks and were consistently higher in these samples than in the samples in which no significant effects were observed. High concentrations of iron were also detected in these samples. While iron is not generally considered toxic, high enough concentrations may present a problem in the form of a flocculent, which may, for example, deprive benthos of oxygen. Finally, mercury was detected in Plow-Sed-1 at a concentration (93 mg/kg) greater than in samples where toxicity was not observed. Mercury may play a role, therefore, in the toxic response observed in this sample.

While one or more of the above chemicals may be responsible for the observed effect in *H. azteca*, the concentrations, other than PAHs in Plow-Sed-9, did not cause a toxic response in *C. tentans*. Because of this inconsistency in the response in different test organisms, the results may

not generally lead to unacceptable risk for benthic invertebrates. Overall, the potential risk associated with this measurement endpoint is considered medium based on observed sublethal responses in five of 11 sediment samples from Plow Shop Pond. Acute toxicity was observed in an additional sample but appears to be confined to a small area affected by high levels of PAHs.

Results of Previous Toxicity Tests

Toxicity tests were conducted previously with Plow Shop Pond sediments and porewater collected in 1994 (ABB-ES 1995). Three separate test methods were used. Methods followed ASTM (1993) guidelines, which are consistent with the EPA (1994) Guidelines and the EPA's Contaminated Sediment Management Strategy (EPA 1998). The following is a list of tests conducted with results summarized:

10-day chronic pore water exposure with Ceriodaphnia dubia

Used porewater from 22 sediment samples.

Significant mortality in 9 of 22 locations.

10-day acute exposure with *Hyalella azteca*

Reduced survival in 6 of 10 sediment samples

10-day subchronic exposure with *Chironomus tentans*

Reduced survival at one of 22 locations throughout Plow Shop Pond.

Growth reduction at several locations

These results are presented here not to enhance the risk characterization but to provide some perspective on past conditions relative to current conditions. For surface water invertebrates, for example, the previous results revealed significant mortality. The 2004 surface water toxicity test results showed no toxicity in Plow Shop Pond surface water. While the 1994 tests revealed significant risk to the same surface water organism, the test was conducted with porewater, rather than surface water. There was a decrease in toxicity to *C. dubia*, but the comparability of these results is questionable.

For *hyalella azteca*: The results of the 2005 toxicity testing revealed decreased survival in one of 11 samples and decreased growth in 6 of 11 samples. The previous results revealed decreased survival in 6 of 10 samples. Based on these results, there has been an apparent decrease in toxicity to *H. azteca* in the past 10 years in Plow Shop Pond sediment. This comparison is uncertain, however, because a comparison between sample locations was not made.

For *Chironomus tentans*, the results of the 2005 toxicity testing revealed decreased survival in one of 11 samples as well as decreased growth in one of 11 samples. The previous results revealed in only one sample also but decreased growth in several locations. Based on these results, there has been an apparent decrease in sub-lethal toxicity to *C. Tentans* in the past 10

years in Plow Shop Pond sediment. This comparison is uncertain, however, because a comparison between sample locations was not made.

7.3.3 Measurement Endpoint C: Critical Body Residue (CBR) Evaluation

The third measurement endpoint for determining potential risk to benthic biota was a comparison of invertebrate body burdens to literature CBRs for invertebrates, as discussed in Section 6.2.2.3.

7.3.3.1 Grove Pond

Hazard quotients for Grove Pond crayfish are shown in Table 27. Comparisons were made between maximum and average EPCs and both NOAEL and LOAEL CBRs.

Hazard quotients based on maximum EPCs and NOAEL CBRs (HQ_{Max-NOAEL}) were greater than one for five metals, with that for manganese (56) being the only HQ much greater than one. Hazard quotients based on average EPCs and NOAEL CBRs (HQ_{Avg-NOAEL}) were greater than one for three metals, with that for manganese (46) being the only HQ much greater than one. Hazard quotients based on maximum EPCs and LOAEL CBRs (HQ_{max-LOAEL}) were greater than one for chromium (1.1) and manganese (17). Finally Hazard quotients based on average EPCs and LOAEL CBRs (HQ_{Avg-LOAEL}) were greater than one only for manganese (16).

The results of the CBR comparison for Grove Pond crayfish suggest that manganese is the only metal that may potentially pose unacceptable risk to crayfish from accumulated body burdens. There is low confidence, however, in the manganese CBR for crayfish because the CBR was derived from toxicity data for a saltwater clam. Given that none of the other COPC pose unacceptable risk to the crayfish in Grove Pond from accumulated body burdens is probably low. Further, the low sample size (n=3) adds uncertainty to the risk evaluation.

7.3.3.2 Plow Shop Pond

Hazard quotients for Plow Shop Pond crayfish and mussels are shown in Table 28. Comparisons were made between maximum and average EPCs and both NOAEL and LOAEL CBRs.

Crayfish

Hazard quotients based on maximum EPCs and NOAEL CBRs ($HQ_{Max-NOAEL}$) were greater than one for four metals, with that for manganese (18) being the only HQ much greater than one. Hazard quotients based on average EPCs and NOAEL CBRs ($HQ_{Avg-NOAEL}$) were greater than one for three metals, with that for manganese (18) being the only HQ much greater than one. Hazard quotients based on maximum EPCs and LOAEL CBRs ($HQ_{Max-LOAEL}$) and those based on average EPCs and LOAEL CBRs ($HQ_{Avg-LOAEL}$) were greater than one only for manganese (6).

The results of the CBR comparison for Plow Shop Pond crayfish suggest that manganese is the only metal that may pose unacceptable risk to crayfish from accumulated body burdens. There is low confidence, however, in the manganese CBR for crayfish because the CBR was derived from toxicity data for a saltwater clam. Given that none of the other COPC pose unacceptable risk to the crayfish in Plow Shop Pond from accumulated body burdens is probably low. Further, the low sample size (n=1) adds uncertainty to the risk evaluation.

Mussels

Hazard quotients for metals were less than one, except for manganese, for which the following HQs were calculated: HQ_{Max-NOAEL} (67), HQ_{Avg-NOAEL} (48), HQ_{max-LOAEL} (22), and HQ_{Avg-LOAEL} (16).

The results of the CBR comparison for Plow Shop Pond mussels reveal that manganese is the only metal that may pose unacceptable risk to mussels from accumulated body burdens. There is low confidence, however, in the manganese CBR for mussels because the CBR was derived from toxicity data for a saltwater clam, rather than a freshwater bivalve. Given that none of the other COPC pose unacceptable risk to the mussel in Plow Shop Pond from accumulated body burdens is probably low.

7.3.4 AVS/SEM Evaluation

The potential effects of metals on benthic organisms can be further evaluated using the AVS/SEM data. As stated in Section 6.2.2.4, The AVS/SEM evaluation is not considered a measurement endpoint in a strict sense, but can be used to modify the evaluation of risk based on benchmark screening and toxicity testing.

7.3.4.1 Grove Pond

Results of the AVS/SEM analysis for Grove Pond are presented in Table 29. In all three Grove Pond samples, the SEM:AVS ratio was greater than one, and the difference of SEM-AVS was greater than zero. In the Flannagan Pond sample the SEM:AVS ratio was less than one.

Generally, when the SEM:AVS ratio is greater than one, this suggests that some or all divalent metals may be bioavailable. In the case of the three Grove Pond samples, however, the one metal that drives the SEM to exceed AVS is chromium. While chromium was included in the SEM analysis, EPA (2005) suggests that chromium not be included among the SEM metals because its interaction with AVS is not via formation of an insoluble sulfide. The sum of other SEM metals is less than the AVS concentration, suggesting that AVS in Grove Pond is sufficient to bind these metals and render them unavailable to aquatic organisms.

The highly elevated concentrations of chromium, particularly in Grove-Sed-3 (38,000 mg/kg), may not pose a toxic hazard for a reason other than sequestration by AVS. Chromium generally exists in two states in the environment, the relatively insoluble and nontoxic CrIII and the more soluble and toxic CrVI. Chromium VI is thermodynamically unstable in anoxic sediments (EPA 2005). The AVS concentrations in Grove Pond sediments highlight the anoxic conditions, which probably prevent the occurrence of Chromium VI. This assertion is supported by the surface water data. Dissolved chromium was detected in only two surface water samples in Grove Pond and at concentrations below the chronic benchmark.

7.3.4.2 Plow Shop Pond

Results of the AVS/SEM analysis for Plow Shop Pond are presented in Table 30. In all but four Plow Shop Pond sediment samples, SEM:AVS ratio was less than one, and the SEM-AVS difference was below zero. The exceptions were in samples for in chromium drove the SEM to exceed AVS. As discussed in the previous paragraph, while chromium was included in the SEM analysis, EPA (2005) suggests that chromium not be included among the SEM metals because its interaction with AVS is not via formation of an insoluble sulfide. Eliminating chromium from the SEM sum, all SEM:AVS ratios were less than one. In the Flannagan Pond sample the SEM:AVS ratio was less than one. These results suggest that AVS in Plow Shop Pond is sufficient to bind these metals and render them unavailable to aquatic organisms.

The highly elevated concentrations of chromium, particularly in Plow-Sed-1 (6200 mg/kg), may not pose a toxic hazard for a reason other than sequestration by AVS. The AVS concentrations in Plow Shop Pond sediments demonstrate the anoxic conditions, which probably maintain chromium in the Cr III form, rather than Cr VI (see technical explanation for Grove Pond chromium in Section 7.3.4.1). This assertion is supported by the surface water data. Dissolved chromium was only detected in the six samples collected for surface water toxicity tests and at concentrations well below chronic benchmarks.

7.3.5 Previous Benthic Invertebrate Community Risk Characterization

As part of the Addendum RI (ABB-ES 1993), a semi-quantitative survey of macroinvertebrates was conducted at three sampling locations in Plow Shop Pond in 1992. Three sediment samples were collected on the southeast, south, and southwest edges of the pond, and were analyzed for pesticides/PCBs, inorganics, TOC, and grain size. A Rapid Bioassessment Protocol (RBP) metric comparison was conducted to evaluate the community. Results indicated that the benthic community in Plow Shop Pond was slightly affected versus the reference site, New Cranberry Pond, with diversity increasing with distance from the Shepley's Hill Landfill area. Arsenic, Cu, Fe, Mn, and Hg were identified as the primary chemicals of concern for benthic invertebrates.

The results parallel, to a degree, the findings the 2004 toxicity tests, which, besides the more significant toxicity near the Railroad Roundhouse, demonstrated moderate toxicity for *H. azteca* from exposure to chemicals (particularly, As, Fe, and Mn) in Red Cove and along the western shore of the pond.

Results of the historic benthic survey should only be incorporate as a piece of evidence with limited confidence. There were major uncertainties with the macroinvertebrate survey results, primarily based on the limited numbers of samples and suitability of the reference pond.

7.3.6 Benthic Invertebrate Community Weight of Evidence Integration

7.3.6.1 Grove Pond

Assessment Endpoint:

Protect the integrity of the local macroinvertebrate benthic community

Measurement Endpoints:

- A. Compare sediment contaminant concentrations against sediment benchmarks
- B. Assess sediment toxicity testing using H. azteca and C. tentans.
- C. Compare crayfish tissue residue levels against target receptor toxicity reference values (CBRs)

Weight-of-Evidence Integration

		Weight (from Table 8)				
Risk/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High	
Yes/High		A				
Yes/Medium				В		
Yes/Low				C		
Indeterminate						
No Risk						

Summary:

Three lines of evidence were used to assess the potential risk to benthic invertebrates in Grove Pond. Comparing measured bulk chemistry concentrations to generic sediment benchmarks identified a high potential for risk, but with a low-medium WOE; measuring sediment toxicity using two benthic invertebrate species identified a medium potential for risk, with a medium-

high WOE; comparing measured tissue residue levels in crayfish to generic CBRs identified a low potential for risk, with a medium-high WOE. Overall, the available data indicate that there is the potential for significant risk to the benthic invertebrate community in Grove Pond.

On the other hand, the thick vegetative mat may act as a barrier between COPCs in sediments and the local benthic invertebrate community. As such, high concentrations in the sediment may not be fully available to biota, resulting in lower toxic effects than anticipated based on bulk sediment concentrations. The AVS/SEM evaluation also suggests that many of the divalent metals may not be bioavailable in the pond sediment

7.3.6.2 Plow Shop Pond

Assessment Endpoint:

Protect the integrity of the local macroinvertebrate benthic community

Measurement Endpoints:

- A. Compare sediment contaminant concentrations against sediment benchmarks
- B. Assess sediment toxicity testing using H. azteca and C. tentans.
- C. Compare mussel and crayfish tissue residue levels against target receptor toxicity reference values (CBRs)

Weight-of-Evidence Integration

0	The state of Evidence integration						
	Weight (from Table 8)						
Risk/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High		
Yes/High		A					
Yes/Medium				В			
Yes/Low				C			
Indeterminate							
No Risk							

Summary:

As with Grove Pond, three lines of evidence were used to assess the potential risk to benthic invertebrates in Plow Shop Pond. Comparing measured bulk chemistry concentrations to generic sediment benchmarks identified a high potential for risk, but with a low-medium WOE; measuring sediment toxicity using two benthic invertebrate species identified a medium potential for risk, with a medium-high WOE; comparing measured tissue residue levels in crayfish and

freshwater clams to generic CBRs identified a low potential for risk, with a medium-high WOE. Overall, the available data indicate that there is potential for significant risk to the benthic invertebrate community in Plow Shop Pond. Depending on the COPC, risk for these receptors tends to be greater near the various source areas. Toxicity testing and a semi-quantitative macroinvertebrate survey performed in the early 1990's support the evidence for potential risk to the benthic invertebrate community in Plow Shop Pond.

7.4 ASSESSMENT ENDPOINT 3: FISH COMMUNITY

The Assessment Endpoint was protection of the long-term health of local fish populations from sublethal and lethal toxic effects of chemicals in surface waters. *Are the levels of contaminants within Grove Pond and Plow Shop Pond sufficiently high to cause biologically significant changes or impair the function of the warm water fish community?*

7.4.1 Measurement Endpoint A: Benchmarks Comparison

The first measurement endpoint involved comparing concentrations of surface water COPC to literature benchmarks for surface water. The resultant HQs for surface water are presented in Table 9 (Grove Pond) and Table 10 (Plow Shop Pond).

7.4.1.1 Grove Pond

Hazard quotients based on maximum EPC and chronic-effects benchmarks were greater than one but less than 10 for aluminum, barium, and manganese. Hazard quotients based on average EPC and chronic-effects benchmarks were slightly greater than one for barium and manganese. No HQs based on acute-effects benchmarks were greater than one.

Based on benchmark screening, there is low potential risk for fish in Grove Pond from chronic exposures but not acute exposures to aluminum, barium and manganese in the water column.

7.4.1.2 Plow Shop Pond

In Plow Shop Pond, HQs based on maximum EPC and chronic-effects benchmarks were greater than one but less than 10 for aluminum, barium, manganese, and selenium. Hazard quotients based on average EPC and chronic-effects benchmarks were slightly greater than one for barium, manganese, and selenium. No HQs based on acute-effects benchmarks were greater than one.

Based on benchmark screening, there is low potential risk for fish in Plow Shop Pond from chronic exposures but not acute exposures to barium, manganese, and selenium in the water column.

7.4.2 Measurement Endpoint B: Surface Water Toxicity Testing

The second measurement endpoint for fish was surface water chronic toxicity test using the fathead minnow (*Pimephales promelas*).

7.4.2.1 Grove Pond

To measure potential toxicity directly in Grove Pond surface water, toxicity tests were conducted as detailed in Section 6.2.3.1. Results are presented in Table 31. Full results of surface water toxicity tests are provided in Appendix D.

Neither survival nor the two growth endpoints (average dry biomass and average dry weight) were significantly affected in *Pimephales promelas* exposed to Grove Pond water. These results are not surprising given the general lack of exceedances of surface water benchmarks.

7.4.2.2 Plow Shop Pond

To measure potential toxicity directly in Plow Shop Pond surface water, toxicity tests were conducted as detailed in Section 6.2.3.1. Results are presented in Table 32. Full results of surface water toxicity tests are provided in Appendix D.

Neither survival nor the two growth endpoints (average dry biomass and average dry weight) were significantly affected in *Pimephales promelas* exposed to Grove Pond water. These results are not surprising given the general lack of exceedances of surface water benchmarks.

7.4.3 Measurement Endpoint C: Critical Body Residue (CBR) Evaluation

The third measurement endpoint for determining potential risk to fish was a comparison of fish tissue body burdens to literature CBRs for fish, as discussed in Section 6.2.2.3.

7.4.3.1 Grove Pond

Hazard quotients for Grove Pond fish are shown in Table 33 and 34. Table 33 presents a screening table comparing the maximum concentration of fish tissue over all species with NOAEL-based CBRs. This comparison was made to select chemicals for which species-specific HQs were calculated. Hazard quotients were calculated for both maximum and average EPCs and both NOAEL and LOAEL CBRs (Table 34).

As shown in Table 33, the maximum fish tissue concentration exceeded the NOAEL CBR for nine metals and two pesticides. Species-specific HQs were calculated for these chemicals.

Brown Bullhead

Hazard quotients based on maximum EPCs and NOAEL CBRs ($HQ_{Max-NOAEL}$) were greater than one for six metals and DDE. Hazard quotients based on average EPCs and NOAEL CBRs ($HQ_{Avg-NOAEL}$) were greater than one for five metals and DDE. Hazard quotients based on maximum EPCs and LOAEL CBRs ($HQ_{max-LOAEL}$) were greater than one for copper and lead only. Finally Hazard quotients based on average EPCs and LOAEL CBRs ($HQ_{Avg-LOAEL}$) were greater than one also for copper and lead only. None of the HQs exceeded 10, suggesting low-level risk to the brown bullhead.

Bluegill

The $HQ_{Max-NOAEL}$ were greater than one for four metals and two pesticides. The $HQ_{Avg-NOAEL}$ were greater than one for four metals and one pesticide. The $HQ_{max-LOAEL}$ and $HQ_{Avg-LOAEL}$ were greater than one also for copper and lead only. None of the HQs exceeded 10, suggesting low-level risk to the bluegill.

Large Mouth Bass

Hazard quotients based on maximum EPCs and NOAEL CBRs ($HQ_{Max-NOAEL}$) were greater than one for eight metals and two pesticides. Only cadmium (28) and lead (15) had HQs greater than 10. The $HQ_{Avg-NOAEL}$ were greater than one for four metals and two pesticides, with none greater than 10. The $HQ_{max-LOAEL}$ were greater than one for four metals with the HQ for lead (13) being the only HQ greater than 10. Finally, the $HQ_{Avg-LOAEL}$ were greater than one for copper and lead only, both of which were only slightly greater than one. The results suggest that largemouth bass are potentially at low-level risk from a few metals accumulated in tissue. Greater risk from copper and lead may be present for individuals with the highest concentrations of these metals in their tissue.

Yellow Bullhead

The $HQ_{Max-NOAEL}$ and $HQ_{Avg-NOAEL}$ were greater than one for four metals three metals and DDE, but all HQ were well below 10. The $HQ_{max-LOAEL}$ and $HQ_{Avg-LOAEL}$ were greater than one only for copper and lead only. None of the HQs exceeded 10, suggesting low-level risk to the yellow bullhead.

Black Crappie

Hazard quotients based on NOAEL CBRs (HQ_{NOAEL}) were greater than one for chromium, copper, and DDE. None were greater than 10. Hazard quotients based on LOAEL CBRs (HQ_{NOAEL})

LOAEL) were greater than one for chromium and copper only and both HQ were only slightly greater than one, suggesting low-level risk to the black crappie.

Pickerel

Hazard quotients based on NOAEL CBRs (HQ_{NOAEL}) were greater than one for copper, zinc, and DDE. None were greater than 10. Hazard quotients based on LOAEL CBRs (HQ_{-LOAEL}) were greater than one for copper and zinc only and both HQ were only slightly greater than one, suggesting low-level risk to the pickerel.

7.4.3.2 Plow Shop Pond

Hazard quotients for Plow Shop Pond fish are shown in Table 35 and 36. Table 35 presents a screening table comparing the maximum concentration of fish tissue over all species with NOAEL-based CBRs. This comparison was made to select chemicals for which species-specific HQs were calculated. Hazard quotients were calculated for both maximum and average EPCs and both NOAEL and LOAEL CBRs (Table 36).

As shown in Table 35, the maximum fish tissue concentration exceeded the NOAEL CBR for five metals and two pesticides. Species-specific HQs were calculated for these chemicals.

Large Mouth Bass

Hazard quotients based on maximum EPCs and NOAEL CBRs ($HQ_{Max-NOAEL}$) were greater than one for four metals and two pesticides. Only DDE (13) had an HQ greater than 10. The $HQ_{Avg-NOAEL}$ were greater than one for three metals and DDE, with none greater than 10. The $HQ_{max-LOAEL}$ were greater than one for copper and DDE only, both only slightly greater than one. Finally, the $HQ_{Avg-LOAEL}$ were greater than one for copper only, and it was also only slightly greater than one. The results suggest that largemouth bass are potentially at low-level risk from a few metals accumulated in tissue. Greater risk from exposure to DDE may be present for individuals with the highest concentrations in their tissue.

Bullhead

Hazard quotients based on maximum EPCs and NOAEL CBRs ($HQ_{Max-NOAEL}$) were greater than one for chromium, copper, and DDE, none of which were greater than 10. The $HQ_{Avg-NOAEL}$, $HQ_{max-LOAEL}$, and $HQ_{Avg-LOAEL}$ were greater than one also for copper only and none of the HQs exceeded 10, suggesting low-level risk to the bullhead.

Bluegill

The $HQ_{Max-NOAEL}$ were greater than one for three metals and DDE. All HQs were less than 10. The $HQ_{Avg-NOAEL}$ were greater than one for two metals and DDE, copper having the highest HQ of 2.2. The $HQ_{max-LOAEL}$ and $HQ_{Avg-LOAEL}$ were greater than one for copper only, 4.3 and 2.1, respectively. The results suggest only low-level risk from metals and DDE to the bluegill.

Black Crappie

The $HQ_{Max-NOAEL}$ were greater than one for chromium, copper, and DDE. The $HQ_{Avg-NOAEL}$ were greater than one for copper only. The $HQ_{max-LOAEL}$ were also greater than one for chromium, copper, and DDE and the $HQ_{Avg-LOAEL}$ were greater than for copper only. None of the $HQ_{avg-LOAEL}$ were greater than for copper only. None of the $HQ_{avg-LOAEL}$ were greater than for copper only.

7.4.4 Fish Community Risk Characterization

The results for Grove Pond support the findings of a previous fish community survey conducted as part of the RI Addendum (ABB-ES 1993). Baseline information was collected on species, relative abundance of species, fish size distribution, and trophic structure of the fish community. A total of 193 fish were collected with 12 species in 7 families represented. The fish community was found to be typical of warm water fisheries in New England.

7.4.5 Fish Community Weight of Evidence Integration

The WOE Integration results for water column invertebrates are identical for Grove Pond and Plow Shop Pond, so they are merged in this section.

Assessment Endpoint:

Protect the long-term health of local fish populations

Measurement Endpoints:

- A. Compare surface water contaminant concentrations against surface water benchmarks
- B. Assess surface water toxicity using P. promelas
- C. Compare measured fish tissue residue levels against fish CBRs

Weight-of-Evidence Integration

		Weight (from Table 8)				
Risk/Magnitude	Low	Low-Medium	Medium	Medium-High	High	
Yes/High						
Yes/Medium						
Yes/Low		A		C		
Indeterminate						
No Risk			В			

Summary:

Three lines of evidence were used to assess the potential risk to the fish community in Grove and Plow Shop Ponds. Comparing measured surface water COPC concentrations to generic benchmarks identified a potential for low risk, but with a low-medium WOE; measuring surface water toxicity using larval stages of the fathead minnow did not identify the potential for risk; comparing measured tissue residue levels in several fish species captured from the two ponds identified a low potential for risk, with a medium-high WOE. Overall, the available data indicate that it is not likely that the fish communities in the two ponds will experience significant risk from Site-related COPCs.

A semi-quantitative fish community survey performed in Grove Pond in the early 1990s indicated the fish community was typical of that found in warm-water fisheries in New England. This information further supports the conclusion that the fish community in Grove Pond is not likely to be affected by exposure to Site-COPCs.

7.5 ASSESSMENT ENDPOINT 4: OMNIVOROUS MAMMAL POPULATIONS

The assessment endpoint was the protection of omnivorous mammals foraging in pond shallows, to insure that ingestion of chemicals in food items, sediment, and surface water does not have a negative impact on growth, survival, and reproduction. *Are the levels of contaminants in surface water and aquatic prey sufficiently high to impair omnivorous mammal populations foraging in Grove Pond and Plow Shop Pond?*

7.5.1 Grove Pond Raccoon

7.5.1.1 Measurement Endpoint: Hazard Quotients based on NOAEL and LOAEL TRVs

The measurement endpoint was a comparison of an estimated daily intake with a literature-derived TRV for mammals to calculate an HQ. Hazard quotients for the raccoon foraging in Grove Pond are shown in Table 37 (maximum EPCs) and Table 38 (average EPCs).

Hazard quotients for the raccoon based on maximum EPCs and NOAEL TRVs were greater than one for 14 metals and for total PAHs (Table 37). Hazard quotients were between one and 10 for barium, beryllium, cobalt, lead manganese, methylmercury, selenium, thallium and total PAHs. Hazard quotients were between 10 and 100 for antimony, cadmium, copper, and vanadium. The highest NOAEL-based HQ_{max} were for aluminum (1064) and arsenic (166).

Hazard quotients for the raccoon based on maximum EPCs and LOAEL TRVs were greater than one for eight metals and total PAHs. Hazard quotients were between one and 10 for antimony, barium, cadmium, selenium, vanadium, and total PAHs. Hazard quotients were between 10 and 100 for arsenic and copper. The highest LOAEL-based HQ_{max} was for aluminum (106).

Because it is unlikely that wildlife receptors forage only in areas with the highest COPC concentrations, HQs were also determined for exposures to average EPCs for site media. Hazard quotients for the raccoon based on average EPCs and NOAEL TRVs were greater than one for nine metals and for total PAHs (Table 38). Hazard quotients were between one and 10 for barium, manganese, methylmercury, selenium, thallium, and total PAHs. Hazard quotients were between 10 and 100 for antimony, arsenic, and vanadium. The highest NOAEL-based HQ_{Avg} was for aluminum (128).

Hazard quotients for the raccoon based on average EPCs and LOAEL TRVs were greater than one for four metals. Hazard quotients were between one and 10 for antimony, arsenic, and vanadium. The highest LOAEL-based HQ_{Avg} was for aluminum (13).

7.5.1.2 Modification of HQs Based on Different Prey Items

The raccoon is not likely to ingest all fish and invertebrate prey items equally. For example, the raccoon is more likely to feed on mussels and crayfish than odonate larvae and on small fish species than largemouth bass. Therefore, an evaluation of the possible influence of different EPC in different invertebrate and fish taxa on uptake in the raccoon was evaluated. This evaluation was based on an assessment of the dietary items contributing most to risk.

Because the daily intake of a given chemical may not be the same from all dietary sources, an evaluation of the major pathways was made in order to elucidate from where the risk may be

originating for each chemical. This evaluation was conducted by dividing the daily uptake for each individual dietary component (e.g., invertebrates) by the total daily uptake. The results are summarized in Table 39 (max EPCs) and Table 40 (average exposures). The worksheets used to derive the percentages of risk attributed to each dietary item are provided in Appendix E. These results are discussed on a chemical specific basis below.

7.5.1.2.1 Modification of HQs Based on Different Invertebrate Taxa

Maximum EPC

For the raccoon, HQs based on maximum exposures exceeded one for 14 metals and PAH total. Of these chemicals, the invertebrate ingestion pathway was a significant risk driver for antimony, beryllium, cobalt, manganese, thallium, vanadium, and PAH (Table 39). The invertebrate EPC for barium, manganese, and selenium only were based on biological tissue analyses; the EPCs for the other chemicals were based on the sediment concentration and the BSAF and are not taxaspecific. For the three metals for which there were biological tissue data, the data were only for crayfish; the metals were not analyzed in odonata tissue. Therefore, the risk estimates would not change if they were adjusted to account for variations in concentrations between invertebrate taxa.

Average EPC

For the raccoon, HQs based on average exposures exceeded one for nine metals and PAH total. Of these chemicals, the invertebrate ingestion pathway was a significant risk driver for antimony, barium, manganese, thallium, vanadium, and PAH. The invertebrate EPC for barium, manganese, and selenium only were based on biological tissue analyses; the EPCs for the other chemicals were based on the sediment concentration and the BSAF and are not taxa-specific. For the three metals for which there were biological tissue data, the data were only for crayfish; the metals were not analyzed in odonata tissue. Therefore, the risk estimates would not change if they were adjusted to account for variations in concentrations between invertebrate taxa.

7.5.1.2.2 Modification of HQs Based on Different Fish Species

Maximum EPC

For the raccoon, HQs based on maximum exposures exceeded one for 14 metals and PAH total. Of these chemicals, the fish ingestion pathway was a significant risk driver only for methylmercury. The NOAEL HQ for methylmercury was only slightly greater than one and the LOAEL HQ was below one. A species-specific adjustment of the fish EPC, therefore, would not change the risk picture significantly.

Average EPC

For the raccoon, HQs based on average exposures exceeded one for nine metals and PAH total. Of these chemicals, the fish ingestion pathway was a significant risk driver only for methylmercury, with 22% of total risk coming from ingestion of fish. The NOAEL and LOAEL HQs are both low, however, and a species-specific adjustment of the fish EPC would not change the risk picture significantly.

7.5.1.3 Residual Risk Evaluation for the Grove Pond Raccoon

The RR derivation is presented in Appendix G and summarized in Table 41 (maximum EPC) and Table 42 (average EPC). The RR for maximum exposures (Table 41) were greater than one for all COPC, suggesting that risk from maximum exposures cannot be attributed to background conditions. The RR for average exposures (Table 42), on the other hand, were less than one for arsenic, barium, methylmercury and total PAHs, and barely greater than one for manganese and vanadium. This suggests that the majority of risk from these chemicals to the raccoon foraging throughout Grove Pond is due to background conditions.

7.5.1.4 Chemical-Specific Risk Characterization for the Grove Pond Raccoon

The chemicals that present potential unacceptable risk for the raccoon are those with elevated HQs based on average exposures. For raccoons foraging in Grove Pond, the following chemicals merit the most concern based on HOs:

Aluminum

Average exposure NOAEL-based and LOAEL-based HQs for aluminum are very high (128 and 12.8, respectively) (Table 38). These HQs may not equate to unacceptable risk for the raccoon, however, for a couple reasons. First of all, 98% of risk to the raccoon, based on average exposures, is from incidental ingestion of sediment. It is likely that most of that Al is not bioavailable because it is bound up in the sediment matrix. Hence, the likelihood for this potential risk to be realized is low, though the uncertainty surrounding this risk estimate is high.

Antimony

Hazard quotients suggest that antimony poses potential risk to the raccoon, with NOAEL-based and LOAEL-based HQs of 14 and 1.4, respectively (Table 38). Antimony was only detected in 2 of 120 sediment samples analyzed, however. Dietary items other than plants, including incidental ingestion of sediment, are all significant sources of antimony in the raccoon food chain model. This is because all EPCs are modeled from the sediment EPC. In most samples in Grove Pond, sediment concentrations were ND, and modeled dietary concentrations would be ND as well.

Another factor that plays a role in the elevated HQs for antimony is that the BSAF for antimony is a default value of 0.9, from EPA (1999b). This BSAF may overestimate bioaccumulation in aquatic biota. Antimony is not known to be highly bioaccumulative and HAZWRAP (1994) lists a soil-invert bioaccumulation factor (BAF) of 0.5. Further, antimony was not detected in fish tissue samples in Grove Pond.

Given the very low frequency of detection and the uncertainty associated with the BSAF for antimony, the high HQs do not equate to unacceptable risk for the raccoon.

Arsenic

Arsenic had HQs that suggest risk to the raccoon, with NOAEL-based and LOAEL-based HQs of 15 and 1.5, respectively (Table 38). Arsenic was not detected at high concentrations in dietary items of the raccoon. The primary route of exposure, therefore, is via direct ingestion of arsenic in sediment. A back calculation shows that any sediment concentration greater than 50 mg/kg would yield a LOAEL-based HQ greater than one. Concentrations greater than this were found throughout the pond. The RR for arsenic to the Grove Pond raccoon is less than one for average exposures, however. This suggests that risk to the raccoon foraging throughout Grove Pond might be attributable to background conditions.

Vanadium

Vanadium had HQs that suggest risk to the raccoon, with NOAEL-based and LOAEL-based HQs of 20 and 2, respectively (Table 38). Vanadium was not detected at high concentrations in fish or frogs, but invertebrate and egg tissue concentrations were high because they were modeled directly from sediment concentrations using a BSAF of 1.0. A back calculation shows that any sediment concentration great than 16 mg/kg would yield a LOAEL-based HQ greater than one. Concentrations greater than this were found throughout the pond.

Vanadium concentrations in Grove Pond sediment may not pose unacceptable risk because risk may be overestimated. As noted previously, concentrations in invertebrates and eggs are modeled directly from vanadium concentrations using a conservative estimate of 1.0. This BSAF is probably overestimated, as measured concentrations in fish tissue and frog tissue are low, indicting that vanadium is not very bioaccumulative. In addition, HAZWRAP (1994) reports a soil-invertebrate BAF of 0.13, further suggesting that vanadium is not likely to bioaccumulate following the above assumption (BSAF=1).

The RR for vanadium to Grove Pond raccoon is greater than one, but only slight greater than one (1.1). This suggests that the majority of risk from vanadium to the raccoon foraging throughout Grove Pond is attributable to background conditions.

Because the BSAF is probably unrealistically high and because the RR for vanadium is only slightly greater than one, vanadium does not likely present unacceptable risk to the raccoon.

Other Chemicals

Barium, manganese, methylmercury, selenium, thallium, and Total PAHs all had HQs based on average EPCs and NOAEL TRVs greater than one. All of these HQ were low, however, with that for thallium (3.4) being the highest. Further, none of the HQs based on LOAEL TRVs exceeded one. Therefore, risk to the raccoon from these COPC is considered minimal.

7.5.1.5 Summary

While maximum HQs are very high for some chemicals, the raccoon probably does not forage only in areas with maximum COPC. For the raccoon foraging throughout Grove Pond, a few COPC present potential risk based on HQ_{average}. Because risk from most of these COPC can be attributed in large part to background conditions, the site related risk to the raccoon in Grove Pond is considered low.

7.5.1.6 Weight of Evidence Integration - Grove Pond

Assessment Endpoint:

Protect the long-term health of local omnivorous mammal populations (raccoon)

Measurement Endpoints:

A. Compare calculated total daily doses against target receptor TRVs

Weight-of-Evidence Integration

	Weight (from Table 8)				
Risk/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High
Yes/High					
Yes/Medium					
Yes/Low					
Indeterminate					
No Risk				A	

Summary:

One line of evidence was used to assess the potential risk to omnivorous mammals, represented by the raccoon, foraging in Grove Pond. Comparing COPC-specific TDDs derived from food chain modeling to COPC-specific TRVs derived from the literature was given a medium-high weight. This approach identified risk (average $HQ_{LOAEL} > 1.0$) for aluminum, antimony, arsenic, and vanadium. However, the residual risk calculations indicate that most of this risk was also present at the background location. Overall, the available evidence indicates that it is not likely that omnivorous mammals are at significant risk when foraging in Grove Pond.

7.5.2 Plow Shop Pond Raccoon

7.5.2.1 Measurement Endpoint: Hazard Quotients based on NOAEL and LOAEL TRVs

The measurement endpoint was a comparison of an estimated daily intake with a literature-derived TRV for mammals to calculate an HQ. Both NOAEL and LOAEL TRVs were used to obtain a range of risk values for each COPC. However, the potential for unacceptable risk was assumed to be present only if the average HQ_{LOAEL} exceeded 1.0. Hazard quotients for the raccoon foraging in Plow Shop Pond are shown in table 43 (maximum EPCs) and Table 44 (average EPCs).

Hazard quotients for the raccoon based on maximum EPCs and NOAEL TRVs were greater than one for 13 metals and total PAHs (Table 43). Hazard quotients were between one and 10 for barium, cadmium, cobalt, copper, lead, methylmercury, and selenium. Hazard quotients were between 10 and 100 for antimony, manganese, and total PAHs. The highest NOAEL-based HQ_{max} were for aluminum (327), arsenic (1234), thallium (632) and vanadium (101).

Hazard quotients for the raccoon based on maximum EPCs and LOAEL TRVs were greater than one for ten metals and total PAHs (Table 43). Hazard quotients were between one and 10 for antimony, barium, copper, manganese, methylmercury, selenium and total PAHs. Hazard quotients were between 10 and 100 for aluminum, thallium, and vanadium. The highest LOAEL-based HQ_{Max} was for arsenic (123).

Because it is unlikely that wildlife receptors forage only in areas with the highest COPC concentrations, HQs were also determined for exposures to average EPCs in site media. Hazard quotients for the raccoon based on average EPCs and NOAEL TRVs were greater than one for nine metals and total PAHs (Table 44). Hazard quotients were between one and 10 for barium, manganese, methylmercury, selenium, and total PAHs. Hazard quotients were between 10 and

100 for aluminum (99), antimony, and vanadium. The highest NOAEL-based HQ_{Avg} were for arsenic (100) and thallium (501).

Hazard quotients for the raccoon based on average EPCs and LOAEL TRVs were greater than one for six metals (Table 34). Hazard quotients were between one and 10 for aluminum (9.9), antimony, vanadium, and selenium. The highest LOAEL-based HQ_{Avg} were for arsenic (10) and thallium (50).

7.5.2.2 Modification of HQs Based on Different Prey Items

The raccoon is not likely to ingest all fish and invertebrate prey items equally. For example, the raccoon is more likely to feed on mussels and crayfish than odonate larvae and on small fish species than largemouth bass. Therefore, an evaluation of the possible influence of different EPC in different invertebrate and fish taxa on uptake in the raccoon was evaluated. This evaluation was based on an assessment of the dietary items contributing most to risk.

Because the daily intake of a given chemical may not be the same from all dietary sources, an evaluation of the major pathways was made in order to elucidate from where the risk may be originating for each chemical. This evaluation was conducted by dividing the daily uptake for each individual dietary component (e.g., invertebrates) by the total daily uptake. The results are summarized in Table 39 (max EPCs) and Table 40 (average exposures). The worksheets used to derive the percentages of risk attributed to each dietary item are provided in Appendix E. These results are discussed on a chemical specific basis below.

7.5.2.2.1 Modification of HQs Based on Different Invertebrate Taxa

Maximum EPC

For the raccoon in Plow Shop Pond, HQs based on maximum exposures exceeded one for 13 metals and PAH total. Of these chemicals, the invertebrate ingestion pathway was a significant risk driver for antimony, barium, cobalt, thallium, vanadium, and PAH (Table 39). The invertebrate EPC for barium only was based on biological tissue analyses; the EPCs for the other chemicals were based on the sediment concentration and the BSAF. For barium, the NOAEL HQ was were only slightly greater than one and the LOAEL HQs were less than one; therefore, an adjustment of the invertebrate EPCs based on the taxonomic group would not change the risk picture significantly.

Average EPC

For the raccoon, HQs based on average exposures exceeded one for nine metals and PAH total. Of these chemicals, the invertebrate ingestion pathway was a significant risk driver for antimony,

barium, manganese, thallium, vanadium, and PAH (Table 40). The invertebrate EPC for barium and manganese only were based on biological tissue analyses; the EPCs for the other chemicals were based on the sediment concentration and the BSAF. For both of these metals, the NOAEL HQs were only slightly greater than one and the LOAEL HQs were less than one; therefore, an adjustment of the invertebrate EPCs based on the taxonomic group would not change the risk picture significantly.

7.5.2.2.2 Modification of HQs Based on Different Fish Species

Maximum EPC

For the raccoon, HQs based on maximum exposures exceeded one for 13 metals and PAH total. Of these chemicals, the fish ingestion pathway was a significant risk driver only for methylmercury (Table 39). An uptake adjustment was made based on the different concentrations of methylmercury between fish species ingested by the raccoon (Table F-1). For methylmercury, the highest HQs were those based on ingestion of largemouth bass. Hazard quotients based on bullhead, bluegill, and crappie were lower, with no LOAEL-based HQ greater than one. The raccoon may be more likely to feed the three smaller species than on largemouth bass and the HQs for the raccoon based on ingestion of the smaller fish are probably more reflective of actual site risk in Plow Shop Pond. The NOAEL-based HQs for mercury based on the smaller species were all approximately 3, for each species. The LOAEL-based HQs were all less than one.

Average EPC

For the raccoon, HQs based on average exposures exceeded one for nine metals and PAH total. Of these chemicals, the fish ingestion pathway was a significant component of risk for methylmercury only (Table 40). The NOAEL HQ was only slightly greater than one and the LOAEL HQ was less than one; therefore, a species-specific adjustment of the fish EPC would not change the risk picture significantly.

7.5.2.3 Residual Risk Evaluation for the Plow Shop Pond Raccoon

The RR derivation is presented in Appendix G and summarized in Table 41 (maximum EPC) and Table 42 (average EPC). For the raccoon in Plow Shop Pond, the RR for maximum exposures (Table 41) were greater than one for all COPC, suggesting that risk from maximum exposures cannot be attributed to background conditions. The RR for average exposures (Table 42), on the other hand, were less than one for cadmium, methylmercury, vanadium, and total PAHs, and barely greater than one for aluminum, beryllium, cobalt, and lead. This suggests that the majority of risk from these chemicals to the raccoon foraging throughout Plow Shop Pond is due to background conditions.

7.5.2.4 Chemical-Specific Risk Characterization for the Plow Shop Pond Raccoon

The chemicals that present potential unacceptable risk for the raccoon are those with elevated HQs based on average exposures. For raccoons foraging in Plow Shop Pond, the following chemicals merit the most concern based on HQs:

Aluminum

Average exposure NOAEL-based and LOAEL-based HQs for aluminum are very high (99 and 10, respectively). These HQs may not equate to unacceptable risk for the raccoon, however, for a couple reasons. First of all, 98% of risk to the raccoon, based on average exposures, is from incidental ingestion of sediment. It is likely that most of that Al is not bioavailable because it is bound up in the sediment matrix. Hence, the likelihood for this potential risk to be realized is low, though the uncertainty surrounding this risk estimate is high. Because of the likelihood that aluminum in sediment is not bioavailable and because of the low RR (1.2), aluminum probably does not pose unacceptable site-related risk to the raccoon foraging throughout Plow Shop Pond.

Antimony

Antimony was only detected in 5 of 63 sediment samples in Plow Shop Pond, four of which were located adjacent to the Railroad Roundhouse, suggesting an antimony source in this area. The pond average concentration (15 mg/kg) seems to be driven by a few samples with high detection limits. Of the samples with ND values, most had detection limits less than ten but a small number of samples had detection limits much greater. The few samples with high detection limits have a disproportionate effect on the site average concentration.

Dietary items other than plants, including incidental ingestion of sediment, are all significant sources of antimony in the raccoon food chain model. This is because all EPCs are modeled from the sediment EPC. In most samples in Plow Shop Pond, sediment concentrations are low or ND, and modeled dietary concentrations would be low or ND as well.

Another factor that plays a role in the HQ calculation for antimony is that the BSAF for antimony is a default value of 0.9, from EPA (1999b). This BSAF may overestimate bioaccumulation in aquatic biota. Antimony is not known to be highly bioaccumulative and HAZWRAP (1994) lists a soil-invert bioaccumulation factor (BAF) of 0.5. Further, antimony was not detected in fish tissue samples in Plow Shop Pond.

Given the limited aerial extent of antimony detections, the elevated detections limits in ND samples, and the uncertainty associated with the BSAF for antimony, the high HQs do not necessarily equate to unacceptable risk for the raccoon.

Arsenic

Arsenic had HQs that suggest risk to the raccoon, with NOAEL-based and LOAEL-based HQs of 100 and 10, respectively (Table 38). Arsenic was not detected at high concentrations in dietary items of the raccoon. The primary route of exposure, therefore, is via direct ingestion of arsenic in sediment. A back calculation shows that any sediment concentration greater than 50 mg/kg would yield a LOAEL-based HQ greater than one. Concentrations greater than this were found throughout the pond, suggesting unacceptable risk to the raccoon. The RR for arsenic to the Plow Shop raccoon is 59, suggesting that the majority of the risk is due to arsenic levels in Plow Shop Pond.

Selenium

The NOAEL and LOAEL-based HQs for selenium suggest risk for the raccoon. Exposure point concentrations for dietary items were low and the primary route of uptake of selenium is via incidental ingestion of sediment. Selenium was detected in 30 of 110 Plow Shop Pond samples. The site average was 14 mg/kg. The average of detected samples only was 4 mg/kg. Elevated detection limits, therefore, drive the site average higher than should be expected. NOAEL and LOAEL-based HQs based on a concentration of 4 mg/kg, the average concentration of detected values, would be less than one. Selenium in Plow Shop Pond sediments, therefore, does not pose unacceptable risk for the raccoon.

Thallium

The highest HQs for the raccoon in Plow Shop Pond were for thallium. Risk from exposure to thallium is based directly on sediment concentrations because food items were modeled using a default BSAF of 0.9 from EPA (1999b). This BSAF is thought to be overly conservative. Thallium was not detected in any of the 20 fish samples collected in Plow Shop Pond.

Thallium was only detected in three of 48 samples in Plow Shop Pond, all from one sampling effort, the 1998 samples labeled PSEM-1 through PSEM-3. The site EPC were based on these samples only, as inclusion of ND values would have resulted in an unrealistically high average based on ½ DL values. Given the low frequency of detection and the likely overestimation of bioaccumulation for thallium, the elevated HQs for thallium may not equate to unacceptable risk.

Vanadium

Uptake of vanadium by the raccoon is primarily through ingestion of invertebrates, eggs, and sediment. The invertebrate and egg EPCs are directly effect by the sediment vanadium concentration because they were modeled using a default BSAF of one. While no BSAF was found specifically for vanadium, the metal is not thought to be highly bioaccumulative. This is

evidenced by the low average concentrations detected in frog tissue (0.33 mg/kg) and fish tissue (0.6 mg/kg) compared to the modeled concentration in other biota (27 mg/kg). In addition, HAZWRAP (1994) reports a soil-invertebrate BAF of 0.13, further suggesting that vanadium is not likely to bioaccumulate following the above assumption (BSAF=1). The BSAF for vanadium, therefore, probably overestimates risk to the raccoon that may be elevated even at background concentrations.

The average RR for vanadium to Plow Shop Pond raccoon is less than one. This suggests that the majority of risk from vanadium to the raccoon foraging throughout Plow Shop Pond is attributable to background conditions.

Because the BSAF is probably unrealistically high. Further, because the average RR for vanadium is below one, vanadium does not likely present unacceptable risk to the raccoon.

Other Chemicals

Grove Pond and Plow Shop Pond

Ayer, MA

Barium, manganese, methylmercury, and total PAHs all had HQs based on average EPCs and NOAEL TRVs greater than one. All of these HQ were low, however, with that for total PAH (2.1) being the highest. Further, none of the HQs based on LOAEL TRVs exceeded one. Therefore, risk to the raccoon from these COPC is considered minimal.

7.5.2.5 Summary

While maximum HQs are very high for some chemicals, the raccoon probably does not forage only in areas with maximum COPC. For the raccoon foraging throughout Plow Shop Pond, a few COPC present potential risk based on HQ_{average}. Risk from most of these COPC can be attributed in large part to background conditions or be explained by an unrealistically high bioaccumulation assumption. Arsenic, however, does pose potential unacceptable risk to the raccoon and the high HQs cannot be attributed to background. The overall risk to the raccoon in Plow Shop Pond is considered high because of arsenic. There is significant uncertainty associated with this conclusion, however, because risk is based on incidental ingestion of sediment. The uncertainty associated with the estimated sediment ingestion rate is discussed in Section 7.10.

7.5.2.6 Weight of Evidence Integration - Plow Shop Pond

Assessment Endpoint:

Protect the long-term health of local omnivorous mammal populations (raccoon)

Measurement Endpoints:

A. Compare calculated total daily doses against target receptor TRVs

Weight-of-Evidence Integration

	Weight (from Table 8)				
Risk/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High
Yes/High				A	
Yes/Medium					
Yes/Low					
Indeterminate					
No Risk					

Summary:

One line of evidence was used to assess the potential risk to omnivorous mammals, represented by the raccoon foraging in Plow Shop Pond. Comparing COPC-specific TDDs derived from food chain modeling to COPC-specific TRVs derived from the literature was given a mediumhigh weight. This approach identified risk (average HQ_{LOAEL} >1.0) for aluminum, antimony, arsenic, selenium, thallium and vanadium. However, the residual risk calculations indicate that most of the risk from aluminum and vanadium is also present at the background location. The risk from antimony, selenium, and thallium results from conservative bioaccumulation factors, high analytical detection limits, or low detection frequencies. The high risk from arsenic appears to be site-specific and associated almost exclusively with sediment ingestion. Overall, the available evidence indicates that there is the potential for significant risk from arsenic to omnivorous mammals foraging in Plow Shop Pond.

7.6 ASSESSMENT ENDPOINT 5: PISCIVOROUS MAMMAL POPULATIONS

The assessment endpoint was protection of piscivorous mammals foraging in the pond, to insure that ingestion of chemicals in food items, sediment, and surface water does not have a negative impact on growth, survival, and reproduction. Are the levels of contaminants in surface water and aquatic prey sufficiently high to impair piscivorous mammal populations foraging in Grove Pond and Plow Shop Pond?

7.6.1 Grove Pond Mink

7.6.1.1 Measurement Endpoint: Hazard Quotients based on NOAEL and LOAEL TRVs

The measurement endpoint was a comparison of an estimated daily intake with a literature-derived TRV for mammals to calculate an HQ. Both NOAEL and LOAEL TRVs were used to obtain a range of risk values for each COPC. However, the potential for unacceptable risk was assumed to be present only if the average HQ_{LOAEL} exceeded 1.0. Hazard quotients for the mink foraging in Grove Pond are shown in table 45 (maximum EPCs) and Table 46 (average EPCs).

Hazard quotients for the mink based on maximum EPCs and NOAEL TRVs were greater than one for six metals (Table 45). Hazard quotients were between one and 10 for cadmium, copper, methylmercury, and vanadium. Hazard quotients were between 10 and 100 for aluminum and arsenic.

Hazard quotients for the mink based on maximum EPCs and LOAEL TRVs were greater than one for three metals: aluminum, arsenic, and copper (Table 45). None of the LOAEL-based HQ_{Max} exceeded 10.

Because it is unlikely that wildlife receptors forage only in areas with the highest COPC concentrations, HQs were also determined for exposures to average EPCs for site media. Hazard quotients for the mink based on average EPCs and NOAEL TRVs were greater than one for aluminum and arsenic only (Table 46). Both NOAEL-based HQ_{average} were less than 10.

No HQs based on average EPCs and LOAEL TRVs were greater than one (Table 46).

7.6.1.2 Modification of HQs Based on Different Prey Items

The mink is not likely to ingest all fish species equally. For example, the mink is more likely to feed on small fish species than largemouth bass. Therefore, an evaluation of the possible influence of different EPC in different fish taxa on uptake in the mink was evaluated. This evaluation was based on an assessment of the dietary items contributing most to risk.

Because the daily intake of a given chemical may not be the same from all dietary sources, an evaluation of the major pathways was made in order to elucidate from where the risk may be originating for each chemical. This evaluation was conducted by dividing the daily uptake for each individual dietary component (e.g., invertebrates) by the total daily uptake. The results are summarized in Table 39 (max EPCs) and Table 40 (average exposures). The worksheets used to derive the percentages of risk attributed to each dietary item are provided in Appendix E. These results are discussed on a chemical specific basis below.

7.6.1.2.1 Modification of HQs Based on Different Fish Species

Maximum EPC

For the mink, NOAEL HQs based on maximum exposures exceeded one for six metals. Of these chemicals, the fish ingestion pathway was a significant risk component for methylmercury and vanadium. For both of these metals, the NOAEL-based HQ was only slightly greater than one and the LOAEL-based HQ was less than one. Adjusting the fish EPCs, therefore, to account for variations in concentrations between species would not change the risk picture significantly.

Average EPC

For the mink, NOAEL HQs based on average exposures exceeded one for two metals. Of these chemicals, the fish ingestion pathway was a significant risk factor for arsenic only. Because the NOAEL-based HQ barely exceeds one, adjusting the fish EPC to account for variations in concentrations between species would not change the risk picture significantly.

7.6.1.3 Residual Risk Evaluation for the Grove Pond Mink

The RR derivation is presented in Appendix G and summarized in Table 41 (maximum EPC) and Table 42 (average EPC). The Grove Pond RR for maximum exposures (Table 41) for the mink were greater than one for all COPC, suggesting that risk from maximum exposures cannot be attributed to background conditions. The RR for average exposures (Table 42), on the other hand, were less than one for manganese and barely greater than one for arsenic and methylmercury. This suggests that the majority of risk from these chemicals to the mink foraging throughout Grove Pond is due to background conditions.

7.6.1.4 Chemical-Specific Risk Characterization for the Grove Pond Mink

The chemicals that present potential unacceptable risk for the mink are those with elevated HQs based on average exposures. For mink foraging in Grove Pond, only aluminum and arsenic had HQs based on average EPCs and NOAEL TRVs greater than one. Both of these were low and neither chemical had a LOAEL TRV greater than one.

7.6.1.5 Summary

These low HQs for aluminum and arsenic probably do not equate to unacceptable risk for the mink in Grove Pond. Given the likelihood that the form of aluminum in sediment is not toxic to wildlife, as discussed in Section 7.5.1.4, and the low RR for arsenic, risk to the mink foraging in Grove Pond is considered low.

7.6.1.6 Weight of Evidence Integration - Grove Pond

Assessment Endpoint:

Protect the long-term health of local piscivorous mammal populations (represented by the mink)

Measurement Endpoints:

A. Compare calculated total daily doses against target receptor TRVs

Weight-of-Evidence Integration

	Weight (from Table 8)				
Risk/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High
Yes/High					
Yes/Medium					
Yes/Low					
Indeterminate					
No Risk				A	

Summary:

One line of evidence was used to assess the potential risk to piscivorous mammals, represented by the mink foraging in Grove Pond. Comparing COPC-specific TDDs derived from food chain modeling to COPC-specific TRVs derived from the literature was given a medium-high weight. This approach identified no risk (average $HQ_{LOAEL} < 1.0$) for any of the COPCs. Overall, the available evidence indicates that there is no significant risk to piscivorous mammals foraging in Grove Pond.

7.6.2 Plow Shop Pond Mink

7.6.2.1 Measurement Endpoint: Hazard Quotients based on NOAEL and LOAEL TRVs

The measurement endpoint was a comparison of an estimated daily intake with a literature-derived TRV for mammals to calculate an HQ. Both NOAEL and LOAEL TRVs were used to obtain a range of risk values for each COPC. However, the potential for unacceptable risk was assumed to be present only if the average HQ_{LOAEL} exceeded 1.0. Hazard quotients for the mink foraging in Plow Shop Pond are shown in Table 47 (maximum EPCs) and Table 48 (average EPCs).

Hazard quotients for the mink based on maximum EPCs and NOAEL TRVs were greater than one for six metals (Table 47). Hazard quotients were between one and 10 for manganese, thallium, and vanadium. Hazard quotients were between 10 and 100 for aluminum and methylmercury. The highest NOAEL-based HQ_{Max} was for arsenic (77).

Hazard quotients for the mink based on maximum EPCs and LOAEL TRVs were greater than one for aluminum, arsenic, and methylmercury (Table 47). None of the LOAEL-based HQ_{max} were greater than 10.

Because it is unlikely that wildlife receptors forage only in areas with the highest COPC concentrations, HQs were also determined for exposures to average EPCs for site media. Hazard quotients for the mink based on average EPCs and NOAEL TRVs were greater than one for four metals: aluminum, arsenic, methylmercury, and thallium (Table 48). Arsenic (6.4) had the highest NOAEL-based HQ_{average} but was still less than 10.

None of the HQs based on average EPCs and LOAEL TRVs were greater than one for the mink (Table 48).

7.6.2.2 Modification of HQs Based on Different Prey Items

The mink is not likely to ingest all fish species equally. For example, the mink is more likely to feed on small fish species than largemouth bass. Therefore, an evaluation of the possible influence of different EPC in different fish taxa on uptake in the mink was evaluated. This evaluation was based on an assessment of the dietary items contributing most to risk.

Because the daily intake of a given chemical may not be the same from all dietary sources, an evaluation of the major pathways was made in order to elucidate from where the risk may be originating for each chemical. This evaluation was conducted by dividing the daily uptake for each individual dietary component (e.g., invertebrates) by the total daily uptake. The results are summarized in Table 39 (max EPCs) and Table 40 (average exposures). The worksheets used to derive the percentages of risk attributed to each dietary item are provided in Appendix E. These results are discussed on a chemical specific basis below.

7.6.2.2.1 Modification of HQs Based on Different Fish Species

Maximum EPC

For the mink, NOAEL HQs based on maximum exposures exceeded one for six metals. Of these chemicals, the fish ingestion pathway was a significant risk factor for methylmercury and vanadium (Table 39). Because the NOAEL-based HQs only slightly exceeded one and the LOAEL-based HQs were less than one for vanadium, adjusting the fish EPC to account for

variations in concentrations between species would not change the risk picture significantly for this metal. An uptake adjustment was conducted, however, for different concentrations of methylmercury between fish species ingested by the mink (Table F-2). For methylmercury, the highest HQs were those based on ingestion of largemouth bass. Hazard quotients based on bullhead, bluegill and crappie were lower, with no LOAEL-based HQs greater than one, while the LOAEL HQ for ingestion of largemouth bass was 2.2. The mink probably feeds more on the three smaller species than on largemouth bass and the HQs for the mink based on ingestion of the smaller fish are probably more reflective of actual site risk in Plow Shop Pond.

Average EPC

For the mink, NOAEL HQs based on average exposures exceeded one for four metals. Of these chemicals, the fish ingestion pathway was a significant risk factor for methylmercury only (Table 40). Because the methylmercury NOAEL-based HQ barely exceeds one and the LOAEL-based HQ is less than one, adjusting the fish EPC to account for variations in concentrations between species would not change the risk picture significantly for methylmercury.

7.6.2.3 Residual Risk Evaluation for the Plow Shop Pond Mink

The RR derivation is presented in Appendix G and summarized in Table 41 (maximum EPC) and Table 42 (average EPC). For the mink in Plow Shop Pond, the RR for maximum exposures (Table 41) were greater than one for all COPC, suggesting that risk from maximum exposures cannot be attributed to background conditions. The RR for average exposures (Table 42) were also greater than one for all COPC, although the RR for aluminum is barely greater than one. This suggests that the majority of risk from aluminum to the mink foraging throughout Plow Shop Pond is due to background conditions.

7.6.2.4 Chemical-Specific Risk Characterization for the Plow Shop Pond Mink

The chemicals that present potential unacceptable risk for the mink are those with elevated HQs based on average exposures. For mink foraging in Plow Shop Pond aluminum, arsenic, methylmercury, and thallium had HQs based on average EPCs and NOAEL TRVs greater than one. All of these HQ were low, however, with that for arsenic (6.4) being the highest. Further, none of the HQs based on LOAEL TRVs exceeded one. Given the low HQs, the likelihood that the form of aluminum in sediment is non-toxic to wildlife, and the likelihood that the HQ for mercury would be lower if based on small fish species likely to make up the mink's diet, risk to the raccoon from these COPC is considered minimal.

7.6.2.5 **Summary**

While maximum HQs were high for some chemicals, the mink probably does not forage only in areas with maximum COPC. For the mink foraging throughout Plow Shop Pond, a few COPC present potential risk based on HQ_{average}. Risk from aluminum, arsenic, methylmercury, and thallium is minimal. The overall risk to the mink foraging throughout Plow Shop Pond is considered low.

7.6.2.6 Weight of Evidence Integration - Plow Shop Pond

Assessment Endpoint:

Protect the long-term health of local piscivorous mammal populations (represented by the mink).

Measurement Endpoints:

A. Compare calculated total daily doses against target receptor TRVs.

Weight-of-Evidence Integration

		Weight (from Table 8)				
Risk/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High	
Yes/High						
Yes/Medium						
Yes/Low						
Indeterminate						
No Risk				A		

Summary:

One line of evidence was used to assess the potential risk to piscivorous mammals, represented by the mink foraging in Plow Shop Pond. Comparing COPC-specific TDDs derived from food chain modeling to COPC-specific TRVs derived from the literature was given a medium-high weight. This approach identified no risk (average $HQ_{LOAEL} < 1.0$) for any of the COPCs. Overall, the available evidence indicates that there is no significant risk to piscivorous mammals foraging in Plow Shop Pond.

7.7 ASSESSMENT ENDPOINT 6: CARNIVOROUS BIRD POPULATIONS

The assessment endpoint was the protection of carnivorous birds foraging in pond shallows, to insure that ingestion of chemicals in food items, sediment, and surface water does not have a negative impact on growth, survival, and reproduction. *Are the levels of contaminants in surface water and aquatic prey sufficiently high to impair carnivorous bird populations foraging in Grove Pond and Plow Shop Pond?*

7.7.1 Grove Pond Black-Crowned Nigh Heron

7.7.1.1 Measurement Endpoint: Hazard Quotients based on NOAEL and LOAEL TRVs

The measurement endpoint was a comparison of an estimated daily intake with a literature-derived TRV for birds to calculate an HQ. Both NOAEL and LOAEL TRVs were used to obtain a range of risk values for each COPC. However, the potential for unacceptable risk was assumed to be present only if the average HQ_{LOAEL} exceeded 1.0. Hazard quotients for the black-crowned night heron foraging in Grove Pond are shown in Table 49 (maximum EPCs) and Table 50 (average EPCs).

Hazard quotients for the black-crowned night heron based on maximum EPCs and NOAEL TRVs were greater than one for 12 metals and three pesticides (Table 49). Hazard quotients were between one and 10 for aluminum, beryllium, cadmium, cobalt, copper, lead, inorganic mercury, thallium, and vanadium. Hazard quotients were between 10 and 100 for antimony, methylmercury, DDD, DDE, and DDT. The highest NOAEL-based HQ_{Max} was for chromium (278).

Hazard quotients for the black-crowned night heron based on maximum EPCs and LOAEL TRVs were greater than one for six metals and three pesticides (Table 49). Hazard quotients were between one and 10 for aluminum, antimony, copper, inorganic mercury, methylmercury, DDD, DDE, and DDT. The highest LOAEL-based HQ_{Max} was for chromium (56).

Because it is unlikely that wildlife receptors forage only in areas with the highest COPC concentrations, HQs were also determined for exposures to average EPCs for site media. Hazard quotients for the black-crowned night heron based on average EPCs and NOAEL TRVs were greater than one for five metals and three pesticides (Table 50). Hazard quotients were between one and 10 for lead, methylmercury, thallium, and the pesticides. Hazard quotients were greater than 10 for antimony (14) and chromium (31).

Hazard quotients for the black-crowned night heron based on average EPCs and LOAEL TRVs were greater than one for two metals only (Table 50). These were antimony (1.4) and chromium (6.3).

7.7.1.2 Modification of HQs Based on Different Prey Items

The black-crowned night heron is not likely to ingest all fish and invertebrate prey items equally. For example, the heron is more likely to feed on crayfish than odonate larvae and on small fish species than largemouth bass. Therefore, an evaluation of the possible influence of different EPC in different invertebrate and fish taxa on uptake in the black-crowned night heron was evaluated. This evaluation was based on an assessment of the dietary items contributing most to risk.

Because the daily intake of a given chemical may not be the same from all dietary sources, an evaluation of the major pathways was made in order to elucidate from where the risk may be originating for each chemical. This evaluation was conducted by dividing the daily uptake for each individual dietary component (e.g., invertebrates) by the total daily uptake. The results are summarized in Table 39 (max EPCs) and Table 40 (average exposures). The worksheets used to derive the percentages of risk attributed to each dietary item are provided in Appendix E. These results are discussed on a chemical specific basis below.

7.7.1.2.1 Modification of HQs Based on Different Invertebrate Taxa

Maximum EPC

For the night heron, NOAEL HQs based on maximum exposures exceeded one for 12 metals and three pesticides. The invertebrate ingestion pathway was a significant component of total risk for antimony, beryllium, cobalt, thallium, vanadium, and the pesticides (Table 39). For all of these COPC, the invertebrate EPC was based on the sediment EPC and the BSAF, not on a direct measure of a biological tissue concentration. Therefore, adjusting the invertebrate EPC to account for variations in concentrations between taxa would not change the risk picture for these COPC.

Average EPC

For the night heron, NOAEL HQs based on average exposures exceeded one for five metals and three pesticides. The invertebrate ingestion pathway was a significant component of total risk for antimony, thallium, and the pesticides (Table 40). For all of these COPC, the invertebrate EPC was based on the sediment EPC and the BSAF, not on a direct measure of a biological tissue concentration. Therefore, adjusting the invertebrate EPC to account for variations in concentrations between taxa would not change the risk picture for these COPC.

7.7.1.2.2 Modification of HQs Based on Different Fish Species

Maximum EPC

For the night heron, NOAEL HQs based on maximum exposures exceeded one for 12 metals and three pesticides. The fish ingestion pathway was a significant component of total risk for methylmercury only (Table 39). For methylmercury, an adjustment was made based on the different concentrations of methylmercury between fish species ingested by the night heron (Table F-3). The highest HQs were those based on ingestion of largemouth bass and pickerel. Those based on the other fish species were much lower, with no LOAEL-based HQs greater than one. As the heron is more likely to feed on bullheads and bluegill than largemouth bass and pickerel, the HQs for methylmercury based on ingestion of the former species more likely reflect risk to the heron in Grove Pond. The HQs based on ingestion of smaller, lower trophic level forage fish species suggest less risk to the heron than do HQs resulting from exposure to mercury in the bass and pickerel.

Average EPC

The NOAEL HQs based on average exposures exceeded one for five metals and three pesticides. The fish ingestion pathway was a significant component of total risk for methylmercury and DDE only (Table 40). For both of these COPC, the NOAEL-based HQs were slightly greater than one and the LOAEL-based HQs were below one; therefore, adjusting the fish EPC to account for variations in concentrations between species would not change the risk picture significantly for these COPC.

7.7.1.3 Residual Risk Evaluation for the Grove Pond Black-Crowned Night Heron

The RR derivation is presented in Appendix G and summarized in Table 41 (maximum EPC) and Table 42 (average EPC). The RR for maximum exposures (Table 41) were greater than one for all COPC, suggesting that risk to the heron from maximum exposures cannot be attributed to background conditions. The RR for average exposures (Table 42), on the other hand, were less than one for methylmercury and DDE. This suggests that risk from these chemicals to the night heron foraging throughout Grove Pond is due to background conditions.

7.7.1.4 Chemical-Specific Risk Characterization for the Grove Pond Black-Crowned Night Heron

The chemicals that present potential unacceptable risk for the night heron are those with elevated HQs based on average exposures. For night heron foraging in Grove Pond, the following chemicals merit the most concern based on HQs:

Antimony

Hazard quotients suggest that antimony poses potential risk to the black-crowned night heron, with NOAEL-based and LOAEL-based HQs of 14 and 1.4, respectively (Table 38). Antimony was only detected in 2 of 120 sediment samples analyzed, however. Invertebrates and frogs were determined to be the significant sources of antimony in the black-crowned night heron food chain model. This is because all EPCs are modeled from the sediment EPC. In most samples in Grove Pond, sediment concentrations were ND, and modeled dietary concentrations would be ND as well.

Another factor that plays a role in the elevated HQs for antimony is that the BSAF for antimony is a default value of 0.9, from EPA (1999b). This BSAF may overestimate bioaccumulation in aquatic biota. Antimony is not known to be highly bioaccumulative and HAZWRAP (1994) lists a soil-invert bioaccumulation factor (BAF) of 0.5. Further, antimony was not detected in fish tissue samples in Grove Pond.

Given the very low frequency of detection and the uncertainty associated with the BSAF for antimony, the high HQs do not equate to unacceptable risk for the night heron.

Chromium

Hazard quotients suggest that chromium poses unacceptable potential risk to the black-crowned night heron. While sediment concentrations averaged 5860 mg/kg, concentrations in dietary items were much lower, with invertebrate tissue having the highest average (1.25 mg/kg). Incidental ingestion of sediment is, therefore, the main pathway driving risk for the heron (Table 40). A back-calculation shows that any sediment concentration greater than about 900 mg/kg would yield a LOAEL-based HQ greater than one. While the highest concentrations of chromium were detected in Tannery Cove, concentrations greater than 586 mg/kg were detected in many areas of the pond. The risk to the black-crowned night heron from incidental ingestion of chromium is considered high.

Other Chemicals

Lead, methylmercury, thallium, DDE, DDE, and DDT all had all had HQs based on average EPCs and NOAEL TRVs greater than one. All of these HQ were low, however, with those for methylmercury and DDD (4.2 for both) being the highest and none of the HQs based on LOAEL TRVs exceeded one for these chemicals. Given the low HQs, plus the likelihood that risk would be even lower if based on species of fish more likely to be eaten, along with the low RR for mercury, risk to the black-crowned night heron from these chemicals is considered minimal.

7.7.1.5 Summary

While maximum HQs were high for some chemicals, the night heron probably does not forage only in areas with maximum COPC. For the night heron foraging throughout Grove Pond, a few COPC present potential risk based on HQ_{average}. Based on the above chemical-specific evaluation, however, most chemicals present low risk to the black-crowned night heron. The exception is chromium, which poses unacceptable risk. Because of chromium, overall risk to the black-crowned night heron in Grove Pond is considered high. There is significant uncertainty associated with this conclusion, however, because risk is based on incidental ingestion of sediment. The uncertainty associated with the estimated sediment ingestion rate is discussed in Section 7.10.

7.7.1.6 Weight of Evidence Integration

Assessment Endpoint:

Protect the long-term health of local carnivorous bird populations (represented by the black-crowned night heron)

Measurement Endpoints:

A. Compare calculated total daily doses against target receptor TRVs

Weight-of-Evidence Integration

G	Weight (from Table 8)				
Risk/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High
Yes/High				A	
Yes/Medium					
Yes/Low					
Indeterminate					
No Risk					

Summary:

One line of evidence was used to assess the potential risk to carnivorous birds, represented by the black-crowned night heron foraging in Grove Pond. Comparing COPC-specific TDDs derived from food chain modeling to COPC-specific TRVs derived from the literature was given a medium-high weight. This approach identified risk (average $HQ_{LOAEL} > 1.0$) for antimony and chromium. Antimony exceeded its effect HQ by only a small margin (average $HQ_{LOAEL} = 1.4$).

The residual risk calculations indicate that most of the risk from chromium is site-related and associated almost exclusively with sediment ingestion. Overall, the available evidence suggests that there is the potential for significant risk from chromium to carnivorous birds foraging in Grove Pond

7.7.2 Plow Shop Pond Black-Crowned Nigh Heron

7.7.2.1 Measurement Endpoint: Hazard Quotients based on NOAEL and LOAEL TRVs

The measurement endpoint was a comparison of an estimated daily intake with a literature-derived TRV for birds to calculate an HQ. Both NOAEL and LOAEL TRVs were used to obtain a range of risk values for each COPC. However, the potential for unacceptable risk was assumed to be present only if the average HQ_{LOAEL} exceeded 1.0. Hazard quotients for the black-crowned night heron foraging in Plow Shop Pond are shown in Table 51 (maximum EPCs) and Table 52 (average EPCs).

Hazard quotients for the black-crowned night heron based on maximum EPCs and NOAEL TRVs were greater than one for 10 metals and three pesticides (Table 51). Hazard quotients were between one and 10 for aluminum, arsenic, cobalt, lead, inorganic mercury, vanadium, and DDT. Hazard quotients were between 10 and 100 for antimony, methylmercury, DDD, and DDE. The highest NOAEL-based HQ_{max} were for chromium (202) and thallium (649).

Hazard quotients for the black-crowned night heron based on maximum EPCs and LOAEL TRVs were greater than one for six metals and two pesticides (Table 51). Hazard quotients were between one and 10 for antimony, arsenic, inorganic mercury, methylmercury, DDD, and DDE. The highest LOAEL-based HQ_{Max} were for chromium (40) and thallium (65).

Because it is unlikely that wildlife receptors forage only in areas with the highest COPC concentrations, HQs were also determined for exposures to average EPCs for site media. Hazard quotients for the black-crowned night heron based on average EPCs and NOAEL TRVs were greater than one for four metals and two pesticides (Table 52). Hazard quotients were between one and 10 for methylmercury, DDD, and DDE. Hazard quotients were between 10 and 100 for antimony and chromium. The highest NOAEL-based HQ_{average} was for thallium (515).

Hazard quotients for the black-crowned night heron based on average EPCs and LOAEL TRVs were greater than one for three metals (Table 40). These were antimony (2), chromium (2.5), and thallium (51).

7.7.2.2 Modification of HQs Based on Different Prey Items

The black-crowned night heron is not likely to ingest all fish and invertebrate prey items equally. For example, the heron is more likely to feed on crayfish than odonate larvae and on small fish species than largemouth bass. Therefore, an evaluation of the possible influence of different EPC in different invertebrate and fish taxa on uptake in the black-crowned night heron was evaluated. This evaluation was based on an assessment of the dietary items contributing most to risk.

Because the daily intake of a given chemical may not be the same from all dietary sources, an evaluation of the major pathways was made in order to elucidate from where the risk may be originating for each chemical. This evaluation was conducted by dividing the daily uptake for each individual dietary component (e.g., invertebrates) by the total daily uptake. The results are summarized in Table 39 (max EPCs) and Table 40 (average exposures). The worksheets used to derive the percentages of risk attributed to each dietary item are provided in Appendix E. These results are discussed on a chemical specific basis below.

7.7.2.2.1 Modification of HQs Based on Different Invertebrate Taxa

Maximum EPC

For the night heron, NOAEL HQs based on maximum exposures exceeded one for ten metals and three pesticides. The invertebrate ingestion pathway was a significant component of total risk for antimony, cobalt, thallium, vanadium, and the pesticides (Table 39). For all of these COPC, the invertebrate EPC was based on the sediment EPC and the BSAF, not on a direct measure of a biological tissue concentration. Therefore, adjusting the invertebrate EPC to account for variations in concentrations between taxonomic groups would not change the risk picture for these COPC.

Average EPC

The NOAEL HQs based on average exposures exceeded one for four metals and two pesticides. The invertebrate ingestion pathway was a significant component of total risk for antimony, thallium, and the pesticides. For all of these COPC, the invertebrate EPC was based on the sediment EPC and the BSAF, not on a direct measure of a biological tissue concentration. Therefore, adjusting the invertebrate EPC to account for variations in concentrations between taxonomic groups would not change the risk picture for these COPC.

7.7.2.2.2 Modification of HQs Based on Different Fish Species

Maximum EPC

For the night heron, NOAEL HQs based on maximum exposures exceeded one for ten metals and three pesticides. The fish ingestion pathway was a significant component of total risk for methylmercury only (Table 39). For methylmercury an adjustment was made based on the different concentrations between fish species (Table F-4). The largemouth bass-based HQ is the same as the all-species maximum, i.e., the highest of the four fish species evaluated. The HQs based on ingestion of bullhead, bluegill, and crappie only were reduced, with a LOAEL HQ less than one based on ingestion of bullhead and slightly greater than one for ingestion of bluegill and black crappie. The night heron probably feeds more on the three smaller species than on largemouth bass, and while the differences were not dramatic between species, the HQs for the heron based on ingestion of smaller fish are probably more reflective of actual site risk in Plow Shop Pond.

Average EPC

For the night heron, NOAEL HQs based on average exposures exceeded one for four metals and two pesticides. The fish ingestion pathway was a significant component of total risk for methylmercury, DDD, and DDE (Table 40). For DDD and DDE, the NOAEL-based HQs were only slightly greater than one and the LOAEL-based HQs were below one; therefore, adjusting the fish EPC to account for variations in concentrations between species would not change the risk picture significantly for these COPC. For methylmercury (NOAEL HQ=9.3), an adjustment was made based on the different concentrations between fish species (Table F-5). The largemouth bass-based HQ was the highest of the four fish species evaluated. The HQs based on ingestion of bullhead, bluegill, and crappie only were reduced, with LOAEL HQs less than one. The night heron probably feeds more on the three smaller species than on largemouth bass, and while the differences were not dramatic between species, the HQs for the heron based on ingestion of the smaller fish are probably more reflective of actual site risk in Plow Shop Pond.

7.7.2.3 Residual Risk Evaluation for the Plow Shop Pond Black-Crowned Night Heron

The RR derivation is presented in Appendix G and summarized in Table 41 (maximum EPC) and Table 42 (average EPC). For the heron in Plow Shop Pond, the RR for maximum exposures were greater than one for all COPC (Table 41), suggesting that risk to from maximum exposures cannot be attributed to background conditions. The RR for average exposures (Table 42), on the other hand, were less than one for methylmercury and DDE. This suggests that risk from these chemicals to the night heron foraging throughout Plow Shop Pond is due to background conditions.

7.7.2.4 Chemical-Specific Risk Characterization for the Plow Shop Pond Black-Crowned Night Heron

The chemicals that present potential unacceptable risk for the night heron are those with elevated HQs based on average exposures. For night heron foraging in Plow Shop Pond, the following chemicals merit the most concern based on HQs:

Antimony

Antimony was only detected in 5 of 63 sediment samples in Plow Shop Pond, four of which were located adjacent to the Railroad Roundhouse, suggesting an antimony source in this area. The pond average concentration (15 mg/kg) seems to be driven by a few samples with high detection limits. Of the samples with ND values, most had detection limits less than ten but a small number of samples had detection limits much greater. The few samples with high detection limits have a disproportionate effect on the site average concentration.

Ingestion of invertebrates and frogs, as well as incidental ingestion of sediment, are all significant sources of antimony in the black-crowned night heron food chain model. This is because all EPCs are modeled from the sediment EPC. In most samples in Plow Shop Pond, sediment concentrations are low or ND, and modeled dietary concentrations would be low or ND as well.

Another factor that plays a role in the HQ calculation for antimony is that the BSAF for antimony is a default value of 0.9, from EPA (1999b). This BSAF may overestimate bioaccumulation in aquatic biota. Antimony is not known to be highly bioaccumulative and HAZWRAP (1994) lists a soil-invert bioaccumulation factor (BAF) of 0.5. Further, antimony was not detected in fish tissue samples in Plow Shop Pond.

Given the limited aerial extent of antimony detections in Plow Shop Pond and the uncertainty associated with the BSAF for antimony, the high HQs do not necessarily equate to unacceptable risk for the black-crowned night heron.

Chromium

Hazard quotients suggest that chromium poses unacceptable potential risk to the black-crowned night heron in Plow Shop Pond. While sediment concentrations averaged 2273 mg/kg, concentrations in dietary items were much lower, with frog tissue having the highest average (1.65 mg/kg). Incidental ingestion of sediment is, therefore, the main pathway driving risk for the heron. A back-calculation shows that a sediment concentration of approximately 900 mg/kg would yield a LOAEL-based HQ greater than one. Concentrations greater than 900 mg/kg were detected in many areas of the pond. The risk to the black-crowned night heron from incidental ingestion of chromium is considered high.

Methylmercury

The Hazard quotients for methylmercury suggest potential risk to the black-crowned night heron in Plow Shop Pond, with an average NOAEL-based HQ of 9.3. The HQs based on ingestion of smaller species more likely to be ingested by the heron were lower, as discussed in Section 7.7.2.2.2. In addition, the average RR for the black-crowned night heron in Plow Shop Pond is less than one, suggesting that risk from methylmercury can be attributed to background contributions to the pond. The site-related risk to the night heron, therefore, is considered low.

Thallium

The highest HQs for the black-crowned night heron in Plow Shop Pond were for thallium. Risk from exposure to thallium is based directly on sediment concentrations because food items were modeled using a default BSAF of 0.9 from EPA (1999b). This BSAF is thought to be overly conservative. Thallium was not detected in any of the 20 fish samples collected in Plow Shop Pond.

Thallium was only detected in three of 48 samples in Plow Shop Pond, all from one sampling effort, the 1998 samples labeled PSEM-1 through PSEM-3. The site EPC were based on these samples only, as inclusion of ND values would have resulted in an unrealistically high average based on ½ DL values. Given the low frequency of detection and the likely overestimation of bioaccumulation for thallium, the elevated HQs for thallium may not equate to unacceptable risk.

Other Chemicals

DDD and DDE had HQs based on average EPCs and NOAEL TRVs greater than one. Both of these HQ were barely greater than one, however, with LOAEL TRVs less than one for both pesticides. Given these low HQs, plus the low average RR for DDE, risk to the black-crowned night heron from pesticides is considered minimal.

7.7.2.5 Summary

While maximum HQs were high for some chemicals, the night heron probably does not forage only in areas with maximum COPC. For the night heron foraging throughout Plow Shop Pond, a few COPC present potential risk based on HQ_{average}. Based on the above chemical-specific evaluation, however, most chemicals present low risk to the black-crowned night heron. The exception is chromium, which poses unacceptable risk. Because of chromium, overall risk to the black-crowned night heron in Plow Shop Pond is considered high. There is significant uncertainty associated with this conclusion, however, because risk is based on incidental ingestion of sediment. The uncertainty associated with the estimated sediment ingestion rate is discussed in Section 7.10.

7.7.2.6 Weight of Evidence Integration - Plow Shop Pond

Assessment Endpoint:

Protect the long-term health of local carnivorous bird populations (represented by the black-crowned night heron)

Measurement Endpoints:

A. Compare calculated total daily doses against target receptor TRVs

Weight-of-Evidence Integration

	Weight (from Table 8)						
Risk/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High		
Yes/High				A			
Yes/Medium							
Yes/Low							
Indeterminate							
No Risk							

Summary:

One line of evidence was used to assess the potential risk to carnivorous birds, represented by the black-crowned night heron foraging in Plow Shop Pond. Comparing COPC-specific TDDs derived from food chain modeling to COPC-specific TRVs derived from the literature was given a medium-high weight. This approach identified risk (average $HQ_{LOAEL} > 1.0$) for antimony, chromium, and thallium. The risk from antimony and thallium results from conservative bioaccumulation factors, high analytical detection limits, or low detection frequencies. However, the high risk from chromium appears to be site-specific and associated almost exclusively with sediment ingestion. Overall, the available evidence indicates that there is the potential for significant risk from chromium to carnivorous birds foraging in Plow Shop Pond.

7.8 ASSESSMENT ENDPOINT 7: PISCIVOROUS BIRD POPULATIONS

The assessment endpoint was the protection of piscivorous birds foraging in the pond, to insure that ingestion of chemicals in food items and surface water does not have a negative impact on growth, survival, and reproduction. *Are the levels of contaminants in surface water and aquatic prey sufficiently high to impair piscivorous bird populations foraging in Grove Pond and Plow Shop Pond?*

7.8.1 Grove Pond Belted Kingfisher

7.8.1.1 Measurement Endpoint: Hazard Quotients based on NOAEL and LOAEL TRVs

The measurement endpoint was a comparison of an estimated daily intake with a literature-derived TRV for birds to calculate an HQ. Both NOAEL and LOAEL TRVs were used to obtain a range of risk values for each COPC. However, the potential for unacceptable risk was assumed to be present only if the average HQ_{LOAEL} exceeded 1.0. Hazard quotients for the belted kingfisher foraging in Grove Pond are shown in Table 53 (maximum EPCs) and Table 54 (average EPCs).

Hazard quotients for the belted kingfisher based on maximum EPCs and NOAEL TRVs were greater than one for two metals, two pesticides, and total PCBs (Table 53). Hazard quotients were between one and 10 for lead, DDD, DDE, and total PCBs. The highest NOAEL-based HQ_{Max} was for methylmercury (84).

Hazard quotients for the belted kingfisher based on maximum EPCs and LOAEL TRVs were greater than one only for methylmercury (8.4) (Table 53).

Because it is unlikely that wildlife receptors forage only in areas with the highest COPC concentrations, HQs were also determined for exposures to average EPCs for site media. Hazard quotients for the belted kingfisher based on average EPCs and NOAEL TRVs were greater than one for methylmercury (15), DDD (1.4), and DDE (3.1) (Table 54).

Hazard quotients for the belted kingfisher based on average EPCs and LOAEL TRVs were greater than one only for methylmercury (1.5) (Table 54).

7.8.1.2 Modification of HQs Based on Different Prey Items

The belted kingfisher is not likely to ingest all fish species equally. For example, it is more likely to feed on small fish species than on largemouth bass. Therefore, an evaluation of the possible influence of different EPC in different fish taxa on uptake in the belted kingfisher was evaluated. This evaluation was based on an assessment of the dietary items contributing most to risk.

Because the daily intake of a given chemical may not be the same from all dietary sources, an evaluation of the major pathways was made in order to elucidate from where the risk may be originating for each chemical. This evaluation was conducted by dividing the daily uptake for each individual dietary component (e.g., invertebrates) by the total daily uptake. The results are summarized in Table 39 (max EPCs) and Table 40 (average exposures). The worksheets used to

derive the percentages of risk attributed to each dietary item are provided in Appendix E. These results are discussed on a chemical specific basis below.

7.8.1.2.1 Modification of HQs Based on Different Invertebrate Taxa

Invertebrates were not part of the kingfisher diet.

7.8.1.2.2 Modification of HQs Based on Different Fish Species

Maximum EPC

For the kingfisher, NOAEL HQs based on maximum exposures exceeded one for lead, methylmercury, DDD, DDE, and total PCBs. The fish ingestion pathway accounts for essentially all (with a negligible input from surface water) of the risk to the kingfisher (Table 39). For lead, DDD and PCBs, the NOAEL-based HQs were slightly greater than one and the LOAEL-based HOs were below one; therefore, adjusting the fish EPC to account for variations in concentrations between species would not change the risk picture significantly for these pesticides. For methylmercury and DDE, adjustments were made based on the different concentrations of these COPC between fish species (Table F-6). For methylmercury, the highest HQs were those based on ingestion of largemouth bass (84 [NOAEL] and 8.4 [LOAEL]) and pickerel (45 [NOAEL] and 4.5 [LOAEL]). Those based on the other fish species were much lower, with NOAEL-based HQs ranging from <1 (crappie) to 17 (bluegill) and LOAEL-based HQs greater than one for the bluegill only (1.7). Similarly, for DDE, the highest HQ was that based ingestion of largemouth bass, with those based on other species somewhat lower. As the kingfisher is more likely to feed on bullheads and bluegill than largemouth bass and pickerel, the HQs for methylmercury and DDE based on ingestion of the former species more likely reflect risk to the kingfisher in Grove Pond. The HQs based on ingestion of smaller, lower trophic level forage fish species suggest low risk to the kingfisher exposed to maximum fish EPCs.

Average EPC

For the kingfisher, NOAEL HQs based on average exposures exceeded one for methylmercury, DDD, and DDE. The fish ingestion pathway accounts for essentially all risk to the kingfisher. For the pesticides, the NOAEL-based HQs were slightly greater than one and the LOAEL-based HQs were below one; therefore, adjusting the fish EPC to account for variations in concentrations between species would not change the risk picture significantly for these pesticides. For methylmercury, an adjustment was made based on the different concentrations between fish species (Table F-7). As the kingfisher is more likely to feed on bullheads and bluegill than largemouth bass and pickerel, the HQs for methylmercury based on ingestion of the former species more likely reflect risk to the kingfisher in Grove Pond. Adjusted LOAEL HQs

based on ingestion of the smaller species were greater than one only for the bluegill (1.2), suggesting low risk to the kingfisher exposed to average fish EPCs in Grove Pond.

7.8.1.3 Residual Risk Evaluation for the Grove Pond Belted Kingfisher

The RR derivation is presented in Appendix G and summarized in Table 41 (maximum EPC) and Table 42 (average EPC). For the belted kingfisher, the maximum RR in Grove Pond were greater than one for all COPC except DDE (Table 41), suggesting that risk from maximum exposures can be attributed to background conditions only for DDE. The RR for average exposures (Table 42) were also less than one only for DDE, but only slightly greater than one for methylmercury. This suggests that most of the risk from methylmercury and DDE to the kingfisher foraging throughout Grove Pond is due to background conditions.

7.8.1.4 Chemical-Specific Risk Characterization for the Grove Pond Belted Kingfisher

The chemicals that present potential unacceptable risk for the kingfisher are those with elevated HQs based on average exposures. For kingfisher foraging in Grove Pond, the following chemicals merit the most concern based on HQs:

Methylmercury

The highest HQs for methylmercury suggest potential risk to the belted kingfisher in Grove Pond, with an average NOAEL-based HQ of 15. The HQs based on ingestion of fish species more likely to be ingested by the kingfisher were lower, however, as discussed in Section 7.8.1.2.2. In addition, the average RR for the kingfisher in Grove Pond was only 1.1, suggesting that most of the risk from methylmercury can be attributed to background contributions to the pond. The site-related risk to the kingfisher from methylmercury is considered low.

Other Chemicals

Two pesticides, DDD and DDE, had NOAEL-based HQs for average exposures greater than one. The HQs were slightly greater than one, however, and the LOAEL-based HQs were less than one. Risk from these chemicals to the kingfisher foraging throughout Grove Pond is considered minimal.

7.8.1.5 Summary

While maximum HQs were high for some chemicals, the kingfisher probably does not forage only in areas with maximum COPC. For the kingfisher foraging throughout Grove Pond, a few COPC present had HQ_{average} greater than one. Based on the above chemical-specific evaluation, however, these COPC present low risk to the belted kingfisher.

7.8.1.6 Weight of Evidence Integration

Assessment Endpoint:

Protect the long-term health of local piscivorous bird populations (represented by the belted kingfisher)

Measurement Endpoints:

A. Compare calculated total daily doses against target receptor TRVs

Weight-of-Evidence Integration

	Weight (from Table 8)						
Risk/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High		
Yes/High							
Yes/Medium							
Yes/Low							
Indeterminate							
No Risk				A			

Summary:

One line of evidence was used to assess the potential risk to piscivorous birds, represented by the belted kingfisher foraging in Grove Pond. Comparing COPC-specific TDDs derived from food chain modeling to COPC-specific TRVs derived from the literature was given a medium-high weight. This approach identified no risk for any of the COPCs, except for methyl mercury (average HQ_{LOAEL} = 1.5). The RR calculations indicated that most of that small risk originated from background conditions. Overall, the available evidence shows that there is no significant risk to piscivorous birds foraging in Grove Pond.

7.8.2 Plow Shop Pond Belted Kingfisher

7.8.2.1 Measurement Endpoint: Hazard Quotients based on NOAEL and LOAEL TRVs

The measurement endpoint was a comparison of an estimated daily intake with a literature-derived TRV for birds to calculate an HQ. Both NOAEL and LOAEL TRVs were used to obtain a range of risk values for each COPC. However, the potential for unacceptable risk was assumed to be present only if the average HQ_{LOAEL} exceeded 1.0. Hazard quotients for the belted

kingfisher foraging in Plow Shop Pond are shown in Table 55 (maximum EPCs) and Table 56 (average EPCs).

Hazard quotients for the belted kingfisher based on maximum EPCs and NOAEL TRVs were greater than one for one metal and two pesticides (Table 55). The HQ for DDD was 3.9. The highest NOAEL-based HQ_{max} were for methylmercury (198) and DDE (13).

Hazard quotients for the belted kingfisher based on maximum EPCs and LOAEL TRVs were greater than one for methylmercury (20) and DDE (1.3) (Table 55).

Because it is unlikely that wildlife receptors forage only in areas with the highest COPC concentrations, HQs were also determined for exposures to average EPCs for site media. Hazard quotients for the belted kingfisher based on average EPCs and NOAEL TRVs were greater than one for two COPC, DDE (2.9) and methylmercury (45) (Table 56).

Hazard quotients for the belted kingfisher based on average EPCs and LOAEL TRVs were greater than one only for methylmercury (4.5) (Table 56).

7.8.2.2 Modification of HQs Based on Different Prey Items

The belted kingfisher is not likely to ingest all fish species equally. For example, it is more likely to feed on small fish species than largemouth bass. Therefore, an evaluation of the possible influence of different EPC in different fish species on uptake in the kingfisher was evaluated. This evaluation was based on an assessment of the dietary items contributing most to risk.

Because the daily intake of a given chemical may not be the same from all dietary sources, an evaluation of the major pathways was made in order to elucidate from where the risk may be originating for each chemical. This evaluation was conducted by dividing the daily uptake for each individual dietary component (e.g., invertebrates) by the total daily uptake. The results are summarized in Table 39 (max EPCs) and Table 40 (average exposures). The worksheets used to derive the percentages of risk attributed to each dietary item are provided in Appendix E. These results are discussed on a chemical specific basis below.

7.8.2.2.1 Modification of HQs Based on Different Invertebrate Taxa

Invertebrates were not part of the kingfisher diet.

7.8.2.2.2 Modification of HQs Based on Different Fish Species

Maximum EPC

For the kingfisher, NOAEL HQs based on maximum exposures exceeded one for methylmercury, DDD, and DDE. The fish ingestion pathway accounts for all risk to the kingfisher. For DDD, the NOAEL-based HQ was slightly greater than one and the LOAEL-based HQ was below one; therefore, adjusting the fish EPC to account for variations in concentrations between species would not change the risk picture significantly for these pesticides. For methylmercury and DDE, adjustments were made based on the different concentrations between fish species (Table F-8). The HQs based on exposure to the different fish species are not dramatically different for DDE, although the LOAEL HQs were less than one based on consumption of bullhead, bluegill, and crappie versus 1.3 for largemouth bass. For methylmercury, HQs were much lower (LOAEL HQs in the single digits) when based on exposure to bullhead, bluegill, and black crappie, compared to 20 for largemouth bass. The kingfisher probably feeds more on the three smaller species than on largemouth bass and the methylmercury and DDE HQs for the kingfisher based on ingestion of the smaller fish are probably more reflective of actual site risk in Plow Shop Pond. These adjusted HQs suggest medium risk for the kingfisher exposed to methylmercury at maximum EPC in Plow Shop Pond.

Average EPC

For the kingfisher, NOAEL HQs based on average exposures exceeded one for methylmercury and DDE. The fish ingestion pathway accounts for all risk to the kingfisher. For the DDE, the NOAEL-based HQ was slightly greater than one and the LOAEL-based HQ was below one; therefore, adjusting the fish EPC to account for variations in concentrations between species would not change the risk picture significantly for DDE. For methylmercury, an adjustment was made based on the different concentrations between fish species (Table F-9). The NOAEL-based HQs ranged from 21 for bullhead consumption to 101 for consumption of largemouth bass, and LOAEL-based HQs were in the single digits for the smaller species compared to 10.1 for consumption of largemouth bass. The kingfisher likely feeds on the smaller species and the HQs based on ingestion of these species may more accurately reflect risk to the kingfisher than do the HQs based on ingestion of largemouth bass. These revised risk values suggest medium risk from mercury to the belted kingfisher foraging throughout Plow Shop Pond.

7.8.2.3 Residual Risk Evaluation for the Plow Shop Pond Belted Kingfisher

The RR derivation is presented in Appendix G and summarized in Table 41 (maximum EPC) and Table 42 (average EPC). For the belted kingfisher in Plow Shop Pond, the RR for maximum exposures (Table 41) were greater than one for all COPC, suggesting that risk to from maximum exposures cannot be attributed to background conditions. The RR for average exposures (Table

42), on the other hand, were less than one for DDD and DDE. This suggests that risk from these chemicals to the kingfisher foraging throughout Plow Shop Pond is due to background conditions

7.8.2.4 Chemical-Specific Risk Characterization for the Plow Shop Pond Belted Kingfisher

The chemicals that present potential unacceptable risk for the kingfisher are those with elevated HQs based on average exposures. For kingfisher foraging in Plow Shop Pond, the following chemicals merit the most concern based on HQs:

Methylmercury

The maximum and average fish tissue concentrations collected in Plow Shop Pond were 4.0 mg/kg and 0.98, respectively. The highest concentrations were from largemouth bass in the 1992 sample collection. These larger fish are probably less likely to be caught by most piscivorous birds. Maximum and averages from the most recent round of collections, which focused on more probable forage fish species, were 0.7 mg/kg and 0.4 mg/kg, respectively. Maximum and average concentrations from Flannagan Pond were 0.3 mg/kg and 0.19, respectively. Concentrations in Plow Shop Pond were higher than those in Flannagan Pond, but may not be out of the ordinary, particularly for an impoundment, and will likely remain high with atmospheric inputs of mercury alone.

Methylmercury

The Hazard quotients for methylmercury suggest potential risk to the kingfisher in Plow Shop Pond, with an average NOAEL-based HQ of 45, which was driven by the HQ for ingestion of largemouth bass (101). The HQs based on ingestion of smaller species more likely to be ingested by the heron were lower, as discussed in Section 7.8.2.2.2. The resultant LOAEL-based HQs for ingestion of the smaller species were in the single digits, suggesting medium-level risk from methylmercury to the kingfisher in Plow Shop Pond.

Other Chemicals

The HQ based on average EPCs and NOAEL TRVs for DDE was greater than one. The LOAEL-based HQ was below one, however. Given these low HQs and the low RR for DDE, risk to the belted kingfisher in Plow Shop pond is considered minimal.

7.8.2.5 Summary

While maximum HQs were high for some chemicals, the kingfisher probably does not forage only in areas with maximum COPC. For the kingfisher foraging throughout Plow Shop Pond, a

few COPC present potential risk based on $HQ_{average}$. Based on the above chemical-specific evaluation, however, most chemicals present low risk to the kingfisher. The exception is methylmercury. Because of methylmercury, overall risk to the belted kingfisher in Plow Shop Pond is considered medium.

7.8.2.6 Weight of Evidence Integration

Assessment Endpoint:

Protect the long-term health of local piscivorous bird populations (represented by the belted kingfisher)

Measurement Endpoints:

A. Compare calculated total daily doses against target receptor TRVs

Weight-of-Evidence Integration

	Weight (from Table 8)					
Risk/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High	
Yes/High						
Yes/Medium				A		
Yes/Low						
Indeterminate						
No Risk						

Summary:

One line of evidence was used to assess the potential risk to piscivorous birds, represented by the belted kingfisher foraging in Plow Shop Pond. Comparing COPC-specific TDDs derived from food chain modeling to COPC-specific TRVs derived from the literature was given a mediumhigh weight. This approach identified no risk for any of the COPCs, except for methyl mercury (average $HQ_{LOAEL} = 4.5$). The RR calculations indicated that most of that risk originated from within Plow Shop Pond. Overall, the available evidence shows that there is the potential for medium risk to piscivorous birds foraging in Plow Shop Pond

7.9 ASSESSMENT ENDPOINT 8: INSECTIVOROUS BIRD POPULATIONS

The assessment endpoint was the protection of insectivorous birds to insure that ingestion of chemicals in food items does not have a negative impact on growth, survival, and reproduction.

Are the levels of contaminants in surface water and aquatic prey sufficiently high to impair insectivorous bird populations foraging in Grove Pond and Plow Shop Pond?

7.9.1 Grove Pond Tree Swallow

7.9.1.1 Measurement Endpoint: Hazard Quotients based on NOAEL and LOAEL TRVs

The measurement endpoint was a comparison of an estimated daily intake with a literature-derived TRV for birds to calculate an HQ. Both NOAEL and LOAEL TRVs were used to obtain a range of risk values for each COPC. However, the potential for unacceptable risk was assumed to be present only if the average HQ_{LOAEL} exceeded 1.0. Hazard quotients for the tree swallow foraging in Grove Pond are shown in Table 57 (maximum EPCs) and Table 58 (average EPCs).

Hazard quotients for the tree swallow based on maximum EPCs and NOAEL TRVs were greater than one for four of the six metals analyzed in stomach contents (Table 57). Hazard quotients were between one and 10 for arsenic and lead. Hazard quotients were between 10 and 100 for methylmercury (28). The highest NOAEL-based HQ_{Max} was for chromium (1124).

Hazard quotients for the tree swallow based on maximum EPCs and LOAEL TRVs were greater than one for methylmercury (2.8) and for chromium (225) (Table 57).

Because it is unlikely that wildlife receptors forage only in areas with the highest COPC concentrations, HQs were also determined for exposures to average EPCs for site media. Hazard quotients for the tree swallow based on average EPCs and NOAEL TRVs were greater than one for three metals (Table 58). Hazard quotients were between one and 10 for lead. Hazard quotients were between 10 and 100 for methylmercury (20). The highest NOAEL-based HQ_{Avg} was for chromium (199).

Hazard quotients for the tree swallow based on average EPCs and LOAEL TRVs were greater than one for methylmercury (2) and chromium (40) (Table 58).

7.9.1.2 Chemical-Specific Risk Characterization for the Grove Pond Tree Swallow

The chemicals that present potential unacceptable risk for the tree swallow are those with elevated HQs based on average exposures. For the tree swallow foraging in Grove Pond, the following chemicals merit the most concern based on HQs:

Chromium

The maximum chromium concentration of tree swallow stomach contents was 1113 mg/kg, with a mean of 195 mg/kg. Haines and Longcore (2001) reported the occurrence of metal shavings and shards in tree swallow gizzards, which might explain the high concentrations of chromium in

stomach contents. The highest concentration of chromium in Grove Pond aquatic invertebrates, which would approximate the dietary components of tree swallows, was only 3.54 mg/kg. The high chromium concentrations, therefore, are more likely the result of direct ingestion of soil or metal pieces. Chromium in these metal shavings and shards would likely be only partly bioavailable. If the metallic material were stainless steel, for example, most of the chromium would be in the Cr (0) form. While some elemental chromium might be oxidized to Cr III, the short residence time in the gut would probably be such that only a small amount of the chromium in the metal pieces would be mobilized. The risk to the tree swallow from chromium in Grove Pond is probably lower than is indicated by the HQ calculations.

Methylmercury

The maximum mercury concentration in tree swallow stomach contents was 0.272 mg/kg, with a mean of 0.198 mg/kg. Haines and Longcore (2001) reported the occurrence of metal shavings and shards in tree swallow gizzards, which might explain the high concentrations of mercury in stomach contents. The highest concentration of mercury in Grove Pond aquatic invertebrates, which would approximate the dietary components of tree swallows, was only 0.05 mg/kg. The high mercury concentrations, therefore, may be the result of direct ingestion of soil or metal pieces. If this is the case, the assumption that 65% of mercury in stomach contents is in the methyl form, is highly overestimated.

Other Chemicals

The average HQ for lead based on the NOAEL TRV was 2.2. The LOAEL-based HQ was less than one, suggesting that lead does not pose unacceptable risk to the tree swallow in Grove Pond.

7.9.1.3 Summary

While HQs for the tree swallow were high for chromium and mercury the chemical forms of chromium and mercury in swallow stomach contents are probably not fully bioavailable or toxic. Risk to the tree swallow in Grove Pond is considered low.

7.9.1.4 Weight of Evidence Integration

Assessment Endpoint:

Protect the long-term health of local insectivorous bird populations (represented by the tree swallow)

Measurement Endpoints:

A. Compare calculated total daily doses against target receptor TRVs

Weight-of-Evidence Integration

	Weight (from Table 8)					
Risk/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High	
Yes/High						
Yes/Medium				A		
Yes/Low						
Indeterminate						
No Risk						

Summary:

One line of evidence was used to assess the potential risk to insectivorous birds, represented by the tree swallow, foraging in Grove Pond. Comparing COPC-specific TDDs derived from stomach content analysis to COPC-specific TRVs derived from the literature was given a medium-high weight. This approach identified risk from chromium (average $HQ_{LOAEL} = 40$) and methyl mercury (average $HQ_{LOAEL} = 2.0$). The RR could not be determined because stomach contents from tree swallows in the background pond were not collected. The high chromium HQ may have been due in part to the presence of metal shavings and shards found in the tree swallow gizzards, which might explain the high concentrations of chromium in stomach contents. Overall, the available evidence shows that there is the potential for medium risk to insectivorous birds foraging in Grove Pond.

7.9.2 Plow Shop Pond Tree Swallow

7.9.2.1 Measurement Endpoint: Hazard Quotients based on NOAEL and LOAEL TRVs

The measurement endpoint was a comparison of an estimated daily intake with a literature-derived TRV for birds to calculate an HQ. Both NOAEL and LOAEL TRVs were used to obtain a range of risk values for each COPC. However, the potential for unacceptable risk was assumed to be present only if the average HQ_{LOAEL} exceeded 1.0. Hazard quotients for the tree swallow foraging in Plow Shop Pond are shown in Table 59 (maximum EPCs) and Table 60 (average EPCs).

Hazard quotients for the tree swallow based on maximum EPCs and NOAEL TRVs were greater than one for four of the six metals analyzed in stomach contents (Table 59). Hazard quotients were between one and 10 for cadmium and lead. Hazard quotients were between 10 and 100 for methylmercury (22). The highest NOAEL-based HQ_{Max} was for chromium (191).

Hazard quotients for the tree swallow based on maximum EPCs and LOAEL TRVs were greater than one for methylmercury (2.2) and for chromium (38) (Table 59).

Because it is unlikely that wildlife receptors forage only in areas with the highest COPC concentrations, HQs were also determined for exposures to average EPCs for site media. Hazard quotients for the tree swallow based on average EPCs and NOAEL TRVs were greater than one for three metals (Table 60). Hazard quotients were between one and 10 for lead. Hazard quotients were between 10 and 100 for methylmercury (20). The highest NOAEL-based HQ_{Avg} was for chromium (118).

Hazard quotients for the tree swallow based on average EPCs and LOAEL TRVs were greater than one for methylmercury (2) and chromium (24) (Table 60).

7.9.2.2 Chemical-Specific Risk Characterization for the Plow Shop Pond Tree Swallow

The chemicals that present potential unacceptable risk for the tree swallow are those with elevated HQs based on average exposures. For the tree swallow foraging in Plow Shop Pond, the following chemicals merit the most concern based on HQs:

Chromium

The maximum chromium concentration of tree swallow stomach contents in Plow Shop Pond samples was 189 mg/kg, with a mean of 117 mg/kg. Haines and Longcore (2001) reported the occurrence of metal shavings and shards in tree swallow gizzards, which might explain the high concentrations of chromium in stomach contents. The highest concentration of chromium in aquatic invertebrates, which would approximate the dietary components of tree swallows, was only 3.19 mg/kg. The high chromium concentrations, therefore, are more likely the result of direct ingestion of soil or metal pieces, rather than from ingestion of emergent insects. Chromium in these metal shavings and shards would likely be only partly bioavailable. If the metallic material were stainless steel, for example, most of the chromium would be in the Cr (0) form. While some elemental chromium might be oxidized to Cr III, the short residence time in the gut would probably be such that only a small amount of the chromium in the metal pieces would be mobilized. The risk to the tree swallow from chromium in Grove Pond is probably lower than is indicated by the HQ calculations.

Methylmercury

The maximum mercury concentration of tree swallow stomach contents in Plow Shop Pond samples was 0.211 mg/kg, with a mean of 0.195 mg/kg. Haines and Longcore (2001) reported the occurrence of metal shavings and shards in tree swallow gizzards, which might explain the high concentrations of mercury in stomach contents. The highest concentration of mercury in

aquatic invertebrates, which would approximate the dietary components of tree swallows, was only 0.069 mg/kg. The high mercury concentrations, therefore, may be the result of direct ingestion of soil or metal pieces. If this is the case, the assumption that 65% of mercury in stomach contents is in the methyl form is highly overestimated.

Other Chemicals

The average HQ for lead based on the NOAEL TRV was 1.1. The LOAEL-based HQ was less than one, suggesting that lead does not pose unacceptable risk to the tree swallow in Plow Shop Pond.

7.9.2.3 Summary

While HQs for the tree swallow were high for chromium and mercury the chemical forms of chromium and mercury in swallow stomach contents are probably not fully bioavailable or toxic. Risk to the tree swallow in Plow Shop Pond is considered low.

7.9.2.4 Weight of Evidence Integration

Assessment Endpoint:

Protect the long-term health of local insectivorous bird populations (represented by the tree swallow)

Measurement Endpoints:

A. Compare calculated total daily doses against target receptor TRVs

Weight-of-Evidence Integration

	Weight (from Table 8)					
Risk/MAGNITUDE	Low	Low-Medium	Medium	Medium-High	High	
Yes/High						
Yes/Medium				A		
Yes/Low						
Indeterminate						
No Risk						

Summary:

Modify this summary as follows: "One line of evidence was used to assess the potential risk to insectivorous birds, represented by the tree swallow, foraging in Plow Shop Pond. Comparing COPC-specific TDDs derived from stomach content analysis to COPC-specific TRVs derived from the literature was given a medium-high weight. This approach identified risk from chromium (average HQ_{LOAEL} = 24) and methyl mercury (average HQ_{LOAEL} = 2.0). The RR could not be determined because stomach contents from tree swallows in the background pond were not collected. The high chromium HQ may have been due in part by the presence of metal shavings and shards found in the tree swallow gizzards, which might explain the high concentrations of chromium in stomach contents. Overall, the available evidence shows that there is the potential for medium risk to insectivorous birds foraging in Plow Shop Pond.

7.10 UNCERTAINTY ANALYSIS

7.10.1 Introduction

Uncertainty is inherent in many aspects of the ERA process, because of the inexact nature of various assumptions that influence the risk assessment results. The many assumptions made in order to evaluate risk have associated uncertainties in many cases. Factors contributing to the uncertainties in this ERA are listed below for each representative receptor group.

7.10.2 Uncertainties associated with assessing risk to water column invertebrates

7.10.2.1 Measurement endpoint A: compare surface water EPC to benchmarks

There are uncertainties associated with chemicals which were not detected in the analyses for surface water and sediment, but for which the detection limits exceeded ecological benchmarks. For example, the detection limits for beryllium, cadmium, and selenium in some Grove Pond samples were greater than the chronic surface water benchmark. Therefore, true comparisons against ecological benchmarks were not possible in all cases. This uncertainty may result in an underestimation of site risk.

There are uncertainties associated with chemicals for which surface water benchmarks do not exist. The conservative approach was to retain these chemicals as COPCs, even though their risk could not be quantified because of a lack of benchmarks.

7.10.2.2 Measurement endpoint B: surface water toxicity testing

There is inherent uncertainty associated with the surface water toxicity test: extrapolation from test species to site organisms, water quality conditions, exposure durations, etc. However, the

most sensitive life stage of the test species (*C. dubia*) was exposed according to EPA-recognized standard protocols and a sensitive endpoint (reproduction) was measured. This approach adds confidence that the results showing no significant risk actually reflected a lack of toxicity to surface water organisms in the ponds.

7.10.3 Uncertainties associated with assessing risk to benthic invertebrates

7.10.3.1 Measurement endpoint A: compare sediment EPC to benchmarks

Uncertainty is associated with the spatial coverage of sediment samples in the ponds. Because contamination can vary greatly within even small distances in sediment, it is not possible to know if the locations with the greatest contamination were sampled. Given the large number of samples in the ponds, however, and the collection of samples in the suspected areas of greatest contamination (e.g. Tannery Cove in Grove Pond) it is likely that the samples represented the areas with the highest contamination.

Some benthic invertebrates have limited mobility. Therefore, they can be exposed for long periods of time to contaminants within a relatively small area of sediment. For such organisms, a risk estimated based on a mean or maximum concentration representing the entire pond may not accurately represent risk. While a more accurate method to identify risk to immobile benthic organisms would be to establish site-specific HQs, the large number of sediment samples and analytes precluded the feasibility of this approach. There is uncertainty, therefore, in the estimate of risk to benthic macroinvertebrates for taxa that are immobile and have more localized exposure units.

The very high concentrations in sediments are not reflected in aquatic organisms and it is likely that, along with the other factors discussed in the preceding text, the thick vegetative mat in both ponds acts as a barrier between chemicals in sediments and the aquatic biological community. Further, because of the think layer of peat, there is uncertainty about the actual depth of samples described as surface sediment samples. Using a ponar or other sediment sampling device, the level of confidence in identifying the exact surface layer is low. The effect of this uncertainty on risk is unclear.

There are uncertainties associated with chemicals for which sediment benchmarks do not exist. The conservative approach was to retain these chemicals as COPCs, even though their risk could not be quantified because of a lack of benchmarks.

7.10.3.2 Measurement endpoint B: sediment toxicity testing

Sediment samples collected in 2005 were used in the toxicity tests. These sample locations do not represent the locations with the highest detected concentrations for all COPC. For example,

some of the highest concentrations of chemicals in sediments in Grove Pond (e.g., aluminum at 90,000 mg/kg, arsenic at 910 mg/kg, copper at 13,000 mg/kg, mercury at 422 mg/kg, DDE at 2.5 mg/kg, and total PAHs at 42 mg/kg) were much greater than the concentrations to which test organisms were exposed. Average concentrations for most chemicals were represented, however, in the toxicity test samples. Similarly, some of the highest concentrations of chemicals in sediments in Plow Shop Pond (e.g., antimony at 30.7 mg/kg, arsenic at 6800 mg/kg, cadmium at 66 mg/kg, chromium at 37,800 mg/kg, copper at 3450 mg/kg, manganese at 54800, mercury at 250 mg/kg, and DDE at 1.3 mg/kg) were much greater than the concentrations to which test organisms were exposed. Average concentrations for most chemicals were represented, however, in the toxicity test samples. Therefore, while there may be locations in both ponds that are more toxic than those used in toxicity tests, the results of the tests can be generalized to most areas of Grove Pond and Plow Shop Pond.

The two benthic species used in the toxicity tests were exposed according to EPA-recognized standard protocols. Using sensitive juvenile life stages greatly increased the likelihood of detecting toxicity. However, the relatively short duration of the test (10 days) increased the uncertainty surrounding the lack of observed toxicity for most samples. Using longer exposures and measuring reproductive output as an additional endpoint might have detected toxicity, which the shorter exposures may have been unable to do.

7.10.3.3 Measurement endpoint C: compare measured tissue residue levels to CBRs

The CBR evaluation had significant uncertainty. Critical body residues were taken from literature sources and toxicity values were generally not available for species that occur in Grove Pond and Plow Shop Pond. There is uncertainty, therefore, in the estimate of toxic potential of body burdens based on comparisons with CBRs. This uncertainty may result in underestimation or overestimation of risk.

Because of the uncertainty associated with a lack of taxonomic correspondence, the lowest CBRs available were selected. Using this approach adds to the uncertainty and probably overestimates risk to benthic invertebrates.

The limited sample sizes add uncertainty to the CBR evaluation for benthic invertebrates. For example, for crayfish for some chemicals in Grove Pond, the sample size was three. In Plow Shop Pond the sample size was one for some chemicals. This limited database for certain chemicals results in uncertainty in the conclusions about risk to benthic biota from accumulated body burdens of COPC.

7.10.3.4 AVS/SEM Evaluation

There is uncertainty associated with the inclusion of chromium in the AVS/SEM evaluation. While chromium was included in the SEM analysis, EPA (2005) suggests that chromium not be included among the SEM metals because its interaction with AVS is not via formation of an insoluble sulfide. This uncertainty is addressed in the technical argument provided in Section 7.3.4.1 to evaluate the AVS/SEM results without chromium, which suggest that the metals are not bioavailable.

The protective role of AVS and in sequestering metals and the reduction of CrVI, if present, to CrIII is dependant on sediments being anoxic. If water levels in the ponds drop, however, and expose sediments to oxygen, assumptions about the bioavailability and toxicity of metals in sediments may not be valid. This uncertainty may result in an underestimation of risk from exposure to chromium and sulfide-bound metals.

7.10.4 Uncertainties associated with assessing risk to fish

7.10.4.1 Measurement endpoint A: compare surface water EPC to benchmarks

See Section 7.10.2.1.

7.10.4.2 Measurement endpoint B: surface water toxicity testing

The fish species used in the toxicity test was exposed according to EPA-recognized standard protocols. The relatively short duration of the test (7 days) increased the uncertainty surrounding the lack of observed toxicity for most samples. Using longer exposures and measuring reproductive output as an additional endpoint might have detected toxicity, which the shorter exposures may have been unable to do. On the other hand, the test used a sensitive life stage (neonates less than 24 hrs old), which increased the chances of detecting short-term toxicity if it had been present.

7.10.4.3 Measurement endpoint C: compare measured fish tissue residue levels to CBRs

Uncertainties in the CBR evaluation for fish are similar to those described for invertebrates. There is uncertainty in the extrapolation from species on which CBRs are based and species occurring in the ponds.

7.10.5 Uncertainties associated with assessing risk to birds and mammals

The sediment uptake assumption for the raccoon (9% of the diet) was taken from EPA (1993). Because the value was based on conditions different from those in the ponds, there is uncertainty

in the accuracy of this value for Grove Pond and Plow Shop raccoons, or other omnivorous mammals. This uncertainty is particularly important because the unacceptable risk concluded for the raccoon in Plow Shop Pond is due to incidental ingestion of arsenic in sediment. Therefore, the risk assumption relies entirely on the sediment intake assumption for this species.

The sediment uptake assumption for the black-crowned night heron (2% of the diet) was based on a best professional judgment. There were no measured values for similar species that could have been used with more confidence; EPA (1993) lists an uptake for other aquatic birds at 2%. This uncertainty is particularly important because the unacceptable risk concluded for the black-crowned night heron in both ponds is due to incidental ingestion of chromium in sediment. Therefore, the risk assumption relies entirely on the sediment intake assumption for this species.

Uncertainty is associated with the sediment ingestion rates for another reason. The estimated sediment uptake percentages are potentially overestimated because of the dense vegetative mat that exists throughout the ponds. Because this mat may act as a barrier between sediment and biota, wildlife receptors may have limited direct exposure to sediment substrate. The incidental ingestion assumptions (e.g., 0.09 for the raccoon and 0.02 for the black-crowned night heron potentially overestimate risk from this pathway.

Grove Pond and Plow Shop Pond wildlife receptors were assumed to forage only within their respective ponds. It is possible that some receptors forage in other areas, such as along Nonacoicus Brook, Cold Spring, or in upland areas, EPC in these areas are not known and cannot be assumed equal to zero. Therefore, Area Use Factors (AUF) were assumed equal to one. The uncertainty associated with the intensity and duration of forage within the ponds may lead to an overestimation of risk in the ponds.

Some of the exposure parameters used for the five wildlife receptors bring uncertainty into the risk assessment. They are not species-specific in all cases and are often based on laboratory or field conditions that are not the same as the conditions experienced by wildlife species in Grove Pond and Plow Shop Pond. Some of the specific concerns regarding the wildlife exposure parameters are the following:

There are uncertainties associated with the EPCs for biota used in the food chain models. For a many chemicals, biota EPCs were measured directly. For those chemicals for which the biota EPC were not measured directly, the EPA was estimated using a literature-derived BSAF. There is uncertainty associated with these values, as they were derived using biota that do not necessarily reflect the biota in Grove Pond and Plow Shop Pond. Further, literature BSAF were derived under conditions in which factors that affect bioaccumulation would differ from conditions in the sediments in grove Pond and Plow Shop Pond. The greatest uncertainties are for chemicals (e.g., antimony and thallium) for which the literature did not provide a chemical-

specific BSAF but rather a generic value. These BSAF are thought to be overly conservative and probably result in unrealistically high HQs.

While thallium and antimony HQs suggested potential risk for the black-crowned night heron, the risk calculation as based entirely on the concentration of thallium and antimony sediment. The primary routes of uptake for the night heron for both antimony and thallium are ingestion of invertebrates and frogs. The EPC in both of these dietary items were not established from a direct measurement but estimated, rather, from the sediment concentration and an assumed BSAF of 1. It is likely that this BSAF is an overestimate for both of these metals. This is evidenced by the fact that neither antimony nor arsenic were detected in any of the fish samples analyzed.

Only a limited number of metals were included in the analysis of tree swallow stomach contents. Hazard quotients were calculated for these chemicals only. Overall risk to tree swallows may also be influenced by chemicals not included in the analysis. This uncertainty may result in an underestimation of risk to the swallow.

There is inherent uncertainty in the derivation of toxicity benchmarks for ecological receptors for several reasons, including:

- Extrapolation from laboratory to field conditions is uncertain.
- Extrapolation from laboratory test organisms to the representative species in the ponds is uncertain as species differ with respect to their capacities for absorption, metabolism, distribution, and excretion of chemicals, and differing sensitivities to effects. It is not clear if this uncertainty leads to an underestimation or overestimation of risk.
- Extrapolation is required from the form of chemical used in laboratory toxicity tests to field conditions, where different chemical forms likely occur. One important example is aluminum. As discussed in Section 7.5.1.4, aluminum probably exists in sediment in a chemical form that is different, and less toxic than that used in toxicity tests. These differences between chemical forms in the lab and in the two ponds result in uncertainty in the HQ estimates. The direction of the uncertainty is generally unknown.
- There are uncertainties associated with estimates of dietary proportions for wildlife receptors. An effort was made to use literature values (USEPA 1993), as available, but literature values did not always match dietary items for which site-specific data were available (e.g. swallow egg data). Therefore, profession judgment was used to estimate the proportion of diet consisting of items not specifically addressed in the literature. These uncertainties my lead to an underestimation or overestimation of risk.

7.10.6 Background and Residual Risk Evaluation

The background/residual risk evaluation was based on Flannagan Pond data only. There is, therefore, uncertainty associated with the small number of samples used to derive background EPCs. For fish, three samples from Flannagan Pond were used to derive the background EPCs. Regional background data for mercury in fish are also available in MADEP (2003). Regional concentrations of mercury in fish in northeastern Massachusetts were comparable to concentrations in Flannagan Pond. Regional concentrations in largemouth bass ranged from 0.18 - 2.5 mg/kg, with a mean of 0.89. The mercury concentrations in largemouth bass in the ponds ranged from 0.07 - 1.14 mg/kg, with a mean of 0.21 mg/kg, in Grove Pond and 0.65 to 2.7 mg/kg, with a mean of 1.38 mg/kg in Plow Shop Pond. Regional concentrations in brown bullhead ranged from 0.10 - 0.52 mg/kg, with a mean of 0.28. The mercury concentrations in brown bullhead in the ponds ranged from ND - 0.035 mg/kg, with a mean of 0.020 mg/kg, in Grove Pond and ranged from 0.09 to 0.4 mg/kg, with a mean of 0.28 mg/kg in Plow Shop Pond. Regional concentrations in yellow perch ranged from 0.12-1.1, with a mean of 0.44.

These results are interesting in that they provide qualitative evidence that concentrations in Grove Pond and Plow Shop Pond are comparable to regional fish tissue concentrations. The MADEP (2003) regional data were not incorporated into the mercury EPCs for background, however. This is primarily because they were measured in lateral muscle tissue and not whole body. While most methylmercury in fish is sequestered in lateral muscle, using data from this tissue alone probably overestimates the whole body concentration to a degree. The Flannagan Pond fish concentrations are for whole body and are lower than the regional concentrations. Using the Flannagan Pond data alone, therefore, provides a more conservative estimate of background concentrations; i.e., a lower background concentration for comparison with site concentrations.

Background EPC for non-fish biota were based on BSAF derived from sediment and biota in Grove Pond and Plow Shop Pond. Because the BSAF were derived from data that were not spatially coordinated, factors that affect bioaccumulation in a given specific location are not reflected in the BSAF. For example, for arsenic, one of the two derived BSAF for invertebrates in Plow Shop Pond was based on a maximum concentration in sediment of 6800 mg/kg and maximum concentration in aquatic invertebrates of 2.45 mg/kg (Table G-2). The invertebrate sample was actually collected in a different location, with an unknown sediment concentration. While there is uncertainty in this method, it was used in order to not overestimate risk to background receptors and is more conservative than using higher literature BSAFs.

CHAPTER 8: SUMMARY AND CONCLUSIONS

Grove Pond and Plow Shop have very high concentrations of some chemicals, particularly metals, in sediment. This BERA demonstrates that while potential unacceptable risk from exposure to a small number of COC in Grove Pond and Plow Shop Pond media exists for some wildlife and benthic receptors, the high concentrations in sediment do not equate to unacceptable ecological risk for most chemicals. The very high concentrations in sediments are not reflected in aquatic organisms and it is likely that, along with the other factors discussed in the preceding text, the thick vegetative mat in both ponds acts as a barrier between chemicals in sediments and the aquatic biological community.

The conclusions of the BERA for each receptor are summarized in Table 61 (Grove Pond) and 62 (Plow Shop Pond) and discussed in the following sections.

8.1 WATER COLUMN INVERTEBRATES

The potential risks to water column invertebrate populations was assessed with two measurement endpoints:

- 1. Comparison of site surface water EPC with literature benchmarks.
- 2. Surface water chronic toxicity testing.

8.1.1 Grove Pond

The benchmark comparisons with surface water data suggested low risk to water column invertebrates. The surface water toxicity testing revealed no risk to aquatic invertebrates. No unacceptable risk is concluded for the surface water invertebrate community in Grove Pond.

8.1.2 Plow Shop Pond

The benchmark comparisons with surface water data suggested low risk to water column invertebrates. The surface water toxicity testing revealed no risk to aquatic invertebrates. No unacceptable risk is concluded for the surface water invertebrate community in Plow Shop Pond.

8.2 BENTHIC MACROINVERTEBRATE COMMUNITY

The potential risks to benthic macroinvertebrate communities was assessed with three measurement endpoints:

- 1. Comparison of sediment EPC to sediment benchmarks.
- 2. Sediment toxicity testing.
- 3. Comparison of aquatic invertebrate tissue concentrations with CBRs.

8.2.1 Grove Pond

The benchmark comparisons with sediment data suggested high risk to benthic invertebrates. The results of the toxicity tests and CBR evaluation, however, which carried greater Weights of Evidence, suggested low risk to the benthos. No unacceptable risk is concluded for the benthic invertebrate community in Grove Pond.

8.2.2 Plow Shop Pond

The benchmark comparisons with sediment data suggested high risk to benthic invertebrates. Toxicity test results indicate that PAHs in the vicinity of the Railroad Roundhouse pose unacceptable risk to benthic invertebrates. Further, potential unacceptable risk was determined for benthic invertebrates along the western shoreline, including Red Cove, from a small number of chemicals (arsenic, iron, and manganese, and possibly mercury). The results of the CBR evaluation, however, suggested low risk to the benthos. Unacceptable risk was concluded for benthic invertebrates in the locations listed above but not throughout the pond.

8.3 WARM WATER FISH COMMUNITY

The potential risks to fish communities was assessed with three measurement endpoints:

- 1. Comparison of site surface water EPC with literature benchmarks.
- 2. Surface water chronic toxicity testing.
- 3. Comparison of fish tissue residue levels against fish CBRs.

8.3.1 Grove Pond

The benchmark comparisons with surface water data suggested low risk to fish. In addition, the surface water toxicity testing revealed no risk. Finally, the comparison with CBRs suggested low risk to fish. No unacceptable risk is concluded for the fish community in Grove Pond.

8.3.2 Plow Shop Pond

The benchmark comparisons with surface water data suggested low risk to fish. In addition, the surface water toxicity testing revealed no risk. Finally, the comparison with CBRs suggested low risk to fish. No unacceptable risk is concluded for the fish community in Plow Shop Pond.

8.4 OMNIVOROUS MAMMAL POPULATIONS

The potential risks to omnivorous mammals, represented by the raccoon, were assessed with one measurement endpoint: the calculation of an HQ.

8.4.1 Grove Pond

The food chain modeling suggested no unacceptable risk to omnivorous mammals foraging in Grove Pond

8.4.2 Plow Shop Pond

The food chain modeling suggested potential unacceptable risk to omnivorous mammals from ingestion of arsenic in Plow Shop Pond sediment. There is significant uncertainty associated with this conclusion, however, because risk is based on incidental ingestion of sediment and an estimated sediment ingestion rate, as discussed in Section 7.10. No unacceptable risk for this receptor was found for any other COPC in Plow Shop Pond.

8.5 PISCIVOROUS MAMMAL POPULATIONS

The potential risks to piscivorous mammals, represented by the mink, were assessed with one measurement endpoint: the calculation of an HQ.

8.5.1 Grove Pond

The food chain modeling suggested no unacceptable risk to piscivorous mammals foraging in Grove Pond.

8.5.2 Plow Shop Pond

The food chain modeling suggested no unacceptable risk to piscivorous mammals foraging in Plow Shop Pond.

8.6 CARNIVOROUS BIRD POPULATION

The potential risks to carnivorous birds, represented by the black-crowned night heron, were assessed with one measurement endpoint: the calculation of an HQ.

8.6.1 Grove Pond

The food chain modeling suggested potential unacceptable risk to carnivorous birds from ingestion of chromium in Grove Pond sediment. There is significant uncertainty associated with this conclusion, however, because risk is based on incidental ingestion of sediment and an estimated sediment ingestion rate, as discussed in Section 7.10. No unacceptable risk for this receptor was found for any other COPC in Grove Pond.

8.6.2 Plow Shop Pond

The food chain modeling suggested potential unacceptable risk to carnivorous birds from ingestion of chromium in Plow Shop Pond sediment. There is significant uncertainty associated with this conclusion, however, because risk is based on incidental ingestion of sediment and an estimated sediment ingestion rate, as discussed in Section 7.10. No unacceptable risk for this receptor was found for any other COPC in Plow Shop Pond.

8.7 PISCIVOROUS BIRD POPULATIONS

The potential risks to piscivorous birds, represented by the belted kingfisher, were assessed with one measurement endpoint: the calculation of an HQ.

8.7.1 Grove Pond

The food chain modeling suggested no unacceptable risk to piscivorous birds foraging in Grove Pond.

8.7.2 Plow Shop Pond

The food chain modeling suggested potential unacceptable risk to piscivorous birds from ingestion of mercury in Plow Shop Pond fish. No unacceptable risk for this receptor was found for any other COPC in Plow Shop Pond.

8.8 INSECTIVOROUS BIRD POPULATIONS

The potential risks to insectivorous birds, represented by the tree swallow, were assessed with one measurement endpoint: the calculation of an HQ.

8.8.1 Grove Pond

The food chain modeling suggested no unacceptable risk to insectivorous birds foraging in Grove Pond.

8.8.2 Plow Shop Pond

The food chain modeling suggested no unacceptable risk to insectivorous birds foraging in Plow Shop Pond.

CHAPTER 9.0 REFERENCES

ABB Environmental Services, Inc. (ABB-ES). 1993. Fort Devens Basewide Biological and Endangered Species Survey. Prepared for U.S. Army Corps of Engineers, New England Division, Waltham, MA.

ABB-ES. 1993. Final Remedial Investigation Addendum Report, Data Item A009, Volumes I to IV. Prepared by ABB Environmental Services, Inc. for U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. December 1993.

ABB-ES. 1995. *Draft Plow Shop Pond and Grove Pond Sediment Evaluation, Data Item A009*. Prepared by ABB Environmental Services, Inc. for U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. October 1995.

Berlin, W.H., R.J. Hesselberg, and M.J. Mac. 1981. In Chlorinated Hydrocarbons as a Factor in the Reproduction and Survival of Lake Trout (Salvelinus namaycush) in Lake Michigan. Technical Paper 105. U.S. Fish and Wildlife Service.

Dillon TM. 1984. Army Corps of Engineers Report Technical Report, D-84-2.

Dunning, Jr., J.B., ed. 1993. CRC Handbook of Avian Body Masses. CRC Press, Ann Arbor. 371 pp. (http://www.pwrc.usgs.gov/resshow/rattner/bioeco/bcheron.htm)

ERM. 1994. Site Assessment Report, Boston & Maine Railroad Property, Fort Devens, Ayer, Massachusetts. Prepared by ERM for Boston & Maine Corporation.

Gakstatter, J.H. and C.M. Weiss. 1967. Trans. Amer. Fish. Soc. 96:301-307.

Gannett Fleming, Inc., 1999, Draft Phase I Interim Data Report, Grove Pond Arsenic Investigation, April 1999. EPA Contract No. 68-W6-0009, Work Assignment No. 21-11.

Gannett Fleming, Inc. 2002. Data Gap Evaluation Report. Remedial Investigation Grove & Plow Shop Ponds. Prepared for: U. S. Environmental Protection Agency, Region I. May 2002.

Gannett Fleming, Inc. 2002. Grove Pond Arsenic Investigation: Final Report. Prepared for: U. S. Environmental Protection Agency, Region I. March 2002.

Haines, T.A. and J.R. Longcore. 2001. Final Report: Bioavailability and Potential Effects of Mercury and Selected Other Trace Metals on Biota in Plow Shop and Grove Ponds, Fort Devens, MA. Prepared by Haines and Longcore (U.S. Geological Survey) for U.S. EPA Region I. April 2001.

Hansen, L.G., W.B. Wiekhorst and J. Simon. 1976. J. Fish. Res. Bd. Can. 33:1343-1352.

Hill, E.F., and M.B. Camardese. 1986. Lethal dietary toxicities of environmental contaminants and pesticides to coturnix. U.S. Fish Wild. Serv. Tech. Rep. 2. 147 pp.

Holdway, D.A., J.B. Sprague and J.G. Dick. 1983. Water Res. 17:937-941.

Ingersoll, C.G., F.J. Dwyer and T.W. May. 1990. Environ. Toxicol. Chem. 9:1171-1181.

Jarvinen, A.W., M.J. Hoffman, and T.W. Thorslund. 1977. J. Fish. Res. Board. Can. 34:2089-2103.

Jarvinen, A.W. and G.T. Ankley. 1999. Linkage of effects to tissue residues: development of a comprehensive database for aquatic organisms exposed to inorganic and organic chemicals. Pensacola, FL. Society of Environmental Toxicology and Chemistry (SETAC), 364 pp.

King CK, MC Dowse, SL Simpson, DF Jolley. 2004. Arch Environ Contam Toxicol 47:314-323.

Kraak, M., D. Lavy, W., Peeters, and C. Davids. 1992. Arch. Env. Contamin. Toxicol. 23:363-369.

Kraak, M., Y. Wink, S. Stuljfzand, M. Buckert-de Jong, C. DeGroot, and W. Admiraal. 1994. Aquat. Toxicol. 30:77-89.

Lieb, A.J., D.D. Bills, and R.O. Sinnhuber.. 1974. J. Agr. Food Chem., 22(4):638-642...

Long, E. R., D. D. MacDonald, S. L. Smith, and F. D. Calder 1995. "Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments," Environmental Management 19(1), 81–97.

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000a. Development and evaluation of consensus-based sediment quality criteria. Arch. Environ. Contam. Toxicol. 39:20-31.

MADEP. 2003. Final Report Fish Mercury Levels in Northeastern Massachusetts Lakes. Office of Research and Standards, Massachusetts Department of Environmental Protection. December 2003.

Mierzykowski, Major, and Carr. 1993. Concentrations of mercury and other environmental contaminants in fish from Grove Pond, Ayer, Massachusetts. USFWS New England Field Office.

Mierzykowski, S. and K. Carr. 2000. Trace Element Exposure in Benthic Invertebrates from Grove Pond, Plow Shop Pond, and Nonacoicus Brook. USFWS Report to the EPA. September 2000.

Menzie, C., M. Hope Henning, J. Cura, K. Finkelstein, J. Gentile, J. Maughan, D. Mitchell, S. Petron, B. Potocki, S. Svirsky and P. Tyler. 1996. Special report of the Massachusetts weigh-of-evidence workgroup: a weight-of-evidence approach for evaluating ecological risks. Human and Ecol. Risk Assess. 2:277-304.

Mersch J, P Wagner, and J-C. Pihan. 1996. Environ. Tox. & Chem 15(6):886-893.

M&E. 1994. Grove Pond Field Investigation. Prepared by Metcalf & Eddy for MADEP.

Mierzykowski, S.E., A.R. Major and K.C. Carr. 1993. Concentrations of Mercury and Other Environmental Contaminants in Fish from Grove Pond, Ayer, MA. U.S. Fish and Wildlife Service. September 1993.

Mierzykowski, S.E. and K.C. Carr. 2000. Trace Element Exposure in Benthic Invertebrates from Grove Pond, Plow Shop Pond, and Nonacoicus Brook, Ayer, MA. U.S. FWS Report to the U.S. EPA Region I. September 2000.

Norton, S. A. 2001. Paleolimnological Assessment of Grove and Plow Shop Ponds, Fort Devens - Ayer, Massachusetts, U Maine/USGS report to EPA.

Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of the Environment and Energy. August.

Plastic Distributing Company. 2000. Limited Environmental Investigation. Prepared for Massachusetts Department of Environmental Protection.

Rigdon, RH and J Neal. 1963. Absorption and Excretion of Benzo(a)pyrene, Observation in the Duck, Chicken, Mouse, and Dog. Texas Rep. Biol. And Med. 21(2):247-261.

RTECS (Registry of Toxic Effects of Chemical Substances). 1997. On-line computer database. NIOSH: U.S. Dept of Health and Human Services, Center for Disease Control.

- Sample, B.E., D. M. Opresko, and G. W. Suter II. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. By the Risk Assessment Program Health Sciences Research Division for the U.S. Department of Energy, Office of Environmental Management. ES/ER/TM
- Suter II, G. W. and C. L. Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. Prepared by Lockheed Martin Energy Systems, Inc., Oak Ridge, TN, for the U.S. Department of Energy. Contract DE-AC05-84OR21400.
- Tessier L, G Vaillancourt, L Pazdernik. 1996. Water Air Soil Pol 86:347-357.
- U.S. Army Corps of Engineers/U.S. Environmental Protection Agency. 2003. Ecological Risk Assessment for General Electric (GE)/Housatonic Rive Site Rest of River.
- U.S. EPA. 1993. Wildlife Exposure Factors Handbook. Office of Research. EPA.
- U.S. EPA. 1994. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. First Edition. EPA/600/R-94/024, Duluth, MN.
- U.S. EPA. 1996. ECO Update-Ecotox Threshold. EPA 540/F-95/038.
- U.S. EPA. 1997. Ecological risk assessment guidance for superfund: process for designing and conducting ecological risk assessments. Interim Final. EPA 540-R-97-006.
- U.S. EPA. 1998. Guidelines for ecological risk assessment. EPA/630/R-95/002F.
- U.S. EPA. 1998. EPA's Contaminated Sediment Management Strategy. U.S. EPA Office of Water. EPA-823-R-98-001. April 1998.
- U.S. EPA Region I. 1999. Screening Level Ecological Risk Assessment, Fort Devens, Ayer, MA. USEPA, Region 1 New England, Office of Environmental Measurement and Evaluation.
- U.S. EPA. 1999b. Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities.
- USEPA. 1999c. Phase 2 Report. Further Site Characterization and Analysis. Volume 2E Baseline Ecological Risk Assessment Hudson River PCBs Reassessment RI/FS. August 1999.
- U.S. EPA. 2001. Data Report, Metals in Frog Tissue. U.S. EPA Office of Environmental Measurement and Evaluation, Lexington, MA. February 2001..

U.S. EPA . 2002. National Recommended Water Quality Criteria. U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology.

U.S. EPA. 2005. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc). Office of Research and Development. EPA/600/R-02/011. January 2005.

USEPA. 2005. Ecological Soil Screening Levels for Cobalt. Interim Final. OSWER Directive 9285.7-67. March 2005.

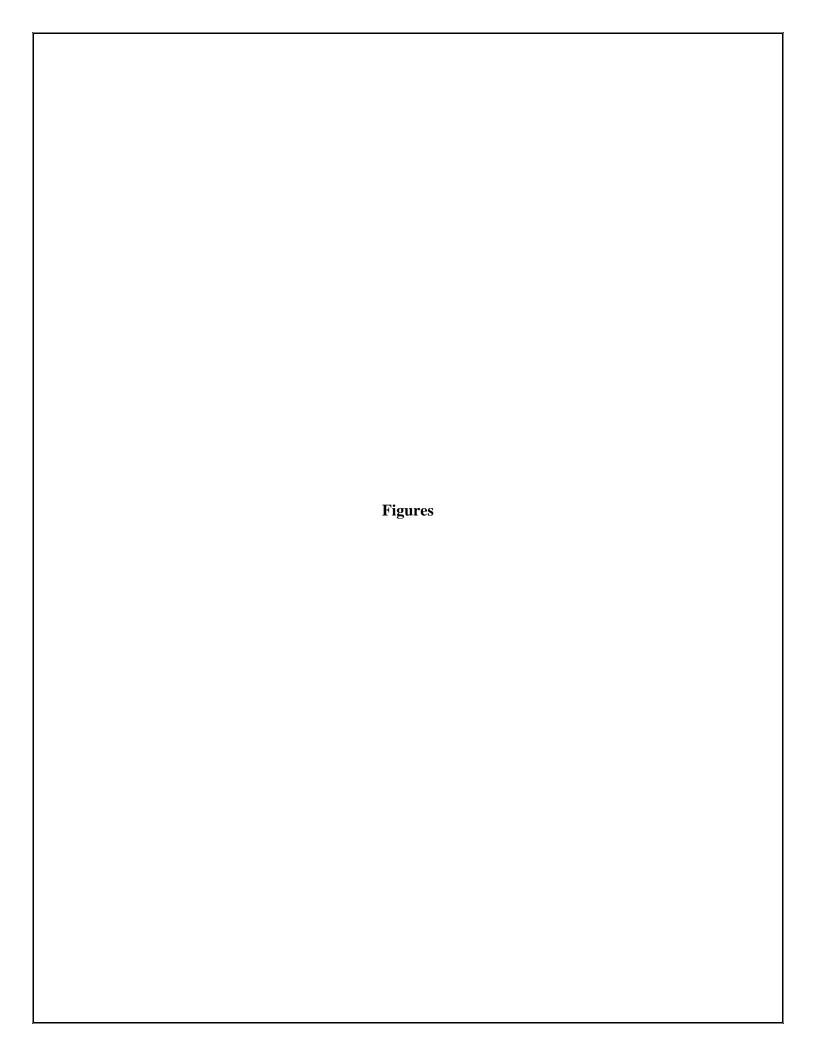
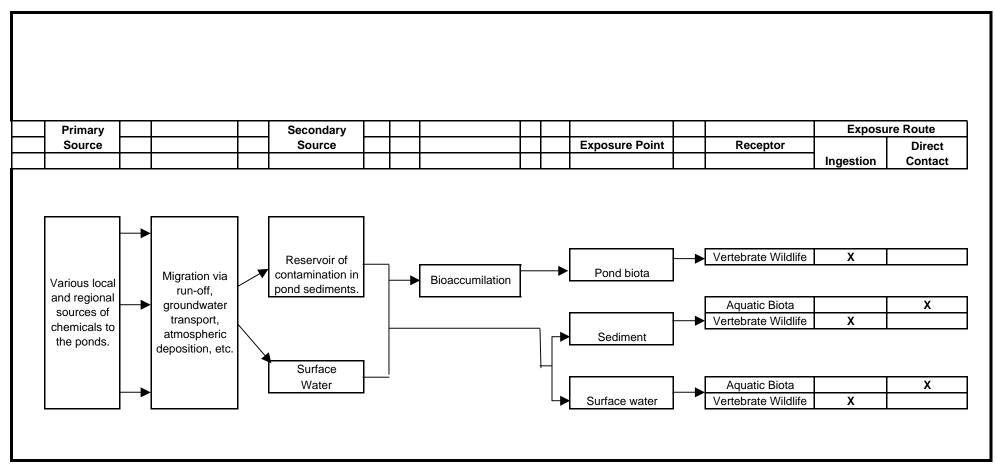



FIGURE 1
Conceptual Site Model for Ecological Exposures in Grove Pond and Plow Shop Pond

Note: X = Evaluated in BERA.

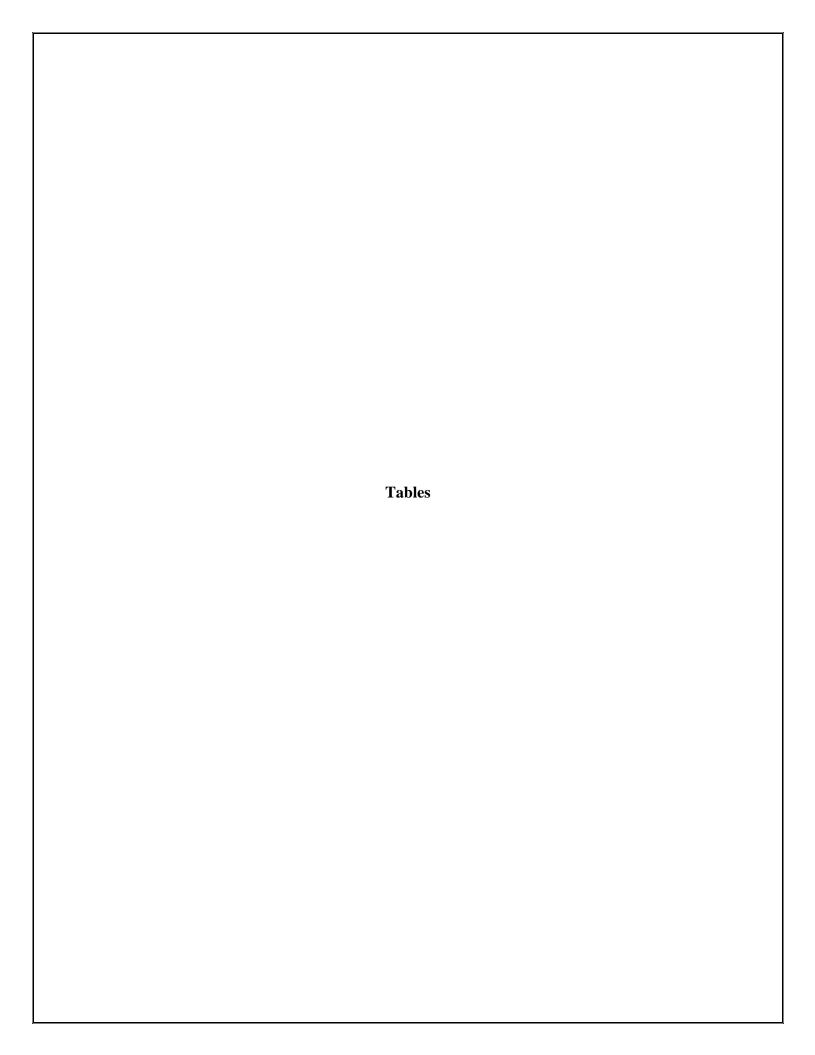


TABLE 1
Analytical Data used in BERA - Grove Pond

			Chemicals A	Analyzed		
	No. of Samples					
Collection Date (on or before)	Collected	Metals	Pest/PCBs	SVOC	VOC	Reference
Surface Water Samples						
12/22/1993	4	Dissolved metals	1			ABB-ES(1993)
8/25/1998	6					GF (1999)
	1	Dissolved metals				GF (1999)
2/24/1999	2	Dissolved metals				PDC (2000)
11/18/1999		Dissolved metals				. /
2/17/2000	1	Dissolved metals				GF (2000)
11/3/2004	6	Dissolved metals				EPA (2005)
Total	20					
Oct-92	7	Total metals				M&E (1994)
	·					· /
Apr-95	6	Total metals				ABB-ES 1995
8/25/1998	8	Total metals				GF (1999)
8/12/1999	2	Total metals				PDC (2000)
11/18/1999	2	Total metals				PDC (2000)
11/3/2004	6	Total metals				EPA (2005)
Total	31					
0 - 1: + 0 1						
Sediment Samples	· ·		, ,			Tenan (1994)
Jan-92	4	Metals				ERM (1994)
Jan-92	5	Metals				ABB-ES(1993)
Jan-92	6	Metals				M&E (1994)
Oct-92	7	Metals	Pest/PCBs	PAHs	VOCs	M&E (1994)
Dec-93	7	Metals	Pest/PCBs	PAHs	VOCs	ABB-ES(1993)
Apr-95	48	Metals	Pest/PCBs	PAHs		ABB-ES (1995)
Apr-95	15	Metals	Pest/PCBs			ABB-ES (1995)
9/11/1998	4	Metals				EPA (1999)
8/1/1999	10	Metals				GF (2002)
8/1/1999	10	Metals				GF (1999)
9/1/2000	3	Metals				Norton (2001)
1/1/2001	10	Metals				Haines and Longcore (2001)
3/1/2004	15	Metals				EPA (2005)
2/2/2005	3	Metals	Pest/PCBs	PAHs		EPA (2005)
4/29/1994	7		Pest/PCBs	PAHs	VOCs	M&E (1994)
Total	154					
Biological Tissue						
1992 (Fish - whole body)	28	metals	Pest/PCBs			1992 Fish Data from Mierzykowski et al. (1993)
2004 (Fish - whole body)	4	metals	Pest/PCBs			June 30, 2004 Fish Data from EPA
1998 (crayfish)	3	metals				Mierzykowski and Carr (September 2000)
2000 (crayfish)	3 (composites)	metals				Haines and Longcore (2001)
2001 (odonata)	4 (composites)	metals				Haines and Longcore (2001)
July 1999 (frog)	25	metals				EPA (2001)
1998 (swallow eggs)	6	limited metals				Haines and Longcore (2001)
1999 (swallow eggs)	14	limited metals				Haines and Longcore (2001)
1999 (swallow stomach contents)	10	limited metals				Haines and Longcore (2001)
Total	97					

TABLE 2
Analytical Data used in BERA - Plow Shop Pond

	No. of Country		Chemicals Analyz	ed		
Collection Date (on or before)	No. of Samples Collected	Metals	Pestcides/PCBs	SVOC	VOC	Reference
Surface Water Samples						
11/3/2004	6	Dissolved metals				EPA (2005)
11/19/2004	4	Dissolved metals				EPA (2005)
Total	10					
1/1/1991	13	Total metals				ABB-ES (1993)
9/11/1998	2	Total metals				EPA (1999)
9/11/1998	4	Total metals				EPA (1999)
11/19/2004	4	Total metals				EPA (2005)
7/16/2004	1	Total metals				EPA (2005)
11/3/2004	6	Total metals				EPA (2005)
Total	30					
Sediment Samples		<u>I</u>				
1/1/1991	13	metals	Pestcides/PCBs	PAHs	VOC	ABB-ES (1993)
1/1/1992	32	metals	Pestcides/PCBs			ABB-ES (1993)
1/1/1994	4	metals		PAHs		ABB-ES (1995)
4/1/1995	22	metals				ABB-ES (1995)
9/11/1998	3	metals				EPA (1999)
July 26&28, 1999	3	metals				Norton (2001)
1/1/2001	10	metals				Haines and Longcore (2001)
Mar-04	28	metals				EPA (2005)
2/1/2005	11	metals	Pestcides/PCBs	PAHs		EPA (2005)
Total	126					, ,
Biological Tissue						
1992 (fish - whole body)	15	metals	Pestcides/PCBs			ABB (1993)
2004 (fish - whole body)	4	metals	Pestcides/PCBs			EPA 2004 Fish LIMs Data
1998 (mussels)	6	metals				Mierzykowski and Carr (2000)
1998 (crayfish)	1	metals				Mierzykowski and Carr (2000)
2000 (crayfish)	4	metals				Haines and Longcore (2001)
2000 (odonata)	4	metals				Haines and Longcore (2001)
1999 (frog)	13	metals				EPA (2001)
1998 (swallow egg)	4	select metals				Haines and Longcore (2001)
1999 (swallow egg)	9	select metals				Haines and Longcore (2001)
1999 (swallow stomach contents)	3	select metals				Haines and Longcore (2001)
Total	62					

TABLE 3
Selection of COPC in Grove Pond Surface Water

Chemical	Maximum Concentration (ug/L)	Chronic benchmark (ug/L)	Source	Notes	COPC?
Inorganics ^{a,b}					
Aluminum	176	87	EPA (2002)	С	Υ
Antimony	ND	30	Suter and Tsao(1996)		N
Arsenic	4	150	EPA (2002)		N
Barium	21	4	Suter and Tsao(1996)		Υ
Beryllium	ND	0.66	Suter and Tsao(1996)		N
Cadmium	ND	0.14	EPA (2002)	d	N
Calcium	27000	116000	Suter and Tsao(1996)		N
Chromium	4	11	EPA (2002)	е	N
Cobalt	4	23	Suter and Tsao(1996)		N
Copper	2	4.3	EPA (2002)	d	N
Iron	350	1000	EPA (2002)		N
Lead	0.39	1	EPA (2002)	d	N
Magnesium	3100	82000	Suter and Tsao(1996)		N
Manganese	801	120	Suter and Tsao(1996)		Y
Mercury	ND	0.77	EPA (2002)		N
Nickel	1	25	EPA (2002)	d	N
Potassium	780	53000	Suter and Tsao(1996)		N
Selenium	ND	5	EPA (2002)		N
Silver	ND	0.74	EPA (2002)	d	N
Sodium	22000	680000	Suter and Tsao(1996)		N
Thallium	ND	12	Suter and Tsao(1996)		N
Vanadium	ND	20	Suter and Tsao(1996)		N
Zinc	20	57	EPA (2002)	d	N

Bold indicates an exceedance of the chronic benchmark

- a. No organic chemicals were detected in any of the Grove Pond surface water samples used for this ecological risk assessment.
- b. Concentrations of dissolved inorganics in surface water. The only exception is the concentration of aluminum and benchmark are for total aluminum, not dissolved.
- c. For total recoverable aluminum in surface water.
- d. Benchmarks normalized to Grove Pond water hardness average of 42.4 mg/L.
- e. Values are those for Chromium (VI).

TABLE 4
Selection of COPC in Plow Shop Pond Surface Water

	Maximum Concentration	Chronic benchmark			
Chemical	(ug/L)	(ug/L)	Source	Notes	COPC?
Inorganics ^{a,b}					
Aluminum	225	87	EPA (2002)	С	Υ
Antimony	ND	30	Suter and Tsao(1996)		N
Arsenic	9.7	150	EPA (2002)		N
Barium	26	4	Suter and Tsao(1996)		Y
Beryllium	ND	0.66	Suter and Tsao(1996)		N
Cadmium	ND	0.14	EPA (2002)		N
Calcium	11000	116000	Suter and Tsao(1996)		N
Chromium	ND	11	EPA (2002)		N
Cobalt	13	23	Suter and Tsao(1996)		N
Copper	3.2	3.4	EPA (2002)	d	N
Iron	2900	1000	EPA (2002)		N
Lead	0.23	0.72	EPA (2002)	d	N
Magnesium	2200	82000	Suter and Tsao(1996)		N
Manganese	390	120	Suter and Tsao(1996)		Y
Mercury	ND	0.77	EPA (2002)		N
Nickel	2.9	19.9	EPA (2002)	d	N
Potassium	NA	53000	Suter and Tsao(1996)		N
Selenium	20	5	EPA (2002)	е	Y
Silver	ND	0.74	EPA (2002)		N
Sodium	NA	680000	Suter and Tsao(1996)		N
Thallium	ND	12	Suter and Tsao(1996)		N
Vanadium	ND	20	Suter and Tsao(1996)		N
Zinc	11	44.9	EPA (2002)	d	N

Bold indicates an exceedance of the chronic benchmark

- a. No organic chemicals were detected in any of the Plow Shop Pond surface water samples used for this ecological risk assessment.
- b. Concentrations of dissolved inorganics in surface water. The only exceptions are the site concentrations and benchmarks for aluminum and selenium, which are total, not dissolved, concetrations.
- c. For total recoverable aluminum in surface water.
- d. Benchmarks normalized to Plow Shop Pond water hardness average of 32.2 mg/L.
- e. For total recoverable selenium in surface water.

TABLE 5 Selection of COPC in Grove Pond Sediment

		1		
	Maximum	Chronic (low offeet)		
Inorganics	concentration (mg/kg)	Chronic (low effect) Screening Value (mg/kg)	Source	COPEC?
Aluminum	90000	25500	SORT TEL	Y Y
Antimony	41	23300	ER-L	Y
Arsenic	910	9.79	TEC	Ý
Barium	470	0.7	SQRT Bkg	Y
Beryllium	14.1	NA	our big	Y
Cadmium	730	0.99	TEC	Y
Calcium	340000	NA		N ^a
Chromium	52000	43.4	TEC	Y
Cobalt	70.0	10	SQRT Bkg	Y
Copper	13000	31.6	TEC	Υ
Iron	42800	20000	LEL	N ^a
Lead	1760	35.8	TEC	Y
Magnesium	5300	NA		N ^a
Manganese	2500	460	LEL	Y
Mercury	422	0.18	TEC	Y
Methyl mercury	0.07044	NA		Y
Nickel	86	22.7	TEC	Y
Potassium	4120	NA		N ^a
Selenium	41.2	0.29	SQRT Bkg	Y
Silver	12.4	1	ER-L	Y
Sodium	7020	NA		N ^a
Thallium	82.4	NA NA		Y
Vanadium	140	50	SQRT Bkg	Y
Zinc	820	121	TEC	Y
Pesticides				
4,4'-DDD	2.5	0.00488	TEC	Υ
4,4'-DDE	0.98	0.00316	TEC	Y
4,4'-DDT	3.3	0.00416	TEC	Υ
Endrin	0.028	0.00222	TEC	Υ
svoc				
1-Methylnaphthalene	1.1	1.3	Other ^b	N
2-Methylnaphthalene	4	6.50E-02	ER-L	Y
4-Bromophenyl phenyl ether	1.7	13	SQB c	N
4-Chlorophenyl phenyl ether	0.84	NA		Υ
Acenaphthene	0.068	6.2	SQC ^d	N
Acenaphthylene	0.22	0.044	ER-L	Υ
Anthracene	2.4	0.0572	TEC	Υ
Benzo(a)anthracene	3.4	0.108	TEC	Υ
Benzo(a)pyrene	1.1	0.15	TEC	Υ
Benzo(b)fluoranthene	2.4	0.24	LEL ^e	Υ
Benzo(ghi)perylene	1.4	0.17	LEL	Y
Benzo(k)fluoranthene	4.9	0.24	LEL	Y
Bis(2-ethylhexyl)phthalate	0.41	8900	Other ^b	N
Butyl benzyl phthalate	3	110	SQB ^c	N
Chrysene	3.7	0.166	TEC	Y
Dibenzo(a,h)anthracene	0.3	0.033	TEC	Υ
Dibenzofuran	0.7	20	SQB ^c	N
Di-n-butyl phthalate	8	110	SQB°	N
Fluoranthene	7.1	0.423	TEC	Υ
Fluorene	1.1	0.0774	TEC	Υ
Indeno(1,2,3-cd)pyrene	1.6	0.2	LEL	Υ
Naphthalene	20	0.176	TEC	Υ
Phenanthrene	4.6	0.204	TEC	Υ
Pyrene	6.4	0.195	TEC	Y
Total PAH	42.01	1.61	TEC	Υ
voc			00-0	
Toluene	0.0042	6.7	SQB ^c	N
Xylene (total)	0.0164	0.25	SQB ^{c,d}	Ν

Bold indicates exceedance of low-effect level benchmark.

NA = No benchmark available

- d. SQC normalized to 10% TOC.
- e. Used value for benzo(k)fluoranthene as surrogate.
 d. SQB is for xylene, m-.

a. Calcium, iron, manganese, potassium, and sodium are not considered COPC because they are essential

b. Equilibrium partitioning-derived Secondary Chronic Value assuming 10% TOC.

c. SQB normalized to 10% TOC.

TABLE 6 Selection of COPC in Plow Shop Pond Sediments

	Maximum			
	concentration	Chronic (low effect)		
Inorganics	(mg/kg)	Screening Value	Source	COPEC?
Aluminum	27000	25500	SQRT TEL	Y
Antimony	30.7	2	ER-L	· Y
Arsenic	6800	9.79	TEC	Υ
Barium	370	0.7	SQRT Bkg	Υ
Beryllium	2.72	NA		Υ
Cadmium	66	0.99	TEC	Υ
Calcium	34000	NA		N ^a
Chromium	37800	43.4	TEC	Υ
Cobalt	59	10	SQRT Bkg	Υ
Copper	3450	31.6	TEC	Υ
Iron	410000	20000	LEL	N ^a
Lead	1214.31	35.8	TEC	Υ
Magnesium	8580	NA		N ^a
Manganese	54800	460	LEL	Υ
Mercury (inorganic)	250	0.18	TEC	Υ
Methylmercury	0.08189	NA NA	 	Y
Nickel	87.8	22.7	TEC	Υa
Potassium	2340	NA 0.00	0007.51	N ^a
Selenium	14.7	0.29	SQRT Bkg	Y
Silver		1	ER-L	-
Sodium	5280	NA NA	1	N ^a
Thallium	29.4 166	NA 50	CODT Dis	Y
Vanadium Zinc	1100	121	SQRT Bkg TEC	Y
ZIIIC	1100	121	TEC	
Pesticides/PCBs				
4,4'-DDD	1.8	0.00488	TEC	Υ
4.4'-DDE	1.3	0.00316	TEC	Y
4,4'-DDT	0.13	0.00416	TEC	Υ
Heptachlor	0.092	0.68	Other ^b	N
Aroclor 1242	0.11	1.7	Other ^b	N
Aroclor 1254	0.13	0.06	LEL	Υ
Aroclor 1260	0.05	0.005	LEL	Υ
svoc				
2-Methylnaphthalene	2	6.50E-02	ER-L	Υ
Acenaphthene	0.4	6.2	SQCd	N
Acenaphthylene	0.71	0.044	ER-L	Y
Anthracene	3.4	0.0572	TEC	Y
Benzo(a)anthracene	7.1 6.5	0.108 0.15	TEC TEC	Y
Benzo(a)pyrene Benzo(b)fluoranthene	11	0.15	LELe	Y
Benzo(ghi)perylene	5.2	0.17	LEL	Y
Benzo(k)fluoranthene	3.7	0.24	LEL	Y
Chrysene	8.1	0.166	TEC	Ϋ́
Dibenzo(a,h)anthracene	1.3	0.033	TEC	Υ
Dibenzofuran	0.8	20	SQB f	N
Fluoranthene	18	0.423	TEC	Υ
Fluorene	1.9	0.0774	TEC	Υ
Indeno(1,2,3-cd)pyrene	4.5	0.2	LEL	Υ
Naphthalene	2.4	0.176	TEC	Y
Phenanthrene	10	0.204	TEC	Y
Pyrene	14	0.195	TEC	Y
PAH (Total)	98.65	1.61	TEC	Υ
VOC			+ +	
Acetone	2.6	0.087	Other ^b	Υ
			Other ^b	
Methyl ethyl ketone	0.13	2.7	Other ^b	N N
Methylene chloride	0.12	3.7	Other	N

Bold indicates exceedance of low-effect level benchmark.

- a. Calcium, iron, manganese, potassium, and sodium are not considered COPC because they are essential nutrients.
- a1. Average of detected values only to avoid unrealistically high average due to a few highly elevated detection limits for thallium.
- b. Equilibrium partitioning derived Secondary Chronic Value assuming 10% TOC..
- b. Equilibrium partitioning derived secondary Criticitic value assuming 10% 100...

 C. SEL normalized to a TOC of 10%, the maximum value recommended in Persaud et al. (1993). The actual average TOC in Plow Shop Pond was 23%.

 d. SQC normalized to 10% TOC.

 e. Used value for benzo(k)fluoranthene as surrogate.

 f. SQB normalized to 10% TOC.

NA = No benchmark available

Table 7: Assessment and Measurement Endpoints for Grove Pond
and Plow Shop Pond Wildlife Receptors

I

Assessment	Measurement Endpoint	Data Used
Endpoint		
Protect the long- term health of water column invertebrates	Compare surface water contaminant concentrations against surface water benchmarks	Surface water chemistry data Surface water toxicity data
	Assess surface water toxicity using <i>C. dubia</i>	
Protect the integrity of the local	Compare sediment contaminant concentrations against sediment benchmarks	Sediment analytical data Mussel and crayfish tissue residue data
macroinvertebrate benthic community	Compare mussel and crayfish tissue residue levels against target receptor toxicity reference values (CBRs)	Sediment toxicity data
	Assess sediment toxicity using <i>H. azteca</i> and <i>C. tentans</i>	
Protect the long- term health of local fish populations	Compare surface water contaminant concentrations against surface water benchmarks Assess surface water toxicity	Surface water chemistry data Fish tissue residue data Surface water toxicity data
	using <i>P. promelas</i> Compare measured fish tissue residue levels against fish CBRs	
Protect the long- term health of local omnivorous mammal populations (represented by the raccoon)	Compare calculated total daily doses against target receptor TRVs	Fish, invertebrate, frog, bird egg, surface water, and sediment analytical data.

Table 7: Assessment and Measurement Endpoints for Grove Pond and Plow Shop Pond Wildlife Receptors

Assessment Endpoint	Measurement Endpoint	Data Used
Protect the long- term health of local piscivorous mammal populations (represented by the mink)	Compare calculated total daily doses against target receptor TRVs	Fish, surface water, and sediment analytical data.
Protect the long- term health of local omnivorous bird populations (represented by the black-crowned night heron)	Compare calculated total daily doses against target receptor TRVs	Fish, invertebrate, and frog tissue residue, and surface water and sediment analytical data.
Protect the long- term health of local piscivorous bird populations (represented by the belted kingfisher)	Compare calculated total daily doses against target receptor TRVs	Fish and surface water analytical data.
Protect the long- term health of local insectivorous bird populations (e.g., swallow)	Compare calculated total daily doses against target receptor TRVs	Insect tissue residue and surface water analytical data to calculate a daily dose

TABLE 8 Weight -of-Evidence (WOE) Documentation

								Attrib	utesª				
Assessment Endpoints	Measurement Endpoints	Descriptive Scoreb	Numeric Score°	3iological Linkage	Correlation of Stresson/Response	Utility of Measure	Quality of Data	Site-Spedificity	Sensitivity	Spatial representativeness	remporal Representativeness	Quantitativeness	Standard Measure
Protect the long-term health of water column invertebrates	Compare surface water contaminant concentrations against surface water benchmarks	L-M	33	2	3	4	7	2	2	2	3	3	5
	B. Assess surface water toxicity using C. dubia	М	56	5	6	6	7	4	6	4	3	6	9
Protect the long-term health of local fish populations	Compare surface water contaminant concentrations against surface water benchmarks	L-M	33	2	3	4	7	2	2	2	3	3	5
populatione	B. Assess surface water toxicity using P. promelas	М	56	5	6	6	7	4	6	4	3	6	9
C. Compare measured fish tissue residue levels against fish CBRs	М-Н	73	7	8	8	7	8	5	8	8	7	7	
Protect the integrity of the local macroinvertebrate benthic community	A. Compare sediment contaminant concentrations against sediment benchmarks	L-M	33	2	3	4	7	2	2	2	3	3	5
	B. Compare mussel and crayfish tissue residue levels against target receptor toxicity reference values (CBRs)	М-Н	73	7	8	8	7	8	5	8	8	7	7
	C. Assess sediment toxicity using H. azteca and C. tentans	M-H	64	6	7	6	7	4	6	5	7	7	9
Protect the long-term health of local omnivorous mammal populations (represented by the raccoon)	Compare calculated total daily doses against target receptor TRVs	М-Н	64	7	6	6	6	7	4	7	8	6	7
Protect the long-term health of local piscivorous mammal populations (represented by the mink)	Compare calculated total daily doses against target receptor TRVs	М-Н	64	7	6	6	6	7	4	7	8	6	7
Protect the long-term health of local carnivorous bird populations (represented by the black- crowned night heron)	Compare calculated total daily doses against target receptor TRVs	М-Н	64	7	6	6	6	7	4	7	8	6	7
kingfisher)	Compare calculated total daily doses against target receptor TRVs	М-Н	64	7	6	6	6	7	4	7	8	6	7
Protect the long-term health of local insectivorous bird	Compare calculated total daily doses against target receptor TRVs	M-H	64	7	6	6	6	7	4	7	8	6	7

Notes: The assessment and measurement endpoints included in this table are discussed in Section 4.5 of the BERA report

<u>Biological Linkage</u>: correlation and/or applicability of measurement endpoint with respect to assessment endpoint; linkage based on known biological processes; similarity of effect; target organ, mechanism of action, and level of ecological organization.

Correlation of Stressor/Response: Ability of the endpoint to demonstrate effects from chronic exposure to stressor and to correlate effects with degree of exposure; susceptibility and magnitude of effects.

Utility of Measure: applicability, certainty and scientific basis of measure that is used to judge environmental harm; sensitivity of benchmark in detecting environmental harm.

Quality of Data: extent to which data quality objectives (DQOs) are met.

<u>Site-Specificity</u>: Representativeness of chemical or biological data, environmental media, species, environmental conditions, benchmark (or reference) and habitat types that are used in the measurement endpoint relative to those present at the site.

<u>Sensitivity</u>: The percentage of the total possible variability that the endpoint is able to detect; the ability of the measurement endpoint to detect effects from stressor, rather than from natural or design variability or uncertainty. <u>Spatial Representativeness</u>: Spatial overlap of study area, measurement or sampling locations, locations of stressors, locations or receptors, and points of potential exposure to those receptors. <u>Temporal Representativeness</u>: Temporal overlap between the measurement period and the period during which chronic effects would likely to be detected (daily, weekly, seasonally, annually).

Impora Nepresentativeness. The large of verification of the inequality of the inequa

Standard Measure: Method availability, ASTM approval, suitability and applicability to endpoint and site; need for modification of method; relationship to impact assessment, field survey, toxicity test, benchmark, toxicity quotient, or tissue residue analysis methodologies.

^a The attributes are discussed in Menzie et al. (1996) who provide the following guidance for attribute scoring:

b The overall score derived for each measurement endpoint is a qualitative measure of its relative importance in characterizing risk at a given assessment endpoint using multiple lines of evidence. The overall score is determined by the a priori assignments for the 10 attributes. The scores are defined as follows: Low = 0-33; Medium = 33-67; High = 68-100.

^C The numeric scores represent the addition of all the individual attribute scores for each measurement endpoint.

TABLE 9
Surface Water Biota Hazard Quotients - Grove Pond

			Benchmark (ug/L)		Hazard Quo concer	tients - Max itration	Hazard Quo concer	tients - Avg tration
Chemical	Maximum Concentration (ug/L)	Average Concentration (ug/L)	(chronic) (acute)		Chronic Effects	Acute Effects	Chronic Effects	Acute Effects
Inorganics								
Aluminum	176	26	87	750	2.02	0.23	0.30	0.03
Barium	21	11.49	4	110	5.25	0.19	2.87	0.10
Manganese	801	212	120	2300	6.68	0.35	1.77	0.09

TABLE 10 Surface Water Biota Hazard Quotients - Plow Shop Pond

Chemical			Benchmark (ug/L)		Hazard Quo concer		Hazard Quo	tients - Avg itration
Inorganics	Maximum Concentration (ug/L)	Average Concentration (ug/L)	(chronic)	(acute)	Chronic Effects	Acute Effects	Chronic Effects	Acute Effects
Aluminum	225	18	87	750	2.59	0.30	0.21	0.02
Barium	26	12.6	4	110	6.50	0.24	3.15	0.11
Manganese	390	125	120	2300	3.25	0.17	1.04	0.05
Selenium	20	5.13	5	NA	4.00	NA	1.03	NA

NA indicates benchmark not available; therefore, HQ could not be calculated.

TABLE 11
Benthic Invert Hazard Quotients - Grove Pond

					Hazard Quo	tients - Max	Hazard Quo	tients - Avg
					concer	ntration	concer	ntration
	Maximum Average concentration Chronic (low effect)		Acute (severe effect)	Chronic	Acute	Chronic	Acute	
Inorganics	(mg/kg)	(mg/kg)	Screening Value	Screening Value	Effects	Effects	Effects	Effects
Aluminum	90000	10676	25500	NA 0.5	3.53	NA	0.42	NA
Antimony	41	12	2	25	21	1.64	6.01	0.48
Arsenic	910	79	9.79	33	93	28	8.06	2.39
Barium	470	83	0.7	NA	671	NA	118	NA
Beryllium	14.1	1.17	NA	NA	NA	NA	NA	NA
Cadmium	730	18	0.99	4.98	737	147	18	3.59
Chromium	52000	5859	43.4	111	1198	468	135	53
Cobalt	70.0	14	10	NA	7.00	NA	1.41	NA
Copper	13000	146	31.6	149	411	87	4.61	0.98
Lead	1760	263	35.8	128	49	14	7.33	2.05
Manganese	2500	597	460	1100	5.43	2.27	1.30	0.54
Mercury	422	22	0.18	1.06	2344	398	122	21
Methyl mercury	0.07044	0.021	NA	NA	NA	NA	NA	NA
Nickel	86	29	22.7	48.6	3.79	1.77	1.29	0.60
Selenium	41.2	8	0.29	NA	142	NA	26	NA
Silver	12.4	3.20	1	3.7	12	3.35	3.20	0.87
Thallium	82.4	12	NA	NA	NA	NA	NA	NA
Vanadium	140	32	50	NA	2.80	NA	0.65	NA
Zinc	820	268	121	459	6.78	1.79	2.21	0.58
Pesticides								
4,4'-DDD	2.5	0.32	0.00488	0.028	512	89	66	11
4,4'-DDE	0.98	0.12	0.00316	0.0313	310	31	38	3.89
4,4'-DDT	3.3	0.092	0.00416	0.0629	793	52	22	1.46
Endrin	0.028	0.011	0.00222	0.207	13	0.14	5.13	0.06
SVOC								
2-Methylnaphthalene	4	0.255	6.50E-02	6.70E-01	62	5.97	3.92	0.38
4-Chlorophenyl phenyl ether	0.84	0.136	NA	NA	NA	NA	NA	NA
Acenaphthylene	0.22	0.146	0.044	0.64	5.00	0.34	3.32	0.23
Anthracene	2.4	0.188	0.0572	0.845	42	2.84	3.29	0.22
Benzo(a)anthracene	3.4	0.447	0.108	1.05	31	3.24	4.14	0.43
Benzo(a)pyrene	1.1	0.470	0.15	1.45	7.33	0.76	3.14	0.32
Benzo(b)fluoranthene	2.4	0.442	0.24	134	10	0.02	1.84	0.00
Benzo(ghi)perylene	1.4	0.448	0.17	32	8	0.04	2.64	0.01
Benzo(k)fluoranthene	4.9	0.323	0.24	134	20	0.04	1.35	0.00
Chrysene	3.7	0.405	0.166	1.29	22	2.87	2.44	0.31
Dibenzo(a,h)anthracene	0.3	0.278	0.033	13	9.09	0.02	8.42	0.02
Fluoranthene	7.1	0.577	0.423	2.23	17	3.18	1.36	0.26
Fluorene	1.1	0.161	0.0774	0.536	14	2.05	2.08	0.30
Indeno(1,2,3-cd)pyrene	1.6	0.545	0.2	32	8.00	0.05	2.72	0.02
Naphthalene	20	0.753	0.176	0.561	114	36	4.28	1.34
Phenanthrene	4.6	0.402	0.204	1.17	23	3.93	1.97	0.34
Pyrene	6.4	0.642	0.195	1.52	33	4.19	3.29	0.42
Total PAH	42.01	5.52	1.61	22.8	26	1.84	3.43	0.42

NA indicates benchmark not available; therefore, HQ could not be calculated.

TABLE 12
Benthic Invert Hazard Quotients - Plow Shop Pond

		1						
						tients - Max		tients - Avg
	Maximum	A			concer	ntration	concei	ntration
		Average	Ohnania (lauraffa at)	A (ff	Charatia	Acute	Charatia	A4-
	concentration	concentration	Chronic (low effect)	Acute (severe effect)	Chronic	Effects	Chronic Effects	Acute Effects
Inorganics	(mg/kg)	(mg/kg)	Screening Value	Screening Value	Effects 1.06	NA		NA
Aluminum	27000	8228	25500	NA 05			0.32	
Antimony	30.7	15	2	25	15	1.23	7.56	0.60
Arsenic	6800	542	9.79	33	695	206	55	16
Barium	370	101	0.7	NA NA	529	NA	144	NA
Beryllium	2.72	1.42	NA 0.00	NA 1.00	NA	NA	NA	NA
Cadmium	66	10	0.99	4.98	67	13	10	2.05
Chromium	37800	2275	43.4	111	871	341	52	20
Cobalt	59	12	10	NA 110	5.90	NA	1.23	NA
Copper	3450	123	31.6	149	109	23	3.88	0.82
Lead	1214.31	169	35.8	128	34	9.49	4.71	1.32
Manganese	54800	2348	460	1100	119	50	5.10	2.13
Mercury (inorganic)	250	27	0.18	1.06	1389	236	150	25
Methylmercury	0.08189	0.04	NA	NA	NA	NA	NA	NA
Nickel	87.8	30	22.7	48.6	3.87	1.81	1.31	0.61
Selenium	14.7	14	0.29	NA	51	NA	49	NA
Silver	2	4.87	1	3.7	2.00	0.54	4.87	1.32
Thallium	29.4	23	NA	NA	NA	NA	NA	NA
Vanadium	166	27	50	NA	3.32	NA	0.53	NA
Zinc	1100	199	121	459	9.09	2.40	1.64	0.43
Pesticides/PCBs								
4,4'-DDD	1.8	0.083	0.00488	0.028	369	64	17	2.97
4,4'-DDE	1.3	0.061	0.00316	0.0313	411	42	19	1.95
4,4'-DDT	0.13	0.012	0.00416	0.0629	31	2.07	2.78	0.18
Aroclor 1254	0.13	0.050	0.06	3.4	2.17	0.04	0.83	0.01
Aroclor 1260	0.05	0.043	0.005	2.4	10	0.02	8.55	0.02
svoc								
2-Methylnaphthalene	2	1.28	6.50E-02	6.70E-01	31	2.99	20	1.90
Acenaphthylene	0.71	0.20	0.044	0.64	16	1.11	4.64	0.32
Anthracene	3.4	0.48	0.0572	0.845	59	4.02	8.40	0.57
Benzo(a)anthracene	7.1	0.70	0.108	1.05	66	6.76	6.49	0.67
Benzo(a)pyrene	6.5	1.24	0.15	1.45	43	4.48	8.30	0.86
Benzo(b)fluoranthene	11	1.93	0.24	134	46	0.08	8.03	0.01
Benzo(ghi)perylene	5.2	1.20	0.17	32	31	0.16	7.03	0.04
Benzo(k)fluoranthene	3.7	0.73	0.24	134	15	0.03	3.03	0.01
Chrysene	8.1	0.94	0.166	1.29	49	6.28	5.67	0.73
Dibenzo(a,h)anthracene	1.3	0.31	0.033	13	39	0.10	9.29	0.02
Fluoranthene	18	1.71	0.423	2.23	43	8.07	4.05	0.77
Fluorene	1.9	0.30	0.0774	0.536	25	3.54	3.87	0.56
Indeno(1,2,3-cd)pyrene	4.5	1.03	0.2	32	23	0.14	5.14	0.03
Naphthalene	2.4	0.50	0.176	0.561	14	4.28	2.84	0.89
Phenanthrene	10	1.04	0.204	1.17	49	8.55	5.08	0.89
Pyrene	14	1.66	0.195	1.52	72	9.21	8.50	1.09
PAH (Total)	98.65	10.07	1.61	22.8	61	4.33	6.25	0.44
(1000)	33.33				Ţ.			J
voc								
Acetone	2.6	0.0105	0.087	NA	30	NA	0.12	NA
		0.0.00	0.00.			· · · · ·		

NA indicates benchmark not available; therefore, HQ could not be calculated.

TABLE 13
Bioaccumulation Factors - Grove Pond

Chemical	BSAF Aquatic Invertebrates ^{a,b}	Notes	PUF ^c	Notes
Inorganics	Data riquide invertearnes	11000	101	11000
Aluminum	Invert tissue data available		0.004	
Antimony	0.9		0.2	
Arsenic	Invert tissue data available		0.036	
Barium	Invert tissue data available		0.15	
Beryllium	0.9		0.01	
Cadmium	Invert tissue data available		0.364	
Chromium	Invert tissue data available		0.0075	
Cobalt	1	d	1	d
Copper	Invert tissue data available		0.4	
Lead	Invert tissue data available		0.045	
Manganese	Invert tissue data available		1	d
Mercury (inorganic)	Invert tissue data available		0.0375	
Methylmercury	Invert tissue data available		0.137	
Nickel	Invert tissue data available		0.032	
Selenium	Invert tissue data available		0.016	
Silver	0.9		1	d
strontium	Invert tissue data available		1	d
Thallium	0.9		0.004	
Vanadium	1	d	1	d
Zinc	Invert tissue data available		1.2E-12	
Pesticides/PCBs				
4,4'-DDD	0.95	е	0.00937	е
4,4'-DDE	0.95		0.00937	
4,4'-DDT	0.95	е	0.00937	е
Endrin	1	d	4.50E-03	f
Total PCB	0.53	g	0.01	g
SVOC				
Total PAH	1.24		0.02	
4-Chlorophenyl phenyl ether	1	d	1	d

na indicates that either a chemical was not analyzed or the BCF/BSAF was not available.

- a. BCFs are from USEPA. 1999b. Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities.
- b. BCFs are in (Mg COCP/Kg wet tissue)/(mg COPC/kg dry sediment).
- c. Plant Uptake Factor (PUF) in (Mg COPC/Kg dry plant tissue)/(mg COPC/Kg dry sediment)
- d. Conservative assumption in absence of literature value.
- e. Values for DDT and DDT based on value for DDE as surrogate.
- f. HAZWRAP (1994) assuming K_{ow} of 5.6 .
- g. Value for Total PCB based on value for Aroclor 1254 as surrogate.

Table 14
Bioaccumulation Factors - Plow Shop Pond

	BSAF Aquatic			
Chemical	Invertebrates ^{a,b}	Notes	PUF^{c}	Notes
Inorganics				
Aluminum	Invert tissue data available		0.004	
Antimony	0.9		0.2	
Arsenic	Invert tissue data available		0.036	
Barium	Invert tissue data available		0.15	
Beryllium	0.9		0.01	
Boron	Invert tissue data available		1	d
Cadmium	Invert tissue data available		0.364	
Chromium	Invert tissue data available		0.0075	
Cobalt	1	d	1	d
Copper	Invert tissue data available		0.4	
Lead	Invert tissue data available		0.045	
Manganese	Invert tissue data available		1	d
Mercury (inorganic)	Invert tissue data available		0.0375	
Methylmercury	Invert tissue data available		0.137	
Nickel	Invert tissue data available		0.032	
Selenium	Invert tissue data available		0.016	
Silver	0.9		1	d
strontium	Invert tissue data available		1	d
Thallium	0.9		0.004	
Vanadium	1	d	1	d
Zinc	Invert tissue data available		1.2E-12	
Pesticides/PCBs				
4,4'-DDD	0.95	е	0.00937	е
4,4'-DDE	0.95		0.00937	
4,4'-DDT	0.95	е	0.00937	е
Aroclor 1254	0.53		0.01	
Aroclor 1260	0.53	f	0.01	f
SVOC				
PAH (Total)	1.24		0.02	
VOC				
Acetone	0.05		52	

na indicates that either a chemical was not analyzed or the BCF/BSAF was not available.

- a. BCFs are from USEPA. 1999b. Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities.
- b. BCFs are in (Mg COCP/Kg wet tissue)/(mg COPC/kg dry sediment).
- c. Plant Uptake Factor (PUF) in (Mg COPC/Kg dry plant tissue)/(mg COPC/Kg dry sediment)
- d. Conservative assumption in absence of literature value.
- e. Values for DDT and DDT based on value for DDE as surrogate.
- f. Value for Aroclor 1260 based on value for Aroclor 1254 as surrogate.

TABLE 15
Maximum Exposure Point Concentrations - Grove Pond

				Aquatic Invertel	brates (mg/kg ww)	Frogs (mg	/kg ww)	Swallow Eggs (mg	/kg ww)	Swallow stomach		
Chemical	Surface Water (mg/L) ^a	Sediment (mg/kg)	Fish (mg/kg ww)	Measured	Modeled ^b	Measured	Modeled ^c	Measured	Modeled ^c	contents (mg/kg ww)	Plants (mg/kg dw)	Plants (mg/kg ww) ^d
Inorganics												
Aluminum	0.176	90000	21	30		108			30		360	43.2
Antimony	ND	12.1	ND	NA	10.89	NA	10.89		10.89		2.42	0.2904
Arsenic	0.128	910	0.133	1.72		0.478		0.95		6.81	32.76	3.9312
Barium	0.023	470	3.68	37.5		13.7			37.5		70.5	8.46
Beryllium	ND	14.1	0.988	NA	12.69	nd			12.69		0.141	0.01692
Cadmium	ND	730	1.023	1.07		0.269		0.53		1.39	265.72	31.8864
Chromium	0.175	52000	1.80	3.54		11.4		0.61		1113	390	46.8
Cobalt	0.004	70.0	ND	NA	70	NA	70		70		70	8.4
Copper	0.032	13000	1.35	25.4		59.2			25.4		5200	624
Lead	0.027	1760	5.024	0.89		2.69		0.47		5.38	79.2	9.504
Manganese	1.04	2500	54	785		70.3			785		2500	300
Mercury (inorganic)	0.0011	422	0.057e	0.051		0.239				0.095f	15.825	1.899
Methylmercury	0.000000251	0.07044	1.087e	0.046		0.243		1.075		0.177f	0.00965028	0.001158034
Nickel	0.032	86	4.847	2.14		21.9			2.14		2.752	0.33024
Selenium	ND	41.2	0.5538	nd		0.644			nd		0.6592	0.079104
Silver	ND	12.4	ND	NA	11.16	NA	11.16		11.16		12.4	1.488
Strontium	NA	NA	48.48	156		30.7			156		NA	NA
Thallium	ND	0.2	ND	NA	0.18	NA	0.18		0.18		0.0008	0.000096
Vanadium	ND	140	0.9226	NA	140	0.308			140		140	16.8
Zinc	9.11	820	42	34.7		73.4			34.7		9.84E-10	1.1808E-10
Pesticides/PCBs												
4,4'-DDD	ND	2.5	0.13	NA	2.375	NA	2.375	NA	2.375		0.023425	0.002811
4,4'-DDE	ND	0.98	0.27	NA	0.931	NA	0.931	NA	0.931		0.0091826	0.001101912
4,4'-DDT	ND	3.3	ND	NA	3.135	NA	3.135	NA	3.135		0.030921	0.00371052
Endrin	ND	0.028	ND	NA	0.028	NA	0.028	NA	0.028		0.000126	0.00001512
Total PCBs	ND	ND	0.47	NA	NA	NA	NA	NA	NA		NA	NA
SVOC												
Total PAH	ND	42.01	NA	NA	52.0924	NA	52.0924	NA	52.0924		0.8402	0.100824
4-Chlorophenyl phenyl ether	ND	0.84	NA	NA	0.84	NA	0.84	NA	0.84		0.84	0.1008

- b. Concentration estimated by multiplying maximum sediment concentration by BSAF in Table [13].
- c. Based on invertebrate EPCs in absence of BSAF for amphibians/bird eggs.
- d. The plant EPC been converted to wet weight from dry weight by multiplying by (1-%moisture), with % moisture assumed to equal 88%.
- e. Based on maximum total Hg concentration and assumption that 95% of total Hg is in MeHg form.
- f. Conservative assumption that 65% of total mercury in flying insects is in methyl form, based on average %MeHg of corduliidae samples.

a. Surface water EPC are the higher of dissolved or total concentrations - in contrast to COPC selection which focused mostly on dissolved concentrations.

TABLE 16 **Average Exposure Point Concentrations - Grove Pond**

						T		G 11 F (
	Surface Water			Aquatic Inverte	brates (mg/kg ww)	Frogs (mg	/kg ww)	Swallow Eggs (mg	g/kg ww)	-	DI	Plants (mg/kg
Chemical	(mg/L) a	Sediment (mg/kg)	Fish (mg/kg ww)	Measured	Modeled ^b	Measured	Modeled ^c	Measured	Modeled ^c	Swallow stomach contents (mg/kg ww)	dw)	ww) ^d
Inorganics	(mg/L)	Sediment (mg/kg)	risii (ilig/kg ww)	Measured	Modeled	Measureu	Modeled	Measureu	Wiodeled	(mg/kg ww)	uw)	***)
Aluminum	0.04	1.07E+04	6.05	26.7		22			26.7		4.3E+01	5.1E+00
Antimony	ND	1.10E+01	ND	NA NA	9.90	NA NA	9.90		9.9		2.2E+00	2.6E-01
Arsenic	0.01	7.89E+01	0.20	0.9	0.00	0.14	0.00	0.248	7.7	1.192	2.8E+00	3.4E-01
Barium	0.01	8.28E+01	1.27	30.5		4.78		0.240	30.5	1.102	1.2E+01	1.5E+00
Bervllium	ND	1.17E+00	0.07	NA	1.05	ND			1.05		1.2E-02	1.4E-03
Cadmium	ND	1.79E+01	0.12	0.2	1.00	0.07		0.079	1.03	0.78	6.5E+00	7.8E-01
Chromium	0.01	5.86E+03	0.67	1.2		1.18		0.215		197	4.4E+01	5.3E+00
Cobalt	0.003	1.41E+01	ND	NA	14.10	NA	14.10	0.213	14.1	197	1.4E+01	1.7E+00
Copper	0.003	1.46E+02	0.60	19.0	14.10	5.89	14.10		19.0		5.8E+01	7.0E+00
Lead	0.01	2.63E+02	0.72	0.4		0.51		0.216	17.0	2.46	1.2E+01	1.4E+00
Manganese	0.21	5.97E+02	17.50	719.3		23		0.210	719	2.40	6.0E+02	7.2E+01
Mercury (inorganic)	0.0004	2.19E+01	0.01d	0.0319		0.072			/1)	0.06937f	8.2E-01	9.8E-02
Methylmercury	NA	2.15E-02	0.196d	0.0256		0.080		0.5742		0.12883f	2.9E-03	3.5E-04
Nickel	0.005	2.93E+01	0.39	1.3		2.35		0.5742	1.26	0.120031	9.4E-01	1.1E-01
Selenium	ND	7.61E+00	0.34	ND		0.25			ND		1.2E-01	1.5E-02
Silver	ND	3.20E+00	ND	NA NA	2.88	NA	2.88		2.88		3.2E+00	3.8E-01
Strontium	NA	NA	19.46	140.3	2.00	14	2.00		140.3		NA	NA
Thallium	ND	1.60E-01	ND	NA	0.14	NA	0.14		0.1		6.4E-04	7.7E-05
Vanadium	ND	3.24E+01	0.12	NA NA	32.43	0.25	0.14		32.4		3.2E+01	3.9E+00
Zinc	0.93	2.68E+02	18.41	28.4	02.40	23			28.4		3.2E-10	3.9E-11
Zinc	0.75	2.00L102	10.41	20.4		23			26.4		3.2L-10	3.3L-11
Pesticides/PCBs											İ	
4,4'-DDD	ND	3.21E-01	0.040	NA	0.31	NA	0.31	NA	0.31		3.0E-03	3.6E-04
4,4'-DDE	ND	1.22E-01	0.089	NA	0.12	NA	0.12	NA	0.12		1.1E-03	1.4E-04
4,4'-DDT	ND	9.20E-02	ND	NA	0.09	NA	0.09	NA	0.09		8.6E-04	1.0E-04
Endrin	ND	1.14E-02	ND	NA	0.01	NA	0.01	NA	0.01		5.1E-05	6.1E-06
Total PCBs	ND	ND	0.129	NA	NA	NA	NA	NA	NA		NA	NA
SVOC												
Total PAH	ND	5.52E+00	NA	NA	6.85	NA	6.85	NA	6.85		1.1E-01	1.3E-02
4-Chlorophenyl phenyl ether	ND	1.36E-01	NA	NA	0.14	NA	0.14	NA	0.14		1.4E-01	1.6E-02

a. Surface water EPC are the higher of dissolved or total concentrations - in contrast to COPC selection which focused mostly on dissolved concentrations.

b. Concentration estimated by multiplying average sediment concentration by BSAF in Table [13].

c. Based on invertebrate EPCs in absence of BSAF for amphibians/bird eggs.
d. The plant EPC been converted to wet weight from dry weight by multiplying by (1-%moisture), with % moisture assumed to equal 88%.

e. Based on maximum total Hg concentration and assumption that 95% of total Hg is in MeHg form.

f. Conservative assumption that 65% of total mercury in flying insects is in methyl form, based on average %MeHg of corduliidae samples.

TABLE 17 Maximum Exposure Point Concentrations - Plow Shop Pond

				Aquatic Inverte		Fre	ogs (mg/kg ww)	Swallow Eggs (1	mg/kg ww)			
Chemical	Surface Water (mg/L) ^a	Sediment (mg/kg dw)	Fish (mg/kg ww)	Measured	Modeled ^b	Measured	Modeled ^c	Measured	Modeled ^c	Swallow stomach contents (mg/kg ww)	Plants (mg/kg dw)	Plants (mg/kg ww) ^d
Inorganics												
Aluminum	0.225	27000	4.5	2.94		330			2.94		108	12.96
Antimony	0.005	30.7	nd	NA	27.63	NA	27.63		27.63		6.14	0.7368
Arsenic	0.38	6800	1.3	2.45		0.705		0.58	2.45	ND	244.8	29.376
Barium	0.044	370	4.4	95.1		19.7			95.1		55.5	6.66
Beryllium	0.001	2.72	ND	NA	2.448	nd			2.448		0.0272	0.003264
Boron	NA	NA	NA	0.47		NA	0.47		0.47		NA	NA
Cadmium	0.0015	66	0.09	0.62		0.29		ND	0.62	2.99	24.024	2.88288
Chromium	0.003	37800	0.99	3.19		10.8		0.47	3.19	189	283.5	34.02
Cobalt	0.013	59	0.17	NA	59	NA	59		59		59	7.08
Copper	0.0487	3450	1.3	24.4		5.29			24.4		1380	165.6
Lead	0.005	1214.31	0.18	0.47		1.09		0.47	0.47	1.57	54.64395	6.557274
Manganese	0.59	54800	94.7	1042		47.5			1042		54800	6576
Mercury (inorganic)	ND	250	0.135e	0.069		0.201				0.07385f	9.375	1.125
Methylmercury	ND	0.08189	2.565e	0.056		0.224		1.059		0.13715f	0.011219	0.001346
Nickel	0.0442	87.8	0.8	0.27		5.02			0.27		2.8096	0.337152
Selenium	0.02	14.7	0.67	0.18		0.797			0.18		0.2352	0.028224
Silver	0.0036	2	ND	NA	1.8	NA	1.8		1.8		2	0.24
strontium	NA	NA	NA	157		13			157		NA	NA
Thallium	0.02	29.4	nd	NA	26.46	NA	26.46		26.46		0.1176	0.014112
Vanadium	0.0015	166	0.8	NA	166	0.693			166		166	19.92
Zinc	0.0581	1100	29.6	23.3		97.2			23.3		1.32E-09	1.58E-10
Pesticides/PCBs												1
4,4'-DDD	ND	1.8	0.11	NA	1.71	NA	1.71		1.71		0.016866	0.002024
4,4'-DDE	ND	1.3	0.38	NA	1.235	NA	1.235		1.235		0.012181	0.001462
4,4'-DDT	ND	0.13	0.014	NA	0.1235	NA	0.1235		0.1235		0.001218	0.000146
Aroclor 1254	ND	0.13	ND	NA	0.0689	NA	0.0689		0.0689		0.0013	0.000156
Aroclor 1260	ND	0.05	0.33	NA	0.0265	NA	0.0265		0.0265		0.0005	0.00006
svoc												
PAH (Total)	ND	98.65	NA	NA	122.326	NA	122.326		122.326		1.973	0.23676
voc												
Acetone	ND	2.6	NA	NA	0.13	NA	0.13		0.13	1	135.2	16.224

- a. Surface water EPC are the higher of dissolved or total concentrations in contrast to COPC selection which focused mostly on dissolved concentrations. b. Concentration estimated by multiplying maximum sediment concentration by BSAF in Table [14].
- c. Based on invertebrate EPCs in absence of BSAF for amphibians/bird eggs.
- d. The plant EPC been converted to wet weight from dry weight by multiplying by (1-%moisture), with % moisture assumed to equal 88%.

 e. Based on maximum total Hg concentration and assumption that 95% of total Hg is in MeHg form.
- f. Conservative assumption that 65% of total mercury in flying insects is in methyl form, based on average %MeHg of corduliidae samples.

TABLE 18 Average Exposure Point Concentrations - Plow Shop Pond

				Aquatic Inverte		Fr	ogs (mg/kg ww)	Swallow Eggs (r	ng/kg ww)			
Chemical	Surface Water (mg/L) a	Sediment (mg/kg)	Fish (mg/kg ww)	Measured	Modeled ^b	Measured	Modeled ^c	Measured	Modeled ^c	Swallow stomach contents (mg/kg ww)	Plants (mg/kg dw)	Plants (mg/kg ww) ^d
Inorganics	, ,		,							(,	,
Aluminum	1.82E-02	8228	2.06	2.03		74.9			2.03		3.29E+01	3.9E+00
Antimony	1.45E-03	16	ND	NA	14.0	NA	14.0		14.0	1	3.11E+00	3.7E-01
Arsenic	1.37E-02	542	0.32	1.03		0.3		0.191	-	ND	1.95E+01	2.3E+00
Barium	1.13E-02	101	1.55	62		7.2			62		1.51E+01	1.8E+00
Beryllium	3.56E-04	1.42	ND	NA	1.27	ND			1.27		1.42E-02	1.7E-03
Boron	NA	NA	NA	0.41		ND			0.41	1	NA	NA
Cadmium	4.67E-04	10	0.05	0.23		0.1		ND		1.43	3.72E+00	4.5E-01
Chromium	1.52E-03	2275	0.54	1.24		1.6		0.217		117	1.71E+01	2.0E+00
Cobalt	1.94E-03	12	0.09	NA	12.3	NA	12.3		12.3		1.23E+01	1.5E+00
Copper	6.04E-03	123	0.58	4.08		2.6			4.08		4.90E+01	5.9E+00
Lead	1.30E-03	169	0.23	0.17		0.4		0.204		1.25	7.59E+00	9.1E-01
Manganese	1.20E-01	2348	30.16	672		16.8			672		2.35E+03	2.8E+02
Mercury (inorganic)	ND	27	0.031e	0.04		0.1				0.06825f	1.01E+00	1.2E-01
Methylmercury	NA	0.04	0.586e	0.02		0.1		0.615		0.12675f	5.02E-03	6.0E-04
Nickel	6.49E-03	30	0.38	0.15		0.9			0.15		9.49E-01	1.1E-01
Selenium	5.13E-03	14	0.39	0.17		0.4			0.17		2.29E-01	2.8E-02
Silver	6.88E-04	4.87	ND	NA	4.39	NA	4.39		4.39		4.87E+00	5.8E-01
strontium	NA	NA	NA	39		9.6			39		NA	NA
Thallium	4.78E-03	23	ND	NA	21.0	NA	21.0		21.0		9.33E-02	1.1E-02
Vanadium	5.26E-04	27	0.36	NA	26.6	0.3			26.6		2.66E+01	3.2E+00
Zinc	1.12E-02	199	20.02	19.30		31.8			19.3		2.38E-10	2.9E-11
Pesticides/PCBs											1	
4,4'-DDD	ND	0.083	0.020	NA	0.079	NA	0.079		0.079		7.80E-04	9.4E-05
4,4'-DDE	ND	0.061	0.082	NA	0.058	NA	0.058		0.058	1	5.71E-04	6.9E-05
4,4'-DDT	ND	0.012	0.006	NA	0.011	NA	0.011		0.011	1	1.08E-04	1.3E-05
Aroclor 1254	ND	0.050	ND	NA	0.027	NA	0.027		0.027		5.00E-04	6.0E-05
Aroclor 1260	ND	0.043	0.072	NA	0.023	NA	0.023		0.023		4.27E-04	5.1E-05
svoc												
PAH (Total)	ND	10.07	NA	NA	12.4868	NA	12.4868		12.4868		2.01E-01	2.4E-02
voc								-				
Acetone	ND	0.0105	NA	NA	0.0005	NA	0.0005		0.0005	+	5.46E-01	6.6E-02

- a. Surface water EPC are the higher of dissolved or total concentrations in contrast to COPC selection which focused mostly on dissolved concentrations.

 b. Concentration estimated by multiplying average sediment concentration by BSAF in Table [14].

 c. Based on invertebrate EPCs in absence of BSAF for amphibians/bird eggs.

- d. The plant EPC been converted to wet weight from dry weight by multiplying by (1-%moisture), with % moisture assumed to equal 88%.

 e. Based on maximum total Hg concentration and assumption that 95% of total Hg is in MeHg form.

 f. Conservative assumption that 65% of total mercury in flying insects is in methyl form, based on average %MeHg of corduliidae samples.

TABLE 19 Exposure Parameters for Selected Receptors

Raccoon		1				1	
Nuovoon	Parameter		Symbol	Value	Notes	Units	Reference
	Body Weight		BW	5.67	a	Kq	USEPA, 1993
	Food Ingestion Rate		FIR	1.43E+00	b	Kg/day	USEPA, 1993
	Percentage of Diet		1 \	1.102.00		rigiday	GOL171, 1000
	r orountage or Brot	Fish	FI	0.2	С	unitless	
		Invertebrates	IN	0.2	c	unitless	
		Frogs	FR	0.2	C	unitless	
		Eggs	EG	0.2	C	unitless	
		Plants	PL	0.11	C	unitless	USEPA, 1993
		Sediment	SD	0.09		unitless	USEPA, 1993
	Water Ingestion Rate	Countries	WIR	0.468		L/d	USEPA, 1993
	Area Use Factor		AUF	1.00	d	unitless	
	7.1.04.000.1.40101		7.0.	1.00		u	
Mink							
	Parameter		Symbol	Value	Notes	Units	Reference
	Body Weight		BW	1.40	e	Kg	USEPA, 1993
	Food Ingestion Rate		FIR	1.96E-01	f	Kg/day	USEPA, 1993
	Percentage of Diet					. tg/ day	002.71, 1000
	r creamings or and	Fish	FI	0.99	g	unitless	
		Sediment	SD	0.01	9	unitless	EPA (1999c)
	Water Ingestion Rate	Countries	WIR	0.111	h	L/d	USEPA. 1993
	Area Use Factor		AUF	1.00	d	unitless	002.74, 1000
	7.1.04.000.1.40101		7.0.	1.00		4	
Belted Kir	nafisher						
	Parameter		Symbol	Value	Notes	Units	Reference
	Body Weight		BW	0.15	ii	Kg	USEPA, 1993
	Food Ingestion Rate		FIR	7.40E-02	i	Kg/day	USEPA, 1993
	Percentage of Diet					1.5.22	, , , , , , , , , , , , , , , , , , , ,
	r creamings or and	Fish	FI	1	k	unitless	USEPA, 1993
	Water Ingestion Rate		WIR	0.0165		L/d	USEPA, 1993
	Area Use Factor		AUF	1.00	d	unitless	, , , , , , , , , , , , , , , , , , , ,
			1				
Black-Cro	wned Night Heron						
	Parameter		Symbol	Value	Notes	Units	Reference
	Body Weight		BW	0.88		Kq	Dunning (1993)
	Food Ingestion Rate		FIR	2.34E-01		Kg/day	USEPA, 1993
	Percentage of Diet					5 ,	,
	r creamings or a rec	Fish	FI	0.33	С	unitless	
		Invertebrates	IN	0.33	С	unitless	
		Frogs	FR	0.33	C	unitless	
		Sediment	SD	0.02		unitless	professional judgement
	Water Ingestion Rate		WIR	0.0396	m	L/d	USEPA, 1993
	Area Use Factor		AUF	1.00	d	unitless	
			1				
Tree Swal	llow						
	Parameter		Symbol	Value	Notes	Units	Reference
			- J				Dunning (1984) as cited
					1		in USACOE/USEPA
	Body Weight		BW	0.02	1	Kg	(2003)
	Food Ingestion Rate		FIR	0.0212	N	kg/d	USEPA, 1993
	Percentage of Diet		l		- ''		
	. 1.00ago of Diot	Stomach Contents	ST	1.0	0	1	
			· · · ·		. ~		

Notes

- a. The raccoon body weight is based on the average for adults.
- b. The FIR for the raccoon is based on the allometric equation FI (kg/day) = $0.0687 \text{ W}^{0.822}$ (kg) in EPA (1993) and converted to wet weight
- c. Literature values for ecological receptor dietary proportions vary greatly, depending on available food sources. Therefore, to reflect the available food sources in the ponds, the assumed proportions were selected. While herons and raccoons may eat a greater proportion of some items in certain cases, the assumptions were made to represent omnivorous/carnivorous dietary habits.
- d. The Area Use Actor (AUF) is assumed equal to one because of the uncertainties associated with regional contaminant concentrations.
- e. Value for eastern races.
- f. Average for male and female farm raised animals in Michigan study.
- g. As the selected representive mammalian piscivore, the diet of the mink is assumed to be 100% fish (minus sediment as 1% of diet).
- h. average of values in EPA 1993
- ii. Average of adult body weights from three studies presented in (USEPA 1993).
- j. Adults, both sexes
- k. As the selected representive avian piscivore, the diet of the kingfisher is assumed to be 100% fish.
- I. Converted to Kg/d from the Nagy allometric equation for seabirds: FIR (g/day dry weight) = $0.495*BW^{9.704}$. Converted to wet weight by assuming 75% moisture in dietary items.
- m. Determined using 0.045 g/g-d for great blue heron and black-crowned night heron body weight.
- n. Tree swallow ingestion rate derived from the following Nagy allometric equation in EPA (1993) FI (g/day) = 0.398 Wt0.850 (g). Converted to wet weight by assuming 75% mosture in dietary items.
- o. It was assumed that stomach contents reflected 100% of dietary intake, including biotic and abiotic food items.

TABLE 20 Critical Body Residues for Invertebrates

CBRs for Crayfish

				ource	
Chemical	Invert NOAEL (mg/kg ww)	Invert LOAEL (mg/kg ww)	NOAEL	LOAEL	Level of Confidence
Inorganics					
Aluminum	NA	NA			
			Jarvinen and Ankley (1999)		
Arsenic	1.28	3.84	as cited in Hathaway ERA	Jarvinen and Ankley (1999)	2
Barium	NA	NA			
Boron	NA	NA			
Cadmium	0.9	5.7	Jarvinen and Ankley (1999)	Jarvinen and Ankley (1999)	1
Chromium	1	3.2	Jarvinen and Ankley (1999)	Jarvinen and Ankley (1999)	3
Copper	50	150	Jarvinen and Ankley (1999)	NOAEL*3	1
Lead	6	18	Dillon (1984)	NOAEL*3	1
Manganese	15.5	46.5	Jarvinen and Ankley (1999)	NOAEL*3	4
Mercury	0.328	3.28	LOAEL/10	Jarvinen and Ankley (1999)	4
Nickel	218.6	328.4	Jarvinen and Ankley (1999)	Jarvinen and Ankley (1999)	4
Selenium	NA	NA			
Strontium	NA	NA			
Zinc	12.7	35.2	Jarvinen and Ankley (1999)	Jarvinen and Ankley (1999)	1

CBRs for Mussels

Chemical	Invert NOAEL (mg/kg ww)	Invert LOAEL (mg/kg ww)	NOAEL	LOAEL	Level of Confidence
Inorganics					
Aluminum	NA	NA			
Arsenic	1.28	3.84	Hathaway ERA	NOAEL*3	4
Barium	NA	NA			
Boron	NA	NA			
Cadmium	8	16	Kraak et al. (1992)	Kraak et al. (1992)	1
Chromium	1	3.2	Hathaway ERA	Hathaway ERA	4
Copper	15	15	Mersch et al. (1996)	Mersch et al. (1996)	1
Lead	7	35	Kraak et al. (19942)	Kraak et al. (1994)	1
Manganese	15.5	46.5	Hathaway ERA	NOAEL*3	3
Mercury	3.4	10.2	Tessier et al. (1996)	NOAEL*3	1
Nickel	218.6	328.4	Hathaway ERA	Hathaway ERA	1
Selenium	0.294	2.94	LOAEL/10	Ingersoll et al. (1990)	4
Strontium	NA	NA			
Zinc	46	80	Kraak at al. (1994)	King et al. (2004)	1

Criteria for selecting the Level of Confidence (LOC)

crayfish:

LOC = 1 if the CBR represented tissue residue data for crayfish (whole body, muscle, other parts).

LOC = 2 if the CBR represented tissue residue data from freshwater crustaceans.

LOC = 3 if the CBR represented residue data from marine crustaceans.

LOC = 4 if the CBR represented tissue residue data from non-crustacean species.

mussels:

LOC = 1 if the CBR represented tissue residue data for mussels.

LOC = 2 if the CBR represented tissue residue data from freshwater mollusks.

LOC = 3 if the CBR represented residue data from marine mollusks.

LOC = 4 if the CBR represented tissue residue data from non-mollusk species.

TABLE 21 Critical Body Residues for Fish

			\$	Source	
Chemical Inorganics	Fish NOAEL (mg/kg ww)	Fish LOAEL (mg/kg ww)	NOAEL	LOAEL	Level of Confidence
Thoi games			Jarvinen and Ankley (1999) as		
Aluminum	8.53	25.59	cited in Hathaway ERA	NOAEL*3	1
Arsenic	1.8	2.24	Jarvinen and Ankley (1999)	Jarvinen and Ankley (1999)	1
Barium	NA	NA			
Beryllium	NA	NA			
Boron	NA	NA			
Cadmium	0.036	0.35	Jarvinen and Ankley (1999)	Jarvinen and Ankley (1999)	1
Chromium	0.58	1.74	Jarvinen and Ankley (1999)	NOAEL*3	2
Cobalt	NA	NA			
Copper	0.28	0.3	Jarvinen and Ankley (1999)	Jarvinen and Ankley (1999)	2
Lead	0.34	0.4	Jarvinen and Ankley (1999)	Jarvinen and Ankley (1999)	1
Manganese	NA	NA			
Mercury	1.07	10.7	LOAEL/10	Jarvinen and Ankley (1999)	3
Molybdenum	NA	NA			
Nickel	0.82	2.46	Jarvinen and Ankley (1999)	NOAEL*3	2
Selenium	0.8	1.08	Jarvinen and Ankley (1999)	Jarvinen and Ankley (1999)	1
Strontium	NA	NA			
Vanadium	0.7	2.7	Holdway, et al. (1983)	Holdway, et al. (1983)	2
Zinc	34	40	Jarvinen and Ankley (1999)	Jarvinen and Ankley (1999)	1
Pesticides/PCBs					
4,4'-DDD	0.06	0.6	LOAEL/10	Jarvinen, et al. (1977)	3
4,4'-DDE	0.029	0.29	LOAEL/10	Berlin, et al. (1981)	3
4,4'-DDT	0.42	4.3	LOAEL/10	Gakstatter and Weiss (1967)	3
Aroclor 1260 ^a	8.2	24.6	Lieb, et al. (1974)	NOAEL*3	3
Total PCBs	10.9	32.7	Hansen, et al. (1976)	NOAEL*3	3

a. CBR is for Aroclor 1254 as a surrogate.

Criteria for selecting the Level of Confidence (LOC)

LOC = 1 if the CBR represented whole body residue data based on chronic (>30 days) exposures, irrespective of fish species.

LOC = 2 if the CBR represented muscle/fillet or carcass residue data based on chronic (>30 days) exposures, irrespective of fish species.

LOC = 3 if the CBR represented whole body, muscle/fillet or carcass residue data based on acute or subchronic (<30 days) exposures, irrespective of fish species.

LOC = 4 if the CBR represented a different analyte, endpoint, or receptor group.

Table 22 **Toxicity Reference Values for Mammals**

	Test		NOAEL Derived TRV	LOAEL Derived TRV	NOAEL Source of	
Chemical	Species	Endpoint/Effect	(mg/kg/day)	(mg/kg/day)	TRV	LOAEL Source of TRV
Inorganics			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· • • • • • • • • • • • • • • • • • • •		
Aluminum	mouse	LOAEL, reproduction	1.93	19.3	Sample, 1996	Sample, 1996
Antimony	mouse	•	0.125	1.25	Sample, 1996	Sample, 1996
Arsenic	mouse	LOAEL, reproduction	0.126	1.26	Sample, 1996	Sample, 1996
Barium	rat	NOAEL, growth & hypertension	5.1	15.3	Sample, 1996	NOAEL*3
Beryllium	rat	NOAEL, weight and longevity	0.66	1.98	Sample, 1996	NOAEL*3
Boron	rat		28	93.6	Sample, 1996	Sample, 1996
Cadmium	rat	NOAEL, reproduction	1	3	Sample, 1996	NOAEL*3
Chromium ^a	rat	NOAEL, physiological	2737	27370	Sample, 1996	Sample, 1996
Cobalt	Several	Growth and reproduction	7.33	18.9	EPA (2005) ^d	EPA (2005) ^e
Copper	mink	NOAEL, reproduction	11.7	15.4	Sample, 1996	Sample, 1996
Lead	rat	NOAEL, reproduction	8	80	Sample, 1996	Sample, 1996
Manganese	rat		88	284	Sample, 1996	Sample, 1996
Mercury (inorganic)	rat	NOAEL, reproduction	13.2	39.6	Sample, 1996	NOAEL*3
Methylmercury	rat	NOAEL, reproduction	0.032	0.16	Sample, 1996	Sample, 1996
Nickel	rat		40	80	Sample, 1996	Sample, 1996
Selenium	rat		0.2	0.33	Sample, 1996	Sample, 1996
Silver			NA	NA		
strontium	rat		263	789	Sample, 1996	NOAEL*3
Thallium	rat		0.0074	0.074	Sample, 1996	Sample, 1996
Vanadium	rat	LOAEL, reproduction	0.21	2.1	Sample, 1996	Sample, 1996
Zinc	rat	NOAEL, reproduction	160	320	Sample, 1996	Sample, 1996
Pesticides/PCBs						
4,4'-DDD	rat		0.8	4	Sample, 1996	Sample, 1996
4,4'-DDE	rat		0.8	4	Sample, 1996	Sample, 1996
4,4'-DDT	rat		0.8	4	Sample, 1996	Sample, 1996
Endrin	mouse		0.092	0.92	Sample, 1996	Sample, 1996
Aroclor 1254	mink		0.137	0.411	Sample, 1996	NOAEL*3
Aroclor 1260c	mink		0.137	0.411	Sample, 1996	NOAEL*3
Total PCB	mink		0.137	0.411	Sample, 1996	NOAEL*3
SVOC		_				
Total PAH ^b	mauas	LOAD reproduction	1	3	Comple 1000	NOAEL*2
1 otal PAH	mouse	LOAEL, reproduction	1	3	Sample, 1996	NOAEL*3
4-Chlorophenyl phenyl ether	NA					
voc						
Acetone	rat		10	50	Sample, 1996	Sample, 1996

NA indicates no toxicity data available.
a. TRV is for chromium III, not chromium VI, because chromium Vi is not stable in anoxic sediments and is converted to chromium III.

b. TRV is for benzo(a)pyrene.

c. TRV is for Aroclor 1254.

d. Geometric mean of 10 growth and reproduction studies.

f. Geometric mean of 14 growth and reproduction studies.

TABLE 23 **Toxicity Reference Values for Birds**

			NOAEL Derived TRV	LOAEL Derived TRV	NOAEL Source of	LOAEL Source of
Chemical	Test Species	Endpoint/Effect	(mg/kg/day)	(mg/kg/day)	TRV	TRV
Inorganics						
Aluminum	ringed dove	NOAEL, reproduction	109.7	329.1	Sample, 1996	NOAEL*3
Antimony	mouse ^d		0.125	1.25	Sample, 1996	Sample, 1996
Arsenic	mallard duck	NOAEL, mortality	5.14	12.48	Sample, 1996	Sample, 1996
Barium	chicken	NOAEL, mortality	20.8	41.7	Sample, 1996	Sample, 1996
Beryllium	rat ^d	NOAEL, weight and longevity	0.66	1.98	Sample, 1996	NOAEL*3
Boron	mallard duck	, , ,	28.8	100	Sample, 1996	Sample, 1996
Cadmium	mallard duck	NOAEL, reproduction	1.45	20	Sample, 1996	Sample, 1996
Chromium ^a	black duck	NOAEL, reproduction	1	5	Sample, 1996	Sample, 1996
Cobalt	Several	NOAEL growth	7.61	18.34	EPA (2005) ^e	EPA (2005) ^f
Copper	chicken	NOAEL, growth and mortality	47	61.7	Sample, 1996	Sample, 1996
Lead	Japanese quail	NOAEL, reproduction	1.13	11.3	Sample, 1996	Sample, 1996
Manganese	Japanese quail		997	2991	Sample, 1996	NOAEL*3
Mercury (inorganic)	Japanese quail	NOAEL, reproduction	0.45	0.9	Sample, 1996	Sample, 1996
Methylmercury	mallard duck	LOAEL, reproduction	0.0064	0.064	Sample, 1996	Sample, 1996
Nickel	mallard duckling	, . ор. одине	77.4	107	Sample, 1996	Sample, 1996
Selenium	black-crowned night heron		1.8	5.4	Sample, 1996	NOAEL*3
Silver			NA	NA	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
strontium	rat ^d		263	789	Sample, 1996	NOAEL*3
Thallium	rat ^d		0.0074	0.074	Sample, 1996	Sample, 1996
1 namum	Tat	NOAEL, mortality, body weight and	0.0074	0.074	Sample, 1990	Gample, 1990
Vanadium	mallard duck	blood chemistry	11.4	34.2	Sample, 1996	NOAEL*3
Zinc	chicken	NOAEL, reproduction	29.5	131	Sample, 1996	Sample, 1996
Zinc	CHICKETT	TTO TEE, TO DIO GUOLOTI	20.0	101	Campio, 1000	Gampio, 1000
Pesticides/PCBs						
4,4'-DDD	black duck		0.014	0.14	Sample, 1996	Sample, 1996
4,4'-DDE	black duck		0.014	0.14	Sample, 1996	Sample, 1996
4,4'-DDT	black duck		0.014	0.14	Sample, 1996	Sample, 1996
Endrin	screech owl		0.01	0.1	Sample, 1996	Sample, 1996
Aroclor 1254	ring-necked pheasant		0.18	1.8	Sample, 1996	Sample, 1996
Aroclor 1260c	ring-necked pheasant		0.18	1.8	Sample, 1996	Sample, 1996
Total PCB	ring-necked pheasant		0.18	1.8	Sample, 1996	Sample, 1996
SVOC						
		Subchronic NOAEL, fertility and			Rigdon and Neal,	
Total PAH ^b	chicken	malformations	40	120	1963	NOAEL*3
4-Chlorophenyl phenyl ether	NA		NA	NA		
V00						
VOC					I III and	
Acetone	Japanese quail	NOAEL, survival	622	1866	Hill and Camardese, 1986	NOAEL*3

NA indicates no toxicity data available. a. TRV is for Cr III, not Cr VI.

- b. TRV is for benzo(a)pyrene.
- c. TRV is for Aroclor 1254.
 d. In the absence of an avian TRV, the mammalian TRV was used as a surrogate.
- e. Geometric mean of 5 growth studies.
- f. Geometric mean of 9 growth studies.

TABLE 24 Surface Water Toxicity Test Results Relative to Surface Water Chemistry Data - Grove Pond Invertebrates

				C. dubi	a			
%Survival Reproduction Avg # neonates per surviving brood	Control 100	Flan-Sed-1 (reference) 100	Grove-SW-1 100	Grove-SW-2 70 45	Grove-SW-3 100 49	Grove-SW-4 80	Grove-SW-5 100	Grove-SW-6 90 46
% brooders with 3+broods Avg # neonates for		100	90	70	100	80	100	90
brooders with 3+ broods Bold indicates a statistica	37	44	50	45	49	49	41	46

Analytical Results										
Grove Pond COPC	Benchmark	(/ug/l)								
Total Recoverable		,				Grove-SW-2				
Metals (ug/l)	(chronic)	(acute)	Flan-SW-1	Grove-SW-1	Grove-SW-2	(DUP)	Grove-SW-3	Grove-SW-4	Grove-SW-5	Grove-SW-6
Aluminum	87	750	720 J	19 J	8 J	10 J	48 J	13 J	27 J	18 J
Antimony	30	180	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Arsenic	150	340	5	2.3	4.6	4.6	1.1	1.3	1.4	1.9
Barium	4	110	17	23	13	13	18	15	14	15
Beryllium	0.66	35	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Cadmium	0.14	0.87	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Calcium	116000	NA	7.100	27.000	21.000	21.000	17.000	12.000	11.000	12.000
Chromium	11	16	2 J	20	5 J	5 J	1 J	0.8 J	0.8 J	0.8 J
Cobalt	23	1500	0.72	0.2 ND	0.2 ND	0.2 ND	0.28	0.2 ND	0.3	0.43
Copper	4.3	6	3 J	3 J	2 J	32	3 J	1 J	3 J	2 J
Iron	1000	NA	1800	390	460 J	500	130	620	650	940
Lead	1	25	3.5	2 J	0.5 J	3.4	0.4 J	0.3 J	0.6 J	0.5 J
Magnesium	82000	NA	1,300	3,100	2.500	2,500	2,300	2,200	2,300	2,300
Manganese	120	2300	310	200	600	610	57	210	180	350
Total Mercury	0.77	1.4	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Molybdenum	NA	NA	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Nickel	25	227	1.8	1.4	1	1.2	2.5	1.1	1.6	1.3
Selenium	5	NA	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND
Silver	0.74	NA	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Thallium	12	110	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Vanadium	20	280	1.3	0.2 ND						
Zinc	57	57	13 J	6 J	5 J	8 J	8 J	8 J	8 J	7 J
Dissolved Metals (ug/l)										
Aluminum	87	750	5 ND	5 ND	5 ND	5 ND	15	5 ND	6.2	6.4
Antimony	30	180	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Arsenic	150	340	0.58	1.7	4	3.9	1.3	0.88	1	1.4
Barium	4	110	7.6	21	13	13	18	13	12	14
Beryllium	0.66	35	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Cadmium	0.14	0.87	0.2 ND	0.2 ND	0.2 ND	ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Calcium	116000	NA	6,500	27,000	21,000	21,000	16,000	11,000	12,000	12,000
Chromium	11	16	0.5 ND	3.9	2.1	2.1	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Cobalt	23	1500	0.55	0.2 ND	1.1	0.3	0.44	1.7	3.7	4
Copper	4.3	6	1	1.7	0.91	1.4	0.52	0.95	0.66	0.73
Iron	1000	NA	50 ND	160	240	260	58	180	240	350
Lead	1	25	0.2 ND	0.39	0.22	0.24	0.2 ND	0.24	0.2 ND	0.2 ND
Magnesium	82000	NA	1,100	3,100	2,500	2,600	2,200	2,200	2,400	2,400
Manganese	120	2300	6.9	130	540	520	46	50	120	310
Total Mercury	0.77	1.4	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Molybdenum	NA	NA	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Nickel	25	227	0.51	1.2	0.98	0.91	1.4	1.1	1.3	1.3
Selenium	5	NA	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND
Silver	0.74	NA	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Thallium	12	110	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Vanadium	20	280	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Zinc	57	57	5 ND	5 ND	5 ND	5 ND	5 ND	6.3	5 ND	5 ND

ND = non detected
ND values represent reporting limits

Table 25
Surface Water Toxicity Test Results Relative to Surface Water Chemistry Data - Plow Shop Pond Invertebrates

				C. dub	ia			
	Laboratory Control	Flan-Sed-1	Plow-SW-1	Plow-SW-2	Plow-SW-3	Plow-SW-4	Plow-SW-5	Plow-SW-6
%Survival	60	100	90	90	100	80	90	100
Reproduction								
Avg # neonates per								
surviving brood	36	42	53	45	50	38	40	47
% brooders with								
3+broods	60	90	90	90	100	70	80	100
Avg # neonates for								
brooders with 3+								
broods	36	46	53	45	50	42	44	47

Analytical Results

Plow Shop Pond COPC	Benchma	rk (ug/L)							
Total Recoverable Metals	(chronic)	(acute)	ou	D. 0	B. 0		B. 0		
(ug/l) Aluminum	87	750	Flan-SW-1 720 J	Plow-SW-1 12 J	Plow-SW-2 10 J	Plow-SW-3 8 J	Plow-SW-4	Plow-SW-5	Plow-SW-6
	30	180	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 N
Antimony	150							0.5 ND 1 ND	
Arsenic		340	5	2	1.4	1 ND	1 ND		1 N
Barium	4	110	17	11	9.2	9.7	9.4	11	11
Beryllium	0.66	35	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 N
Cadmium	0.14	0.87	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 N
Calcium	116000	NA	7,100	12,000	11,000	10,000	10,000	10,000	10,000
Chromium	11	16	2 J	0.9 J	0.8 J	0.9 J	1	1 J	1 J
Cobalt	23	1500	0.72	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 N
Copper	4.3	6	3 J	2 J	2 J	1 J	3 J	6 J	2 J
Iron	1000	NA	1800	420	280	220	220	260	280
Lead	1	25	3.5	0.3 J	0.2 J	0.2 ND	0.4 J	0.3 J	0.4 J
Magnesium	82000	NA	1,300	2,300	2,100	2,000	1,900	2,000	2,000
Manganese	120	2300	310	34	16	27	29	91	87
Total Mercury	0.77	1.4	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 N
Molybdenum	NA	NA	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 N
Nickel	25	227	1.8	1	0.91	0.8	1.4	0.85	0.94
Selenium	5	NA	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 N
Silver	0.74	NA	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 NI
Thallium	12	110	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 NI
Vanadium	20	280	1.3	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 NI
Zinc	57	57	13 J	3 J	9 J	4 J	6 J	8 J	7 J
Dissolved Metals (ug/l)									
Aluminum	87	750	5 ND	5 ND	5 ND	5 ND	5 ND	5 ND	5 N
Antimony	30	180	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 N
Arsenic	150	340	0.58	1.2	1	0.76	0.82	0.76	0.77
Barium	4	110	7.6	10	9.2	9.5	9.3	11	11
Beryllium	0.66	35	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 NI
Cadmium	0.14	0.87	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 NI
Calcium	116000	NA	6,500	11,000	11,000	10,000	10,000	10,000	10,000
Chromium	11	16	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 NI
Cobalt	23	1500	0.55	0.32	3.3	0.86	0.33	0.29	0.3
Copper	4.3	6	1	1.1	1.1	0.86	0.82	1.1	1.1
Iron	1000	NA	50 ND	110	97	87	89	120	120
Lead	1	25	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.23	0.2 N
Magnesium	82000	NA	1.100	2,200	2.200	2.000	2,100	2.100	2.100
Manganese	120	2300	6.9	28	16	15	20	78	74
Total Mercury	0.77	1.4	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 N
Molybdenum	NA	NA	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 N
Nickel	25	227	0.51	0.98	0.94	0.84	0.71	0.76	0.76
Selenium	5	NA	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	0.70 1 N
Selenium Silver	0.74	NA NA	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 N
Thallium	12	110	0.2 ND 0.5 ND	0.2 ND 0.5 ND	0.2 ND 0.5 ND	0.2 ND 0.5 ND	0.2 ND 0.5 ND	0.2 ND 0.5 ND	0.2 N 0.5 N
Vanadium	20	280					0.5 ND 0.2 ND		0.5 N 0.2 N
			0.2 ND	0.2 ND	0.2 ND	0.2 ND		0.2 ND	
Zinc	57	57	5 ND	5 ND	5 ND	5.3	5 ND	5 ND	5 N

ND = non detected

ND values represent reporting limits

TABLE 26 Sediment Toxicity Test Results Relative to Sediment Chemistry Data - Grove Pond

			H. azteca		
		Flan-Sed-1			
	Laboratory Control	(reference)	Grove-Sed-1	Grove-Sed-2	Grove-Sed-3
%Survival	98.75	95	92.5	96.25	87.14
Growth - (mg dry biomass)	0.079	0.111	0.09	0.102	0.07
			C. tentans		
		Flan-Sed-1			
	Laboratory Control	(reference)	Grove-Sed-1	Grove-Sed-2	Grove-Sed-3
%Survival	85	100	92.5	98.75	96.25
Growth - (mg dry biomass)	0.93	0.95	0.928	0.81	0.888

Anai	ytıcaı	Results	

	Chronic (low effect) Screening Value (mg/kg)	Acute (severe effect) Screening Value (mg/kg)	Flan-Sed-1	Grove-Sed-1	Grove-Sed-2	Grove-Sed-3
Metals (mg/kg dw)						
Aluminum	25500	NA	7800	13000	3100	5800
Antimony	2	25	<28	<8.3	<7.5	<14
Arsenic	9.79	33	110J	110J	25J	56J
Barium	0.7	NA	73J	89J	120J	260J
Beryllium	NA	NA	<2.8	1.2	<0.75	<1.4
Cadmium	0.99	4.98	11	8.3	<2.2	4.4
Calcium	NA	NA	5700	12000	340000	150000
Chromium	43.4	111	21	4600	11000	38000
Cobalt	10	NA	12	20	<2.2	4.2
Copper	31.6	149	36	50	45	230
Iron	20000	40000	13000	18000	3800	13000
Lead	35.8	128	200J	260J	340J	1400J
Magnesium	NA	NA	1200	1900	1500	2300
Manganese	460	1100	460	500	970	2200
Mercury (total)	0.18	1.06	0.3	36	5.3	5.8
Nickel	22.7	48.6	26J	34J	6J	25J
Potassium	NA	NA	700	910	<380	<700
Selenium	0.29	NA	<56	<17	<15	<28
Silver	1	3.7	<8.3	<2.5	<2.2	<4.2
Sodium	NA	NA	<1400	630	880	1100
Thallium	NA	NA	<56	<50	<15	<60
Vanadium	50	NA	39	31	47	81
Zinc	121	459	280	310	110	310
Polycyclic Aromatic Hydr						
Acenaphthylene	0.044	0.64	0.17	0.22	0.046	0.079
Anthracene	0.0572	0.845	0.25	0.37	0.11	0.13
Benzo(a)anthracene	0.108	1.05	0.68	1	0.21	0.33
Benzo(a)pyrene	0.15	1.45	0.85	1.1	0.19	0.37
Benzo(b)fluoranthene	0.24	134	1.5	2.4	0.36	0.61
Benzo(g,h,i)perylene	0.17	32	0.93	1.3	0.028	0.084
Benzo(k)fluoranthene	0.24	134	0.5	0.65	0.11	0.21
Chrysene	0.166	1.29	1.1	1.7	0.35	0.43
Dibenzo(a,h)anthracene	0.033	13	0.19	0.3	0.052	0.03
Fluoranthene	0.423	2.23	2.2	3.1	0.78	0.84
Fluorene	0.0774	0.536	0.2	0.25	0.084	0.069
Indeno(1,2,3-cd)pyrene	0.2	32	0.78	1.1	< 0.009	0.037
Naphthalene	0.176	0.561	0.14	2.1	0.28	2.7
Phenanthrene	0.204	1.17	1.1	1.5	0.6	0.43
Pyrene	0.195	1.52	1.7	2.3	0.59	0.73
Total PAHs	1.61	22.8	12.331	19.458	3.829	7.101
Pesticides (mg/kg dw)	7.01	22.0	12.001	13.730	0.029	7.101
4,4'-DDD	0.00488	0.028	0.05	0.032	<0.0021	0.47
4,4'-DDE	0.00468	0.028	0.03	0.032	0.0021	0.47
4,4'-DDE 4,4'-DDT	0.00416	0.0629	0.0072J	<0.0049	<0.0021	<0.0033
Total Organic Carbon (mg	g/kg dry weight)		280000J	240000J	66000J	220000J

NA = No benchmark available

< = not detected at given RL.</p>
Note: for ND, 1/2 the RL was used to calculate total PAHs and to calculate [SEM] total.

Bold indicates exceedance of low effect benchmark.

Shade indicates exceedance of high level benchmark.

J = estimated

TABLE 27 Sediment Toxicity Test Results Relative to Sediment Chemistry Data Plow Shop Pond

	H. azteca															
											Laboratory					
	0/ 0	Laboratory Control		Plow-Sed-1	Plow-Sed-2	Plow-Sed-3	Plow-Sed-4	Plow-Sed-5	Plow-Sed-6	Plow-Sed-7	Control	Flan-Sed-1	Plow-Sed-8		Plow-Sed-10	Plow-Sed-11
	%Survival Growth - (mg dry biomass)	100 0.102	95 0.111	90 0.08	90 0.075	95 0.075	80 0.065	93.75 0.098	90 0.09	95 0.1	100 0.079	95 0.111	91.25 0.101	48.75 0.033	95 0.092	88.75 0.078
	Clowar - (mg dry biomass)	0.102	0.111	0.00	0.075	0.070	0.003			0.1	0.073	0.111	0.101	0.000	0.032	0.070
								C. te	entans		Laboratory					
		Laboratory Control	Flan-Sed-1	Plow-Sed-1	Plow-Sed-2	Plow-Sed-3	Plow-Sed-4	Plow-Sed-5	Plow-Sed-6	Plow-Sed-7	Control	Flan-Sed-1	Plow-Sed-8		Plow-Sed-10	Plow-Sed-11
	%Survival Growth - (mg dry biomass)	92.5 1.238	100 0.95	98.75 1.089	100 1.01	97.5 1.063	98.75 1.297	93.75 1.127	97.5 1.208	97.5 1.179	85 0.93	100 0.95	91.25 0.843	45 0.082	95 0.975	90 1.003
	(ing dry biomaco)	1.200	0.00	1.000	1.01	1.000	1.201		1.200		0.00	0.00	0.010	0.002	0.070	1.000
	Bold indicates a statistically sig	nificant result														
Analytical Results																
Plow Shop Pond COPC																
	Chronic (low effect)	Acute (severe effect)														
Metals (mg/kg dw)	Screening Value (mg/kg) S	screening Value (mg/kg) Flan-Sed-1	Plow-Sed-1	Plow-Sed-2	Plow-Sed-3	Plow-Sed-4	Plow-Sed-5	Plow-Sed-6	Plow-Sed-7		Flan-Sed-1	Plow-Sed-8	Plow-Sed-9	Plow-Sed-10	Plow-Sed-11
Aluminum	25500	NA	7800	14000	5500	27000	1900	8600	11000	12000		7800	10000	10000	11000	2700
Antimony	2	25	28 ND	12 ND	110 ND	10 ND	96 ND	12 ND	12 ND	22 ND		28 ND	12 ND	9.3 ND	9.3 ND	100 ND
Arsenic	9.79	33	110 J	410 J	2800 J	310 J	4300 J	310 J	290 J	270 J		110 J	210 J	130 J	260 J	1800 J
Barium Beryllium	0.7 NA	NA NA	73 J 2.8 ND	180 J 1.8	270 J 11 ND	97 J 1.2	220 J 9.6 ND	84 J 1.2 ND	68 J 1.2	90 J 22 ND		73 J 2.8 ND	100 J 1.2 ND	120 J 2.1	110 J 1.4	120 J 10 ND
Cadmium	0.99	4.98	2.6 ND	16	36	3.6	9.6 ND	7.2 ND	6.5	2.2 ND		11	9.9	9.2	15	23
Calcium	NA	NA	5700	7100	15000	3600	14000	12000	8600	6800		5700	4800	5400	4500	15000
Chromium	43.4	111	21	6200	2300	70	410	2500	4300	4600		21	1800	1700	4200	330
Cobalt	10	NA	12	27	22	15	20	16	19	22		12	19	16	22	28
Copper Iron	31.6 20000	149 40000	36 13000	95 54000	48 360000	33 44000	29 ND 370000	45 27000	68 23000	84 21000		36 13000	150 22000	830 27000	88 24000	31 ND 280000
Lead	35.8	128	200 J	320 J	160 J	50 J	96 ND	130 J	200 J	270 J		200 J	2200 J	700 J	24000 J	100 ND
Magnesium	NA NA	NA NA	1200	2100	1100	5000	630	1500	1800	2100		1200	2300	3700	2000	660
Manganese	460	1100	460	3300	5300	780	5300	940	530	560		460	1200	220	790	14000
Mercury (total)	0.18	1.06	0.3	93	26	0.47	2.6	28	78	56		0.3	22	18	56	3.2
Nickel	22.7	48.6	26 J	54 J	24 J	33 J	13 J	26 J	33 J	39 J		26 J	48 J	41 J	41 J	14 J
Potassium Selenium	NA 0.29	NA NA	700 56 ND	1100 24 ND	1500 22 ND	20 ND	1600 19 ND	740 24 ND	830 23 ND	960 43 ND		700 56 ND	890 24 ND	700 19 ND	900 19 ND	1100 210 ND
Silver	1	3.7	8.3 ND	3.7 ND	33 ND	3.1 ND	29 ND	3.6 ND	3.5 ND	6.5 ND		8.3 ND	3.6 ND	2.8 ND	2.8 ND	31 ND
Sodium	NA	NA	1400 ND	940	530	-	480 ND	670	580 ND	1100 ND		1400 ND	830	470 ND	570	5200 ND
Thallium	NA	NA	56 ND	80 ND	220 ND	100 ND	400 ND	60 ND	60 ND	43 ND		56 ND	60 ND	60 ND	60 ND	210 ND
Vanadium	50	NA 150	39	62	33 ND	34	29 ND	26	36	50		39	35	56	40	31 ND
Zinc Polycyclic Aromatic Hydro	121	459	280	500	200	71	77	200	280	370		280	320	1100	370	97
Acenaphthylene	0.044	0.64	0.17	0.24	0.095	0.026	0.031	0.098	0.2	0.31		0.17	0.18	0.71	0.32	0.036
Anthracene	0.0572	0.845	0.25	0.4	0.14	0.033	0.038	0.17	0.39	0.49		0.25	0.36	3.4	0.54	0.052
Benzo(a)anthracene	0.108	1.05	0.68	1	0.37	0.13	0.09	0.43	0.98	1.2		0.68	0.91	7.1	1.2	0.11
Benzo(a)pyrene	0.15	1.45	0.85	1.2	0.42	0.14	0.12	0.5	1	1.3		0.85	0.97	6.5	1.3	0.13
Benzo(b)fluoranthene Benzo(g,h,i)perylene	0.24 0.17	134 32	1.5 0.93	2.3 1.4	0.86 0.5	0.25 0.12	0.24 0.12	0.98 0.62	2 1.2	2.9 1.5		1.5 0.93	1.8 1	11 5.2	2.9 1.4	0.29 0.14
Benzo(k)fluoranthene	0.17	134	0.93	0.85	0.26	0.072	0.12	0.62	0.72	0.93		0.93	0.63	3.7	0.72	0.085
Chrysene	0.166	1.29	1.1	1.7	0.63	0.18	0.18	0.69	1.5	1.9		1.1	1.3	8.1	2	0.21
Dibenzo(a,h)anthracene	0.033	13	0.19	0.31	0.11	0.032	0.028	0.13	0.27	0.34		0.19	0.24	1.3	0.35	0.033
Fluoranthene	0.423	2.23	2.2	2.9	0.98	0.26	0.27	1.2	2.7	3.3		2.2	2.2	18	3.2	0.35
Fluorene Indeno(1,2,3-cd)pyrene	0.0774 0.2	0.536 32	0.2 0.78	0.28 1.2	0.089 0.44	0.013 0.11	0.025 0.11	0.16 0.5	0.31 1	0.35 1.3		0.2 0.78	0.23 0.89	1.9 4.5	0.31 1.2	0.031 0.12
Naphthalene	0.176	0.561	0.76	0.34	0.44	0.048	0.024	0.5	0.41	0.43		0.74	0.38	2.4	0.57	0.12
Phenanthrene	0.204	1.17	1.1	1.2	0.42	0.12	0.13	0.6	1.3	1.5		1.1	1.2	10	1.4	0.15
Pyrene	0.195	1.52	1.7	2.3	0.83	0.24	0.24	1	2.1	2.6		1.7	1.8	14	2.5	0.27
TotalPAHs	1.61	22.8	12.29	17.62	6.254	1.779	1.717	7.578	16.08	20.35		12.29	14.09	97.81	19.91	2.088
Pesticides (mg/kg dw) 4,4'-DDD	0.00488	0.028	0.05	0.071	0.038	0.050	0.019	0.055	0.055	0.007		0.05	0.43	0.04	0.039	0.084
4,4'-DDD 4,4'-DDE	0.00488	0.028	0.05 0.17	0.071	0.038	0.056 0.034	0.019 0.028	0.055	0.055	0.087 0.13		0.05 0.17	0.43 0.4	0.04 0.063	0.039	0.084
4,4'-DDT	0.00316	0.0629	7.2 J	0.0065 ND	0.0033 ND	0.037	0.0033 J	0.002 0.003 ND	0.0051 ND	0.0065 J		7.2 J	0.047	0.003 0.0044 J	0.0063 J	3.6 J
Aroclors (mg/kg dw)																
Aroclor-1254 Aroclor-1260	0.06 0.005	3.4 2.4	160 ND 160 ND	0.13 ND 0.13 ND	0.068 ND 0.068 ND	0.13 0.05	0.058 ND 0.058 ND	0.061 ND 0.061 ND	0.1 ND 0.1 ND	0.12 ND 0.12 ND		160 ND 160 ND	0.092 ND 0.092 ND	0.053 ND 0.053 ND	0.09 ND 0.09 ND	68 ND 68 ND
Total Organic Carbon (mg/l	kg dry weight)		280000 J	270000 J	100000 J	41000 J	79000 J	340000 J	200000 J	300000 J		280000 J	280000 J	290000 J	210000 J	88000 J
1		9	% 28	27	10	4.1	7.9	34	20	30		28	28	29	21	8.8

Bold indicates exceedance of low effect benchmark.

Shade indicates exceedance of high level benchmark.

NA = No benchmark available
ND = not detected: J = estimated
ND values represent reporting limits
Note: for ND, 1/2 the RL was used to calculate total PAHs and to calculate [SEM] total.

TABLE 28a
Grove Pond Crayfish Tissue Concentrations Compared with Critical Body Residues: Hazard Quotients

						HQ	S	
		Crayfish Tissue Concentrations		CBRs for Crayfish			LOAEL	
	Max (mg/kg Average		Invert NOAEL	Invert LOAEL				
Chemical	ww)	(mg/kg ww) ^a	(mg/kg ww)	(mg/kg ww)	Max	Average	Max	Average
Aluminum	30	27	NA	NA	NA	NA	NA	NA
Arsenic	1.7	0.96	1.28	3.84	1.3	0.8	0.4	0.3
Barium	38	31	NA	NA	NA	NA	NA	NA
Cadmium	1.1	0.33	0.9	5.7	1.2	0.4	0.2	0.1
Chromium	3.5	1.2	1	3.2	3.5	1.2	1.1	0.4
Copper	25	19	50	150	0.5	0.4	0.2	0.1
Lead	0.89	0.48	6	18	0.1	0.1	0.0	0.0
Manganese	785	719	15.5	46.5	50.6	46.4	16.9	15.5
Methyl Mercury	0.046	0.028	0.328	3.28	0.1	0.1	0.0	0.0
Nickel	2.1	1.3	218.6	328.4	0.0	0.0	0.0	0.0
Strontium	156	140	NA	NA	NA	NA	NA	NA
Zinc	35	28	12.7	35.2	2.7	2.2	0.99	0.8

NA - indicates CBR not available and HQ could not be calculated.

TABLE 28b
Plow Shop Pond Invertebrate Tissue Concentrations Compared with Critical Body Residues: Hazard Quotients

Crayfish

						НС	Qs	
	Crayfis	Crayfish Tissue		CBRs for Crayfish			LOAEL	
Chemical	Max (mg/kg ww)	Average (mg/kg ww)	Invert NOAEL (mg/kg ww)	Invert LOAEL (mg/kg ww)	Max	Average	Max	Average
Aluminum	2.94	2.94	NA	NA	NA	NA	NA	NA
Arsenic	1.62	1.11	1.28	3.84	1.3	0.9	0.4	0.3
Barium	38	38	NA	NA	NA	NA	NA	NA
Cadmium	0.62	0.18	0.9	5.7	0.7	0.2	0.1	0.0
Chromium	3.06	1.82	1	3.2	3.1	1.8	0.96	0.6
Copper	24	24	50	150	0.5	0.5	0.2	0.2
Lead	0.47	0.22	6	18	0.1	0.0	0.0	0.0
Manganese	278	278	15.5	46.5	17.9	17.9	6.0	6.0
Methyl mercury	0.04	0.03	0.328	3.28	0.1	0.1	0.0	0.0
Nickel	0.27	0.27	218.6	328.4	0.0	0.0	0.0	0.0
Strontium	157	157	NA	NA	NA	NA	NA	NA
Zinc	23	23	12.7	35.2	1.8	1.8	0.66	0.7

Mussel

					HQs			
	Musse Max (mg/kg	el Tissue Average	CBRs for Invert NOAEL	Mussels Invert LOAEL	NC	AEL	LO	AEL
Chemical	ww)	(mg/kg ww)	(mg/kg ww)	(mg/kg ww)	Max	Average	Max	Average
Aluminum	1.12	1.12	NA	NA	NA	NA	NA	NA
Arsenic	0.93	0.72	1.28	3.84	0.7	0.6	0.2	0.2
Barium	95	67	NA	NA	NA	NA	NA	NA
Boron	0.47	0.41	NA	NA	NA	NA	NA	NA
Cadmium	0.39	0.31	8	16	0.0	0.0	0.0	0.0
Chromium	0.72	0.62	1	3.2	0.7	0.6	0.2	0.2
Copper	0.76	0.70	15	15	0.1	0.0	0.1	0.0
Lead	0.1	0.07	7	35	0.0	0.0	0.0	0.0
Manganese	1042	738	15.5	46.5	67	48	22	16
Mercury	0.0557	0.05	3.4	10.2	0.0	0.0	0.0	0.0
Nickel	0.15	0.12	218.6	328.4	NA	NA	NA	NA
Selenium	0.18	0.17	0.294	2.94	0.6	0.6	0.06	0.1
Strontium	26	19	NA	NA	NA	NA	NA	NA
Zinc	22	19	46	80	0.5	0.4	0.27	0.2

TABLE 29
AVS/SEM Results - Grove Pond

		Simultaneously-Extract	ed Metals (umole/g)	
Chemical	Flan-Sed-1	Grove-Sed-1	Grove-Sed-2	Grove-Sed-3
Antimony	<0.309	<0.219	<0.087	<0.205
Cadmium	0.089	0.042	<0.008	0.023
Chromium	0.224	39.7	152	547
Copper	0.628	0.392	0.1	0.771
Lead	0.882	0.96	1.48	7.07
Mercury	0.00187	<0.00133	< 0.00053	<0.00125
Nickel	<0.256	0.197	<0.072	0.208
Zinc	4.26	3.7	1.22	4.46
[SEM] total	6.37	45	155	560
Acid Volatile Sulfides (umole/g)	11.3	43	46.6	105
Ratio [SEM]:[AVS]	0.56	1.05	3.32	5.33
Difference [SEM]-[AVS]	-4.93	2.10	108	455

< = not detected at given RL.

TABLE 30 AVS/SEM Results Plow Shop Pond

		Simultaneously-Extracted Metals (umole/g)											
Chemicals	Flan-Sed-1	Plow-Sed-1	Plow-Sed-2	Plow-Sed-3	Plow-Sed-4	Plow-Sed-5	Plow-Sed-6	Plow-Sed-7	Plow-Sed-8	Plow-Sed-9	Plow-Sed-10	Plow-Sed-11	
Antimony	< 0.309	< 0.313	<0.162	-	<0.129	<0.252	<0.229	<0.262	<0.316	<0.138	<0.174	<0.163	
Cadmium	0.089	0.082	0.024	-	0.017	0.028	0.026	0.115	0.049	0.048	0.088	0.023	
Chromium	0.224	44.5	13.2	-	3.39	15.8	34.2	38.7	12	14.6	33.2	2.75	
Copper	0.628	0.554	0.113	-	0.155	0.318	0.256	0.886	1.14	2.2	0.211	0.08	
Lead	0.882	1.09	0.347	-	0.158	0.479	0.822	1.22	0.671	3.03	0.905	0.227	
Mercury	0.00187	<0.00182	<0.000924	-	<0.00078	< 0.00153	<0.00139	<0.00159	<0.00192	<0.00084	<0.00106	<0.00099	
Nickel	< 0.256	0.389	0.154	-	0.109	<0.21	<0.19	0.33	0.349	0.246	0.173	<0.135	
Zinc	4.26	5.63	1.57	-	0.896	2.45	3.1	5.65	3.48	13.8	4.11	1.23	
[SEM] total	6.4	52.4	15.5		4.8	19.3	38.6	47.0	17.8	34.0	38.8	4.5	
Acid Volatile Sulfides (umole/g)	11.3	195	196	-	128	27.7	15	20.6	15	48.8	25.5	384	
Ratio [SEM]:[AVS]	0.56	0.27	0.08		0.04	0.70	2.57	2.28	1.19	0.70	1.52	0.01	
Difference [SEM]-[AVS]	-4.9	-142.6	-180.5		-123.2	-8.4	23.6	26.4	2.8	-14.8	13.3	-379.5	

< = not detected at given RL.

TABLE 31
Surface Water Toxicity Test Results Relative to Surface Water Chemistry Data - Grove Pond Fish

	Laboratori			P. promelas				
%Survival Growth Avg dry biomass	Laboratory Control 95	Flan-Sed-1 (reference) 97.5	Grove-SW-1 92.5	Grove-SW-2 97.5	Grove-SW-3 97.5	Grove-SW-4 100	Grove-SW-5 95	Grove-SW-6 100
(mg) ^a Avg dry weight	0.5	0.57	0.51	0.55	0.56	0.5	0.51	0.53
(mg) ^b	0.53	0.59	0.55	0.57	0.58	0.5	0.53	0.53

Analytical Results

Analytical Results										
Grove Pond COPC										
	Benchma	rk (ug/L)								
Total Recoverable Metals (ug/l)	(chronic)	(acute)	Flan-SW-1	Grove-SW-1	Grove-SW-2	Grove-SW-2 (DUP)	Grove-SW-3	Grove-SW-4	Grove-SW-5	Grove-SW-6
Aluminum	87	750	720 J	19 J	8 J	10 J	48 J	13 J	27 J	18 J
Antimony	30	180	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Arsenic	150	340	5	2.3	4.6	4.6	1.1	1.3	1.4	1.9
Barium	4	110	17	2.3 23	13	13	18	1.5 15	14	1.9
Beryllium	0.66	35	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Cadmium	0.66	0.87	0.2 ND 0.2 ND	0.2 ND 0.2 ND	0.2 ND 0.2 ND	0.2 ND 0.2 ND	0.2 ND 0.2 ND	0.2 ND 0.2 ND		0.2 ND
		NA			21,000				0.2 ND	
Calcium	116000		7,100	27,000		21,000	17,000	12,000	11,000	12,000
Chromium	11	16 1500	2 J	20	5 J	5 J	1 J	0.8 J	0.8 J	0.8 J
Cobalt	23		0.72	0.2 ND	0.2 ND	0.2 ND	0.28	0.2 ND	0.3	0.43
Copper	4.3	6	3 J	3 J	2 J	32	3 J	1 J	3 J	2 J
Iron	1000	NA	1800	390	460 J	500	130	620	650	940
Lead	1	25	3.5	2 J	0.5 J	3.4	0.4 J	0.3 J	0.6 J	0.5 J
Magnesium	82000	NA	1,300	3,100	2,500	2,500	2,300	2,200	2,300	2,300
Manganese	120	2300	310	200	600	610	57	210	180	350
Total Mercury	0.77	1.4	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Molybdenum	NA	NA	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Nickel	25	227	1.8	1.4	1	1.2	2.5	1.1	1.6	1.3
Selenium	5	NA	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND
Silver	0.74	NA	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Thallium	12	110	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Vanadium	20	280	1.3	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Zinc	57	57	13 J	6 J	5 J	8 J	8 J	8 J	8 J	7 J
Dissolved Metals (ug/l)										
Aluminum	87	750	5 ND	5 ND	5 ND	5 ND	15	5 ND	6.2	6.4
Antimony	30	180	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Arsenic	150	340	0.58	1.7	4	3.9	1.3	0.88	1	1.4
Barium	4	110	7.6	21	13	13	18	13	12	14
Beryllium	0.66	35	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Cadmium	0.14	0.87	0.2 ND	0.2 ND	0.2 ND	ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Calcium	116000	NA	6,500	27.000	21,000	21,000	16.000	11.000	12.000	12.000
Chromium	11	16	0.5 ND	3.9	2.1	2.1	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Cobalt	23	1500	0.55	0.2 ND	1.1	0.3	0.44	1.7	3.7	4
Copper	4.3	6	1	1.7	0.91	1.4	0.52	0.95	0.66	0.73
Iron	1000	NA	50 ND	160	240	260	58	180	240	350
Lead	1	25	0.2 ND	0.39	0.22	0.24	0.2 ND	0.24	0.2 ND	0.2 ND
Magnesium	82000	NA	1,100	3,100	2,500	2,600	2,200	2,200	2,400	2,400
Manganese	120	2300	6.9	130	2,500 540	520	46	50	2,400 120	2,400 310
Total Mercury	0.77	1.4	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Molybdenum	NA	NA	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Nickel	25	NA 227	0.5 ND 0.51	0.5 ND 1.2	0.5 ND 0.98	0.5 ND 0.91		0.5 ND 1.1	0.5 ND 1.3	
	25 5	NA					1.4			1.3
Selenium			1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND
Silver	0.74	NA 440	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Thallium	12	110	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Vanadium	20	280	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Zinc	57	57	5 ND	5 ND	5 ND	5 ND	5 ND	6.3	5 ND	5 ND

ND = non detected

ND values represent reporting limits

TABLE 32 Surface Water Toxicity Test Results Relative to Surface Water Chemistry Data - Plow Shop Pond Fish

				P. pro	melas			
%Survival Growth	Control 95	Flan-Sed-1 (reference) 97.5	Plow-SW-1 95	Plow-SW-2 100	Plow-SW-3 97.5	Plow-SW-4 95	Plow-SW-5 100	Plow-SW-6 95
Avg dry biomass (mg) ^a	0.5	0.57	0.49	0.58	0.55	0.53	0.55	0.56
Avg dry weight (mg) ^b	0.53	0.59	0.51	0.58	0.56	0.56	0.55	0.59

Plow Shop Pond COPC									
Total Recoverable Metals	Benchmark	(ug/L)							
(ug/l)	(chronic)	(acute)	Flan-SW-1	Plow-SW-1	Plow-SW-2	Plow-SW-3	Plow-SW-4	Plow-SW-5	Plow-SW-6
Aluminum	87	750	720 J	12 J	10 J	8 J	16 J	12 J	11 J
Antimony	30	180	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Arsenic	150	340	5	2	1.4	1 ND	1 ND	1 ND	1 ND
Barium	4	110	17	11	9.2	9.7	9.4	11	11
Beryllium	0.66	35	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Cadmium	0.14	0.87	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Calcium	116000	NA	7,100	12,000	11,000	10,000	10,000	10,000	10,000
Chromium	11	16	2 J	0.9 J	0.8 J	0.9 J	1	1 J	1 J
Cobalt	23	1500	0.72	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Copper	4.3	6	3 J	2 J	2 J	1 J	3 J	6 J	2 J
Iron	1000	NA	1800	420	280	220	220	260	280
Lead	1	25	3.5	0.3 J	0.2 J	0.2 ND	0.4 J	0.3 J	0.4 J
Magnesium	82000	NA	1,300	2,300	2,100	2,000	1,900	2,000	2,000
Manganese	120	2300	310	34	16	27	29	91	87
Total Mercury	0.77	1.4	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Molybdenum	NA	NA	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Nickel	25	227	1.8	1	0.91	0.8	1.4	0.85	0.94
Selenium	5	NA	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND
Silver	0.74	NA	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Thallium	12	110	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Vanadium	20	280	1.3	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Zinc	57	57	13 J	3 J	9 J	4 J	6 J	8 J	7 J
Dissolved Metals (ug/l)	01	01	10 0	0.0	3 0	7.0	0.0	0 0	7 0
Aluminum	87	750	5 ND	5 ND	5 ND	5 ND	5 ND	5 ND	5 ND
Antimony	30	180	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Arsenic	150	340	0.58	1.2	1	0.76	0.82	0.76	0.77
Barium	4	110	7.6	10	9.2	9.5	9.3	11	11
Beryllium	0.66	35	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Cadmium	0.14	0.87	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Calcium	116000	NA	6.500	11.000	11,000	10.000	10.000	10.000	10.000
Chromium	11	16	0,500 0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Cobalt	23	1500	0.55 ND	0.32	3.3	0.86	0.33	0.29	0.3 ND
Copper	4.3	6	0.55	1.1	3.3 1.1	0.86	0.33	1.1	1.1
Iron	1000	NA NA	50 ND	1.1	97	0.86 87	0.82 89	120	120
Lead	1000	25	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.23	0.2 ND
	82000	NA						2.100	
Magnesium			1,100	2,200	2,200	2,000	2,100		2,100
Manganese	120 0.77	2300	6.9	28 0.5 ND	16	15	20 0.5 ND	78	74
Total Mercury		1.4	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Molybdenum	NA 25	NA	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Nickel	25	227	0.51	0.98	0.94	0.84	0.71	0.76	0.76
Selenium	5	NA	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND
Silver	0.74	NA	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Thallium	12	110	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Vanadium	20	280	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Zinc	57	57	5 ND	5 ND	5 ND	5.3	5 ND	5 ND	5 ND

ND = non detected

ND values represent reporting limits

TABLE 33
Grove Pond Fish Tissue Concentrations Compared with Critical Body Residues:All Species

Chemical	Max Fish concentration (mg/Kg)	Fish NOAEL (mg/kg ww)	Carried Forth to Individual Fish HQ Calculation
Inorganics			
Aluminum	21	8.53	Υ
Arsenic	0.13	1.8	N
Barium	3.68	NA	N
Beryllium	0.99	NA	N
Boron	1.39	NA	N
Cadmium	1.02	0.036	Υ
Chromium	1.80	0.58	Y
Copper	1.35	0.28	Υ
Lead	5.02	0.34	Y
Manganese	54	NA	N
Mercury	1.14	1.07	Y
Molybdenum	0.51	NA	N
Nickel	4.85	0.82	Υ
Selenium	0.55	0.8	N
Strontium	48	NA	N
Vanadium	0.92	0.7	Υ
Zinc	42	34	Υ
Pesticides/PCBs			
4,4'-DDD	0.13	0.06	Υ
4,4'-DDE	0.27	0.029	Υ
Total PCBs	0.47	10.9	N

TABLE 34

Grove Pond Fish Tissue Concentrations Compared with Critical Body Residues: Hazard Quotients by Fish Species

Tissue Concentrations in Fish

	CBI		Brown I	Bulhead	Blue	egill	Largemo	uth Bass	Yellow I	Bullhead	Black crappie	Pickerel
Chemical	Fish NOAEL (mg/kg ww)	Fish LOAEL (mg/kg ww)	Max concentration (mg/Kg)	Average concentration (mg/Kg)	Max concentration (mg/Kg)	Average concentration (mg/Kg)	Max concentration (mg/Kg)	Average concentration (mg/Kg)	Max concentration (mg/Kg)	Average concentration (mg/Kg)	Concentration (mg/kg, n=1)	Concentration (mg/kg, n=1)
Aluminum	8.53	25.59	20.7	13.98	7.9	4.06	11.8	6.86	6.44	4.72	4.9	<1.5
Cadmium	0.036	0.35	0.21	0.09	0.234	0.11	1.023	0.15	0.19	0.07	<0.32	<0.23
Chromium	0.58	1.74	1.46	0.80	1.23	0.73	1.34	0.59	0.51	0.39	1.8	0.42
Copper	0.28	0.3	1.35	0.86	0.788	0.60	1.16	0.53	0.81	0.65	0.34	0.36
Lead	0.34	0.4	1.27	0.66	1.384	0.69	5.024	0.83	0.86	0.44	<2.2	<1.5
Mercury	1.07	10.7	0.0349	0.02	0.2351	0.16	1.144	0.36	0.13	0.08	<0.21	0.62
Nickel	0.82	2.46	0.9792	0.42	0.8011	0.27	4.847	0.64	0.55	0.20	<0.65	<0.45
Vanadium	0.7	2.7	0.2256	0.11	0.1655	0.10	0.9226	0.16	0.15	0.08	<0.32	<0.23
Zinc	34	40	13.54	12.37	26.27	21.65	18.56	14.40	23.68	17.06	21	42
4,4'-DDD	0.06	0.6	0.03	0.02	0.07	0.03	0.13	0.07	0.06	0.03	0.033	0.023
4,4'-DDE	0.029	0.29	0.04	0.03	0.13	0.06	0.27	0.14	0.11	0.06	0.12	0.17

Hazard Quotients

		Br	own bullhead			Blu	egill			Largemo	uth Bass	
	NO	AEL	LO	AEL	NO	AEL	LO.	AEL	NO	AEL	LO	AEL
Chemical	Max	Average	Max	Average	Max	Average	Max	Average	Max	Average	Max	Average
Aluminum	2.4	1.6	0.8	0.5	0.9	0.5	0.3	0.2	1.4	0.8	0.5	0.3
Cadmium	5.8	2.4	0.6	0.2	6.5	3.1	0.7	0.3	28.4	4.1	2.9	0.4
Chromium	2.5	1.4	0.8	0.5	2.1	1.3	0.7	0.4	2.3	1.02	0.8	0.3
Copper	4.8	3.1	4.5	2.9	2.8	2.1	2.6	2.0	4.1	1.9	3.9	1.8
Lead	3.7	1.9	3.2	1.6	4.1	2.0	3.5	1.7	14.8	2.4	12.6	2.1
Mercury	0.03	0.02	0.00	0.00	0.22	0.15	0.02	0.01	1.1	0.3	0.1	0.0
Nickel	1.2	0.5	0.4	0.2	0.98	0.3	0.3	0.1	5.9	0.8	2.0	0.3
Vanadium	0	0	0.1	0.0	0.2	0.1	0.1	0.0	1.4	0.2	0.3	0.1
Zinc	0	0	0.3	0.3	0.8	0.6	0.7	0.5	0.5	0.4	0.5	0.4
4,4'-DDD	0.5	0	0.1	0.0	1.2	0.5	0.1	0.0	2.2	1.1	0.2	0.1
4,4'-DDE	1.4	1.1	0.1	0.1	4.5	2.2	0.4	0.2	9.3	5.0	0.93	0.5

Hazard Quotients

		Ye	llow Bullhead		Black	Crappie	Picl	kerel
	NO	AEL	LO	AEL				
Chemical	Max	Average	Max	Average	NOAEL	LOAEL	NOAEL	LOAEL
Aluminum	0.8	0.6	0.3	0.2	0.6	0.2	NA	NA
Cadmium	5.3	1.9	0.5	0.2	NA	NA	NA	NA
Chromium	0.87	0.7	0.3	0.2	3.1	1.03	0.7	0.2
Copper	2.9	2.3	2.7	2.2	1.2	1.1	1.3	1.2
Lead	2.5	1.3	2.1	1.1	NA	NA	NA	NA
Mercury	0	0.1	0.0	0.0	NA	NA	0.6	0.1
Nickel	0.7	0.2	0.2	0.1	NA	NA	NA	NA
Vanadium	0	0.1	0.1	0.0	NA	NA	NA	NA
Zinc	0.7	0.5	0.6	0.4	0.6	0.5	1.2	1.1
4,4'-DDD	1.00	0.5	0.1	0.0	0.6	0.1	0	0.0
4,4'-DDE	3.8	2.1	0.4	0.2	4.1	0.4	6	0.6

NA - indicates that HQ could not be calculated because COPC was not detected in that species.

TABLE 35
Plow Shop Pond Fish Tissue Concentrations Compared with Critical Body Residues: All Species

Chemical	Max Fish concentration (mg/Kg)	Fish NOAEL (mg/kg ww)	Carried Forth to Individual Fish HQ Calculation
Aluminum	4.5	8.53	N
Arsenic	1.3	1.8	N
Barium	4.4	NA	N
Cadmium	0.09	0.036	Y
Chromium	0.99	0.58	Y
Cobalt	0.17	NA	N
Copper	1.3	0.28	Y
Lead	0.18	0.34	N
Manganese	94.7	NA	N
Mercury	2.7	1.07	Y
Nickel	0.8	0.82	N
Selenium	0.67	0.8	N
Vanadium	0.8	0.7	Y
Zinc	29.6	34	N
4,4'-DDD	0.11	0.06	Y
4,4'-DDE	0.38	0.029	Y
4,4'-DDT	0.014	0.42	N
Aroclor-1260	0.33	8.2	N

TABLE 36
Plow Shop Pond Fish Tissue Concentrations Compared with Critical Body Residues: Hazard Quotients by Fish Species

				Tissue Concentrations in Fish									
	CBRs		Largemo	uth Bass	Bulli	nead	Blue	egill	Black of	rappie			
	Fish	Fish											
	NOAEL	LOAEL	Max	Average	Max	Average	Max	Average	Max	Average			
	(mg/kg	(mg/kg	concentration	concentration	concentration	concentration	concentration	concentration	concentration	concentration			
Chemical	ww)	ww)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)			
Cadmium	0.036	0.35	0.09	0.04	ND	ND	ND	ND	ND	ND			
Chromium	0.58	1.74	0.65	0.43	0.99	0.42	0.93	0.63	0.65	0.64			
Copper	0.28	0.3	0.9	0.58	1.3	0.76	1.3	0.62	0.44	0.37			
Mercury	1.07	10.7	2.7	1.38	0.4	0.28	0.54	0.31	0.7	0.62			
Vanadium	0.7	2.7	ND	ND	ND	ND	0.8	0.38	ND	ND			
4,4'-DDD	0.06	0.6	0.11	0.05	0.012	0.01	0.021	0.01	0.037	0.03			
4,4'-DDE	0.029	0.29	0.38	0.17	0.033	0.01	0.16	0.05	0.18	0.17			

Hazard Quotients

		Lar	gemouth Bass		Bullhead					
	NOAEL L		LO	AEL	NO	AEL	LO	LOAEL		
Chemical	Max	Average	Max	Average	Max	Average	Max	Average		
Cadmium	2.5	1.2	0.3	0.1	NA	NA	NA	NA		
Chromium	1.1	0.7	0.4	0.2	1.7	0.7	0.6	0.2		
Copper	3.2	2.1	3.0	1.9	4.6	2.7	4.3	2.5		
Mercury	2.5	1.3	0.3	0.1	0.4	0.3	0.0	0.0		
Vanadium	NA	NA	NA	NA	NA	NA	NA	NA		
4,4'-DDD	1.8	8.0	0.2	0.1	0.2	0.1	0.0	0.0		
4,4'-DDE	13.1	5.8	1.3	0.6	1.1	0.5	0.1	0.0		

		Bluegill				Black Crappie					
	NO	OAEL LOAEL		NO.	AEL	LOAEL					
Chemical	Max	Average	Max	Average	Max	Average	Max	Average			
Cadmium	NA	NA	NA	NA	NA	NA	NA	NA			
Chromium	1.6	1.1	0.5	0.4	1.1	0.4	1.1	0.4			
Copper	4.6	2.2	4.3	2.1	1.6	1.5	1.3	1.2			
Mercury	0.5	0.3	0.1	0.0	0.7	0.1	0.6	0.1			
Vanadium	1.2	0.6	0.3	0.1	NA	NA	NA	NA			
4,4'-DDD	0.4	0.1	0.0	0.0	0.6	0.1	0.5	0.1			
4,4'-DDE	5.5	1.6	0.6	0.2	6.2	0.6	5.9	0.6			

NA - indicates that HQ could not be calculated because COPC was not detected in that species.

Table 37

Maximum Uptake and Hazard Quotient Calculations - Grove Pond Raccoon

				EPCs					TRV (mg/l	(g-d)		HQ
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Swallow Eggs (mg/kg)		Uptake ^a (mg/kg-d)			NOAEL	LOAEL
-												ļ
Inorganics		L			L							
aluminum	90000	1.76E-01	2.07E+01	3.00E+01	1.08E+02		4.32E+01	2053.59	1.93	19.30	1064	106
Antimony	1.21E+01			1.09E+01	1.09E+01	1.09E+01	2.90E-01	1.93	0.13	1.25	15	2
arsenic	910	1.28E-01	1.33E-01	1.72E+00	4.78E-01	9.50E-01	3.93E+00	20.94	0.13	1.26	166	17
barium	470	2.30E-02	3.68E+00	3.75E+01	1.37E+01	3.75E+01	8.46E+00	15.56	5.10	15.30	3.05	1.02
Beryllium	14.1		9.88E-01	1.27E+01		1.27E+01	1.69E-02	1.65	0.66	1.98	2.50	0.83
cadmium	730		1.02E+00	1.07E+00	2.69E-01	5.30E-01	3.19E+01	17.60	1.00	3.00	18	6
chromium	52000	1.75E-01	1.80E+00	3.54E+00	1.14E+01	6.10E-01	4.68E+01	1182.51	2737.00	27370.00	0.43	0.04
Cobalt	70.0	4.00E-03		7.00E+01	7.00E+01	7.00E+01	8.40E+00	12.41	7.33	18.90	1.69	0.66
copper	13000	3.20E-02	1.35E+00	2.54E+01	5.92E+01	2.54E+01	6.24E+02	318.01	11.70	15.40	27	21
lead	1760	2.70E-02	5.02E+00	8.90E-01	2.69E+00		9.50E+00	40.67	8.00	80.00	5.08	0.51
manganese	2500	1.04E+00	5.40E+01	7.85E+02	7.03E+01	7.85E+02	3.00E+02	150.62	88.00	284.00	1.71	0.53
Mercury (inorganic)	422	1.10E-03	5.70E-02	5.10E-02	2.39E-01		1.90E+00	9.65	13.20	39.60	0.73	0.24
Methylmercury	0.07044	2.51E-07	1.09E+00	4.60E-02	2.43E-01	1.08E+00	1.16E-03	0.13	0.03	0.16	3.9	0.78
nickel	86	3.20E-02	4.85E+00	2.14E+00	2.19E+01	2.14E+00	3.30E-01	3.53	40.00	80.00	0.09	0.04
selenium	41.2		5.54E-01		6.44E-01		7.91E-02	1.00	0.20	0.33	4.99	3
Silver	12.4			1.12E+01	1.12E+01	1.12E+01	1.49E+00	2.01	NA	NA	NA	NA
strontium			4.85E+01	1.56E+02	3.07E+01	1.56E+02		19.73	263.00	789.00	0.08	0.03
Thallium	2.00E-01			1.80E-01	1.80E-01	1.80E-01	9.60E-05	0.03	0.007	0.07	4.3	0.43
vanadium	140		9.23E-01	1.40E+02	3.08E-01	1.40E+02	1.68E+01	17.83	0.21	2.10	84.9	8
zinc	820	9.11E+00	4.20E+01	3.47E+01	7.34E+01	3.47E+01	1.18E-10	28.69	160.00	320.00	0.18	0.09
Pesticides/PCBs												+
DDD	2.50E+00		1.30E-01	2.38E+00	2.38E+00	2.38E+00	2.81E-03	0.42	0.80	4.00	0.53	0.11
DDE	9.80E-01	1	2.70E-01	9.31E-01	9.31E-01	9.31E-01	1.10E-03	0.18	0.80	4.00	0.22	0.04
DDT	3.30E+00			3.14E+00	3.14E+00	3.14E+00	3.71E-03	0.55	0.80	4.00	0.69	0.14
Endrin	2.80E-02			2.80E-02	2.80E-02	2.80E-02	1.51E-05	0.00	0.09	0.92	0.05	0.01
Total PCB			4.70E-01					0.02	0.14	0.41	0.17	0.33
SVOC												
PAH (Total)	4.20E+01			5.21E+01	5.21E+01	5.21E+01	1.01E-01	8.84	1.00	3.00	8.84	2.95
4-Chlorophenyl phenyl ether	8.40E-01			8.40E-01	8.40E-01	8.40E-01	1.01E-01	0.15	NA	NA	NA	NA

 $a.\ Uptake = (FIR^*(EPC_{SD}^*SD + EPC_{FI}^*FI + EPC_{IN}^*IN + EPC_{FR}^*FR + EPC_{EG}^*EG + EPC_{PL}^*PL) + WIR^*EPC_{SW})^*AUF/BW$

Symbol	Value	Units
BW	5.67	Kg
FIR	1.43E+00	Kg/day
FI	0.2	unitless
IN	0.2	unitless
FR	0.2	unitless
EG	0.2	unitless
PL	0.11	unitless
SD	0.09	unitless
WIR	0.468	L/d
AUF	1	unitless

TABLE 38
Average Uptake and Hazard Quotient Calculations - Grove Pond Raccoon

				EPCs	s				TRV (mg/kg-d)			HQ
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Swallow Eggs (mg/kg)		Uptake ^a (mg/kg-d)		LOAEL	NOAEL	LOAEL
Inorganics					L							
aluminum	1.07E+04	4.49E-02	6.05E+00	2.67E+01	2.20E+01	2.67E+01	5.12E+00	246.59	1.93	19.30	128	13
Antimony	1.10E+01			9.90E+00	9.90E+00	9.90E+00	2.64E-01	1.76	0.13	1.25	14	1.4
arsenic	7.89E+01	1.43E-02		8.58E-01	1.43E-01	2.48E-01	3.41E-01	1.87	0.13	1.26	15	1.5
barium	8.28E+01	1.10E-02	1.27E+00	3.05E+01	4.78E+00	3.05E+01	1.49E+00	5.31	5.10	15.30	1.04	0.35
Beryllium	1.17E+00		6.79E-02	1.05E+00		1.05E+00	1.40E-03	0.14	0.66	1.98	0.21	0.07
cadmium	1.79E+01		1.15E-01	2.44E-01	7.24E-02	7.91E-02	7.82E-01	0.45	1.00	3.00	0.45	0.15
chromium	5.86E+03	1.31E-02	6.75E-01	1.25E+00	1.18E+00	2.15E-01	5.27E+00	133.31	2737.00	27370.00	0.049	0.005
Cobalt	1.41E+01	3.21E-03		1.41E+01	1.41E+01	1.41E+01	1.69E+00	2.50	7.33	18.90	0.34	0.13
copper	1.46E+02	7.76E-03	5.98E-01	1.90E+01	5.89E+00	1.90E+01	6.99E+00	5.74	11.70	15.40	0.49	0.37
lead	2.63E+02	7.18E-03	7.16E-01	3.50E-01	5.07E-01	2.16E-01	1.42E+00	6.09	8.00	80.00	0.76	0.08
manganese	5.97E+02	2.12E-01	1.75E+01	7.19E+02	2.30E+01	7.19E+02	7.16E+01	90.17	88.00	284.00	1.02	0.32
Mercury (inorganic)	2.19E+01	3.96E-04	1.00E-02	3.19E-02	7.20E-02		9.85E-02	0.51	13.20	39.60	0.04	0.01
Methylmercury	2.15E-02		1.96E-01	2.56E-02	8.04E-02	5.74E-01	3.53E-04	0.04	0.03	0.16	1.40	0.28
nickel	2.93E+01	4.56E-03	3.92E-01	1.26E+00	2.35E+00	1.26E+00	1.13E-01	0.93	40.00	80.00	0.02	0.01
selenium	7.61E+00		3.42E-01		2.49E-01		1.46E-02	0.20	0.20	0.33	1.01	0.61
Silver	3.20E+00			2.88E+00	2.88E+00	2.88E+00	3.84E-01	0.52	NA	NA	NA	NA
strontium			1.95E+01	1.40E+02	1.38E+01	1.40E+02		15.84	263.00	789.00	0.06	0.02
Thallium	1.60E-01			1.44E-01	1.44E-01	1.44E-01	7.68E-05	0.03	0.01	0.07	3.4	0.34
vanadium	3.24E+01		1.18E-01	3.24E+01	2.50E-01	3.24E+01	3.89E+00	4.13	0.21	2.10	20	2.0
zinc	2.68E+02	9.27E-01	1.84E+01	2.84E+01	2.29E+01	2.84E+01	3.85E-11	11.10	160.00	320.00	0.07	0.03
Pesticides/PCBs												+
DDD	3.21E-01		3.98E-02	3.05E-01	3.05E-01	3.05E-01	3.61E-04	NA	0.80	4.00	NA	NA
DDE	1.22E-01		8.87E-02	1.16E-01	1.16E-01	1.16E-01	1.37E-04	0.02	0.80	4.00	0.03	0.01
DDT	9.20E-02			8.74E-02	8.74E-02	8.74E-02	1.03E-04	0.02	0.80	4.00	0.02	0.00
Endrin	1.14E-02			1.14E-02	1.14E-02	1.14E-02	6.15E-06	0.00	0.09	4.00	0.02	0.00
Total PCBs			1.29E-01					0.14	0.41	0.92	0.33	0.15
SVOC												+
PAH (Total)	5.52E+00			6.85E+00	6.85E+00	6.85E+00	1.33E-02	1.16	1.00	3.00	1.16	0.39
4-Chlorophenyl phenyl ether	1.36E-01			1.36E-01	1.36E-01	1.36E-01	1.63E-02	0.02	NA	NA	NA	NA

 $a.\ Uptake = (FIR^*(EPC_{SD}^*SD + EPC_{FI}^*FI + EPC_{IN}^*IN + EPC_{FR}^*FR + EPC_{EG}^*EG + EPC_{PL}^*PL) + WIR^*EPC_{SW})^*AUF/BW$

Symbol	Value	Units
BW	5.67	Kg
FIR	1.43E+00	Kg/day
FI	0.2	unitless
IN	0.2	unitless
FR	0.2	unitless
EG	0.2	unitless
PL	0.11	unitless
SD	0.09	unitless
WIR	0.468	L/d
AUF	1	unitless

TABLE 39 Apportionment of Risk Based on Maximum Exposures

Grove Pond

Raccoon Risk Apportionment Surface | No. | Invertebrates | 0.05 | 0.07 | 0.00 | 28 | 0.03 | 0.41 | 1.19 | 12.15 | 3.02 | 39 | 0.29 | 0.31 | 0.00 | 28 | 0.02 | 0.40 | 0.62 | 0.11 | 1.81 | 26 | 75 | 3.16 | 2.80 | 0.00 | 29 | 0.00 | 29 | 0.00 | 0.00 | 29 | 0.00 | Swallow 0.27 28 0.12 4.44 Sediment 99 14 99 69 19 19 94 13 93 98 Chemical aluminum Antimony arsenic 0.00 0.00 0.05 0.01 Plants 0.06 0.42 0.52 1.51 0.03 5.03 1.88 5.64 0.05 5.53 0.04 0.22 0.21 0.03 28 0.41 12.15 39 0.31 barium 0.00 0.00 0.00 0.00 0.08 28 0.94 0.33 2.35 17 3.26 29 0.09 Beryllium cadmium Cobalt 28 0.40 0.11 copper lead 0.00 38 2.18 94 14 18 manganese Methylmercury selenium 0.06 0.00 0.00 0.00 0.00 0.00 **26** 3.16 0.00 26 3.16 0.00 29 40 30 Thallium

Mink								
		Risk Apportionment						
Chemical	Sediment	Surface Water	Fish					
aluminum	98	0.02	2.23					
arsenic	98	0.10	1.42					
cadmium	88	0.00	12					
copper	99	0.16	1.02					
Methylmercury	0	0.00	100					
vanadium	61	0.00	30					

Kingfisher

	Risk Appor Surface					
Chemical	Water	Fish				
lead	1.20E-03	100				
Methylmercury	5.15E-08	100				
DDT		100				
DDE		100				
Total PCB		100				

Black-Crowned Night H	leron				
			Risk App	ortionment	
		Surface			
Chemical	Sediment	Water	Fish	Invertebrates	Frog
aluminum	97	0.00	0.37	1	2
Antimony	3.26	0.00	0.00	48	48
Beryllium	5.88	0.00	6.80	87	0
cadmium	95	0.00	2.20	2	1
chromium	99	0.00	0.06	0	0
Cobalt	2.94	0.00	0.00	49	49
copper	90	0.00	0.15	3	7
lead	93	0.01	4.36	1	2
Mercury (inorganic)	99	0.00	0.22	0	1
Methylmercury	0.31	0.00	79	3	18
Thallium	3.26	0.00	0.00	48	48
vanadium	5.67	0.00	0.62	94	0
DDT	3.01	0.00	2.58	47	47
DDE	2.71	0.00	12	42	42
DDD	3.09	0.00	0.00	48	48

Tree Swallow

	Risk Apportionment
	Swallow stomach
Chemical	contents
Arsenic	100
Chromium	100
Lead	100
Methylmercury	100

Plow Shop Pond

Raccoon

	Risk Apportio	nment					ggs Plants									
	1	Surface				Swallow										
Chemical	Sediment	Water	Fish	Invertebrates	Frog	Eggs	Plants									
aluminum	97	0	0	0	3	0	0									
Antimony	14	0	0	28	28	28	0									
arsenic	99	0	0	0	0	0	1									
barium	43	0	1	25	5	25	1									
cadmium	92	0	0	2	1	0	5									
Cobalt	13	0	0	28	28	28	2									
copper	91	0	0	1	0	1	5									
lead	99	0	0	0	0	0	1									
manganese	81	0	0	3	0	3	12									
Methylmercury	1	0	65	1	6	27	0									
selenium	78	0	8	2	9	2	0									
Thallium	14	0	0	29	29	29	0									
vanadium	18	0	0	40	0	40	3									
PAH (Total)	11	0	0	30	30	30	0									

Mink

	Risk Apportionment					
Chemical	Sediment	Surface Water	Fish			
aluminum	98	0	2			
arsenic	98	0	2			
manganese	85	5	15			
Methylmercury	0	0	100			
Thallium	96	0	0			
vanadium	68	0	32			

Vinatiohau

Kingtisner					
	Risk Appo Surface	rtionment			
Chemical	Water	Fish			
arsenic		94			
Methylmercury		100			
4,4'-DDD		100			
4.4'-DDE	1	100			

Night Heron								
	Risk Apportionment							
		Surface						
Chemical	Sediment	Water	Fish	Invertebrates	Frog			
aluminum	83	0	0	0	17			
Antimony	3	0	0	48	48			
arsenic	99	0	0	1	0			
chromium	99	0	0	0	0			
Cobalt	3	0	0	48	48			
lead	98	0	0	1	1			
Mercury (inorganic)	97	0	1	0	1			
Methylmercury	0	0	90	2	8			
Thallium	3	0	0	48	48			
vanadium	6	0	0	93	0			
4,4'-DDD	3	0	3	47	47			
4,4'-DDE	3	0	13	42	42			
4,4'-DDT	3	0	5	46	46			

Swallow	
	Risk Apportionment
	Swallow stomach
Chemical	contents
Cadmium	100
Chromium	100
Lead	100
Methylmercury	100

Table 40 Apportionment of Risk Based on Average Exposures

Grove Pond

Raccoon

	Risk Apportionment								
Chemical	Sediment	Surface Water	Fish	Invertebrates	Frog	Swallow	Plants		
aluminum	98	0.00	0.12	0.55	0.45	Eggs 0.55	0.06		
Antimony	14	0.00	0.00	28	28	28	0.42		
arsenic	96	0.06	0.53	2.31	0.39	0.67	0.50		
barium	35	0.02	1.21	29	4.54	29	0.78		
manganese	15	0.02	0.98	40	1.29	40	2.20		
Methylmercury	1.09	0.00	22	2.89	9.07	65	0.02		
selenium	85	0.00	8.51	0.00	6.18	0.00	0.20		
Thallium	14	0.00	0	29	29	29	0.01		
vanadium	18	0.00	0.14	40	0.31	40	2.61		
PAH (Total)	11	0.00	0.00	30	30	30	0.03		

Mink

		Risk Apportionment					
Chemical	Sediment	Surface Water	Fish				
aluminum	95	0.04	5.31				
arsenic	79	0.10	20				
arseriic	10	0.10	20				

Belted Kingfisher					
Risk					
Apportionment					
Fish					
100					
100					
100					

Black-Crowned Night Heron

		Risk Apportionment						
Chemical	Sediment	Surface Water	Fish	Invertebrates	Frog			
Antimony	3	0	0	48	48			
chromium	99	0	0	0	0			
lead	91	0	4	2	3			
Methylmercury	0	0	65	8	27			
Thallium	3	0	0	48	48			
DDD	3	0	6	46	46			
DDE	2	0	27	35	35			
DDT	3	0	0	48	48			

Tree Swallow

	Risk Apportionment
Chemical	Swallow stomach contents
Chromium	100
Lead	100
Methylmercury	100

Plow Shop Pond

Raccoon

1144000011								
	Risk Apportionment							
		Surface				Swallow		
Chemical	Sediment	Water	Fish	Invertebrates	Frog	Eggs	Plants	
Inorganics								
aluminum	98	0	0	0	2	0	0	
Antimony	14	0	0	28	28	28	0	
arsenic	99	0.0	0	0.4	0.1	0.0	0.5	
barium	25	0	1	35	4	35	1	
manganese	41	0	1	26	1	26	6	
Methylmercury	2	0	85	4	9	0	0	
selenium	85	0	5	2	5	2	0	
Thallium	14	0	0	29	29	29	0	
vanadium	18	0	1	39	0	39	3	
PAH (Total)	11	0	0	30	30	30	0	

Mink

		Risk Apportionment				
Chemical	Sediment	Surface Water	Fish			
aluminum	98	0.02	2.42			
arsenic	95	0.01	5			
Methylmercury	0	0.00	100			
Thallium	99	0.01	0.00			

Belted Kingfisher

Deiteu Killgilöllei					
	Risk Apportionment				
Chemical	Fish				
Methylmercury	100				
4,4'-DDD	100				
4,4'-DDE	100				
4,4'-DDT	100				

Black-Crowned Night Heron

		Die	sk Apportion		
		Surface	sk Apportion	ment	
Chemical	Sediment	Water	Fish	Invertebrates	Frog
Antimony	3.26	0.00	0.00	48	48
chromium	98	0.00	0.38	0.88	1.17
Methylmercury	0.33	0.00	87	3.66	9.42
Thallium	3.26	0.01	0.00	48	48
4,4'-DDD	2.42	0.00	22	38	38
4,4'-DDE	2.14	0.00	31	34	34

Tree Swallow

Tree Biranoii	
	Risk Apportionment
	Swallow stomach
Chemical	contents
Chromium	100
Lead	100
Methylmercury	100

TABLE 41 Residual Risk - Maximum EPCs

					Raccoon			
			HQs - Max	Exposure	Naccoon		Resi	dual Risk ^a
COPC	Grove NOAEL	Pond		op Pond LOAEL	Backg NOAEL	round LOAEL	Grove Pond	Plow Shop Pond
Inorganics								· · · ·
aluminum	1064	106	327	33	94	9.4	11	3.5
Antimony	15	1.5	39	4	0	0	100% ^b	100%
arsenic	166	17	1234	123	21	2.1	7.9	59
barium	3.1	1.0	3.8	1.3	1.2	0.39	2.6	3.2
Beryllium	2.5	0.8	NA	NA	0.19	0.06	13	NA
cadmium	18	5.9	1.6	0.5	0.33	0.11	53	4.9
Cobalt	1.7	0.7	1.4	0.6	0.29	0.11	5.8	4.9
copper	27	21	7.3	5.6	0.09	0.07	302	82
lead	5.1	0.5	3.5	0.3	0.58	0.06	8.8	6.0
manganese	1.7	0.5	17	5.4	1.2	0.37	1.4	15
Methylmercury	2.3	0.5	6.2	1.2	1.2	0.24	1.9	5.1
selenium	5.0	3.0	2.1	1.3	0	0	100%	100%
Thallium	4.3	0.4	632	63	0	0	100%	100%
vanadium	85	8.5	101	10	24	2.4	3.6	4.3
SVOC								
PAH (Total)	8.8	2.9	20.8	6.9	2.6	0.9	3.4	8.0

Mink

			HQs - Max	Exposure			Residual Risk ^a		
COPC	Grove NOAEL	Grove Pond NOAEL LOAEL		Plow Shop Pond NOAEL LOAEL		round LOAEL	Grove Pond	Plow Shop Pond	
Inorganics	i e								
aluminum	67	6.7	20	2.0	6.2	0.62	11	3.2	
arsenic	10	1.0	77	8	1.2	0.1	8.5	63	
cadmium	1.2	0.4	0.1	0.0	0.02	0.01	64	NA	
copper	1.6	1.2	0.4	0.3	0.01	0.01	152	NA	
manganese	0.1	0.04	1.0	0.3	0.07	0.02	NA	15	
Methylmercury	4.7	0.9	11	2.2	1.2	0.2	3.8	9.0	
Thallium	0.04	0.004	5.8	0.6	0	0	NA	100%	
vanadium	1.5	0.2	1.6	0.2	0.26	0.03	5.9	6.3	

Belted Kingfisher

			HQs - Max	Exposure			Resi	Residual Risk ^a		
	Grove	Pond	Plow Sh	op Pond	Background					
COPC	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	Grove Pond	Plow Shop Pond		
Inorganics										
lead	2.2	0.2	0.1	0.0	0.00034	0.00003	6445	NA		
Methylmercury	84	8.4	198	20	22.0	22.0 2.2		9.0		
Pesticides/PCBs										
DDD	4.6	0.5	3.9	0.4	1.16	0.12	3.9	3.3		
DDE	9.5	0.95	13	1.3	9.9 0.99		0.96	1.4		
Total PCB	1.3	0.1	NA	NA	0	0	100%	100%		

Black-Crowned Night Heron

			Resi	dual Risk ^a				
	Grove	Grove Pond		Plow Shop Pond		ground		
COPC	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	Grove Pond	Plow Shop Pond
Inorganics								
aluminum	4.5	1.5	1.6	0.5	0.44	0.15	10	3.6
Antimony	16	1.6	40	4.0	0	0	100%	100%
arsenic	0.98	0.4	7.1	2.9	0.14	0.06	NA	52
Beryllium	1.9	0.6	NA	NA	0.14	0.05	14	NA
cadmium	2.8	0.2	0.3	0.0	0.07	0.01	38	NA
chromium	278	56	202	40	0.19	0.04	1480	1077
Cobalt	1.7	0.7	1.4	0.6	0.29	0.12	5.8	4.9
copper	1.6	1.2	0.4	0.3	0.01	0.01	187	NA
lead	9.0	0.9	5.9	0.6	1.00	0.10	9.0	5.9
Mercury (inorganic)	5.1	2.5	3.0	1.5	0.01	0.003	749	450
Methylmercury	19	1.9	39	3.9	4.94	0.49	3.8	7.9
Thallium	4.4	0.4	649	65	0	0	100%	100%
vanadium	1.2	0.4	1.4	0.5	0.32	0.11	NA	4.3
Pesticides/PCBs								
DDD	32	3.2	23	2.3	0.82	0.08	38	28
DDE	14	1.4	18	1.8	3.84	0.38	3.6	4.8
DDT	41	4.1	1.7	0.2	0.09	0.01	458	19

a. The RR for NOAEL and LOAEL based HQs are identical.
 b. 100% = all site risk due to site COPC as chemical was not detected in background media.

TABLE 42 Residual Risk - Average EPCs

					Raccoon			
			HQs - Avg				Resi	dual Risk ^a
	Grove	Pond	Plow Sh	op Pond	Backg	round		
COPC	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	Grove Pond	Plow Shop Pond
Inorganics								
aluminum	128	13	99	9.9	85	8.5	1.5	1.2
Antimony	14	1.40	19.85	1.98	0	0	100% ^b	100%
arsenic	15	1.49	100	10.0	16	1.6	0.95	6.4
barium	1.04	0.35	1.78	0.59	1.0	0.35	0.99	1.7
manganese	1.02	0.32	1.49	0.46	1.0	0.31	1.04	2
Methylmercury	1.40	0.28	1.09	0.22	14.2	2.84	0.1	0.1
selenium	1.01	0.61	1.92	1.16	0	0	100%	100%
Thallium	3.4	0.3	501	50	0	0	100%	100%
vanadium	20	1.97	16.3	1.63	18	1.8	1.1	0.9
SVOC								
PAH (Total)	1.16	0.39	2.12	0.71	2.6	0.9	0.4	0.8

Mink

			HQs - Avg	Exposure			Residual Risk ^a		
	Grove	Pond	Plow Sh	op Pond	Backg	round			
COPC	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL LOAEL		Grove Pond	Plow Shop Pond	
Inorganics									
aluminum	8.18	0.82	6.12	0.61	5.5	0.55	2	1.1	
arsenic	1.10	0.11	6.4	0.64	0.9	0.1	1.2	7	
Methylmercury	0.85	0.17	2.54	0.51	0.8 0.2		NA	3.3	
Thallium	0.03	0.00	4.46	0.45	0	0	NA	100%	

Belted Kingfisher

	· · · · · · · · · · · · · · · · · · ·									
			HQs - Avg	Exposure			Resi	dual Risk ^a		
	Grove	Pond	Plow Sh	op Pond	Background					
COPC	NOAEL	NOAEL LOAEL NOAEL LOAEL NOAEL		NOAEL	LOAEL	Grove Pond	Plow Shop Pond			
Inorganics										
Methylmercury	15 1.51		45	4.52	13.7	1.4	1.1	3.3		
Pesticides/PCBs										
DDD	1.40	0.14	0.70	0.07	0.87	0.09	1.6	NA		
DDE	3.13	0.31	2.89	0.29	5.7	0.57	0.55	0.5		

Black-Crowned Night Heron

			Residual Risk ^a					
	Grove	Pond	Plow Sh	op Pond	Background			
COPC	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	Grove Pond	Plow Shop Pond
Inorganics								
Antimony	14	1.44	20	2.03	0	0	100%	100%
chromium	31	6.29	12	2.48	0.16	0.03	196	77
lead	1.36	0.14	0.86	0.09	0.80	0.08	1.7	NA
Methylmercury	4.16	0.42	9	0.93	17.55	1.75	0.2	0.5
Thallium	4	0.35	515	51	0	0	100%	100%
Pesticides/PCBs								
DDD	4.20	0.42	1.15	0.11	0.77	0.08	5	1.5
DDE	2.05	0.21	1.26	0.13	3.11	0.31	0.7	0.4
DDT	1.13	0.11	0.18	0.02	0.09	0.01	13	NA

a. The RR for NOAEL and LOAEL based HQs are identical.

b. 100% = all site risk due to site COPC as chemcial was not detected in background media.

TABLE 43

Maximum Uptake and Hazard Quotient Calculations - Plow Shop Pond Raccoon

				EPCs					TRV (mg/l	(g-d)	ı	-IQ
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Swallow Eggs (mg/kg)	Plants (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics	1											+
aluminum	2.70E+04	2.25E-01	4.50E+00	2.94E+00	3.30E+02	2.94E+00	1.30E+01	630.40	1.93	19.30	327	33
Antimony	3.07E+01	5.00E-03		2.76E+01	2.76E+01	2.76E+01	7.37E-01	4.90	0.13	1.25	39	4
arsenic	6.80E+03	3.80E-01	1.30E+00	2.45E+00	7.05E-01	5.80E-01	2.94E+01	155.45	0.13	1.26	1234	123
barium	3.70E+02	4.40E-02	4.40E+00	9.51E+01	1.97E+01	9.51E+01	6.66E+00	19.40	5.10	15.30	3.80	1.27
Beryllium	2.72E+00	1.00E-03		2.45E+00		2.45E+00	3.26E-03	0.31	0.66	1.98	0.47	0.16
Boron				4.70E-01	4.70E-01	4.70E-01		0.07	28.00	93.60	0.00	0.00
cadmium	6.60E+01	1.50E-03	9.00E-02	6.20E-01	2.90E-01		2.88E+00	1.63	1.00	3.00	1.63	0.54
chromium	3.78E+04	3.00E-03	9.90E-01	3.19E+00	1.08E+01	4.70E-01	3.40E+01	859.72	2737.00	27370.00	0.31	0.03
Cobalt	5.90E+01	1.30E-02	1.70E-01	5.90E+01	5.90E+01	5.90E+01	7.08E+00	10.47	7.33	18.90	1.43	0.55
copper	3.45E+03	4.87E-02	1.30E+00	2.44E+01	5.29E+00	2.44E+01	1.66E+02	85.70	11.70	15.40	7.32	6
lead	1.21E+03	5.00E-03	1.80E-01	4.70E-01	1.09E+00	4.70E-01	6.56E+00	27.86	8.00	80.00	3.48	0.35
manganese	5.48E+04	5.90E-01	9.47E+01	1.04E+03	4.75E+01	1.04E+03	6.58E+03	1538.65	88.00	284.00	17	5.42
Mercury (inorganic)	2.50E+02		1.35E-01	6.90E-02	2.01E-01	#REF!	1.13E+00	#REF!	13.20	39.60	#REF!	#REF!
Methylmercury	8.19E-02		2.57E+00	5.60E-02	2.24E-01	1.06E+00	1.35E-03	0.20	0.03	0.16	6.21	1.24
nickel	8.78E+01	4.42E-02	8.00E-01	2.70E-01	5.02E+00	2.70E-01	3.37E-01	2.33	40.00	80.00	0.06	0.03
selenium	1.47E+01	2.00E-02	6.70E-01	1.80E-01	7.97E-01	1.80E-01	2.82E-02	0.43	0.20	0.33	2.14	1.30
Silver	2.00E+00	3.60E-03		1.80E+00	1.80E+00	1.80E+00	2.40E-01	0.32	NA	NA	NA	NA
strontium				1.57E+02	1.30E+01	1.57E+02		16.49	263.00	789.00	0.06	0.02
Thallium	2.94E+01	2.00E-02		2.65E+01	2.65E+01	2.65E+01	1.41E-02	4.67	0.01	0.07	632	63
vanadium	1.66E+02	1.50E-03	8.00E-01	1.66E+02	6.93E-01	1.66E+02	1.99E+01	21.14	0.21	2.10	101	10
zinc	1.10E+03	5.81E-02	2.96E+01	2.33E+01	9.72E+01	2.33E+01	1.58E-10	33.72	160.00	320.00	0.21	0.11
Pesticides												+
4,4'-DDD	1.80E+00		1.10E-01	1.71E+00	1.71E+00	1.71E+00	2.02E-03	0.31	0.80	4.00	0.38	0.08
4,4'-DDE	1.30E+00		3.80E-01	1.24E+00	1.24E+00	1.24E+00	1.46E-03	0.24	0.80	4.00	0.29	0.06
4,4'-DDT	1.30E-01		1.40E-02	1.24E-01	1.24E-01	1.24E-01	1.46E-04	0.02	0.80	4.00	0.03	0.01
Aroclor 1254	1.30E-01			6.89E-02	6.89E-02	6.89E-02	1.56E-04	0.01	0.14	0.41	0.10	0.03
Aroclor 1260	5.00E-02		3.30E-01	2.65E-02	2.65E-02	2.65E-02	6.00E-05	0.02	0.14	0.41	0.16	0.05
SVOC	1				+							+
PAH (Total)	9.87E+01			1.22E+02	1.22E+02	1.22E+02	2.37E-01	20.76	1.00	3.00	21	6.92
voc	1				+							+
Acetone	2.6			1.30E-01	1.30E-01	1.30E-01	1.62E+01	0.53	10.00	50.00	0.05	0.01

 $a.\ Uptake = (FIR^*(EPC_{SD}^*SD + EPC_{FI}^*FI + EPC_{IN}^*IN + EPC_{FR}^*FR + EPC_{EG}^*EG + EPC_{PL}^*PL) + WIR^*EPC_{SW})^*AUF/BW$

Symbol	Value	Units
BW	5.67	Kg
FIR	1.43E+00	Kg/day
FI	0.2	unitless
IN	0.2	unitless
FR	0.2	unitless
EG	0.2	unitless
PL	0.11	unitless
SD	0.09	unitless
WIR	0.468	L/d
AUF	1	unitless

TABLE 44
Average Uptake and Hazard Quotient Calculations - Plow Shop Pond Raccoon

				EPCs					TRV (mg/kg-d)			HQ
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Swallow Eggs (mg/kg)	Plants (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics												
aluminum	8.23E+03	1.82E-02	2.06E+00	2.03E+00	7.49E+01	2.03E+00	3.95E+00	190.97	1.93	19.30	99	9.9
Antimony	1.56E+01	1.45E-03		1.40E+01	1.40E+01	1.40E+01	3.73E-01	2.48	0.13	1.25	20	1.98
arsenic	5.42E+02	1.37E-02	3.20E-01	1.03E+00	2.56E-01	0.00E+00	2.34E+00	12.45	0.13	1.26	99	9.9
barium	1.01E+02	1.13E-02	1.55E+00	6.25E+01	7.25E+00	6.25E+01	1.81E+00	9.08	5.10	15.30	1.78	0.594
Beryllium	1.42E+00	3.56E-04		1.27E+00		1.27E+00	1.70E-03	0.16	0.66	1.98	0.24	0.081
Boron				4.07E-01		4.07E-01		0.04	28.00	93.60	0.00	0.000
cadmium	1.02E+01	4.67E-04	5.45E-02	2.25E-01	1.18E-01	0.00E+00	4.46E-01	0.26	1.00	3.00	0.26	0.088
chromium	2.27E+03	1.52E-03	5.37E-01	1.24E+00	1.65E+00	0.00E+00	2.05E+00	51.86	2737.00	27370.00	0.019	0.002
Cobalt	1.23E+01	1.94E-03	8.68E-02	1.23E+01	1.23E+01	1.23E+01	1.48E+00	2.19	7.33	18.90	0.30	0.116
copper	1.23E+02	6.04E-03	5.81E-01	4.08E+00	2.64E+00	4.08E+00	5.88E+00	3.52	11.70	15.40	0.30	0.229
lead	1.69E+02	1.30E-03	2.28E-01	1.68E-01	4.37E-01	0.00E+00	9.11E-01	3.90	8.00	80.00	0.49	0.049
manganese	2.35E+03	1.20E-01	3.02E+01	6.72E+02	1.68E+01	6.72E+02	2.82E+02	131.30	88.00	284.00	1.49	0.46
Mercury (inorganic)	2.70E+01		3.10E-02	4.45E-02	6.21E-02		1.22E-01	0.62	13.20	39.60	0.05	0.016
Methylmercury	3.67E-02		5.86E-01	2.48E-02	6.37E-02	6.15E-01	6.03E-04	0.07	0.03	0.16	2.06	0.41
nickel	2.97E+01	6.49E-03	3.82E-01	1.50E-01	8.97E-01	1.50E-01	1.14E-01	0.76	40.00	80.00	0.02	0.009
selenium	1.43E+01	5.13E-03	3.89E-01	1.72E-01	3.90E-01	1.72E-01	2.75E-02	0.38	0.20	0.33	1.92	1.16
Silver	4.87E+00	6.88E-04		4.39E+00	4.39E+00	4.39E+00	5.85E-01	0.79	NA	NA	NA	NA
strontium				3.89E+01	9.60E+00	3.89E+01		4.40	263.00	789.00	0.02	0.006
Thallium	2.33E+01	4.78E-03		2.10E+01	2.10E+01	2.10E+01	1.12E-02	3.71	0.01	0.07	501	50
vanadium	2.66E+01	5.26E-04	3.57E-01	2.66E+01	3.34E-01	2.66E+01	3.20E+00	3.41	0.21	2.10	16	1.63
zinc	1.99E+02	1.12E-02	2.00E+01	1.93E+01	3.18E+01	1.93E+01	2.86E-11	9.07	160.00	320.00	0.06	0.03
Pesticides												
4,4'-DDD	8.32E-02		1.99E-02	7.91E-02	7.91E-02	7.91E-02	9.36E-05	0.01	0.80	4.00	0.019	0.004
4,4'-DDE	6.09E-02		8.21E-02	5.79E-02	5.79E-02	5.79E-02	6.85E-05	0.01	0.80	4.00	0.018	0.004
4,4'-DDT	1.16E-02		6.24E-03	1.10E-02	1.10E-02	1.10E-02	1.30E-05	0.00	0.80	4.00	0.003	0.001
Aroclor 1254	5.00E-02			2.65E-02	2.65E-02	2.65E-02	6.00E-05	0.01	0.14	0.41	0.038	0.013
Aroclor 1260	4.27E-02		7.20E-02	2.26E-02	2.26E-02	2.26E-02	5.13E-05	0.01	0.14	0.41	0.059	0.020
SVOC												+
PAH (Total)	1.01E+01			1.25E+01	1.25E+01	1.25E+01	2.42E-02	2.12	1.00	3.00	2.12	0.71
voc					+							
Acetone	1.05E-02			5.25E-04	5.25E-04	5.25E-04	6.55E-02	0.00	10.00	50.00	0.000	0.000

 $a.\ Uptake = (FIR*(EPC_{SD}*SD+EPC_{FI}*FI+EPC_{IN}*IN+EPC_{FR}*FR+EPC_{EG}*EG+EPC_{PL}*PL) + WIR*EPC_{SW})*AUF/BW$

ue Units
7 Kg
+00 Kg/day
2 unitless
2 unitless
2 unitless
2 unitless
1 unitless
9 unitless
88 L/d
unitless

TABLE 45
Maximum Uptake and Hazard Quotient Calculations - Grove Pond Mink

		EPCs			TRV	(mg/kg-d)		IQ
Chemical	Sediment (mg/kg)	Surface	Fish (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics								
aluminum	90000	1.76E-01	2.07E+01	128.88	1.93	19.30	67	6.68
Antimony	1.21E+01			0.02	0.13	1.25	0.14	0.01
arsenic	910	1.28E-01	1.33E-01	1.30	0.13	1.26	10	1.03
barium	470	2.30E-02	3.68E+00	1.17	5.10	15.30	0.23	0.08
Beryllium	14.1		9.88E-01	0.16	0.66	1.98	0.24	0.08
cadmium	730		1.02E+00	1.16	1.00	3.00	1.16	0.39
chromium	52000	1.75E-01	1.80E+00	73.06	2737.00	27370.00	0.03	0.00
Cobalt	70.0	4.00E-03		0.10	7.33	18.90	0.01	0.01
copper	13000	3.20E-02	1.35E+00	18.39	11.70	15.40	1.57	1.19
lead	1760	2.70E-02	5.02E+00	3.16	8.00	80.00	0.40	0.04
manganese	2500	1.04E+00	5.40E+01	11.07	88.00	284.00	0.13	0.04
Mercury (inorganic)	422	1.10E-03	5.70E-02	0.60	13.20	39.60	0.05	0.02
Methylmercury	0.07044	2.51E-07	1.09E+00	0.15	0.03	0.16	4.71	0.94
nickel	86	3.20E-02	4.85E+00	0.79	40.00	80.00	0.02	0.01
selenium	41.2		5.54E-01	0.13	0.20	0.33	0.67	0.41
Silver	12.4			0.02	NA	NA	NA	NA
strontium			4.85E+01	6.72	263.00	789.00	0.03	0.01
Thallium	2.00E-01			0.0003	0.01	0.07	0.04	0.00
vanadium	140		9.23E-01	0.32	0.21	2.10	1.54	0.15
zinc	820	9.11E+00	4.20E+01	7.69	160.00	320.00	0.05	0.02
Pesticides/PCBs								
DDD	2.50E+00		1.30E-01	0.02	0.80	4.00	0.03	0.01
DDE	9.80E-01		2.70E-01	0.04	0.80	4.00	0.05	0.01
DDT	3.30E+00			0.00	0.80	4.00	0.01	0.00
Endrin	2.80E-02			0.00	0.09	0.92	0.00	0.00
Total PCB			4.70E-01	0.07	0.14	0.41	0.48	0.16
SVOC								
PAH (Total)	4.20E+01			0.06	1.00	3.00	0.06	0.02
4-Chlorophenyl phenyl ether	8.40E-01			0.00	NA	NA	NA	NA

a. Uptake=(FIR*(EPC_{SD}*SD+EPC_{FI}*FI)+WIR*EPC_{SW})

Symbol	Value	Units
BW	1.40	Kg
FIR	1.96E-01	Kg/day
FI	0.99	unitless
SD	0.01	unitless
WIR	0.111	L/d
HR	2.24	Km shoreline
AUF	1	unitless

TABLE 46
Average Uptake and Hazard Quotient Calculations - Grove Pond Mink

		EPCs			TRV	(mg/kg-d)	Н	HQ	
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL	
Inorganics									
aluminum	1.07E+04	4.49E-02	6.05E+00	15.79	1.93	19.30	8.18	0.82	
Antimony	1.10E+01			0.02	0.13	1.25	0.12	0.01	
arsenic	7.89E+01	1.43E-02	1.98E-01	0.14	0.13	1.26	1.10	0.11	
barium	8.28E+01	1.10E-02	1.27E+00	0.29	5.10	15.30	0.06	0.02	
Beryllium	1.17E+00		6.79E-02	0.01	0.66	1.98	0.02	0.01	
cadmium	1.79E+01		1.15E-01	0.04	1.00	3.00	0.04	0.01	
chromium	5.86E+03	1.31E-02	6.75E-01	8.30	2737.00	27370.00	0.003	0.000	
Cobalt	1.41E+01	3.21E-03		0.02	7.33	18.90	0.00	0.00	
copper	1.46E+02	7.76E-03	5.98E-01	0.29	11.70	15.40	0.02	0.02	
lead	2.63E+02	7.18E-03	7.16E-01	0.47	8.00	80.00	0.06	0.01	
manganese	5.97E+02	2.12E-01	1.75E+01	3.28	88.00	284.00	0.04	0.01	
Mercury (inorganic)	2.19E+01	3.96E-04	1.00E-02	0.03	13.20	39.60	0.002	0.0008	
Methylmercury	2.15E-02		1.96E-01	0.03	0.03	0.16	0.85	0.17	
nickel	2.93E+01	4.56E-03	3.92E-01	0.10	40.00	80.00	0.00	0.00	
selenium	7.61E+00		3.42E-01	0.06	0.20	0.33	0.29	0.18	
Silver	3.20E+00			0.00	NA	NA	NA	NA	
strontium			1.95E+01	2.70	263.00	789.00	0.01	0.00	
Thallium	1.60E-01			0.00	0.01	0.07	0.03	0.00	
vanadium	3.24E+01		1.18E-01	0.06	0.21	2.10	0.29	0.03	
zinc	2.68E+02	9.27E-01	1.84E+01	3.00	160.00	320.00	0.02	0.01	
Pesticides/PCBs									
DDD	3.21E-01		3.98E-02	0.01	0.80	4.00	0.01	0.00	
DDE	1.22E-01		8.87E-02	0.01	0.80	4.00	0.02	0.00	
DDT	9.20E-02			0.00	0.80	4.00	0.00	0.00	
Endrin	1.14E-02	_		0.00	0.09	0.92	0.00	0.00	
Total PCBs			1.29E-01	0.02	0.14	0.41	0.13	0.04	
SVOC									
PAH (Total)	5.52E+00			0.01	1.00	3.00	0.01	0.00	
4-Chlorophenyl phenyl ether	1.36E-01			0.00	NA	NA	NA	NA	

a. Uptake=($FIR*(EPC_{SD}*SD+EPC_{FI}*FI)+WIR*EPC_{SW}$)

Symbol	Value	Units
BW	1.40	Kg
FIR	1.96E-01	Kg/day
FI	0.99	unitless
SD	0.01	unitless
WIR	0.111	L/d
HR	2.24	Km shoreline
AUF	1	unitless

TABLE 47

Maximum Uptake and Hazard Quotient Calculations- Plow Shop Pond Mink

		EPCs			TRV (mg/kg-	/ (mg/kg-d)		
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Uptake ^a (mg/kg- d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics								
aluminum	2.70E+04	2.25E-01	4.50E+00	38	1.93	19.30	20	1.99
Antimony	3.07E+01	5.00E-03		0.04	0.13	1.25	0.35	0.03
arsenic	6.80E+03	3.80E-01	1.30E+00	10	0.13	1.26	77	8
barium	3.70E+02	4.40E-02	4.40E+00	1.13	5.10	15.30	0.22	0.07
Beryllium	2.72E+00	1.00E-03		0.004	0.66	1.98	0.01	0.002
Boron				0.000	28.00	93.60	NA	NA
cadmium	6.60E+01	1.50E-03	9.00E-02	0.10	1.00	3.00	0.10	0.03
chromium	3.78E+04	3.00E-03	9.90E-01	53	2737.00	27370.00	0.02	0.00
Cobalt	5.90E+01	1.30E-02	1.70E-01	0.11	7.33	18.90	0.01	0.006
copper	3.45E+03	4.87E-02	1.30E+00	5.01	11.70	15.40	0.43	0.33
lead	1.21E+03	5.00E-03	1.80E-01	1.73	8.00	80.00	0.22	0.02
manganese	5.48E+04	5.90E-01	9.47E+01	90	88.00	284.00	1.02	0.32
Mercury (inorganic)	2.50E+02		1.35E-01	0.37	13.20	39.60	0.03	0.009
Methylmercury	8.19E-02		2.57E+00	0.36	0.03	0.16	11	2.22
nickel	8.78E+01	4.42E-02	8.00E-01	0.24	40.00	80.00	0.01	0.003
selenium	1.47E+01	2.00E-02	6.70E-01	0.12	0.20	0.33	0.58	0.35
Silver	2.00E+00	3.60E-03		0.003	NA	NA	NA	NA
strontium				0.000	263.00	789.00	NA	NA
Thallium	2.94E+01	2.00E-02		0.04	0.01	0.07	5.78	0.58
vanadium	1.66E+02	1.50E-03	8.00E-01	0.34	0.21	2.10	1.64	0.16
zinc	1.10E+03	5.81E-02	2.96E+01	5.65	160.00	320.00	0.04	0.02
Pesticides								
4,4'-DDD	1.80E+00		1.10E-01	0.02	0.80	4.00	0.022	0.004
4,4'-DDE	1.30E+00		3.80E-01	0.05	0.80	4.00	0.068	0.014
4,4'-DDT	1.30E-01		1.40E-02	0.0021	0.80	4.00	0.003	0.001
Aroclor 1254	1.30E-01			0.0002	0.14	0.41	0.001	0.000
Aroclor 1260	5.00E-02		3.30E-01	0.0458	0.14	0.41	0.334	0.111
svoc								+
PAH (Total)	9.87E+01			0.14	1.00	3.00	0.14	0.05
voc								+
Acetone	2.6			0.004	10.00	50.00	0.000	0.000

a. Uptake=(FIR*(EPC_{SD}*SD+EPC_{Fi}*FI)+WIR*EPC_{SW})

Symbol	Value	Units
BW	1.40	Kg
FIR	1.96E-01	Kg/day
FI	0.99	unitless
SD	0.01	unitless
WIR	0.111	L/d
HR	2.24	Km shoreline
AUF	1	unitless

TABLE 48
Average Uptake and Hazard Quotient Calculations - Plow Shop Pond Mink

		EPCs			TRV (mg/kg-	·d)	HQ		
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Uptake ^a (mg/kg- d)	NOAEL	LOAEL	NOAEL	LOAEL	
Inorganics									
aluminum	8.23E+03	1.82E-02	2.06E+00	11.81	1.93	19.30	6.12	0.61	
Antimony	1.56E+01	1.45E-03		0.02	0.13	1.25	0.18	0.02	
arsenic	5.42E+02	1.37E-02	3.20E-01	0.80	0.13	1.26	6.38	0.64	
barium	1.01E+02	1.13E-02	1.55E+00	0.36	5.10	15.30	0.07	0.02	
Beryllium	1.42E+00	3.56E-04		0.00	0.66	1.98	0.00	0.00	
Boron				0.00	28.00	93.60	NA	NA	
cadmium	1.02E+01	4.67E-04	5.45E-02	0.02	1.00	3.00	0.02	0.01	
chromium	2.27E+03	1.52E-03	5.37E-01	3.26	2737.00	27370.00	0.001	0.000	
Cobalt	1.23E+01	1.94E-03	8.68E-02	0.03	7.33	18.90	0.00	0.00	
copper	1.23E+02	6.04E-03	5.81E-01	0.25	11.70	15.40	0.02	0.02	
lead	1.69E+02	1.30E-03	2.28E-01	0.27	8.00	80.00	0.03	0.00	
manganese	2.35E+03	1.20E-01	3.02E+01	7.48	88.00	284.00	0.08	0.03	
Mercury (inorganic)	2.70E+01		3.10E-02	0.04	13.20	39.60	0.00	0.00	
Methylmercury	3.67E-02		5.86E-01	0.08	0.03	0.16	2.54	0.51	
nickel	2.97E+01	6.49E-03	3.82E-01	0.10	40.00	80.00	0.00	0.00	
selenium	1.43E+01	5.13E-03	3.89E-01	0.07	0.20	0.33	0.37	0.23	
Silver	4.87E+00	6.88E-04		0.01	NA	NA	NA	NA	
strontium				0.00	263.00	789.00	NA	NA	
Thallium	2.33E+01	4.78E-03		0.03	0.01	0.07	4.46	0.45	
vanadium	2.66E+01	5.26E-04	3.57E-01	0.09	0.21	2.10	0.41	0.04	
zinc	1.99E+02	1.12E-02	2.00E+01	3.05	160.00	320.00	0.02	0.01	
Pesticides									
4,4'-DDD	8.32E-02		1.99E-02	0.00	0.80	4.00	0.004	0.001	
4,4'-DDE	6.09E-02		8.21E-02	0.01	0.80	4.00	0.014	0.003	
4,4'-DDT	1.16E-02		6.24E-03	0.00	0.80	4.00	0.0011	0.0002	
Aroclor 1254	5.00E-02			0.00	0.14	0.41	0.001	0.0002	
Aroclor 1260	4.27E-02		7.20E-02	0.01	0.14	0.41	0.0733	0.0244	
svoc									
PAH (Total)	1.01E+01			0.01	1.00	3.00	0.014	0.005	
voc									
Acetone	1.05E-02			0.00	10.00	50.00	0.0000	0.0000	

a. Uptake=(FIR*(EPC_{SD}*SD+EPC_{Fi}*FI)+WIR*EPC_{SW})

Symbol	Value	Units
BW	1.40	Kg
FIR	1.96E-01	Kg/day
FI	0.99	unitless
SD	0.01	unitless
WIR	0.111	L/d
HR	2.24	Km shoreline
AUF	1	unitless

TABLE 49

Maximum Uptake and Hazard Quotient Calculations - Grove Pond Black Crowned Night Heron

					TRV (mg/kg-d)			HQ		
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Uptake ^a (mg/kg- d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics										+
aluminum	90000	1.76E-01	2.07E+01	3.00E+01	1.08E+02	492.57	109.70	329.10	4.5	1.5
Antimony	1.21E+01			1.09E+01	1.09E+01	1.98	0.13	1.25	16	1.6
arsenic	910	1.28E-01	1.33E-01	1.72E+00	4.78E-01	5.05	5.14	12.48	0.98	0.40
barium	470	2.30E-02	3.68E+00	3.75E+01	1.37E+01	7.32	20.80	41.70	0.35	0.18
Beryllium	14.1		9.88E-01	1.27E+01		1.28	0.66	1.98	1.9	0.64
cadmium	730		1.02E+00	1.07E+00	2.69E-01	4.09	1.45	20.00	2.8	0.20
chromium	52000	1.75E-01	1.80E+00	3.54E+00	1.14E+01	278.02	1.00	5.00	278	56
Cobalt	70.0	4.00E-03		7.00E+01	7.00E+01	12.66	7.61	18.34	1.7	0.69
copper	13000	3.20E-02	1.35E+00	2.54E+01	5.92E+01	76.68	47.00	61.70	1.6	1.2
lead	1760	2.70E-02	5.02E+00	8.90E-01	2.69E+00	10.12	1.13	11.30	9.0	0.90
manganese	2500	1.04E+00	5.40E+01	7.85E+02	7.03E+01	93.13	997.00	2991.00	0.09	0.03
Mercury (inorganic)	422	1.10E-03	5.70E-02	5.10E-02	2.39E-01	2.27	0.45	0.90	5.1	2.5
Methylmercury	0.07044	2.51E-07	1.09E+00	4.60E-02	2.43E-01	0.12	0.01	0.06	19	1.9
nickel	86	3.20E-02	4.85E+00	2.14E+00	2.19E+01	2.99	77.40	107.00	0.04	0.03
selenium	41.2		5.54E-01		6.44E-01	0.32	1.80	5.40	0.18	0.06
Silver	12.4			1.12E+01	1.12E+01	2.02	NA	NA	NA	NA
strontium			4.85E+01	1.56E+02	3.07E+01	20.64	263.00	789.00	0.08	0.03
Thallium	2.00E-01			1.80E-01	1.80E-01	0.03	0.01	0.07	4.4	0.44
vanadium	140		9.23E-01	1.40E+02	3.08E-01	13.14	11.40	34.20	1.2	0.38
zinc	820	9.11E+00	4.20E+01	3.47E+01	7.34E+01	17.94	29.50	131.00	0.61	0.14
Pesticides/PCBs										+
DDD	2.50E+00		1.30E-01	2.38E+00	2.38E+00	0.44	0.01	0.14	32	3.2
DDE	9.80E-01		2.70E-01	9.31E-01	9.31E-01	0.19	0.01	0.14	14	1.4
DDT	3.30E+00			3.14E+00	3.14E+00	0.57	0.01	0.14	41	4.1
Endrin	2.80E-02			2.80E-02	2.80E-02	0.01	0.01	0.10	0.51	0.05
Total PCB			4.70E-01			0.04	0.18	1.80	0.23	0.02
SVOC										+
PAH (Total)	4.20E+01			5.21E+01	5.21E+01	9.37	40.00	120.00	0.23	0.08
4-Chlorophenyl phenyl ether	8.40E-01			8.40E-01	8.40E-01	0.15	NA	NA	NA	NA

 $a.\ Uptake = (FIR^*(EPC_{SD}^*SD + EPC_{FI}^*FI + EPC_{IN}^*IN + EPC_{FR}^*FR) + WIR^*EPC_{SW})^*AUF/BW$

Symbol	Value	Units
BW	0.88	Kg
FIR	2.34E-01	Kg/day
FI	0.33	unitless
IN	0.33	unitless
FR	0.33	unitless
SD	0.02	unitless
WIR	0.0396	L/d
AUF	1	unitless

TABLE 50
Average Uptake and Hazard Quotient Calculations - Grove Pond Black Crowned Night Heron

	EPCs						TRV (mg/kg-d)		I	HQ
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Uptake ^a (mg/kg- d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics										
aluminum	1.07E+04	4.49E-02	6.05E+00	2.67E+01	2.20E+01	61.59	109.70	329.10	0.56	0.19
Antimony	1.10E+01			9.90E+00	9.90E+00	1.80	0.13	1.25	14	1.4
arsenic	7.89E+01	1.43E-02	1.98E-01	8.58E-01	1.43E-01	0.53	5.14	12.48	0.10	0.042
barium	8.28E+01	1.10E-02	1.27E+00	3.05E+01	4.78E+00	3.65	20.80	41.70	0.18	0.09
Beryllium	1.17E+00		6.79E-02	1.05E+00		0.10	0.66	1.98	0.16	0.05
cadmium	1.79E+01		1.15E-01	2.44E-01	7.24E-02	0.13	1.45	20.00	0.09	0.01
chromium	5.86E+03	1.31E-02	6.75E-01	1.25E+00	1.18E+00	31.43	1.00	5.00	31	6.3
Cobalt	1.41E+01	3.21E-03		1.41E+01	1.41E+01	2.55	7.61	18.34	0.34	0.14
copper	1.46E+02	7.76E-03	5.98E-01	1.90E+01	5.89E+00	3.01	47.00	61.70	0.06	0.049
lead	2.63E+02	7.18E-03	7.16E-01	3.50E-01	5.07E-01	1.53	1.13	11.30	1.4	0.14
manganese	5.97E+02	2.12E-01	1.75E+01	7.19E+02	2.30E+01	69.86	997.00	9970.00	0.07	0.01
Mercury (inorganic)	2.19E+01	3.96E-04	1.00E-02	3.19E-02	7.20E-02	0.13	0.45	0.90	0.28	0.14
Methylmercury	2.15E-02		1.96E-01	2.56E-02	8.04E-02	0.03	0.01	0.06	4.2	0.42
nickel	2.93E+01	4.56E-03	3.92E-01	1.26E+00	2.35E+00	0.51	77.40	107.00	0.01	0.00
selenium	7.61E+00		3.42E-01		2.49E-01	0.09	1.80	5.40	0.05	0.02
Silver	3.20E+00			2.88E+00	2.88E+00	0.52	NA	NA	NA	NA
strontium			1.95E+01	1.40E+02	1.38E+01	15.24	263.00	789.00	0.06	0.02
Thallium	1.60E-01			1.44E-01	1.44E-01	0.03	0.01	0.07	3.5	0.35
vanadium	3.24E+01		1.18E-01	3.24E+01	2.50E-01	3.05	11.40	34.20	0.27	0.09
zinc	2.68E+02	9.27E-01	1.84E+01	2.84E+01	2.29E+01	7.58	29.50	131.00	0.26	0.06
Pesticides/PCBs										+
DDD	3.21E-01		3.98E-02	3.05E-01	3.05E-01	0.06	0.01	0.14	4.2	0.42
DDE	1.22E-01		8.87E-02	1.16E-01	1.16E-01	0.03	0.01	0.14	2.1	0.21
DDT	9.20E-02			8.74E-02	8.74E-02	0.02	0.01	0.14	1.1	0.11
Endrin	1.14E-02			1.14E-02	1.14E-02	0.00	0.01	0.10	0.21	0.02
Total PCBs			1.29E-01		202	0.01	0.18	1.80	0.06	0.01
SVOC										
PAH (Total)	5.52E+00	1		6.85E+00	6.85E+00	1.23	40.00	120.00	0.03	0.010
4-Chlorophenyl phenyl ether	1.36E-01	1		1.36E-01	1.36E-01	0.02	NA	NA	NA	NA

NA in EPC columns indicates chemical not analyzed.

NA in TRV and HQ columns indicates TRV not available and HQ could not be calculated.

ND indicates the chemical was analyzed but not detected.

a. Uptake=(FIR*(EPC_{SD}*SD+EPC_{FI}*FI+EPC_{IN}*IN+EPC_{FR}*FR)+WIR*EPC_{SW})*AUF/BW

Symbol	Value	Units
BW	0.88	Kg
FIR	2.34E-01	Kg/day
FI	0.33	unitless
IN	0.33	unitless
FR	0.33	unitless
SD	0.02	unitless
WIR	0.0396	L/d
AUF	1	unitless

TABLE 51

Maximum Uptake and Hazard Quotient Calculations - Plow Shop Pond Black Crowned Night Heron

		EPCs						(g-d)	H	IQ
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics										
aluminum	2.70E+04	2.25E-01	4.50E+00	2.94E+00	3.30E+02	1.73E+02	1.10E+02	3.29E+02	1.6	0.53
Antimony	3.07E+01	5.00E-03		2.76E+01	2.76E+01	5.01E+00	1.25E-01	1.25E+00	40	4.0
arsenic	6.80E+03	3.80E-01	1.30E+00	2.45E+00	7.05E-01	3.66E+01	5.14E+00	1.25E+01	7.1	2.9
barium	3.70E+02	4.40E-02	4.40E+00	9.51E+01	1.97E+01	1.24E+01	2.08E+01	4.17E+01	0.60	0.30
Beryllium	2.72E+00	1.00E-03		2.45E+00		2.29E-01	6.60E-01	1.98E+00	0.35	0.12
Boron				4.70E-01	4.70E-01	8.25E-02	2.88E+01	1.00E+02	0.00	0.00
cadmium	6.60E+01	1.50E-03	9.00E-02	6.20E-01	2.90E-01	4.39E-01	1.45E+00	2.00E+01	0.30	0.02
chromium	3.78E+04	3.00E-03	9.90E-01	3.19E+00	1.08E+01	2.02E+02	1.00E+00	5.00E+00	202	40
Cobalt	5.90E+01	1.30E-02	1.70E-01	5.90E+01	5.90E+01	1.07E+01	7.61E+00	1.83E+01	1.4	0.58
copper	3.45E+03	4.87E-02	1.30E+00	2.44E+01	5.29E+00	2.11E+01	4.70E+01	6.17E+01	0.45	0.34
lead	1.21E+03	5.00E-03	1.80E-01	4.70E-01	1.09E+00	6.61E+00	1.13E+00	1.13E+01	5.9	0.59
manganese	5.48E+04	5.90E-01	9.47E+01	1.04E+03	4.75E+01	3.95E+02	9.97E+02	2.99E+03	0.40	0.13
Mercury (inorganic)	2.50E+02		1.35E-01	6.90E-02	2.01E-01	1.37E+00	4.50E-01	9.00E-01	3.0	1.5
Methylmercury	8.19E-02		2.57E+00	5.60E-02	2.24E-01	2.50E-01	6.40E-03		39	3.9
nickel	8.78E+01	4.42E-02	8.00E-01	2.70E-01	5.02E+00	1.00E+00		1.07E+02	0.01	0.01
selenium	1.47E+01	2.00E-02	6.70E-01	1.80E-01	7.97E-01	2.24E-01		5.40E+00	0.12	0.04
Silver	2.00E+00	3.60E-03		1.80E+00	1.80E+00	3.27E-01	NA	NA	NA	NA
strontium				1.57E+02	1.30E+01	1.49E+01	2.63E+02	7.89E+02	0.1	0.02
Thallium	2.94E+01	2.00E-02	İ	2.65E+01	2.65E+01	4.80E+00	7.40E-03		649	65
vanadium	1.66E+02	1.50E-03	8.00E-01	1.66E+02	6.93E-01	1.56E+01		3.42E+01	1.4	0.46
zinc	1.10E+03	5.81E-02	2.96E+01	2.33E+01	9.72E+01	1.90E+01		1.31E+02	0.64	0.15
Pesticides										
4.4'-DDD	1.80E+00	1	1.10E-01	1.71E+00	1.71E+00	3.19E-01	1.40E-02	1.40E-01	23	2.3
4.4'-DDE	1.30E+00		3.80E-01	1.24E+00	1.24E+00	2.57E-01	1.40E-02		18	1.8
4,4'-DDT	1.30E-01	1	1.40E-02	1.24E-01	1.24E-01	2.36E-02	1.40E-02		1.7	0.17
Aroclor 1254	1.30E-01	1	1	6.89E-02	6.89E-02	1.28E-02	1.80E-01	1.80E+00	0.07	0.01
Aroclor 1260	5.00E-02		3.30E-01	2.65E-02	2.65E-02	3.39E-02	1.80E-01	1.80E+00	0.19	0.02
SVOC										
PAH (Total)	9.87E+01			1.22E+02	1.22E+02	2.20E+01	4.00E+01	1.20E+02	0.5	0.2
voc										
Acetone	2.6	1	1	1.30E-01	1.30E-01	3.66E-02	6.22E+02	1.87E+03	5.89E-05	1.96E-05

 $a.\ Uptake = (FIR^*(EPC_{SD}^*SD + EPC_{FI}^*FI + EPC_{IN}^*IN + EPC_{FR}^*FR) + WIR^*EPC_{SW})^*AUF/BW$

Symbol	Value	Units
BW	0.88	Kg
FIR	2.34E-01	Kg/day
FI	0.33	unitless
IN	0.33	unitless
FR	0.33	unitless
SD	0.02	unitless
WIR	0.0396	L/d
AUF	1	unitless

TABLE 52
Average Uptake and Hazard Quotient Calculations - Plow Shop Pond Black Crowned Night Heron

			EPCs				TRV (mg/l	TRV (mg/kg-d)		HQ	
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL	
Inorganics											
aluminum	8.23E+03	1.82E-02	2.06E+00	2.03E+00	7.49E+01	5.07E+01	1.10E+02	3.29E+02	0.46	0.15	
Antimony	1.56E+01	1.45E-03		1.40E+01	1.40E+01	2.54E+00	1.25E-01	1.25E+00	20	2.0	
arsenic	5.42E+02	1.37E-02	3.20E-01	1.03E+00	2.56E-01	3.02E+00	5.14E+00	1.25E+01	0.59	0.24	
barium	1.01E+02	1.13E-02	1.55E+00	6.25E+01	7.25E+00	6.79E+00	2.08E+01	4.17E+01	0.33	0.16	
Beryllium	1.42E+00	3.56E-04		1.27E+00		1.19E-01	6.60E-01	1.98E+00	0.18	0.06	
Boron				4.07E-01		3.57E-02	2.88E+01	1.00E+02	0.00	0.00	
cadmium	1.02E+01	4.67E-04	5.45E-02	2.25E-01	1.18E-01	8.92E-02	1.45E+00	2.00E+01	0.06	0.00	
chromium	2.27E+03	1.52E-03	5.37E-01	1.24E+00	1.65E+00	1.24E+01	1.00E+00	5.00E+00	12	2.5	
Cobalt	1.23E+01	1.94E-03	8.68E-02	1.23E+01	1.23E+01	2.23E+00		1.83E+01	0.29	0.12	
copper	1.23E+02	6.04E-03	5.81E-01	4.08E+00	2.64E+00	1.29E+00		6.17E+01	0.03	0.02	
lead	1.69E+02	1.30E-03	2.28E-01	1.68E-01	4.37E-01	9.71E-01		1.13E+01	0.86	0.09	
manganese	2.35E+03	1.20E-01	3.02E+01	6.72E+02	1.68E+01	7.56E+01		9.97E+03	0.08	0.01	
Mercury (inorganic)	2.70E+01		3.10E-02	4.45E-02	6.21E-02	1.56E-01	4.50E-01	9.00E-01	0.35	0.17	
Methylmercury	3.67E-02		5.86E-01	2.48E-02	6.37E-02	5.94E-02	6.40E-03	6.40E-02	9.3	0.93	
nickel	2.97E+01	6.49E-03	3.82E-01	1.50E-01	8.97E-01	2.84E-01	7.74E+01	1.07E+02	0.00	0.00	
selenium	1.43E+01	5.13E-03	3.89E-01	1.72E-01	3.90E-01	1.60E-01		5.40E+00	0.09	0.03	
Silver	4.87E+00	6.88E-04		4.39E+00	4.39E+00	7.96E-01	NA	NA	NA	NA	
strontium				3.89E+01	9.60E+00	4.25E+00	2.63E+02	7.89E+02	0.02	0.01	
Thallium	2.33E+01	4.78E-03		2.10E+01	2.10E+01	3.81E+00	7.40E-03		515	51	
vanadium	2.66E+01	5.26E-04	3.57E-01	2.66E+01	3.34E-01	2.54E+00		3.42E+01	0.22	0.07	
zinc	1.99E+02	1.12E-02	2.00E+01	1.93E+01	3.18E+01	7.30E+00	2.95E+01	1.31E+02	0.25	0.06	
Pesticides	+				+						
4.4'-DDD	8.32E-02		1.99E-02	7.91E-02	7.91E-02	1.61E-02	1.40E-02	1.40E-01	1.1	0.11	
4,4'-DDE	6.09E-02		8.21E-02	5.79E-02	5.79E-02	1.77E-02	1.40E-02		1.3	0.13	
4.4'-DDT	1.16E-02	1	6.24E-03	1.10E-02	1.10E-02	2.54E-03	1.40E-02		0.18	0.02	
Aroclor 1254	5.00E-02	1		2.65E-02	2.65E-02	4.92E-03	1.80E-01	1.80E+00	0.03	0.00	
Aroclor 1260	4.27E-02		7.20E-02	2.26E-02	2.26E-02	1.05E-02	1.80E-01	1.80E+00	0.06	0.01	
SVOC	1			-							
PAH (Total)	1.01E+01			1.25E+01	1.25E+01	2.24E+00	4.00E+01	1.20E+02	0.06	0.02	
voc					1			-			
Acetone	1.05E-02			5.25E-04	5.25E-04	1.48E-04	6.22E+02	1.87E+03	2.38E-07	7.93E-08	

a. Uptake=(FIR*(EPC_{SD}*SD+EPC_{FI}*FI+EPC_{IN}*IN+EPC_{FR}*FR)+WIR*EPC_{SW})*AUF/BW

Symbol	Value	Units
BW	0.88	Kg
FIR	2.34E-01	Kg/day
FI	0.33	unitless
IN	0.33	unitless
FR	0.33	unitless
SD	0.02	unitless
WIR	0.0396	L/d
AUF	1	unitless

TABLE 53

Maximum Uptake and Hazard Quotient Calculations - Grove Pond Belted

	EP	Cs		TRV (mg/kg-d)			HQ		
Chemical	Surface Water (mg/L)	Fish (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL		
Inorganics									
aluminum	1.76E-01	2.07E+01	10.23	109.70	329.10	0.09	0.03		
Antimony			0.00	0.13	1.25	NA	NA		
arsenic	1.28E-01	1.33E-01	0.08	5.14	12.48	0.02	0.01		
barium	2.30E-02	3.68E+00	1.82	20.80	41.70	0.09	0.04		
Beryllium		9.88E-01	0.49	0.66	1.98	0.74	0.25		
cadmium		1.02E+00	0.50	1.45	20.00	0.35	0.03		
chromium	1.75E-01	1.80E+00	0.91	1.00	5.00	0.91	0.18		
Cobalt	4.00E-03		0.00	7.61	18.34	0.00	0.00		
copper	3.20E-02	1.35E+00	0.67	47.00	61.70	0.01	0.01		
lead	2.70E-02	5.02E+00	2.48	1.13	11.30	2.2	0.22		
manganese	1.04E+00	5.40E+01	26.75	997.00	2991.00	0.03	0.01		
Mercury (inorganic)	1.10E-03	5.70E-02	0.03	0.45	0.90	0.06	0.03		
Methylmercury	2.51E-07	1.09E+00	0.54	0.0064	0.06	84	8.4		
nickel	3.20E-02	4.85E+00	2.39	77.40	107.00	0.03	0.02		
selenium		5.54E-01	0.27	1.80	5.40	0.15	0.05		
Silver			0.00	NA	NA	NA	NA		
strontium		4.85E+01	23.92	263.00	789.00	0.09	0.03		
Thallium			0.00	0.01	0.07	NA	NA		
vanadium		9.23E-01	0.46	11.40	34.20	0.04	0.01		
zinc	9.11E+00	4.20E+01	21.72	29.50	131.00	0.74	0.17		
Pesticides/PCBs									
DDD		1.30E-01	0.06	0.01	0.14	4.6	0.46		
DDE		2.70E-01	0.13	0.01	0.14	9.5	0.95		
DDT			0.00	0.01	0.14	NA	NA		
Endrin			0.00	0.01	0.10	NA	NA		
Total PCB		4.70E-01	0.23	0.18	1.80	1.3	0.13		
SVOC									
PAH (Total)			0.00	40.00	120.00	NA	NA		
4-Chlorophenyl phenyl ether			0.00	NA	NA	NA	NA		

a. Uptake=(FIR*(EPC_{FI}*FI)+WIR*EPC_{SW})*AUF/BW

Symbol	Value .	Units
BW	0.15	Kg
FIR	7.40E-02	Kg/day
FI	1	unitless
WIR	0.0165	L/d
AUF	1	unitless

TABLE 54
Average Uptake and Hazard Quotient Calculations - Grove Pond Belted Kingfisher

	E	PCs		TRV (mg/l	(q-d)	HQ		
	Surface			, ,	l ,		1	
	Water		Uptake ^a					
Chemical	(mg/L)	Fish (mg/kg)	(mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL	
Inorganics							.	
aluminum	4.49E-02	6.05E+00	2.99	109.70	329.10	0.03	0.01	
Antimony			0.00	0.13	1.25	NA	NA	
arsenic	1.43E-02	1.98E-01	0.10	5.14	12.48	0.02	0.01	
barium	1.10E-02	1.27E+00	0.63	20.80	41.70	0.03	0.02	
Beryllium		6.79E-02	0.03	0.66	1.98	0.05	0.02	
cadmium		1.15E-01	0.06	1.45	20.00	0.04	0.00	
chromium	1.31E-02	6.75E-01	0.33	1.00	5.00	0.33	0.07	
Cobalt	3.21E-03		0.00	7.61	18.34	0.00	0.00	
copper	7.76E-03	5.98E-01	0.30	47.00	61.70	0.01	0.00	
lead	7.18E-03	7.16E-01	0.35	1.13	11.30	0.31	0.03	
manganese	2.12E-01	1.75E+01	8.66	997.00	9970.00	0.01	0.00	
Mercury (inorganic)	3.96E-04	1.00E-02	0.00	0.45	0.90	0.01	0.01	
Methylmercury		1.96E-01	0.10	0.01	0.06	15	1.5	
nickel	4.56E-03	3.92E-01	0.19	77.40	107.00	0.00	0.00	
selenium		3.42E-01	0.17	1.80	5.40	0.09	0.03	
Silver			0.00	NA	NA	NA	NA	
strontium		1.95E+01	9.60	263.00	789.00	0.04	0.01	
Thallium			0.00	0.01	0.07	NA	NA	
vanadium		1.18E-01	0.06	11.40	34.20	0.01	0.00	
zinc	9.27E-01	1.84E+01	9.18	29.50	131.00	0.31	0.07	
Pesticides/PCBs	+			+				
DDD		3.98E-02	0.02	0.01	0.14	1.4	0.14	
DDE		8.87E-02	0.04	0.01	0.14	3.1	0.31	
DDT			0.00	0.01	0.14	NA	NA	
Endrin			0.00	0.01	0.10	NA	NA	
Total PCBs		1.29E-01	0.06	0.18	1.80	0.35	0.04	
SVOC								
PAH (Total)			0.00	40.00	120.00	NA	NA	
4-Chlorophenyl phenyl ether			0.00	NA	NA	NA	NA	

a. Uptake=(FIR*(EPC $_{FI}$ *FI)+WIR*EPC $_{SW}$)*AUF/BW

Symbol	Value	Units
BW	0.15	Kg
FIR	7.40E-02	Kg/day
FI	1	unitless
WIR	0.0165	L/d
AUF	1	unitless

TABLE 55

Maximum Uptake and Hazard Quotient Calculations - Plow Shop Pond Belted Kingfisher

	EPCs			TRV (mg/kg-d)		H	IQ
	Surface Water		Uptake ^a	, ,			
Chemical	(mg/L)	Fish (mg/kg)	(mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
	, ,	` ` ` ` ` ` `					
Inorganics							
aluminum	2.25E-01	4.50E+00	2.24E+00	1.10E+02	3.29E+02	0.02	0.01
Antimony	5.00E-03		5.50E-04	1.25E-01	1.25E+00	0.00	0.00
arsenic	3.80E-01	1.30E+00	6.83E-01	5.14E+00	1.25E+01	0.13	0.05
barium	4.40E-02	4.40E+00	2.18E+00	2.08E+01	4.17E+01	0.10	0.05
Beryllium	1.00E-03		1.10E-04	6.60E-01	1.98E+00	0.00	0.00
Boron			0.00E+00	2.88E+01	1.00E+02	NA	NA
cadmium	1.50E-03	9.00E-02	4.46E-02	1.45E+00	2.00E+01	0.03	0.00
chromium	3.00E-03	9.90E-01	4.89E-01	1.00E+00	5.00E+00	0.49	0.10
Cobalt	1.30E-02	1.70E-01	8.53E-02	7.61E+00	1.83E+01	0.01	0.00
copper	4.87E-02	1.30E+00	6.47E-01	4.70E+01	6.17E+01	0.01	0.01
lead	5.00E-03	1.80E-01	8.94E-02	1.13E+00	1.13E+01	0.08	0.01
manganese	5.90E-01	9.47E+01	4.68E+01	9.97E+02	2.99E+03	0.05	0.02
Mercury (inorganic)		1.35E-01	6.66E-02	4.50E-01	9.00E-01	0.15	0.07
Methylmercury		2.57E+00	1.27E+00	6.40E-03	6.40E-02	198	20
nickel	4.42E-02	8.00E-01	4.00E-01	7.74E+01	1.07E+02	0.01	0.00
selenium	2.00E-02	6.70E-01	3.33E-01	1.80E+00	5.40E+00	0.18	0.06
Silver	3.60E-03		3.96E-04	NA	NA	NA	NA
strontium			0.00E+00	2.63E+02	7.89E+02	NA	NA
Thallium	2.00E-02		2.20E-03	7.40E-03	7.40E-02	0.30	0.03
vanadium	1.50E-03	8.00E-01	3.95E-01	1.14E+01	3.42E+01	0.03	0.01
zinc	5.81E-02	2.96E+01	1.46E+01	2.95E+01	1.31E+02	0.50	0.11
Pesticides							
4,4'-DDD		1.10E-01	5.43E-02	1.40E-02	1.40E-01	3.9	0.4
4,4'-DDE		3.80E-01	1.87E-01	1.40E-02	1.40E-01	13	1.3
4,4'-DDT		1.40E-02	6.91E-03	1.40E-02	1.40E-01	0.49	0.05
Aroclor 1254			0.00E+00	1.80E-01	1.80E+00	NA	NA
Aroclor 1260		3.30E-01	1.63E-01	1.80E-01	1.80E+00	0.90	0.09
SVOC							
PAH (Total)			0.00E+00	4.00E+01	1.20E+02	NA	NA
voc							
Acetone			0.00E+00	6.22E+02	1.87E+03	NA	NA

a. Uptake= $(FIR*(EPC_{FI}*FI)+WIR*EPC_{SW})*AUF/BW$

Symbol	Value	Units
BW	0.15	Kg
FIR	7.40E-02	Kg/day
FI	1	unitless
WIR	0.0165	L/d
AUF	1	unitless

TABLE 56
Average Uptake and Hazard Quotient Calculations - Plow Shop Pond Belted Kingfisher

	EPCs			TRV (mg/kg-d)		ŀ	IQ
	Surface Water		Uptake ^a	, , ,			
Chemical	(mg/L)	Fish (mg/kg)	(mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
	, ,	, , ,	,				
Inorganics							
aluminum	1.82E-02	2.06E+00	1.02E+00	02E+00 1.10E+02 3.29E+		0.01	0.00
Antimony	1.45E-03		1.60E-04	1.25E-01	1.25E+00	0.00	0.00
arsenic	1.37E-02	3.20E-01	1.59E-01	5.14E+00	1.25E+01	0.03	0.01
barium	1.13E-02	1.55E+00	7.64E-01	2.08E+01	4.17E+01	0.04	0.02
Beryllium	3.56E-04		3.91E-05	6.60E-01	1.98E+00	0.00	0.00
Boron			0.00E+00	2.88E+01	1.00E+02	NA	NA
cadmium	4.67E-04	5.45E-02	2.69E-02	1.45E+00	2.00E+01	0.02	0.00
chromium	1.52E-03	5.37E-01	2.65E-01	1.00E+00	5.00E+00	0.27	0.05
Cobalt	1.94E-03	8.68E-02	4.31E-02	7.61E+00	1.83E+01	0.01	0.00
copper	6.04E-03	5.81E-01	2.87E-01	4.70E+01	6.17E+01	0.01	0.00
lead	1.30E-03	2.28E-01	1.13E-01	1.13E+00	1.13E+01	0.10	0.01
manganese	1.20E-01	3.02E+01	1.49E+01	9.97E+02	9.97E+03	0.01	0.00
Mercury (inorganic)		3.10E-02	1.53E-02	4.50E-01	9.00E-01	0.03	0.02
Methylmercury		5.86E-01	2.89E-01	6.40E-03	6.40E-02	45	4.5
nickel	6.49E-03	3.82E-01	1.89E-01	7.74E+01	1.07E+02	0.00	0.00
selenium	5.13E-03	3.89E-01	1.92E-01	1.80E+00	5.40E+00	0.11	0.04
Silver	6.88E-04		7.56E-05	NA	NA	NA	NA
strontium			0.00E+00	2.63E+02	7.89E+02	NA	NA
Thallium	4.78E-03		5.26E-04	7.40E-03	7.40E-02	0.07	0.01
vanadium	5.26E-04	3.57E-01	1.76E-01	1.14E+01	3.42E+01	0.02	0.01
zinc	1.12E-02	2.00E+01	9.88E+00	2.95E+01	1.31E+02	0.33	0.08
Pesticides							
4,4'-DDD		1.99E-02	9.84E-03	1.40E-02	1.40E-01	0.70	0.07
4,4'-DDE		8.21E-02	4.05E-02	1.40E-02	1.40E-01	2.9	0.29
4,4'-DDT		6.24E-03	3.08E-03	1.40E-02	1.40E-01	0.22	0.02
Aroclor 1254			0.00E+00	1.80E-01	1.80E+00	NA	NA
Aroclor 1260		7.20E-02	3.55E-02	1.80E-01	1.80E+00	0.20	0.02
SVOC							
PAH (Total)			0.00E+00	4.00E+01	1.20E+02	NA	NA
voc							
Acetone			0.00E+00	6.22E+02	1.87E+03	NA	NA

a. Uptake= $(FIR*(EPC_{FI}*FI)+WIR*EPC_{SW})*AUF/BW$

Symbol	Value	Units
BW	0.15	Kg
FIR	7.40E-02	Kg/day
FI	1	unitless
WIR	0.0165	L/d
AUF	1	unitless

TABLE 57
Maximum Uptake and Hazard Quotient Calculations - Grove Pond Tree Swallow

	Max EPCs		TRV (mg/kg-d)		HQ	
Chemical	Swallow stomach contents (mg/kg ww) Uptake ^a (mg/kg-d)		NOAEL	LOAEL	NOAEL	LOAEL	
Inorganics							
Arsenic	6.81	6.87E+00	5.14	12.48	1.3	0.55	
Cadmium	1.39	1.40E+00	1.45	20.00	0.97	0.07	
Chromium	1113	1.12E+03	1.00	5.00	1124	225	
Lead	5.38	5.43E+00	1.13	11.30	4.8	0.48	
Mercury (inorganic)	0.095	9.59E-02	0.45	0.90	0.21	0.11	
Methylmercury	0.177	1.79E-01	0.01	0.06	28	2.8	

a. Uptake=FIR*(EPC $_{ST}$ *ST)*AUF/BW

Symbol	Value	Units
BW	0.02	Kg
FIR	0.0212	kg/d
ST	1.0	Unitless
AUF	1.0	Unitless

TABLE 58
Average Uptake and Hazard Quotient Calculations - Grove Pond Tree Swallow

	Max EPCs		TRV ((mg/kg-d)		HQ		
Chemical	Swallow stomach contents (mg/kg ww) Uptake ^a (mg/kg-d)		NOAEL	LOAEL	NOAEL	LOAEL		
Inorganics								
Arsenic	1.192	1.20E+00	5.14	12.48	0.2	0.1		
Cadmium	0.78	7.87E-01	1.45	20.00	0.5	0.0		
Chromium	197	1.99E+02	1.00	5.00	199	40		
Lead	2.46	2.48E+00	1.13	11.30	2.2	0.2		
Mercury (inorganic)	0.06937	7.00E-02	0.45	0.90	0.2	0.1		
Methylmercury	0.12883	1.30E-01	0.01	0.06	20	2.0		

a. Uptake=FIR*(EPC_{ST}*ST)*AUF/BW

Symbol	Value	Units
BW	0.02	Kg
FIR	0.0212	kg/d
ST	1.0	Unitless
AUF	1.0	Unitless

TABLE 59

Maximum Uptake and Hazard Quotient Calculations - Plow Shop Pond Tree Swallow

	Max EPCs		TRV	(mg/kg-d)		HQ		
Chemical	Swallow stomach contents (mg/kg ww)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL		
Inorganics								
Arsenic	ND	0.00E+00	5.14	12.48	NA	NA		
Cadmium	2.99	3.02E+00	1.45	20.00	2.1	0.2		
Chromium	189	1.91E+02	1.00	5.00	191	38		
Lead	1.57	1.58E+00	1.13	11.30	1.4	0.1		
Mercury (inorganic)	0.07385	7.46E-02	0.45	0.90	0.2	0.1		
Methylmercury	0.13715	1.38E-01	0.01	0.06	22	2.2		

ND indicates that arsenic was not detected.

a. Uptake=FIR*(EPC_{ST})*AUF/BW

Symbol	Value	Units
BW	0.02	Kg
FIR	0.0212	kg/d
AUF	1	unitless

TABLE 60
Average Uptake and Hazard Quotient Calculations - Plow Shop Pond Tree Swallow

	Max EPCs		TRV	(mg/kg-d)	F	łQ	
Chemical	Swallow stomach Chemical contents (mg/kg ww)		Uptake ^a (mg/kg-d) NOAEL		NOAEL	LOAEL	
Inorganics							
Arsenic	ND	NA	5.14	12.48	NA	NA	
Cadmium	1.43	1.44E+00	1.45	20.00	0.996	0.07	
Chromium	117	1.18E+02	1.00	5.00	118	24	
Lead	1.25	1.26E+00	1.13	11.30	1.1	0.11	
Mercury (inorganic)	0.06825	6.89E-02	0.45	0.90	0.15	0.08	
Methylmercury	0.127	1.28E-01	0.01	0.06	20	2.0	

ND indicates that arsenic was not detected.

Symbol	Value	Units
BW	0.02	Kg
FIR	0.0212	kg/d
ST	1.0	Unitless
AUF	1	unitless

a. Uptake=FIR*(EPC_{ST}*ST)*AUF/BW

TABLE 61
Intergrated Risk Evaluation - Grove Pond

Target Receptor Group	Measurement Endpoints (L					eptor Group Measurement Endpoints (Lines of Evidence)				Measurement Endpoints (Lines of Evidence)				Integrated Risk Interpretation	COC Driving Risk
	Publi Bench			ry Toxicity ting		Residue lyses	Food Chain Modeling								
	WOE	Risk	WOE	Risk	WOE	Risk	WOE	Risk							
water column invertebrates	L-M	L	М	N					Low risk; no unacceptable risk.	NA					
Fish	L_M	L	М	N	М-Н	L			Low risk; no unacceptable risk.	NA No COPC					
Benthic Invertebrates	L-M	Н	M-H	М	М-Н	L			Medium risk; unacceptable risk.	identified as cause of toxicity.					
omnivorous mammals		4.1		100			М-Н	N	No unacceptable risk.	NA					
piscivorous mammals							М-Н	N	No unacceptable risk.	NA					
carnivorous birds		N.		44		N.	М-Н	М	Medium risk	chromium in sediment					
piscivorous birds		No.				10	М-Н	N	No unacceptable risk.	NA					
insectivorous birds							М-Н	М	Medium risk; unacceptable risk unlikely.	NA					

Shaded cells indicate that the measurement endpoint was not applicable to the assessment endpoint

WOE = weight of evidence

N=No significant risk identified; L-M = low-medium; M-H = medium-high; H = high

ND = not determined

TABLE 62
Integrated Risk Evaluation - Plow Shop Pond

Target Receptor Group			Measureme	ent Endpoir	Integrated Risk Interpretation	COC Driving Risk								
	Publi Bench			ry Toxicity ting	Tissue Residue Analyses		Food Chain Modeling							
	WOE	Risk	WOE	Risk	WOE	Risk	WOE	Risk						
water column invertebrates	L-M	L	М	N				2	Low risk; no unacceptable risk.	NA				
fish	L-M	L	М	N	М-Н	L			Low risk; no unacceptable risk.	NA				
benthic invertebrates	L-M	Н	M-H	M	М-Н	L			Medium risk; unacceptable risk.	PAH; maybe some metals				
omnivorous mammals		10				10	М-Н	н	High risk; unacceptable risk	arsenic in sediment				
piscivorous mammals							М-Н	N	No unacceptable risk.	NA				
carnivorous birds		w				u	М-Н	L	Low risk	chromium in sediment				
piscivorous birds		W)		40		NI.	М-Н	М	Medium risk; unacceptable risk unlikely.	MeHg in fish				
insectivorous birds							М-Н	M	Medium risk; unacceptable risk unlikely.	NA				

Shaded cells indicate that the measurement endpoint was not applicable to the assessment endpoint

WOE = weight of evidence

N=No significant risk identified; L-M = low-medium; M-H = medium-high; H = high (see Attachment 4.4 for additional details)

ND = not determined

Table 63: Sun	nmary of Potential R For	isk to Ecologica t Devens Superl	-			d and Plo	w Shop	Pond,	
					rove Por	nd	Plow Shop Pond		
Receptor Groups	Target Receptors		LOE ¹	Risk ²	Risk COC ³	WOE⁴	Risk	Risk COC	WOE
		AQUATIC R	ECEPTO	RS			l		1
Benthic Invertebrates	Generic	Maximum	A.1	Н	Hg	L	Н	Hg	L
		Average	A.1	Н	Cr	L	Н	Hg	L
		Bioassay	B.1	L ^{2.a}	-	М-Н	H ^{2.c}	-	М-Н
		Bioassay	B.2	L ^{2.b}	-	М-Н	L ^{2.d}	-	М-Н
		Field	C.1	L ^{2.e}	-	М	L ^{2.e}	-	М
Water Column Invertebrates ⁶	Generic	Maximum	A.2	M	Mn	L	М	Ва	L
		Average	A.2	L	Ва	L	L	Ва	L
		Bioassay	B.3	N	-	М	Z	-	М
Fish	Warm Water Fish	Maximum	A.2	М	Mn	L	М	Ва	L
	Species Assemblage	Average	A.2	L	Ва	L	L	Ва	L
		Bioassay	B.4	N	-	М	N	-	М
		Field	C.2	L ^{2.f}	Cu	М	L ^{2.f}	Cu	М
		WILDLIFE RE	CEPTOR	S ^{2.g}					•
Omnivorous Mammals	Raccoon	FCM	A.3	N	Al	М-Н	H ^{2.h}	As	М-Н
Piscivorous Mammals	Mink	FCM	A.3	N	-	М-Н	N	As	М-Н
Carnivorous Birds	Black-Crowned Night Heron	FCM	A.3	M	Cr	M-H	L	Cr	М-Н
Piscivorous Birds	Belted Kingfisher	FCM	A.3	N	-	М-Н	М	MeHg	М-Н
Insectivorous Birds	Tree Swallow	FCM	A.3	М	Cr	М-Н	М	Cr	М-Н

CBR = critical body residue
COC = contaminant of concern
EDD = estimate daily dose
FCM = food chain modeling
HQ = hazard quotient
LOE = line of evidence

LOEC = lowest observed effect concentration (for aquatic receptors)
LOAEL = lowest observed adverse effect level (for wildlife receptors)

TRV = toxicity reference value WOE = weight of evidence

¹LOE

A.1 = Compare concentrations of COCs in sediment samples collected from the ponds to generic effect benchmarks
A.2 = Compare concentrations of COCs in surface water samples collected from the ponds to generic chronic benchmarks

A.3 = Compare the average EDD calculated using wildlife food chain modeling to a wildlife TRV_{effect}

B.1 = Assess the acute (10-day) toxicity of sediment collected from the ponds on survival and growth in the amphipod, Hyalella azteca

- B.2 = Assess the acute (10-day) toxicity of sediment collected from the ponds on survival and growth in the midge-fly larvae, *Chironomus tentans*
- B.3 = Assess the chronic (7-day) toxicity of surface water collected from the ponds on survival and reproduction in the water flea, Ceriodaphnia dubia
- B.4 = Assess the subchronic (7-day) toxicity of surface water collected from the ponds on survival and growth in the fathead minnow, *Pimephales promelas*
- C.1 = Compare average tissue residue levels of COCs in invertebrates collected from the ponds to invertebrate CBRs_{effect}
- C.2 = Compare average whole body tissue residue levels of COCs in fish collected from the ponds to fish CBRs_{effect}
- ² Risk (see also additional footnotes below):
- Y/H (black) = yes/high (potential risk is present for at least one COC at a LOEC, LOAEL, or CBR_{effect} HQ > 10 **OR** high toxicity is observed in laboratory bioassays)
- Y/M (dark grey) = yes/moderate (potential risk is present for at least one COC at a LOEC, LOAEL, or CBR_{effect} HQ between 5 and 10 **OR** moderate toxicity is observed in laboratory bioassays)
- Y/L (light grey) = yes/low (potential risk is present for at least one COC at a LOEC, LOAEL, or CBR_{effect} HQ between 1 and 5 **OR** low toxicity is observed in laboratory bioassays)
- N (crosshatch) = no (no risk is present; all COCs have a LOEC, LOAEL, or CBR_{effect} HQ below 1 **OR** no significant toxicity is observed in laboratory bioassays)
- ^{2a} Low risk due to reduced growth (but no increased mortality) in *H. azteca* in one of three Grove Pond sediment samples Low risk due to reduced growth (but no increased mortality) in *C. tentans* in one of three Grove Pond sediment samples
- ^{2.c} High risk due to reduced growth in *C. tentans* in five of 11 samples and increased mortality in one additional sample from Plow Shop Pond
 ^{2.d} Low risk due to increased mortality in *C. tentans* in one of eleven Plow Shop Pond sediment samples, but no toxic
- response in the other 10 samples

 2.e The potential risk from manganese (Mn) was high (HQ_{average-LOAEL} = 16) for benthic invertebrates in both ponds.

 However, the CBRs for Mn had a low level of confidence because they were derived from unrelated species. None of the other COCs posed an unaccentable risk. Hence the overall risk to benthic invertebrates, was deemed low.
- other COCs posed an unacceptable risk. Hence, the overall risk to benthic invertebrates was deemed low.

 2.f. The risk evaluation is for HQs based on comparing average whole body concentrations to LOAELs in six fish species (Grove Pond) or four species (Plow Shop Pond). The value shown for each pond is the highest risk across species.
- (Grove Pond) or four species (Plow Shop Pond). The value shown for each pond is the highest risk across species.

 29 The wildlife risk shown in this table represents residual risk (site risk background risk); the exception is tree swallows for which background risk was not available
- ^{2.h} Site risk due to thallium was high (HQ_{average-LOAEL} = 50), with no thallium detected in the reference pond. However, the risk score was not based on thallium because this compound does not represent a known site-related COC, whereas arsenic has been linked directly to Plow Shop Pond.
- ³ Represents the COC with the <u>highest HQ</u>; a risk contaminant was not included if no risk was identified or if the LOE was based on laboratory toxicity tests or field surveys (AI = aluminum; As = arsenic; Ba = barium; Cr = chromium; Cu = copper; Hg = mercury; MeHg = methylmercury; Mn = manganese).
- 4 WOE

L = Low WOE (generic surface water or sediment benchmarks; qualitative fish community survey)
M = Medium WOE (surface water toxicity testing; comparing measured tissue residues to CBRs)

M-H = Medium-high WOE (sediment toxicity testing; wildlife food chain modeling)

TABLE A-1
Grove Pond Surface Water Inorganics - Dissolved

			1		ĺ	1	1	I			T	
				12/22/1993				8/25/1998				
Dissolved Metals	Max (ug/L)	Avg (ug/L)	Frequency of Detection	SW-1	SW-2	SW-3	SW-4	SW001F	SW002F	SW003F	SW004F	SW005F
Aluminum	110	23	5/18	<100	110	<100	<100	<10	<10	<10	<10	<10
Antimony	ND	ND	ND	<50	<50	<50	<50	<5	<5	<5	<5	<5
Arsenic	4	3	13/20	<5	<5	<5	<5	0.004	0.002	0.003	0.005	0.007
Barium	21	11	15/18	<10	<10	<10	10	11.8	7.2	7.4	11.3	14
Beryllium	ND	ND	ND	<5	<5	<5	<5	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium	ND	ND	ND	<5	<5	<5	<5	<3	<3	<3	<3	<3
Calcium	27000	7347	18/18	6800	8200	8100	10000	18.7	18.4	18.5	18.8	19.1
Chromium	3.9	2	2/20	<10	<10	<10	<10	<3	<3	<3	<3	<3
Cobalt	4	3	5/18	<20	<20	<20	<20	<1.5	<1.5	<1.5	<1.5	<1.5
Copper	1.7	2	6/20	<10	<10	<10	<10	<1.5	<1.5	<1.5	<1.5	<1.5
Iron	350	100	18/18	50	140	90	40	0.33	0.16	0.17	0.4	0.8
Lead	0.39	7	3/20	<50	<50	<50	<50	<5	<5	<5	<5	<5
Magnesium	3100	1151	1818	1200	1500	1500	1600	3	3.1	3	3.1	3.1
Manganese	801	212	1818	70	60	30	70	383	118	142	484	801
Mercury	ND	ND	ND	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Molybdenum	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	1.4	5	6/20	<25	<25	<25	<25	<6	<6	<6	<6	<6
Potassium	780	161	9/12	780	<500	640	<500	1.4	1.4	1.6	1.5	1.7
Selenium	ND	ND	ND	<5	<5	<5	<5	<10	<10	<10	<10	<10
Silver	ND	ND	ND	<10	<10	<10	<10	<3	<3	<3	<3	<3
Sodium	22000	6105	1212	16000	22000	20000	15000	27.4	28.8	31.6	28.1	29.9
Thallium	ND	ND	ND	<5	<5	<5	<5	<40	<40	<40	<40	<40
Vanadium	ND	ND	ND	<10	<10	<10	<10	<1.5	<1.5	<1.5	<1.5	<1.5
Zinc	20	6	520	10	20	10	<10	<12	<12	<12	<12	<12

TABLE A-1
Grove Pond Surface Water Inorganics - Dissolved

		I		I	l .	1				ı	
		2/24/1999	11/18/1999		2/17/2000	11/3/2004					
Dissolved Metals	SW006F	SW008	SW-1 PDC	SW-2 PDC	SW-1	G1-2004	G2-2004	G3-2004	G4-2004	G5-2004	G6-2004
Aluminum	<10	<100	NA	NA	34.6	<5	<5	15	<5	6.2	6.4
Antimony	<5	<20	<30.0	<30.0	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	0.008	0.001	<30.0	<30.0	<0.01	1.7	4	1.3	0.88	1	1.4
Barium	18.4	7.5	NA	NA	13.2	21	13	18	13	12	14
Beryllium	<0.5	<2	<5.0	<5.0	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cadmium	<3	<3	<10.0	<10.0	<1.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Calcium	28	8.8	NA	NA	10.1	27000	21000	16000	11000	12000	12000
Chromium	<3	<3	<10.0	<10.0	<1.5	3.9	2.1	<0.5	<0.5	<0.5	<0.5
Cobalt	<1.5	<3	NA	NA	<1.5	<0.2	1.1	0.44	1.7	3.7	4
Copper	<1.5	<3	<10.0	<10.0	<1.5	1.7	1.4	0.52	0.95	0.66	0.73
Iron	0.28	0.0776	NA	NA	236	160	260	58	180	240	350
Lead	<5	<10	<20.0	<20.0	<5	0.39	0.24	<0.2	0.24	<0.2	<0.2
Magnesium	3.3	1.7	NA	NA	2.3	3100	2600	2200	2200	2400	2400
Manganese	280	18	NA	NA	166	130	540	46	50	120	310
Mercury	<0.5	NA	<1.0	<1.0	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Molybdenum	NA	NA	NA	NA	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	<6	<6	<10.0	<10.0	<6	1.2	0.98	1.4	1.1	1.3	1.3
Potassium	1.9	<2	NA	NA	1.8	NA	NA	NA	NA	NA	NA
Selenium	<10	<10	<30.0	<30.0	<10	<1	<1	<1	<1	<1	<1
Silver	<3	<6	<20.0	<20.0	<1.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Sodium	45.4	22.1	NA	NA	46.9	NA	NA	NA	NA	NA	NA
Thallium	<40	<20	<30.0	<30.0	<100	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Vanadium	<1.5	<6	NA	NA	<1.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc	<12	<6	<10.0	<10.0	10.1	<5	<5	<5	6.3	<5	<5

TABLE A-2
Grove Pond Surface Water Inorganics - Total Metals

			Frequency of
Total Metals	Max (ug/L)	Avg (ug/L)	Detection
Aluminum	176	44.9	14/20
Antimony	ND	ND	0/24
Arsenic	128	14.3	18/30
Barium	23	11.0	22/26
Beryllium	ND	ND	0/24
Cadmium	ND	ND	0/24
Calcium	27000	10536	26/26
Chromium	175	13.1	12/30
Cobalt	0.43	0.72	3/20
Copper	32	7.76	8/30
Iron	940	233	26/26
Lead	27	2.84	10/30
Magnesium	3100	1563	26/26
Manganese	1040	197	26/26
Mercury	1.1	0.40	1/23
Molybdenum	ND	ND	0/6
Nickel	32	4.36	7/24
Potassium	2000	970	19/20
Selenium	ND	ND	0/24
Silver	ND	ND	0/24
Sodium	27400	11895	20/20
Thallium	ND	ND	0/24
Vanadium	ND	ND	0/20
Zinc	9110	927	11/24

10/1/1992				
SW-A	SW-B	SW-C	SW-D	SW-E
<50.0	100	70	<50.0	<50.0
<3.0	<3.0	<3.0	<3.0	<3.0
<5.0	<5.0	<5.0	<5.0	<5.0
<10.0	10	<10.0	<10.0	10
<5.0	<5.0	<5.0	<5.0	<5.0
<1.0	<1.0	<1.0	<1.0	<1.0
13200	14600	14500	14600	18300
<5.0	<5.0	<5.0	<5.0	<5.0
<2.0	<2.0	<2.0	<2.0	<2.0
<40.0	<40.0	<40.0	<40.0	<40.0
190	310	190	130	260
<1.0	<1.0	<1.0	<1.0	<1.0
2000	2200	2200	2000	2100
40	90	10	70	60
<1.0	<1.0	<1.0	<1.0	<1.0
NA	NA	NA	NA	NA
<10.0	<10.0	<10.0	<10.0	<10.0
1000	2000	2000	1000	2000
<5.0	<5.0	<5.0	<5.0	<5.0
<20.0	<20.0	<20.0	<20.0	<20.0
16000	17000	16000	13000	13000
<1.0	<1.0	<1.0	<1.0	<1.0
<20.0	<20.0	<20.0	<20.0	<20.0
<50.0	<50.0	<50.0	<50.0	<50.0

TABLE A-2
Grove Pond Surface Water Inorganics - Total Metals

Total Metals			4/1/1995	5				
Aluminum	SW-F	SW-G	GRW-95-06X	GRW-95-07X	GRW-95-08X	GRW-95-09X	GRW-95-10X	GRW-95-11X
Antimony	<50.0	<50.0						
Arsenic	<3.0	<3.0						
Barium	<5.0	<5.0	<2.54	<2.54	3.94	<2.54	<2.54	<2.54
Beryllium	10	10	8	<5	9.25	7	8.5	6.37
Cadmium	<5.0	<5.0						
Calcium	<1.0	<1.0						
Chromium	14700	14100	10500	10600	13500	11200	13100	10900
Cobalt	<5.0	<5.0	<6.02	<6.02	39.8	8.43	<6.02	<6.02
Copper	<2.0	<2.0						
Iron	<40.0	<40.0	9.89	<8.09	<8.09	<8.09	<8.09	<8.09
Lead	120	100	222	228	402	249	181	238
Magnesium	<1.0	<1.0	<1.26	<1.26	2.39	3.04	<1.26	<1.26
Manganese	2000	1900	1950	1860	1970	1880	1990	1860
Mercury	20	20	46.6	97.4	100	58.4	39.3	73.8
Molybdenum	<1.0	<1.0						
Nickel	NA	NA	NA	NA	NA	NA	NA	NA
Potassium	<10.0	<10.0						
Selenium	1000	1000	1210	1780	1670	1580	1730	1420
Silver	<5.0	<5.0						
Sodium	<20.0	<20.0						
Thallium	12000	12000	22400	22100	27400	24600	19100	23100
Vanadium	<1.0	<1.0						
Zinc	<20.0	<20.0						
	<50.0	<50.0						

TABLE A-2
Grove Pond Surface Water Inorganics - Total Metals

Total Metals	8/25/1998							8/12/1999		11/18/1999
Aluminum	SW001	SW002	SW003	SW004	SW005	SW006	SW008	PZ-1	PZ-2	PZ-1R
Antimony	176	24.4	21.3	32	43.1	122	<100			
Arsenic	<5	<5	<5	<5	<5	<5	<20	<15.0	<15.0	<15.0
Barium	0.005	0.004	0.003	0.009	0.006	0.01	0.001	62	128	102
Beryllium	14.2	9	7.7	18.5	11	22.3	7.6			
Cadmium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<5.0	<5.0	<2.5
Calcium	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<3	<5.0	<5.0	<5.0
Chromium	20.5	20.1	20	20.3	20	30.5	8.8			
Cobalt	<3	<3	<3	<3	<3	31.5	<3	62	8	175
Copper	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<3			
Iron	<1.5	<1.5	<1.5	<1.5	<1.5	3.4	<3	<5.0	<5.0	<5.0
Lead	1.1	0.56	0.36	2	0.88	1.8	0.12			
Magnesium	<5	<5	<5	<5	<5	7.1	<10	27	<10.0	<10.0
Manganese	3.1	3	3	3.1	3.2	3.3	1.7			
Mercury	453	262	164	1040	459	389	18.2			
Molybdenum	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	1.1	<1.0	<1.0
Nickel	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium	<6	<6	<6	<6	<6	<6	<6	<5.0	<5.0	32
Selenium	1.4	1.3	1.5	1.6	1.6	1.8	<2			
Silver	<10	<10	<10	<10	<10	<10	<10	<15.0	<15.0	<15.0
Sodium	<3	<3	<3	<3	<3	<3	<6	<10.0	<10.0	<10.0
Thallium	26.2	27	29.5	26.8	28.5	43.1	22.4			
Vanadium	<40	<40	<40	<40	<40	<40	<20	<15.0	<15.0	<15.0
Zinc	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<6			
	17.1	<12	<12	<12	<12	<12	<6	9110	8640	2400

TABLE A-2
Grove Pond Surface Water Inorganics - Total Metals

Total Metals		11/3/2004					
Aluminum	PZ-2R	G1-2004	G2-2004	G3-2004	G4-2004	G5-2004	G6-2004
Antimony		19	10	48	13	27	18
Arsenic	<15.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Barium	98	2.3	4.6	1.1	1.3	1.4	1.9
Beryllium		23	13	18	15	14	15
Cadmium	<2.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Calcium	<5.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium		27000	21000	17000	12000	11000	12000
Cobalt	<5.0	20	5	1	0.8	0.8	0.8
Copper		<0.2	<0.2	0.28	<0.2	0.3	0.43
Iron	<5.0	3	32	3	1	3	2
Lead		390	500	130	620	650	940
Magnesium	<10.0	2	3.4	0.4	0.3	0.6	0.5
Manganese		3100	2500	2300	2200	2300	2300
Mercury		200	610	57	210	180	350
Molybdenum	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Potassium	<5.0	1.4	1.2	2.5	1.1	1.6	1.3
Selenium		NA	NA	NA	NA	NA	NA
Silver	<15.0	<1	<1	<1	<1	<1	<1
Sodium	<10.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium		NA	NA	NA	NA	NA	NA
Vanadium	<15.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	1820	6	8	8	8	8	7

TABLE A-3
Grove Pond Sediment Metals Concentrations in mg/kg dw

	_	Average	Frequency of
Chemical	Max (mg/kg)	(mg/kg)	Detection
Aluminum	90000	10676	145/145
Antimony	12.1	11	2/120
Arsenic	910	79	149/158
Barium	470	83	126/143
Beryllium	14.1	1.17	39/135
Cadmium	730	18	90/151
Calcium	340000		
Chromium	52000	5859	150/155
Cobalt	70.0	14	95/140
Copper	13000	146	141/145
Iron	42800		
Lead	1760	263	149/157
Magnesium	5300		
Manganese	2500	597	148/148
Mercury	422	22	103/127
Methyl mercury	0.07044	0.021	10/10
Nickel	86	29	129/143
Potassium	4120		
Selenium	41.2	8	47/138
Silver	12.4	3.20	19/77
Sodium	7020		
Thallium	0.2	8.8a	10/118
Vanadium	140	32	118/141
Zinc	820	268	141/147

a. The average concentration for thallium is much higher than the maximum concentration because of the elevated detection limits. The average of the 10 detected values is 0.16 mg/kg, which is the value used in the food chain modeling.

	1/1/1992														
name	BM 1	BM 2	BM 3	BM 4	GRD-92-01X	GRD-92-02X	GRD-92-03X	GRD-92-04X	GRD-92-05X	MADEP A	MADEP B	MADEP C	MADEP D	MADEP E	MADEP F
Aluminum	5800	2800	5000	1800	4450	10900	8160	8540	6430	6250	4150	8450	59900	43400	22800
Antimony															
Arsenic	23.0	10.0	8.10	86.0	23.0	350	910	11.6	3.09	105	20.0	64.9	108	92.8	51.4
Barium	32.0	50.0			23.2	181	156	35.3	83.3	88.0	38.0	88.0	52.0	29.0	25.0
Beryllium										0.80		1.20	6.90	4.40	4.40
Cadmium		730				8.16				8.00	1.00	26.0	4.00	10.0	2.00
Calcium															
Chromium	1600		56.0		692	19900	26100	23.8		5300	687	2220	1680	1030	186
Cobalt		43.0			3.63	18.1		3.10		9.00	3.90	16.5	45.0	18.0	51.0
Copper	36.0	13000			15.5	79.9	98.6	13.0		37.0	13.0	32.0	51.0	45.0	34.0
Iron	12000	93.0	4100	3300	6620	25400	20000	9210	1180	14600	6300	14200	19600	40200	21100
Lead	100	620	14.0		50.0	390	38.8	27.0	4.26	155	41.0	150	140	115	52.0
Magnesium															
Manganese	130	0.39	78.0	280	68.6	783		55.3	1640	727	317			132	
Mercury	3.10				2.00	260	420			45.0	4.00	5.00	2.00	1.10	3.00
Nickel					8.97	36.9	23.2	12.9		20.0	8.00	38.0	50.0	30.0	43.0
Potassium															
Selenium						3.99	4.44		3.19	1.60		1.40	2.50	3.00	2.90
Silver														2.00	
Sodium															
Thallium										0.20		0.10		0.10	0.20
Vanadium	8.00	6.60			11.2	43.6		13.0		22.0	9.00				
Zinc	96.0	40.0	22.0	28.0	80.8	447	303	28.6		267	87.0	315	309	211	372
	10/1/1992							12/22/1993							
	SED-D	SED-E			SED-A	SED-B	SED-C	S-1		S-3	S-4	SW-2	SW-3	SW-4	
Aluminum	59900	43400		36700	6250	4150			3300	5600	3900				
Antimony	< 0.03	<0.3		<0.3	<0.3	<0.3		<100		<100	<390				
Arsenic	108			61.6	105			11.0		7.30	28.0				
Barium	52.0			19.0	88.0	38.0		31.0		27.0	63.0				
Beryllium	6.90	4.40		6.60	0.80	<0.5		<2.0		<2.0	<7.8				
Cadmium	4.00	10.0		3.00	8.00	1.00		<2.0		<2.0	<7.8				
Calcium	5650	6670		6860	5320	2130		680	960	150	9700				
Chromium	1680	1030	186	229	5300	687	2220	13.0	9.50	7.30	87.0	150	56.0	<28	

TABLE A-3
Grove Pond Sediment Metals Concentrations in mg/kg dw

Cobalt	45.0			70.0	9.00	3.90		<4.0	<3.9	<4.0	<16	<6.8			
Copper	51.0			41.0	37.0	13.0		26.0	110	7.30	24.0	43.0	<5.6		
Iron	19600	40200		27000	14600	6300	14200	9200	20000	5900	9500	13000	4100		
Lead	140			72.0	155	41.0		63.0	230	<10	39.0	93.0	14.0		
Magnesium	690	680		830	750	580		1700	530	480	640	620	740		
Manganese	855			332	727	317		120	120	65.0	240	87.0	78.0		
Mercury	2.00			3.00	45.0	4.00		<0.25	0.70	<0.25	<1.0	0.39	<0.36		
Nickel	50.0	30.0			20.0	8.00		11.0	12.0	<10	<39	<17	<14		
Potassium	300	200			300	100 <0.5		370	320	<100	<390 <4.0	<170	<140		
Selenium	2.50	3.00		3.10	1.60			<1.0	2.00	<1.0 <2.0	<4.0 <7.8	<1.7	<1.4		
Silver	<2				<2.0	<2.0		<2.0	<2.0			<3.4	<2.8		
Sodium	300			100	200	100		<100	<98	<100	<390	<170	<140		
Thallium	<0.1	0.10		0.20	0.20	<0.1		<1.0	<1.0	<1.0	<4.0	<1.7	<1.4		
Vanadium Zinc	51.0 309	37.0 211		14.0 433	22.0 267	9.00 87.0		11.0 31.0	19.0 69.0	7.30 19.0	16.0 24.0	6.60 40.0	<2.8 22.0		
ZIIIC	309	211	312	433	201	67.0	310	31.0	09.0	19.0	24.0	40.0	22.0	20.0	
	4/1/1995														
		GRD-95-09X	GRD-95-10X	GRD-95-11X	GRD-95-12X	GRD-95-13X	GRD-95-14X	GRD-95-15X	GRD-95-16X	GRD-95-17X	GRD-95-18X	GRD-95-19X	GRD-95-20X	GRD-95-21X	GRD-95-22X
Aluminum	3620	8640	12900	12400	4700	8540	8300	5910	14100	8160	7990	6470	7410		6450
Antimony	<1.09	<1.09		<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09		<1.09
Arsenic	20.8				61.5	104		49.2	69.9	85.2	108	41.8	110		9.23
Barium	39.2	81.9			54.4	72.9		<5.18	88.2	<5.18	<5.18	<5.18	54.6		33.5
Beryllium	<0.5	<0.5		<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
Cadmium	17.1	28.9		110	23.7	8.73		<0.7	<0.7	20.9	<0.7	18.7	<0.7		<0.7
Calcium	1680	2200		5430	4510	4630	3090	4390	6360	4870	5950	6180	6400		1710
Chromium	17.1	34.5		71.0	85.9	374		501	736	250	342	214	2680		35.3
Cobalt	5.50	18.5		39.4	14.5	18.8		<1.42	24.2	<1.42	<1.42	19.0	<1.42		4.44
Copper	38.2			70.9	35.1	30.2		42.3	41.3	37.0	24.8	21.6	38.8		10.5
Iron	10500	15500		22100	8680	16300		9720	19900	24300	11000	8850	19100		16500
Lead	123	178		361	86.0	100		190	221	143	130	120	232		11.4
Magnesium	1340	3270	4410	3970	1180	1990	2240	<100	3940	2730	1610	1520	1860		4320
Manganese	413	1040	912	859	503	769		337	366	449	688	322	792		145
Mercury	<0.05	< 0.05	0.44	< 0.05	1.12	4.91	1.11	1.54	2.18	1.72	11.0	0.77	2.07	7 1.65	< 0.05
Methyl mercury															
Nickel	28.5	42.3	54.4	71.8	27.9	24.3	20.5	31.0	37.6	38.2	<1.71	22.2	20.9	9 27.7	19.3
Potassium	661	1170	1470	1930	<100	<100	650	<100	1230	<100	<100	<100	<100	<100	1330
Selenium	<0.25	< 0.25	< 0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	< 0.25	4.14	<0.25	<0.25	5 <0.25	< 0.25
Sodium	424	1260	2430	4010	2460	3340	2260	3890	3760	5590	3900	3320	2650	2530	698
Thallium	<0.5			<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
Vanadium	11.3	28.1		55.5	<3.39	<3.39	27.2	<3.39	65.9	<3.39	<3.39	<3.39	59.2		15.3
Zinc	198	340	443	755	238	309	312	357	321	482	139	225	237	7 223	125
	4/1/1995 (Cont)														
	GRD-95-24X	GRD-95-25X	GRD-95-26X		GRD-95-28X	GRD-95-29X	GRD-95-30X	GRD-95-31X	GRD-95-32X	GRD-95-33X		GRD-95-35X	GRD-95-36X	GRD-95-37X	GRD-95-38X
Aluminum	8870	5000		8730	3530	6490	2330	6010	4830	4390	6310	4690	3840		3370
Antimony	<1.09	<1.09		<1.09	<1.09	<1.09		<1.09	<1.09	<1.09	<1.09	<1.09	<1.09		<1.09
Arsenic	270				43.6	96.0		83.3	89.8	110	107	53.0	23.7		8.52
Barium	267	171		470	70.2	131		259	313	186	189	70.9			13.4
Beryllium	<0.5	<0.5 <0.7		<0.5 <0.7	<0.5 <0.7	<0.5 <0.7		<0.5	<0.5	<0.5	<0.5 16.7	<0.5 7.30	<0.5		<0.5
Cadmium	<0.7												3.96		< 0.7
Calcium								<0.7	<0.7	< 0.7					700
Chromium	24300	65600	70400	86800	11200	67400	150	60600	109000	148000	62300	4280	1680	30400	732
Chromium	27700	65600 22900	70400 19800	86800 40300	11200 9980	67400 20400	150 6.01	60600 47100	109000 49800	148000 30500	62300 20800	4280 3610	1680 465	30400 5 22400	61.6
Cobalt	27700 21.1	65600 22900 <1.42	70400 19800 2 12.3	86800 40300 <1.42	11200 9980 <1.42	67400 20400 <1.42	150 6.01 <1.42	60600 47100 <1.42	109000 49800 <1.42	148000 30500 <1.42	62300 20800 <1.42	4280 3610 9.52	1680 465 5.30	30400 5 22400 0 37.3	61.6 <1.42
Cobalt Copper	27700 21.1 122	65600 22900 <1.42 143	70400 19800 2 12.3 3 210	86800 40300 <1.42 144	11200 9980 <1.42 56.9	67400 20400 <1.42 98.7	150 6.01 <1.42 3.68	60600 47100 <1.42 240	109000 49800 <1.42 237	148000 30500 <1.42 85.7	62300 20800 <1.42 98.8	4280 3610 9.52 57.8	1680 465 5.30 21.1	30400 5 22400 0 37.3 1 126	61.6 <1.42 5.85
Cobalt Copper Iron	27700 21.1 122 19300	65600 22900 <1.42 143 8480	70400 19800 2 12.3 3 210 7780	86800 40300 <1.42 144 15600	11200 9980 <1.42 56.9 11300	67400 20400 <1.42 98.7 18100	150 6.01 <1.42 3.68 2370	60600 47100 <1.42 240 19800	109000 49800 <1.42 237 16300	148000 30500 <1.42 85.7 9710	62300 20800 <1.42 98.8 21400	4280 3610 9.52 57.8 13900	1680 465 5.30 21.1	0 30400 5 22400 0 37.3 1 126 0 24700	61.6 <1.42 5.85 3050
Cobalt Copper Iron Lead	27700 21.1 122 19300 782	65600 22900 <1.42 143 8480 682	70400 19800 12.3 210 7780 2 423	86800 40300 <1.42 144 15600 739	11200 9980 <1.42 56.9 11300 313	67400 20400 <1.42 98.7 18100 563	150 6.01 <1.42 3.68 2370 3.29	60600 47100 <1.42 240 19800 1760	109000 49800 <1.42 237 16300 1150	148000 30500 <1.42 85.7 9710	62300 20800 <1.42 98.8 21400 578	4280 3610 9.52 57.8 13900 262	1680 465 5.30 21.1 8090 74.8	0 30400 5 22400 0 37.3 1 126 0 24700 8 748	61.6 <1.42 5.85 3050 7.85
Cobalt Copper Iron Lead Magnesium	27700 21.1 122 19300 782 2130	65600 22900 <1.42 143 8480 682 2060	70400 19800 2 12.3 210 7780 423 2330	86800 40300 <1.42 144 15600 739 3260	11200 9980 <1.42 56.9 11300 313 908	67400 20400 <1.42 98.7 18100 563 1010	150 6.01 <1.42 3.68 2370 3.29 373	60600 47100 <1.42 240 19800 1760	109000 49800 <1.42 237 16300 1150	148000 30500 <1.42 85.7 9710 387 1420	62300 20800 <1.42 98.8 21400 578 <100	4280 3610 9.52 57.8 13900 262 600	1680 465 5.30 21.1 8090 74.8	30400 5 22400 0 37.3 1 126 0 24700 8 748 0 1850	61.6 <1.42 5.85 3050 7.85 470
Cobalt Copper Iron Lead Magnesium Manganese	27700 21.1 122 19300 782 2130 1210	65600 22900 <1.42 143 8480 682 2060 989	70400 19800 2 12.3 3 210 7780 2 423 2 233 6 620	86800 40300 <1.42 144 15600 739 3260 1260	11200 9980 <1.42 56.9 11300 313 908 411	67400 20400 <1.42 98.7 18100 563 1010 476	150 6.01 <1.42 3.68 2370 3.29 373 26.5	60600 47100 <1.42 240 19800 1760 1930	109000 49800 <1.42 237 16300 1150 1570	148000 30500 <1.42 85.7 9710 387 1420	62300 20800 <1.42 98.8 21400 578 <100	4280 3610 9.52 57.8 13900 262 600 380	1680 465 5.30 21.1 8090 74.8 1240 243	0 30400 5 22400 0 37.3 1 126 0 24700 3 748 0 1850 3 1220	61.6 <1.42 5.85 3050 7.85 470 105
Cobalt Copper Iron Lead Magnesium Manganese Mercury	27700 21.1 122 19300 782 2130	65600 22900 <1.42 143 8480 682 2060	70400 19800 2 12.3 3 210 7780 2 423 2 233 6 620	86800 40300 <1.42 144 15600 739 3260 1260 227	11200 9980 <1.42 56.9 11300 313 908	67400 20400 <1.42 98.7 18100 563 1010	150 6.01 <1.42 3.68 2370 3.29 373 26.5	60600 47100 <1.42 240 19800 1760	109000 49800 <1.42 237 16300 1150 1570 1730 88.0	148000 30500 <1.42 85.7 9710 387 1420	62300 20800 <1.42 98.8 21400 578 <100	4280 3610 9.52 57.8 13900 262 600	1680 465 5.30 21.1 8090 74.8 1240 243	0 30400 5 22400 0 37.3 1 126 0 24700 3 748 0 1850 3 1220	61.6 <1.42 5.85 3050 7.85 470
Cobalt Copper Iron Lead Magnesium Manganese Mercury Methyl mercury	27700 21.1 122 19300 782 2130 1210 86.0	6560C 2290C <1.42 143 848C 682 206C 985 4.32	70400 19800 2 12.3 3 210 7780 2 423 2330 2 620 16.0	86800 40300 <1.42 144 15600 739 3260 1260 227 0.053	11200 9980 <1.42 56.9 11300 313 908 411 2.78	67400 20400 <1.42 98.7 18100 563 1010 476 69.0	150 6.01 <1.42 3.68 2370 3.29 373 26.5 <0.05	60600 47100 <1.42 240 19800 1760 1930 1540 5.77	109000 49800 <1.42 237 16300 1150 1570 1730 88.0 0.0059	148000 30500 <1.42 85.7 9710 387 1420 1080 72.0	62300 20800 <1.42 98.8 21400 578 <100 1190	4280 3610 9.52 57.8 13900 262 600 380 3.40	1680 466 5.30 21.1 8090 74.8 1240 243 0.92	30400 5 22400 37.3 1 126 0 24700 3 748 0 1850 3 1220 2 23.0	61.6 <1.42 5.85 3050 7.85 470 105 0.13
Cobalt Copper Iron Lead Magnesium Manganese Mercury Methyl mercury Nickel	27700 21.1 122 19300 782 2130 1210 86.0	6560C 2290C <1.42 143 848C 682 206C 988 4.32	70400 19800 2 12.3 210 77890 423 2330 620 16.0	86800 40300 <1.42 144 15600 739 3260 1260 227 0.053 19.7	11200 9980 <1.42 56.9 11300 313 908 411 2.78	67400 20400 <1.42 98.7 18100 563 1010 476 69.0	150 6.01 <1.42 3.68 2370 3.29 373 26.5 <0.05	60600 47100 <1.42 240 19800 1760 1930 1540 5.77	109000 49800 <1.42 237 16300 1150 1570 1730 88.0 0.0059 <1.71	148000 30500 <1.42 85.7 9710 387 1420 1080 72.0	62300 20800 <1.42 98.8 21400 578 <100 1190 17.0	4280 3610 9.52 57.8 13900 262 600 380 3.40	1680 466 5.33 21.1 8099 74.6 1244 243 0.92	0 30400 5 22400 0 37.3 11 126 0 24700 8 748 0 1850 3 1220 2 23.0 8 59.7	61.6 <1.42 5.85 3050 7.85 470 105 0.13
Cobalt Copper Iron Lead Magnesium Manganese Mercury Methyl mercury Nickel Potassium	27700 21.1. 122 19300 782 21300 1210 86.0	65600 22900 <1.42 143 8480 682 2060 988 4.32	70400 19800 2 112.3 210 77800 2330 2330 620 16.0	86800 40300 <1.42 144 15600 739 3260 1260 227 0.053 19.7 <100	11200 9980 <1.42 56.9 11300 313 908 411 2.78 21.1 <100	67400 20400 <1.42 98.7 18100 563 1010 476 69.0	150 6.011 <1.42 3.68 2370 3.29 373 26.5 <0.05	60600 47100 <1.42 240 19800 1760 1930 1540 5.77	109000 49800 <1.42 237 16300 1150 1570 1730 88.0 0.0059 <1.71	148000 30500 <1.42 85.7 9710 387 1420 1080 72.0 <1.71 <100	62300 20800 <1.42 98.8 21400 578 <100 1190 17.0	4280 3610 9.52 57.8 13900 262 600 380 3.40	1680 465 5.30 21.1 8090 74.8 1240 244 0.92	0 30400 5 22400 0 37.3 1 126 0 24700 3 748 0 1850 3 1220 2 23.0 5 9.7 7 <100	61.6 <1.42 5.85 3050 7.85 470 105 0.13 4.23 <100
Cobalt Copper Iron Lead Magnesium Manganese Mercury Methyl mercury Nickel Potassium Selenium	27700 21.1 122 19300 782 2130 1210 86.0 41.9 <100 <0.25	6560C 2290C <1.42 143 8486 682 206C 988 4.32 18.7 <100 <0.25	70400 19800 19800 2 12.3 210 7780 423 2330 620 16.0 25.3 <100 <100 <0.25	86800 40300 <1.42 144 15600 739 3260 1260 227 0.053 19.7 <100 3.02	11200 9980 <1.42 56.9 11300 313 908 411 2.78 21.1 <100 <0.25	67400 20400 <1.42 98.7 18100 563 1010 476 69.0 18.0 724 3.23	150 6.01 <1.42 3.68 2370 3.29 373 26.5 <0.05	60600 47100 <1.42 240 19800 1760 1930 5.77 35.3 <100 <0.25	109000 49800 <1.42 237 16300 1150 1570 1730 88.0 0.0059 <1.71 <100 <0.25	148000 30500 <1.42 85.7 9710 387 1420 1080 72.0 <1.71 <100 <0.25	62300 20800 <1.42 98.8 21400 578 <100 1190 17.0 45.4 <100 <0.25	4280 3610 9.52 57.8 13900 262 600 380 3.40 22.4 <100 2.10	1680 464 5.30 21.1 8090 74.8 1240 244 0.92 12.8 481 <0.25	0 30400 5 22400 0 37.3 1 126 0 24700 1 1850 3 1220 2 23.0 3 59.7 < 100 5 <0.25	61.6 <1.42 5.85 3050 7.85 470 105 0.13 4.23 <100 <0.25
Cobalt Copper Iron Lead Magnesium Manganese Mercury Methyl mercury Nickel Potassium	27700 21.1. 122 19300 782 21300 1210 86.0	65600 22900 <1.44 143 8486 682 2066 988 4.32 18.7 <100 <0.25 2277	70400 19800 2 112.3 3 210 7780 423 2330 620 16.0 525.3 <100 <0.25	86800 40300 <1.42 144 15600 739 3260 1260 227 0.053 19.7 <100	11200 9980 <1.42 56.9 11300 313 908 411 2.78 21.1 <100	67400 20400 <1.42 98.7 18100 563 1010 476 69.0	150 6.01 <1.42 3.68 2370 3.29 373 26.5 <0.05 <100 <0.25 466	60600 47100 <1.42 240 19800 1760 1930 1540 5.77	109000 49800 <1.42 237 16300 1150 1570 1730 88.0 0.0059 <1.71	148000 30500 <1.42 85.7 9710 387 1420 1080 72.0 <1.71 <100	62300 20800 <1.42 98.8 21400 578 <100 1190 17.0	4280 3610 9.52 57.8 13900 262 600 380 3.40	1680 465 5.30 21.1 8090 74.8 1240 244 0.92	30400 5 22400 37.3 1 126 0 24700 3 748 3 748 0 1850 3 1220 2 23.0 3 59.7 < 100 5 0.25 4 520	61.6 <1.42 5.85 3050 7.85 470 105 0.13 4.23 <100
Cobalt Copper Iron Lead Magnesium Manganese Mercury Methyl mercury Nickel Potassium Selenium Selenium Sodium Thallium	27700 21.1. 1222 19300 782 2.130 1210 86.0 41.9 <100 <0.25 3880	65600 22900 <1.42 143 8486 682 2066 985 4.32 18.7 <100 <0.25	70400 19800 2 12.3 210 270 270 280 280 280 280 280 280 280 280 290 200 200 200 200 200 200 200 200 20	86800 40300 <1.42 144 15600 739 3260 1260 227 0.053 19.7 <100 3.02 5120 <0.5	11200 9980 <1.42 56.9 11300 313 908 411 2.78 21.1 <100 <0.25 3120 <0.5	67400 20400 20400 <1.142 98.7 18100 653 1010 476 69.0 18.0 724 3.23 3060 <0.5	150 6.01 <1.42 3.68 2377 3.29 3.73 26.5. <0.05 <100 <0.25 400 6.05	60600 47100 <1.42 240 19800 1760 1930 1540 5.77 35.3 <100 <0.25 6370	109000 49800 <1.42 237 16300 1150 1570 1730 88.0 0.0059 <1.771 <100 <0.25 5130 <0.5	148000 30500 <1.4.22 85.7 9710 387 1420 72.0 <1.71 <100 <0.25 3890 <0.5	62300 20800 <1.42 98.8 21400 1190 17.0 45.4 <100 <0.25 7020	4280 3610 9.52 57.8 13900 262 600 3.80 3.40 22.4 <100 2.10 2.14	1680 461 5.33 21.1 8099 74.8 1244 245 0.99 12.8 481 <0.22 904	0 30400 0 37.3 1 126 24700 3 7.3 1 126 24700 3 7480 0 1850 0 22 23.0 2 23.0 5 59.7 7 <100 5 <0.25 4 5200 5 <0.5	61.6 <1.42 5.85 3050 7.85 470 105 0.13 4.23 <100 <0.25 698
Cobalt Copper Iron Lead Magnesium Manganese Mercury Methyl mercury Nickel Potassium Selenium Sodium Thallium Vanadium	27700 21.1 122 19300 782 2130 1210 86.0 41.9 <100 <0.25 38800 <0.5	65600 22900 <1.42 143 8486 682 2066 985 4.32 18.7 <100 <0.25	70400 19800 19800 112.3 210 7780 4233 2330 620 16.0 25.3 <100	86800 40300 <1.42 144 15600 739 3260 1260 227 0.053 19.7 <100 3.02 5120 <0.5 66.0	11200 9980 <1.42 56.9 11300 313 908 411 2.78 21.1 <100 <0.25 3120	67400 20400 <1.42 98.7 18100 563 1010 476 69.0 18.0 724 3.223 3060	150 6.01 <1.42 3.68 2370 3.29 373 26.5 <0.05 <100 <0.25 466 <0.5 <3.39	60600 47100 <1.42 240 19800 19700 1930 1540 5.77 35.3 <100 <0.25 6370 <0.5	109000 49800 <1.42 237 16300 11500 1730 88.0 0.0059 <1.71 <100 0.255	148000 30500 <1.42 85.7 9710 387 1420 1080 72.0 <1.71 <100 <0.25 3890	62300 20800 41,42 98.8 21400 578 <100 1170 45.4 <100 <0.25 7020 <0.5	4280 3610 9.52 57.8 13900 262 600 380 3.40 22.4 <100 2.110 2140	1680 466 5.33(21.1, 8099 74.8: 1244 243; 0.92 12.8: 481 <0.22; 900	30400 30400 37.3 1 126 24700 3 748 3 748 5 1850 3 1220 2 23.0 5 5 0.25 4 5200 5 0.35	61.6 <1.42 5.85 3050 7.85 470 105 0.13 <100 <0.25 698 <0.5 <3.39
Cobalt Copper Iron Lead Magnesium Manganese Mercury Methyl mercury Nickel Potassium Selenium Selenium Thallium	27700 21.1 122 19300 782 2130 1210 86.0 41.9 <1.00 <0.25 3880 <0.5 111	65600 22900 <1.42 143 8488 683 2060 988 4.32 	70400 19800 19800 112.3 210 7780 4233 2330 620 16.0 25.3 <100	86800 40300 <1.42 144 15600 739 3260 1260 227 0.053 19.7 <100 3.02 5120 <0.5 66.0	11200 9980 <1.42 56.9 11300 313 908 411 2.78 21.1 <100 <0.25 3120 <0.5 30.0	67400 20400 20400 <1.4.2 98.7 18100 563 1010 476 69.0 724 3.2.3 3060 <0.55 58.6	150 6.01 <1.42 3.68 2370 3.29 373 26.5 <0.05 <100 <0.25 466 <0.5 <3.39	60600 47100 <1.42 240 19800 1760 1930 1540 5.77 35.3 <100 <0.25 6370 <0.5 85.4	109000 49800 <1.42 237 16300 1150 1570 1730 88.0 0.0059 <1.71 <100 <0.25 5130 <0.5 75.6	148000 30500 <1.1.42 85.7 9710 387 1420 1080 72.0 <1.71 <100 <0.25 3890 <0.5 98.9	62300 20800 21402 98.8 21400 578 <100 1190 17.0 45.4 <100 <0.25 7020 <0.5 78.2	4280 3610 9.52 57.8 13900 262 600 380 3.40 4100 2.10 2.140 4.0.5 39.6	1680 464 5.33 21.1 8099 74.8 1240 244 0.92 12.8 481 40.25 900 <0.5	30400 30400 37.3 1 126 24700 3 748 3 748 5 1850 3 1220 2 23.0 5 5 0.25 4 5200 5 0.35	61.6 <1.42 5.85 3050 7.85 470 105 0.13 4.23 <100 <0.25 698
Cobalt Copper Iron Lead Magnesium Manganese Mercury Methyl mercury Nickel Potassium Selenium Sodium Thallium Vanadium	27700 21.1 122 19300 782 2130 1210 86.0 41.9 <1.00 <0.25 3880 <0.5 111	65600 22900 <1.42 143 8488 683 2060 988 4.32 	70400 19800 19800 112.3 210 7780 4233 2330 620 16.0 25.3 <100	86800 40300 <1.42 144 15600 739 3260 1260 227 0.053 19.7 <100 3.02 5120 <0.5 66.0	11200 9980 <1.42 56.9 11300 313 908 411 2.78 21.1 <100 <0.25 3120 <0.5 30.0	67400 20400 20400 <1.4.2 98.7 18100 563 1010 476 69.0 724 3.2.3 3060 <0.55 58.6	150 6.01 <1.42 3.68 2370 3.29 373 26.5 <0.05 <100 <0.25 466 <0.5 <3.39	60600 47100 <1.42 240 19800 1760 1930 1540 5.77 35.3 <100 <0.25 6370 <0.5 85.4	109000 49800 <1.42 237 16300 1150 1570 1730 88.0 0.0059 <1.71 <100 <0.25 5130 <0.5 75.6	148000 30500 <1.1.42 85.7 9710 387 1420 1080 72.0 <1.71 <100 <0.25 3890 <0.5 98.9	62300 20800 21402 98.8 21400 578 <100 1190 17.0 45.4 <100 <0.25 7020 <0.5 78.2	4280 3610 9.52 57.8 13900 262 600 380 3.40 4100 2.10 2.140 4.0.5 39.6	1680 464 5.33 21.1 8099 74.8 1240 244 0.92 12.8 481 40.25 900 <0.5	30400 30400 37.3 1 126 24700 3 748 3 748 5 1850 3 1220 2 23.0 5 5 0.25 4 5200 5 0.35	61.6 <1.42 5.85 3050 7.85 470 105 0.13 4.23 <100 <0.25 698 <0.5 <3.39
Cobalt Copper Iron Lead Magnesium Manganese Mercury Methyl mercury Nickel Potassium Selenium Sodium Thallium Vanadium	27700 21.1 122 19300 782 2130 1210 86.0 41.9 <100 <0.25 38800 <0.5 1111 538	65600 22900 <1.42 143 8488 683 2060 988 4.32 	70400 19800 19800 2 12.3 210 7780 42330 620 16.0 25.3 <100 <0.25 14600 <0.25 315	86800 40300 <1.42 144 15600 739 3260 1260 227 0.053 19.7 <100 3.02 5120 <0.5 66.0	11200 9980 <1.42 56.9 11300 3133 908 411 2.78 21.1 <100 <0.25 3120 <0.5 30.0	67400 20400 20400 <1.4.2 98.7 18100 563 1010 476 69.0 724 3.23 3060 <0.55 58.6 429	150 6.01 <1.42 3.68 2370 3.29 373 26.5 <0.05 <100 <0.25 466 <0.5 <3.39 <8.03 <8.03	60600 47100 <1.42 240 19800 1760 1930 1540 5.77 35.3 <100 <0.25 6370 <0.5 85.4 474	109000 49800 <1.42 237 16300 1150 1570 1730 88.0 0.0059 <1.71 <100 <0.25 5130 <0.5 75.6 356	148000 30500 <1.142 85.7 9710 387 1420 1080 72.0 <1.71 <100 <0.25 3890 <0.5 98.9 316	62300 20800 21400 41,42 98.8 21400 578 <100 1190 17.0 45.4 <100 <0.25 7020 <0.5 78.2 549	4280 3610 9.52 57.8 13900 262 600 380 3.40 4100 2.10 2.140 4.0.5 39.6	1680 464 5.33 21.1 8099 74.8 1240 244 0.92 12.8 481 481 40.25 900 <0.25 900	0 30400 0 37.0 1 126 0 24700 1 1850 3 1480 0 1850 3 1220 2 23.0 5 9.7 7 <100 6 <0.25 4 5200 5 <0.5 4 86.4 3 654	61.6 <1.42 5.85 3050 7.85 470 105 0.13 4.23 <100 <0.25 698 <0.5 <3.39

TABLE A-3
Grove Pond Sediment Metals Concentrations in mg/kg dw

- ·	1 0400	10000	22222	0700	20000	0.4000	00000	0500	2000	0400	2000	10700	0050	0000	7010
Aluminum	9420	19300		6730	20300	64300		6530	3620	8180 <1.09	9990	13700	9950		7210 <1.09
Antimony Arsenic	<1.09 160	<1.09 39.0	<1.09 137	<1.09 240	<1.09 150	<1.09 95.0	<1.09 64.2	<1.09 61.8	<1.09 31.2	35.7	<1.09 170	<1.09 126	<1.09 83.9	<1.09 220	40.5
Barium	56.9	<5.18		<5.18	34.2	<5.18		<5.18	49.2	63.4	170	92.3	72.6		47.2
Beryllium	<0.5			<0.5	<0.5	14.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
Cadmium	9.30	<0.7		<0.7	<0.7	<0.7	<0.7	<0.7	8.25	<0.7	11.4	34.5	21.1	26.3	22.2
Calcium	6860	4400		3860	1210	9510	3380	5240	2220	4620	116000	6810	6060	10500	5700
Chromium	562	728		176	126	144		1250	168	1260	20000	6650	1060	<4.05	213
Cobalt	<1.42	8.58	53.1	<1.42	<1.42	29.5	<1.42	19.6	7.93	<1.42	24.8	41.1	<1.42	<1.42	<1.42
Copper	23.6	20.5		23.9	76.6	54.5	68.8	37.2	41.5	32.8	88.6	67.7	41.5	69.0	26.0
Iron	22100	13100	17600	28400	42800	23300	10800	11300	6320	8240	18700	19300	14100	34200	10400
Lead	78.2	69.0		130	64.0	81.0	110	180	1130	146	530	366	150		73.0
Magnesium	1390	5300	<100	1010	1060	<100	<100	<100	658	1690	1620	1780	2040	1870	2150
Manganese	709			204	657	35.0	53.6	625	282	152	994	634	655		378
Mercury	1.34	1.05	2.56	0.47	422	<0.05	0.87	9.58	0.68	5.28	90.0	24.0	12.6 0.013	<0.05	0.50
Methyl mercury	31.2	24.8	69.9	<1.71	<1.71	38.3	34.1	26.7	19.3	<1.71	0.056 47.0	58.3		45.2	33.9
Nickel Potassium	31.2 <100	24.8 <100	<100	<1.71	<1.71	38.3 <100	34.1 <100	26.7 <100	<100	<1.71	47.0 <100	1360	39.6 <100	45.2 <100	<100
Selenium	<0.25	2.04		<0.25	7.80	<0.25		3.66	<0.25	<0.25	<0.25	<0.25	4.37	<0.25	<0.25
Sodium	2670	1380		2600	1850	3690	3350	3240	1580	2920	4580	4410	3950	5340	2230
Thallium	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
Vanadium	<3.39	32.1		<3.39	25.7	<3.39	59.9	<3.39	<3.39	35.0	87.5	66.3	<3.39		<3.39
Zinc	188	72.3		84.6	<8.03	150		240	216	154	547	577	350		274
	4/1/1995														
	GRS-95-01X	GRS-95-02X	GRS-95-03X		GRS-95-05X	GRS-95-06X	GRS-95-07X					GRS-95-12X	GRS-95-13X		GRS-95-15X
Aluminum	5540	3710	3160	4340	4500	5130	3850	4360	1320	17100	19300	7240	7140	8420	9520
Antimony	<1.09	<1.09	<1.09	<1.09	<1.09	12.1	5.70	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09
Arsenic	11.6	9.18		8.75	6.80	22.0	99.0	14.0	3.89	8.85	15.2	20.0	12.0	17.0	20.0
Barium	14.0	14.1		11.7	7.64	192		10.2	<5.18	63.6	204	17.8	29.7	14.7	21.2
Beryllium	<0.5 <0.7	0.64		<0.5	<0.5	<0.5 <0.7		<0.5	<0.5	<0.5	1.90	<0.5	<0.5	<0.5	<0.5
Cadmium	<0.7 911	1.22 466		<0.7 277	<0.7 155	2200	<0.7 498	<0.7 128	<0.7 5750	<0.7 1530	24600	<0.7 273	<0.7 1120	<0.7 221	<0.7 495
Calcium Chromium	22.1	10.3		8.46	6.80	19.7		7.58	<4.05	<4.05	24600	23.6	19.7	25.8	24.4
Cobalt	4.23	3.49		3.20	2.38	5.20	3.57	<1.42	<1.42	18.4	7.56	3.09	<1.42	3.36	4.76
Copper	5.79	6.06		10.1	4.13	175		5.95	9.56	108	52.9	8.68	7.95	7.22	8.65
Iron	8540	5560		6210	4510	24100	15700	5330	2790	5550	19300	11400	12700	11600	10100
Lead	14.0				4.22	538		11.0	199	482	598	21.1	84.0		12.0
Magnesium	3320	1330	763	1160	787	920	906	559	<100	<100	1060	3310	1590	3160	3190
Manganese	102	167		85.6	41.3	192		26.9	108	72.0	242	141	157	107	144
Mercury	<0.05			<0.05	<0.05	0.43		<0.05	0.34	<0.05	<0.05	<0.05	0.17		<0.05
Nickel	22.5	11.0		8.39	7.99	14.2		5.46	<1.71	22.5	11.2	17.2	11.1	18.6	24.7
Potassium	429			284	188	515		158	1000	1200	1460	303	307	443	741
Selenium	<0.25 <0.589	<0.25		0.42	<0.25	2.29	1.36	0.58 <0.589	<0.25 <0.589	<0.25 <0.589	<0.25 <0.589	0.43	<0.25		<0.25 <0.589
Silver Sodium	<0.589 418	0.79 297		<0.589 305	<0.589 301	<0.589 517	<0.589 493	<0.589 369	<0.589 1660	<0.589 1610	<0.589 1050	<0.589 347	<0.589 619	<0.589 387	<0.589 314
Vanadium	17.5	8.94		8.08	6.36	29.8	28.6	14.2	<3.39	<3.39	34.5	19.0	20.9	25.2	20.6
Zinc	17.5	38.5		16.3	<8.03	96.6		<8.03	49.9	<8.03	43.6	20.6	28.4	23.2	26.2
	19.9	55.5	17.7	10.0	-0.00	50.0	U-1.T	-0.00	70.0	-0.00	70.0	20.0	20.7	22.0	20.2
														l l	
	9/11/1998				8/1/1999									 	
	9/11/1998 GSEM-1	GSEM-2	GSEM-3	GSEM-4	8/1/1999 1SC1	1SC2	1SC3	3SC2	3SC3	4SC1	5SC2	6SC1	8SC1	BHSO3	
Aluminum	GSEM-1 1.40	1.10	0.54	2.10	1SC1 10100	10700	11500	5720	5980	4600	4210	4660	5030	2390	
Antimony	GSEM-1 1.40 <5	1.10 <5	0.54 <5	2.10 <5	1SC1 10100 <10.0	10700 <10	11500 <10	5720 <10	5980 <10	4600 <10.0	4210 <10.0	4660 <10.0	5030 <10	2390 <5	
Antimony Arsenic	GSEM-1 1.40 <5 90.0	1.10 <5 100	0.54 <5 50.0	2.10 <5 120	1SC1 10100 <10.0 <50	10700 <10 <90	11500 <10 <90	5720 <10 <20	5980 <10 <20	4600 <10.0 <20	4210 <10.0 <20	4660 <10.0 <20	5030 <10 <20.0	2390 <5 10.0	
Antimony Arsenic Barium	GSEM-1 1.40 <5 90.0	1.10 <5 100 90.3	0.54 <5 50.0 170	2.10 <5 120 73.0	1SC1 10100 <10.0 <50 93.4	10700 <10 <90 88.1	11500 <10 <90 82.0	5720 <10 <20 19.8	5980 <10 <20 22.8	4600 <10.0 <20 10.8	4210 <10.0 <20 15.3	4660 <10.0 <20 7.40	5030 <10 <20.0 13.8	2390 <5 10.0 16.6	
Antimony Arsenic Barium Beryllium	GSEM-1 1.40 <5 90.0 115 1.20	1.10 <5 100 90.3 1.00	0.54 <5 50.0 170 0.95	2.10 <5 120 73.0 3.10	19C1 10100 <10.0 <50 93.4 1.30	10700 <10 <90 88.1 1.20	11500 <10 <90 82.0 0.95	5720 <10 <20 19.8 <0.50	5980 <10 <20 22.8 <0.50	4600 <10.0 <20 10.8 <0.50	4210 <10.0 <20 15.3 <0.50	4660 <10.0 <20 7.40 <0.50	5030 <10 <20.0 13.8 <0.50	2390 <5 10.0 16.6 0.50	
Antimony Arsenic Barium Beryllium Cadmium	GSEM-1 1.40 <5 90.0 115 1.20 8.70	1.10 <5 100 90.3 1.00 23.2	0.54 <5 50.0 170 0.95 6.80	2.10 <5 120 73.0 3.10	19C1 10100 <10.0 <50 93.4 1.30 8.80	10700 <10 <90 88.1 1.20	11500 <10 <90 82.0 0.95 15.8	5720 <10 <20 19.8 <0.50 <1.5	5980 <10 <20 22.8 <0.50 <1.5	4600 <10.0 <20 10.8 <0.50 <1.5	4210 <10.0 <20 15.3 <0.50 <1.5	4660 <10.0 <20 7.40 <0.50 <1.5	5030 <10 <20.0 13.8 <0.50	2390 <5 10.0 16.6 0.50 1.50	
Antimony Arsenic Barium Beryllium Cadmium Calcium	GSEM-1 1.40 <5 90.0 115 1.20 8.70 0.57	1.10 <5 100 90.3 1.00 23.2 0.59	0.54 <5 50.0 170 0.95 6.80 21.5	2.10 <5 120 73.0 3.10 12.6 0.51	1SC1 10100 <10.0 <50 93.4 1.30 8.80 10300	10700 <10 <90 88.1 1.20 53.1 6820	11500 <10 <90 82.0 0.95 15.8 6280	5720 <10 <20 19.8 <0.50 <1.5	5980 <10 <20 22.8 <0.50 <1.5	4600 <10.0 <20 10.8 <0.50 <1.5 633	4210 <10.0 <20 15.3 <0.50 <1.5	4660 <10.0 <20 7.40 <0.50 <1.5 400	5030 <10 <20.0 13.8 <0.50 <1.5	2390 <5 10.0 16.6 0.50 1.50 414	
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	GSEM-1 1.40 <5 90.0 115 1.20 8.70 0.57 59.7	1.10 <5 100 90.3 1.00 23.2 0.59 337	0.54 <5 50.0 170 0.95 6.80 21.5 33400	2.10 <5 120 73.0 3.10 12.6 0.51	1SC1 10100 <10.0 <50 93.4 1.30 8.80 10300 64.9	10700 <10 <90 88.1 1.20 53.1 6820 184	11500 <10 <90 82.0 0.95 15.8 6280	5720 <10 <20 19.8 <0.50 <1.5 1110 10.2	5980 <10 <20 22.8 <0.50 <1.5 1120	4600 <10.0 <20 10.8 <0.50 <1.5 633 10.8	4210 <10.0 <20 15.3 <0.50 <1.5 1050 9.50	4660 <10.0 <20 7.40 <0.50 <1.5 400	5030 <10 <20.0 13.8 <0.50 <1.5 973	2390 <5 10.0 16.6 0.50 1.50 414 7.10	
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	GSEM-1 1.40 <5 90.0 115 1.20 8.70 0.57 59.7 34.0	1.10 <5 100 90.3 1.00 23.2 0.59 337 28.8	0.54 <5 50.0 170 0.95 6.80 21.5 33400 3.50	2.10 <5 120 73.0 3.10 12.6 0.51 3510 42.5	19C1 10100 <10.0 <50 93.4 1.30 8.80 10300 64.9 12.1	10700 <10 <90 88.1 1.20 53.1 6820 184 23.7	11500 <10 <90 82.0 0.95 15.8 6280 167 24.9	5720 <10 <20 19.8 <0.50 <1.5 1110 10.2 <3.0	5980 <10 <20 22.8 <0.50 <1.5 1120 14.0 5.30	4600 <10.0 <20 10.8 <0.50 <1.5 633 10.8 <3.0	4210 <10.0 <20 15.3 <0.50 <1.5 1050 9.50	4660 <10.0 <20 7.40 <0.50 <1.5 400 10.9 3.40	5030 <10 <20.0 13.8 <0.50 <1.5 973 11.7 5.00	2390 <5 10.0 16.6 0.50 1.50 414 7.10	
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	GSEM-1 1.40 <.5 90.0 115 1.20 8.77 59.7 34.0 64.5	1.10 <5 100 90.3 1.00 23.2 0.59 337 28.8 43.2	0.54 <5 50.0 170 0.95 6.80 21.5 33400 3.50 88.0	2.10 <5 120 73.0 3.10 12.6 0.51 3510 42.5 52.5	19C1 10100 <10.0 <50 93.4 1.30 8.80 10300 64.9 12.1 19.3	10700 <10 <90 88.1 1.20 53.1 6820 184 23.7 43.5	11500 <10 <90 0.95 15.8 6280 167 24.9 39.1	5720 <10 <20 19.8 <0.50 <1.5 1110 10.2 <3.0 3.00	5980 <10 <20 22.8 <0.50 <1.5 1120 14.0 5.30 5.10	4600 <10.0 <20 10.8 <0.50 <1.5 633 10.8 <3.0 <3.0	4210 <10.0 <200 15.3 <0.50 <1.5 1050 9.50 <3.0 <3.0	4660 <10.0 <20 7.40 <0.50 <1.5 400 10.9 3.40 4.60	5030 <10 <20.0 13.8 <0.50 <1.5 973 11.7 5.00 6.30	2390 <5 10.0 16.6 0.50 1.50 414 7.10 3.00 3.80	
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	GSEM-1 1.40 55 90.0 1155 1.20 8.77 59.7 59.7 64.5 2.20	1.10 <5 100 90.3 1.00 23.2 0.59 337 28.8 43.2	0.54 <5 50.0 170 0.95 6.80 21.5 33400 3.50 88.0 0.87	2.10 <5 120 73.0 3.10 12.6 0.51 3510 42.5 52.5 2.00	1901 10100 <10.0 <50 93.4 1.30 8.80 10300 64.9 12.1 19.3 12600	10700 <10 <90 88.1 1.20 53.1 6820 184 23.7 43.5	11500 <10 <90 0.95 15.8 6280 167 24.9 39.1 18800	5720 <10 <20 19.8 <0.50 <1.5 1110 10.2 <3.0 3.00 5020	5980 <10 <20 22.8 <0.50 <1.5 1120 14.0 5.30 5.10 6830	4600 <10.0 <20 10.8 <0.50 <1.5 633 10.8 <3.0 <3.0	4210 <10.0 <20 15.3 <0.50 <1.5 1050 9.50 <3.0 <3.0	4660 <10.0 <20 7.40 <0.50 <1.5 400 10.9 3.40 4.60 7230	5030 <10 <20.0 13.8 <0.50 <1.5 973 11.7 5.00 6.30 7720	2390 <5 110.0 16.6 0.50 1.50 414 7.10 3.00 3.80 5500	
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	GSEM-1 1.40 <.5 90.0 115 1.20 8.70 0.57 59.7 34.0 64.5 2.20 304	1.10 <55 100 90.3 1.00 23.2 0.59 337 28.8 43.2 2.10 166	0.54 <5 50.0 1770 0.95 6.80 21.5 33400 3.50 88.0 0.87	2.10 <5 120 73.0 3.10 12.6 0.51 3510 42.5 52.5 2.00 238	1SC1	10700 <10 <90 88.1 1.20 53.1 6820 184 23.7 43.5 19300 185	11500 <100 <90 82.0 0.95 15.8 6280 167 24.9 39.1 18800 127	5720 <10 <20 19.8 <0.50 <1.5 1110 10.2 <3.0 3.00 5020 <20	5980 <100 <202 22.8 <0.50 <1.5 1120 14.0 5.30 5.10 6830 <20	4600 <10.0 <20 10.8 <0.50 <1.5 633 10.8 <3.0 <3.0 6040 <20	4210 <10.0 <20 15.3 <0.50 <1.5 1050 9.50 <3.0 <3.0 4700 <20	4660 <10.0 <20 7.40 <0.50 <1.5 400 10.9 3.40 4.60 7230 <20.0	5030 <10 <20.0 13.8 <0.50 <1.5 973 11.7 5.00 6.30 7720 <20	2390 <5 10.0 16.6 0.50 1.50 414 7.10 3.00 3.80 5500 20.0	
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	GSEM-1 1.40 55 90.0 1155 1.20 8.77 59.7 59.7 64.5 2.20	1.10 <5 100 90.3 1.00 23.2 0.59 337 28.8 43.2 2.10 166 2240	0.54 <5 50.0 170 0.95 6.80 21.5 33400 3.50 88.0 0.87	2.10 <5 120 73.0 3.10 12.6 0.51 3510 42.5 52.5 2.00	1901 10100 <10.0 <50 93.4 1.30 8.80 10300 64.9 12.1 19.3 12600	10700 <10 <90 88.1 1.20 53.1 6820 184 23.7 43.5	11500 <10 <90 82.0 0.95 15.8 6280 167 24.9 39.1 18800 127 2470	5720 <10 <20 19.8 <0.50 <1.5 1110 10.2 <3.0 3.00 5020	5980 <10 <20 22.8 <0.50 <1.5 1120 14.0 5.30 5.10 6830	4600 <10.0 <20 10.8 <0.50 <1.5 633 10.8 <3.0 <3.0	4210 <10.0 <20 15.3 <0.50 <1.5 1050 9.50 <3.0 <3.0	4660 <10.0 <20 7.40 <0.50 <1.5 400 10.9 3.40 4.60 7230 <20.0 2190	5030 <10 <20.0 <13.8 <0.50 <1.5 973 11.7 5.00 6.30 7720 <20 1310	2390 <5 10.0 16.6 0.50 1.50 414 7.10 3.00 3.80 5500 20.0 1190	
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	GSEM-1 1.40 4.5 90.0. 1.15 1.20 8.77 0.57 59.7 34.0 64.5 2.20 304 3880	1.10 <5 100 90.3 1.00 23.2 0.59 337 28.8 43.2 2.10 166 2240	0.54 <55 50.0 1770 0.95 6.80 21.5 33400 3.50 88.0 0.87 3366 16500 1080	2.10 <5 120 73.0 3.10 12.6 0.51 3510 42.5 52.5 2.00 238 1430	1SC1	10700 <10 <10 <90 88.1 1.20 53.1 6820 184 23.7 43.5 19300 185 2320	11500 <10 <90 82.0 0.95 15.8 6280 167 24.9 39.1 18800 127 2470	5720 <10 <10 <20 19.8 <0.50 <1.5 1110 10.2 <3.0 3.00 5020 <20 1520	5980 <10 <20 22.8 <0.50 <1.5 1120 14.0 5.30 5.10 6830 <2050	4600 <10.0 <20 10.8 <0.50 <1.5 633 10.8 <3.0 <3.0 6040 <20 1690	4210 <10.0 <20 15.3 <0.50 <1.5 1050 9.50 <3.0 <3.0 4700 <20 1310	4660 <10.0 <20 7.40 <0.50 <1.5 400 10.9 3.40 4.60 7230 <20.0	5030 <10 <20.0 13.8 <0.50 <1.5 973 11.7 5.00 6.30 7720 <20	2390 <5 10.0 16.6 0.50 1.50 414 7.10 3.00 3.80 5500 20.0	
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	GSEM-1 1.40 55 90.0 1155 1.20 8.777 59.7 59.7 34.0 64.5 2.304 3880 788	1.10 <5 100 90.3 1.00 23.2 0.59 337 28.8 43.2 2.10 166 2244 861	0.54 <5 50.0 1770 0.95 6.80 21.5 33400 3.50 88.0 0.87 386 1650 1080 15.2	2.10 <5 120 73.0 3.10 12.6 0.51 3510 42.5 52.5 2.00 238 1430 366	1SC1	10700 <10 <90 88.1 1.20 53.1 6820 184 23.7 43.5 19300 185 2320 1180	11500 <10 <90 82.0 0.95 15.8 6280 167 24.9 39.1 18800 127 2470 965	5720 <10 <20 19.8 <0.50 <1.5 1110 10.2 <3.0 5020 <20 1520 72.8	5980 <10 <20.2 22.8 <0.50 <1.5 1120 14.0 5.30 <20 20550 91.7	4600 <10.0 <20 10.8 <0.50 <1.5 633 10.8 <3.0 <0.50 <1.5 633 10.8 <1.5 633 10.8 <1.5 633 10.8 630 630 630 630 630 630 630 630	4210 <10.0 <20.0 15.3 <0.50 <1.5 1050 9.50 <3.0 4700 <20 1310 60.5	4660 <10.0 <20.0 7.40 <0.50 <1.55 400 10.9 3.40 4.60 7230 <20.0 2190 64.7	5030 <10 <20.0. 13.8 <0.50 <1.5 973 11.7 5.00 6.30 7720 <20 1310 85.1	2390 <5 10.0 16.6 0.50 1.50 414 7.10 3.00 3.80 5500 20.0 1190 362	
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium	GSEM-1 1.40 45 90.0 115 1.20 8.77 0.57 69.7 34.0 64.5 2.20 3040 3880 788 61.2 1720 10.2	1.10 <55 100 90.3 1.000 23.2 0.59 337 28.8 43.2 2.10 166 2240 861 41.6 1020 10.3	0.54 <55 50.0 1770 0.95 6.80 21.5. 33400 3.50 88.0 0.87 3.86 1650 1080 15.2 682	2.10 <5 120 73.0 3.10 12.6 0.51 3510 42.5 52.5 2.20 238 1430 366 63.1 682 10.1	1SC1 10100 <10.0 <10.0 <50.0 93.4 1.30 8.80 10300 64.9 12.1 19.3 12600 53.1 1520 1280 24.6 <1000 <200	10700 <10700 <1088.1 1.220 53.1 6820 1844 23.7 43.5 193000 1186 46.5 <10000 <20	11500 <10 90 82.0 9.95 15.8 6280 167 24.9 39.1 18800 127 2470 40.1 <100 40.1	5720 <100 <20 19.8 <0.500 <1.5 1110 10.2 <3.0 3.00 5020 <20 1520 72.8 10.9 <1000 <200 <200 <200 <200 <200 <200 <20	5980 <100 <20 22.8 <0.500 <1.5 1120 14.0 5.30 5.10 6830 <20 2050 91.7 21.3 <1000 <20	4600 <10.0 <20 10.8 <0.50 <1.5 633 10.8 <3.0 <3.0 6040 <20 1690 76.7 12.6 <1000 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200	4210 <10.00 <20 15.3 <.500 <1.5 1050 9.500 <3.0 <4700 <20 1310 60.5 10.6 60.5 4700 <20 20 20 20 20 20 20 20 20	4660 <10.0 <20 7.40 <.550 <1.5 400 10.9 3.40 4.60 7230 <20.0 2190 64.7 15.2 <1000 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <2	5030 <100 <20.0 13.8 <0.500 <1.5 973 11.7 5.00 6.300 7720 <20 1310 85.1 15.0 <1000 <20 <20 <20 <20 <20 <20 <20 <20 <20	2390 <5 10.0 16.6 0.50 1.50 414 7.10 3.00 3.80 5500 20.0 1190 362 14.4 433 20.0	
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium	GSEM-1 1.40 <.5 90.0. 1.15 1.20 8.77 0.57 59.7 34.0. 64.5 2.20 304 3880 789 61.2 1720	1.10 45 100 90.3 1.00 23.2 0.59 337 28.8 43.2 2.10 166 2240 41.6 1020 10.3 2.00	0.54 <5 50.0 1770 0.95 6.80 21.5 33400 3.50 88.0 0.87 386 1650 1080 15.2 6822 10.4 2.00	2.10 <5 120 73.0 3.10 12.6 0.51 3510 42.5 52.5 2.00 238 1430 366 63.1 682	1SC1 10100 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.0	10700 <10700 <10700 <88.1 1.20 53.1.1 6820 184 23.7 43.5 19300 185 2320 1180 46.5 <<1000	11500 410 \$2.0 82.0 0.95 15.8 6280 167 24.9 39.1 18800 127 2470 965 40.1 <1000	5720 <100 <20 19.8 <0.50 <1.5 1110 10.2 <3.0 3.00 5020 <20 1520 72.8 10.9 <1000	5980 <10 <20 22.8 <0.50 <1.5 <1120 <14.0 5.30 5.10 6830 <20 2050 91.7 21.3 <1000	4600 <10.0 <20 10.8 <0.50 <1.5 633 10.8 <3.0 <3.0 <6.0 6040 <20 1690 76.7 12.6 <1000	4210 <10.0 <20 15.3 <0.50 <1.5 1050 9.50 <3.0 <470 <20 1310 60.5 10.6 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470 <470	4660 <10.0 <20 7.40 <0.50 <1.5 400 10.9 3.40 4.60 7230 <20.0 2190 64.7 15.2 <1000	5030 <10.0 <20.0 13.8 <0.50 <1.5.5 973 11.7 5.000 6.30 7720 <20 1310 85.1 15.0 <1000 <1000	2390 <5 10.0 16.6 0.50 1.50 414 7.10 3.00 3.80 5500 20.0 1190 362 14.4 433	

TABLE A-3
Grove Pond Sediment Metals Concentrations in mg/kg dw

T							1	T				-00			1
Thallium Vanadium	20.4 45.4	20.6 31.6		20.2 43.0	<20 16.1	<20 32.8		<20 6.00	<20 6.70	<20 5.70	<20.0 5.10	<20 5.50	<20 8.00	<20 6.00	
Zinc	632	31.6		43.0 472	159	32.8		17.6	25.5	5.70 17.6	16.5	20.7	25.2	14.5	
ZIIIC	032	360	291	412	109	390	303	17.0	25.5	17.0	10.5	20.7	25.2	14.5	
	8/1/1999														
	SD-01	SD-02	SD-02DUP	SD-03	SD-04	SD-05	SD-06	SD-07	SD-08	SD-09	SD-10				
Aluminum	5150	11100	11500	12800	11300	11400	9240	6030	10300	8090	11700				
Antimony	<14	<36		<30	<37	<39		<20	<41	<15	<33				
Arsenic	25.0	110		90.0	80.0	100		45.0	120	35.0	90.0				
Barium	34.2	92.5		97.0	86.1	81.6		44.4		43.6	82.1				
Beryllium	0.71	1.80		1.50	1.80	1.90		1.00	2.10	0.73	1.70				
Cadmium	10.0	51.0		8.00	7.00	13.0		4.00	24.0	12.0 3130	22.0				
Calcium Chromium	3650 94.1	8680 284		6300 284	6320 153	6130 198		4370 482	6960 1000	219	5610 213				
Cobalt	6.00	31.0		23.4	18.8	24.7	8.30	6.80	28.4	8.30	24.1				
Copper	16.4	52.8		33.3	33.6	37.2	124	21.6	81.1	17.7	37.9				
Iron	5780	22200	24500	20200	15300	20100	24300	8720	21800	8860	18000				
Lead	75.8	235		114	123	147	277	80.5	221	79.8	223				
Magnesium	831	2470		2640	2220	2490	3060	1020	2170	1250	2670				
Manganese	237	1020		1270	1080	857	284	595	1060	622	870				
Nickel	14.0	50.4		26.0	24.3	30.1	27.5	14.2	43.0	16.9	35.8				
Potassium	1420	3590		3010	3660	3870			4120	1460	3300				
Selenium	14.2 4.20			30.1	36.6	38.7			41.2	14.6	33.0		 		
Silver Sodium	4.20 1420	10.8 3590		9.00 3010	11.0 3660	11.6 3870	10.2 3420	6.00	12.4 4120	4.40 1460	9.90 3300				
Thallium	1420 <28.3	3590 <71.7			<73.2	3870 <77.4		2010 <40.1	4120 <82.4	<29.2	<65.9		 	 	
Vanadium	17.9			26.7	27.1	30.4	40.4	14.1	34.2	16.5	31.5		 		
Zinc	137	532		229	257	332		106	431	133	354				
	9/1/2000			1/1/2001											
	GPCORE1	GPCORE2	GPCORE3	GV1	GV10	GV2	GV3	GV4	GV5	GV6	GV7	GV8	GV9		
Arsenic	93.1	93.1		100.63	5.49	47.5	39.6	76.2	135.13	81.7	122.2	73.5	68.6		
Cadmium	17.0	17.0	10.2	58.0	0.49	21.0		9.95	4.71	10.9	2.02	3.16	6.44		
Chromium	1934.5	1934.5		57.4	31.4	87.2	303.68	1408.25	8175.49	1608.58	26258.39	28831.01	2152.71		
Copper	42.0	42.0		200.07	0.50	00.5	57.4	107.51	000.47	400.4	704.7	700.07	05.0		
Lead	159.33 504.62	159.33 504.62	549.58 1081.62	369.07	8.58	92.5	57.1	107.51	239.17	108.1	704.7	726.67	85.2		
Manganese Mercury	0.56	13.8		0.34	0.025	0.23	2.14	15.2	73.5	25.7	28.4	11.8	26.8	-	
Methyl mercury	0.50	13.0	10.5	0.0021	0.00028	0.0024	0.0092	0.016	0.070	0.042	0.038	0.0100	0.025		
Nickel	35.1	35.1	34.0	0.0021	0.00020	0.0021	0.0002	0.010	0.010	0.012	0.000	0.0100	0.020		
Zinc	275	275													
	3/1/2004														
	GP01	GP02	GP03	GP04	GP05	GP06	GP07	GP08	GP09	GP10		GP12	GP13		GP15
Aluminum	16000	13000	12000	12000	9800	8200	12000	9200	38000	9700	9800	17000	11000	9500	11000
Antimony	<10	<18		<38	<22	<10			<14	<15	<20	<50	<49	<50	<55
Arsenic Barium	95.0 140	140 98.0		130 130	90.0 78.0	79.0 76.0			66.0 23.0	86.0 86.0	95.0 81.0	130 220		130 300	100 390
Beryllium	1.30	98.0		<3.8	78.0 <2.2	1.00		86.0 <1.8	5.80	86.0 <1.5	81.0 <2			300 <5	<5.5
Cadmium	38.0	95.0	76.0	130	59.0	39.0		46.0	6.30	34.0	37.0	19.0	<15	<15	<16
Calcium	4800	5900		7500	6900	6100		7300	7200	5400	6600	12000	11000	20000	55000
Chromium	48.0	76.0		220	1500	690		1100	620	2400	1600	25000	20000	40000	52000
Cobalt	23.0	54.0	30.0	40.0	23.0	23.0	21.0	24.0	45.0	25.0	22.0	33.0	16.0	<15	<16
Copper	68.0	92.0		79.0	58.0	88.0	51.0	54.0	45.0	54.0	50.0	140	98.0	200	230
Iron	34000	30000		30000	19000	21000	22000	23000	20000	22000	22000	31000	29000	26000	21000
Lead	190	380		310	230	160	260	180	61.0	190	230	870	460	1400	1600
Magnesium	5200	3700		3000	1900	1700	2300	1900	840	1400	1800	2100	1600	3000	4100
Manganese	1200	960		1600	640	670			70.0	1100	570	770	560	1100	1400
Mercury	0.38 57.0	0.49		0.96	5.40	6.80 66.0	5.70 43.0	3.10 49.0	0.62 54.0	8.30	6.20 54.0	18.0 69.0	340	15.0 60.0	4.80 42.0
Nickel Potassium	1700	86.0 <1800		85.0 <3800	56.0 <2200	<1000	43.0 <1700	49.0 <1800	54.0 <1400	52.0 <1500	54.0 <2000	<5000	33.0 <4800	<5000	42.0 <5600
Selenium	<20			<3600 <76	<44	<20		<36	<28	<30	<40	<100	<98	<100	<555
Silver	<3		<7.8	<11	<6.6	<3		<5.4		<4.5	<6	<15	<15	<15	<16
Sodium	<1000	<1800		<3800	<2200	1100		2000	<1400	1500	<2000	<5000	<4800	<5000	<5600
Thallium	<20	<36		<76	<44	<20		<36	<28	<30	<40	<100	<98	<100	<110
Vanadium	42.0	59.0	40.0	50.0	43.0	35.0	66.0	34.0	22.0	40.0	63.0	120	63.0	140	140
Zinc	500	700	720	820	550	480		550	330	570	550	770	570	580	550

TABLE A-3
Grove Pond Sediment Metals Concentrations in mg/kg dw

	2/2/2005		
	G-SED-1	G-SED-2	G-SED-3
Aluminum	13000	3100	5800
Antimony	<8.3	<7.5	<14
Arsenic	110	25.0	56.0
Barium	89.0	120	260
Beryllium	1.20	<0.75	<1.4
Cadmium	8.30	<2.2	4.40
Calcium	12000	340000	170000
Chromium	4600	11000	38000
Cobalt	20.0	<2.2	4.20
Copper	50.0	45.0	240
Iron	18000	3800	13000
Lead	260	340	1400
Magnesium	1900	1500	2400
Manganese	500	970	2500
Mercury	36.0	5.30	5.80
Nickel	34.0	6.00	25.0
Potassium	910	<380	880
Selenium	17.0	<15	<28
Silver	<2.5	<2.2	<4.2
Sodium	630	880	1300
Thallium	<50	<15	<60
Vanadium	31.0	47.0	81.0
Zinc	310	110	310

			Frequency
	Max		of
Analyte	(mg/kg)	Avg (mg/kg)	Detection
1-Methyl naphthalene	1.1	0.64	1/15
2-Methylnaphthalene	0	0.25	4/74
Acenaphthene	0.068	0.27	4/26
Acenaphthylene	0.22	0.15	5/78
Anthracene	0	0.19	8/78
Benzo(a)anthracene	3.4	0.45	7/78
Benzo(a)pyrene	1.1	0.47	6/26
Benzo(b)fluoranthene	2.4	0.44	4/70
Benzo(ghi)perylene	1.4	0.45	5/28
Benzo(k)fluoranthene	4.9	0.32	8/78
Chrysene	3.7	0.40	9/78
Dibenzo(a,h)anthracene	0.3	0.28	4/4
Fluoranthene	7.1	0.58	16/78
Fluorene	1.1	0.16	5/78
Indeno(1,2,3-cd)pyrene	1.6	0.54	4/26
Naphthalene	20	0.75	16/78
Phenanthrene	4.6	0.40	15/78
Pyrene	6	0.64	20/78
Total PAH	42.01	5.52	NA

													_				
	(ABB-ES, Oct. 1				Γ								Γ				
nalyte	GRD-95-08X	GRD-95-09X	GRD-95-10X	GRD-95-11X		GRD-95-12X		GRD-95-13X	GRD-95-14X		GRD-95-14Xdup	GRD-95-15X	L	GRD-95-16X	GRD-95-17X	GRD-95-18X	
-Methyl naphthalene													L				
-Methylnaphthalene	< 1	< 0.5	< 1	< 1		4	<	0.2	< 0.2	<	0.2	< 0.049	<	0.2	< 0.2 <	0.2	
cenaphthene													L				
Acenaphthylene	< 0.7		< 0.7	< 0.7		0.2			< 0.2			< 0.033		0.2		0.2	
Anthracene	< 0.7	< 0.3	< 0.7	< 0.7					< 0.2		0.2	2.4		0.2		0.2	
Benzo(a)anthracene	< 3	< 2	< 3	< 3	<	0.8	٧	0.8	< 0.8	۸	8.0	3.4	<	0.8	< 0.8 <	0.8	
Benzo(a)pyrene													Г				
Benzo(b)fluoranthene	< 4	< 2	< 4	< 4	<	1	<	1 .	< 1	٧	1	< 0.21	<	1	< 1 <	1	
Benzo(ghi)perylene													Т				
Benzo(k)fluoranthene	< 1	< 0.7	< 1	< 1	<	0.3	<	0.3	< 0.3	٧	0.3	2.2	<	0.3	< 0.3 <	0.3	
Chrysene	< 2		< 2	< 2					< 0.6		0.6	3.7		0.6		0.6	
Dibenzo(a,h)anthracene	1	ľ			Ė	0.0	Ė	0.0	. 0.0	·	0.0	0.7	Ė	0.0	. 0.0	0.0	
luoranthene	5	< 0.7	< 1	< 1	-	0.3	-	0.3	2	,	0.3	3.7	-	0.3	< 0.3 <	0.3	
luorene	< 0.7		< 0.7	< 0.7		0.2			< 0.2		0.2	1.1		0.2		0.2	
	< 0.7	< 0.3	< 0.7	< 0.7	۲.	0.2	۲.	U.Z .	S U.Z	`	0.2	1.1	÷	0.2	< 0.2	0.2	
ndeno(1,2,3-cd)pyrene					\vdash		-						⊬				
laphthalene	< 0.7		< 0.7	< 0.7		0.2			< 0.2			< 0.037		0.2		0.2	L-L
henanthrene	3		< 0.7	< 0.7					< 0.2		0.2	2.7		0.2		0.2	
yrene	5		< 0.7	< 0.7				0.2	< 0.2		0.2	3.9		0.2		0.2	
otal PAH	19.9	6.25	8.1	8.1	L	6.1	L	2.2	4.05	L	2.2	23.485	ഥ	2.2	2.2	2.2	
					Γ		Г			וו			Ι				
nalyte	GRD-95-19X	GRD-95-20X	GRD-95-21X	GRD-95-22X		GRD-95-23X		GRD-95-24X	GRD-95-24Xdup	П	GRD-95-25X	GRD-95-26X	Г	GRD-95-27X	GRD-95-28X	GRD-95-32DupX	
-Methyl naphthalene					Т		T			П			Г			,	
-Methylnaphthalene	< 0.1	< 0.1	< 0.049	< 2	<	0.1	<	0.049	< 0.049	<	0.049	< 0.049	<	0.2	< 0.2 <	0.2	
cenaphthene			2.010	H	tì	0.1	t	0.040	3.043	Н	0.043	3.043	Ė	0.2	J.2	0.2	
cenaphthylene	< 0.07	< 0.07	< 0.033	- 1	<	0.07	-	0.033	< 0.033	1	0.033	< 0.033	t	0.2	< 0.2	0.2	
nthracene	< 0.07		< 0.033		<	0.07		0.033	< 0.033	٠,	0.033	< 0.033		0.2			
					-												
enzo(a)anthracene	< 0.3	< 0.3	< 0.17	< 7	<	0.3	<	0.17	< 0.17	<	0.17	< 0.17	<	0.8	< 0.8	0.8	
Benzo(a)pyrene													L				
Benzo(b)fluoranthene	< 0.4	< 0.4	< 0.21	< 8	<	0.4	<	0.21	< 0.21	<	0.21	< 0.21	<	1	< 1 <	1	
Benzo(ghi)perylene																	
Benzo(k)fluoranthene	< 0.1	< 0.1	< 0.066	< 3	<	0.1	٧	0.066	< 0.066	۸	0.066	< 0.066	<	0.3	< 0.3 <	0.3	
Chrysene	< 0.2	< 0.2	< 0.12	< 5	<	0.2	<	0.12	< 0.12	<	0.12	< 0.12	<	0.6	< 0.6 <	0.6	
Dibenzo(a,h)anthracene													Т				
luoranthene	< 0.1	< 0.1	< 0.068	< 3	<	0.1	<	0.068	< 0.068	٧	0.068	0.73	<	0.3	< 0.3 <	0.3	
luorene	< 0.07		< 0.033		<	0.07		0.033	< 0.033		0.033	< 0.033		0.2			
ndeno(1,2,3-cd)pyrene	. 0.07	. 0.07	0.000		H	0.01	H.	0.000	0.000	Ė	0.000	0.000	H	0.2	0.2	0.2	
Naphthalene	< 0.07	< 0.07	< 0.037		١.	0.07		0.037	< 0.037		0.037	0.37	⊢	20	< 0.2 <	0.2	-
				1	<	0.07		0.037		٠,	0.037						
henanthrene	< 0.07		< 0.033		~				< 0.033	`		0.33		2			
Pyrene	< 0.07		< 0.033			0.07	<	0.033	< 0.033	<	0.033	0.56		3			
otal PAH	0.81	1.575	0.441	17	_	0.81		0.441	0.441		0.441	2.347	L	26.9	2.2	2.2	
					1		_						L			1	
					L¯		L		1	Ll			┸¯	\Box			
Analyte	GRD-95-33X	GRD-95-34X	GRD-95-35X	GRD-95-36X	Г	GRD-95-37X	Г	GRD-95-38X	GRD-95-39X	П	GRD-95-40X	GRD-95-41X	Γ	GRD-95-42X	GRD-95-43X	GRD-95-44X	
-Methyl naphthalene					Г					П			Г				
-Methylnaphthalene	< 0.2	< 0.2	2	0.72	<	0.1	<	0.2	< 0.1	<	0.049	< 0.049	<	0.049	< 0.1 <	0.049	
cenaphthene	1		1		T		Т		1	П			\vdash		T	1	l 1
cenaphthylene	< 0.2	< 0.2	< 0.2	0.18	~	0.07	<	0.2	< 0.07	-	0.033	< 0.033	-	0.033	< 0.07 <	0.033	
nthracene	< 0.2		< 0.2	0.12		0.07			< 0.07			< 0.033				0.033	l
	< 0.2		< 0.8	< 0.12					< 0.07					0.033		0.033	H
enzo(a)anthracene	< U.8	< 0.8	5.U.8	< U.1/	1	0.3	1	U.0 .	· U.3	^	U.17	< 0.17	۴	U. 17	< U.3 <	U.1/	H
Benzo(a)pyrene			.1.	0.04	١.		⊢	I		Н			+	10.04		0.04	H
enzo(b)fluoranthene	< 1	< 1	< 1	< 0.21	<	0.4	<	1 .	< 0.4	<	0.21	< 0.21	<	0.21	< 0.4 <	0.21	
enzo(ghi)perylene					1		1						L				
enzo(k)fluoranthene	< 0.3		< 0.3	< 0.066					< 0.1			< 0.066		0.066		0.066	
hrysene	< 0.6	< 0.6	< 0.6	0.43	<	0.2	<	0.6	< 0.2	<	0.12	< 0.12	<	0.12	< 0.2 <	0.12	
ibenzo(a,h)anthracene										П			Г				
luoranthene	< 0.3	< 0.3	2	0.66	<	0.1	<	0.3	< 0.1	<	0.068	< 0.068	<	0.068	< 0.1 <	0.068	l i
luorene	< 0.2		< 0.2	< 0.033					< 0.07			< 0.033				0.033	H
ideno(1,2,3-cd)pyrene		19.2	· V.L	. 0.000	Ť	0.01	Ť	V.E.	. 0.01	H	0.000	- 0.000	÷	0.000	. 0.07	0.000	
laphthalene	7	< 0.2	3	0.57	┢	0.07	F	0.2	< 0.07		0.037	< 0.037	┢	0.037	< 0.07 <	0.037	l
	100		4														
henanthrene	< 0.2	< 0.2	1	0.44				0.2	< 0.07			< 0.033		0.033		0.033	l
yrene	< 0.2	< 0.2	2	0.45					< 0.07			< 0.033		0.033		0.033	\sqcup
otal PAH	9.1	2.2	11.65	3.8095	1	0.81	_	2.2	0.81		0.4425	0.458	L	0.461	0.81	0.4425	
					L		L	<u> </u>	1	L			L			<u> </u>	

TABLE A-4 Grove Pond Sediments PAHs Concentrations in mg/kg dw

				Т			Т		П			П								
Analyte		GRD-95-45X	GRD-95-46	K	GRD-95-47X	GRD-95-48X	(3RD-95-49X		GRD-95-50X	GRD-95-51X		GRD-95-52X	GRD-95-53X	GRD-95-54	GRD-95-	55X			
1-Methyl naphthalene				┰			I		П											
2-Methylnaphthalene	<	0.049	< 0.049	<	0.1	< <0.1	< •	<0.049	<	<0.049 <	<0.049	<	<0.049 <	0.049	0.049	< 0.049				
Acenaphthene				4			_		Ш			_								
Acenaphthylene		0.033	< 0.033		0.07			<0.033		< 0.033 <	< 0.033				0.033	< 0.033				
Anthracene		0.033	< 0.033								<0.033				0.033	< 0.033	_		-	
Benzo(a)anthracene Benzo(a)pyrene		0.17	< 0.17	^	0.3	< <0.3	` '	<0.17	۲.	<0.17 <	<0.17	۲,	<0.17 <	0.17	0.17	< 0.17	-		1	-
Benzo(b)fluoranthene	<	0.21	< 0.21	-	0.4	< <0.4	۷.	<0.21	<	<0.21 <	<0.21	<	<0.21 <	0.21	0.21	< 0.21				
Benzo(ghi)perylene		0.21	0.21	Ť	0.1		÷	-0.21	Ė	.0.21	-0.E1	-	.0.21	0.21	0.21	- U.L.			1	
Benzo(k)fluoranthene	<	0.066	< 0.066	<	0.1	< <0.1	< .	<0.066	<	<0.066 <	<0.066	<	<0.066 <	0.066	0.066	< 0.066				
Chrysene		0.12	< 0.12	<	0.2	< <0.2	< -	<0.12	<		<0.12	<	<0.12 <	0.12	0.12	< 0.12				
Dibenzo(a,h)anthracene																				
Fluoranthene	٧	0.068	< 0.068				< •	<0.068	<	<0.068 <	<0.068	<	<0.068 <	0.068	0.068	< 0.068				
Fluorene	<	0.033	< 0.033	<	0.07	< < 0.07	< -	< 0.033	<	< 0.033 <	< 0.033	<	< 0.033 <	0.033	0.033	< 0.033				
Indeno(1,2,3-cd)pyrene																				
Naphthalene		0.037	< 0.037					<0.037		1.1	<0.037				0.037	< 0.037				
Phenanthrene		0.033	< 0.033		0.07	< <0.07		<0.033		<0.033 <	< 0.033				0.033	< 0.033	_			
Pyrene Total PAH		0.033	< 0.033 0.4425		0.07	< <0.07 0.81).42).846		0.62 < 2.1275	<0.033 0.4425			0.033 < 0.4425	0.033	< 0.033			-	
TOTAL		0.4423	0.4423	+	0.01	0.01	-	7.040	H	2.1273	0.4423	-1	0.4423	0.4423	0.4423	0.4423				
	Collected 2/2	2/05		+	Collected 12/22	2/93	+		Н		10/2/199	92								
	G-SED-1		G-SED-2 G-SED-3			S-2	-	3-3	H	S-4	SED-A		SED-B	SED-C	SED-D	SED-E		SED-F	SED-G	
1-Methyl naphthalene				٧	0.7	1.1	< (0.7	٧.	4.2 <	0.5	٧	0.5	0.5	< 0.5	<	0.5	< 0.5	U	0.5
2-Methylnaphthalene				<	0.18	0.88	< ().18	<	1.1 <	0.5	<	0.5 <	0.5	< 0.5	<	0.5		<	0.5
Acenaphthene	0.068		0.034 0.02).28							< 0.5	<	0.5		<	0.5
Acenaphthylene	0.22		0.046 0.07	9 <	0.26	< 0.26	< (0.26	٧	1.6 <	0.5	٧	0.5	0.5	< 0.5	<	0.5	< 0.5	<	0.5
Anthracene	0.37								<						< 0.5	<	0.5		<	0.5
Benzo(a)anthracene	1		0.21 0.3		0.32			0.32							< 0.5	<	0.5		4	0.5
Benzo(a)pyrene	1.1		0.19 0.3		0.38	0.61	< (0.38	< :	2.3 <					< 0.5	<	0.5		4	0.5
Benzo(b)fluoranthene	2.4		0.36 0.6		0.5	0.5	4		Н				0.5 <	0.5	< 0.5	<	0.5		4	0.5
Benzo(ghi)perylene Benzo(k)fluoranthene	1.3 0.65	l	0.028 0.08 0.11 0.2				< (0.5	<						< 0.5	1	0.5		-	0.5
	1.7	-	0.11 0.2		0.36										< 0.5 < 0.5		0.5			0.5
Chrysene Dibenzo(a,h)anthracene	0.3		0.35 0.4			< 0.48	71		< :						< 0.5	<	0.5		-	0.5
Fluoranthene	3.1								<						< 0.5	<	0.5			0.5
Fluorene	0.25		0.084 0.06	9 <	0.28	< 0.28	< (0.28	<		0.5		0.5	0.5	< 0.5	<	0.5	< 0.5	-	0.5
Indeno(1,2,3-cd)pyrene	1.1	<	0.009 0.03		0.48										< 0.5	<	0.5		<	0.5
Naphthalene	2.1		0.28 2.												< 0.5	<	0.5		<	0.5
Phenanthrene	1.5		0.6 0.4	3 <	0.26	1.4	< (0.26	٧	1.6 <	0.5	٧	0.5	0.5	< 0.5	<	0.5	< 0.5	<	0.5
Pyrene	2.3		0.59 0.7					0.28							< 0.5	<	0.5		<	0.5
Total PAH	19.458		3.8285 7.10	11	2.91	13.08	- 1-	2.91	1 1	17.55			4.5	4.5	4.5					4.5
							- 4			17.55	4.5		4.0	1.0	1.0		4.5	4.5		
				<u> </u>		10.00	Í			17.55	4.5		4.0	1.0	1.0		4.5	4.5		
A I. d -	4/29/1994	CEDIMENT		Ŧ									4.0	1.0	1.0		4.5	4.5		
Analyte	4/29/1994	SEDIMENT		Ŧ		SEDIMENT 4					SEDIMENT 7		4.0				4.5	4.5		
1-Methyl naphthalene		SEDIMENT	1 SEDIMENT	2	SEDIMENT 3	SEDIMENT 4		SEDIMENT 5		SEDIMENT 6	SEDIMENT 7		4.0		1.5		4.5	4.5		
1-Methyl naphthalene 2-Methylnaphthalene	<	SEDIMENT 0.55	1 SEDIMENT	2 <	SEDIMENT 3	SEDIMENT 4	< (SEDIMENT 5	<	SEDIMENT 6			4.0				4.5	4.5		
1-Methyl naphthalene	v v	SEDIMENT	1 SEDIMENT	2	SEDIMENT 3 0.45 0.45	SEDIMENT 4 < 0.33 < 0.33	< (D.62 0.62	< :	SEDIMENT 6	SEDIMENT 7		4.0				4.5	4.5		
1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene	< < <	0.55 0.55	1 SEDIMENT < 0.4 < 0.4	2 <	SEDIMENT 3 0.45 0.45 0.45 0.45 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (0.62 0.62 0.62 0.62 0.62	< : < : < : < : < : < : < : < : < : < :	SEDIMENT 6 2	SEDIMENT 7 0.35 0.35		4.0				4.5	4.0		
1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene	< < <	0.55 0.55 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4	2 <	SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (0.62 0.62 0.62 0.62 0.62 0.62	V V V V V V	SEDIMENT 6 2	SEDIMENT 7 0.35 0.35 0.35		4.0				4.5	4.0		
1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	< < < <	0.55 0.55 0.55 0.55 0.55 0.55 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4	2 <	SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< () < () < () < () < () < () < () < ()	0.62 0.62 0.62 0.62 0.62 0.62	V V V V V V V	SEDIMENT 6 2	SEDIMENT 7 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35		4.0	17.0			4.5	4.0		
1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	< < < < < < < < < < < < < < < < < < <	0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.04	2 <	SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< () < () < () < () < ()	0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62	V V V V V V V	SEDIMENT 6 2	SEDIMENT 7 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35		9.0	17.0			4.5	4.0		
1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Achtracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene	< < < < < < < < < < < < < < < < < < <	SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.04 < 0.4 < 0.4 < 0.4	2 <	SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62	< : < : < : < : < : < : < : < : < : < :	SEDIMENT 6 2	SEDIMENT 7 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3		4.0	17.0			4.5	4.0		
1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene	< < < < < < < < < < < < < < < < < < <	SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04	2 < < < < < < < < < < < < < < < < < < <	SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< ((< () < () < () < () < () < () < ()	SEDIMENT 5 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62	< : < : < : < : < : < : < : < : < : < :	SEDIMENT 6 2	SEDIMENT 7 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3		9.0	110			4.5	4.0		
1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)lluoranthene Benzo(b)lluoranthene Benzo(b)lluoranthene Chrysene	<	SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04	2	SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62	< : < : < : < : < : < : < : < : < : < :	SEDIMENT 6 2	SEDIMENT 7 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3		4.0	100			4.5	4.0		
1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene Acenaphthene Acenaphthylene Acenaphthylene Acenaphthylene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anthracene	<	SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4	2	SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62	< : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < :	SEDIMENT 6 2	SEDIMENT 7 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3		9.0	770			4.5	4.3		
1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)inuoranthene Benzo(b)inuoranthene Benzo(b)inuoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	<td>SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.</td> <td>1 SEDIMENT < 0.4 < 0.4 < 0.04 /td> <td>2</td> <td>SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4</td> <td>SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33</td> <td>< (< (</td> <td>DEDIMENT 5 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62</td> <td>< < lt;</td> <td>SEDIMENT 6 2</td> <td>SEDIMENT 7 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35</td> <td></td> <td>4.0</td> <td>110</td> <td></td> <td></td> <td>4.5</td> <td>4.0</td> <td></td> <td></td>	SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.	1 SEDIMENT < 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04	2	SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (DEDIMENT 5 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62	< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35		4.0	110			4.5	4.0		
1-Methyl naphthalene Acenaphthalene Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pryene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a, hanthracene Fluoranthene Fluoranthene	< </td <td>SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.</td> <td>1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4</td> <td>2 < < < < < < < < < < < < < < < < < < <</td> <td>SEDIMENT 3 0.45</td> <td>SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33</td> <td>< (< (</td> <td>SEDIMENT 5 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.6</td> <td>< : < :</td> <td>SEDIMENT 6 2</td> <td>SEDIMENT 7 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3</td> <td></td> <td>7.0</td> <td>110</td> <td></td> <td></td> <td>4.5</td> <td>4.5</td> <td></td> <td></td>	SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4	2 < < < < < < < < < < < < < < < < < < <	SEDIMENT 3 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.6	< : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < :	SEDIMENT 6 2	SEDIMENT 7 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3		7.0	110			4.5	4.5		
1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)inuoranthene Benzo(b)inuoranthene Benzo(b)inuoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	< </td <td>SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.</td> <td>1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.04 /td> <td>2</td> <td>SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4</td> <td>SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33</td> <td>< () < ()</td> <td>SEDIMENT 5 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.6</td> <td>< < lt;</td> <td>SEDIMENT 6 2</td> <td>SEDIMENT 7 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35</td> <td></td> <td>4.0</td> <td>110</td> <td></td> <td></td> <td>4.5</td> <td>4.3</td> <td></td> <td></td>	SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04	2	SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< () < () < () < () < () < () < () < ()	SEDIMENT 5 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.6	< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35		4.0	110			4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)Moranthene Benzo(b)Moranthene Benzo(b)Moranthene Benzo(b)Moranthene Benzo(b)Moranthene Fenzofene Fe	< </td <td>SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.</td> <td>1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4</td> <td>2</td> <td>SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4</td> <td>SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33</td> <td>< (< (</td> <td>SEDIMENT 5 0.62</td> <td>< : < :</td> <td>SEDIMENT 6 2</td> <td>SEDIMENT 7 0.35 0.36 0.37 0.38 0.38 0.38 0.38 0.38 0.35</td> <td></td> <td>4.0</td> <td>110</td> <td></td> <td></td> <td>4.5</td> <td>4.5</td> <td></td> <td></td>	SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4	2	SEDIMENT 3 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5 0.62	< : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < :	SEDIMENT 6 2	SEDIMENT 7 0.35 0.36 0.37 0.38 0.38 0.38 0.38 0.38 0.35		4.0	110			4.5	4.5		
1Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)priene Benzo(a)priene Benzo(b)priene Benzo(b)p	< </td <td>SEDIMENT 0.55 0.56 0.56 0.56 0.55 0.55 0.55 0.5</td> <td>1 SEDIMENT</td> <td>2</td> <td>SEDIMENT 3 0.45</td> <td>SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33</td> <td>< (< (</td> <td>SEDIMENT 5 </td> <td>< < /td> <td>SEDIMENT 6 2</td> <td>SEDIMENT 7 0.35</td> <td></td> <td>4.0</td> <td></td> <td></td> <td></td> <td>4.5</td> <td>4.3</td> <td></td> <td></td>	SEDIMENT 0.55 0.56 0.56 0.56 0.55 0.55 0.55 0.5	1 SEDIMENT	2	SEDIMENT 3 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		4.0				4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenzo(a h)anthracene Fluoranthene Fluoranthene Fluoranthene Naphthalene Phoenanthene	< </td <td>SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.</td> <td>1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4</td> <td>2</td> <td>SEDIMENT 3 0.45</td> <td>SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33</td> <td>< (< (</td> <td>SEDIMENT 5 0.62</td> <td>< : < :</td> <td>SEDIMENT 6 2</td> <td>SEDIMENT 7 0.35 0.36 0.37 0.38 0.38 0.38 0.38 0.38 0.35</td> <td></td> <td>4.0</td> <td>110</td> <td></td> <td></td> <td>4.5</td> <td>4.3</td> <td></td> <td></td>	SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4	2	SEDIMENT 3 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5 0.62	< : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < : < :	SEDIMENT 6 2	SEDIMENT 7 0.35 0.36 0.37 0.38 0.38 0.38 0.38 0.38 0.35		4.0	110			4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)priene Benzo(a)priene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a, h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Penanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene	< </td <td>SEDIMENT 0.55 0.56 0.56 0.56 0.55 0.55 0.55 0.5</td> <td>1 SEDIMENT</td> <td>2</td> <td>SEDIMENT 3 0.45</td> <td>SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33</td> <td>< (< (</td> <td>SEDIMENT 5 </td> <td>< < /td> <td>SEDIMENT 6 2</td> <td>SEDIMENT 7 0.35</td> <td></td> <td>4.0</td> <td></td> <td></td> <td></td> <td>4.5</td> <td>4.3</td> <td></td> <td></td>	SEDIMENT 0.55 0.56 0.56 0.56 0.55 0.55 0.55 0.5	1 SEDIMENT	2	SEDIMENT 3 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		4.0				4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene Todal PAH	< < < < < < < < < < < < < < < < < < <	SEDIMENT 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.	1 SEDIMENT < 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04	2	SEDIMENT 3 0.45	SEDIMENT 4 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		7.0	10			4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)priene Benzo(a)priene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a, h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Plenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Total PAH Analyte	<td>SEDIMENT 0.55</td> <td>1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4</td> <td>2</td> <td>SEDIMENT 3 0.45</td> <td>SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33</td> <td>< (< (</td> <td>SEDIMENT 5 </td> <td>< < /td> <td>SEDIMENT 6 2</td> <td>SEDIMENT 7 0.35</td> <td></td> <td>4.0</td> <td></td> <td></td> <td></td> <td>4.5</td> <td>4.3</td> <td></td> <td></td>	SEDIMENT 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4	2	SEDIMENT 3 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		4.0				4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzod alpyrene Benzod alpyrene Benzod plyrene Dibenzod a hjanthracene Fluoranthene Fluoranthene Truoranthene Analyte Analyte Analyte	<td>SEDIMENT 0.55</td> <td>1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.5 SW-2 < 0.59</td> <td>2</td> <td>SEDIMENT 3 0.45</td> <td>SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33</td> <td>< (< (</td> <td>SEDIMENT 5 </td> <td>< < /td> <td>SEDIMENT 6 2</td> <td>SEDIMENT 7 0.35</td> <td></td> <td>4.0</td> <td></td> <td></td> <td></td> <td>4.5</td> <td>4.3</td> <td></td> <td></td>	SEDIMENT 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.5 SW-2 < 0.59	2	SEDIMENT 3 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		4.0				4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)privene Benzo(a)privene Benzo(b)privene Dibenzo(a)privene Dibenzo		SEDIMENT 0.55 0.56 0.55 0.55 0.55 0.55 0.55 0.5	1 SEDIMENT	2	SEDIMENT 3 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		4.0				4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzod alpyrene Benzod alpyrene Benzod provene Benzod pro	< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	SEDIMENT 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.5 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4	2	SEDIMENT 3 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.34 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		7.0				4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)nthracene Benzo(a)nthracene Benzo(b)nuranthene Benzo(b)nuranthene Benzo(b)nuranthene Benzo(b)nuranthene Benzo(b)nuranthene Fluoranthene Total PAH Analyte 1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene	< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	SEDIMENT 0.55 0.56 0.55 0.55 0.55 0.55 0.55 0.5	1 SEDIMENT	2	SEDIMENT 3 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35						4.5	4.5		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzod alpyrene Benzod alpyrene Benzod provene Benzod pro	< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	SEDIMENT 0.55 0.56 0.56 0.56 0.55 0.55 0.55 0.5	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.1 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.5 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4	2	SEDIMENT 3 0.45 0.46 0.46 0.47 0.47 0.48 0.49 0.49 0.49 0.49 0.40	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		7.0				4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzod alpyrene Benzod alpyrene Benzod pilyroathene Entorathene Fluorathene Fluorathene Fluorathene Total PAH Analyte Analyte Analyte Analyte Analyte Acenaphthalene Acenaphthene Acenaphthylene Anthracene Benzod (a) lanthracene Benzod (a) pilyroathene	< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	SEDIMENT 0.55 0.56 0.56 0.56 0.56 0.56 0.56 0.56	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.5 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4	2	SEDIMENT 3 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35						4.5	4.5		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)privene Benzo(a)privene Benzo(b)privene Fluoranthene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthylene Anthracene Benzo(a)privene Benzo(a)privene Benzo(a)privene Benzo(a)privene Benzo(a)privene Benzo(a)privene	< < < < < < < < < < < < < < < < < < <	SEDIMENT 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.1 < 0.4 < 0.4 < 0.4 < 0.5 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2	SEDIMENT 3 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 <	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		7.0				4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)prene Benzo(a)prene Benzo(b)prene Fuorene Fuorene Fuorene Fuorene Total PAH Analyte 1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)prene Benzo(a)prene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene	< < < < < < < < < < < < < < < < < < <	SEDIMENT 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.022 < 0.027 < 0.032	2	SEDIMENT 3 0.45 0.46 0.57 0.71	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.34 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		7.0				4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)plouranthene Benzo(b)plouranthene Benzo(b)plouranthene Benzo(b)plouranthene Chrysene Dibenzo(a, h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Total PAH Analyte 1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)preylene	< < < < < < < < < < < < < < < < < < <	SEDIMENT 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	2 2	SEDIMENT 3 0.45	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		7.0				4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzod alprene Benzod alprene Benzod prene Anathracene Benzod prene Benzod pr		SEDIMENT 0.55 0.	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.5 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7	2	SEDIMENT 3 0.45 0.46 0.46 0.46 0.47 0.26 0.40	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.35 < 0.35 < 0.35 < 0.37 < 0.38 < 0.38 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		4. U				4.5	4.3		
1Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)privene Benzo(a)privene Benzo(b)incorathene Benzo(b)incorathene Benzo(b)incorathene Benzo(b)incorathene Benzo(b)incorathene Benzo(b)incorathene Fluorantene Fluorantene Fluorantene Fluorantene Fluorantene Fluorantene Fluorantene Fluorantene Fluorantene Total PAH Analyte 1Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(b)incorathene Benzo(a)privene Benzo(a)privene Benzo(a)privene Benzo(a)privene Benzo(b)incorathene Benzo(b)incorathene Benzo(b)incorathene Benzo(b)incorathene Chrysene	<pre></pre>	SEDIMENT 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.1 < 0.4 < 0.4 < 0.4 < 0.5 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.7 < 0.8 < 0.8 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.9 < 0.97	2	SEDIMENT 3 0.45 0.46 0.51	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		4.0				4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)pyrene Naphthalene Pyrene Pyrene Analyte 1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(b)fluoranthene		SEDIMENT 0.55 0.	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.5 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.75	2	SEDIMENT 3 0.45 0.46 0.50 0.60 0.71 0.51 0.71 0.51 0.71	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.34 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		7.0				4.5	4.3		
1Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)privene Benzo(a)privene Benzo(b)iporanthene Benzo(b)iporanthene Benzo(b)iporanthene Benzo(b)iporanthene Benzo(b)iporanthene Fluoranthene Total PAH Analyte 1Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Benzo(a)privene Benzo(a)privene Benzo(a)privene Benzo(a)privene Benzo(b)iporanthene Benzo(b)iporanthene Benzo(b)iporanthene Enzo(b)iporanthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene	<pre></pre>	SEDIMENT 0.55 1.1 1.4 0.57 0.57 0.57 0.57 1.4 1.4 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.59 1.1 1.4 1.4 1.5 1.4 1.5 1.7 1.7 1.7 1.7 1.7 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1 SEDIMENT < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.5 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.7 < 0.5 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7	2	SEDIMENT 3 0.45 0.46 0.46 0.51 0.71 0.46 0.54	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		7.0				4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)pyrene Naphthalene Pyrene Pyrene Analyte 1-Methyl naphthalene 2-Methylnaphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene	<pre></pre>	SEDIMENT 0.55 0.	1 SEDIMENT < 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.03 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	2	SEDIMENT 3 0.45 0.46 0.46 0.46 0.50 0.40 0.71 0.51 0.51 0.46 0.69 0.40 0.71 0.51 0.71 0.51 0.71 0.51 0.71 0.51 0.71	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.35 < 0.35 < 0.37 < 0.38 < 0.38 < 0.38 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.39 < 0.	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35		7.00				4.5	4.3		
I-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)priene Benzo(a)priene Benzo(b)ilouranthene Benzo(b)ilouranthene Benzo(b)ilouranthene Benzo(b)ilouranthene Chrysene Dibenzo(a, h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Total PAH Analyte I-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)priene Benzo(a)priene Benzo(a)priene Benzo(a)priene Benzo(a)priene Benzo(b)ilouranthene Enzo(b)ilouranthene Enzo(b)ilouranthene Fluoranthene Indeno(1,2,3-cd)pyrene	<pre></pre>	SEDIMENT 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	2	SEDIMENT 3 0.45 0.46 0.40 0.51 0.71 0.46 0.50 0.60 0.4	SEDIMENT 4 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35						4.5	4.3		
1-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a) anthracene Benzo(a) pyrene Benzo(b) pyrene Naphthalene Pyrene Pyrene Pyrene Todal PAH Analyte 1-Methyl naphthalene 2-Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a) pyrene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(c) hanthracene Benzo(c) hanthracene Benzo(c) fluoranthene Fluoranthene Fluorene Fluorene Fluorene Indeno(1,2,3-cd) pyrene Naphthalene Phenanthrene	<pre></pre>	SEDIMENT 0.55 1.1 1.4 0.57 0.57 0.57 0.57 1.4 1.4 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.59 1.1 1.4 1.4 1.5 1.4 1.5 1.7 1.7 1.7 1.7 1.7 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1 SEDIMENT < 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.03 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	2	SEDIMENT 3 0.45 0.46 0.46 0.57 0.51 0.50	SEDIMENT 4 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.33 < 0.34 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.35 < 0.	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35						4.5	4.3		
1Methyl naphthalene Acenaphthene Acenaphthene Acenaphthene Anthracene Benzo(a)privene Benzo(a)privene Benzo(b)privene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Acenaphthalene Acenaphthalene Acenaphthalene Benzo(a)privene Benzo(a)privene Benzo(b)privene	Color Colo	SEDIMENT 0.55	1 SEDIMENT < 0.4 < 0.4 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	2 2	SEDIMENT 3 0.45 0.46 0.40 0.50 0.60 0.71 0.71 0.60 0.60 0.4 0.60 0.4 0.60 0.4 0.60 0.4 0.60 0.4 0.60 0.4 0.60 0.4 0.60 0.41 0.60 0.41 0.60 0.41 0.60 0.41 0.60 0.41	SEDIMENT 4 < 0.33	< (< (< (< (< (< (< (< (< (< (SEDIMENT 5	< < < < < < < < < < < < < < < < < < <	SEDIMENT 6 2	SEDIMENT 7 0.35						4.5	4.3		

TABLE A-5 Grove Pond Sediment Pesticides and PCB's Concentrations in ug/kg

Summary Stats

	Max	Average	
	concentration	concentration	Frequency of
	(ug/Kg)	(ug/Kg)	Detection
DDD	2500	321	41/41
DDE	980	122	45/88
DDT	3300	92	18/88
Endrin	28	11	2/73

	10/1/1992							12/22/1993							
	SED-A	SED-B	SED-C	SED-D	SED-E	SED-F	SED-G	S-1	S-2	S-3	S-4	SW-1	SW-2	SW-3	SW-4
4,4'-DDE	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<200	<100	<85	<71	<360
4,4'-DDT	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<200	<100	<85	<71	<360
Endrin	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<200	<100	<85	<71	<360
	4/29/1994							4/1/1995							
	SEDIMENT 1	SEDIMENT 2	SEDIMENT 3	SEDIMENT 4	SEDIMENT 5	SEDIMENT 6	SEDIMENT 7	GRD-95-08X	GRD-95-09X	GRD-95-10X	GRD-95-11X	GRD-95-12X	GRD-95-13X	GRD-95-14X	GRD-95-15X
4,4'-DDD	NA	30	130	130	40		10	100	70	150		130		740	380
4,4'-DDE	<10	10	20	20	<10	<10	<10	32	44	170	100	65	<7.6	280	250
4,4'-DDT	<10	<10	10	10	<10	<10	<10	59	<7.1	<7.1	<7.1	<7.1	<7.1	3300	<7.1
Endrin	<10	<10	<10	<10	<10	<10	<10	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.6	<6.5
	4/1/1995 (cont.)														
	GRD-95-16X	GRD-95-17X	GRD-95-18X	GRD-95-19X	GRD-95-20X	GRD-95-21X	GRD-95-22X	GRD-95-23X	GRD-95-24X	GRD-95-25X	GRD-95-26X	GRD-95-27X	GRD-95-28X	GRD-95-29X	GRD-95-30X
4,4'-DDD	430			88	1900				810	390	73	160	530	170	
4,4'-DDE	260	220	<7.6	97	930	<7.6	<7.6	<7.6	430	180	120	200	270	470	<7.6
4,4'-DDT	<7.1	<7.1	<7.1	<7.1	560	<7.1	<7.1	73	510	<7.1	<7.1	<7.1	<7.1	1500	<7.1
Endrin	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.6	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5
	4/1/1995 (cont.)														
	GRD-95-31X	GRD-95-32X	GRD-95-33X	GRD-95-34X	GRD-95-35X	GRD-95-36X	GRD-95-37X	GRD-95-38X	GRD-95-39X	GRD-95-40X	GRD-95-41X	GRD-95-42X	GRD-95-43X	GRD-95-44X	GRD-95-45X
4,4'-DDD	560	200			170	84			44		49				
4,4'-DDE	980	830	300	230	150	41	230	<7.6	230	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6
4,4'-DDT	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1
Endrin	28	<6.6	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5
	4/1/1995 (cont.)														
	GRD-95-46X	GRD-95-47X	GRD-95-48X	GRD-95-49X	GRD-95-50X	GRD-95-51X	GRD-95-52X	GRD-95-53X	GRD-95-54X	GRD-95-55X					
4,4'-DDD	500	2500	100	230		200		240	520	260					
4,4'-DDE	190	570	40	180	200	<23	<7.6	220	<7.6	170					
4,4'-DDT	<7.1	<7.1	220	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1					
Endrin	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5					
			1				1								
	4/1/1995		1				1								
	GRS-95-01X	GRS-95-02X	GRS-95-03X	GRS-95-04X	GRS-95-05X	GRS-95-06X	GRS-95-07X	GRS-95-08X	GRS-95-09X	GRS-95-10X	GRS-95-11X	GRS-95-12X	GRS-95-13X	GRS-95-14X	GRS-95-15X
4.4'-DDD		8.7	27			45	110				39				1112 22 707
4.4'-DDE	<7.6	12	100	<7.6	<7.6	10	160	<7.6	<7.6	<7.6	48	<7.6	50	<7.6	15
4.4'-DDT	18	30	160	<7.1	<7.1	100	450	<7.1	<7.1	<7.1	580	<7.1	260	<7.1	14
Endrin						.00							_50		

	2/2/2005 G-SED-1	G-SED-2	G-SED-3
4,4'-DDD	32		470
4,4'-DDE	76	96	310
4,4'-DDT	4.9	<2.1	<3.4
Endrin	4.9	<2.1	<3.4

TABLE A-6 Grove Pond Sediment VOCs

			Frequency of
Analyte	Max (ug/kg)	Avg (ug/kg)	Detection
Xylene (total)	16.4	4.01	1/22
Xylene (total) Toluene	4.2	4.57	1/22

	10/1/1992	10/2/1992						12/22/1993							
	SED-B	SED-A	SED-C	SED-D	SED-E	SED-F	SED-G	S-1	S-2	S-3	S-4	SW-1	SW-2	SW-3	SW-4
Toluene	<5	<5	<5	<5	<5	<5	<5	<7.5	<7.5	<7.5	<30	<15	<13	<11	<54
Xylene (total)	<5	<5	<5	<5	<5	<5	<5	<5.0	<5.0	<5.0	<20	<10	<8.5	<7.1	<36
	4/29/1994														
	SEDIMENT 1	SEDIMENT 2	SEDIMENT 3	SEDIMENT 4	SEDIMENT 5	SEDIMENT 6	SEDIMENT 7								
Toluene	<2.0	<2.0	4.20	<2.0	<2.0	<2.0	<2								
Xylene (total)	16.4	<2.0	<2.0	<2.0	<2.0	<2.0	<2		,						

TABLE A-7 Grove Pond Fish Tissue Data Whole body concentrations in mg/kg ww

Summary Stats

	Max	Average	
	concentration	concentration	Frequency of
Chemical	(mg/Kg)	(mg/Kg)	Detection
Aluminum	21	6.05	31/33
Antimony	ND	ND	0/5
Arsenic	0.13	0.20	2/33
Barium	3.68	1.27	33/33
Beryllium	0.99	0.07	8/33
Boron	1.39	0.20	15/28
Cadmium	1.02	0.12	23/22
Calcium	ND	ND	0/5
Chromium	1.80	0.67	33/33
Cobalt	ND	ND	0/5
Copper	1.35	0.60	33/33
Iron	77	33	33/33
Lead	5.02	0.72	27/33
Magnesium	745	488	33/33
Manganese	54	17	33/33
Mercury	1.14	0.21	30/33
Molybdenum	0.51	0.08	6/26
Nickel	4.85	0.39	15/33
Potassium	3400	503	5/5
Selenium	0.55	0.34	28/33
Silver	ND	ND	0/5
Sodium	1500	182	5/5
Strontium	48	19	28/28
Thallium	ND	ND	0/5
Vanadium	0.92	0.12	7/33
Zinc	42	18	33/33

June 30, 2004 Fish Data from EPA

																															Grove-East-		Grove-West-	Grove-West-
		om Mierzykowski et																												BGSF-WB	BLCR-WB	BGSF-WB	BGSF-WB Dup	Pick-WB
Name		BBH2W	BBH3W	BBH6W			BG2V	W E						BG8W			LMB1W		MB3W									YBH7W						
Aluminum	20.7	10.	7 12	.4 1	2.1	6.72	.14	7.9	7.43	2.66	2.68	1.53	5.31	1.48	2.02	7.9	7 10.19	7.29	7.51	5.41	4.98	3.66	11.8	6.01	3.81	3.57	2.47	6.44	6.41	<1.7		4	2	<1.5
Antimony																														<0.86	<1.1	<1.1		
Arsenic	< 0.103	<0.10	2 <0.10	0.1	118 <	<0.12 <0		<0.144	< 0.124	< 0.126	<0.11	< 0.124	< 0.143	< 0.132	<0.118	< 0.11:	2 <0.195	< 0.137	< 0.134	< 0.144	<0.132			< 0.121	< 0.122	<0.119	0.133	< 0.102	0.129	<1.7	<2.2	<2.3	<1.6	
Barium	1.344					1.81 0.		1.68	2.11	1.81	1.23								0.238	0.366	0.174				1.06	0.619		1.78	0.594	2.1		2.4		
Beryllium	0.158				023 (0.138 <0.		<0.028	0.07	< 0.025	<0.023	< 0.025					4 < 0.027	<0.028	< 0.026	< 0.03	<0.025			< 0.025	0.105	< 0.023	< 0.022	0.085	< 0.024	<0.086	<0.11	<0.12	<0.081	1 <0.076
Boron	0.536					0.419 <0.		< 0.141	0.462		0.163	0.127					7 < 0.137		0.139	0.214	< 0.127	< 0.126			0.29	< 0.117	<0.108	0.365	0.224					
Cadmium	0.21	0.09	5 0.03	33 < 0.0	023 (0.162 0.	79	0.051	0.132	0.057	0.05	0.058	0.113	0.234	0.083	0.10	8 0.074	< 0.028	0.03	0.031	< 0.025	0.034	1.023	< 0.025	0.128	< 0.023	0.037	0.191	0.031	< 0.26				
Calcium																														<1.7				
Chromium	0.854	0.44	8 0.43	37 1	.46 (0.781 0.	389	1.05	0.77	0.73	0.727	0.489	0.526	1.23	0.658	0.54	5 0.494	0.533	0.545	0.613	0.385	0.454	1.34	0.413	0.594	0.506	0.321	0.38	0.337	0.46		0.94		
Cobalt																														< 0.26	< 0.32	< 0.34		
Copper	0.943	0.56		57 1	.35 (0.731 0.		0.544		0.788	0.37	0.529							0.333	0.387	0.304			0.445	0.507	0.537	0.724	0.807	0.541	0.44		0.76	0.52	2 0.36
Iron	76.56					27.01 34		41.45			28.66								8.72		9.3		23.91		24.48	30.41		49.34	18.5	34	28	51	70	12
Lead	1.27	0.687				1.213 0.2		0.2793	1.101	0.4544	0.218	0.3457							0.2038	0.5059	0.1967		5.024	< 0.1238	1.018	0.4267	0.2067	0.8589	0.265	<1.7	<2.2	<2.3	<1.6	i <1.5
Magnesium	332.04					577.7 45		481.1		550.2	472.6	583.2				477.	2 423.5	396.1	485.9	517.5	403.6		489.4	439.5	512.3	461.9	329.6	370.3	394.1	440	550	610		
Manganese	7.744					22.77 20		11.2	48.39	24.32	18.04	13.89				6.57		2.77	3.331	6.989	2.889	3.051	4.626	2.826	5.024	8.093	13.45	17.09	9.153	49	36	50	54	
Mercury	0.0349					1662 0.0		0.0849		0.1493	0.1441	0.2351	0.2165						0.3408	0.2328	0.2027	0.2793	0.068	0.2376	0.2605	0.0441	0.0709	0.0728	0.1283	0.07	< 0.21	0.23	0.2	0.62
Molybdenum	< 0.1092	<0.108				.1981 <0.1		< 0.1414			< 0.1159	< 0.1258	< 0.1419			< 0.117			< 0.1322	< 0.1514	< 0.1272			<0.1238	0.1464	< 0.1167	< 0.108	0.1409	< 0.1185					
Nickel	0.9792	0.507	1 0.149	95 <0.11	155 0.	8011 0.1	164	< 0.1414	0.4497	0.1773	< 0.1159	< 0.1258	< 0.1419	0.7859	< 0.1198	< 0.117	6 < 0.1369	< 0.1377	0.1407	0.1808	< 0.1272	0.245	4.847	<0.1238	0.6353	< 0.1167	0.1092	0.5534	< 0.1185	< 0.52				
Potassium																														3300		3400		3400
Selenium	0.1429	0.253	9 0.198	31 0.26	659 0.	.3159 0.2	391	0.3757	0.3568	0.3579	0.2684	0.3362	0.3713	0.3787	0.2958	0.320	4 0.5538	0.3367	0.3422	0.3566	0.3281	0.3396	0.3573	0.3231	0.2356	0.4351	0.2278	0.2439	0.3776	<0.86	<1.1			< 0.76
Silver																														< 0.26				4 <0.23
Sodium																														1100	1200	1500	1300	920
Strontium	13.09	19.1	7 24.3	31 19	1.36 2	29.18 18	.59	26.09	36.09	30.93	23.62	29.23	31.06	48.48	32.05	24.	8 17.19	12.28	13.9	22.38	14.53	15.79	14.31	11.68	29.22	29.72	13.5	17.45	24.09				ĺ	
Thallium																														<1.7				
Vanadium	0.2256	0.122				0.165 < 0.1	321				< 0.1159			0.1655	< 0.1198	< 0.117		< 0.1377			< 0.1272			<0.1238	0.1371	< 0.1157		0.1471	< 0.1185	<0.26	< 0.32	< 0.34	< 0.24	< 0.23
Zinc	11.9	10.5	4 13.5	54 13	1.48 2	20.27 17	.65	16.69	22.29	20.96	19.72	24.93	23.19	26.27	23.8	17.4	2 13.84	11.62	13.81	12.78	12.63	18.56	13.56	15.49	14.27	23.68	13.85	13.66	17.06	19	21	25	23	42

TABLE A-8 Grove Pond Fish Tissue - Pesticides and PCBs Whole body concentrations in mg/kg wet weight

				Meirzyk	wsk 93 Fis	sh Data_	Organics	s.xls (coll	lected 9	9/25/92)																							Master-Joanne-only Fish2004.xls [Fish LIMs Data (2)] (collected 6/30/04)				
Chemical	max	average	FOD	BBH1W	BBH2W	BBH3W	BBH6W	BG10W	/ BG1W	V BG2V	BG3W	BG4W	BG5W B	36W B	S7W B	G8W E	3G9W	LMB10W	LMB1W	LMB2W	LMB3V	/ LMB4V	V LMB5	W LMB6	V LMB7	7W LM	MB8W LM	B9W Y	BH4W	YBH5W	YBH7W	/ YBH8W	Grove-East-BGSF-WB	Grove-East-BLCR- WB	Grove-West-BGSF WB	Grove-West-BGSF-WB Dup	B Grove-West-Pick- WB
Aldrin	ND	ND	0/5																														< 0.013	< 0.012	< 0.012	< 0.011	< 0.01
Alpha Chlordane	ND	ND	0/33	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1 < 0.01	< 0.01	< 0.01	<0.01 <	0.01 <	0.01 <	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.0	1 < 0.01	< 0.0	01 <	0.01 <	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.013	< 0.012	< 0.012	< 0.011	< 0.01
Alpha-BHC	ND	ND	0/33	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1 < 0.01	< 0.01	< 0.01	<0.01 <	0.01 <	0.01 <	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.0	1 < 0.01	< 0.0	01 <	0.01 <	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.013	< 0.012	< 0.012	< 0.011	< 0.01
Beta-BHC	ND	ND	0/33										<0.01 <							< 0.01						01 <				< 0.01			<0.013	< 0.012	< 0.012	<0.011	< 0.01
cis-nonachlor	ND	ND	0/28	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	1 <0.01	< 0.01	< 0.01	<0.01 <	0.01 <	0.01	0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.0	1 < 0.01	< 0.0	01 <	0.01 <	0.01	< 0.01	< 0.01	< 0.01	< 0.01					+
Delta-BHC	ND	ND	0/5																						-								< 0.013	< 0.012	< 0.012	< 0.011	< 0.01
Dieldrin	ND	ND	0/33	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1 <0.01	< 0.01	< 0.01	<0.01 <	0.01 <	0.01	0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.0	1 < 0.01	< 0.0	01 <	0.01 <	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.013	< 0.012	< 0.012	< 0.011	< 0.01
Endosulfan I	ND	ND	0/5																														< 0.013	< 0.012	< 0.012	<0.011	< 0.01
Endosulfan II	ND	ND	0/5																														< 0.013	<0.012	<0.012	<0.011	<0.01
Endosulfan sulfate	ND	ND	0/5							_												+											< 0.013	< 0.012	< 0.012	<0.011	< 0.01
Endrin	ND			< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1 <0.01	<0.01	<0.01	<0.01 <	0.01 <	0.01	s0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.0	1 <0.01	<0.0	01 <	0.01 <	0.01	<0.01	<0.01	<0.01	<0.01	<0.013	<0.012	<0.012	<0.011	<0.01
Endrin aldehyde	ND		0/5	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	1 -0.01	-0.01	-0.01	-0.01	0.01	0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.0	1 10.0	-0.0	J,	0.01	0.01	-0.01	-0.01	-0.01	-0.01	<0.013	<0.012	<0.012	<0.011	<0.01
Endrin ketone	ND		0/5						+	_	_	-		_								_	+					-	-				<0.013	<0.012	<0.012	<0.011	<0.01
Gamma Chlordane	ND			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <	0.01 <	0.01	c0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.0	1 <0.01	<0.0	01 <	0.01 <	0.01	<0.01	<0.01	<0.01	<0.01	<0.013	<0.012	<0.012	<0.011	<0.01
Gamma-BHC	ND		0/33										<0.01 <																<0.01				<0.013	<0.012	<0.012	<0.011	<0.01
Heptachlor	ND		0/5	~0.01	~0.01	~0.01	NO.01	NO.01	~0.01	1 50.01	~0.01	NO.01	~0.01 ~	0.01	J.01 -	·0.01	NO.01	~U.U1	~0.01	~0.01	~0.01	~0.01	~0.0	1 50.0	~0.0	JI ~1	0.01	J.01	~0.01	~0.01	~0.01	~0.01	<0.013	<0.012	<0.012	<0.011	<0.01
Heptachlor epoxide	ND		0/33	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <	0.01 <	0.01	-0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.0	1 <0.01	<0.0	01 <	0.01 <	0.01	<0.01	<0.01	< 0.01	< 0.01	<0.013	<0.012	<0.012	<0.011	<0.01
Hexachlorobenzene		ND											<0.01																<0.01				NO.013	NO.012	NO.012	~0.011	30.01
Methoxychlor	ND ND		0/5	NU.U1	VU.U1	NU.U I	NU.U1	NU.U1	NU.U I	1 \0.01	NU.U1	NU.U1	NO.01 N	0.01	J.UI .	0.01	NU.U1	NU.U1	NU.U1	NU.U1	NU.U1	NU.U1	NU.U	1 \0.0	×0.0	JI \	0.01	J.U1	NU.U1	NU.U I	NU.U1	×0.01	<0.013	< 0.012	< 0.012	< 0.011	< 0.01
Mirex	ND ND		0/28	-0.04	<0.01	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.01	<0.01 <	0.04	2.04	-0.04	-0.01	-0.04	-0.04	<0.01	+0.04	<0.01	<0.0	1 <0.01	<0.0	24 -	0.01 <	0.01	<0.01	<0.01	<0.01	<0.01	VU.U13	NU.U12	NO.012	NO.011	V0.01
omega?-BHC	ND	ND ND	0/28										<0.01							<0.01										<0.01		<0.01		-			+
	ND		0/28										<0.01																	<0.01							+
Oxychlordane o.p'-DDD	ND ND		0/28	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <	0.01 <	J.U1 <	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.0	1 <0.01		J1 SI		0.01		<0.01							+
	ND		0/28	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01 <	0.01	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01							<0.01								
o.p'-DDE o.p'-DDT	ND ND		0/28										<0.01 <							<0.01			<0.0							<0.01							+
					0.01													0.03	0.01		0.01		0.0							<0.01		0.01					
4,4'-DDD 4,4'-DDE		0.04	32/33																														0.026	0.033	0.029	0.013	0.023
		0.09			0.02					0.13	0.07	0.11	0.02 (.05 L	.08	0.02	0.02	0.06	0.22	0.27	0.13		0.14							0.01	0.06	0.11	0.091	0.12	0.089	0.067	0.17
4,4'-DDT	ND ND		0/33	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	1 <0.01	<0.01	<0.01	<0.01 <	0.01 <	0.01 <	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.0	1 < 0.01	<0.0	31 <	0.01 <	0.01	<0.01	<0.01	<0.01	<0.01	<0.013	< 0.012	< 0.012	<0.011	< 0.01
Technical Chlordane			0/5							_					_																		<0.26	< 0.24	<0.25	<0.22	< 0.21
t-Nonachlor	ND		0/28										<0.01 <																<0.01					1			+
Toxaphene	ND		0/33	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05 <	0.05 <	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.0	5 < 0.05	<0.0	35 <	0.05 <	0.05	<0.05	<0.05	<0.05	<0.05	<0.26	< 0.24	< 0.25	<0.22	< 0.21
Aroclor-1016	ND	ND	0/5						1		1		1									1										1	<0.26	< 0.24	< 0.25	< 0.22	< 0.21
Aroclor-1221		ND	0/5						1		1		1									1										1	<0.26	< 0.24	< 0.25	< 0.22	< 0.21
Aroclor-1232	ND		0/5						1		1		1									1										1	<0.26	< 0.24	< 0.25	< 0.22	< 0.21
Aroclor-1242	ND		0/5						1		1		1									1										1	<0.26	< 0.24	< 0.25	< 0.22	< 0.21
Aroclor-1248		ND	0/5						1	1	1	1																				1	<0.26	< 0.24	< 0.25	< 0.22	< 0.21
Aroclor-1254	ND		0/5									1 -																					<0.26	< 0.24	< 0.25	<0.22	< 0.21
Aroclor-1260	ND		0/5						1 -			1 -	1 7	T		Т	Т			1			1 -	1			T	Т			1		<0.26	< 0.24	< 0.25	<0.22	< 0.21
Aroclor-1262	ND		0/5									1																					<0.26	< 0.24	< 0.25	<0.22	< 0.21
Aroclor-1268	ND		0/5						1 -			1 -	1 7	T		Т	Т			1			1 -	1			T	Т			1		<0.26	< 0.24	< 0.25	< 0.22	< 0.21
PCB (total)	0.47	0.13	14/28	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	.09 0	.14 <	<0.05	<0.05	0.15	0.38	0.47	0.22	0.42	0.24	0.19	0.42	2 (0.2 0	.11	<0.05	< 0.05	0.13	0.09					T

TABLE A-9
Groce Pond Fish Tissue Data Summary Stats for Each Fish Species Collected Concentrations in mg/kg ww

	Brown Bulhead			Bluegill			Largemouth Bas			Yellow Bullhead			Black crappie	Pickerel
	Max concentration (mg/Kg)	Average concentration (mg/Kg)	Frequency of Detection	Max concentration (mg/Kg)	Average concentration (mg/Kg)	Frequency of Detection	Max concentration (mg/Kg)	Average concentration (mg/Kg)	Frequency of Detection	Max concentration (mg/Kg)	Average concentration (mg/Kg)	Frequency of Detection	Concentration (mg/kg, n=1)	Concentration (mg/kg, n=1)
Inorganics	(mg/Rg)	(ilig/Rg)	Detection	(ilig/Rg)	(ilig/Rg)	Detection	(ilig/Rg)	(ilig/Rg)	Detection	(ilig/Rg)	(ilig/Rg)	Detection	(ilig/kg, ii=1)	(ilig/kg, ii=1)
Aluminum	20.7	13.98	4/4	7.9	4.06	11/12	11.8	6.86	10/10	6.44	4.72	4/4	4.9	<1.5
Antimony	NA	NA	NA	ND	ND	0/2	NA	NA	NA	NA	NA	NA	<1.1	< 0.76
Arsenic	ND	ND	0/4	ND	ND	0/12	ND	ND	ND	0.13	0.09	2/4	<2.2	<1.5
Barium	3.68	2.09	4/4	2.4	1.67	12/12	1.12	0.49	10/10	1.78	0.94	4/4	1.6	0.51
Beryllium	0.158	0.07	2/4	0.138	0.04	3/12	0.988	0.12	2/10	0.09	0.03	1/4	<0.11	<0.076
Boron	0.536	0.22	2/4	0.505	0.25	7/10	1.39	0.24	4/10	0.37	0.18	2/4	NA 10.00	NA 10.00
Cadmium Calcium	0.21 NA	0.09 NA	3/4 NA	0.234 ND	0.11 ND	10/12 0/2	1.023 NA	0.15 NA	7/10 NA	0.19 NA	0.07 NA	3/4 NA	<0.32 <2.2	<0.23 <1.5
Chromium	1.46	0.80	4/4	1.23	0.73	12/12	1.34	0.59	10/10	0.51	0.39	4/4	1.8	0.42
Cobalt	NA	NA	NA	ND	ND	0/2	NA	NA	NA	NA	NA	NA	<0.32	<0.23
Copper	1.35	0.86	4/4	0.788	0.60	12/12	1.16	0.53	10/10	0.81	0.65	4/4	0.34	0.36
Iron	76.56	70.53	4/4	56.94	32.61	12/12	31.87	15.47	10/10	49.34	34.50	4/4	28	12
Lead	1.27	0.66	4/4	1.384	0.69	10/12	5.024	0.83	9/10	0.86	0.44	4/4	<2.2	<1.5
Magnesium	442.1	375.81	4/4	744.8	569.86	12/12	556.8	470.18	10/10	461.90	388.98	4/4	550	430
Manganese	14.44	9.81	4/4	50	28.60	12/12	6.989	4.03	10/10	17.09	11.95	4/4	36	17
Mercury	0.0349	0.02	2/4	0.2351	0.16	12/12	1.144	0.36	10/10	0.13	0.08	4/4	<0.21	0.62
Molybdenum	ND 0.0700	ND 0.42	0/4	0.1981	0.10	3/10	0.5074	0.12	2/10	0.14	0.08	1/4	NA <0.65	NA 10.45
Nickel	0.9792 NA	0.42 NA	3/4 NA	0.8011 3400	0.27 3350.00	5/12	4.847 NA	0.64 NA	5/10 NA	0.55 NA	0.20 NA	2/4 NA	<0.65 3400	<0.45 3400
Potassium Selenium	0.2659	0.22	NA 4/4	0.3787	0.36	2/2 10/12	0.5538	0.35	10/10	0.44	0.32	NA 4/4	3400 <1.1	< 0.76
Silver	NA	NA	NA	ND	ND	0/2	NA	NA	NA	NA	NA	NA	<0.32	<0.23
Sodium	NA NA	NA NA	NA NA	1500	1300.00	2/2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1200	920
Strontium	24.31	18.98	4/4	48.48	30.53	10/10	29.22	17.61	10/10	29.72	21.19	4/4	NA NA	NA NA
Thallium	NA	NA	NA	ND	ND	0/2	NA	NA	NA	NA	NA	NA	<2.2	<1.5
Vanadium	0.2256	0.11	2/4	0.1655	0.10	2/12	0.9226	0.16	2/10	0.15	0.08	1/4	<0.32	< 0.23
Zinc	13.54	12.37	4/4	26.27	21.65	12/12	18.56	14.40	10/10	23.68	17.06	4/4	21	42
Organics			NA			0/0								
Aldrin	NA ND	NA NA	NA 0/4	ND	ND ND	0/2	NA NB	NA NB	NA NB	NA NB	NA NB	NA	<0.012	<0.01
Alpha Chlordane Alpha-BHC	ND ND	ND ND	0/4 0/4	ND ND	ND ND	0/12 0/12	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.012 <0.012	<0.01 <0.01
Beta-BHC	ND ND	ND ND	0/4	ND ND	ND ND	0/12	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.012	<0.01
cis-nonachlor	ND	ND ND	0/4	ND	ND ND	0/12	ND ND	ND ND	ND ND	ND ND	ND	ND	NA	NA
Delta-BHC	NA NA	NA NA	NA NA	ND	ND	0/2	NA NA	NA NA	NA NA	NA NA	NA NA	NA	<0.012	<0.01
Dieldrin	ND	ND	0/4	ND	ND	0/12	ND	ND	ND	ND	ND	ND	<0.012	<0.01
Endosulfan I	NA	NA	NA	ND	ND	0/2	NA	NA	NA	NA	NA	NA	<0.012	<0.01
Endosulfan II	NA	NA	NA	ND	ND	0/2	NA	NA	NA	NA	NA	NA	<0.012	<0.01
Endosulfan sulfate	NA	NA	NA	ND	ND	0/2	NA	NA	NA	NA	NA	NA	<0.012	<0.01
Endrin	ND	ND	0/4	ND	ND	0/12	ND	ND	ND	ND NA	ND NA	ND	<0.012 <0.012	<0.01
Endrin aldehyde Endrin ketone	NA NA	NA NA	NA NA	ND ND	ND ND	0/2 0/2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.012	<0.01 <0.01
Gamma Chlordane	ND ND	ND ND	0/4	ND ND	ND ND	0/12	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.012	<0.01
Gamma-BHC	ND	ND	0/4	ND ND	ND	0/12	ND ND	ND ND	ND	ND ND	ND ND	ND	<0.012	<0.01
Heptachlor	NA	NA	NA	ND	ND	0/2	NA	NA	NA	NA	NA	NA	<0.012	<0.01
Heptachlor epoxide	ND	ND	0/4	ND	ND	0/12	ND	ND	ND	ND	ND	ND	<0.012	<0.01
Hexachlorobenzene	ND	ND	0/4	ND	ND	0/10	ND	ND	ND	ND	ND	ND	NA	NA
Methoxychlor	NA	NA	NA	ND	ND	0/2	NA	NA	NA	NA	NA	NA	<0.012	<0.01
Mirex	ND	ND	0/4	ND	ND	0/10	ND	ND	ND	ND	ND	ND	NA	NA
omega?-BHC	ND	ND	0/4	ND	ND	0/10	ND	ND	ND	ND	ND	ND	NA	NA
Oxychlordane	ND ND	ND	0/4 0/4	ND ND	ND ND	0/10 0/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA
o,p'-DDD o,p'-DDE	ND ND	ND ND	0/4	ND ND	ND ND	0/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA
o,p'-DDT	ND ND	ND ND	0/4	ND ND	ND ND	0/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA
4,4'-DDD	0.03	0.02	4/4	0.07	0.03	12/12	0.13	0.07	10/10	0.06	0.03	3/4	0.033	0.023
4,4'-DDE	0.04	0.03	4/4	0.13	0.06	12/12	0.27	0.14	10/10	0.11	0.06	4/4	0.12	0.17
4,4'-DDT	ND	ND	0/4	ND	ND	0/12	ND	0.01	ND	ND	ND	ND	<0.012	<0.01
Technical Chlordane	NA	NA	NA	ND	ND	0/2	0	NA	NA	NA	NA	NA	<0.24	<0.21
t-Nonachlor	ND	ND	0/4	ND	ND	0/10	ND	ND	ND	ND	ND	ND	NA	NA
Toxaphene	ND	ND	0/4	ND	ND	0/12	ND	ND	ND	ND	ND	ND	<0.24	<0.21
Aroclor-1016	NA	NA NA	NA	ND	ND	0/2	NA NA	NA	NA	NA NA	NA NA	NA	<0.24	<0.21
Aroclor-1221	NA NA	NA NA	NA NA	ND	ND ND	0/2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.24	<0.21
Aroclor-1232 Aroclor-1242	NA NA	NA NA	NA NA	ND ND	ND ND	0/2 0/2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.24 <0.24	<0.21 <0.21
Aroclor-1248	NA NA	NA NA	NA NA	ND ND	ND ND	0/2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.24	<0.21
Aroclor-1254	NA NA	NA NA	NA NA	ND ND	ND ND	0/2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.24	<0.21
Aroclor-1260	NA NA	NA NA	NA NA	ND ND	ND ND	0/2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.24	<0.21
Aroclor-1262	NA NA	NA NA	NA NA	ND	ND ND	0/2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.24	<0.21
	NA NA	NA	NA NA	ND	ND	0/2	NA	NA	NA NA	NA	NA	NA	<0.24	<0.21
Aroclor-1268			0/4	0.14	0.04	2/10	0.47		10/10	0.13	0.07	2/4	NA	NA

TABLE A-10 Grove Pond Invertebrate Data Concentrations in mg/kg ww

			M:/0/	h 0000)		III alaaa		(00/													
			Mierzykowski and Carr (Septem	iber 2000)			and Longco														
			1998 Crayfish (ug/g ww)			Benthi	c Invertebrate														
									Cambar	rida							Cord	uliidae			
			Grove Pd (below Barnum Gt Br)			Ar	my Wells	Ayer	Wells	In	let	Tar	nery	Arm	y Wells	Aye	er Wells		Inlet	Ta	annery
	Max (mg/kg	Average																			
Chemical	ww)	(mg/kg ww)	BAR-CY01	BAR-CY02	BAR-CY03	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range
Aluminum	30	26.7	30	20.6	29.6																
Arsenic	1.72	0.86	1.18	1.33	1.72	0.76	0.63-0.88	0.69	-	0.08	-	-	-	0.83	0.61-1.17	0.53	0.52-0.54	0.86	0.72-1.01	0.6	0.48-0.71
Barium	37.5	30.5	37.5	25.6	28.5																
Boron	ND	ND	nd	nd	nd																
Cadmium	1.07	0.24	1.07	0.31	0.29	0.12	0.05-0.14	0.15	-	0.03	-	-	-	0.14	0.05-0.23	0.14	0.1-0.17	0.13	0.09-0.18	0.06	0.05-0.06
Chromium	3.54	1.25	1.19	0.8	0.56	2.13	0.97-3.54	1.96	-	0.33	-	-	-	1.3	0.48-2.37	1.22	0.81-1.63	0.92	0.51-1.34	2.05	1.94-2.15
Copper	25.4	19.0	25.4	16	15.5																
Iron	332	260.0	224	224	332																
Lead	0.89	0.35	0.89	0.45	0.67	0.35	0-0.76	0.44	-	0.05	-	-	-	0.21	0048	0.19	.1623	0.18	.1126	0.07	015
Magnesium	404	396.0	402	382	404																
Manganese	785	719.3	726	647	785																
Total Mercury	0.051	0.0319	0.0244	0.0218	0.0349	0.043	0.038-0.049	0.029	-	0.031	-	-	-	0.032	.016041	0.044	.037051	0.029	.026032	0.03	.028031
Methyl Mercury	0.046	0.0256	0.0255	0.0266	0.0257	0.033	0.013-0.046	0.021	-	0.038	-	-	-	0.029	.017040	0.021	.019023	0.019	.018020	0.017	.010024
%Mehg			105%	122%	74%	77%		72%		123%				91%		48%		66%		57%	
Nickel	2.14	1.26	2.14	0.88	0.76																
Selenium	ND	ND	nd	nd	nd																
Strontium	156	140.3	120	145	156																
Zinc	34.7	28.4	34.7	25.5	25																

Sample sizes were not reported in Haines and Longcore (2001). Therefore, in cases where ranges are also not reported, there is no way to determine a maximum concentration at the location. The average concentrations are treated as composite samples in these circumstances and are considered maximum values.

TABLE A-11
Grove Pond Invertebrate Data Summary Stats by Tazonomic Group

		Crayfish			Odonata	
Chemical	Max (mg/kg ww)	Average (mg/kg ww) ^a	Sample Size ^b	Max (mg/kg ww)	Average (mg/kg ww) ^a	Sample Size ^c
Aluminum	30	27	3	NA	NA	NA
Arsenic	1.7	0.96	6	1.17	0.71	4
Barium	38	31	3	NA	NA	NA
Boron	ND	ND	3	NA	NA	NA
Cadmium	1.1	0.33	6	0.23	0.12	4
Chromium	3.5	1.2	6	2.37	1.37	4
Copper	25	19	3	NA	NA	NA
Iron	332	260	3	NA	NA	NA
Lead	0.89	0.48	6	0.26	0.16	4
Magnesium	404	396	3	NA	NA	NA
Manganese	785	719	3	NA	NA	NA
Total Mercury	0.049	0.031	6	0.05	0.03	4
Methyl Mercury	0.046	0.028	6	0.04	0.02	4
Nickel	2.1	1.3	3	NA	NA	NA
Selenium	ND	ND	3	NA	NA	NA
Strontium	156	140	3	NA	NA	NA
Zinc	35	28	3	NA	NA	NA

The information in this table was derived from the data presented in the previous table entitled Grove Pond Invertebrate Data.

- a. Average concentrations were not calculated using 1/2 the detection limit, as was done for other media, because detection limits were not available. Average concentrations were calculated using detected values only.
- b. The frequency of detection (FOD) could not be determined for crayfish because sample sizes from Haines and Longcore (2001) are not available. Sample sizes of 3 are direct counts from the 1998 crayfish data. Sample sizes of 6 are based on the 3 samples from 1998 plus the 3 composite samples in Haines and Longcore (2001).
- c. The frequency of detection (FOD) could not be determined for odonata because sample sizes from Haines and Longcore (2001) are not available. Sample sizes of 4 are based on the number of composite samples presented in Haines and Longcore (2001).

TABLE A-12 Grove Pond Frog Tissue Data Concentrations in mg/kg ww

			Date	27-Jul-99	27-Jul-99	27-Jul-99	27-Jul-99	27-Jul-99	28-Jul-99	28-Jul-99	28-Jul-99	29-Jul-99	29-Jul-99	29-Jul-99	02-Aug-99	02-Aug-99	02-Aug-99	02-Aug-99	03-Aug-99	03-Aug-99	03-Aug-99	03-Aug-99	04-Aug-99	05-Aug-99	05-Aug-99	05-Aug-99	05-Aug-99	05-Aug-99
			Location	East	East	East	West	East	West	East	West	East	East	East	West	West	West	East	West	East	East	West	East	East	West	West	West	West
Inorganics (ug/g																												
ww)	Max	Average	Sample #	GPF01	GPF02	GPF03	GPF04	GPF05	GPF06	GPF07	GPF08	GPF09	GPF10	GPF11	GPF12	GPF13	GPF14	GPF15	GPF16	GPF17	GPF18	GPF19	GPF20	GPF21	GPF22	GPF23	GPF24	GPF25
aluminum	108	22		4.68	7.17	2	11.2	11.3	20	16.6	7.36	10.3	4.96	17.2	2.28	86.8	18.7	23.5	108	41.4	9.24	22.6	15.8	10.1	42.5	3.94	37.4	14.8
arsenic	0.478	0		0.102	0.101	0.101	0.0943	0.101	0.171	0.221	0.167	0.0582	0.081	0.124	0.0349	0.478	0.206	0.113	0.291	0.122	0.0624	0.266	0.0392	0.0883	0.278	0.0649	0.122	0.0924
barium	13.7	5		3.51	3.95	3.47	3.37	4.33	1.99U	2.61U	1.92U	2.13U	3.09	4.88	1.8U	13.7	12	8.04	7.51	5.84	2.02	9.94	4.16	3.22	7.69	8.31	3.21U	3.65
beryllium	nd	ND		0.1U	.1U																							
boron	nd	ND		2U	2U	2U	2U	.53U	2U	.716U	2U	2U	.727U	.609U	2U													
cadmium	0.269	0		0.1U	.1U	0.0533	.1U	0.269	0.219	0.0548	0.0665	0.0499	.1U	0.0662	.1U	0.155	0.0727	.1U	0.052	0.0504								
chromium	11.4	1		0.5U	.5U	.5U	1.14	0.24	0.686	0.343	0.37	0.226	.5U	1.08	1.37	4.2	0.643	0.996	11.4	0.998	0.244	1.19	0.261	0.544	1.39	0.267	0.453	0.559
copper	59.2	6		1.92U	1.28U	1.86U	1.93U	.837U	2.09U	2.2U	31.2	0.89	4.4	1.7U	59.2	3.79	3.4U	3.6	6.02	8.44	1.22U	3.55	1.55U	1.76U	9.07	1.4	2.3U	3.66
iron	280	70		34.6	39.6	20.4U	45.3	32.5	63.1	43.7	91.9	40.2	27.1	60.4	29.3	188	53.9	101	280	82.6	28.9	82.4	37.7	40.9	160	45.7	73.4	45.5
lead	2.69	1		0.243U	.142U	.5U	0.277U	.106U	.274U	.341U	1.51	.27U	.213U	.292U	2.06	0.768	.516U	0.678	0.847	2.69	.213U	0.253U	.212U	.352U	1.24	0.517	.284U	.259U
magnesium	438	290		271	295	275	375	315	231	271	270	268	235	273	258	251	242	278	397	438	295	274	361	295	362	253	230	235
manganese	70.3	23		23.4	33.1	32.5	12.5	33.8	10.6	7.56	13.6	6.83	20.4	44.4	6.72	38.9	27.3	9.55	70.3	30.9	6.55	29	18	5.01	59.9	5.7	15	13.9
total mercury	0.239	0		0.0527	0.0882	0.0639	0.109	0.0782	0.117	0.0419	0.0546	0.0429	0.0304	0.0277	0.108	0.0557	0.0605	0.0186	0.136	0.0536	0.0612	0.085	0.0364	0.0444	0.239	0.0138	0.0961	0.0862
MeHg	0.243	0		0.0563	0.117	0.0697	0.139	0.0972	0.154	0.0495	0.0578	0.0539	0.0409	0.0326	0.131	0.0592	0.0441	0.00436	0.243	0.0522	0.0429	0.0562	0.0189	0.0608	0.222	0.00654	0.108	0.0928
molybdenum	nd	ND		2U																								
nickel	21.9	2		.5U	.5U	.5U	0.613	.5U	0.422	.5U	2.7	.5U	.5U	.5U	11	0.416	.5U	.5U	15.5	21.9	.5U	0.209	.5U	.5U	0.486	.5U	.5U	1.71
selenium	0.644	0		0.168	0.5	0.194	0.157	0.129	0.206	0.326	0.253	0.147	0.161	0.148	0.194	0.637	0.644	0.174	0.177	0.291	0.359	0.142	0.154	0.147	0.244	0.182	0.237	0.242
strontium		14		13.4	14.9	12.4	15.1	17.8	9.69	18.2	11	10.2	8.33	11.9	13	10.8	8.09	12.4	26.4	30	13.7	10.4	16	7.99	30.7	7.79	8.02	7.62
vanadium	0.308	0		0.5U	.5U	.5U	.5U	.5U	.5U	.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.201	0.5U	0.5U	0.308	0.5U								
zinc	73.4	23		14.3	16.7	14.6	19.6	17.7	13.4	18.2	30.7	14.6	13.9	15.5	39.3	73.4	58	17.1	22	28.7	14.7	16.9	19.8	19.1	23.5	20.1	14.1	17.1

Source: EPA 2001

TABLE A-13
Grove Pond Tree Swallow Egg Data
Concentrations in mg.kg ww

				Gro	ve Pond E	ggs 1998 (mg/kg	J)		Grov	e Pond Egg	s 1999 (mg/kg)	
Chemical	Max	Average	Mean	n (det)	n (ND)	range	1/2 Max DL	Mean	n (det)	n (ND)	range	1/2 Max DL
Mercury	1.075	0.574	0.836	6	0	0.353-1.020		0.462	14	0	0.231-1.075	
Arsenic	0.95	0.248	0.68	3	3	0.45-0.95	0.2	BD	0	14	BD	0.165
Cadmium	0.53	0.079	0.53	1	5	na	0.2	BD	0	14	BD	0.0037
Chromium	0.61	0.215	0.46	3	3	0.38-0.61	0.2	BD	0	14	BD	0.165
Lead	0.47	0.216	0.47	1	5	na	0.2	0.325	4	10	0.2-0.4	0.155

NA indicates no samples analyzed BD indicates delow detection

Haines, T.A. and J.R. Longcore. 2001. Final Report, Bioavailability and Potential Effects of Mercury and Selected Other Trace Metals on Biota in Plow Shop and Grove Ponds, Fort Devens, Massachusetts. USGS Report to the EPA. April 2001.

TABLE A-14
Grove Pond Tree Swallow Stomach Content Data
Concentrations in mg.kb ww

			G	rove Pon	d Food Boli	1998 (mg/kg)		Grove	Pond Food	Boli 1999 (mg/	kg)
Chemical	Max	Average	Mean	n	range	% < LOD (range)	Mean	n	n(ND)	range	1/2 max DL
Mercury	0.272	0.1982	NA	NA	NA	NA	0.1982	10	0	0.140-0.272	-
Arsenic	6.81	1.192	NA	NA	NA	NA	4.2	2	8	1.55-6.81	0.44
Cadmium	1.39	0.78	NA	NA	NA	NA	0.78	10	0	0.32-1.39	-
Chromium	1113	197	NA	NA	NA	NA	197	10	0	7.7-1113	-
Lead	5.38	2.46	NA	NA	NA	NA	2.46	10	0	0.69-5.38	-

NA indicates no samples analyzed

Haines, T.A. and J.R. Longcore. 2001. Final Report, Bioavailability and Potential Effects of Mercury and Selected Other Trace Metals on Biota in Plow Shop and Grove Ponds, Fort Devens, Massachusetts. USGS Report to the EPA. April 2001.

TABLE B-1
Plow Shop Pond Surface Water Inorganics - Dissolved
Concentrations in ug/l

11/3/2004 11/19/2004

				11/3/2004						11/19/2004			
Discoulated Matela	May (ug/L)	A . (. (. (. (. (. (. (. (. (.	Frequency of	DC4 2004	DC2 2004	DC2 2004	DC4 2004	DOE 2004	DC6 2004	DCCW/4	DCCWO	DCCWA	RCSW4
Dissolved Metals	Max (ug/L)	Avg (ug/L)	Detection	PS1-2004	PS2-2004	PS3-2004		PS5-2004		RCSW1	RCSW2	RCSW3	
Aluminum	ND	ND	0/10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<20
Antimony	ND	ND	0/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
Arsenic	9.7	2.161	10/10	1.2	1	0.76	0.82	0.76	0.77	1.4	1.9	9.7	3.3
Barium	26	12.6	10/10	10	9.2	9.5	9.3	11	11	10	11	19	26
Beryllium	ND	ND	0/10	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.81
Cadmium	ND	ND	0/10	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.81
Calcium	11000	6205.3	10/10	11000	11000	10000	10000	10000	10000	12	13	14	14
Chromium	ND	ND	0/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
Cobalt	13	4.07	10/10	0.32	3.3	0.86	0.33	0.29	0.3	13	1	9.3	12
Copper	3.2	1.181	10/10	1.1	1.1	0.86	0.82	1.1	1.1	3.2	0.99	0.64	0.9
Iron	2900	464.3	10/10	110	97	87	89	120	120	230	210	2900	680
Lead	0.23	0.1435	1/10	<0.2	<0.2	<0.2	<0.2	0.23	<0.2	<0.2	<0.2	<0.2	<0.81
Magnesium	2200	1270.98	10/10	2200	2200	2000	2100	2100	2100	2	2	3	2.8
Manganese	390	125.1	10/10	28	16	15	20	78	74	90	180	360	390
Mercury	ND	ND	0/6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA
Nickel	2.9	1.379	10/10	0.98	0.94	0.84	0.71	0.76	0.76	2.9	1.1	2.1	2.7
Potassium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	ND	ND	0/10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<4
Silver	ND	ND	0/10	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.81
Sodium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	ND	ND	0/10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2
Vanadium	ND	ND	0/10	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.81
Zinc	11	5.08	3/10	<5	<5	5.3	<5	<5	<5	11	9.5	<5	<20

TABLE B-2 Plow Shop Pond Surface Water Inorganics - Total Concentration in ug/L

	Ma	x (ug/L)	Avg	(ug/L)	Frequency (
Total metals	All	2004 only	All	2004 only	All	2004 only
Aluminum	225	35	27.1	13	13 of 26	7 of 11
Antimony	5.00	ND	2.1	ND	6 of 12	ND
Arsenic	380	380	17.5	37	24 of 47	5 of 11
Barium	44	44	10.9	15	30 of 59	11 of 11
Beryllium	1.00	ND	0.5	ND	6 of 12	ND
Cadmium	1.50	ND	0.7	ND	6 of 12	ND
Calcium	18600	12000	9390.0	5734	30 of 59	11 of 11
Chromium	3.00	1	1.9	0.96	13 of 26	7 of 11
Cobalt	1.50	0.83	0.7	0.25	7 of 14	1 of 11
Copper	49	6	7.7	2.83	28 of 55	11 of 11
Iron	29000	29000	1420.2	3154	30 of 59	11 of 11
Lead	5.00	0.4	2.0	0.32	12 of 24	6 of 11
Magnesium	3300	2300	1693.9	1119	30 of 59	11 of 11
Manganese	590	530	117.8	150	30 of 59	11 of 11
Mercury	ND	ND	ND	ND	ND	ND
Nickel	44	2.9	8.2	1.26	24 of 47	11 of 11
Potassium	3000	ND	834.9	ND	24 of 47	ND
Selenium	20	1	7.8	1.09	7 of 14	1 of 11
Silver	3.60	ND	0.9	ND	8 of 16	ND
Sodium	25100	ND	15902.1	ND	24 of 47	ND
Thallium	20	ND	7.4	ND	6 of 12	ND
Vanadium	1.50	ND	0.8	ND	6 of 12	ND
Zinc	58	10	13.3	6.25	20 of 39	8 of 11

	1/1/1991													9/11/1998		9/11/1998				11/19/2004				7/16/2004	11/3/2004					
	SW-SHL-01	SW-SHL-02	SW-SHL-03	SW-SHL-04	SW-SHL-05	SW-SHL-06	SW-SHL-07	SW-SHL-08	SW-SHL-09	SW-SHL-10	SW-SHL-11	SW-SHL-12	SW-SHL-13	NON-1	NON-2	PSEM-1	PSEM-2	PSEM-3	PSEM-4	RCSW1	RCSW2	RCSW3	RCSW4	RED COVE	PS1-2004	PS2-2004	PS3-2004	PS4-2004	PS5-2004	PS6-2004
Aluminum	NA	NA	NA	NA	NA.	NA	225	51.1	10	10	10	10	<20	<20	<20	<20	35	12	10	8	16	12	11							
Antimony	NA	5	5	5	5	5	5	<2	<2	<2	<2	<1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5												
Arsenic	4.51	3.22	4.04	4.16	4.97	6.26	3.57	2.99	6.84	3.64	3.11	3.46	2.99	10	10	10	10	10	20	<4	<4	5.9	7	380	2	1.4	<1	<1	<1	<1
Barium	5.53	5.38	3.35	4.32	5.91	6.14	5.77	4.09	5.25	4.39	7.23	11.8	8.48	14.9	19.9	13.5	9.4	8.2	15.3	9.7	12	15	27	44	11	9.2	9.7	9.4	11	11
Beryllium	NA	NA.	NA	1	1	1	1	1	1	<0.8	<0.8	<0.8	<0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2										
Cadmium	NA	1.5	1.5	1.5	1.5	1.5	1.5	<0.8	<0.8	<0.8	<0.8	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	<0.2	<0.2												
Calcium	12000	12000	12000	12000	12000	12000	11000	12000	12000	13000	12000	9500	12000	13.3	15.7	16200	15400	14900	18600	12	12	13	14	21	12000	11000	10000	10000	10000	10000
Chromium	<4.47	<4.47	<4.47	<4.47	<4.47	<4.47	<4.47	<4.47	<4.47	<4.47	<4.47	<4.47	<4.47	3	3	3	3	3	3	<2	<2	<2	<2	1	0.9	0.8	0.9	1	1	1
Cobalt	NA	NA.	NA	1.5	1.5	1.5	1.5	1.5	1.5	<0.8	<0.8	<0.8	0.83	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2										
Copper	14.4	26.3	11.2	48.7	6.02	<4.29	33.1	14.6	5.17	<4.29	4.86	8.33	9.27	1.5	1.5	5	1.5	1.5	1.5	4	2.9	2.2	4	2	2	2	1	3	6	2
Iron	232	241	214	365	530	460	323	538	538	248	288	500	423	2.2	3.2	720	460	230	1600	320	690	1100	1900	29000	420	280	220	220	260	280
Lead	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5	5	5	5	5	5	<0.8	<0.8	<0.8	<0.8	0.24	0.3	0.2	< 0.2	0.4	0.3	0.4
Magnesium	1900	1900	2000	1900	2300	2300	2000	2000	2300	2000	2300	2000	2100	2.3	2.8	3100	2600	2500	3300	2.2	2.2	2.3	2.5	3.4	2300	2100	2000	1900	2000	2000
Manganese	41.6	16.4	11.8	12.8	29.6	13.6	15.4	7.81	53.9	49.7	45.6	139	20.3	531	590	16.8	193	9.8	81.7	51	140	210	440	530	34	16	27	29	91	87
Mercury	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5											
Nickel	15.7	27.5	13	44.2	<8.76	<8.76	41	17.9	<8.76	<8.76	<8.76	10.2	<8.76	6	6	6	6	6	6	1.1	1.2	1.2	1.6	2.9	1	0.91	0.8	1.4	0.85	0.94
Potassium	852	778	741	785	933	1100	852	830	1100	1000	911	911	1040	1.6	1.8	2100	1700	1400	3000	NA	NA	NA	NA	NA	NA	0	0	0	0	0
Selenium	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	20	20	20	20	20	20	<4	<4	<4	<4	<1	1	<1	<1	<1	<1	<1
Silver	< 0.316	< 0.316	< 0.316	< 0.316	< 0.316	0.564	< 0.316	< 0.316	3.6	< 0.316	< 0.316	< 0.316	< 0.316	3	3	3	3	3	3	<0.8	<0.8	<0.8	<0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2
Sodium	20000	20000	21000	21000	21000	22000	23000	22000	21000	23000	25000	23000	21000	25.1	26	25000	25100	23500	25000	NA	NA	NA	NA	NA	NA	0	0	0	0	0
Thallium	NA	NA.	NA	20	20	20	20	20	20	<2	<2	<2	<2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5										
Vanadium	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.5	1.5	1.5	1.5	1.5	1.5	<0.8	< 0.8	<0.8	<4	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	<0.2
Zinc	21.5	32.2	<19.4	58.1	19.4	<19.4	39	<19.4	<19.4	<19.4	19.4	<19.4	<19.4	12	12	12	12	12	12	<8	<8	10	<20	3.7	3	9	4	6	8	7

TABLE B-3
Plow Shop Pond Sediment Metals Concentration in mg/kg dw

		Average	Frequency of
Chemical	Max (mg/kg)	(mg/kg)	Detection
Aluminum	27000	8228	119/119
Antimony	30.7	16	5/63
Arsenic	6800	542	133/135
Barium	370	101	117/123
Beryllium	2.72	1.42	26/99
Cadmium	66	10	65/125
Calcium	34000	8061	117/119
Chromium	37800	2275	126/136
Cobalt	59	12	66/107
Copper	3450	123	102/122
Iron	410000	55485	119/119
Lead	1214.31	169	121/135
Magnesium	8580	1757	114/119
Manganese	54800	2348	117/121
Mercury	250	27	123/133
Methyl mercury	0.08189	0.04	10/10
Nickel	87.8	30	92/122
Potassium	2340	953	50/119
Selenium	14.7	14	30/110
Silver	2	4.87	6/61
Sodium	5280	1687	82/118
Thallium	29.4	47.2 a	3/48
Vanadium	166	27	69/120
Zinc	1100	199	93/122

a. The average concentration for thallium is higher than the maximum concentration because of the elevated detection limits. The average of the 10 detected values is 23.3 mg/kg, which is the value used in the food chain modeling.

	1/1/1991												
	SESHL01	SESHL02	SESHL03	SESHL04	SESHL05	SESHL06	SESHL07	SESHL08	SESHL09	SESHL10	SESHL11	SESHL12	SESHL13
Aluminum	14000	17000	1600	2200	14000	2700	963	23000	20000	19000	22000	9900	24000
Arsenic	68	260	3200	2900	1800	3200	36	170	200	200	380	260	290
Barium	47.4	173	210	210	160	280	10.3	210	310	176	186	76.3	202
Beryllium	0.4	1.36	<0.78	<0.78	<0.78	<0.78	< 0.078	1.15	1.82	2.19	2.36	0.895	2.72
Cadmium	< 0.424	21	34	53	33	55	4.38	60.2	18.3	23.7	12.7	4.93	53.4
Calcium	2600	7000	12000	13000	<1300	<1300	690	6100	6400	8100	7800	2900	10000
Chromium	270	37800	310	390	<39	<39	270	950	5400	6900	10000	4700	9300
Copper	39.7	119	<20	<20	<20	<20	6.01	54.6	132	113	122	60.9	128
Iron	14000	4300	280000	330000	50000	34000	4000	73000	45000	33000	33000	19000	36000
Lead	60.1	338	30.7	39.2	46.5	31.8	31	202	612	439	542	134	632
Magnesium	4300	3050	550	730	2600	850	164	6900	3800	2580	3090	2400	2880
Manganese	280	<84	3800	3900	<84	<84	100	8800	3400	1500	1400	310	1600
Mercury	1	27	2.1	1.7	0.55	3.5	3.5	6.07	33	53	130	72	38
Nickel	11.6		<25	<25		<25	6.77	70.1	64.9	79.3	53.5	12.4	
Potassium	2200	1520	185	244	996	324	90.5	2340	1740	1210	1310	704	
Sodium	238		<520	<520	<520	<520	123	<52	799	896	588	266	
Vanadium	20.1	76.3	<13	<13	<13	<13	8.79	74.8	150	166	102	24.3	165
Zinc	<80	<80	<80	<80	<80	<80	42.8	<80	<80	<80	<80	<80	<80

TABLE B-3
Plow Shop Pond Sediment Metals Concentration in mg/kg dw

	1	1	I	1	1	1	1	ı	ı	1	1	1	1
	1/1/1992					-				-	<u> </u>	-	
	SHD-92-01X	SHD-92-02X	SHD-92-03X	SHD-92-04X	SHD-92-05X	SHD-92-06X	SHD-92-07X	SHD-92-08X	SHD-92-09X	SHD-92-10X	SHD-92-11X	SHD-92-12X	SHD-92-13X
Aluminum	4590		1900	2970	6310	6520	1290	1590	859	388		9250	
Arsenic	510		120	500	91.8				44.3	3.49		420	
Barium	113		62.5	122	116		27	42.7	34			121	
Bervllium	<0.5		<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5			
Cadmium	<0.7	<0.7	<0.7	<0.7	<0.7	19.2	<0.7	<0.7	<0.7	<0.7		<0.7	
Calcium	20100		5860	14700	17700		5850	12200	7940	6850		8410	
Chromium	72.8		335	600	773		169	416	188			3400	
Cobalt	<1.42		<1.42	<1.42	<1.42		<1.42	<1.42	<1.42	<1.42			
Copper	<0.965	105	< 0.965	< 0.965	37.6			9.53	<0.965	<0.965		50.4	66.7
Iron	46100	68400	15100	52600	14400	25500	2940	5240	5010	428		18600	
Lead	8.63	132	6.82	41.5	37.3		5.51	19.3	7.13	<0.177		108	
Magnesium	1800	1700	<100	950		1470	471	727	551	<100		1800	
Manganese	1690	54800	973	3670	2410	5500	270		281	<2.05			
Mercury	<0.05	16		7.37	2.61	18		3.05	1.15				
Nickel	<1.71	70.1	<1.71	<1.71	25.8	55.6	<1.71	<1.71	<1.71	<1.71			
Potassium	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	817
Selenium	3.54	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.1	<0.25	<0.25	5.85	< 0.25	2.77
Silver			< 0.0061					< 0.0061					
Sodium	1790	2240	786	1640	1940	2030	646	1000	924	574	1600	2000	792
Vanadium	<3.39	61.7	<3.39	<3.39	<3.39	<3.39	<3.39	<3.39	<3.39	<3.39	<3.39	<3.39	21.6
Zinc	<8.03	370	<8.03	<8.03	147	403	<8.03	<8.03	<8.03	<8.03	204	221	248
	1/1/1992 (cont.)												
	SHD-92-14X	SHD-92-15X	SHD-92-16X	SHD-92-17X	SHD-92-18X	SHD-92-19X	SHD-92-20X	SHD-92-21X	SHD-92-22X	SHD-92-23X	SHD-92-24X	SHD-92-25X	SHD-92-26X
Aluminum	4280	5460	9920	2790	4010	4150	6620	9980	7310	9760	3890	4150	6600
Arsenic	390	300	320	97.9	170	11	150	340	190	470	150	7.53	
Barium	52.6	79.8	96.8	<5.18	<5.18	31.7	46.8	94.6	46.8	68.1	33.8	18.1	
Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	
Cadmium	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7		<0.7	
Calcium	11100	16200	8950	18200	13300	1190	2360	8350	9950	8850		4080	
Chromium	797	2130	6170	301	90.3	110		4100	467	1510		24.5	
Cobalt	<1.42	<1.42	<1.42	<1.42	<1.42	3.52	10.1	<1.42	<1.42	<1.42		<1.42	
Copper	20		72.8	< 0.965	< 0.965		22.4	54.3	12.3	29.5			
Iron	12300	18100	24200	8420	13100		10200	18600	10100	15300		1770	
Lead	31.7	102	200	17.2	30.6			170	34.1	180		3.88	
Magnesium	<100	1540	2120	1460	<100		1700	1820	1370	1900		699	
Manganese	681	1040	826	1000	1420			785	520	663			
Mercury	6.05	19		4.64	0.695		21	<0.05	1.84	18			
Nickel	<1.71	<1.71	38.2	<1.71	<1.71	13.8	15.3	29.6	<1.71	23.9			
Potassium	<100	<100	<100	<100	<100		768	<100	<100	<100		<100	
Selenium	<0.25	<0.25	6.62	<0.25	<0.25	0.698	2.34	3.91	2.33	6.37	1.94	1.67	2.52
Silver	<0.0061									1		1	
Sodium	1770		2240	2740	2460		648	1810	1290	2360		518	
Vanadium	<3.39		<3.39	<3.39	<3.39		13.7	<3.39	<3.39	<3.39			
Zinc	<8.03	188	373	<8.03	<8.03	59.1	91.6	252	<8.03	126	65.3	<8.03	203

TABLE B-3
Plow Shop Pond Sediment Metals Concentration in mg/kg dw

_	1/1/1000 (+)	1				1	T T	1	1		1
l	1/1/1992 (cont.) SHD-92-27X	SHD-92-28X	SHD-92-29X	SHD-92-30X	0110 00 041	SHD-92-32X					
Almeierre	13500		6660								
Aluminum				9070	14500	8680					
Arsenic	150	310	20	18.8	28						
Barium	45.9	24.1	23.3	30.8	43.7	55.4					
Beryllium	<0.5	<0.5	<0.5	<0.5	1.25	<0.5					
Cadmium	<0.7	<0.7									
Calcium	3650	5180	1010	1770	2850	904					
Chromium	1060	132	89.5	51	31.8						
Cobalt	22.4	50.8	2.67	3.46	6.51	3.15					
Copper	23.6	7.58	9.54	14.8	17.6						
Iron	19400	51300	6870	9330	14600	8470					
Lead	100	37	42	57	39						
Magnesium	2110	703	1000	1580	3230	816					
Manganese	600	2370	212	175	340	103					
Mercury	5	0.294	1.9	0.966	0.582	0.57					
Nickel	24.8	29.9	7.55	10.1	18.7	9.53					
Potassium	<100	<100	223	464	1150	295					
Selenium	<0.25	<0.25	<0.25	0.677	<0.25	0.679					
Silver			<0.589	< 0.589	<0.589	1.22					
Sodium	1120	482	274	364	334	343					
Vanadium	30.5	<3.39		18.5	21.7	14.9					
Zinc	83.4	27.5	22.3	33.9	56.9	77.7					
ĺ											
ĺ	1/1/1994										
	RHD-94-02X	RHD-94-03X	RHD-94-04X	RHD-94-05X							
Aluminum	20500	5710	2180	6690							
Antimony	17.6	12.3	<1.09	19.6							
Arsenic	9.88	16		14.7							
Barium	290	113	<5.18	76							
Beryllium	2.69	1.07	<0.5	1.76							
Calcium	20600	2670	24700	3940							
Chromium	14.8	15.4	<4.05	79.4							
Cobalt	4.93	4.07	<1.42	5.81							
Copper	3450	276	17.2	1750							
Iron	11400	14400	4220	52900							
Lead	945	344	10.5	1210						_	
Magnesium	1820	1560	13.6	1120							
Manganese	59	74.8	268	153							
Mercury	0.116	0.312	<0.05	0.496							
	0.110						İ				
Nickel	14.8	13.2	<1.71	19.1							
Nickel Potassium			<1.71 <100	19.1 443							
	14.8	13.2									
Potassium	14.8 1870	13.2 387	<100	443							
Potassium Selenium	14.8 1870 0.814	13.2 387 2.32 <0.589	<100 <0.25	443 1.77							
Potassium Selenium Silver Sodium	14.8 1870 0.814 1.13 1290	13.2 387 2.32	<100 <0.25 <0.589 2880	443 1.77 0.589 777							
Potassium Selenium Silver	14.8 1870 0.814 1.13	13.2 387 2.32 <0.589 632	<100 <0.25 <0.589 2880	443 1.77 0.589							

TABLE B-3
Plow Shop Pond Sediment Metals Concentration in mg/kg dw

	4/1/1995												
	SHD-94-01X	SHD-94-02X	SHD-94-03X	SHD-94-04X	SHD-94-05X	SHD-94-06X	SHD-94-07X	SHD-94-08X	SHD-94-09X	SHD-94-10X	SHD-94-11X	SHD-94-12X	SHD-94-13X
Aluminum	3940	11800	9430	9650	9440	3200	4560	9520	11300	12500	9840	8510	
Antimony	<1.09	<1.09	30.7	<1.09	<1.09	<1.09	<1.09		<1.09	<1.09	<1.09	<1.09	
Arsenic	170	200	120	310	390	1100	2700	570	180	650	280	390	390
Barium	48.2	151	152	<5.18	105	164	172	99.4	82.9	114	72.5	75.1	102
Beryllium								<0.5					
Cadmium	<0.7	12.9	<0.7	14.4	<0.7	5.31	<0.7	16	<0.7	13.3	<0.7	<0.7	<0.7
Calcium	3350	5070	7020	6410	11900	17200	12900	7480	4920	6320	4620	8000	5430
Chromium	906	4090	3840	4830	5230	148	2350	4010	3130	8880	2120	3230	6690
Cobalt	14.3	24	24.8	<1.42	24.1	<1.42	18.7	<1.42	16.4	21.3	10.8	<1.42	<1.42
Copper	45.7	265	2090	125	75.1	24.2	37.1	81.9	266	124	42.8	57.3	88.5
Iron	18700	34500	38500	21400	40300	281000	266000	36900	27900	27700	18300	23100	26500
Lead	79	22	1000	250	190	27.8	75.8	230	330	250	79	120	210
Magnesium	695	2900	1840	1990	1910	935	1040	2060	2790	2530	2310	1830	2300
Manganese	11200	3430	377	467	2150	9780	5330	884	228	772	690		683
Mercury	2.92	38	6.5	47	64	< 0.05	13	100	50	97	19	86	250
Nickel	23.4	62	87.8	39.7	35.4	<1.71	23.4	44.6	46.7	52	20.8	28.2	34.5
Potassium	<100	1310	<100	<100	<100	<100	<100	<100	803	1180	1080	<100	<100
Selenium	<0.25	<0.25	5.35	<0.25	<0.25	<0.25	<0.25	< 0.25	4.86	4.84	2.53	<0.25	5.97
Silver								< 0.589				<0.589	
Sodium	1810	3840	2980	4440	3510	2290	2840	5280	2430	4000	1810	2760	3240
Thallium								<0.5				<0.5	
Vanadium	25.7	60.2	112	50.7	43.3	<3.39	33	<3.39	50	55.1	<3.39	<3.39	<3.39
Zinc	97.5	528	743	418	363	88.7	174	400	626	528	139	225	341
	4/1/1995 (cont.)												
	SHD-94-14X	SHD-94-15X	SHD-94-16X	SHD-94-17X	SHD-94-18X	SHD-94-19X	SHD-94-20X	SHD-94-21X	SHD-94-22X				
Aluminum	9830	11500	14100	11200	8830	13200	9020	14600	13400				
Antimony	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09				
Arsenic	320	9.76		390	300	250	510	650	400				
Barium	124	65.7	117	103	93.6	134	80.3	133	129				
Beryllium						<0.5							
Cadmium	12.4	<0.7	<0.7	11.8	5.53	<0.7	<0.7	<0.7	<0.7				
Calcium	6110	32700	7560	7590	3600	9560	4260	6640	5500				
Chromium	4720			4150	3860	3810	3240	7070	3260				
Cobalt	<1.42	5.64	18.1	<1.42	12.4	<1.42	16.3	19.6	15.8				
Copper	81.3	20.9	84.3	71.4	61.9	67.1	19.4	99.5	84				
Iron	33200	69700	27400	26100	19600	27100	24700	28500	28200				
Lead	200	16.4	240	210	170	79.5	190	250	220				
Magnesium	1950	8580	2480	2080	1460	2260	1730	2640	2670				
Manganese	1070	5690	793	1250	979	1560	685	1390	2260				
Mercury	88	0.22	81	45	52	35	37	150	170				
Nickel	57.2	38.3	42.9	42.1	32.1	43.8	36.3	40.4	33.6				
Potassium	<100	272	<100	<100	<100	<100	863	1150	1130				
Selenium	<0.25	<0.25	4.64	<0.25	3.37	<2.0975	3.85	4.4	3.31				
Silver						<0.589							
Sodium	4280	481	2980	4180	1960	3650	2800	3210	2810				
Thallium						<0.5							
Vanadium	<3.39	37.8	43	<3.39	33.7	<3.39	47.1	<3.39	<3.39				
Zinc	438	48.2	381	348	310	326	316	392	314				

TABLE B-3
Plow Shop Pond Sediment Metals Concentration in mg/kg dw

P								•				
	9/11/1998											
	PSEM-1	PSEM-2	PSEM-3									
Aluminum	1.2	1.3	1									
Antimony	<7	<5	<5									
Arsenic	300	160	160									
Barium	115	113	96.9									
Beryllium	1.5	1.5	1.4									
Cadmium	7	3.8	12.3									
Calcium	0.41	0.39	0.64									
Chromium	5220	2720	2800									
Cobalt	18.9		19.7									
Copper	68.2	134	177									
Iron	3.3		2.5									
Lead	258		286									
Magnesium	1680	3100	1910									
Manganese	1030	677	645									
Nickel	37.5	42.2	46.5		1	1	1	1	1		1	
Potassium	690		841									
Selenium	14.7	9.8	10.4		1	1	1	1	1		1	
Silver	14.7	9.6	10.4					1				
	317		358		-	-	-		-		-	
Sodium								-				
Thallium	29.4		20.9					 				
Vanadium	36.4		47									
Zinc	336	558	391									
	9/1/2000											
	PSPCORE1	PSPCORE2	PSPCORE3									
Arsenic	323.38	289.7323	252.66									
Cadmium	6.054	9.195	9.88									
Chromium	2857.56	4209.184	5493.285									
Copper	50.15	76.606	73.7									
Lead	156.825	251.74	249.39									
Manganese	1826.5	1228.677	820.807									
Mercury	46.35	96.78	97.2									
Nickel	29.8	44.403	41.469									
Zinc	233.25	343.936	360.4231									
	1/1/2001											
	PS1	PS2	PS3	PS4	PS5	PS6	PS7	PS8	PS9	PS10		
Arsenic	256.67	1767.03	210.62	90.41	114.27	70.36	164.79	245.79	220.4	2891.98		
Cadmium	8.92	4.213	13.852	6.145	0.792	3.945	3.892	6.45	12.708	2.54		
Chromium	3541.52	650.27	3534.16	1203.78	454.17	1347.15	1529.4	2641.65	4080.97	946.98		
Lead	1214.31	67.57	218.25	278.28	31.5	76.49	141.75	157.91	220.95	58.41		
Mercury	47.42	4.06	45.36	14.957	2.323	25.326	25.631	49.076	58.548	20.148		
Methyl mercury	0.06538	0.0057	0.08189	0.05299	0.00928	0.02748	0.03476		0.06255	0.00113		
y	1.13000	2.2007	2.23.00	2.22200		2.227.10		1.12000	200	2.227.10		
	3/2/2004							İ				
	PSP01	PSP02	PSP03	PSP04	PSP05	PSP06	PSP07	PSP08	PSP09			
Aluminum	12000		7300	8800	6500		6700		9100			
Antimony	<10		<11	<10	<10	<100	<10		<10			
Arsenic	190		140	120		3900	240					
Barium	130		180	93	100	280	61					
Beryllium	1.6		<1.1	<1	<1	<10						
Cadmium	30		24	18			19					
	6500	5700	4900	5400	4600	12000	6900	1000	6300			
Calcium	5100		1100					1000				-
Chromium	29	2700 25	21	930 18	1100 16	38 <30	960 14		390 10			-
Cobalt	29	25	21	18	16	<30	14	3.7	10			

TABLE B-3
Plow Shop Pond Sediment Metals Concentration in mg/kg dw

Copper	89	81	64	72	45	<30	53	12	220			
Iron	29000	38000	36000	23000	28000	410000	24000	6300	15000			
Lead	320	300	180	140	120	<100	130	14	190			
Magnesium	1900	2000	1500	2000	1300	500	1500	1500	2300			
Manganese	760	3100	4100	910	980	2400	650	230				
Mercury	48		8.3	8.4	8.6	0.21	6.7	0.038	1.9			
Nickel	69		63	43	37	<60	38	10				
Potassium	<1000	1000	<1100	<1000	<1000	<10000	<1000	<1000				
Selenium	<1000		<11	<1000	<1000	<1000	<10	<1000				
	<3	<3	<3.3	<3	<3	<30	<3	<3				
Silver	1200	1300	1300	1100	<1000	<10000	<1000	<1000	<1000			
Sodium												
Thallium	<20	<20	<22	<20	<20	<200	<20	<20				
Vanadium	76	80	48	36	34	<30	37	7.1				
Zinc	600	560	480	400	330	62	340	32	290			
	3/3/2004											
	PSPC09	PSPC10										
Aluminum	9700	4600		, and the second			·					
Antimony	<50	<9										
Arsenic	100	54										
Barium	70	27										
Beryllium	1.4	<0.9										
Cadmium	4.1	<2.7										
Calcium	19000	1200										
Chromium	1400	44									1	
Cobalt	12	5.1								1	†	
Copper	310	13									t	
Iron	18000	8200										
Lead	320	16										
	2200	1700										
Magnesium												
Manganese	150	1100										
Mercury	16											
Nickel	28	12										
Potassium	<5000	<900										
Selenium	<50	<9										
Silver	<15	<2.7										
Sodium	<5000	<900										
Thallium	<100	<18										
Vanadium	38	8.4										
Zinc	320	34										
	3/4/2004											
	PSPC10	PSPC11		PSPC13	PSPC14							
Aluminum	5700	2800	9700	11000	29000							
Antimony	<10	<50	<48	<98	<200							
Arsenic	110		280	2000	6800							
Barium	51	34	44	45	370							
Beryllium	<1	<5	1.5	<9.8	<20							
Cadmium	<3	<15	19	<29	66				İ	İ	İ	
Calcium	7100	19000	10000	34000	13000						1	
Chromium	510		3600	490	190						<u> </u>	
Cobalt	6.3	<15	20	59	19						t	
Copper	29	<15	61	4.4	39						t	
Iron	9500	6200	28000	290000	390000					1	t	
	9500		180	<98	70						+	
Lead	1200		2100	1100	5300					-	-	
Magnesium											 	
Manganese	720	1100	620	34000	1800					 	+	
Mercury	5.7	1.6	41	2.4	2.4							
Nickel	10	<30	63	8.6	37					ļ	ļ	
Potassium	<1000	<5000	<4800	<9800	<10000							
Selenium	<10	<50	<48	<98	<400							
Silver	<3	<15	<14	<29	<60							
Sodium	<1000	<5000	<4800	<9800	<10000							
Thallium	<20	<100	<96	<200	<400							
Vanadium	12	<15	40	<29	39							
Zinc	62	25	490	94	97							
			.00	Ŭ.	Ŭ,							

TABLE B-3
Plow Shop Pond Sediment Metals Concentration in mg/kg dw

	3/5/2004											
	PSPC05	PSPC06	PSPC15	PSPC16	PSPC17	PSPC18	PSPC19					
Aluminum	3800	5200	14000	7700	8600	3800	2100					
Antimony	<16	<50	<10	<9.8	<50	<50	<500					
Arsenic	170	2500	310	57	490	940	3500					
Barium	72	150	130	42	110	140	150					
Beryllium	<1.6	<5	1.3	<0.98	1	<5	<50					
Cadmium	<4.8	27		4	24	<15	<150					
Calcium	16000	12000	5600	2200	7300	8900	9900					
Chromium	560	2400	5700	1040	3300	170	<150					
Cobalt	6.1	33	22	6.9	20	<15	<150					
Copper	14	42	73	21	50	32	<150					
Iron	23000	220000	45000	11000	93000	230000	360000					
Lead	37	140	260	76	140	<60	<500					
Magnesium	950	980	2000	1500	1400	840	960					
Manganese	1100	4700	4500	340	4800	5200	2200					
Mercury	6.1	36	117	12	96	0.8	0.12					
Nickel	10	<30	42	19	57	<30	<300					
Potassium	<1600	<2500	740	<490	<5000	<5000	<50000					
Selenium	<32	<100	<20	<9.8	<100	<100	<1000					
Silver	<4.8	<15	<3	<2.9	<15	<15	<150					
Sodium	<1600	<2500	1100	<490	<2500	<5000	<50000					
Thallium	<32	<100	<20	<20	<100	<150	<1000					
Vanadium	9.5	19	51	19	40	<15	<150					
Zinc	56	190	380	110	400	140	<150					
	2/1/2005											
	P-SED-1	P-SED-2	P-SED-10	P-SED-11	P-SED-3	P-SED-4	P-SED-5	P-SED-6	P-SED-7	P-SED-8	P-SED-9	
Aluminum	14000	5500	11000	2700	27000	1900	8600	11000	12000	10000	10000	
Antimony	<12	<110	<9.3	<100	<10	<96	17	<12	<22	<12	<9.3	
Arsenic	410	2800	260	1800	310	4300	310	290	270	210	130	
Barium	180	270	110	120	97	220	84	68	90	100	120	
Beryllium	1.8	<11	1.4	<10	1.2	<9.6	<1.7	1.2	<2.2	<1.2	2.1	
Cadmium	16	36	15	23	3.6	50	7	6.5	13	9.9	9.2	
Calcium	7100	15000	4500	15000	3600	14000	12000	8600	6800	4800	5400	
Chromium	6200	2300	4200	330	70	410	2600	4300	4600	1800	1700	
Cobalt	27	22		28			16	19	22	19	16	
Copper	95	48		<31	33	<29	45	68	84	150	830	
Iron	54000	360000	24000	280000	44000	370000	27000	23000	21000	22000	27000	
Lead	320	160	240	<100	50	<96	130	200	270	220	700	
Magnesium	2100	1100	2000	660	5000	630	1500	1800	2100	2300	3700	
Manganese	3300	5300	790	14000	780	5300	940	530	560	1200	220	
Mercury	93	26	56	3.2	0.47	2.6	40	78	56	22	18	
	93						26	33	39			
Nickel	54	24	41	14							1	
Nickel Potassium		24 1500	900 900	1100		1600	750	830	960	890	700	
	54	1500	900			1600 <19		830 <23	960 <43	890 <24		
Potassium	54 1100	1500	900	1100								
Potassium Selenium	54 1100 <24	1500 <22 <33	900	1100 <210	<20	<19	<34	<23	<43	<24	<19	
Potassium Selenium Silver	54 1100 <24 <3.7	1500 <22 <33 530	900 <19 <2.8	1100 <210 <31	<20 <3.1	<19 <29	<34 <5.2	<23 <3.5	<43 <6.5	<24 <3.6	<19 <2.8 <470	
Potassium Selenium Silver Sodium	54 1100 <24 <3.7 940	1500 <22 <33 530	900 <19 <2.8 570	1100 <210 <31 <5200	<20 <3.1	<19 <29 <480 <400	<34 <5.2 670	<23 <3.5 <580	<43 <6.5 <1100	<24 <3.6 830	<19 <2.8 <470 <60	

TABLE B-4 Plow Shop Pond Sediment SVOCs Concentrations in mg/kg dw

			Frequency of
Analyte	Max (mg/kg)	Avg (mg/kg)	Detection
2-Methylnaphthalene	2	1.28	3 of 4
Acenaphthene	0.4	0.14	11 of 15
Acenaphthylene	0.71	0.20	11 of 11
Anthracene	3.4	0.48	12 of 15
Benzo(a)anthracene	7.1	0.70	13 of 28
Benzo(a)pyrene	6.5	1.24	11 of 11
Benzo(b)fluoranthene	11	1.93	12 of 15
Benzo(ghi)perylene	5.2	1.20	11 of 11
Benzo(k)fluoranthene	3.7	0.73	12 of 15
Chrysene	8.1	0.94	13 of 28
Dibenzo(a,h)anthracene	1.3	0.31	11 of 11
Dibenzofuran	0.8	0.35	2 of 4
Fluoranthene	18	1.71	14 of 28
Fluorene	1.9	0.30	12 of 15
Indeno(1,2,3-cd)pyrene	4.5	1.03	11 of 11
Naphthalene	2.4	0.50	15 of 28
Phenanthrene	10	1.04	15 of 28
Pyrene	14	1.66	17 of 28
PAH (Total)	98.65	10.07	NA

	41414004														444004				0.4.0005										
	1/1/1991														1/1/1994				2/1/2005						\longrightarrow				
	SESHL01	SESHL02	SESHL03	SESHL04	4 SESHI	1L05 SESHL	06 SES	SHL07 S	ESHL08 S	ESHL09	SESHL10	SESHL11 S	ESHL12	SESHL13	RHD-94-02X	RHD-94-03X		RHD-94-05X	P-SED-1	P-SED-2 F	P-SED-3	P-SED-4	P-SED-5	P-SED-6 P-	SED-7	P-SED-8	P-SED-9	P-SED-10 F	.3-SED-11
2-Methylnaphthalene															2	2	<0.2	1											
Acenaphthene															<0.2	0.4	<0.2	<0.2	0.072	0.023	< 0.0091	0.0063	0.039	0.083	0.088	0.085	0.84	0.085	0.0091
Acenaphthylene																			0.24	0.095	0.026	0.031	0.098	0.2	0.31	0.18	0.71	0.32	0.036
Anthracene															<0.2	0.8	<0.2	<0.2	0.4	0.14	0.13	0.038	0.17	0.39	0.49	0.36	3.4	0.54	0.052
Benzo(a)anthracene	<0	.3 <0.3	<0.3	3 <0.	3 .	<0.3	0.3	< 0.3	<0.3	<0.3	< 0.3	< 0.3	1.1	< 0.3	<0.8	2	<0.8	< 0.8	1	0.37	0.14	0.09	0.43	0.98	1.2	0.91	7.1	1.2	0.11
Benzo(a)pyrene																			1.2	0.42	0.25	0.12	0.5	1	1.3	0.97	6.5	1.3	0.13
Benzo(b)fluoranthene															<1	2	<1	<1	2.3	0.86	0.12	0.24	0.98	2	2.9	1.8	11	2.9	0.29
Benzo(ghi)perylene																			1.4	0.5	0.072	0.12	0.62	1.2	1.5	1	5.2	1.4	0.14
Benzo(k)fluoranthene															< 0.3	2	<0.3	< 0.3	0.85	0.26	0.18	0.071	0.3	0.72	0.93	0.63	3.7	0.72	0.085
Chrysene	<0.4	5 <0.4	< 0.4	5 <0.4	5 <	<0.45 <0	.45	< 0.45	< 0.45	<0.45	< 0.45	< 0.45	1.5	< 0.45	<0.6	3	<0.6	< 0.6	1.7	0.63	0.032	0.18	0.69	1.5	1.9	1.3	8.1	2	0.21
Dibenzo(a,h)anthracene																			0.31	0.11	0.26	0.028	0.13	0.27	0.34	0.24	1.3	0.35	0.033
Dibenzofuran															0.4	0.8	<0.2	<0.2											
Fluoranthene	<0.5	52 < 0.52	< 0.5	2 <0.5	2 <	< 0.52 < 0	.52	< 0.52	< 0.52	<0.52	< 0.52	< 0.52	3.4	< 0.52	< 0.3	5	<0.3	1	2.9	0.98	0.013	0.27	1.2	2.7	3.3	2.2	18	3.2	0.35
Fluorene															<0.2	0.4	<0.2	<0.2	0.28	0.089	0.11	0.025	0.16	0.31	0.35	0.23	1.9	0.31	0.031
Indeno(1,2,3-cd)pyrene																			1.2	0.44	0.048	0.11	0.5	1	1.3	0.89	4.5	1.2	0.12
Naphthalene	< 0.4	2 <0.4	< 0.42	2 <0.4	2 <	< 0.42 < 0	.42	< 0.42	< 0.42	<0.42	< 0.42	< 0.42	1.6	< 0.42	2	2	<0.2	0.7	0.34	0.11	0.12	0.024	0.2	0.41	0.43	0.38	2.4	0.57	0.081
Phenanthrene	< 0.4	1 <0.4	< 0.4	1 <0.4	1 <	<0.41 <0	.41	< 0.41	< 0.41	<0.41	< 0.41	< 0.41	2.5	< 0.41	0.8	4	<0.2	1	1.2	0.42	0.24	0.13	0.6	1.3	1.5	1.2	10	1.4	0.15
Pyrene	<0.4	2 <0.4	< 0.42	2 < 0.4	2 <	<0.42 <0	.42	< 0.42	< 0.42	4.35	< 0.42	3.5	2.6	< 0.42	0.5	3	<0.2	0.8	2.3	0.83	1.8	0.24	1	2.1	2.6	1.8	14	2.5	0.27
PAH (Total)	1.2	26 1.20	1.20	6 1.2	6	1.26 1	.26	1.26	1.26	5.40	1.26	4.55	12.70	1.26	5.50	25.40	2.20	5.25	17.69	6.28	3.55	1.72	7.62	16.16	20.44	14.18	98.65	20.00	2.10

TABLE B-5 Plow Shop Pond Sediment Pesticides and PCBs Concentrations in mg/kg

Summary Stats

- carriery - car	•		
	Max	Average	
	concentration	concentration	Frequency of
	(mg/Kg)	(mg/Kg)	Detection
4,4'-DDD	1.8	0.08	15/40
4,4'-DDE	1.3	0.06	20/59
4,4'-DDT	0.13	0.01	10/46
Aroclor 1242	0.092	0.05	1/11
Aroclor 1254	0.11	0.05	1/11
Aroclor 1260	0.13	0.04	1/11
Heptachlor	0.05	0.01	2/24

	1/1/1991			1		ſ			ſ			ı	1	
	SESHL01	SESHL02	SESHL03	SESHL04	SESHL05	SESHL06	SESHL07	SESHL08	SESHL09	SESHL10	SESHL11	SESHL12	SESHL13	
4.4'-DDE	<0.04	<0.04	0.172	<0.04	<0.04	<0.04		<0.04	<0.04		<0.04	<0.04		
Heptachlor	<0.04	0.02	0.092	4.4.	<0.04	<0.04		<0.04		<0.04	<0.04	<0.04	0.0.	
Пертастног	V0.012	0.02	0.092	V0.012	\0.012	\0.01Z	\0.012	~ 0.012	~0.01Z	\0.012	~ 0.012	~0.01Z	~0.01Z	
	1/1/1992													
	SHD-92-01X		SHD-92-03X	SHD-92-04X	SHD-92-05X	SHD-92-06X	SHD-92-07X	SHD-03-08X	SHD-02-00X	SHD-02-10Y	SHD-02-11Y	SHD-02-12Y	SHD-92-13X	SHD-02-14Y
4.4'-DDD	<0.008				<0.008	<0.008		<0.008		<0.008	<0.008	<0.008		<0.008
4.4'-DDE	<0.008		<0.008	<0.008	<0.008	<0.008		<0.008		<0.008	0.074	<0.008		<0.008
4.4'-DDT	<0.007		<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		<0.007
7,7 001	40.007	40.07 1	10.007	10.007	10.001	10.007	10.007	40.007	40.007	40.007	40.007	40.007	10.007	10.007
	1/1/1992 (cont.)													
	SHD-92-15X	SHD-92-16X	SHD-92-17X	SHD-92-18X	SHD-92-19X	SHD-92-20X	SHD-92-21X	SHD-92-22X	SHD-92-23X	SHD-92-24X	SHD-92-25X	SHD-92-26X	SHD-92-27X	SHD-92-28X
4,4'-DDD	<0.008	<0.008	<0.008	<0.008	0.017	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.18	0.28
4,4'-DDE	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.133	<0.008	<0.008	<0.008	<0.008	0.075	0.041
4,4'-DDT	<0.007	< 0.007	<0.007	<0.007	<0.007	<0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	<0.007	< 0.007	0.13
	1/1/1993													
	SHD-92-29X	SHD-92-30X	SHD-92-31X	SHD-92-32X										
4,4'-DDE	<0.076	< 0.076	0.03	0.17										
4,4'-DDT	<0.071	< 0.071	0.015	0.042										
	2/1/2005													
	P-SED-1	P-SED-2	P-SED-3	P-SED-4	P-SED-5	P-SED-6	P-SED-7	P-SED-8	P-SED-9	P-SED-10	P-SED-11			
4,4'-DDD	0.071	0.038	0.034	0.019	0.055	0.055	0.087	0.43	0.040	0.039	0.084			
4,4'-DDE	0.13	0.059	0.037	0.028	0.062	0.083	0.13	0.40	0.063	0.076	0.054			
4,4'-DDT	< 0.0065	<0.0033	<0.0017	0.0033	<0.0030	<0.0051	0.0065	0.047	0.0044	0.0063	0.0036			
Aroclor 1242	<0.13		0.11	<0.058	<0.061	<0.1	<0.12	<0.092	< 0.053	<0.09	<0.068			
Aroclor 1254	<0.13	<0.068	0.13		<0.061	<0.1	<0.12	<0.092	< 0.053	<0.09	<0.068			
Aroclor 1260	<0.13	<0.068	0.05	<0.058	<0.061	<0.1	<0.12	<0.092	< 0.053	<0.09	<0.068			<u></u>
Heptachlor	< 0.0065	< 0.0033	<0.0017	<0.0028	< 0.0030	< 0.0051	<0.0060	<0.0045	<0.0026	<0.0044	< 0.0033			

TABLE B-6 Plow ShopPond Sediment VOCs Concentration in mg/kg dw

			Frequency of
Analyte	Max (mg/kg)	Avg (mg/kg)	Detection
Acetone	2.6	0.0105	9/13
Methyl ethyl ketone	0.13	0.005	5/13
Methylene chloride	0.12	0.003	11/13

	1/1/1991												
name	SESHL01	SESHL02	SESHL03	SESHL04	SESHL05	SESHL06	SESHL07	SESHL08	SESHL09	SESHL10	SESHL11	SESHL12	SESHL13
Acetone	0.058	<0.01	0.29	0.15	0.54	<0.01	<0.01	0.37	0.4	0.15	0.15	<0.054	2.6
Methyl ethyl ketone	<0.01	<0.01	0.079	<0.01	0.13	0.089	0.023	<0.01	0.13	<0.01	<0.01	<0.01	<0.01
Methylene chloride	0.023	<0.006	0.05	0.053	0.036	0.082	0.034	0.072	0.12	<0.006	0.073	0.021	0.098

TABLE B-7 Plow Shop Pond Fish Tissue Data Whol Body Concentrations in mg/kg ww

10/20/1992

				10/20/1332																		
Summary St	tats			Bluegill	Bluegill	Bluegill	Bullhead	Bullhead	Bullhead	Bluegill	Bluegill	LMBass	LMBass	LMBass	LMBass	LMBass	Bullhead	Bullhead	6/24/2004			
	Max	Average																				
	concentration	concentration	Frequency																Plow-North-	Plow-North-	Plow-South-	Plow-South-
Chemical	(mg/Kg)	(mg/Kg)	of Detection	PSP02W	PSP03W	PSP04W	PSP05W	PSP06W	PSP12W	PSP10W	PSP11W	PSP07W	PSP17W	PSP18W	PSP19W	PSP20W	PSP22W	PSP23W	BGSF-WB	BLCR-WB	BGSF-WB	BLCR-WB
Aluminum	4.5	1.99	13/19	1.8		1.6	2.4	2.9	1.7	3.2	4.5	2.9	<1.3	<1.3	<1.3	2.1	<1.3	<1.3	2.7	1.9	2.9	3.3
Antimony	ND	ND	0/20	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<0.89	< 0.73	< 0.84	<0.81
Arsenic	1.3	0.32	2/20	1.3	<0.2	<0.19	<0.16	<0.16	<0.19	<0.16	<0.16	<0.2	<0.19	<0.2	<0.19	<0.19	<0.16	0.3	<1.8	<1.5	<1.7	<1.6
Barium	4.4	1.47	19/20	1.9	1.3	2.4	0.5	0.83	1	4.4	3.8	0.41	0.27	0.6	0.99	0.63	0.33	1.3	2.5	1.7	3.3	1.2
Beryllium	ND	ND	0/20	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	< 0.04	<0.04	<0.04	<0.04	<0.089	< 0.073	<0.084	<0.081
Cadmium	0.09	0.05	1/20	< 0.07	< 0.07	<0.06	<0.07	< 0.06	<0.06	<0.06	<0.07	0.09	<0.06	< 0.07	<0.07	<0.06	<0.07	<0.06	< 0.27	<0.22	< 0.25	<0.24
Calcium	48800	15527	16/20	34600	23300	28200	8020	14600	16500	48800	24800	35900	19400	18800	12300	14100	3250	7870	<1.8	<1.5	<1.7	<1.6
Chromium	0.99	0.52	18/20	0.49	0.48	0.59	0.31	0.99	0.43	0.93	0.79	0.65	0.42	0.44	0.32	0.33	<0.2	0.25	0.62	0.65	0.79	0.63
Cobalt	0.17	0.09	5/20	0.12	0.11	0.16	0.17	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.27	<0.22	<0.25	<0.24
Copper	1.3	0.56	20/20	0.48	0.54	0.47	1.3	0.81	0.69	0.44	0.6	0.44	0.45	0.55	0.9	0.54	0.56	0.43	0.59	0.44	0.52	0.29
Iron	130	40	20/20	130	42.4	61.5	22.3	43.6	32.1	75.2	89.5	12.6	11.1	13.3	24.6	19.9	25.9	71.2	38	11	56	14
Lead	0.18	0.22	3/20	0.1	<0.1	<0.1	0.18	<0.1	<0.1	0.16	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.8	<1.5	<1.7	<1.6
Magnesium	754	477	20/20	525	496	536	296	427	459	754	529	671	508	522	420	431	249	303	500	540	610	510
Manganese	94.7	29	19/20	39.1	40.2	58.8	6.5	10.6	16	94.7	83.2	5.1	5.5	8.8	7.2	5.1	6.2	8	42	41	70	25
Mercury	2.7	0.60	19/20	<0.4	0.19	0.54	0.36	0.28	0.4	0.47	0.24	2.2	2.7	0.65	0.65	0.72	0.28	0.09	0.2	0.54	0.3	0.7
Nickel	0.8	0.38	1/20	0.8	<0.78	<0.76	<0.8	<0.8	<0.8	<0.8	<0.77	<0.78	<0.79	<0.78	< 0.76	<0.78	<0.78	<0.8	< 0.53	< 0.44	<0.5	<0.48
Potassium	3400	3225	4/4																3200	3100	3400	3200
Selenium	0.67	0.38	15/20	0.52	<0.52	0.67	0.28	0.24	0.31	0.62	0.42	0.54	0.38	0.39	0.32	0.26	0.29	0.25	<0.89	< 0.73	<0.84	<0.81
Silver	ND	ND	0/20	<0.2	<0.2	<0.19	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.19	<0.2	<0.2	<0.2	<0.27	<0.22	<0.25	<0.24
Sodium	2290	1406	20/20	1820	1530	1850	1190	1230	1410	2290	1480	2020	1340	1460	1530	1460	1080	1120	1100	1200	1400	1200
Thallium	ND	ND	0/20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.8	<1.5	<1.7	<1.6
Vanadium	8.0	0.36	1/20	0.8	<0.78	< 0.76	<0.8	<0.8	<0.8	<0.8	<0.77	<0.78	<0.79	<0.78	< 0.76	<0.78	<0.78	<0.8	<0.27	<0.22	< 0.25	<0.24
Zinc	29.6	19	20/20	25.1	22.2	25.6	14.1	18.8	22.3	29.6	22.6	17.9	13	16.3	15.7	18.9	14.1	12.1	25	21	27	19

TABLE B-8 Plow Shop Pond Fish Tissue Data Summary Stats for each Fish Species Collected Concentrations in mg/kg ww

Largemouth Bass

	Max	Average	
	concentration	concentration	Frequency of
Chemical	(mg/Kg)	(mg/Kg)	Detection
Aluminum	2.9	1.39	'2/5
Antimony	ND	ND	'0/5
Arsenic	ND	ND	'0/5
Barium	0.99	0.58	'5/5
Beryllium	ND	ND	'0/5
Cadmium	0.09	0.04	'1/5
Calcium	35900	20100.00	'5/5
Chromium	0.65	0.43	'5/5
Cobalt	ND	ND	'0/5
Copper	0.9	0.58	'5/5
Iron	24.6	16.30	'5/5
Lead	ND	ND	'0/5
Magnesium	671	510.40	'5/5
Manganese	8.8	6.34	'5/5
Mercury	2.7	1.38	'5/5
Nickel	ND	ND	'0/5
Potassium	NA	NA	NA
Selenium	0.54	0.38	'5/5
Silver	ND	ND	'0/5
Sodium	2020	1562.00	'5/5
Thallium	ND	ND	'0/5
Vanadium	ND	ND	'0/5
Zinc	18.9	16.36	'5/5
4,4'-DDD	0.11	0.05	5/5
4,4'-DDE	0.38	0.17	5/5
4,4'-DDT	0.012	0.01	1/5
Aroclor-1260	0.33	0.14	5/5

	Max	Average	
	concentration	concentration	Frequency of
Chemical	(mg/Kg)	(mg/Kg)	Detection
Aluminum	2.9	1.66	'3/5
Antimony	ND	ND	'0/5
Arsenic	0.3	0.13	'1/5
Barium	1.3	0.79	'5/5
Beryllium	ND	ND	'0/5
Cadmium	ND	ND	'0/5
Calcium	16500	10048.00	'5/5
Chromium	0.99	0.42	'4/5
Cobalt	0.17	0.07	'1/5
Copper	1.3	0.76	'5/5
Iron	71.2	39.02	'5/5
Lead	0.18	0.08	'1/5
Magnesium	459	346.80	'5/5
Manganese	16	9.46	'5/5
Mercury	0.4	0.28	'5/5
Nickel	ND	ND	'0/5
Potassium	NA	NA	NA
Selenium	0.31	0.27	'5/5
Silver	ND	ND	'0/5
Sodium	1410	1206.00	'5/5
Thallium	ND	ND	'0/5
Vanadium	ND	ND	'0/5
Zinc	22.3	16.28	'5/5
4,4'-DDD	0.012	0.01	1/5
4,4'-DDE	0.033	0.01	2/5
4,4'-DDT	0.014	0.01	2/5
Aroclor-1260	ND	ND	0/5

Bluegill

Bluegili	Max	Average	
	concentration	concentration	Frequency of
Chemical	(mg/Kg)	(mg/Kg)	Detection
Aluminum	4.5	2.73	6/6
Antimony	ND	ND	0/7
Arsenic	1.3	0.24	1/7
Barium	4.4	2.51	7/7
Beryllium	ND	ND	0/7
Cadmium	ND	ND	0/7
Calcium	48800	20965.22	5/7
Chromium	0.93	0.63	7/7
Cobalt	0.17	0.12	4/7
Copper	1.3	0.62	7/7
Iron	130	64.36	7/7
Lead	0.18	0.29	2/7
Magnesium	754	530.75	7/7
Manganese	94.7	54.31	7/7
Mercury	0.54	0.31	6/7
Nickel	8.0	0.41	1/7
Potassium	3400	3300.00	2/2
Selenium	0.67	0.45	4/7
Silver	ND	ND	0/7
Sodium	2290	1582.50	7/7
Thallium	ND	ND	0/7
Vanadium	8.0	0.38	1/7
Zinc	29.6	23.90	7/7
4,4'-DDD	0.021	0.01	2/7
4,4'-DDE	0.16	0.05	4/7
4,4'-DDT	ND	ND	0/7
Aroclor-1260	ND	ND	0/7

Black crappie

	Max	Average	
	concentration	concentration	Frequency of
Chemical	(mg/Kg)	(mg/Kg)	Detection
Aluminum	3.3	2.60	2/2
Antimony	ND	ND	0/2
Arsenic	ND	ND	0/2
Barium	1.7	1.45	2/2
Beryllium	ND	ND	0/2
Cadmium	ND	ND	0/2
Calcium	ND	ND	0/2
Chromium	0.65	0.64	2/2
Cobalt	ND	ND	0/2
Copper	0.44	0.37	2/2
Iron	14	12.50	2/2
Lead	ND	ND	0/2
Magnesium	540	525.00	2/2
Manganese	41	33.00	2/2
Mercury	0.7	0.62	2/2
Nickel	ND	ND	0/2
Potassium	3200	3150.00	2/2
Selenium	ND	ND	0/2
Silver	ND	ND	0/2
Sodium	1200	1200.00	2/2
Thallium	ND	ND	0/2
Vanadium	ND	ND	0/2
Zinc	21	20.00	2/2
4,4'-DDD	0.037	0.03	2/2
4,4'-DDE	0.18	0.17	2/2
4,4'-DDT	ND	ND	0/2
Aroclor-1260	ND	ND	0/2

TABLE B-9
Plow Shop Pond Fish Tissue - Pesticides and PCBs
Whole body Concentrations in mg/kg ww

				ABB 1993	Fish Data	.xls (colle	cted 10/20)/92)											Master-Joa	nne-only Fi	sh2004.xl	ıs [Fish
																					Plow-	
																				Plow-	South-	Plow-
																			Plow-North-	North-	BGSF-	South-
				PSP02W	PSP03W	PSP04W	PSP05W	PSP06W	PSP07W	PSP10W	PSP11W	PSP12W	PSP17W	PSP18W	PSP19W	PSP20W	PSP22W	PSP23W	BGSF-WB	BLCR-WB	WB	BLCR-WB
Chemical	max	average	FOD	Bluegill	Bluegill	Bluegill	Bullhead	Bullhead	LMBass	Bluegill	Bluegill	Bullhead	LMBass	LMBass	LMBass	LMBass	Bullhead	Bullhead				T
4,4'-DDD	0.11	0.02	10/19	<0.0096	<0.0097	<0.0099	< 0.0097	<0.0097	0.035	<0.0096	<0.01	<0.0099	0.11	0.021	0.032	0.03	0.012	<0.0099	0.021	0.023	0.014	0.037
4,4'-DDE	0.38	0.08	13/19	<0.0096	0.029	0.021	0.015	<0.0097	0.15	<0.0096	<0.01	<0.017	0.38	0.082	0.084	0.14	0.033	<0.014	0.091	0.16	0.16	0.18
4,4'-DDT	0.014	0.01	3/19	<0.0096	<0.0097	<0.0099	0.013	0.014	<0.0098	<0.0096	<0.01	<0.0099	0.012	< 0.0097	< 0.0097	< 0.0095	<0.01	<0.0099	< 0.011	<0.011	<0.01	<0.01
aldrin	ND	ND	0/19	<0.0048	<0.0049	<0.005	<0.0049	< 0.0049	<0.0049	<0.0048	<0.005	<0.005	<0.025	<0.0049	<0.0049	< 0.0047	<0.005	<0.005	< 0.011	<0.011	<0.01	<0.01
alpha-BHC	ND	ND	0/19	<0.0048	< 0.0049	<0.005	< 0.0049	< 0.0049	< 0.0049	<0.0048	<0.005	<0.005	<0.025	< 0.0049	< 0.0049	< 0.0047	<0.005	< 0.005	< 0.011	<0.011	<0.01	<0.01
alpha-chlordane	ND	ND	0/19	<0.0048	< 0.0049	<0.005	< 0.0049	< 0.0049	<0.0049	<0.0048	< 0.005	<0.005	<0.025	< 0.0049	< 0.0049	< 0.0047	<0.005	<0.005	<0.011	<0.011	<0.01	<0.01
Aroclor-1016	ND	ND	0/19	<0.048	< 0.049	<0.05	<0.049	<0.049	<0.049	<0.048	< 0.05	< 0.05	<0.25	<0.049	<0.049	< 0.047	<0.05	< 0.05	<0.22	<0.22	<0.21	<0.21
Aroclor-1221	ND	ND	0/19	<0.048	<0.049	<0.05	<0.049	<0.049	<0.049	<0.048	< 0.05	<0.05	<0.25	<0.049	<0.049	< 0.047	<0.05	< 0.05	<0.22	<0.22	<0.21	<0.21
Aroclor-1232	ND	ND	0/19	<0.048	<0.049	<0.05	<0.049	<0.049	<0.049	<0.048	<0.05	<0.05	<0.25	<0.049	<0.049	< 0.047	<0.05	< 0.05	<0.22	<0.22	<0.21	<0.21
Aroclor-1242	ND	ND	0/19	<0.048	<0.049	<0.05	<0.049	<0.049	<0.049	<0.048	<0.05	<0.05	<0.25	<0.049	<0.049	< 0.047	<0.05	< 0.05	<0.22	<0.22	<0.21	<0.21
Aroclor-1248	ND	ND	0/19	<0.048	< 0.049	< 0.05	<0.049	<0.049	< 0.049	<0.048	< 0.05	< 0.05	<0.25	< 0.049	< 0.049	< 0.047	< 0.05	< 0.05	<0.22	<0.22	<0.21	<0.21
Aroclor-1254	ND	ND	0/19	<0.048	<0.049	<0.05	<0.049	<0.049	<0.049	<0.048	<0.05	<0.05	<0.25	<0.049	<0.049	< 0.047	<0.05	< 0.05	<0.22	<0.22	<0.21	<0.21
Aroclor-1260	0.33	0.07	5/19	<0.048	< 0.049	< 0.05	<0.049	<0.049	0.13	<0.048	< 0.05	< 0.05	0.33	0.063	0.061	0.1	< 0.05	< 0.05	<0.22	<0.22	<0.21	<0.21
Aroclor-1262	ND	ND	0/4																<0.22	<0.22	<0.21	<0.21
Aroclor-1268	ND	ND	0/4																<0.22	<0.22	<0.21	<0.21
beta-BHC	ND	ND	0/19	<0.0048	<0.0049	<0.005	< 0.0049	< 0.0049	< 0.0049	<0.0048	<0.005	<0.005	< 0.025	< 0.0049	< 0.0049	< 0.0047	< 0.005	<0.005	< 0.011	<0.011	<0.01	<0.01
delta-BHC	ND	ND	0/19	<0.0048	<0.0049	<0.005	<0.0049	<0.0049	<0.0049	<0.0048	<0.005	<0.005	<0.025	<0.0049	<0.0049	< 0.0047	< 0.005	<0.005	<0.011	<0.011	<0.01	<0.01
Dieldrin	ND	ND	0/19	< 0.0096	< 0.0097	< 0.0099	<0.0097	< 0.0097	<0.0098	< 0.0096	<0.01	<0.0099	<0.05	< 0.0097	< 0.0097	< 0.0095	<0.01	< 0.0099	< 0.011	< 0.011	<0.01	<0.01
Endosulfan I	ND	ND	0/19	<0.0048	<0.0049	<0.005	<0.0049	< 0.0049	<0.0049	<0.0048	<0.005	<0.005	<0.025	<0.0049	<0.0049	< 0.0047	<0.005	<0.005	< 0.011	<0.011	<0.01	<0.01
Endosulfan II	ND	ND	0/19	<0.0096	<0.0097	<0.0099	<0.0097	<0.0097	<0.0098	<0.0096	<0.01	<0.0099	<0.05	<0.0097	<0.0097	< 0.0095	<0.01	<0.0099	<0.011	<0.011	<0.01	<0.01
Endosulfan sulfate	ND	ND	0/19	< 0.0096	< 0.0097	< 0.0099	<0.0097	< 0.0097	<0.0098	< 0.0096	<0.01	<0.0099	<0.05	< 0.0097	< 0.0097	< 0.0095	<0.01	< 0.0099	< 0.011	< 0.011	<0.01	<0.01
Endrin	ND	ND	0/19	<0.0096	<0.0097	<0.0099	<0.0097	<0.0097	<0.0098	<0.0096	<0.01	<0.0099	<0.05	<0.0097	<0.0097	< 0.0095	<0.01	<0.0099	<0.011	<0.011	<0.01	<0.01
Endrin aldehyde	ND	ND	0/19	< 0.0096	< 0.0097	< 0.0099	<0.0097	< 0.0097	<0.0098	< 0.0096	<0.01	<0.0099	<0.05	< 0.0097	< 0.0097	< 0.0095	<0.01	< 0.0099	< 0.011	< 0.011	<0.01	<0.01
Endrin Ketone	ND	ND	0/19	<0.0096	<0.0097	<0.0099	<0.0097	<0.0097	<0.0098	<0.0096	<0.01	<0.0099	<0.05	<0.0097	<0.0097	<0.0095	<0.01	<0.0099	< 0.011	<0.011	<0.01	<0.01
gamma-BHC (Lindane)	ND	ND	0/19	<0.0048	<0.0049	<0.005	<0.0049	<0.0049	<0.0049	<0.0048	<0.005	<0.005	<0.025	<0.0049	<0.0049	< 0.0047	< 0.005	<0.005	<0.011	<0.011	<0.01	<0.01
gamma-chlordane	ND	ND	0/19	<0.0048	<0.0049	<0.005	<0.0049	< 0.0049	<0.0049	<0.0048	<0.005	<0.005	<0.025	<0.0049	<0.0049	< 0.0047	<0.005	<0.005	<0.011	<0.011	<0.01	<0.01
Heptachlor	ND	ND	0/19	<0.0048	<0.0049	<0.005	< 0.0049	< 0.0049	<0.0049	<0.0048	<0.005	<0.005	<0.005	< 0.0049	< 0.0049	< 0.0047	<0.005	<0.005	<0.011	<0.011	<0.01	<0.01
Heptachlor Epoxide	ND	ND	0/19	<0.0048	<0.0049	<0.005	<0.0049	< 0.0049	<0.0049	<0.0048	<0.005	<0.005	<0.005	<0.0049	<0.0049	< 0.0047	<0.005	<0.005	<0.011	<0.011	<0.01	<0.01
Methoxychlor	ND	ND	0/19	<0.048	<0.049	<0.05	<0.049	<0.049	<0.049	<0.048	<0.05	<0.05	<0.25	<0.049	<0.049	< 0.047	<0.05	< 0.05	<0.011	<0.011	<0.01	<0.01
SURR - 2,4,5,6-Tetrachloro-m-xylene	ND	ND	0/4																0.086	0.086	0.099	0.093
SURR - Decachlorobiphenyl	ND	ND	0/4																0.098	0.103	0.116	0.107
Technical Chlordane	ND	ND	0/4																<0.22	<0.22	<0.21	<0.21
Toxaphene	ND	ND	0/19	< 0.096	< 0.097	<0.099	<0.097	< 0.097	<0.098	<0.096	<0.1	<0.099	< 0.5	< 0.099	< 0.097	< 0.095	<0.1	< 0.099	<0.22	<0.22	<0.21	<0.21

TABLE B-10 Plow Shop Pond Invertebrate Data Concentrations in mg/kg ww

				M	ierzykowski ar	nd Carr (Sc	ntember 2	יחחחו							Hai	nes and L	onacore	(2001	1								
				IVII	CIZYKOWSKI ZI	la Carr (CC	picilibei 2	.000)				Ca	ambarida	a .	1141	iles alla L	ongcore	C (2001)			Cord	uliidae					
				l .								annound	ĺ						00.0	1		T					
				1998 Mu	ussels (ug/g v	ww)			1998 Crayfish (ug/g ww)	Nor	th	Outlet Red Cove			Cove	Roundh	ouse	North		C	Outlet Re		Red Cove		undhouse		
Chemical		Average (mg/kg)	PLO-03A	PLO-03B	PLO-03C	PLO-06A	PLO-06B	PLO-060	PLO-CY01	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range		
Aluminum	2.94	2.03	1.12	nd	nd	nd	nd	nd	2.94																		
Arsenic	2.45	1.03	0.71	0.66	0.4	0.79	0.93	0.83	1.62	0.78	.7184	0.92	-	1.11	1.01-1.19		-	1.17	1.16-1.17	2.14	1.83-2.45	1.71	1.69-1.73	0.62	.5273		
Barium	95.1	62	84.8	80.5	95.1	55.9	51.3	32	37.7																		
Boron	0.47	0.41	0.4	0.35	0.47	nd	nd	nd	nd														T.				
Cadmium	0.62	0.23	0.39	0.24	0.34	0.34	0.36	0.19	0.11	0.11	.112	0.13	-	0.38	.1562	-	-	0.11	.0914	0.2	.1921	0.14	.1315	0.11	.0913		
Chromium	3.19	1.24	0.72	0.65	0.68	0.44	0.7	0.55	0.48	2.16	1.62-2.7	2.42	-	2.23	1.21-3.06	-	-	2.54	1.89-3.19	1.59	1.11-2.07	1.23	.77-1.68	0.99	.65-1.32		
Copper	24.4	4.08	0.64	0.75	0.68	0.63	0.76	0.73	24.4														1				
Iron	1372	779	1002	1103	1372	643	623	364	349														1				
Lead	0.47	0.17	0.1	0.07	0.07	0.06	0.06	nd	0.28	0.16	033	0.17	-	0.27	.1647	-	-	0.25	.2426	0.27	.2528	0.15	.1416	0.27	.2628		
Magnesium	388	141	110	119	89.5	81.1	96.7	104	388														1				
Manganese	1042	672	1042	791	862	509	631	593	278														1				
Mercury (Total)	0.069	0.04	0.0557	0.0481	0.0411	0.0434	0.0413	0.0427	0.0465	0.035	.031038	0.056	-	0.046	.034059	-	-	0.037	.029046	0.066	.063069	0.041	.040042	2 0.023	.015031		
Methyl mercury	0.056	0.02	0.0264	0.0188	0.008	0.0073	0.0117	0.0071	0.0429	0.026	.025028	0.025	-	0.039	.035042	-	-	0.029	.021037	0.054	.052056	0.029	.027032	2 0.023	.015030		
Nickel	0.27	0.15	0.11	nd	0.12	0.1	0.15	nd	0.27														T.				
Selenium	0.18	0.17	0.17	0.15	0.17	0.18	0.18	0.18	nd																		
Strontium	157	39	25.4	23.7	26.2	12.4	15.3	12	157																		
Zinc	23.3	19	21.7	21.8	17.8	14.6	17.3	18.6	23.3																		
																							1				
% Moisture			85	86.7	87.3	84.5	85.2	84.9																			

Metrics for each sample also provided (length, width, breadth, weight, tissue weight) All mussels were Eastern Elliptio (Elliptio complanata)

Sample sizes were not reported in Haines and Longcore (2001). Therefore, in cases where ranges are also not reported, there is no way to determine a maximum concentration at the location. The average concentrations are treated as composite samples in these circumstances and are considered maximum values.

TABLE B-11
Plow Shop Pond Invertebrate Data
Summary Stats by Taxonomic Group

		Mussels			Crayfish			Odonata		
	Max (mg/kg	Average (mg/kg		Max (mg/kg	Average (mg/kg		Max (mg/kg	Average (mg/kg		
Chemical	ww)	ww) ^a	FOD	ww)	ww)	Sample Size ^b	ww)	ww)	Sample Size ^c	
Aluminum	1.12	1.12	1/6	2.94	2.94	1	NA	NA	NA	
Arsenic	0.93	0.72	6/6	1.62	1.11	4	2.5	1.4	4	
Barium	95	67	6/6	38	38	1	NA	NA	NA	
Boron	0.47	0.41	3/6	ND	ND	1	NA	NA	NA	
Cadmium	0.39	0.31	6/6	0.62	0.18	4	0.21	0.14	4	
Chromium	0.72	0.62	6/6	3.06	1.82	4	3.2	1.6	4	
Copper	0.76	0.70	6/6	24	24	1	NA	NA	NA	
Iron	1372	851	6/6	349	349	1	NA	NA	NA	
Lead	0.1	0.07	5/6	0.47	0.22	4	0.28	0.24	4	
Magnesium	119	100	6/6	388	388	1	NA	NA	NA	
Manganese	1042	738	6/6	278	278	1	NA	NA	NA	
Mercury (Total)	0.0557	0.05	6/6	0.06	0.05	4	0.069	0.042	4	
Methyl mercury	0.0264	0.01	6/6	0.04	0.03	4	0.056	0.034	4	
Nickel	0.15	0.12	4/6	0.27	0.27	1	NA	NA	NA	
Selenium	0.18	0.17	6/6	ND	ND	1	NA	NA	NA	
Strontium	26	19	6/6	157	157	1	NA	NA	NA	
Zinc	22	19	6/6	23	23	1	NA	NA	NA	

The information in this table was derived from the data presented in the previous table entitled Plow Shop Pond Invertebrate Data.

a. Average concentrations were not calculated using 1/2 the detection limit, as was done for other media, because detection limits were not available. Average concentrations were calculated using detected values only.

b. The frequency of detection (FOD) could not be determined for crayfish because sample sizes from Haines and Longcore (2001) are not available. Sample sizes of 1 are direct counts from the 1998 crayfish data. Sample sizes of 4 are based on the 1 sample from 1998 plus the 3 composite samples in Haines and Longcore (2001).

c. The frequency of detection (FOD) could not be determined for odonata because sample sizes from Haines and Longcore (2001) are not available. Sample sizes of 4 are based on the 4 composite samples in Haines and Longcore (2001).

TABLE B-12
Plow Shop Pond Frog Tissue Data
Concentration in mg/kg ww

			Sample Loc.	PLF01	PLF02	PLF03	PLF04	PLF05	PLF06	PLF07	PLF08	PLF09	PLF10	PLF11	PLF12	PLF13
			Date Sampled	7/28/1999	7/28/1999	7/29/1999	7/29/1999	7/29/1999	7/31/1999	8/3/1999	8/3/1999	8/3/1999	8/3/1999	8/3/1999	8/3/1999	8/3/1999
Name	Max	average														
aluminum	330	74.9		2.54	28	56.5	5U	5U	4.22	10.3	66.5	5U	5U	253	213	330
arsenic	0.705	0.26		0.12	0.461	0.242	0.167	0.152	0.196	0.145	0.26	0.0563	0.173	0.705	0.373	0.275
barium	19.7	7.25		9.92	7.5	4.26	11	9.83	2.42U	3.10U	3.73	1.59U	19.7	10.4	9.4	4.9
beryllium	nd	nd		0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U	0.1U
boron	nd	nd		2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U
cadmium	0.29	0.12		0.151	0.1U	0.1U	0.1U	0.12	0.1U	0.1U	.167J	0.1U	0.29	0.109	0.177	0.217
chromium	10.8	1.65		0.5U	0.696	0.591	0.313	.5U	.5U	0.63	1.32	0.5U	0.353	2.99	10.8	2.74
copper	5.29	2.64		3.82	2.95U	1.54U	4.09	3.07U	4.1	1.38U	3.89	1.46U	3.21	5.29	3.42	2.67U
iron	533	162		35.9	82.7	136	50.5	32.2	72.6	51.7	107	40	32.7	533	490	446
lead	1.09	0.44		0.587	0.152U	.202U	.116U	0.381U	0.829	.137U	0.461	0.179U	0.62	0.594	0.914	1.09
magnesium	427	269		204	244	232	229	206	255	234	323	217	304	302	321	427
manganese	47.5	16.8		9.11	3.55	13.5	2.8	9.16	3.66	23.6	47.5	5.21	17.7	18.5	29	34.7
total mercury	0.201	0.062		0.0533	0.0265	0.0508	0.0305	0.0475	0.0724	0.0896	0.201	0.0286	0.0438	0.0367	0.0415	0.085
MeHg	0.224	0.064		0.0541	0.0106	0.0542	0.007	0.0508	0.0761	0.105	0.224	0.0262	0.0437	0.0447	0.0347	0.0972
molybdenum	nd	nd		2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U
nickel	5.02	0.90		0.5U	0.363	0.407	0.782	.5U	.5U	0.309	0.439	0.5U	0.21	2.12	5.02	1.01
selenium	0.797	0.39		0.653	0.261	0.355	0.272	0.612	0.492	0.158	0.208	0.196	0.797	0.496	0.428	0.146
strontium	13	9.60		8.94	6.84	10.9	9.35	7.78	10.4	10.5	13	7.89	11.8	7.3	10.3	9.78
vanadium	0.693	0.33		0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	0.628	0.517	0.693
zinc	97.2	31.8		43.6	17	27.4	12.2	47.4	14.7	12.6	19.8	13.7	97.2	43.9	42.7	21.6

Source: EPA (2001)

TABLE B-13
Plow Shop Ponf Tree Swallow Egg Data
Concentrations in mg/kg ww

				Plow Shop Pond Eggs 1998 (mg/kg)					Plow Sh	op Pond	l Eggs 1999 (ı	mg/kg)
Chemical	Max	Average	Mean	n (det)	n (ND)	range	1/2 Max DL	Mean	n (det)	n (ND)	range	1/2 Max DL
Mercury	1.059	0.615	0.786	4	0	0.636-1.059		0.539	9	0	0.299-0.945	
Arsenic	0.58	0.191	0.58	1	3	na	0.2	BD	0	9	BD	0.145
Cadmium	ND	ND	BD	0	4	BD	0.2	BD	0	9	BD	0.0035
Chromium	0.47	0.217	0.44	3	1	0.41-0.47	0.2	BD	0	9	BD	0.145
Lead	0.47	0.204	BD	0	4	BD	0.2	0.419	2	7	0.37-0.47	0.145

NA indicates no samples analyzed

BD indicates delow detection

Haines, T.A. and J.R. Longcore. 2001. Final Report, Bioavailability and Potential Effects of Mercury and Selected Other Trace Metals on Biota in

TABLE B-14
Plow Shop Pond Tree Swallow Stomach Content Data
Concentrations in mg/kg ww

			Plov	d Food Boli 1	998 (mg/kg)	Plow Shop Pond Food Boli 1999 (mg/kg)						
Chemical	Max	Average	Mean	n	range	% < LOD (range)	Mean	n	n(ND)	range	1/2 max DL	
Mercury	0.211	0.195	NA	NA	NA	NA	0.195	3	0	0.187-0.211		
Arsenic	<.82	BD	NA	NA	NA	NA	0	0	3	BD	0.41	
Cadmium	2.99	1.43	NA	NA	NA	NA	1.43	3	0	0.56-2.99	-	
Chromium	189	117	NA	NA	NA	NA	117	3	0	56-189	-	
Lead	1.57	1.25	NA	NA	NA	NA	1.25	3	0	0.79-1.57	-	

NA indicates no samples analyzed

Source:

Haines, T.A. and J.R. Longcore. 2001. Final Report, Bioavailability and Potential Effects of Mercury and Selected Other Trace Metals on Biota in Plow Shop and Grove Ponds, Fort Devens, Massachusetts. USGS Report to the EPA. April 2001.

TABLE C-1 Surface Water from Flannagan Pond

Sample Name		Flan-SW-1
Laboratory Sample ID		56324
Sampling date		11/3/2004
Total Recoverable Metals (ug/l)		
Aluminum	720	J
Antimony		ND
Arsenic	5	
Barium	17	
Beryllium	0.2	ND
Cadmium	0.2	ND
Calcium	7,100	
Chromium	2	J
Cobalt	0.72	
Copper	3	J
Iron	1800	
Lead	3.5	
Magnesium	1,300	
Manganese	310	
Mercury (total)	0.5	ND
Molybdenum	0.5	ND
Nickel	1.8	
Selenium	1	ND
Silver	0.2	ND
Thallium	0.5	ND
Vanadium	1.3	
Zinc	13	J
Dissolved Metals (ug/l)		
Aluminum	5	ND
Antimony	0.5	ND
Arsenic	0.58	
Barium	7.6	
Beryllium		ND
Cadmium		ND
Calcium	6,500	
Chromium		ND
Cobalt	0.55	
Copper	1	
Iron		ND
Lead		ND
Magnesium	1,100	
Manganese	6.9	
Total Mercury in Water		ND
Molybdenum		ND
Nickel	0.51	
Selenium		ND
Silver		ND
Thallium		ND
Vanadium		ND
Zinc	5	ND

TABLE C-1 Surface Water from Flannagan Pond

Sample Name	Flan-SW-1	
Laboratory Sample ID	56324	
Sampling date	11/3/2004	
Pesticides (ug/l)		
4,4'-DDD	0.030 ND	
4,4'-DDE	0.030 ND	
4,4'-DDT	0.034 ND	
Aldrin	0.060 ND	
Alpha Chlordane	0.030 ND	
Alpha-BHC	0.030 ND	
Beta-BHC	0.030 ND	
Delta-BHC	0.030 ND	
Dieldrin	0.030 ND	
Endosulfan I	0.030 ND	
Endosulfan II	0.030 ND	
Endosulfan Sulfate	0.030 ND	
Endrin	0.030 ND	
Endrin Aldehyde	0.030 ND	
Endrin Ketone	0.030 ND	
Gamma Chlordane	0.030 ND	
Gamma-BHC	0.030 ND	
Heptachlor	0.034 ND	
Heptachlor Epoxide	0.030 ND	
Methoxychlor	0.030 ND	
Technical Chlordane	0.600 ND	
Toxaphene	0.600 ND	
Polychlorinated biphenyls (ug/l)		
Aroclor-1016	0.600 ND	
Aroclor-1221	0.600 ND	
Aroclor-1232	0.600 ND	
Aroclor-1242	0.600 ND	
Aroclor-1248	0.600 ND	
Aroclor-1254	0.600 ND	
Aroclor-1260	0.600 ND	
Aroclor-1262	0.600 ND	
Aroclor-1268	0.600 ND	
ND = non detected		
ND values represent reporting limits		

TABLE C-2 Sedoment Data from Flannagan Pond

Sample Name	Average	Flan-Sed-1	2005		P01 2004
Sampling Date	no (ug/kg day woight)	2/2/	2005 T	3/3/	2004 I
Polycyclic Aromatic Hydrocarbo Acenaphthene	ns (ug/kg, dry weight)	41		NA	
Acenaphthylene		170		NA NA	
Anthracene		250		NA NA	
Benzo(a)anthracene		680		NA NA	
Benzo(a)pyrene		850		NA	
Benzo(b) fluoranthene		1500		NA	
Benzo(g,h,i) perylene		930		NA	
Benzo(k)fluoranthene		500		NA	
Chrysene		1100		NA	
Dibenzo(a,h) anthracene		190		NA	
Fluoranthene		2200		NA	
Fluorene		200		NA	
Indeno(1,2,3-cd) pyrene		780		NA	
Naphthalene		140		NA	
Phenanthrene		1100		NA	
Pyrene		1700		NA	
Total PAHs		12331		NA	
Pesticides (ug/kg, dry weight)		50		NA	
4,4'-DDD		50		NA	
4,4'-DDE		170		NA NA	
4,4'-DDT		7.2		NA NA	
aldrin			ND ND	NA NA	1
alpha-chlordane alpha-BHC			ND ND	NA NA	1
beta-BHC			ND	NA NA	1
delta-BHC			ND	NA NA	
dieldrin			ND	NA NA	
endosulfan I			ND	NA NA	1
endosulfan II		7.6	ND	NA NA	
endosulfan sulfate		7.6	ND	NA NA	İ
endrin			ND	NA NA	İ
Endrin Aldehyde			ND	NA	
Endrin Ketone			ND	NA	
Gamma Chlordane		7.6		NA	
Gamma-BHC		7.6	ND	NA	
Heptachlor		7.6	ND	NA	
Heptachlor Epoxide		7.6	ND	NA	
Methoxychlor		7.6	ND	NA	
Technical Chlordane		160	ND	NA	
Toxaphene		160	ND	NA	
Aroclors (ug/kg, dry weight)				NA	
Aroclor-1016		160		NA	
Aroclor-1221		160		NA	
Aroclor-1232			ND	NA	
Aroclor-1242			ND	NA NA	
Aroclor-1248			ND	NA NA	
Aroclor-1254		160	ND	NA NA	
Aroclor-1260 Aroclor-1262		160 160	ND ND	NA NA	
		160	ND	NA NA	
Aroclor-1268 Metals (mg/kg, dry weight)		100	IND	NA NA	
Aluminum	7100	7800		6400	
Antimony	ND	28	ND	10	ND
Arsenic	82.5	110	J	55	
Barium	82.5	73	J	92	
Beryllium	1.25		ND	1.1	
Cadmium	12	11		13	
Calcium	6350	5700		7000	
Chromium	17.5	21		14	
Cobalt	11	12		10	
Copper	32	36		28	
Iron	12500	13000		12000	
Lead	160	200	J	120	ļ
Magnesium	1150	1200	ļ	1100	
Manganese	575	460		690	1
Mercury (total)	0.3	0.3		0.3	1
Nickel	23	26	J	20	
Potassium	600	700	ND	1000	
Selenium Silver	ND ND		ND ND	10	
Sodium	ND ND	8.3 1400		1000	
Thallium	ND ND		ND		ND
Vanadium	30	39		21	
Zinc	245	280	1	210	
Simultaneously-Extracted Metals		200		210	1
Antimony	,	0.309	ND	NA	İ
Cadmium		0.089		NA	
Caumum		0.224		NA	
Chromium		0.628		NA	
					1
Chromium		0.882		NA	
Chromium Copper		0.882 0.00187		NA NA	
Chromium Copper Lead		0.00187 0.256	ND	NA NA	
Chromium Copper Lead Mercury Nickel Zinc		0.00187	ND	NA	
Chromium Copper Lead Mercury Nickel		0.00187 0.256 4.26	ND	NA NA	
Chromium Copper Lead Mercury Nickel Zinc Acid Volatile Sulfides (umole/g)		0.00187 0.256	ND	NA NA	
Chromium Copper Lead Mercury Nickel Zinc	weight)	0.00187 0.256 4.26		NA NA	
Chromium Copper Lead Mercury Nickel Zinc Acid Volatile Sulfides (umole/g)	weight)	0.00187 0.256 4.26		NA NA	

TABLE C-3 Fish Data from Flannagan Pond

Sample Name			Flan-BC	GSF-WB	Flan-BI	CR-WB	Flan-P	ick-WB
Laboratory Sample ID	Maximum	Average	56:	587	56	588	56:	589
Sampling Date	Concentration	Concentration	6/30/	2004	6/30	/2004	6/30/	2004
Metals (mg/kg)								
Aluminum	7.8	3.80	7.8		1.6	ND	2.8	
Antimony	ND	ND	0.8	ND	0.78	ND	0.8	ND
Arsenic	ND	ND		ND		ND	1.6	ND
Barium	3.5	2.24	3.5		2.7		0.52	
Beryllium	ND	ND	0.08	ND	0.078		0.08	ND
Cadmium	ND	ND	0.24		0.23		0.24	
Calcium	1.6	1.6	1.6		1.6		1.6	
Chromium	0.84	0.75	0.58	5	0.84		0.82	5
Cobalt	ND	ND	0.24	ND	0.23	ND	0.24	ND
Copper	0.51	0.43	0.51	ND	0.23	ND	0.48	ND
Iron	52	25.10	52		14		9.3	
Lead	ND	ND		ND		ND		ND
Magnesium	640	543.33	540	ND	640	ND	450	ND
		22.00	37		14		15	
Manganese Mercury in Tissue	37 0.3	0.19	0.06		0.3		0.2	
Nickel	ND	0.19 ND	0.06	ND	0.3		0.2	ND
	3700		3300	ND	3100	מא	3700	מאו
Potassium		3366.67		ND		NID		NID
Selenium	ND	ND ND		ND	0.78			ND ND
Silver	ND	ND	0.24	ND	0.23		0.24	ND
Sodium	1400	1233.33	1300	NID.	1400		1000	N.ID.
Thallium	ND	ND		ND		ND		ND
Vanadium	ND	ND	0.24	ND	0.23	ND	0.24	ND
Zinc	56	34.33	25		22		56	
Pesticides/PCBs (ug/kg)								
4,4'-DDD	33	24.67	14		27		33	
4,4'-DDE	280	162.67	88		120		280	
4,4'-DDT	ND	ND		ND		ND		ND
Aldrin	ND	ND		ND		ND		ND
Alpha Chlordane	ND	ND		ND		ND		ND
Alpha-BHC	ND	ND		ND		ND		ND
Aroclor-1016	ND	ND		ND		ND		ND
Aroclor-1221	ND	ND	210			ND		ND
Aroclor-1232	ND	ND	210			ND	220	
Aroclor-1242	ND	ND	210	ND	210	ND	220	ND
Aroclor-1248	ND	ND	210			ND		ND
Aroclor-1254	ND	ND	210	ND	210		220	
Aroclor-1260	ND	ND		ND	210	ND	220	
Aroclor-1262	ND	ND	210			ND		ND
Aroclor-1268	ND	ND	210	ND		ND	220	ND
Beta-BHC	ND	ND		ND		ND		ND
Delta-BHC	ND	ND		ND		ND		ND
Dieldrin	ND	ND		ND		ND		ND
Endosulfan I	ND	ND		ND		ND	11	ND
Endosulfan II	ND	ND	10	ND	10	ND		ND
Endosulfan Sulfate	ND	ND		ND		ND		ND
Endrin	ND	ND	10	ND		ND		ND
Endrin Aldehyde	ND	ND		ND		ND		ND
Endrin Ketone	ND	ND		ND		ND		ND
Gamma Chlordane	ND	ND		ND		ND		ND
Gamma-BHC	ND	ND		ND		ND		ND
Heptachlor	ND	ND		ND		ND		ND
Heptachlor Epoxide	ND	ND		ND		ND		ND
Methoxychlor	ND	ND		ND		ND		ND
- · · · J · · ·	ND	ND		ND ND		ND		ND
Technical Chlordane								

Lockheed Martin Information Technologies Environmental Services Assistance Team, Region I

The Wannalancit Mills, 175 Cabot Street, Suite 415, Lowell, MA 01854

Phone: 978-275-9730 Fax: 978-275-9489

May 13, 2005

Office of Environmental Measurement and Evaluation US EPA - Region I 11 Technology Drive North Chelmsford, MA 01863

To: Mr. Bart Hoskins, EPA TOPO

Via: Mr. Louis Macri, ESAT Team Manager

TDF No. 1440 I Task Order No. 21 Task No. 5

Subject: Fort Devens Superfund Site Surface Water Toxicity Testing Report

Dear Mr. Hoskins:

Environmental Services Assistance Team (ESAT) members completed toxicity testing using surface water samples collected from six locations in Plow Shop Pond and six locations in Grove Pond in the vicinity of the Fort Devens Superfund Site in Ayer, Massachusetts. One background surface water sample was obtained from Flannagan Pond, upstream from the site. The task was requested by Bart Hoskins, the Task Order Project Officer (TOPO), under TDF 1440H.

This task included a two species chronic test as well as a concurrent two species chronic reference toxicity test using a freshwater cladoceran (*Ceriodaphnia dubia*) and the fathead minnow (*Pimephales promelas*). Both tests were performed according to methods described in *Short-Term Methods For Estimating The Chronic Toxicity Of Effluents and Receiving Waters To Freshwater Organisms*, 3rd edition, EPA/600/4-91/002, July 1994.

Sediment toxicity tests were also performed under this TDF on samples collected from Grove, Plow Shop, and Flannagan Ponds in February of 2005. The report for these tests will be submitted separately.

Should you have any questions or comments, please contact Rayann Richard of ESAT-Lockheed Martin at (617)-918-8648 or Melissa Grable of ESAT-Lockheed Martin at (617) 918-8681 at the EPA/OEME Biology Section, North Chelmsford, MA.

Sincerely,

Lockheed Martin Information Technologies

Rayann Richard Environmental Scientist

TOXICITY TESTING RESULTS USING SURFACE WATER SAMPLES FROM GROVE, PLOW SHOP AND FLANNAGAN PONDS FORT DEVENS SUPERFUND SITE AYER, MASSACHUSETTS

Submitted to the:

Office of Environmental Measurement and Evaluation United States Environmental Protection Agency - Region I 11 Technology Drive North Chelmsford, Massachusetts 01863

ESAT - Region I Lockheed Martin Information Technologies The Wannalancit Mills, 175 Cabot Street, Suite 415 Lowell, Massachusetts 01854

> TDF No. 1440 I Task Order No. 21 Task No. 5

> > May 13, 2005

1.0 INTRODUCTION

This report describes the results of chronic toxicity tests performed on surface water samples collected from six locations on Grove Pond (G1-G6) and six locations on Plow Shop Pond (PS1-PS6). Both ponds are associated with the Fort Devens Superfund Site in Ayer, Massachusetts. Grove Pond has been impacted by a former tannery, whereas Plow Shop Pond has been impacted by the closed Shepley's Hill Landfill and a former railroad roundhouse (see **Appendix A**). An additional single surface water sample was taken from a reference pond (Flannagan Pond) located in Ayer, Massachusetts, upgradient from Grove Pond (see **Appendix A**). Sufficient sample volumes were collected to renew the test water over the 7-day exposure period. These aquatic toxicity tests were performed to evaluate the potential impact on water column organisms resulting from contamination originating from the closed landfill, former railroad roundhouse, and former tannery.

All surface water samples were collected from Plow Shop Pond, Grove Pond and Flannagan Pond on November 3, 2004 by EPA with support from ESAT (see **Appendix A** for sample locations and **Appendix G** for sample-specific latitudes and longitudes). All surface water samples were collected and delivered to the EPA Office of Ecosystem Management and Evaluation (OEME) facility in North Chelmsford, Massachusetts, on November 3, 2004 and held in a sample refrigerator at 4°C until test initiation. For each location, a separate surface water sample was submitted to the OEME chemistry laboratory for chemical analysis. These samples were analyzed for total recoverable metals, dissolved metals, pesticides, and polychlorinated biphenyls (PCBs). The surface water analytical data are provided in **Appendix F**.

Chronic toxicity tests were performed using two sensitive aquatic species, namely the freshwater cladoceran, *Ceriodaphnia dubia*, and the fathead minnow, *Pimephales promelas*.

These test organisms are routinely used for toxicity testing at the EPA/OEME, Biology Section Laboratory. The *C. dubia* are cultured in-house, and the *P. promelas* were obtained from the U.S. EPA Newtown, Ohio facility. Both species are monitored for quality through an on-going reference toxicity testing program.

2.0 STUDY OBJECTIVES

Previous investigations have indicated the presence of trace metals such as barium, iron and manganese (USEPA, 1999) in the surface water of the two target ponds. The purpose of this study was to determine if survival (*C. dubia* and *P. promelas*), growth (*P. promelas*), or reproduction (*C. dubia*) of the test organisms exposed to site surface water differed significantly from the background surface water sample collected from Flannagan Pond, located upstream from Grove Pond. The laboratory control sample was only used to verify that the organisms were healthy and that the test passed test acceptability criteria (TAC) specified in EPA (1994). The response data were statistically analyzed to determine if these endpoints were significantly different in the Site samples when compared to the background sample.

3.0 MATERIALS AND METHODS

3.1 Sample Collection

Surface water samples were collected from Grove Pond, Plow Shop Pond, Flannagan Pond (background) by EPA with support from ESAT on November 3, 2004. The sample containers were 20-liter plastic Cubitainers. At each sample location, two Cubitainers were filled with surface water. The Cubitainers were placed on ice and kept in coolers until delivered that day to the OEME facility in North Chelmsford, Massachusetts. Samples were held at 4°C until test initiation. The test was started on November 4, 2004 and ended on November 12, 2004. Chain-of-custody records are included in **Appendix B**.

3.2 Toxicity Test Methods

The toxicity tests were performed according to procedures detailed in the EPA OEME Biology Section Standard Operating Procedure (SOP) Number 2.7, which describes aquatic toxicity test methods used by the EPA/OEME according to EPA (1994).

3.2.1 C. dubia Test Method

The surface water samples were tested at full strength (100% undiluted). Synthetic 60 mg/L CaCO₃ hardness water was used as the laboratory control water for the *C. dubia*. The synthetic water was also used to culture the *C.dubia*. The 60 mg CaCO₃/liter hardness process water consisted of a mixture of well water from the North Chelmsford Laboratory and distilled deionized water, ammended with sodium bicarbonate. This water was used as the laboratory control water for the *P. promelas*. The surface water sample hardness ranged from approximately 40-80 mg CaCO₃/L for Grove Pond, 32-38 mg CaCO₃/L for Plow Shop Pond and 20 mg CaCO₃/L for Flannagan Pond.

Ten replicates of each surface water sample (on-site and background) and the laboratory control were prepared to start the test. The background sample was split and tested in parallel with the Plow Shop Pond samples and the Grove Pond samples. Each culture tube was rinsed with 60 mg CaCO₃/L hardness synthetic water prior to use. Each replicate consisted of 15 ml sample added to a 20 ml culture tube. Test tubes were randomized in racks before adding the test organisms to eliminate bias in introduction, feeding, or environmental factors such as light and temperature variations. One *C. dubia* neonate (less than 24 hours old) was placed into each tube. Throughout the test, all the organisms were fed 100 µl of a yeast, alfalfa, trout chow (YAT) mixture and 100 µl of *Selenastrum capricornutum* daily.

Daily test maintenance consisted of filling and randomizing a new rack of culture tubes with ten replicates of each sample and the control, placing the freshly filled tubes into the environmental chambers to allow the water in the tubes to warm to 25° C. Food was added to each tube just prior to moving each organism to the new tube. This daily renewal took place for eight days. The test was run in an environmental chamber at $25 \pm 1^{\circ}$ C in a 16:8 hour light:dark cycle. Every 24 hours, observations on brooder mortality and reproduction were recorded, initialed, and dated on laboratory data sheets. Feedings were also recorded and initialed in a laboratory notebook. All the test renewals were performed with pond water collected on November 4, 2004. The test was ended on day 8. Copies of the laboratory bench sheets are provided in **Appendix D**.

3.2.2 P. promelas Test Method

The *P. promelas* test was initiated with four replicates, each consisting of 250 ml of (100% undiluted) sample in a 300 ml beaker. Each replicate contained ten *P. promelas* neonates (less than 24 hours old). The fish were placed into the beakers, which were randomized on a laboratory cart and placed in an environmental chamber at $25 \pm 1^{\circ}$ C in a 16:8 hour light:dark cycle. Mortalities were recorded every 24 hours and initialed and dated on standard laboratory bench sheets. The fish were fed 150 μ l of a concentrated suspension of live *Artemia* (brine shrimp) before and after each daily renewal.

Daily renewals for the *P. promelas* test consisted of removing dead *Artemia* and any dead *P. promelas*. Approximately 200 mls of sample in each replicate were then removed, and replaced with fresh sample. The renewal schedule for the *P. promelas* was the same as for the *C. dubia*. The test was ended on day 7. Feedings occurred pre- and post-renewal, and were recorded and initialed and dated in a laboratory logbook. At the end of the test, the surviving organisms were placed in pre-weighed aluminum weigh pans and dried for at least 24 hours at 60°C. The mean dry biomass per replicate for each surface water location was determined for the growth endpoint. The mean dry weight was also determined since the test acceptability criteria (TAC) is based on mean dry weight. Copies of the laboratory data sheets can be found in **Appendix D**.

For both the *C. dubia* and the *P. promelas* tests, initial chemistry consisting of pH, conductivity, dissolved oxygen (DO), temperature, alkalinity, and hardness, was performed on each sample at the start of the test. Routine chemistry (pH, conductivity, DO, and temperature) was performed on daily renewal waste water in order to identify changes which could have affected the test outcome. Test chemistry is summarized in **Appendix C**.

3.3 Statistical Analyses

Statistical analyses for both tests were conducted using CETIS ® (Comprehensive Environmental Toxicity Information System) according to the EPA decision tree in EPA (1994). Survival data and reproduction or growth data were analyzed separately.

Data were first analyzed using the Bartlett's test and Modified Levene's test to check for homogeneity of variance, and Shapiro-Wilk's and Kolmogorov-Smirnov tests to check for normality. Data with normal distribution and homogeneous variance were analyzed using Dunnett's Multiple Comparison Test. Non-normal or heterogeneous data were analyzed using Steel's Many-One Rank Test.

Both Steel's Many-One Rank Test and Dunnett's Multiple Comparison Test were used to determine if a significant difference existed between the background and the Plow Shop Pond and Grove Pond samples. Fisher's Exact Test was used to analyze the *C. dubia* survival data. Fisher's Exact Test was also used to determine if a significant difference existed between the background and the Plow Shop Pond and Grove Pond samples. The CETIS ® statistical print-outs are provided in **Appendix D**.

4.0 RESULTS

4.1 C. dubia Survival and Reproduction

The endpoints measured for *C.dubia* were survival and reproduction after 8 days of exposure. The survival data for Grove Pond (G1 to G6) and Plow Shop Pond (PS1 to PS 6) are presented in **Tables 1** and **2**, respectively (F1=Flannagan Pond).

Table 1: <i>C. dubia</i> 8-day Survival - Grove Pond												
Lab Control F1 G1 G2 G3 G4 G5 G6												
	Percent Survival											
100% 100% 100% 70% 100% 80% 100% 90%												

The *C. dubia* toxicity test met test acceptability criteria (TAC) with 100% control survival, which is above the minimum acceptable of 80%. The *C. dubia* survival results were evaluated using Fisher's Exact Test to determine if there was a significant difference ($p \le 0.05$) in survival between the background sample and the Grove Pond samples. No such differences were found.

Table 2: <i>C. dubia</i> 8-day Survival - Plow Shop Pond											
Lab Control F1 PS1 PS2 PS3 PS4 PS5 PS6											
	Percent Survival										
60% 100% 90% 90% 100% 80% 90% 100%											

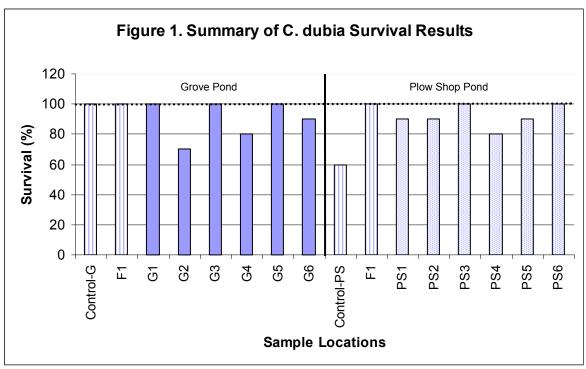
The *C. dubia* toxicity test for Plow Shop Pond did not meet TAC since there was only 60% control survival instead of the minimum acceptable 80%. However, according to EPA, this test was conditionally acceptable due to the high survival rates in the background sample (F1) and in all of the pond samples.

The *C. dubia* survival results for Plow Shop Pond were evaluated using Fisher's Exact Test to determine whether there was a significant difference ($p \le 0.05$) in survival between the background sample and the Plow Shop samples. No such differences were found.

The reproduction data for Grove Pond and Plow Shop Pond are presented in **Tables 3** and **4**, respectively.

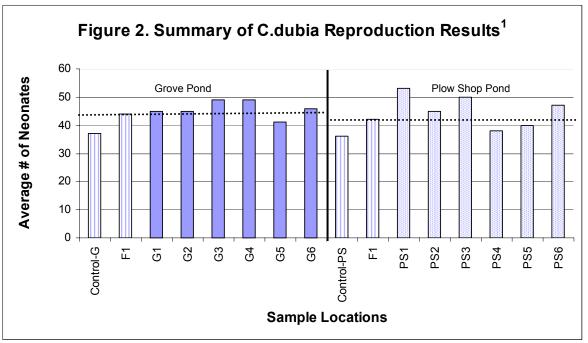
Table 3: <i>C. dubia</i> Reproduction - Grove Pond											
Station Lab Control F1 G1 G2 G3 G4 G5 G6											
	Neonate Production										
Avg # of neonates per surviving brooder 37 44 45 45 49 49 41 46											

	Table 3: C. dubia Reproduction - Grove Pond											
Station	Lab Control	F1	G1	G2	G3	G4	G5	G6				
Neonate Production												
% of brooders with 3+ broods**	100%	100%	90%	70%	100%	80%	100%	90%				
Avg # of neonates for brooders with 3+ broods**	37	44	50	45	49	49	41	46				


^{** -} Excludes neonates from dead brooders

Tak	Table 4: C. dubia Reproduction - Plow Shop Pond											
Station	Lab Control	F1	PS1	PS2	PS3	PS4	PS5	PS6				
Neonate Production												
Avg # of neonates per surviving brooder	36	42	53	45	50	38	40	47				
% of brooders with 3+ broods**	60%	90%	90%	90%	100%	70%	80%	100%				
Avg # of neonates for brooders with 3+ broods**	36	46	53	45	50	42	44	47				

^{** -} Excludes neonates from dead brooders


Both laboratory controls met the reproduction TAC specified in EPA (1994). The TAC states that 60% of the surviving brooders in the controls must have had at least three broods, with an average total number of 15 or more neonates per surviving brooder. All ten organisms in the laboratory control for Grove Pond had three or more broods with an average total number of 37 neonates per surviving brooder. Six of the ten organisms in the laboratory control for Plow Shop Pond had three or more broods with an average total number of 36 neonates per surviving brooder. All ten organisms in the background sample associated with the Grove Pond test had three or more broods with an average total number of 44 neonates per brooder. Nine of the ten organisms in the background sample for the Plow Shop Pond test had three or more broods with an average total number of 46 neonates per brooder. The number of surviving brooders with three or more broods in the Grove Pond samples ranged from 7 to 10 and the average number of neonates produced in 3+ broods ranged from 41 to 50. The number of brooders with three or more broods in the Plow Shop samples ranged from 7 to 10 and the average number of neonates produced in 3+ broods ranged from 42 to 53.

The *C. dubia* reproduction results were evaluated using Dunnett's Multiple Comparison (Grove Pond) and Steel's Many-One Rank Test (Plow Shop Pond) to determine whether there was a statistically significant (p=0.05) difference in reproduction between the background sample and the Plow Shop Pond or Grove Pond samples. **Figures 1** and **2** below indicated that when samples from Grove Pond and Plow Shop Pond were compared to the background, no significant differences were found.

Background sample reference line (F1)

PS – Plow Shop Pond G – Grove Pond

^{1 -} Average # of neonates per surviving brooder

Background sample reference line (F1)

PS – Plow Shop Pond G – Grove Pond

4.2 P. promelas Survival and Growth

The endpoints for the *P. promelas* test were survival and growth. The test data were evaluated to determine if percent survival and mean organism biomass at the end of the test differed significantly between the Plow Shop Pond (PS1 to PS 6) and Grove Pond (G1 to G6) samples when compared to the background sample from Flannagan Pond (F1). The P. promelas survival and growth data were summarized in the following tables.

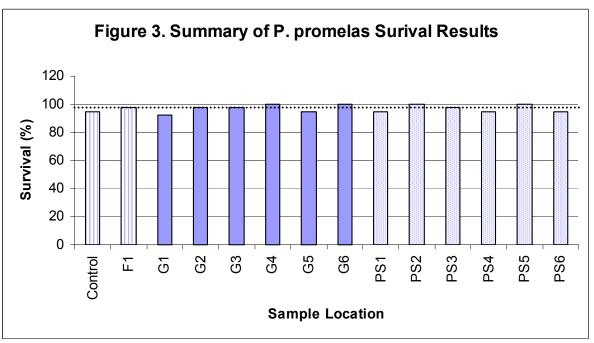
The *P. promelas* survival data are presented in **Tables 5** and **6** below.

Table 5: <i>P. promelas</i> 7-day Survival - Grove Pond												
Lab Control F1 G1 G2 G3 G4 G5 G6												
	Percent Survival											
95%	95% 97.5% 92.5% 97.5% 97.5% 100% 95% 100%											

Table 6: Surface Water Toxicity Test: <i>P. promelas</i> 7-day Survival – Plow Shop Pond										
Lab Control F1 PS1 PS2 PS3 PS4 PS5 PS6										
	Percent Survival									
95%	97.5%	95%	100%	97.5%	95%	100%	95%			

The P. promelas test met the survival threshold of 80% for the laboratory control survival as specified in EPA (1994). The survival data were evaluated using Dunnett's Multiple Comparison Test to determine if there was a significant (p< 0.05) difference in survival between the pond samples and laboratory control or betweens the pond samples and the background sample. No significant differences were found.

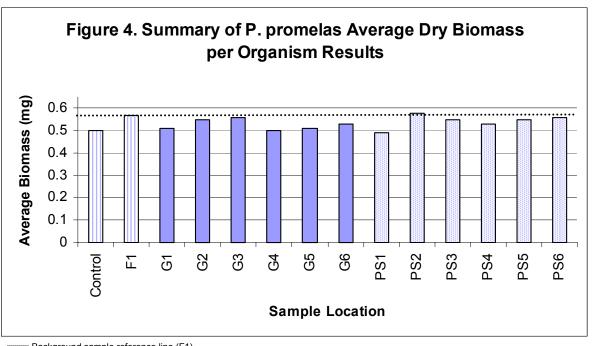
The *P. promelas* growth data are presented in **Table 7** and **8** below.


Т	Table 7: <i>P. promelas</i> Average Dry Biomass and Average Dry Weight (mg) for Grove Pond								
	Lab Control F1 G1 G2 G3 G4 G5 G6							G6	
Average Dry Biomass ^a	0.50	0.57	0.51	0.55	0.56	0.50	0.51	0.53	
Average Dry Weight ^b	Average Dry								

Average dry biomass = measured dry weight ÷ number of exposed organisms b Average dry weight = measured dry weight ÷ number of surviving organisms

1	Table 8: <i>P. promelas</i> Average Dry Biomass and Average Dry Weight (mg) for Plow Shop Pond								
	Lab Control F1 PS1 PS2 PS3 PS4 PS5 PS6								
Average Dry Biomass ^a	0.50	0.57	0.49	0.58	0.55	0.53	0.55	0.56	
Average Dry Weight ^b	Average Dry								

Average dry biomass = measured dry weight ÷ number of exposed organisms b Average dry weight = measured dry weight ÷ number of surviving organisms


EPA (1994) includes, as a test acceptability criterion, an average dry weight per surviving control larvae equal to or exceeding 0.25 milligrams. This criterion was met by all sampling locations. The biomass data were evaluated using Dunnett's Multiple Comparison Test to determine whether growth in the Grove and Plow Shop Pond samples were significantly different when compared with the background sample. No significant differences were found. The results of the comparisons are summarized in Figures 3 and 4 below.

Background sample reference line (F1)

PS – Plow Shop Pond

G – Grove Pond

Background sample reference line (F1)

PS - Plow Shop Pond

G - Grove Pond

5.0 DISCUSSION AND CONCLUSION

5.1 C. dubia

The C. dubia toxicity test met test the TAC for the Grove Pond control with 100% control survival but did not meet the TAC for the Plow Shop Pond control which had 60% control survival instead of the minimum acceptable 80% control survival. According to EPA, the Plow Shop Pond test was conditionally acceptable due to the high survival rates in the background (100%) and pond samples (80%-100%). A Fisher's Exact Test showed no significant differences in survival between the Plow Shop Pond samples and the Grove Pond samples when compared to the background sample.

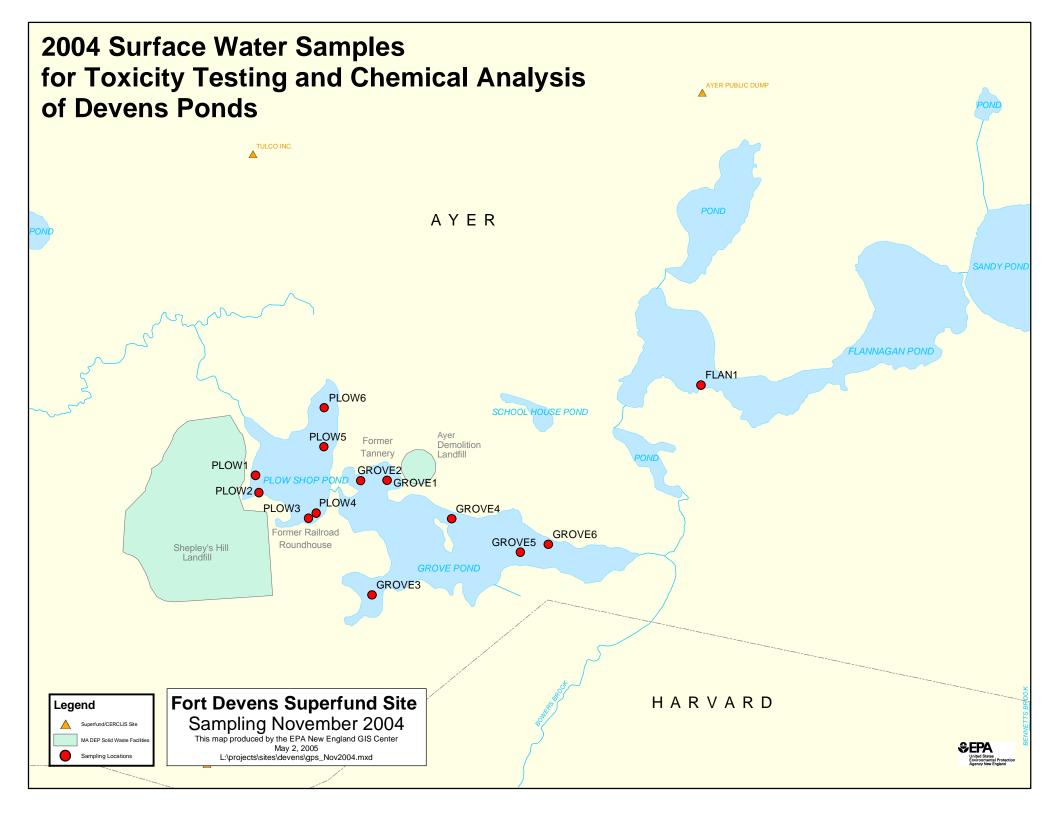
In addition, the Plow Shop Pond and Grove Pond samples did not have a statistically significant effect on C. dubia reproduction when compared to the background sample. All brooders but one in the background samples had three or more broods with an average total number of 42 (F1-Plow Shop Pond) and 44 (F1-Grove Pond) neonates. The number of surviving brooders with three or more broods in the Grove Pond samples ranged from 7 to 10 and the average number of neonates per surviving brooder ranged from 41 to 49. The number of surviving brooders with 3 or more broods in the Plow Shop samples ranged from 7 to 10 and the average number of neonates per surviving brooder ranged from 38 to 53. Based on Dunnett's Multiple Comparison Test and Steel's Many-One Rank Test none of the water samples from Plow Shop Pond and Grove Pond had a significant impact on reproduction for C. dubia when compared to the background samples.

5.2. P. promelas

The P. promelas toxicity test met and exceeded the test acceptability criteria for survival and growth. Based on Dunnett's Multiple Comparison Test, none of the Plow Shop and Grove Pond samples had a significant impact on survival or growth when compared to the background sample.

Based on these data, its concluded that the surface water samples collected from Grove Pond and Plow Shop Pond were not chronically toxic to sensitive life stages of *C. dubia* and *P. promelas*.

6.0 REFERENCES


U. S. Environmental Protection Agency. 1994. Short-Term Methods For Estimating The Chronic Toxicity Of Effluents and Receiving Waters To Freshwater Organisms, 3rd edition, EPA/600/4-91/002, July 1994

CETIS v1.0.25b. Tidepool Scientific Software. Copyright 2001-2004. Michael A. Ives.

U.S. Environment Protection Agency. 1999. Screening-Level Ecological Risk Assessment - Fort Devens. April 19,1999.

Appendix A

Surface Water Sampling Stations

Appendix B

Chain-of-Custody Records

REGION 1 CHAIN OF CUSTODY RECORD. PROJECT NAME PROJ. NO. FORT DEVENS 04110008 NO. SAMPLERS: (Signature) Bart Hoskins + Alice Brennan REMARKS CON-TAINERS STA. NO. DATE TIME STATION LOCATION 563/2-6rove 11/3/04 O.A FOR PETIPEDS 56 3/3-Grove 2 .8 56 314-Corone 3 56 315-600ve4 56 316 - Grove 5 56 317 - Grave 6 3 56 3/8-plan 3 56 319-plow 2 56 320 - Plan 3 56 322 - Plow5 56 323 - Plaul6 56324 Flan 1 56 325 - Grove 2 Dud Field Blank. 56 326 - FB Relinquished by: (Signature) Date / Time | Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) (Sce Bemaras) 11930 Relinquished by: (Signature) Date / Time Received by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) -Time Remarks Placed in 1200m 190 DEME wilkin refriguetor at 1930 on 11/3/04
11:45 Logsed in on 11/1/04 Relinquished by Signature) Date / Time Received for Laboratory by: Date / Time (Signature)

Distribution: Original Accompanies Shipment; Copy to Coordinator/Field Files

1-13724

Appendix C Toxicity Test Chemistry Summary

Ceriodaphnia dubia Aquatic Toxicity 8 day Exposure Test Grove Pond

	C. dubia 8 day Exposure Test Initial Chemistry - Day 0 (11/04/04)										
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)*	Hardness (mg/L CaCo ₃)	Alkalinity (mg/L CaCo ₃)					
G-1	7.34	7.01	24.65	541	80	53.5					
G-2	8.29	6.93	24.59	434	64	59					
G-3	8.73	6.71	24.58	254	52	27					
G-4	8.44	6.64	24.56	281	40	21.5					
G-5	8.62	6.67	24.64	277	40	22					
G-6	6.17	6.60	24.68	285	44	23					
F-1	7.83	7.16	24.64	159.6	20	14					
Control	7.01	7.85	24.52	256	66	49.5					

*Note: 1 microsiemen/cm (µS/cm) = 1 micromho/cm (µmho/cm)

C. dubia 8 day Exposure Test Waste Chemistry - Day 1 (11/05/04)							
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)			
G-1	1		-				
G-2							
G-3	-1		-				
G-4	-1		-				
G-5	1	-1	-				
G-6	1		-				
F-1							
Control							

⁻ Data was not recorded for this day

C. dubia 8 day Exposure Test Waste Chemistry - Day 2 (11/06/04)							
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)			
G-1	5.76	7.43	24.70	533			
G-2*	6.92	7.60	24.32	693			
G-3	6.10	7.21	24.83	254			
G-4	6.30	7.22	24.97	280			

C. dubia 8 day Exposure Test Waste Chemistry - Day 2 (11/06/04)							
Sample ID DO pH Temperature Conductivity (µmhos/cm)							
G-5	5.71	7.16	25.00	278			
G-6	6.24	7.18	25.04	285			
F-1 5.94 7.18 25.09 162.7							
Control	5.93	7.72	24.92	259			

^{*} Small volume due to spill

C. dubia 8 day Exposure Test Waste Chemistry - Day 3 (11/07/04)							
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)			
G-1	5.48	7.50	25.13	524			
G-2	5.78	7.50	25.13	426			
G-3	5.88	7.25	25.09	257			
G-4	6.40	7.22	24.99	279			
G-5	5.88	7.19	25.02	279			
G-6	5.96	7.15	24.94	286			
F-1	6.14	7.09	25.03	164.3			
Control	5.73	7.57	25.00	261			

C. dubia 8 day Exposure Test Waste Chemistry - Day 4 (11/08/04)							
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)			
G-1	6.25	7.53	24.85	526			
G-2	6.38	7.54	24.85	428			
G-3	5.77	7.28	24.78	257			
G-4	6.68	7.25	24.77	284			
G-5	6.66	7.24	24.81	280			
G-6	6.42	7.17	24.84	288			
F-1	6.52	7.12	24.87	167.6			
Control	6.28	7.61	24.90	262			

C. dubia 8 day Exposure Test Waste Chemistry - Day 5 (11/09/04)								
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)				
G-1	5.65	7.48	24.63	526				
G-2	5.30	7.52	24.60	433				
G-3	5.86	7.26	24.90	255				
G-4	5.95	7.19	24.82	285				
G-5	5.99	7.15	24.86	281				
G-6	5.82	7.14	24.66	290				
F-1	5.67	7.02	24.86	167.5				
Control	5.82	7.59	24.89	262				

C. dubia 8 day Exposure Test Waste Chemistry - Day 6 (11/10/04)							
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)			
G-1	6.00	7.33	24.61	528			
G-2	6.12	7.74	24.60	431			
G-3	6.20	7.13	24.72	259			
G-4	6.46	7.11	24.67	286			
G-5	6.43	7.05	24.80	282			
G-6	6.37	7.11	24.76	291			
F-1	5.80	6.67	24.79	169.3			
Control	6.12	7.34	24.89	257			

C. dubia 8 day Exposure Test Waste Chemistry - Day 7 (11/11/04)								
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)				
G-1	5.54	7.46	25.30	528				
G-2	5.78	7.49	24.98	431				
G-3	5.80	7.24	24.91	257				
G-4	6.05	7.21	24.94	286				
G-5	6.14	7.19	24.91	282				
G-6	5.82	7.13	24.92	290				

C. dubia 8 day Exposure Test Waste Chemistry - Day 7 (11/11/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
F-1 5.83 7.03 24.89 168.4					
Control	5.86	7.56	24.93	253	

C. dubia 8 day Exposure Test Waste Chemistry - Day 8 (11/12/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
G-1	5.88	7.26	24.94	525	
G-2	5.71	7.29	24.99	428	
G-3	5.94	6.96	25.00	255	
G-4	7.25	6.93	24.98	281	
G-5	7.29	6.99	25.00	278	
G-6	6.70	6.91	24.92	287	
F-1	6.84	6.78	24.97	165.4	
Control	6.93	7.33	25.03	246	

Ceriodaphnia dubia Aquatic Toxicity 8 day Exposure Test Plow Shop Pond

	C. dubia 8 day Exposure Test Initial Chemistry - Day 0 (11/04/04)							
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)*	Hardness (mg/L CaCo ₃)	Alkalinity (mg/L CaCo ₃)		
PS-1	7.55	6.71	24.58	245	38	29		
PS-2	8.86	6.80	24.57	238	36	24		
PS-3	8.12	6.79	24.63	239	34	20.5		
PS-4	8.71	6.84	24.57	238	32	20		
PS-5	8.42	6.82	24.55	245	36	19		
PS-6	6.84	6.78	24.56	245	32	19.5		
F-1	7.83	7.16	24.64	159.6	20	14		
Control	7.01	7.85	24.52	256	66	49.5		

*Note: 1 microsiemen/cm (µS/cm) = 1 micromho/cm (µmho/cm)

C. dubia 8 day Exposure Test Waste Chemistry - Day 1 (11/05/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
PS-1	6.79	7.43	24.77	249	
PS-2	7.00	7.48	24.89	239	
PS-3	6.82	7.42	24.94	239	
PS-4	6.92	7.45	24.82	239	
PS-5	6.47	7.31	24.81	247	
PS-6	6.41	7.29	24.93	248	
F-1	6.53	7.27	24.86	165.5	
Control	6.82	7.87	24.93	253	

<i>C. dubia</i> 8 day Exposure Test Waste Chemistry - Day 2 (11/06/04)					
Sample ID DO pH Temperature Conductivity (µmhos/cm)					
PS-1	6.22	7.40	24.85	241	
PS-2	6.35	7.32	24.96	241	
PS-3	6.48	7.37	24.75	242	
PS-4	6.39	7.28	24.84	247	

C. dubia 8 day Exposure Test Waste Chemistry - Day 2 (11/06/04)					
Sample ID DO pH Temperature Conductivity (mg/L) (mg/L) (c°C) (µmhos/cm)					
PS-5	6.44	7.26	24.87	247	
PS-6	5.57	7.20	24.88	250	
F-1	6.50	7.19	24.92	164.7	
Control	5.95	7.69	24.90	261	

C. dubia 8 day Exposure Test Waste Chemistry - Day 3 (11/07/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
PS-1	6.57	7.33	24.90	202	
PS-2	6.45	7.28	24.91	240	
PS-3	6.16	7.29	24.90	242	
PS-4	6.95	6.80	24.58	19.48	
PS-5	6.37	7.18	24.83	246	
PS-6	6.00	7.14	24.89	250	
F-1	6.14	7.09	24.89	164.0	
Control	6.06	7.64	24.91	259	

C. dubia 8 day Exposure Test Waste Chemistry - Day 4 (11/08/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
PS-1	6.53	7.07	24.74	261	
PS-2	6.26	7.14	24.84	243	
PS-3	6.48	7.10	24.70	244	
PS-4	6.68	7.30	24.81	246	
PS-5	6.24	7.14	24.86	249	
PS-6	5.69	7.09	24.92	251	
F-1	5.89	6.97	24.97	167.1	
Control	6.30	7.53	25.05	263	

C. dubia 8 day Exposure Test Waste Chemistry - Day 5 (11/09/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
PS-1	5.46	7.33	24.74	250	
PS-2	5.69	7.23	24.72	251	
PS-3	5.98	7.21	24.78	245	
PS-4	6.27	7.33	24.78	252	
PS-5	5.77	7.13	24.72	250	
PS-6	5.79	7.13	24.74	251	
F-1	5.31	7.02	24.59	167.7	
Control	5.47	7.64	24.57	262	

C. dubia 8 day Exposure Test Waste Chemistry - Day 6 (11/10/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
PS-1	5.95	7.12	24.90	250	
PS-2	6.24	7.08	24.65	244	
PS-3	6.07	6.99	24.83	246	
PS-4	6.56	7.17	24.48	261	
PS-5	6.11	7.00	24.62	251	
PS-6	6.02	6.98	24.86	252	
F-1	6.01	6.85	24.90	171.3	
Control	6.38	7.40	24.94	259	

C. dubia 8 day Exposure Test Waste Chemistry - Day 7 (11/11/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
PS-1	6.14	7.37	24.76	252	
PS-2	5.82	7.28	24.88	241	
PS-3	5.72	7.22	24.92	246	
PS-4	6.10	7.29	24.88	252	

C. dubia 8 day Exposure Test Waste Chemistry - Day 7 (11/11/04)					
Sample ID DO pH Temperature Conductivity (mg/L) pH Temperature (°C) (mg/cm)					
PS-5	6.06	7.20	24.86	252	
PS-6	5.69	7.14	24.89	252	
F-1	5.74	7.06	24.94	166.4	
Control	6.07	7.62	24.91	258	

C. dubia 8 day Exposure Test Waste Chemistry - Day 8 (11/12/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
PS-1	7.05	7.10	24.97	248	
PS-2	6.88	7.02	24.97	241	
PS-3	7.06	6.95	24.97	244	
PS-4	7.37	7.06	24.85	251	
PS-5	7.22	6.97	24.93	247	
PS-6	6.99	6.93	24.95	249	
F-1	6.84	6.81	24.96	166.7	
Control	6.93	7.35	24.70	247	

Pimephales promelas Aquatic Toxicity 7 day Exposure Test For Grove Pond

	P. promelas 7 day Exposure Test Initial Chemistry - Day 0 (11/04/04)						
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)*	Hardness (mg/L CaCo ₃)	Alkalinity (mg/L CaCo ₃)	
G-1	7.34	7.01	24.65	541	80	53.5	
G-2	8.29	6.93	24.59	434	64	59	
G-3	8.73	6.71	24.58	254	52	27	
G-4	8.44	6.64	24.56	281	40	21.5	
G-5	8.62	6.67	24.64	277	40	22	
G-6	6.17	6.60	24.68	285	44	23	
F-1	7.83	7.16	24.64	159.6	20	14	
Control	6.28	8.07	24.78	201	56	51	

*Note: 1 microsiemen/cm (µS/cm) = 1 micromho/cm (µmho/cm)

P. promelas 7 day Exposure Test Waste Chemistry - Day 1 (11/05/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
G-1	6.73	7.52	24.13	536	
G-2	6.85	7.53	24.03	439	
G-3	7.09	7.27	24.03	258	
G-4	6.15	7.14	24.08	286	
G-5	6.93	7.11	24.21	280	
G-6	6.73	7.17	24.19	290	
F-1	6.75	7.08	24.30	162.6	
Control	6.53	7.71	24.15	204	

P. promelas 7 day Exposure Test Waste Chemistry - Day 2 (11/06/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
G-1	5.04	7.27	24.08	531	
G-2	4.88	7.32	24.08	435	
G-3	4.97	6.99	24.12	253	
G-4	5.37	6.93	24.10	284	
G-5	4.96	6.95	24.26	281	
G-6	4.04	6.94	24.11	285	

P. promelas 7 day Exposure Test Waste Chemistry - Day 2 (11/06/04)						
Sample ID DO pH Temperature Conductivity (µmhos/cm)						
F-1 5.52 6.81 24.44 161.8						
Control	4.84	7.38	24.45	202		

P. promelas 7 day Exposure Test Waste Chemistry - Day 3 (11/07/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
G-1	5.22	7.28	24.02	534	
G-2	4.63	7.28	24.06	435	
G-3	5.15	6.97	24.10	254	
G-4	6.32	7.05	24.07	281	
G-5	5.30	6.91	24.21	282	
G-6	6.01	6.99	24.20	287	
F-1	5.18	6.74	24.24	160.3	
Control	5.36	7.45	24.25	203	

P. promelas 7 day Exposure Test Waste Chemistry - Day 4 (11/08/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
G-1	4.32	7.31	24.10	541	
G-2	4.64	7.33	24.10	439	
G-3	4.70	7.04	24.06	260	
G-4	4.79	6.94	24.17	285	
G-5	4.24	6.93	24.33	285	
G-6	4.58	6.95	24.27	293	
F-1	4.45	6.78	24.25	165.5	
Control	4.92	7.47	24.27	207	

P. promelas 7 day Exposure Test Waste Chemistry - Day 5 (11/09/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
G-1	4.19	7.13	24.49	545	
G-2	4.61	7.18	24.46	441	

P. promelas 7 day Exposure Test Waste Chemistry - Day 5 (11/09/04)				
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)
G-3	4.30	6.88	24.41	265
G-4	4.16	6.76	24.41	292
G-5	4.22	6.80	24.49	292
G-6	4.02	6.77	24.51	298
F-1	4.12	6.65	24.56	172.4
Control	4.27	7.23	24.42	212

P. promelas 7 day Exposure Test Waste Chemistry - Day 6 (11/10/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
G-1	6.08	7.34	24.08	547	
G-2	3.94	7.21	24.78	440	
G-3	4.22	6.92	24.67	262	
G-4	3.91	6.79	24.64	288	
G-5	3.96	6.80	24.71	287	
G-6	3.96	6.80	24.73	293	
F-1	4.02	6.68	24.73	169.9	
Control	4.82	7.31	24.66	207	

P. promelas 7 day Exposure Test Waste Chemistry - Day 7 (11/11/04)					
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)	
G-1	4.25	7.20	24.96	543	
G-2	3.93	7.22	24.93	441	
G-3	4.26	6.87	24.87	262	
G-4	4.46	6.83	24.88	289	
G-5	3.99	6.82	24.83	290	
G-6	4.51	6.85	24.85	292	
F-1	4.59	6.72	24.88	171.9	
Control	4.82	7.32	24.88	207	

Pimephales promelas Aquatic Toxicity 7 day Exposure Test For Plow Shop Pond

	P. promelas 7 day Exposure Test Initial Chemistry - Day 0 (11/04/04)											
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)*	Hardness (mg/L CaCo ₃)	Alkalinity (mg/L CaCo ₃)						
PS-1	7.55	6.71	24.58	245	38	29						
PS-2	8.86	6.80	24.57	238	36	24						
PS-3	8.12	6.79	24.63	239	34	20.5						
PS-4 ⁺	8.04	7.00	24.75	240	36	19						
PS-5	8.42	6.82	24.55	245	36	19						
PS-6	6.84	6.78	24.56	245	32	19.5						
F-1	20	14										
Control	6.28	8.07	24.78	201	56	51						

^{*}Note: 1 microsiemen/cm (µS/cm) = 1 micromho/cm (µmho/cm) + Plow Shop 4 re-sampled on 11/04/04 because the cubetainer was leaking.

	P. promelas 7 day Exposure Test Waste Chemistry - Day 1 (11/05/04)										
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)							
PS-1	6.75	7.31	24.02	246							
PS-2	6.96	7.25	24.16	238							
PS-3	5.77	7.18	24.02	239							
PS-4	6.81	7.14	24.21	239							
PS-5	7.01	7.15	24.29	247							
PS-6	6.80	7.13	24.35	247							
F-1 6.75 7.08 24.30 162.6											
Control	6.53	7.71	24.15	204							

	P. promelas 7 day Exposure Test Waste Chemistry - Day 2 (11/06/04)									
Sample ID	Sample ID DO pH Temperature Conductivity (µmhos/cm)									
PS-1	4.76	6.99	24.20	245						
PS-2	5.37	7.02	24.16	238						
PS-3	4.88	6.93	24.33	240						
PS-4	5.23	6.91	24.33	244						
PS-5	5 5.39 6.95 24.36 245									

P. promelas 7 day Exposure Test Waste Chemistry - Day 2 (11/06/04) Aquatic Toxicity Test Chemistry										
Pi Saphple Domelas	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)						
PS-6	4.47	6.94	24.39	244						
F-1 5.52 6.81 24.44 161.8										
Control	Control 4.84 7.38 24.45 202									

	P. promelas 7 day Exposure Test Waste Chemistry - Day 3 (11/07/04)										
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)							
PS-1	5.46	7.07	24.20	245							
PS-2	6.11	7.13	24.19	242							
PS-3	5.70	6.95	24.21	242							
PS-4	6.10	7.01	24.23	248							
PS-5	6.29	7.00	24.25	245							
PS-6	5.64	6.95	24.20	253							
F-1	F-1 5.18 6.74 24.24 160.3										
Control	5.36	7.45	24.25	203							

<i>P. promelas</i> 7 day Exposure Test Waste Chemistry - Day 4 (11/08/04)									
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)					
PS-1	4.77	7.08	24.11	251					
PS-2	4.50	6.98	24.18	242					
PS-3	4.85	6.96	24.11	247					
PS-4	4.89	6.95	24.18	252					
PS-5	4.81	6.90	24.29	253					
PS-6	4.87	6.91	24.30	254					
F-1	F-1 4.45 6.78 24.25 165.5								
Control	4.92	7.47	24.27	207					

P. promelas 7 day Exposure Test Waste Chemistry - Day 5 (11/09/04)											
Sample ID DO pH Temperature Conductivity (mg/L) (mg/L) (C) (mg/L) (ph/os/cm)											
PS-1	4.06	6.89	24.49	256							
PS-2	PS-2 4.12 6.87 24.43 250										
PS-3	PS-3 4.02 6.79 24.48 252										

	P. promelas 7 day Exposure Test Waste Chemistry - Day 5 (11/09/04)									
Sample ID DO pH Temperature Conductivity (µmhos/cm)										
PS-4	4.01	6.79	261							
PS-5	4.11	6.75	24.45	259						
PS-6	4.33	6.78	24.56	260						
F-1	F-1 4.12 6.65 24.56 172.4									
Control	4.27	7.23	24.42	212						

	P. promelas 7 day Exposure Test Waste Chemistry - Day 6 (11/10/04)									
Sample ID	DO (mg/L)	рН	Temperature (°C)	Conductivity (µmhos/cm)						
PS-1	3.80	6.90	24.61	253						
PS-2	3.97	6.89	24.62	248						
PS-3	3.75	6.81	24.56	252						
PS-4	4.08	6.81	24.59	257						
PS-5	3.87	6.76	24.58	255						
PS-6	4.71	6.80	24.61	286						
F-1	F-1 4.02 6.68 24.73 169.9									
Control	4.82	7.31	24.66	207						

	P. promelas 7 day Exposure Test Waste Chemistry - Day 7 (11/11/04)									
Sample ID	DO (mg/L)	Temperature (°C)	Conductivity (µmhos/cm)							
PS-1	4.10	6.93	24.83	254						
PS-2	4.46	6.91	24.83	249						
PS-3	4.20	6.82	24.84	246						
PS-4	3.99	6.81	24.83	256						
PS-5	4.44	6.79	24.78	256						
PS-6	4.40	6.80	24.82	258						
F-1	F-1 4.59 6.72 24.88 171.9									
Control	4.82	7.32	24.88	207						

Appendix D

Bench Sheets and Statistical Test Print-outs

	G 5-5	G 1-7	G 6-7	F-9	C-2	G 2-4	G 5-4	G 4-8	G 1-1	F-8	Date/ Init.
1	/_	/	/	//	//	//	/	//	//		ji/05/04 N=
2	/_	/_	/_	1/	/_	//	//_	//	//	//_	11/06/04 M=.
3	//	//	/	//	//	1/	1/	/	/	1//	1V07/04 M=
4	OF THE B	THE X	ELIS X	15 3 X	THE REAL PROPERTY.	1/8	4	1/2	1/3	V 4	NO 8/04 NF
5	1/9	1/3	1/3	1/12	1/9	1/11	16	13	14	1/12	11/09/04 NF
6	1/3	120	15	14	//	0/	19	1/2	//	14	i1/10/04 AF
7	15	/_	1/_	V /	1/12		//	//	1/15	//	14/14/04 NF
8	//	122	18	19	17	\mathcal{A}	16	16	14	1/5	11/12/04 N
Total	37	61	54	48	38	D/19	55	43	46	35	

	G 5-8	C-7	F-2	C-6	G 6-9	G 1-2	G 5-10	G 4-3	G 2-7	G 5-9	Date/ Init.
1	//		-	1/	//	4	//	//	//	/	11/05/64 NF
2	/	//	/	//	/	//	//	/	1/	//	1406109 M
3	1/-	//	1/	//	//	//	1/	//	/	//	1V/07/04 NF
4	1/8	//	1/5	/	1/5	1/6	//	1/5	1/2	5	11/08/64 M=
5	14	1/7	1/9	1/8	1/2	1/3	1/8	11	1/6	15	11/09/04 NF
6	17	/_	//	//		14	46	//	1/3	1/9	NF 10/04
7		1/2	1	10	//	/	14	17	1/5	1/	1411/04 MF
8	17	1/12	4	15	125	19	//	1/21	1/8	1/3	W12/04 M
Total	56	31	29	33	53	52	28	51	24	40	

Page 1 of 8

	C-9	G 3-10	G 6-8	G 1-4	G 6-2	G 3-6.	G 5-6	F-5	G 1-3	F-1	Date/ Init.
1	//	1	1/	/	//	1/_		//		//	1405/04 N=
2	/_	//_	//		/	/	/_	//	/_	1/	N/66/64 NF
3	/_	1/	/	//	/	/	//	1/	1/	//	11/07/64 M=
4	//	1/7	1/8	//	1/8	1/8	1/3	16	8	1/7	140864 M=
5	10	1/3	1/12	//	1/13	1/3	1/1	1/6	1/4	1/12	11/09/64 NF
6	/	15	17	//	14	14	AFWE HA	学	£312	1/2	11/19/04
7	14	<u>)</u>		//	//	//	1/6	/		//	11/11/04 NF
8	14	123	19	//	14	122	123	1/8	1/8	18	11/12/64 NE
Total	38	58	56		49	57	53	44	37	49	:

	G 6-1	G 2-9	C-3	G 4-2	G 5-2	G 5-1	G 4-6	G 4-7	G 3-3	G 2-1	Date/ Init.
1	//	/_	1/	1/	/	V/	//	/	/	1/	405/04 N=
2	//	//	1/_	/	//	/	1/	/	/	//	iYo 6 f04
3	//	//	1/		//		/	//		/	11 Josted NF
4	1/6	1/7	1/	1/5		//	//	1/6	1/4	1/8	11/68/04 NF
5	1/2	1/5	1/9	1/2	1/4	1/2	1/5	14	1/2	1/13	W09/04 NF
6	17	1/23	1/1	1/12	2/8	14 14	10	1/5	16	18	11/10/04 NF
7	//	//	16	4	//	/	1/6	/	/	/	IVIVOY M
8	121	1/21	20	1/12	17	V 20		13	1/23	124	1412/04 AF
Total	56	ماما	45	45	29	41	31	48	55	63	

•	F-7	C-5.	G_ 6-4	G 1-10	G 1-5	G 1-9	G 1-8	G 2-2	G 4-1	C-1	Date/ Init.
1	1	/ _	1/_	1/	1/	/	1//	V_	1/_	1/	140564
2	/	/ _	1/_	//	//	/	1/_	/	/	1/_	W06/04 NF
3		//	1/	1	//	/	1/	//	/		11/07/04 M=
4	1/6	7/	5/5	1/1	1/7	16	1/6	1/6	V/3	//	iV08/04 NF
5	1/2	11	1/13	14	16	14	1/2	/13	1	1/2	11/09/04 M=
6	14	//	10	1/-	/9	/	17	1/2	16	1/	11/10/04 NF
7	//	1/3	//	1/20	//	1/3	/	//	1/	1	NYV04 NF
8	121	121	10	16	11	1/2	17	117	1/21	1/9	11/12/04 NE
Total	53	45	38	57	43	45	52	48	51	18	3

	G 2-10	G 3-9	F-6	G 2-6	G 3-1	F-3	C-10	G 4-5	G 6-5	G 3-4	Date/ Init.
1	//	<i>'_</i>	1/	//	1/	1//	//	5/_	0/	//	465/64 ME
2		//	1/	1	//	1/	1/	1/	X	/	W/OG/64
3		1	1/_	1/-	//	1/	1/	/		1/	11/57/04 M
4.	1/8	7	1/5	7	4	1/5	1//	1/6		1/5	i¥88104 N=
5	V/8	1/1	10	1/11	/1	1/13	4	1/12		1/2	11/09/01 NF
6	/13	//	1/13	/	1/5	1/3	//	1/2		111	11/10/04 N=
7		1/3	1	1/12		/	1/12	1/21		//	11/11/04 NF
8	1/8	124	120	0/	1/2	1/19	120	125		1/12	11/12/04 NF
Total	37	55	48	D/30	22	50	39	64	D1-	40	

Page 3 of 8

	G 4-4	G 2-8	F-4	G 6-10	G 2-5	G 6-3	G 3-5	G 5-3	G 4-9	G 3-8	Date/ Init.
1	//	1/	//	/	1//	//	//	//	1/	//	405/04 NF
2	//	//		/		/_	//	/_	/	/	1566/04 M
3	1/	//	1							//	iV07/04 M=
4	H	1/6	1/5	1/5	1/7	1/5	/	//	14	/9	468/64 N=
5	1/3	1/3	111	/9	1/1	10	1/8	1/3	11	1/13	1/09/04 NF
6	WE CO	1/6	1/3	/	//	1	43 to	446	AL VIEW		11/10/04 N=
7	21	09		1/6	/3	1/4	13			/20	N/11/04 NF
8 .	1/21		10	1/16	14	1/5	//	19	P12	124	11/12/04 NF
Total	59	D/34	39	36	45	24	33	38	D/41	60	*

	G 5-7	G 2-3	C-8	C-4	G 1-6	G 4-10	F-10	G 6-6	G 3-7	G 3-2	Date/ Init.
1	//	1/2	//	100	//	1/_	1/		/_	//	1/05/04 NE
2	1/	//_	//	//	/	/	//	//	//	//	1406104 NE
3	//	//	//	1/_	/	//	/	/	/	/	NOTIOY
4	1/6	1/6	4	//	16	1/7	1/6	1/6	1/6	1/5	ifo 8164 A=
5	VIII	13	1	1/12	14	14	1/3	1/6	1/12	15	11/09/04 AF
6	/	//		1/2	1/3		13		14	V 8	W10/04 AF
7	1/2	1/2	17	//	15)	17	1/	//3	/		11/1404 NF
8	1/2	14	19	1/17	127	0/2	1/22	13	120	125	11/12/04 NF
Total	41	35	51	41	65	D/40	54	48	52	53	

	PS 2-10	PS 3-4	PS 2-4	F-9	PS 5-9	PS 6-3	PS 1-10	PS 4-5	PS 4-1	PS 6-7	Date/ Init.
1	1/	/_		//	/	//	/	/	//	1/	1405/04 A
2	1	1/-				1/	1/	//	1/2	//	14669 M
3	/_	/	1	//			/	/	//	//	11/07/04 M
4	1/6	1/7	1/7	1/2	1/7	1/7	4	1/5	//	1/5	NE-08/04
5	10	/3	12	19	1/8	1/12	14	/9	10	1/6	4/09/64 M=
6	16	//	16	16	1/11	//	1/17	1/2	16	1/3	11/10/04 MF
7	//	19				16	//	//	//	//	1411/04 1F
8	24	13	14	1/21	1/3	19	13	17	24		11/12/04
Total	56	52	49	53	44	54	50	43	57	62	

					·						
	PS	PS	PS	PS	F-7	F-5	PS	PS	PS	PS	Date/
<u> </u>	2-5	2-3	6-2	6-5			4-4	4-8	2-9	3-9	Init.
1	//	/	//	//	//	//	1//	//		//	11/05/04 M
2	//	/ /	//	/	1/	/		/	//	//	iV=6104 M
3	//	/	1//	//	//	//	//	٧/_	/	//	ivorboy ar
4	1/8	1/7	1/5	1/3	1/5	1/9		1/3	1/8		11/08/04 NF
5	11	1/3	14	14	1/2	1/7	10	1/2	1/12		11/09/04 NF
6	1/		1/12	4	1/11	1/	14	19	1/13	17	11/10/04 ME
7.	13	10	/_	1/	1//	16		/	/_	1/_	1411/04 M
8	121	19	121	1/6	14	1/20	1/15	16	23	20	WING
Total	53	49	52	27	£.	51	39	40	DISO	55	

Page 5 of 8

	PS 2-2	F-8	F-3	PS 3-3	C-6	C-2	PS 4-9	PS 1-2	C-5	PS 5-6	Date/ Init.
1		<i></i>	/_	/_		1/	//	1/	//	/	11/05/64 NF
2	1/	//_	//	1/	/	1/-	//		'	1/	1/06/04 M=
3	1/	/	/	/	/		1//	/	/	/	1/07/04
4	V/2	//	4	1/4	1/5	//	1/3	1/6	1/1	//	11/08/04 N=
5 .	10	/6	1/8	1/0	1/1	1/	1/9	1/8	1/0	1	11/09/04 M
6	1/8	/_		-	100	1/9	//	1/17	14	1/6	11/10/04 A
7.	//	1/2	1/3		Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan	15	10		/	1/5	141404 NF
8	10	1	16	1/25	\langle	1/18	10	1/5	122	1/	11/12/64 NF
Total	30	9	41	50	DAG	42	32	46	46	12	`

	C-4	PS 3-2	C-10	PS 3-6	C-8	PS 1-7	PS 6-10	PS 5-8	PS 5-2	PS 3-10	Date/ Init.
1	//	//	/	//	//	1	/ /	V /-	1/	1/_	11/05/04 14
2	1/	/_	/	/	//	/	1/	1/_	/	//	14/06/04 M=
3	//	1	/	/		/	/	//	/	1//	40764 NE
4	V/_	1/7	//	1/6	0/	1/5	1/6	1/6	/	14	N08/04 NF
5	4	1/2	1/9	10		\ <u></u>	14	0/1	V/7	1/12	140 9 504 AF
6		17	12	13			1/1		1	16	11/10/04 M
7	18			//		17	1/5		16	//	NF NF
8	1	1/3	V/19	120	X	1/23	11		1/_	17	11/12/04 MF
Total	33	49	40	49	D/-	56	37	D/13	34	39	

Page 6 of 8

	F-2-	PS 2-7	PS 5-7.	PS 6-9	PS 6-1.	PS 1-9	PS 1-1	C-1	PS 2-6	PS 5-3	Date/ Init.
1	1/	/_	//	1/	/	//	1/	/	1/_	//	1405/04 M
2	//	/_	/				//	1/	V/	V_	406/04 NF
3	1/	1/_	/	//	/	/	/	/	//	//	1/07/09 N=
4	1/5	16	1/8	1/5	/	1/7	//	//	1/1	1/5	1408/04 NF
5	10	1/9	12	1/13	1/6	16	10	//8	11	1/3	1409/04 N=
6	1	1/2		1	1/12	1/3	1/17	1/1	15	1/2	1V10/04 NF
7	/	//	17	19	1/18		/	/	/	/	11/11/04 M=
8	15	18	1/22	1/3	//	28	1/22	2/7	16	/3	11/12/09
Total	41	45	59	51	36	64	49	0/36	39	33	×.

C-1 Alive & 10:30 First loo Dead @13:00 Doring Counts

	PS 4-6	PS 1-6	PS 5-10	PS 5-1	C-7	PS 1-8	PS 2-8	PS 4-10	PS 3-8	PS 2-1	Date/ Init.
1	1/2	/	//	1/_	1/_	//	1//	//	//	9/	1405/04 N
2	7.	1/	1	1/	1/	//	//	//		1	116664 M
3	1/	/	1/	/_	//	/	1/	/	1/	1/	WoTlos M=
4	1/7	1/5	1/_	1/9	1/_	1/6	1/7	0/1	1/8	1/6	11/08/04 NF
5	11	1/12	1/5	1/3	5	13	19		1/2	10	140404 NF
6	16	120	1/4	16	0/	16	18		4	14	NF NF
7	/	/	1/	1/	\backslash		1/	1	1/2	//	11/11/04 NF
8	123	24	1/3	1/21		1/21	17	1	129	18	Ny 12/04 M
Total	57	61	12	59	0/6	56	51	DI	55	38	

	PS 1-3	F-4	PS 4-7	PS 5-5	PS 6-6	F-1	F-6	PS 1-4	PS 4-2	PS 1-5	Date/ Init.
1	//	1/	//	/_	1/_	1/	1/_	1/_	1/_	/	1405/04 NF
2	/	1/	/	1/	//	1/	//	/	/	1	U/66/04 NF
3	//	/_	1//	//	/	/		//	V/_	//	14/02/04
4	1/4	1/5		1/6	1/6	1/6	/	1/3	//	1/7	1408/04 M=
5	14	1	1/12	10	/=	10	1/7	0/3	1/5	1/2	1/09/04 M=
6	1/2	13		//	120	1/18	1		1	1/3	N/10/04 NF
7	/		1/2	1/12			1/9	\langle	1/2		11/11/04 NF
8	1/22	1/26	1/9	120	124	/22	1/17		//	1/17	11/12/04 NF
Total	52	55	31	49	61	56	5+	DIL	8	49	X

	PS 3-7	PS 4-3	PS 3-5	PS 5-4	F-10	C-3	PS 6-4	PS 6-8	PS 3-1	C-9	Date/ Init.
1	1/	//	//	//	//	V/_	1/_	//	1//	1/	1165/04
2	1/	1/	1/	//	1/	1/	i/	1/_	//	1/	156/04 M
3	//	1/	1/2	/	1/	1/2	1//	/_	1/2	//	WoTfor
4	14	0/3	1/5	1/7	16	1/5	1/8	4	19	//	1408/04 M=
5	10	R	1/12	15		10	1/3	14	15	4	1409/04 NF
6	1/2	R	17	120	1/	11	1/2	1/	18	4	W/relo4 M
7	1/3	H	//	/	1/7	1/	1/1	14	//	V	W11/04
8	1/21	H	111	22	4	1/8	1/2	/20	17	VB	1412/04 A
Total	48	2/3	45	64	SIME	44	44	55	59	16	
Total	140	7/3	43	(tu)	925	44	44	27	2.1	10	

Summary of C. dubia Reproduction Data

Replicate	Grove Pond Location 1	Grove Pond Location 2	Grove Pond Location 3	Grove Pond Location 4	Grove Pond Location 5	Grove Pond Location 6	Flannagan Pond	Laboratory Contro1
1	46 *	63 *	22 *	51 *	41 *	56 *	49 *	18 *
2	52 *	48 *	53 *	45 *	29 *	49 *	29 *	38 *
3	37 *	35 *	55 *	54 *	38 *	24 *	50 *	45 *
4	0	19 D	40 *	59 *	55 *	38 *	39 *	41 *
5	43 *	45 *	33 *	64 *	37 *	0 D	44 *	45 *
6	65 *	30 D*	57 *	31 *	53 *	48 *	48 *	33 *
7	61 *	24 *	52 *	48 *	41 *	54 *	53 *	31 *
8	52 *	34 D*	66 *	43 *	56 *	56 *	35 *	51 *
9	45 *	66 *	55 *	41 D*	40 *	53 *	48 *	38 *
10	57 *	37 *	58 *	40 D*	28 *	36 *	54 *	39 *
Total # of Neonates	458	401	491	476	418	414	449	379
Avg # of neonates [a]	45.8	45.4	49.1	49.4	41.8	46	44.9	37.9
Avg # of neonates from 3+ broods [b]	50.9	45.4	49.1	49.4	41.8	46	44.9	37.9

	Plow Shop Pond	Plow Shop Pond	Plow Shop Pond	Plow Shop Pond	Plow Shop Pond	Plow Shop Pond		
Replicate	Location 1	Location 2	Location 3	Location 4	Location 5	Location 6	Flannagan Pond	Laboratory Control
1	49 *	38 *	59 *	57 *	59 *	36 *	56 *	36 D*
2	46 *	30 *	49 *	8	34 *	52 *	41 *	42 *
3	52 *	49 *	50 *	3 D	33 *	54 *	41 *	44 *
4	16 D	49 *	52 *	39 *	64 *	44 *	55 *	33 *
5	49 *	53 *	45 *	43 *	49 *	27 *	51 *	46 *
6	61 *	39 *	49 *	57 *	12	61 *	54 *	16 D
7	56 *	45 *	48 *	31 *	59 *	62 *	42 *	6 D
8	56 *	51 *	55 *	40 *	13 D	55 *	9	0 D
9	64 *	56 D*	55 *	32 *	44 *	51 *	53 *	16 *
10	50 *	56 *	39 *	1 D	12 *	37 *	25 *	40 *
Total # of Neonates	499	466	501	311	379	479	427	279
Avg # of neonates [a]	53.7	45.6	50.1	38.4	40.7	47.9	42.7	36.8
Avg # of neonates from 3+ broods [b]	53.7	45.6	50.1	42.7	44.3	47.9	46.4	36.8

D - Dead brooder

^{* - 3+} broods

[[]a] - per surviving brooder

[[]b] - Average does not include neonates from dead brooders

Pimephales promelas CHRONIC TOXICITY TEST FOR FORT DEVENS (GROVE POND - PLOW SHOP POND - FLANNAGAN POND - CONTROL) IN AYER, MA START DATE:

							,			
	Sample ID	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Notes #AUVE
TT	G1-1	0	0	Ö	ଚ	n	0	0	O	10
BB	G1-2	0	0	0	0	0	Q	1	1	9
JJ	G1-3	0	D	0	0	а	ر ک	2,	2	g
QQ	G1-4	0	0	0	0	0	0	0	0	10
DD	G2-1	0	0	0	0	0	D	0	0	10
NN	G2-2	0	0	D	0	0	0	0	ð	10
AA	G2-3	0	0	0	0	0	0	0	0	10
DDD	G2-4	0	Ō	9	0	0	-	1		9
Q	G3-1	0	0	\bigcirc	0		0	0	6	10
Z	G3-2	0	0	0	0	\Diamond	0		0	ID
CCC	G3-3	0	0	0	0	0	0	0	0	(0)
LL :	G3-4	0	0	0	0				1	9
RR	G4-1	0	0	0	0	0	0	.0	0	10
Н	G4-2	0	0	0	0	0	O	0	0	10
F	G4-3	0	0		ರಿ	イグ	14 O	0	0	10
0	G4-4	0	0	0	0	O	0	0	0	10
M	G5-1	0	0	0	0	0	0	1		9
AAA	G5-2	0	0	0	0	0	0	\bigcirc	0	10
НН	G5-3	0	0	0	0	0	0		Ì	9
FF	G5-4	0	0	0		0	B	\bigcirc	0	10
C	G6-1	0	0	0	0	0	0	\bigcirc	0	10
A	G6-2	0	0	0	0	0	0	0	0	10
L	G6-3	0	0	0	0	0		\bigcirc	Ò	10
Т	G6-4	0	had II took one out	Ò	0	0	O		0	10

WOTH WEDON WOLLD WINDHOLLING WIND WAS EN EN WAS AND PAGE 1 OF ST PAGE

Pimephales promelas CHRONIC TOXICITY TEST FOR FORT DEVENS (GROVE POND - PLOW SHOP POND - FLANNAGAN POND - CONTROL) IN AYER, MA START DATE:

MAG MAG Page 2 8F3 WING WING WING

Pimephales promelas CHRONIC TOXICITY TEST FOR FORT DEVENS (GROVE POND - PLÔW SHOP POND - FLANNAGAN POND - CONTROL) IN AYER, MA START DATE:

<i>z</i>										
	Sample ID	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Notes
00	F-1	0	0	0	0	0	1		1	9
YY	F-2	0	0	Ó	0		0	0	0	10
N	F-3	0	0	0	0	\circ	0	0	0	10
BBB	F-4	0	0	0	0	0	0	0	0	10
X	C-1	0	0	0	0	0	Ø1		ţ	9
R	C-2	0	0	0	1		1	1	T	9
Y	C-3	0	0	C	D	0	Ô	Ó	0	10
KK	C-4	0	0	P	0	0	. 6	0	0	10
		11/04/04 HWG	11 losto	y IIIOGOY	11107/04 EW	MR	MONOY	MIDIOI	MINOY	

PAR HA HAR PAR

couldn't find 1 fish

* found fish dried on sile of beaker

tcst	-stax	t-date;	s P. promes K. test - test	-end da	le:	Fo	+ De Aqua	vens P. F.	nomelas test Pl	Chronic OW SHOP	ROND
: PAN #1	atter 5	ampleid	Tare Wt.	Total Wt.	*ALIVE	PAN#	letter (SAMPLEID	Torout	Tatel W+	#ALIVE.
			احجت بمند	1.22956	ĵo	25	XX		1.21626		10
_Q[BB	B1-2 1	1.22344	1.22865	9. "	26	5			1.22341	10 -
	1		1.217-48	1.22150	8	27	モモ			1.23302	1 , -
		^ 1	1-22164	1-22742	10	28	D		1-22491	1.22803	8
3.7				1.21677	10	29	T		·	1.22588	10 -2
			1.22223	- 43 %	10	30	7	PS2-2			10 -
L	I		1-22026	1.22 6598	10	31	E	PS2-3	1.22757	1.23297	10 -
<u> </u>		G2-41	1.28 3000	1.23513	9	32	WW	PS2-4		1.22043	10
		G3-1	1.22093	1.22663	10	33	\ \ \ \ \		1.21729	1.22280	10
10		63-3	1.22579	1.23091	<i>(</i> 0	34	エエ	PS 3-2	1.21765	1.22236	9
	CCC	63-3	1.22445		10	35	uu	PS 3-3		1.23513	10
12 13		G3-4	1-23496	1.24017	9	36	CC	PS 3-4	1.22947	1.23528	10 -
14	RR	64-1	1.21835	1-22406	10	37	B	PS4-1	1.2146	1.21911	9 -
	世		1.22257		10	38	IPP	PS4-2	1.23220	1.23733	10 -
15		- I	1.23086	1.23522	$-\mathcal{W}_{\mathcal{F}}$	39	W.		1,21575	122215	10 -
16	M		1.21731	1 22258	100	40	Y_	PS4-4	1.22378	1.22905	9
13	AAA		123047		. 9	41	M	PS5-1	1.23630	1.24172	10 -
	44	G5-2	1.22159	122730	10	42	1B	PSS-2	121940		10
2.0	FF	65-3	1.22423	1.22923	9	43	王王	PS5-3		1.22400	10 -,
21	C	65-4		1.2485797		44	IGG_	PS5-4	1.21825	1.22447	10 -
23	A		137869	1.22334	10	45	5	PS 6-1	1.21343	1.21948	10 -
	1	66-2	1.22689	1.23230	10	46	P	PS 6-2	1.21602	·	10 -
23	F		1.21249	1-218796	10	4+	MM	PS6-3		1. 21582	<u> </u>
- 2		964	121265	121830	10	48	VV	PS 6-4	1-21516	1,22071	9 -
	Propriet Headings in Alberta Mary and Alberta	date:	w wet				. NOTE: TO A CONTROL OF THE PARTY OF THE PAR	a dida kamana ina mangangangang makangan manangangkan	n fee a		
		initials;	asl	of the state of th		AR (ARI) (CO) - CO)		date:	4/10/04	ullyof	The party is supported as an American property.
Annual Control of the	Francisco de la companya de la companya de la companya de la companya de la companya de la companya de la comp		l late					unitials:	RAR	RAR	Marine !

FORT DEVENS P. prometas FLANNAGAN POND? LAB CONTROL P. Promelas Chronic Ref Tox Test test stankd: 12/10/04 tost ended: 12/17/04

1. CHAMBIOLOGICAL L	COOD & CARD COM	HUUL .	- -	1 73/1 (000000	19411101			
PAN # Petter SAM	RED TOP WH	Tiotal WH TH	LIVE PANS	REP	BIL KCI	Tan W+		# ALIVE
49 100 F	-1 1.21109	1.21600	9 1	L	Ø	1,21690	1,22488	10
	-2 1.a2186	1 22764 K	0 2	$\int \mathcal{D}$	B	1.22692	1.73323	10
51 N F	-3 1.20766		0 3		Ø	1.23108	1,23714	
52 BBB F-	-4 1.21841		_ට	\mathcal{C}	18	1.21514	1,22111	8
53 X C	1 1.21896	1.22324 0	the same and the s	Ť	0.125	1.22440	1.23/35	10
54 R C-		1.22877 9		В	0.125	1.21471	1,22294	10
	-3 125533			u	0.125	1, 22847	1,23520	9
	-4 1.22245	1-22699 10		W	0.125	1.22092	1,22699	10
		1 22011	9	E	0.25		1,22314	10
9	ove: huloy	11/19/09	10		0.25	1,22955	1,23534	8
	italo PAR	PAR	lt.	X	0.25	1.21622	1,22304	10
			12	1 -	0.25	1.23785		10
			13		0.50	1,21762	1.22431	^9
		}	14		0.50	1.23150	1.23823	10
			15		0.50	1.21182	1.21826	10
			ما الم		0.50	1.22904	1,2352	9
		, vie.	•		10	1,22109	1.22588	7
		- M	18	N.	1,0	1.22023	1,22371	6
		1			1.0	1.23258	1.83710	6
			19		1.0	1.22107	1,22266	اد
					mandandandandandandandandandandandandanda	estimates - in a reconstruction and the control of		
				Lat in 1987 in 111 of the 111 of the 111	date:	12/16/04		
19 % 1					initials:	met	Comment to a promote the comment of	
				uan ann an an Aireann an Aireann ann an Aireann ann an Aireann ann an Aireann ann an Aireann ann an Aireann an		Y NIRTE		The second secon
					· 4 · 4 ·	1	garger and the second program of the second	
		}					on you cannot make the state of a state to come of a finds that the	
			0 - 0 - man				Committee Made of the Committee of the C	
		ای					and the second second second second second	

Data Summary for Grove Pond and Plow Shop P. promelas

					Tare	Total		Actual	Mean Dry	Mean
	,,	D :: 1	0 1 15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Weight	Weight	// A !:	Weight	Weight	Biomass
Pan		Replicate		# Exposed	` •	(mg)	# Alive	(mg)	(mg)	(mg)
	53		C-1	10	1218.96	1223.24	9	4.28	0.48	0.43
	54 55		C-2 C-3	10	1223.3	1228.77	9 10	5.47	0.61	0.55
		KK	C-3	10 10	1235.33 1222.45	1241.06 1226.99	10	5.73 4.54	0.57 0.45	0.57
Mean	50	ΝN	U -4	10	1222.43	1220.99	10	4.04	0.43	0.45 0.50
Mean	40	00	F-1	10	1211.09	1215.98	9	4.89	0.53	0.49
		YY	F-2	10	1211.09	1213.96	10	5.78	0.54	0.49
	51		F-3	10	1207.66	1213.78	10	6.12	0.61	0.61
		BBB	F-4	10	1218.41	1224.59	10	6.18	0.62	0.62
Mean	02		1 7	10	1210.71	1224.00	10	0.10	0.59	0.57
Widan	1	TT	G1-1	10	1224.05	1229.56	10	5.51	0.55	0.55
	2	BB	G1-2	10	1223.44	1228.65	9	5.21	0.58	0.52
	3	JJ	G1-3	10	1217.48	1221.5	8	4.02	0.50	0.40
	4	QQ	G1-4	10	1221.64	1227.42	10	5.78	0.58	0.58
Mean		-, -,			-		-		0.55	0.51
	5	DD	G2-1	10	1211.38	1216.77	10	5.39	0.54	0.54
	6	NN	G2-2	10	1222.23	1228.05	10	5.82	0.58	0.58
	7	AA	G2-3	10	1220.26	1225.98	10	5.72	0.57	0.57
	8	DDD	G2-4	10	1230	1235.13	9	5.13	0.57	0.51
Mean									0.57	0.55
	9	Q	G3-1	10	1220.93	1226.63	10	5.70	0.57	0.57
	10	Ζ	G3-2	10	1225.79	1230.91	10	5.12	0.51	0.51
	11	CCC	G3-3	10	1224.45	1230.92	10	6.47	0.65	0.65
	12	LL	G3-4	10	1234.96	1240.17	9	5.21	0.58	0.52
Mean									0.58	0.56
	13	RR	G4-1	10	1218.35	1224.06	10	5.71	0.57	0.57
	14	Н	G4-2	10	1222.57	1227.23	10	4.66	0.47	0.47
	15	F	G4-3	10	1230.86	1235.22	10	4.36	0.44	0.44
	16	0	G4-4	10	1217.31	1222.58	10	5.27	0.53	0.53
Mean	4-7		05.4	40	1000 17	1001 11	•	0.07	0.50	0.50
	17	M	G5-1	10	1230.47	1234.44	9	3.97	0.44	0.40
	18	AAA	G5-2	10	1221.59	1227.3	10	5.71	0.57	0.57
	19 20	HH	G5-3	10	1224.23	1229.23	9	5.00	0.56	0.50
Mean	20	FF	G5-4	10	1242.45	1247.97	10	5.52	0.55 0.53	0.55 0.51
ivicali	21	С	G6-1	10	1218.69	1223.34	10	4.65	0.53	0.46
	22	A	G6-2	10	1216.69	1232.3	10	5.41	0.40	0.40
	23	L	G6-3	10	1212.49	1232.3	10	5.47	0.55	0.55
	24	T	G6-4	10	1212.49	1217.90	10	5.65	0.56	0.56
Mean		•		10	1212.00	10.0	10	5.00	0.53	0.53
	25	XX	PS1-1	10	1216.26	1221.62	10	5.36	0.54	0.54
	26	S	PS1-2	10	1218.71	1223.71	10	5.00	0.50	0.50
	27	EE	PS1-3	10	1226.80	1233.02	10	6.22	0.62	0.62
	28	D	PS1-4	10	1224.91	1228.03	8	3.12	0.39	0.31
Mean		-				2.23	-		0.51	0.49
	29	I	PS2-1	10	1219.31	1225.88	10	6.57	0.66	0.66
	30	J	PS2-2	10	1223.22	1228.60	10	5.38	0.54	0.54
	31	E	PS2-3	10	1227.57	1232.97	10	5.40	0.54	0.54
	32	WW	PS2-4	10	1214.46	1220.43	10	5.97	0.60	0.60
Mean									0.58	0.58

Data Summary for Grove Pond and Plow Shop P. promelas

				•					
				Tare	Total		Actual	Mean Dry	Mean
				Weight	Weight		Weight	Weight	Biomass
Pan #	Replicate	Sample ID	# Exposed	(mg)	(mg)	# Alive	(mg)	(mg)	(mg)
33	V	PS3-1	10	1217.29	1222.80	10	5.51	0.55	0.55
34	II	PS3-2	10	1217.65	1222.36	9	4.71	0.52	0.47
35	UU	PS3-3	10	1229.28	1235.13	10	5.85	0.59	0.59
36	CC	PS3-4	10	1229.47	1235.28	10	5.81	0.58	0.58
Mean								0.56	0.55
37	В	PS4-1	10	1214.61	1219.11	9	4.50	0.50	0.45
38	PP	PS4-2	10	1232.20	1237.33	10	5.13	0.51	0.51
39	U	PS4-3	10	1215.75	1222.15	10	6.40	0.64	0.64
40	K	PS4-4	10	1223.78	1229.05	9	5.27	0.59	0.53
Mean								0.56	0.53
41	W	PS5-1	10	1236.30	1241.72	10	5.42	0.54	0.54
42	G	PS5-2	10	1219.40	1224.55	10	5.15	0.51	0.51
43	ZZ	PS5-3	10	1218.68	1224.00	10	5.32	0.53	0.53
44	GG	PS5-4	10	1218.25	1224.47	10	6.22	0.62	0.62
Mean		-	- -	•	-		-	0.55	0.55
45	SS	PS6-1	10	1213.93	1219.48	10	5.55	0.55	0.55
46	Р	PS6-2	10	1216.02	1222.28	10	6.26	0.63	0.63
47	MM	PS6-3	10	1210.71	1215.82	9	5.11	0.57	0.51
48	VV	PS6-4	10	1215.16	1220.71	9	5.55	0.62	0.55
Mean								0.59	0.56

U.S. EPA Region I Lab

CETIS Data Worksheet

Report Date: 27 Apr-05 10:40 AM **Link:** 08-1419-5813/GROVE

Ceriodaphnia 7-d Survival and Reproduction Test

Start Date:05 Nov-04Species:Ceriodaphnia dubiaSample Code:1104CDCAMGLC

Ending Date: 12 Nov-04 Protocol: EPA/600/4-91/002 (1994) Sample Source: Fort Devens Grove LC SW

Ending Date: 12 h				tocol: EPA				-		Devens Grov	e LC SW	
Sample Date: 05 h	Nov-04				lium chloride				ation: GLC			
Sample Code	Rep	Pos	# Exposed	1d Survival	2d Survival	3d Survival	4d Survival	5d Survival	6d Survival	7d Survival	Neonates	Male
1104CDCAMGLC	1		1	1	1	1	1	1	1	1	18	0
1104CDCAMGLC	2		1	1	1	1	1	1	1	1	38	0
1104CDCAMGLC	3		1	1	1	1	1	1	1	1	45	0
1104CDCAMGLC	4		1	1	1	1	1	1	1	1	41	0
1104CDCAMGLC	5		1	1	1	1	1	1	1	1	45	0
1104CDCAMGLC	6		1	1	1	1	1	1	1	1	33	0
1104CDCAMGLC	7		1	1	1	1	1	1	1	1	31	0
1104CDCAMGLC	8		1	1	1	1	1	1	1	1	51	0
1104CDCAMGLC	9		1	1	1	1	1	1	1	1	38	0
1104CDCAMGLC	10		1	1	1	1	1	1	1	1	39	0
1104CDCAMGF	1		1	1	1	1	1	1	1	1	49	0
1104CDCAMGF	2		1	1	1	1	1	1	1	1	29	0
1104CDCAMGF	3		1	1	1	1	1	1	1	1	50	0
1104CDCAMGF	4		1	1	1	1	1	1	1	1	39	0
1104CDCAMGF	5		1	1	1	1	1	1	1	1	44	0
1104CDCAMGF	6		1	1	1	1	1	1	1	1	48	0
1104CDCAMGF	7		1	1	1	1	1	1	1	1	53	0
1104CDCAMGF	8		1	1	1	1	1	1	1	1	35	0
1104CDCAMGF	9		1	1	1	1	1	1	1	1	48	0
1104CDCAMGF	10		1	1	1	1	1	1	1	1	54	0
1104CDCAMG6	1		1	1	1	1	1	1	1	1	56	0
1104CDCAMG6	2		1	1	1	1	1	1	1	1	49	0
1104CDCAMG6	3		1	1	1	1	1	1	1	1	24	0
1104CDCAMG6	4		1	1	1	1	1	1		1	38	0
1104CDCAMG6	5		1	0	0	0	0	0	0	0	0	0
1104CDCAMG6	6		1	1	1	1	1	1	1	1		0
											48	
1104CDCAMG6	7		1	1	1	1	1	1	1	1	54	0
1104CDCAMG6	8		1	1	1	1	1	1	1	1	56	0
1104CDCAMG6	9		1	1	1	1	1	1	1	1	53	0
1104CDCAMG6	10		1	1	1	1	1	1	1	1	36	0
1104CDCAMG5	1		1	1	1	1	1	1	1	1	41	0
1104CDCAMG5	2		1	1	1	1	1	1	1	1	29	0
1104CDCAMG5	3		1	1	1	1	1	1	1	1	38	0
1104CDCAMG5	4		1	1	1	1	1	1	1	1	55	0
1104CDCAMG5	5		1	1	1	1	1	1	1	1	37	0
1104CDCAMG5	6		1	1	1	1	1	1	1	1	53	0
1104CDCAMG5	7		1	1	1	1	1	1	1	1	41	0
1104CDCAMG5	8		1	1	1	1	1	1	1	1	56	0
1104CDCAMG5	9		1	1	1	1	1	1	1	1	40	0
1104CDCAMG5	10		1	1	1	1	1	1	1	1	28	0
1104CDCAMG4	1		1	1	1	1	1	1	1	1	51	0
1104CDCAMG4	2		1	1	1	1	1	1	1	1	45	0
1104CDCAMG4	3		1	1	1	1	1	1	1	1	54	0
1104CDCAMG4	4		1	1	1	1	1	1	1	1	59	0
1104CDCAMG4	5		1	1	1	1	1	1	1	1	64	0
1104CDCAMG4	6		1	1	1	1	1	1	1	1	31	0
1104CDCAMG4	7		1	1	1	1	1	1	1	1	48	0
1104CDCAMG4	8		1	1	1	1	1	1	1	1	43	0
1104CDCAMG4	9		1	1	1	1	1	1	1	0	41	0
1104CDCAMG4	10		1	1	1	1	1	1	1	0	40	0
1104CDCAMG3	1		1	1	1	1	1	1	1	1	22	0
1104CDCAMG3	2		1	1	1	1	1	1	1	1	53	0
	3		1	1	1	1	1	1	1	1	55	0

Page 2 of 2

CETIS Data Worksheet

Report Date: 27 Apr-05 10:40 AM Link: 08-1419-5813/GROVE

OL 110 Data	***	11131	1001						Link:	08-	1419-5813/0	3KOVE
Sample Code	Rep	Pos	# Exposed	1d Survival	2d Survival	3d Survival	4d Survival	5d Survival	6d Survival	7d Survival	Neonates	Male
1104CDCAMG3	4		1	1	1	1	1	1	1	1	40	0
1104CDCAMG3	5		1	1	1	1	1	1	1	1	33	0
1104CDCAMG3	6		1	1	1	1	1	1	1	1	57	0
1104CDCAMG3	7		1	1	1	1	1	1	1	1	52	0
1104CDCAMG3	8		1	1	1	1	1	1	1	1	66	0
1104CDCAMG3	9		1	1	1	1	1	1	1	1	55	0
1104CDCAMG3	10		1	1	1	1	1	1	1	1	58	0
1104CDCAMG2	1		1	1	1	1	1	1	1	1	63	0
1104CDCAMG2	2		1	1	1	1	1	1	1	1	48	0
1104CDCAMG2	3		1	1	1	1	1	1	1	1	35	0
1104CDCAMG2	4		1	1	1	1	1	1	0	0	19	0
1104CDCAMG2	5		1	1	1	1	1	1	1	1	45	0
1104CDCAMG2	6		1	1	1	1	1	1	1	0	30	0
1104CDCAMG2	7		1	1	1	1	1	1	1	1	24	0
1104CDCAMG2	8		1	1	1	1	1	1	1	0	34	0
1104CDCAMG2	9		1	1	1	1	1	1	1	1	66	0
1104CDCAMG2	10		1	1	1	1	1	1	1	1	37	0
1104CDCAMG1	1		1	1	1	1	1	1	1	1	46	0
1104CDCAMG1	2		1	1	1	1	1	1	1	1	52	0
1104CDCAMG1	3		1	1	1	1	1	1	1	1	37	0
1104CDCAMG1	4		1	1	1	1	1	1	1	1	0	0
1104CDCAMG1	5		1	1	1	1	1	1	1	1	43	0
1104CDCAMG1	6		1	1	1	1	1	1	1	1	65	0
1104CDCAMG1	7		1	1	1	1	1	1	1	1	61	0
1104CDCAMG1	8		1	1	1	1	1	1	1	1	52	0
1104CDCAMG1	9		1	1	1	1	1	1	1	1	45	0
1104CDCAMG1	10		1	1	1	1	1	1	1	1	57	0

CETIS Test Summary

Report Date: 27 Apr-05 10:43 AM **Link:** 08-1419-5813/GROVE

Ceriodaphnia 7-d Survival and Reproduction Test U.S. EPA Region I Lab Test No: **Duration:** 7d 0h 06-4631-4650 Test Type: Reproduction-Survival (7d) Start Date: EPA/600/4-91/002 (1994) 05 Nov-04 Protocol: Species: Ceriodaphnia dubia Ending Date: 12 Nov-04 Dil Water: None Source: In-House Culture Setup Date: 05 Nov-04 12:00 AM Brine: ESAT Fort Devens Surface Water Chronic Toxicity Test - Grove Pond Comments: Client: **EPA REGION 1** Sample No: 08-2298-7984 Material: Sodium chloride 1104CDCAMG1 Sample Date: 05 Nov-04 Code: Project: Fort Devens Grove SW Receive Date: Source: Sample Age: N/A Station: ESAT Fort Devens Surface Water Chronic Toxicity Test - Grove Pond Comments: Sample No: Sodium chloride **EPA REGION 1** 10-0059-0986 Material: Client: Sample Date: 05 Nov-04 Code: 1104CDCAMG2 Project: Receive Date: Source: Fort Devens Grove SW Sample Age: Station: N/A Comments: ESAT Fort Devens Surface Water Chronic Toxicity Test - Grove Pond Sample No: 04-9394-9568 Material: Sodium chloride Client: **EPA REGION 1** Sample Date: 05 Nov-04 Code: 1104CDCAMG3 Project: Receive Date: Source: Fort Devens Grove SW N/A Sample Age: Station: Comments: ESAT Fort Devens Surface Water Chronic Toxicity Test - Grove Pond Sample No: 13-5190-6940 Material: Sodium chloride Client: **EPA REGION 1** Sample Date: 05 Nov-04 1104CDCAMG4 Code: Project: Fort Devens Grove SW Receive Date: Source: Sample Age: Station: G4 N/A Comments: ESAT Fort Devens Surface Water Chronic Toxicity Test - Grove Pond 18-9063-6598 Material: Sodium chloride **EPA REGION 1** Sample No: Client: Sample Date: 05 Nov-04 Code: 1104CDCAMG5 Project: Fort Devens Grove SW Receive Date: Source: Sample Age: N/A Station: Comments: ESAT Fort Devens Surface Water Chronic Toxicity Test - Grove Pond Sample No: 12-2257-7721 Material: Sodium chloride Client: **EPA REGION 1** Sample Date: 05 Nov-04 1104CDCAMG6 Code: Project: Receive Date: Source: Fort Devens Grove SW Sample Age: Station: ESAT Fort Devens Surface Water Chronic Toxicity Test - Grove Pond Comments: Sample No: 10-5052-4298 Material: Sodium chloride Client: **EPA REGION 1** Sample Date: 05 Nov-04 Code: 1104CDCAMGF Project: Receive Date: Source: Fort Devens Grove Flannagan SW Station: Sample Age: Comments: ESAT Fort Devens Surface Water Chronic Toxicity Test - Grove Pond Sample No: 07-5465-1348 Material: Sodium chloride Client: **EPA REGION 1** 05 Nov-04 1104CDCAMGLC Sample Date: Code: Project: Fort Devens Grove LC SW Receive Date: Source: Sample Age: Station: ESAT Fort Devens Surface Water Chronic Toxicity Test - Grove Pond Comments:

Report Date: 27 Link: 08-1

27 Apr-05 10:43 AM 08-1419-5813/GROVE

	· J						LIII	n.	00-1419-3	013/GROVE
7d Proportion Survived Su	mmary									
Sample Code	Reps	Mean	Minimum	Maximum	SE	SD	CV			
1104CDCAMGLC	10	1.00000	1.00000	1.00000	0.00000	0.000	0.0	0%		
1104CDCAMGF	10	1.00000	1.00000	1.00000	0.00000	0.000	0.0	0%		
1104CDCAMG6	10	0.90000	0.00000	1.00000	0.10000	0.316	23 35.	14%		
1104CDCAMG5	10	1.00000	1.00000	1.00000	0.00000	0.000	0.0	0%		
1104CDCAMG4	10	0.80000	0.00000	1.00000	0.13333	0.421	64 52.	70%		
1104CDCAMG3	10	1.00000	1.00000	1.00000	0.00000	0.000	0.0	0%		
1104CDCAMG2	10	0.70000	0.00000	1.00000	0.15275	0.483	05 69.	01%		
1104CDCAMG1	10	1.00000	1.00000	1.00000	0.00000	0.000	0.0	0%		
Reproduction Summary										
Sample Code	Reps	Mean	Minimum	Maximum	SE	SD	CV			
1104CDCAMGLC	10	37.9	18	51	2.88848	9.134	18 24.	10%		
1104CDCAMGF	10	44.9	29	54	2.57531	8.143	85 18.	14%		
1104CDCAMG6	10	41.4	0	56	5.65528	17.88	36 43.	20%		
1104CDCAMG5	10	41.8	28	56	3.15806	9.986	66 23.	89%		
1104CDCAMG4	10	47.6	31	64	3.08473	9.754	77 20.	49%		
1104CDCAMG3	10	49.1	22	66	4.21228	13.32	04 27.	13%		
1104CDCAMG2	10	40.1	19	66	4.9	15.49	52 38.	64%		
1104CDCAMG1	10	45.8	0	65	5.75963	18.21	35 39.	77%		
7d Proportion Survived De	tail									
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
1104CDCAMGLC	1.00000		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMGF	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMG6	1.00000	1.00000	1.00000	1.00000	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMG5	1.00000		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMG4	1.00000		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	0.00000	0.00000
1104CDCAMG3	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMG2	1.00000		1.00000	0.00000	1.00000	0.00000	1.00000	0.00000	1.00000	1.00000
1104CDCAMG1	1.00000		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
Reproduction Detail										
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
1104CDCAMGLC	18	38	45	41	45	33	31	51	38	39
1104CDCAMGF	49	29	50	39	44	48	53	35	48	54
1104CDCAMG6	56	49	24	38	0	48	54	56	53	36
1104CDCAMG5	41	29	38	55	37	53	41	56	40	28
1104CDCAMG4	51	45	54	59	64	31	48	43	41	40
1104CDCAMG3	22	53	55	40	33	57	52	66	55	58
1104CDCAMG2	63	48	35	19	45	30	24	34	66	37
 										

Comparisons:

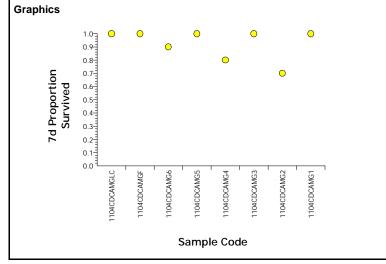
Page 1 of 1

27 Apr-05 10:48 AM 04-6901-9767/GROVE

CETIS Analysis Detail

Report Date: Analysis:

Ceriodaphnia 7-d Survival and Reproduction Test U.S. EPA Region I Lab


Endpoint	Analysis Type	Sample Link	Control Link	Date Analyzed	Version
7d Proportion Survived	Comparison	08-1419-5813	08-1419-5813	15 Mar-05 10:33 AM	CETISv1.025

Meth	nod	Alt H	Data Transform	NOEL	LOEL	Toxic Units	ChV	MSDp
Fishe	er's Exact	C > T	Untransformed			N/A		

Group Compa	aris	ons			
Sample v	/S	Sample	Statistic	Critical	Decision(0.05)
1104CDCAMO	€	1104CDCAMG	1.00000	0.05000	Non-Significant Effect
1104CDCAMO	}	1104CDCAMG	0.50000	0.05000	Non-Significant Effect
1104CDCAMO	3	1104CDCAMG	1.00000	0.05000	Non-Significant Effect
1104CDCAMO	3	1104CDCAMG	0.23684	0.05000	Non-Significant Effect
1104CDCAMO	3	1104CDCAMG	1.00000	0.05000	Non-Significant Effect
1104CDCAMO	3	1104CDCAMG	0.10526	0.05000	Non-Significant Effect
1104CDCAMO	3	1104CDCAMG	1.00000	0.05000	Non-Significant Effect

Data Summary			
Sample Code	Non-Responders	Responders	Total Observed
1104CDCAMG	10	0	10
1104CDCAMG	10	0	10
1104CDCAMG	9	1	10
1104CDCAMG	10	0	10
1104CDCAMG	8	2	10
1104CDCAMG	10	0	10
1104CDCAMG	7	3	10
1104CDCAMG	10	0	10

Data Detail										
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
1104CDCAMGLC	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMGF	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMG6	1.00000	1.00000	1.00000	1.00000	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMG5	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMG4	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	0.00000	0.00000
1104CDCAMG3	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMG2	1.00000	1.00000	1.00000	0.00000	1.00000	0.00000	1.00000	0.00000	1.00000	1.00000
1104CDCAMG1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

Comparisons:

Page 1 of 1

27 Apr-05 10:57 AM 03-5407-5963/GROVE

CETIS Analysis Detail

Report Date: Analysis:

Ceriodaphnia 7-	d Survi	ival and	d Repro	ductio	on Test								U.S. EPA R	egion I Lab
Endpoint			An	alysis	Type		Sample	e Link	Cont	trol Link	Date An	alvzed	Version	
7d Proportion Su	rvived			mparis			08-141			419-5813		5 11:27 AM		.025
Method			Alt	н	Data	Transform		NOE	1	LOEL	Toxic U	Inits Ch	v	MSDp
Fisher's Exact			C >			nsformed		1102		LOLL	N/A	into Oi	. •	МОБР
Group Comparis	sons													
Sample vs	Samp	No.	S+	atistic	. ,	Critical	Decision	(0.05)						
1104CDCAMG		CDCAN		50000		0.05000	Non-Signi		ect .					
1104CDCAMG		CDCAN		00000		0.05000	Non-Signi							
1104CDCAMG		CDCAN		23684		0.05000	Non-Signi							
1104CDCAMG				00000		0.05000	Non-Signi							
1104CDCAMG				10526		0.05000	Non-Signi							
1104CDCAMG				00000		0.05000	Non-Signi							
Data Summary Sample Code			Non-	-Resn	onders	Respond	ers Total	Observe	d					
1104CDCAMG			10			0	10		-					
1104CDCAMG			9			1	10							
1104CDCAMG			10			0	10							
1104CDCAMG			8			2	10							
1104CDCAMG			10			0	10							
1104CDCAMG			7			3	10							
1104CDCAMG			10			0	10							
Data Detail														
Sample Code			Rep 1	R	ep 2	Rep 3	Rep 4	Rep 5	F	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
1104CDCAMGF			1.0000		.00000	1.00000	1.00000	1.00000		1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMG6			1.0000	0 1.	.00000	1.00000	1.00000	0.0000		1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMG5			1.0000	0 1.	.00000	1.00000	1.00000	1.00000	0 1	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMG4			1.0000	0 1.	.00000	1.00000	1.00000	1.00000	0 1	1.00000	1.00000	1.00000	0.00000	0.00000
1104CDCAMG3			1.0000	0 1.	.00000	1.00000	1.00000	1.00000	0 1	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMG2			1.0000		.00000	1.00000	0.00000	1.00000		0.00000	1.00000	0.00000	1.00000	1.00000
1104CDCAMG1			1.0000		.00000	1.00000	1.00000	1.00000		1.00000	1.00000	1.00000	1.00000	1.00000
Graphics														
1.0)= 0		0		0	•								
0.9)- <u> </u>	0												
0.8	3년			0										
7d Proportion Survived 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	(]					<u> </u>								
Proportic Survived	5-													
3.0 Gpor	1													
S 0.3	3													
P 0.2	1													
0.0	ງ ٿ	1 .0	1 10	<u>_</u>	~	0 -	٦							
	1104CDCAMGF	1104CDCAMG6	1104CDCAMG5	1104CDCAMG4	1104CDCAMG3	1104CDCAMG2								
	CA	CAI)CA)CA)CA	OCA OCA								
)4C[)4C[)4C[)4CI)4CI)4CI								
	110	110	110	110	110	110								
			Sam	ple C	ode									
I .														

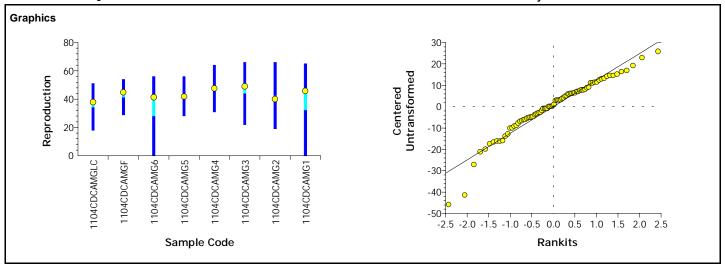
CETIS Analysis Detail

1104CDCAMG2

1104CDCAMG1

Comparisons:

Page 1 of 2


Report Date:

27 Apr-05 11:00 AM 0-7712-6407/GROVE

CETIS Anai	ysis Detail							Ana	alysis:		10-7712	-6407/GROVE
Ceriodaphnia 7-d	Survival and Repro	oduction Test								U.	S. EPA F	Region I Lab
Endpoint	Ar	nalysis Type		Sample	e Lir	nk Cont	rol Link	Date	Analyzed		Version	
Reproduction	Co	omparison		08-1419			119-581	3 15 Ma	ır-05 10:34	AM	CETISv1	.025
Method	Al	t H Data	Transform	Z		NOEL	LOEL	Toxic	Units	ChV		MSDp
Dunnett's Multiple	Comparison C	> T Untra	nsformed					N/A				
ANOVA Assumpt	ions											
Attribute	Test	Statis	stic Cri	tical	Ρl	_evel	Deci	sion(0.01)			
Variances	Bartlett	11.99	274 18.	47531	0.1	0080	Equa	al Variance	es			
Distribution	Kolmogorov-Smirno	ov D 0.080	82 0.1	1566	0.2	20571	Norn	nal Distrib	ution			
ANOVA Table												
Source	Sum of Squares	Mean Squ	are DF	F Stati	istic	: P Lev	el	Decis	ion(0.05)			
Between	1055.95	150.85	7	0.85		0.547	20	Non-S	Significant E	ffect		
Error	12723.6	176.7167	72									
Total	13779.5496	327.56667	79									
Group Comparise	ons											
Sample vs	Sample	Statistic	Critical	P Level		MSD		Decision(0.05)			
1104CDCAMGL	1104CDCAMGF	-1.1775	2.38333	> 0.0500		14.169	ı	Non-Signi	ficant Effect	t		
1104CDCAMGL	1104CDCAMG6	-0.5887	2.38333	> 0.0500		14.169	ı	Non-Signi	ficant Effect	t		
1104CDCAMGL	1104CDCAMG5	-0.6560	2.38333	> 0.0500		14.169	ı	Non-Signi	ficant Effect	t		
1104CDCAMGL	1104CDCAMG4	-1.6316	2.38333	> 0.0500		14.169	1	Non-Signi	ficant Effect	t		
1104CDCAMGL	1104CDCAMG3	-1.8839	2.38333	> 0.0500		14.169	I	Non-Signi	ficant Effect	t		
1104CDCAMGL	1104CDCAMG2	-0.3701	2.38333	> 0.0500		14.169	ı	Non-Signi	ficant Effect	t		
1104CDCAMGL	1104CDCAMG1	-1.3288	2.38333	> 0.0500		14.169	ı	Non-Signi	ficant Effect	t		
Data Summary		-	Orig	inal Data					Transfo	rmed	l Data	
Sample Code	Count	Mean	Minimum	Maximu	ım	SD	Mea	an	Minimum	Ма	ximum	SD
1104CDCAMGLC	10	37.9	18	51		9.13418						
1104CDCAMGF	10	44.9	29	54		8.14385						
1104CDCAMG6	10	41.4	0	56		17.8836						
1104CDCAMG5	10	41.8	28	56		9.98666						
1104CDCAMG4	10	47.6	31	64		9.75477						
1104CDCAMG3	10	49.1	22	66		13.3204						
1104CDCAMG2	10	40.1	19	66		15.4952						
1104CDCAMG1	10	45.8	0	65		18.2135						
Data Detail												
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	R	ep 5 F	ep 6	Rep 7	Rep 8		Rep 9	Rep 10
1104CDCAMGLC	18	38	45	41	45	5 3	3	31	51		38	39
1104CDCAMGF	49	29	50	39	44	1 4	8	53	35		48	54
1104CDCAMG6	56	49	24	38	0	4	8	54	56		53	36
1104CDCAMG5	41	29	38	55	37		3	41	56		40	28
1104CDCAMG4	51	45	54	59	64		1	48	43		41	40
1104CDCAMG3	22	53	55	40	33	3 5	7	52	66		55	58

CETIS Analysis Detail

Comparisons: Report Date: Analysis: Page 2 of 2 27 Apr-05 11:00 AM 10-7712-6407/GROVE

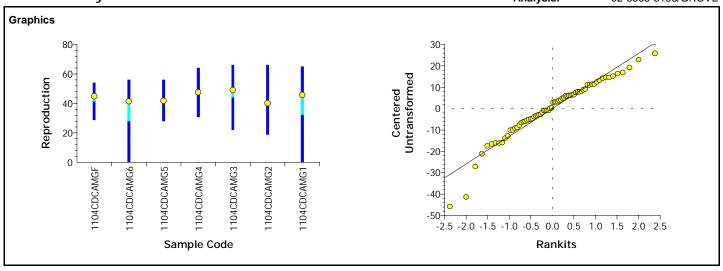
Comparisons:

Page 1 of 2

Report Date:

27 Apr-05 11:04 AM

CETIS Analysis Dotail


CETIS Ar	nalysis Detail							Analysis:		02-6565-3198/GROV
Ceriodaphnia	7-d Survival and Rep	roduction Te	st						U	.S. EPA Region I Lab
Endpoint	F	Inalysis Type	!	Sample	Link	Contro	l Link	Date Analyzed		Version
Reproduction		Comparison		08-141	9-5813	08-141	9-5813	23 Mar-05 11:2	8 AM	CETISv1.025
Method	A	Alt H Dat	a Transform	Z	N	DEL I	LOEL	Toxic Units	ChV	MSDp
Dunnett's Mult	tiple Comparison C	C > T Unt	ransformed					N/A		
ANOVA Assu	mptions									
Attribute	Test	Sta	tistic C	ritical	P Lev	rel .	Decisio	on(0.01)		
Variances	Bartlett	9.89	9915 10	6.81190	0.128	96	Equal \	/ariances		
Distribution	Kolmogorov-Smirr	nov D 0.08	3712 0.	.12346	0.196	13	Normal	Distribution		
ANOVA Table)									
Source	Sum of Square	es Mean So	juare DF	F Stati	istic	P Level		Decision(0.05)		
Between	687.8857	114.6476	6	0.60		0.72666	i	Non-Significant	Effect	
Error	11972.7	190.0429	63							
Total	12660.5859	304.6904	18 69							
Group Compa	arisons									
Sample	vs Sample	Statistic	Critical	P Level	N	ISD	De	cision(0.05)		
1104CDCAMO	GF 1104CDCAMG6	0.56771	2.34714	> 0.0500	1	4.4704	No	n-Significant Effe	ct	
1101CDC \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2F 4404CDCAMCE	0.50000	0 04744	. 0.0500	4	4 4704	Na	o Cionificant Effa		

Group Com	Jariso	115						
Sample	vs	Sample	Statistic	Critical	P Level	MSD	Decision(0.05)	
1104CDCAM	GF	1104CDCAMG6	0.56771	2.34714	> 0.0500	14.4704	Non-Significant Effect	
1104CDCAN	GF	1104CDCAMG5	0.50283	2.34714	> 0.0500	14.4704	Non-Significant Effect	
1104CDCAN	GF	1104CDCAMG4	-0.4379	2.34714	> 0.0500	14.4704	Non-Significant Effect	
1104CDCAN	GF	1104CDCAMG3	-0.6813	2.34714	> 0.0500	14.4704	Non-Significant Effect	
1104CDCAN	GF	1104CDCAMG2	0.77858	2.34714	> 0.0500	14.4704	Non-Significant Effect	
1104CDCAM	GF	1104CDCAMG1	-0.146	2.34714	> 0.0500	14.4704	Non-Significant Effect	
D-1- 0				0	lada al Data		Town of a more of Desta	

Data Summary			Origi	nal Data		Transformed Data				
Sample Code	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maximum	SD	
1104CDCAMGF	10	44.9	29	54	8.14385					
1104CDCAMG6	10	41.4	0	56	17.8836					
1104CDCAMG5	10	41.8	28	56	9.98666					
1104CDCAMG4	10	47.6	31	64	9.75477					
1104CDCAMG3	10	49.1	22	66	13.3204					
1104CDCAMG2	10	40.1	19	66	15.4952					
1104CDCAMG1	10	45.8	0	65	18.2135					

Data Detail										
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
1104CDCAMGF	49	29	50	39	44	48	53	35	48	54
1104CDCAMG6	56	49	24	38	0	48	54	56	53	36
1104CDCAMG5	41	29	38	55	37	53	41	56	40	28
1104CDCAMG4	51	45	54	59	64	31	48	43	41	40
1104CDCAMG3	22	53	55	40	33	57	52	66	55	58
1104CDCAMG2	63	48	35	19	45	30	24	34	66	37
1104CDCAMG1	46	52	37	0	43	65	61	52	45	57

Comparisons: Report Date: Analysis: Page 2 of 2 27 Apr-05 11:04 AM 02-6565-3198/GROVE

CETIS Data Worksheet

Report Date: 27 Apr-05 11:13 AM

CETIS Data WORKSHEEL

Link: 05-9078-7061/PLOW SHOP

Ceriodaphnia 7-d Survival and Reproduction Test

U.S. EPA Region I Lab

Start Date:	05 Nov-04	Species:	Ceriodaphnia dubia	Sample Code:	1104CDCAMPSLC
Ending Date:	12 Nov-04	Protocol:	EPΔ/600/4-91/002 (1994)	Sample Source:	Fort Devens Plow Shop I C SW

Ending Date: 1	2 Nov-04	1	•	tocol: EPA	1/600/4-91/0			•		Devens Plow		:\^/
Sample Date: 0					ium chloride	·			Shop LC C	, v v		
	3 NOV-02	ı		ı			T					
Sample Code	Rep	Pos	# Exposed	1d Survival				5d Survival		7d Survival	Neonates	Male
1104CDCAMPSLC	1		1	1	1	1	1	1	1	0	36	0
1104CDCAMPSLC	2		1	1	1	1	1	1	1	1	42	0
1104CDCAMPSLC	3		1	1	1	1	1	1	1	1	44	0
1104CDCAMPSLC	4		1	1	1	1	1	1	1	1	33	0
1104CDCAMPSLC	5		1	1	1	1	1	1	1	1	46	0
1104CDCAMPSLC	6		1	1	1	1	1	1	0	0	16	0
1104CDCAMPSLC	7		1	1	1	1	1	1	0	0	6	0
1104CDCAMPSLC	8		1	1	1	1	0	0	0	0	0	0
1104CDCAMPSLC	9		1	1	1	1	1	1	1	1	16	0
1104CDCAMPSLC	10		1	1	1	1	1	1	1	1	40	0
1104CDCAMPSF	1		1	1	1	1	1	1	1	1	56	0
1104CDCAMPSF	2		1	1	1	1	1	1	1	1	41	0
1104CDCAMPSF	3		1	1	1	1	1	1	1	1	41	0
1104CDCAMPSF	4		1	1	1	1	1	1	1	1	55	0
1104CDCAMPSF	5		1	1	1	1	1	1	1	1	51	0
1104CDCAMPSF	6		1	1	1	1	1	1	1	1	54	0
1104CDCAMPSF	7		1	1	1	1	1	1	1	1	42	0
1104CDCAMPSF	8		1	1	1	1	1	1	1	1	9	0
1104CDCAMPSF	9		1	1	1	1	1	1	1	1	53	0
1104CDCAMPSF	10		1	1	1	1	1	1	1	1	25	0
1104CDCAMPS1	1		1	1	1	1	1	1	1	1	49	0
1104CDCAMPS1	2		1	1	1	1	1	1	1	1	46	0
1104CDCAMPS1	3		1	1	1	1	1	1	1	1	52	0
1104CDCAMPS1	4		1	1	1	1	1	0	0	0	16	0
1104CDCAMPS1	5		1	1	1	1	1	1	1	1	49	0
1104CDCAMPS1	6		1	1	1	1	1	1	1	1	61	0
1104CDCAMPS1	7		1	1	1	1	1	1	1	1	56	0
1104CDCAMPS1	8		1	1	1	1	1	1	1	1	56	0
1104CDCAMPS1	9		1	1	1	1	1	1	1	1	64	0
1104CDCAMPS1	10		1	1	1	1	1	1	1	1	50	0
1104CDCAMPS2	1		1	1	1	1	1	1	1	1	38	0
1104CDCAMPS2	2		1	1	1	1	1	1	1	1	30	0
1104CDCAMPS2	3		1	1	1	1	1	1	1	1	49	0
1104CDCAMPS2	4		1	1	1	1	1	1	1	1	49	0
1104CDCAMPS2	5		1	1	1	1	1	1	1	1	53	0
	6		1	1	1	1	1	1	1	1	39	0
1104CDCAMPS2 1104CDCAMPS2	7		1	1	1	1	1	1	1	1	45	0
1104CDCAMPS2	8		1	1	1	1	1	1	1	1	51	0
1104CDCAMPS2	9		1	1	1	1	1	1	1	0	56	0
1104CDCAMPS2	10		1	1	1	1	1	1	1	1	56	0
1104CDCAMPS2			1	1	1	1	1	1	1	1		
	1										59	0
1104CDCAMPS3	2		1	1	1	1	1	1	1	1	49	0
1104CDCAMPS3	3		1	1	1	1	1	1	1	1	50	0
1104CDCAMPS3	4		1	1	1	1	1	1	1	1	52	0
1104CDCAMPS3	5		1	1	1	1	1	1	1	1	45	0
1104CDCAMPS3	6		1	1	1	1	1	1	1	1	49	0
1104CDCAMPS3	7		1	1	1	1	1	1	1	1	48	0
1104CDCAMPS3	8		1	1	1	1	1	1	1	1	55	0
1104CDCAMPS3	9		1	1	1	1	1	1	1	1	55	0
1104CDCAMPS3	10		1	1	1	1	1	1	1	1	39	0
1104CDCAMPS4	1		1	1	1	1	1	1	1	1	57	0
1104CDCAMPS4	2		1	1	1	1	1	1	1	1	8	0
1104CDCAMPS4	3		1	1	1	1	0	0	0	0	3	0

Page 2 of 2

0

CETIS Data Worksheet

1104CDCAMPS6

10

Report Date: 27 Apr-05 11:13 AM **Link:** 05-9078-7061/PLOW SHOP

										00 00.0		
Sample Code	Rep	Pos	# Exposed	1d Survival	2d Survival	3d Survival	4d Survival	5d Survival	6d Survival	7d Survival	Neonates	Male
1104CDCAMPS4	4		1	1	1	1	1	1	1	1	39	0
1104CDCAMPS4	5		1	1	1	1	1	1	1	1	43	0
1104CDCAMPS4	6		1	1	1	1	1	1	1	1	57	0
1104CDCAMPS4	7		1	1	1	1	1	1	1	1	31	0
1104CDCAMPS4	8		1	1	1	1	1	1	1	1	40	0
1104CDCAMPS4	9		1	1	1	1	1	1	1	1	32	0
1104CDCAMPS4	10		1	1	1	1	0	0	0	0	1	0
1104CDCAMPS5	1		1	1	1	1	1	1	1	1	59	0
1104CDCAMPS5	2		1	1	1	1	1	1	1	1	34	0
1104CDCAMPS5	3		1	1	1	1	1	1	1	1	33	0
1104CDCAMPS5	4		1	1	1	1	1	1	1	1	64	0
1104CDCAMPS5	5		1	1	1	1	1	1	1	1	49	0
1104CDCAMPS5	6		1	1	1	1	1	1	1	1	12	0
1104CDCAMPS5	7		1	1	1	1	1	1	1	1	59	0
1104CDCAMPS5	8		1	1	1	1	1	0	0	0	13	0
1104CDCAMPS5	9		1	1	1	1	1	1	1	1	44	0
1104CDCAMPS5	10		1	1	1	1	1	1	1	1	12	0
1104CDCAMPS6	1		1	1	1	1	1	1	1	1	36	0
1104CDCAMPS6	2		1	1	1	1	1	1	1	1	52	0
1104CDCAMPS6	3		1	1	1	1	1	1	1	1	54	0
1104CDCAMPS6	4		1	1	1	1	1	1	1	1	44	0
1104CDCAMPS6	5		1	1	1	1	1	1	1	1	27	0
1104CDCAMPS6	6		1	1	1	1	1	1	1	1	61	0
1104CDCAMPS6	7		1	1	1	1	1	1	1	1	62	0
1104CDCAMPS6	8		1	1	1	1	1	1	1	1	55	0
1104CDCAMPS6	9		1	1	1	1	1	1	1	1	51	0

CETIS Test Summary

Report Date: 27 Apr-05 11:16 AM **Link:** 05-9078-7061/PLOW SHOP

Ceriodaphnia 7-d Survival and Reproduction Test U.S. EPA Region I Lab Test No: **Duration:** 7d 0h 01-8642-5606 Test Type: Reproduction-Survival (7d) Start Date: EPA/600/4-91/002 (1994) 05 Nov-04 Protocol: Species: Ceriodaphnia dubia **Ending Date:** 12 Nov-04 Dil Water: Source: In-House Culture Setup Date: 05 Nov-04 12:00 AM Brine: ESAT Fort Devens Surface Water Chronic Toxicity Test - Plow Shop Pond Comments: Client: **EPA REGION 1** Sample No: 06-5848-3458 Material: Sodium chloride Sample Date: 05 Nov-04 Code: 1104CDCAMPS1 Project: Receive Date: Fort Devens Plow Shop SW Source: Sample Age: Station: ESAT Fort Devens Surface Water Chronic Toxicity Test - Plow Shop Pond Comments: Sample No: Client: **EPA REGION 1** 06-7474-6028 Material: Sodium chloride Sample Date: 05 Nov-04 Code: 1104CDCAMPS2 Project: Receive Date: Source: Fort Devens Plow Shop SW Sample Age: Station: N/A Comments: ESAT Fort Devens Surface Water Chronic Toxicity Test - Plow Shop Pond Sample No: 09-7925-9953 Material: Sodium chloride Client: **EPA REGION 1** Sample Date: 05 Nov-04 Code: 1104CDCAMPS3 Project: Receive Date: Source: Fort Devens Plow Shop SW Sample Age: N/A Station: Comments: ESAT Fort Devens Surface Water Chronic Toxicity Test - Plow Shop Pond Sample No: 05-5116-7730 Material: Sodium chloride Client: **EPA REGION 1** Sample Date: 05 Nov-04 Code: 1104CDCAMPS4 Project: Fort Devens Plow Shop SW Receive Date: Source: Sample Age: Station: N/A Comments: ESAT Fort Devens Surface Water Chronic Toxicity Test - Plow Shop Pond 05-8763-2797 Material: Sodium chloride Client: **EPA REGION 1** Sample No: Sample Date: 05 Nov-04 Code: 1104CDCAMPS5 Project: Fort Devens Plow Shop SW Receive Date: Source: Sample Age: N/A Station: Comments: ESAT Fort Devens Surface Water Chronic Toxicity Test - Plow Shop Pond Sample No: 11-8745-3528 Material: Sodium chloride Client: **EPA REGION 1** 1104CDCAMPS6 Sample Date: 05 Nov-04 Code: Project: Receive Date: Source: Fort Devens Plow Shop SW Sample Age: Station: ESAT Fort Devens Surface Water Chronic Toxicity Test - Plow Shop Pond Comments: Sample No: 06-7405-7801 Material: Sodium chloride Client: **EPA REGION 1** Sample Date: 05 Nov-04 Code: 1104CDCAMPSF Project: Receive Date: Source: Fort Devens Plow Shop Flannagan S Sample Age: Station: Comments: ESAT Fort Devens Surface Water Chronic Toxicity Test - Plow Shop Pond Sample No: 01-1845-3466 Material: Sodium chloride Client: **EPA REGION 1** Sample Date: 05 Nov-04 1104CDCAMPSLC Code: Project: Fort Devens Plow Shop LC SW Receive Date: Source: Sample Age: Station: ESAT Fort Devens Surface Water Chronic Toxicity Test - Plow Shop Pond Comments:

CETIS Test Summary

Report Date: 27 Apr-05 11:16 AM **Link:** 05-9078-7061/PLOW SHOP

OETIO TOSTOGIIII	J						Lin		9078-7061/P	
7d Proportion Survived Su	mmary									
Sample Code	Reps	Mean	Minimum	Maximum	SE	SD	CV			
1104CDCAMPSLC	10	0.60000	0.00000	1.00000	0.16330	0.516		07%		
1104CDCAMPSF	10	1.00000	1.00000	1.00000	0.00000	0.000	0.0	0%		
1104CDCAMPS1	10	0.90000	0.00000	1.00000	0.10000	0.316	23 35.	14%		
1104CDCAMPS2	10	0.90000	0.00000	1.00000	0.10000	0.316	23 35.	14%		
1104CDCAMPS3	10	1.00000	1.00000	1.00000	0.00000	0.000	0.0	0%		
1104CDCAMPS4	10	0.80000	0.00000	1.00000	0.13333	0.421	64 52.	70%		
1104CDCAMPS5	10	0.90000	0.00000	1.00000	0.10000	0.316	23 35.	14%		
1104CDCAMPS6	10	1.00000	1.00000	1.00000	0.00000	0.000	0.0	0%		
Reproduction Summary										
Sample Code	Reps	Mean	Minimum	Maximum	SE	SD	cv			
1104CDCAMPSLC	10	27.9	0	46	5.33844	16.88	16 60.	51%		
1104CDCAMPSF	10	42.7	9	56	4.81445	15.22	46 35.	65%		
1104CDCAMPS1	10	49.9	16	64	4.17253	13.19	47 26.	44%		
1104CDCAMPS2	10	46.6	30	56	2.70473	8.553	10 18.	35%		
1104CDCAMPS3	10	50.1	39	59	1.78543	5.646	04 11.	27%		
1104CDCAMPS4	10	31.1	1	57	6.54463	20.69	59 66.	55%		
1104CDCAMPS5	10	37.9	12	64	6.44024	20.36	58 53.	74%		
1104CDCAMPS6	10	47.9	27	62	3.64676	11.53	21 24.	08%		
7d Proportion Survived De	tail									
Sample Code		Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
Sample Code 1104CDCAMPSLC	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6 0.00000	Rep 7	Rep 8	Rep 9	Rep 10
•	Rep 1			1.00000			•			
1104CDCAMPSLC	Rep 1 0.00000	1.00000 1.00000	1.00000 1.00000	1.00000 1.00000	1.00000	0.00000	0.00000	0.00000	1.00000	1.00000 1.00000
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1	Rep 1 0.00000 1.00000 1.00000	1.00000 1.00000 1.00000	1.00000 1.00000 1.00000	1.00000 1.00000 0.00000	1.00000 1.00000 1.00000	0.00000 1.00000 1.00000	0.00000 1.00000 1.00000	0.00000 1.00000 1.00000	1.00000 1.00000 1.00000	1.00000 1.00000 1.00000
1104CDCAMPSLC 1104CDCAMPSF	Rep 1 0.00000 1.00000	1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000	1.00000 1.00000	1.00000 1.00000	0.00000 1.00000	0.00000 1.00000	0.00000 1.00000	1.00000 1.00000	1.00000 1.00000 1.00000 1.00000
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2	Rep 1 0.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 0.00000 1.00000	1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 0.00000	1.00000 1.00000 1.00000 1.00000 1.00000
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2 1104CDCAMPS3	Rep 1 0.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 0.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 0.00000 1.00000	1.00000 1.00000 1.00000 1.00000
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2 1104CDCAMPS3 1104CDCAMPS4	Rep 1 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 0.00000	1.00000 1.00000 0.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 0.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 0.00000
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2 1104CDCAMPS3 1104CDCAMPS4 1104CDCAMPS5	Rep 1 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000	1.00000 1.00000 0.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000	1.00000 1.00000 1.00000 0.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 0.00000 1.00000
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2 1104CDCAMPS3 1104CDCAMPS4 1104CDCAMPS5 1104CDCAMPS6	Rep 1 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000	1.00000 1.00000 0.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000	1.00000 1.00000 1.00000 0.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2 1104CDCAMPS3 1104CDCAMPS4 1104CDCAMPS5 1104CDCAMPS5	Rep 1 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000	1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000	1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 1.00000
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2 1104CDCAMPS3 1104CDCAMPS4 1104CDCAMPS5 1104CDCAMPS6 Reproduction Detail Sample Code	Rep 1 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 1	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 1.00000	1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 1.00000 Rep 4	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 7	0.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000	1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 1.00000	1.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 Rep 10
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2 1104CDCAMPS3 1104CDCAMPS4 1104CDCAMPS5 1104CDCAMPS6 Reproduction Detail Sample Code 1104CDCAMPSLC	Rep 1 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 1 36	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 2	1.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 1.00000	1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 1.00000 Rep 4	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 5	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 6	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 7	0.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 Rep 8	1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 Rep 9	1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 Rep 10
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2 1104CDCAMPS3 1104CDCAMPS4 1104CDCAMPS5 1104CDCAMPS6 Reproduction Detail Sample Code 1104CDCAMPSE 1104CDCAMPSE 1104CDCAMPSE 1104CDCAMPSE	Rep 1 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 1 36 56	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Mep 2	1.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 Rep 3	1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 1.00000 Mep 4 33 55 16	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 5 46 51	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Mep 6 16 54	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 7 6 42	0.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 Pep 8	1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 Rep 9	1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 40 25
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2 1104CDCAMPS3 1104CDCAMPS4 1104CDCAMPS5 1104CDCAMPS6 Reproduction Detail Sample Code 1104CDCAMPSF 1104CDCAMPSF 1104CDCAMPSF	Rep 1 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 1 36 56 49	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 2 42 41 46	1.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 Rep 3 44 41 52	1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 1.00000 Mep 4 33 55 16 49	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 5 46 51	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 6 16 54 61	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 PREP 7 6 42 56	0.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 PREP 8 0 9	1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 Rep 9	1.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 Rep 10 40 25 50
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2 1104CDCAMPS3 1104CDCAMPS4 1104CDCAMPS5 1104CDCAMPS6 Reproduction Detail Sample Code 1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPSF 1104CDCAMPSS	Rep 1 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 1 36 56 49 38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 2 42 41 46 30	1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 Rep 3	1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 1.00000 Mep 4 33 55 16 49	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 5 46 51 49 53	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 6 16 54 61 39	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 7 6 42 56 45	0.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 Rep 8 0 9 56 51	1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 Rep 9 16 53 64 56	1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 Rep 10 40 25 50 56
1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2 1104CDCAMPS3 1104CDCAMPS4 1104CDCAMPS5 1104CDCAMPS6 Reproduction Detail Sample Code 1104CDCAMPSLC 1104CDCAMPSF 1104CDCAMPSF 1104CDCAMPS1 1104CDCAMPS2 1104CDCAMPS2 1104CDCAMPS3	Rep 1 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 1 36 56 49 38 59	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 2 42 41 46 30 49	1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 Rep 3 44 41 52 49 50	1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 1.00000 Rep 4 33 55 16 49 52	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 5 46 51 49 53 45	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 6 16 54 61 39 49	0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 Rep 7 6 42 56 45 48	0.00000 1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 Rep 8 0 9 56 51 55	1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 Rep 9 16 53 64 56 55	1.00000 1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 40 25 50 56 39

Comparisons:

Page 1 of 1

CETIS Analysis Detail

Report Date:

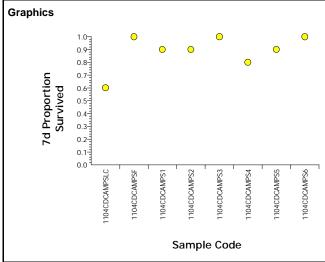
27 Apr-05 11:23 AM

Analysis:

07-8676-6891/PLOW SHOP

Ceriodaphnia 7-d Survival and Reproduction Test

		n	•		
U.S.	EPA	Kea	ION	I Lab	


Endpoint	Analysis Type	Sample Link	Control Link	Date Analyzed	Version
7d Proportion Survived	Comparison	05-9078-7061	05-9078-7061	27 Apr-05 11:22 AM	CETISv1.025

Method	Alt H	Data Transform	NOEL	LOEL	Toxic Units	ChV	MSDp
Fisher's Exact	C > T	Untransformed			N/A		

Group Comparisons Sample vs Sample **Statistic** Critical Decision(0.05) 1104CDCAMP 1104CDCAMP Non-Significant Effect 1.00000 0.05000 1104CDCAMP 1104CDCAMP 1.00000 0.05000 Non-Significant Effect 1104CDCAMP 1104CDCAMP 1.00000 0.05000 Non-Significant Effect 1104CDCAMP 1104CDCAMP 1.00000 Non-Significant Effect 0.05000 1104CDCAMP 1104CDCAMP 1.00000 0.05000 Non-Significant Effect 1104CDCAMP 1104CDCAMP 1.00000 0.05000 Non-Significant Effect 1104CDCAMP 1104CDCAMP 1.00000 0.05000 Non-Significant Effect

Data Summary			
Sample Code	Non-Responders	Responders	Total Observed
1104CDCAMP	6	4	10
1104CDCAMP	10	0	10
1104CDCAMP	9	1	10
1104CDCAMP	9	1	10
1104CDCAMP	10	0	10
1104CDCAMP	8	2	10
1104CDCAMP	9	1	10
1104CDCAMP	10	0	10

Data Detail										
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
1104CDCAMPSLC	0.00000	1.00000	1.00000	1.00000	1.00000	0.00000	0.00000	0.00000	1.00000	1.00000
1104CDCAMPSF	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMPS1	1.00000	1.00000	1.00000	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMPS2	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	0.00000	1.00000
1104CDCAMPS3	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMPS4	1.00000	1.00000	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	0.00000
1104CDCAMPS5	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	0.00000	1.00000	1.00000
1104CDCAMPS6	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

Comparisons:

Page 1 of 1

CETIS Analysis Detail

Report Date:

27 Apr-05 11:25 AM

Analysis:

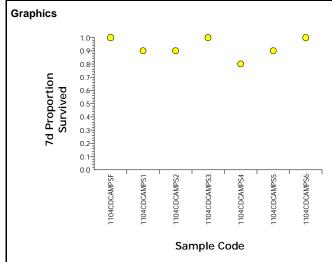
07-8553-7334/PLOW SHOP

U.S.	EPA	Region	I	Lab
------	-----	--------	---	-----

Endpoint	Analysis Type	Sample Link	Control Link	Date Analyzed	Version
7d Proportion Survived	Comparison	05-9078-7061	05-9078-7061	23 Mar-05 11:30 AM	CETISv1.025

Method	Alt H	Data Transform	NOEL	LOEL	Toxic Units	ChV	MSDp
Fisher's Exact	C > T	Untransformed			N/A		

Group Com						
Sample	vs	Sample	Statistic	Critical	Decision(0.05)	
1104CDCAM	ΙP	1104CDCAMP	0.50000	0.05000	Non-Significant Effect	
1104CDCAM	Ι Ρ	1104CDCAMP	0.50000	0.05000	Non-Significant Effect	
1104CDCAM	/IP	1104CDCAMP	1.00000	0.05000	Non-Significant Effect	


 1104CDCAMP
 1104CDCAMP
 0.23684
 0.05000
 Non-Significant Effect

 1104CDCAMP
 1104CDCAMP
 0.50000
 Non-Significant Effect

 1104CDCAMP
 1104CDCAMP
 1.00000
 Non-Significant Effect

,			
Sample Code	Non-Responders	Responders	Total Observed
1104CDCAMP	10	0	10
1104CDCAMP	9	1	10
1104CDCAMP	9	1	10
1104CDCAMP	10	0	10
1104CDCAMP	8	2	10
1104CDCAMP	9	1	10
1104CDCAMP	10	0	10

Data Detail										
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
1104CDCAMPSF	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMPS1	1.00000	1.00000	1.00000	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMPS2	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	0.00000	1.00000
1104CDCAMPS3	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1104CDCAMPS4	1.00000	1.00000	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	0.00000
1104CDCAMPS5	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	0.00000	1.00000	1.00000
1104CDCAMPS6	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

Comparisons:

Page 1 of 2

CETIS Analysis Detail

1104CDCAMPS6

36

52

54

Report Date:

27 Apr-05 11:29 AM

alvsis:

06-5778-4259/PLOW SHOP

CL 113 Allai	ysis Detail							Analysis:	0	06-5778-4259	/PLOW SHO
Ceriodaphnia 7-d	Survival and Repro	duction Tes	it							U.S. EPA R	Region I Lab
Endpoint	An	nalysis Type		Sample	e Link	Control	l Link	Date Analyz	:ed	Version	
Reproduction	Co	omparison		05-907	8-7061	05-9078	3-7061	23 Mar-05 1	1:33 A	M CETISv1	.025
Method			a Transform	Z	N	OEL L	OEL	Toxic Units	s (ChV	MSDp
Steel's Many-One I	Rank C:	> T Untra	ransformed		<u>_L</u>			N/A			
ANOVA Assumpti	ons										
Attribute	Test	Stat	istic C	ritical	P Lev	/el	Decision	າ(0.01)			
Variances	Bartlett	19.1	2091 1	8.47531	0.007	82	Unequal	Variances			
Distribution	Kolmogorov-Smirno	ov D 0.12	.875 0	.11566	0.002	23	Non-norr	mal Distributi	ion		
ANOVA Table											
Source	Sum of Squares	s Mean Sq	uare DF	F Stat	istic	P Level	<u> </u>	Decision(0.0	05)		
Between	5184.587	740.6553	3 7	3.34		0.00385		Significant E	ffect		
Error	15947.9	221.4986	72								
Total	21132.4878	962.1539	5 79								
Group Compariso	ons										
Sample vs	Sample	Statistic	Critical	P Level	<u>T</u>	ies	Deci	ision(0.05)			
1104CDCAMPS	1104CDCAMPS	132.5	74	> 0.0500	3		Non-	-Significant E	∃ffect	_	_
1104CDCAMPS	1104CDCAMPS	147.5	74	> 0.0500	4		Non-	-Significant E	∃ffect		
1104CDCAMPS	1104CDCAMPS	140	74	> 0.0500	3		Non-	-Significant E	∃ffect		
1104CDCAMPS	1104CDCAMPS	150	74	> 0.0500	3		Non-	-Significant E	∃ffect		
1104CDCAMPS	1104CDCAMPS	107.5	74	> 0.0500	3		Non-	-Significant E	∃ffect		
1104CDCAMPS	1104CDCAMPS	119	74	> 0.0500	5		Non-	-Significant E	∃ffect		
1104CDCAMPS	1104CDCAMPS	139	74	> 0.0500	3		Non-	-Significant E	Effect		
Data Summary			Ori	iginal Data				Tra	ınsforı	med Data	
Sample Code	Count		Minimun			D	Mean	Minim	um	Maximum	SD
1104CDCAMPSLC		27.9	0	46		6.8816					
1104CDCAMPSF	10	42.7	9	56		5.2246					
1104CDCAMPS1	10	49.9	16	64		3.1947					
1104CDCAMPS2	10	46.6	30	56		.55310					
1104CDCAMPS3	10	50.1	39	59 57		.64604					
1104CDCAMPS4	10	31.1	1	57		0.6959					
1104CDCAMPS5	10	37.9	12 27	64 62		0.3658					
1104CDCAMPS6	10	47.9	27	62		1.5321					
Data Detail				_	_	_	_	_	_	_	
Sample Code	Rep 1		Rep 3	Rep 4	Rep				ep 8	Rep 9	Rep 10
1104CDCAMPSLC		42	44	33	46	16	6			16 52	40
1104CDCAMPSF	56	41	41 52	55 46	51	54		2 9		53	25 50
1104CDCAMPS1	49	46	52	16	49	61		56 56		64	50
1104CDCAMPS2	38	30	49	49	53	39		5 5		56	56
1104CDCAMPS3	59 57	49	50	52	45	49 57		8 5		55 33	39
1104CDCAMPS4	57	8	3	39	43	57	3			32	1
1104CDCAMPS5	59	34	33	64	49	12	5	9 1	3	44	12

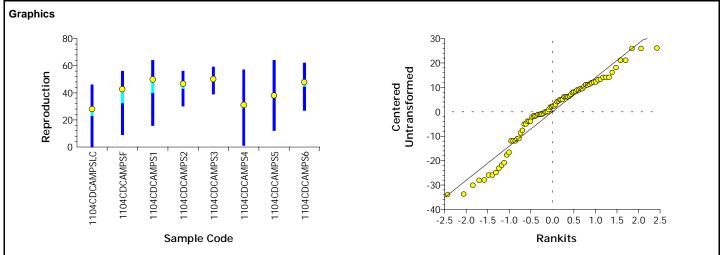
44

27

61

62

55


51

37

Comparisons: Report Date: Page 2 of 2 27 Apr-05 11:29 AM

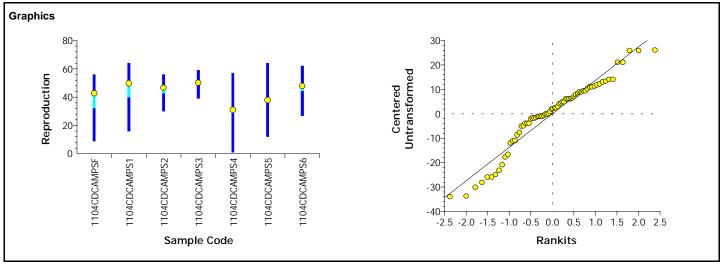
Analysis:

06-5778-4259/PLOW SHOP

Comparisons:

Page 1 of 2

CETIS Analysis Detail


Report Date:

27 Apr-05 11:32 AM

CETIS Ana	lysis Detail							nalysis:		6/PLOW SHOP
Ceriodaphnia 7-c	d Survival and Repr	oduction Tes	st						U.S. EPA I	Region I Lab
Endpoint	A	nalysis Type		Sampl	e Link	Control	Link Date	Analyzed	Version	
Reproduction	С	omparison		05-907	'8-7061	05-9078-	7061 23 N	1ar-05 11:30	AM CETISv	1.025
Method	A	It H Data	a Transform	Z	NOEI	L LO	DEL Tox	ic Units	ChV	MSDp
Steel's Many-One	Rank C	> T Untr	ansformed				N/A	ı		
ANOVA Assumpt	tions				·					
Attribute	Test	Stat	istic C	ritical	P Level		Decision(0.0)1)		
Variances	Bartlett	18.7	5788 16	3.81190	0.00459	l	Jnequal Vari	ances		
Distribution	Kolmogorov-Smirn	ov D 0.14	007 0.	12346	0.00164	l	Non-normal I	Distribution		
ANOVA Table										
Source	Sum of Square	s Mean Sq	uare DF	F Stat	tistic P	Level	Dec	ision(0.05)		
Between	2988.371	498.0619	6	2.34	0	.04163	Sign	ificant Effect		
Error	13383	212.4286	63							
Total	16371.3713	710.4904	6 69							
Group Comparis	ons									
Sample vs	Sample	Statistic	Critical	P Level	Ties	i	Decision	n(0.05)		
1104CDCAMPS	1104CDCAMPS	121	74	> 0.0500	3		Non-Sigi	nificant Effect	t	
1104CDCAMPS	1104CDCAMPS	107	74	> 0.0500	5		-	nificant Effect		
1104CDCAMPS	1104CDCAMPS	115	74	> 0.0500	3		_	nificant Effect		
1104CDCAMPS	1104CDCAMPS	88	74	> 0.0500	2		_	nificant Effect		
1104CDCAMPS	1104CDCAMPS	102	74	> 0.0500	3		_	nificant Effect		
1104CDCAMPS	1104CDCAMPS	113.5	74	> 0.0500	4		Non-Sigi	nificant Effect	t	
Data Summary			Ori	ginal Data				Transfo	rmed Data	
Sample Code	Coun	t Mean	Minimum	Maximu	um SD		Mean	Minimum	Maximum	SD
1104CDCAMPSF	10	42.7	9	56	15.2	246				
1104CDCAMPS1	10	49.9	16	64	13.1					
1104CDCAMPS2		46.6	30	56	8.55					
1104CDCAMPS3		50.1	39	59	5.64					
1104CDCAMPS4		31.1	1	57	20.6					
1104CDCAMPS5	_	37.9	12	64	20.3					
1104CDCAMPS6	10	47.9	27	62	11.5	321				
Data Detail										
Sample Code	Rep 1		Rep 3	Rep 4	Rep 5	Rep				Rep 10
1104CDCAMPSF		41	41	55	51	54	42	9	53	25
1104CDCAMPS1		46	52	16	49	61	56	56	64	50
1104CDCAMPS2		51	56	56	38	30	49	49	53	39
1104CDCAMPS3		49	50	52	45	49	48	55	55	39
1104CDCAMPS4		8	3	39	43	57	31	40	32	1
1104CDCAMPS5		34	33	64	49	12	59	13	44	12
1104CDCAMPS6	36	52	54	44	27	61	62	55	51	37

Comparisons: Report Date: Page 2 of 2 27 Apr-05 11:32 AM

Analysis: 07-1291-9595/PLOW SHOP

Page 1 of 1

1104PPCAMG6

1104PPCAMG6

1104PPCAMG6

1232.3

1217.96

1218.3

1226.89

1212.49

1212.65

27 Apr-05 9:29 AM Report Date: **CETIS Data Worksheet** Link: 16-5159-1835/GROVE

OL 110 Do	ita vv	OHIO	11001							Li	nk:	16-5159-1835/	/GROVE
Fathead Minno	ow 7-d L	arval S	Survival a	and Growth	Test						ι	J.S. EPA Regio	n I Lab
Start Date:	04 Nov-	-04		Species:	Pimepha	ales prome	elas		Sampl	e Code:	1104PPCAM	LC	<u>,</u>
Ending Date:	11 Nov-	-04		Protocol:	EPA/600	0/4-91/002	(1994)		Sampl	e Source:	Fort Devens	Grove LC SW	
Sample Date:	04 Nov-	-04		Material:	Potassiu	ım chlorid	е		Sampl	e Station:	GLC1		
Sample Code	e Re	p Pos	# Expos	ed d Surviva	2d Surviva	3d Surviva	4d Surviva	ı5d Surviva	6d Surviva	7d Surviva	Total Weight-m	Tare Weight-mg	Pan Coun
1104PPCAMLC	1		10	10	10	10	10	9	9	9	1223.24	1218.96	9
1104PPCAMLC	2		10	10	10	9	9	9	9	9	1228.77	1223.3	9
1104PPCAMLC	3		10	10	10	10	10	10	10	10	1241.06	1235.33	10
1104PPCAMLC	4		10	10	10	10	10	10	10	10	1226.99	1222.45	10
1104PPCAMF	1		10	10	10	10	10	9	9	9	1215.98	1211.09	9
1104PPCAMF	2		10	10	10	10	10	10	10	10	1227.64	1221.86	10
1104PPCAMF	3		10	10	10	10	10	10	10	10	1213.78	1207.66	10
1104PPCAMF	4		10	10	10	10	10	10	10	10	1224.59	1218.41	10
1104PPCAMG1	1		10	10	10	10	10	10	10	10	1229.56	1224.05	10
1104PPCAMG1	2		10	10	10	10	10	10	9	9	1228.65	1223.44	9
1104PPCAMG1	3		10	10	10	10	8	8	8	8	1221.5	1217.48	8
1104PPCAMG1	4		10	10	10	10	10	10	10	10	1227.42	1221.64	10
1104PPCAMG2	1		10	10	10	10	10	10	10	10	1216.77	1211.38	10
1104PPCAMG2	2		10	10	10	10	10	10	10	10	1228.05	1222.23	10
1104PPCAMG2	3		10	10	10	10	10	10	10	10	1225.98	1220.26	10
1104PPCAMG2	4		10	10	10	10	10	9	9	9	1235.13	1230	9
1104PPCAMG3	1		10	10	10	10	10	10	10	10	1226.63	1220.93	10
1104PPCAMG3	2		10	10	10	10	10	10	10	10	1230.91	1225.79	10
1104PPCAMG3	3		10	10	10	10	10	10	10	10	1230.92	1224.45	10
1104PPCAMG3	4		10	10	10	10	10	9	9	9	1240.17	1234.96	9
1104PPCAMG4	1		10	10	10	10	10	10	10	10	1224.06	1218.35	10
1104PPCAMG4	2		10	10	10	10	10	10	10	10	1227.23	1222.57	10
1104PPCAMG4	3		10	10	10	10	10	10	10	10	1235.22	1230.86	10
1104PPCAMG4	4		10	10	10	10	10	10	10	10	1222.58	1217.31	10
1104PPCAMG5	1		10	10	10	10	10	10	9	9	1234.44	1230.47	9
1104PPCAMG5	2		10	10	10	10	10	10	10	10	1227.3	1221.59	10
1104PPCAMG5	3		10	10	10	10	10	10	9	9	1229.23	1224.23	9
1104PPCAMG5	4		10	10	10	10	10	10	10	10	1247.97	1242.45	10
1104PPCAMG6	1		10	10	10	10	10	10	10	10	1223.34	1218.69	10
	_			4.0	4.0	4.0			4.0	4.0	1000 0	1000.00	

Page 1 of 2

CETIS Test Summary

Report Date: 27 Apr-05 9:35 AM Link: 16-5159-1835/GROVE

Fathead Minnow 7-d Larval Survival and Growth Test U.S. EPA Region I Lab Test No: **Duration:** 7d 0h 02-9102-9676 Test Type: Growth-Survival (7d) Start Date: EPA/600/4-91/002 (1994) 04 Nov-04 Protocol: Species: Pimephales promelas Ending Date: 11 Nov-04 Dil Water: None Source: In-House Culture Setup Date: 04 Nov-04 12:00 AM Brine: ESAT Fort Devens Surface Water PP Chronic Toxicity Test - Grove Pond Comments: 09-7253-2647 Client: **EPA REGION 1** Sample No: Material: Site Surface Water 1104PPCAMF Sample Date: 04 Nov-04 Code: Project: Receive Date: Fort Devens Grove Flannagan SW Source: Sample Age: Station: ESAT Fort Devens Surface Water PP Chronic Toxicity Test - Grove Pond Comments: Sample No: Material: **EPA REGION 1** 12-9380-9669 Site Surface Water Client: Sample Date: 04 Nov-04 Code: 1104PPCAMG1 Project: Receive Date: Source: Fort Devens Grove SW Sample Age: Station: N/A Comments: ESAT Fort Devens Surface Water PP Chronic Toxicity Test - Grove Pond Sample No: 08-5177-0380 Material: Site Surface Water Client: **EPA REGION 1** Sample Date: 04 Nov-04 Code: 1104PPCAMG2 Project: Receive Date: Source: Fort Devens Grove SW N/A Sample Age: Station: Comments: ESAT Fort Devens Surface Water PP Chronic Toxicity Test - Grove Pond Sample No: 11-0340-0881 Material: Site Surface Water Client: **EPA REGION 1** Sample Date: 04 Nov-04 Code: 1104PPCAMG3 Project: Source: Fort Devens Grove SW Receive Date: Sample Age: N/A Station: G3 Comments: ESAT Fort Devens Surface Water PP Chronic Toxicity Test - Grove Pond 13-9237-4017 Material: Site Surface Water Client: **EPA REGION 1** Sample No: 1104PPCAMG4 Sample Date: 04 Nov-04 Code: Project: Fort Devens Grove SW Receive Date: Source: Sample Age: N/A Station: Comments: ESAT Fort Devens Surface Water PP Chronic Toxicity Test - Grove Pond Sample No: 17-9724-4925 Material: Site Surface Water Client: **EPA REGION 1** Sample Date: 04 Nov-04 1104PPCAMG5 Code: Project: Receive Date: Source: Fort Devens Grove SW Sample Age: Station: ESAT Fort Devens Surface Water PP Chronic Toxicity Test - Grove Pond Comments: Sample No: 18-5928-5190 Material: Site Surface Water Client: **EPA REGION 1** Sample Date: 04 Nov-04 Code: 1104PPCAMG6 Project: Receive Date: Source: Fort Devens Grove SW Station: G6 Sample Age: Comments: ESAT Fort Devens Surface Water PP Chronic Toxicity Test - Grove Pond Sample No: 20-6637-5068 Material: Potassium chloride Client: **EPA REGION 1** Sample Date: 04 Nov-04 Code: 1104PPCAMLC Project: Fort Devens Grove LC SW Receive Date: Source: Sample Age: Station: ESAT Fort Devens Surface Water PP Chronic Toxicity Test - Grove Pond Comments:

Page 2 of 2

CETIS Test Summary

1104PPCAMG6

0.46500

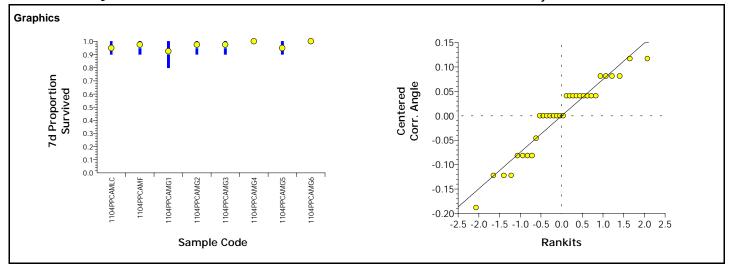
0.54100 0.54700

Report Date: 27 Apr-05 9:35 AM **Link:** 16-5159-1835/GROVE

02110 100104	<u>J</u>						LINK:	16-5159-1835/GROVE
7d Proportion Survived	d Summary							
Sample Code	Reps	Mean	Minimum	Maximum	SE	SD	CV	
1104PPCAMLC	4	0.95000	0.90000	1.00000	0.02887	0.05774	6.08%	
1104PPCAMF	4	0.97500	0.90000	1.00000	0.02500	0.05000	5.13%	
1104PPCAMG1	4	0.92500	0.80000	1.00000	0.04787	0.09574	10.35%	
1104PPCAMG2	4	0.97500	0.90000	1.00000	0.02500	0.05000	5.13%	
1104PPCAMG3	4	0.97500	0.90000	1.00000	0.02500	0.05000	5.13%	
1104PPCAMG4	4	1.00000	1.00000	1.00000	0.00000	0.00000	0.00%	
1104PPCAMG5	4	0.95000	0.90000	1.00000	0.02887	0.05774	6.08%	
1104PPCAMG6	4	1.00000	1.00000	1.00000	0.00000	0.00000	0.00%	
Mean Dry Biomass-mg	Summary							
Sample Code	Reps	Mean	Minimum	Maximum	SE	SD	CV	
1104PPCAMLC	4	0.50050	0.42800	0.57301	0.03516	0.07033	14.05%	-
1104PPCAMF	4	0.57425	0.48900	0.61799	0.02975	0.05950	10.36%	
1104PPCAMG1	4	0.51300	0.40200	0.57800	0.03879	0.07758	15.12%	
1104PPCAMG2	4	0.55150	0.51300	0.58201	0.01578	0.03157	5.72%	
1104PPCAMG3	4	0.56250	0.51200	0.64701	0.03092	0.06183	10.99%	
1104PPCAMG4	4	0.50000	0.43600	0.57101	0.03031	0.06062	12.12%	
1104PPCAMG5	4	0.50500	0.39700	0.57101	0.03900	0.07801	15.45%	
1104PPCAMG6	4	0.52950	0.46500	0.56500	0.02210	0.04419	8.35%	
7d Proportion Survived	d Detail							
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4				
1104PPCAMLC	0.90000		1.00000	1.00000				
1104PPCAMF	0.90000		1.00000	1.00000				
1104PPCAMG1	1.00000		0.80000	1.00000				
1104PPCAMG2	1.00000		1.00000	0.90000				
1104PPCAMG3	1.00000		1.00000	0.90000				
1104PPCAMG4	1.00000		1.00000	1.00000				
1104PPCAMG5	0.90000		0.90000	1.00000				
1104PPCAMG6	1.00000		1.00000	1.00000				
Mean Dry Biomass-mg								
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4				
1104PPCAMLC	0.42800		0.57301	0.45400				
1104PPCAMF	0.48900		0.61200	0.61799				
1104PPCAMG1	0.55100		0.40200	0.57800				
1104PPCAMG2	0.53900		0.57200	0.51300				
1104PPCAMG3	0.57000		0.64701	0.52101				
1104PPCAMG4	0.57000		0.43600	0.52699				
1104PPCAMG5	0.39700		0.50000	0.55200				
1101110/11/100	0.00700	0.07101	3.00000	0.00200				

0.56500

Comparisons:


Page 1 of 2 27 Apr-05 9:38 AM

Report Date: Analysis:

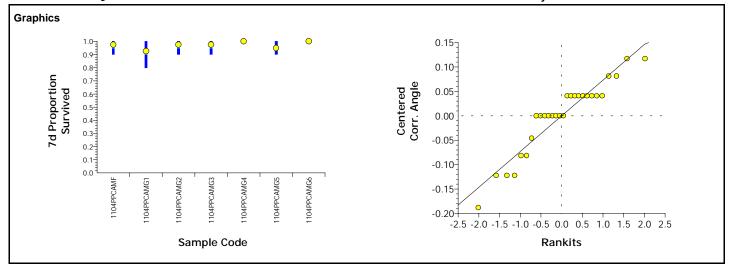
27 Apr-05 9:38 AM 19-5583-2867/GROVE

Fathead Minnow 7	7-d Larval Survival	and Growth	Гest					U.S. EPA	Region I Lab
Endpoint	Ar	nalysis Type		Sample	Link Co	ntrol Link	Date Analyzed	Version	
7d Proportion Surv	ived Co	mparison		16-5159-	·1835 16-	5159-1835	15 Mar-05 10:39	AM CETISV	1.025
Method	Alt	t H Data	Transform	Z	NOEL	LOEL	Toxic Units	ChV	MSDp
Dunnett's Multiple	Comparison C	> T Angu	lar (Corrected	d)			N/A		•
ANOVA Assumpti	ons								
Attribute	Test	Statis	etic Cr	itical	P Level	Decisi	on(0.01)		
Variances	Modified Levene	2.147			0.07701		Variances		
Distribution	Shapiro-Wilk W	0.921			0.02984	· · · · · · · · · · · · · · · · · · ·	l Distribution		
ANOVA Table									
ANOVA Table						_			
Source	Sum of Squares	•		F Statis			Decision(0.05)		
Between	0.0468909	0.0066987		0.90	0.51	901	Non-Significant E	ttect	
Error	0.1776626	0.0074026							
Total	0.22455344	0.0141013	ا ا						
Group Compariso	ons								
Sample vs	Sample	Statistic	Critical	P Level	MSD	De	ecision(0.05)		
1104PPCAMLC	1104PPCAMF	-0.6697	2.48	> 0.0500	0.15088	3 No	on-Significant Effec	t	
1104PPCAMLC	1104PPCAMG1	0.58309	2.48	> 0.0500	0.15088	3 No	on-Significant Effec	t	
1104PPCAMLC	1104PPCAMG2	-0.6697	2.48	> 0.0500	0.15088		on-Significant Effec		
1104PPCAMLC	1104PPCAMG3	-0.6697	2.48	> 0.0500	0.15088		on-Significant Effec		
1104PPCAMLC	1104PPCAMG4	-1.3394	2.48	> 0.0500	0.15088	3 No	on-Significant Effec	t	
1104PPCAMLC	1104PPCAMG5	0	2.48	> 0.0500	0.15088	3 No	on-Significant Effec	t	
1104PPCAMLC	1104PPCAMG6	-1.3394	2.48	> 0.0500	0.15088	B No	on-Significant Effec	t	
Data Summary			Orig	jinal Data			Transfo	ormed Data	
Sample Code	Count	Mean	Minimum	Maximun	n SD	Mean	Minimum	Maximum	SD
1104PPCAMLC	4	0.95000	0.90000	1.00000	0.05773	3 1.330	53 1.24905	1.41202	0.09409
1104PPCAMF	4	0.97500	0.90000	1.00000	0.05000	1.371	27 1.24905	1.41202	0.08149
1104PPCAMG1	4	0.92500	0.80000	1.00000	0.09574	1.295	06 1.10715	1.41202	0.14695
1104PPCAMG2	4	0.97500	0.90000	1.00000	0.05000	1.371	27 1.24905	1.41202	0.08149
1104PPCAMG3	4	0.97500	0.90000	1.00000	0.05000	1.371	27 1.24905	1.41202	0.08149
1104PPCAMG4	4	1.00000	1.00000	1.00000	0.00000	1.412	02 1.41202	1.41202	0.00027
1104PPCAMG5	4	0.95000	0.90000	1.00000	0.05773	3 1.330	53 1.24905	1.41202	0.09409
1104PPCAMG6	4	1.00000	1.00000	1.00000	0.00000	1.412	02 1.41202	1.41202	0.00027
Data Detail									
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7 Rep 8	Rep 9	Rep 10
1104PPCAMLC	0.9000		1.00000	1.00000					
1104PPCAMF	0.9000	0 1.00000	1.00000	1.00000					
1104PPCAMG1	1.0000	0.90000	0.80000	1.00000					
1104PPCAMG2	1.0000	0 1.00000	1.00000	0.90000					
1104PPCAMG3	1.0000	0 1.00000	1.00000	0.90000					
1104PPCAMG4	1.0000	0 1.00000	1.00000	1.00000					
1104PPCAMG5	0.9000	0 1.00000	0.90000	1.00000					
1104PPCAMG6	1.0000	0 1.00000	1.00000	1.00000					

Comparisons: Report Date: Analysis: Page 2 of 2 27 Apr-05 9:38 AM 19-5583-2867/GROVE

Comparisons:

Page 1 of 2


27 Apr-05 9:52 AM 13-9776-0371/GROVE

CETIS Analysis Detail

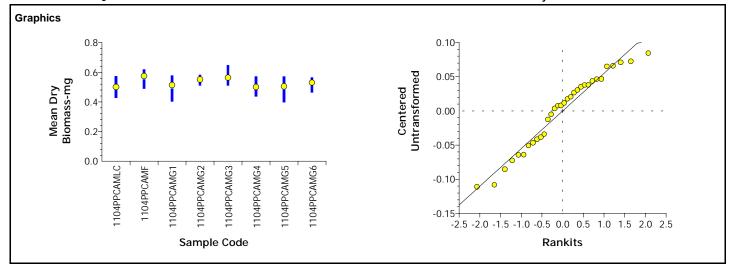
Report Date: Analysis:

CETIS Allai	ysis Detail						Analysis:	13-9776	-0371/GROV
Fathead Minnow	7-d Larval Survival a	and Growth T	est					U.S. EPA F	Region I Lab
Endpoint	An	alysis Type		Sample	Link Contro	l Link Da	ate Analyzed	Version	
7d Proportion Surv		mparison		16-5159-		9-1835 23	3 Mar-05 11:34	AM CETISv1	1.025
Method	Alt	H Data	Transform	Z	NOEL	LOEL T	oxic Units	ChV	MSDp
Dunnett's Multiple	Comparison C >	T Angul	ar (Corrected	d)		N	I/A		•
ANOVA Assumpt	ions								
Attribute	Test	Statis	stic Cr	itical	P Level	Decision(0.01)		
Variances	Modified Levene	1.984			0.11376	Equal Vari			
Distribution	Shapiro-Wilk W	0.904	35 0.8	39591	0.01613	Normal Dis	stribution		
ANOVA Table									
Source	Sum of Squares	Mean Squ	are DF	F Statis	tic P Level	De	ecision(0.05)		
Between	0.0424364	0.0070727	6	0.98	0.46135	. No	on-Significant E	ffect	
Error	0.1511033	0.0071954	21						
Total	0.19353969	0.0142681	27						
Group Compariso	ons								
Sample vs	Sample	Statistic	Critical	P Level	MSD	Decisi	ion(0.05)		
1104PPCAMF	1104PPCAMG1	1.27069	2.45143	> 0.0500	0.14704	Non-S	ignificant Effect	t	
1104PPCAMF	1104PPCAMG2	0	2.45143	> 0.0500	0.14704	Non-S	ignificant Effect	t	
1104PPCAMF	1104PPCAMG3	0	2.45143	> 0.0500	0.14704	Non-S	ignificant Effect	t	
1104PPCAMF	1104PPCAMG4	-0.6793	2.45143	> 0.0500	0.14704	Non-S	ignificant Effect	t	
1104PPCAMF	1104PPCAMG5	0.67926	2.45143	> 0.0500	0.14704	Non-S	ignificant Effect	t	
1104PPCAMF	1104PPCAMG6	-0.6793	2.45143	> 0.0500	0.14704	Non-S	ignificant Effect	į	
Data Summary			Oriç	ginal Data			Transfo	rmed Data	
Sample Code	Count	Mean	Minimum	Maximun	n SD	Mean	Minimum	Maximum	SD
1104PPCAMF	4	0.97500	0.90000	1.00000	0.05000	1.37127	1.24905	1.41202	0.08149
1104PPCAMG1	4	0.92500	0.80000	1.00000	0.09574	1.29506	1.10715	1.41202	0.14695
1104PPCAMG2	4	0.97500	0.90000	1.00000	0.05000	1.37127	1.24905	1.41202	0.08149
1104PPCAMG3	4	0.97500	0.90000	1.00000	0.05000	1.37127	1.24905	1.41202	0.08149
1104PPCAMG4	4	1.00000	1.00000	1.00000	0.00000	1.41202	1.41202	1.41202	0.00027
1104PPCAMG5	4	0.95000	0.90000	1.00000	0.05773	1.33053	1.24905	1.41202	0.09409
1104PPCAMG6	4	1.00000	1.00000	1.00000	0.00000	1.41202	1.41202	1.41202	0.00027
Data Detail									
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5 Re	p6 Re	p 7 Rep 8	Rep 9	Rep 10
1104PPCAMF	0.90000	1.00000	1.00000	1.00000					
1104PPCAMG1	1.00000	0.90000	0.80000	1.00000					
1104PPCAMG2	1.00000		1.00000	0.90000					
1104PPCAMG3	1.00000		1.00000	0.90000					
1104PPCAMG4	1.00000		1.00000	1.00000					
1104PPCAMG5	0.90000		0.90000	1.00000					
1104PPCAMG6	1.00000	1.00000	1.00000	1.00000					

Comparisons: Report Date: Analysis: Page 2 of 2 27 Apr-05 9:52 AM 13-9776-0371/GROVE

Comp

Comparisons:


Page 1 of 2

Report Date: Analysis: 27 Apr-05 9:56 AM 01-4001-5173/GROVE

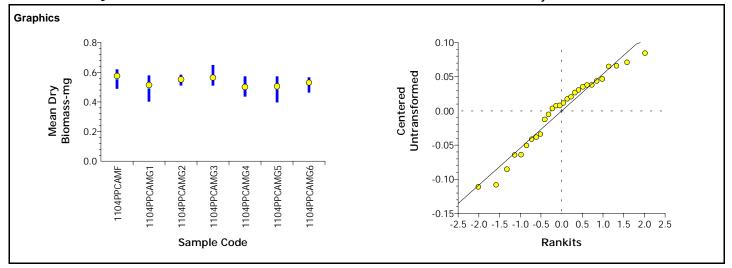
CETIS Analysis Detail

)									Analysis:		01-4001	-5173/GRUVE
Fathead Minnow	7-d Larval Surviv	al and Gr	owth Test									U.S. EPA	Region I Lab
Endpoint		Analysis	Туре		Sample	Linl	c Cont	trol L	ink C	ate Analyze	ed	Version	
Mean Dry Biomas	ss-mg	Comparis	on		16-5159	9-183	5 16-5	159-1	835 0	1 Apr-05 8:5	55 AM	CETISv	1.025
Method		Alt H	Data Trans	sform	Z	1	NOEL	LO	EL '	Toxic Units	C	ChV	MSDp
Dunnett's Multiple	Comparison	C > T	Untransfor	med						N/A			
ANOVA Assump	tions												
Attribute	Test		Statistic	С	ritical	P Le	evel	D	ecision	(0.01)			
Variances	Bartlett		2.86443		3.47531	0.89			qual Va				
Distribution	Shapiro-Wilk W		0.94536	0.	90435	0.13	327	N	lormal D	istribution			
ANOVA Table													
Source	Sum of Squar	es Mes	ın Square	DF	F Stati	stic	P Lev	/el	г	ecision(0.0	5)		
Between	0.0246364)35195	7	0.91	3110	0.517			lon-Significa		ect	
Error	0.0931079		38795	24						.			
Total	0.11774424	0.00	7399	31									
Group Comparis	ons												
Sample vs		Statis	tic Crit	ical	P Level		MSD		Decis	sion(0.05)			
1104PPCAMLC	1104PPCAMF	-1.674			> 0.0500		0.10923			Significant E	ffect		
1104PPCAMLC	1104PPCAMG ²				> 0.0500		0.10923			Significant E			
1104PPCAMLC	1104PPCAMG2				> 0.0500		0.10923			Significant E			
1104PPCAMLC	1104PPCAMG				> 0.0500		0.10923			Significant E			
1104PPCAMLC	1104PPCAMG4				> 0.0500		0.10923			Significant E			
1104PPCAMLC	1104PPCAMG				> 0.0500		0.10923			Significant E			
1104PPCAMLC	1104PPCAMG				> 0.0500		0.10923			Significant E			
Data Summary				Ori	ginal Data					Trar	nsfori	ned Data	
Sample Code	Cou	nt Mea	n Mi	nimum		m	SD		Mean	Minimu		Maximum	SD
1104PPCAMLC	4			12800	0.57301		0.07033	<u> </u>			****	Maximum	
1104PPCAMF	4			18900	0.61799		0.05950						
1104PPCAMG1	4			40200	0.57800		0.07758						
1104PPCAMG2	4			51300	0.58201		0.03157						
1104PPCAMG3	4			51200	0.64701		0.06183						
1104PPCAMG4	4			13600	0.57101		0.06062						
1104PPCAMG5	4			39700	0.57101		0.07801						
1104PPCAMG6	4			46500	0.56500		0.04419						
Data Detail													
Sample Code	Rep	1 Re	ep 2 Re	р 3	Rep 4	Re	o 5 F	Rep 6	S R	ep7 Re	ep 8	Rep 9	Rep 10
1104PPCAMLC	0.42			57301	0.45400					•	•	•	•
1104PPCAMF	0.48			61200	0.61799								
1104PPCAMG1	0.55			10200	0.57800								
1104PPCAMG2	0.53			57200									
		900 0.8 000 0.8 101 0.4 700 0.8	58201 0.6 51200 0.6 46600 0.4 57101 0.6		0.57800 0.51300 0.52101 0.52699 0.55200 0.56500								

Comparisons: Report Date: Analysis: Page 2 of 2 27 Apr-05 9:56 AM 01-4001-5173/GROVE

Comparisons: Report Date:

Page 1 of 2


27 Apr-05 9:58 AM

CETIS Analysis Detail

Analysis: 19-7088-0126/GROVE

1	J						Alialysis.	13-7000	5-0120/GROVE
Fathead Minnow	7-d Larval Survival	and Growth	Гest					U.S. EPA	Region I Lab
Endpoint	А	nalysis Type		Sample	Link Con	trol Link	Date Analyzed	Version	l
Mean Dry Biomas	s-mg C	omparison		16-5159	-1835 16-5	159-1835	01 Apr-05 8:56 A	AM CETISV	1.025
Method	A	It H Data	Transform	Z	NOEL	LOEL	Toxic Units	ChV	MSDp
Dunnett's Multiple			nsformed				N/A		
ANOVA Assumpt	tions								
Attribute	Test	Statis	stic Cı	ritical	P Level	Decisi	on(0.01)		
Variances	Bartlett	2.759		6.81190	0.83838		Variances		
Distribution	Shapiro-Wilk W	0.948		89591	0.19764	•	I Distribution		
ANOVA Table	· · · · · · · · · · · · · · · · · · ·								
Source	Sum of Square	s Mean Squ	iare DF	F Statis	stic P Lev	vel	Decision(0.05)		
Between	0.020784	0.003464	6	0.93	0.494		Non-Significant	Effect	
Error	0.0782705	0.0037272					J		
Total	0.09905442	0.0071912	2 27						
Group Comparis	ons								
Sample vs		Statistic	Critical	P Level	MSD	De	ecision(0.05)		
1104PPCAMF	1104PPCAMG1	1.41874	2.45143	> 0.0500	0.10583		on-Significant Effec	ct	
1104PPCAMF	1104PPCAMG2	0.52695	2.45143	> 0.0500	0.10583	No	on-Significant Effec	ct	
1104PPCAMF	1104PPCAMG3	0.2721	2.45143	> 0.0500	0.10583	No	on-Significant Effec	ct	
1104PPCAMF	1104PPCAMG4	1.71996	2.45143	> 0.0500	0.10583	No	on-Significant Effec	ct	
1104PPCAMF	1104PPCAMG5	1.60409	2.45143	> 0.0500	0.10583		on-Significant Effec		
1104PPCAMF	1104PPCAMG6	1.03657	2.45143	> 0.0500	0.10583	No	on-Significant Effec	ct	
Data Summary			Oriç	ginal Data			Transf	ormed Data	
Sample Code	Coun	t Mean	Minimum	Maximu	m SD	Mean	Minimum	Maximum	SD
1104PPCAMF	4	0.57425	0.48900	0.61799	0.05950				
1104PPCAMG1	4	0.51300	0.40200	0.57800	0.07758				
1104PPCAMG2	4	0.55150	0.51300	0.58201	0.03157				
1104PPCAMG3	4	0.56250	0.51200	0.64701	0.06183				
1104PPCAMG4	4	0.50000	0.43600	0.57101	0.06062				
1104PPCAMG5	4	0.50500	0.39700	0.57101	0.07801				
1104PPCAMG6	4	0.52950	0.46500	0.56500	0.04419				
Data Detail									
Sample Code	Rep 1		Rep 3	Rep 4	Rep 5	Rep 6	Rep 7 Rep 8	8 Rep 9	Rep 10
1104PPCAMF	0.489		0.61200	0.61799					
1104PPCAMG1	0.551		0.40200	0.57800					
1104PPCAMG2	0.539		0.57200	0.51300					
1104PPCAMG3	0.570		0.64701	0.52101					
1104PPCAMG4	0.571		0.43600	0.52699					
1104PPCAMG5	0.397		0.50000	0.55200					
1104PPCAMG6	0.465	00 0.54100	0.54700	0.56500					

Comparisons: Report Date: Analysis: Page 2 of 2 27 Apr-05 9:58 AM 19-7088-0126/GROVE

Page 1 of 1

CETIS Data Worksheet

104PPCAMPS6

104PPCAMPS6

1104PPCAMPS6

1222.28

1215.82

1220.71

1216.02

1210.71

1215.16

Report Date: 27 Apr-05 10:13 AM **Link:** 07-8396-9673/PLOW

Fathead Minnow 7-d Larval Survival and Growth Test U.S. EPA Region I Lab 1104PPCAMPSLC Start Date: 04 Nov-04 Species: Pimephales promelas Sample Code: Ending Date: 11 Nov-04 Protocol: EPA/600/4-91/002 (1994) Sample Source: Fort Devens Plow Shop LC SW Sample Date: 04 Nov-04 Material: Potassium chloride Sample Station: PSLC Sample Code Rep Pos # Exposed d SurvivaRd 1104PPCAMPSLC 1223.24 1218.96 104PPCAMPSLC 1228.77 1223.3 104PPCAMPSLC 1241.06 1235.33 1104PPCAMPSLC 1226.99 1222.45 1104PPCAMPSF 1215.98 1211.09 1104PPCAMPSF 1227.64 1221.86 104PPCAMPSF 1213.78 1207.66 104PPCAMPSF 1224.59 1218.41 104PPCAMPS1 1221.62 1216.26 1104PPCAMPS1 1223.71 1218.71 1104PPCAMPS1 1233.02 1226.8 1104PPCAMPS1 1228.03 1224.91 1225.88 104PPCAMPS2 1219.31 1104PPCAMPS2 1228.6 1223.22 1104PPCAMPS2 1232.97 1227.57 1104PPCAMPS2 1220.43 1214.46 1104PPCAMPS3 1222.8 1217.29 104PPCAMPS3 1222.36 1217.65 104PPCAMPS3 1235.13 1229.28 1104PPCAMPS3 1235.28 1229.47 1104PPCAMPS4 1219.11 1214.61 1104PPCAMPS4 1232.2 1237.33 1104PPCAMPS4 1222.15 1215.75 1104PPCAMPS4 1229.05 1223.78 1241.72 1104PPCAMPS5 1236.3 104PPCAMPS5 1224.55 1219.4 1104PPCAMPS5 1218.68 1104PPCAMPS5 1224.47 1218.25 104PPCAMPS6 1219.48 1213.93

CETIS Test Summary

 Report Date:
 27 Apr-05 10:16 AM

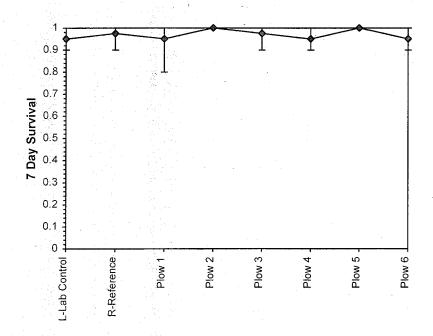
 Link:
 07-8396-9673/PLOW

	or ourning	-d Cu			U.S. EDA Bosion II oh
Fathead Minno	ow 7-d Larval Survival an	d Growth Te	est		U.S. EPA Region I Lab
Test No: Start Date: Ending Date: Setup Date:	19-1344-9777 04 Nov-04 11 Nov-04 04 Nov-04 12:00 AM	Protocol: Dil Water: Brine:		Duration: Species: Source:	7d 0h Pimephales promelas In-House Culture
Comments:	ESAT Fort Devens Surfa	ce Water PP	Chronic Toxicity Test - Plow Shop Pond		
Sample No: Sample Date: Receive Date: Sample Age:	N/A	Material: Code: Source: Station:	Site Surface Water 1104PPCAMPS1 Fort Devens Plow Shop SW PS1	Client: Project:	EPA REGION 1
Comments:	ESAT Fort Devens Surface	ce Water PP	Chronic Toxicity Test - Plow Shop Pond		
Sample No: Sample Date: Receive Date: Sample Age:	16-7597-2676 04 Nov-04 N/A	Material: Code: Source: Station:	Site Surface Water 1104PPCAMPS2 Fort Devens Plow Shop SW PS2	Client: Project:	EPA REGION 1
Comments:	ESAT Fort Devens Surface	ce Water PP	Chronic Toxicity Test - Plow Shop Pond		
Sample No: Sample Date: Receive Date: Sample Age:	07-1409-5254 04 Nov-04 N/A	Material: Code: Source: Station:	Site Surface Water 1104PPCAMPS3 Fort Devens Plow Shop SW PS3	Client: Project:	EPA REGION 1
Comments:	ESAT Fort Devens Surface	ce Water PP	Chronic Toxicity Test - Plow Shop Pond		
Sample No: Sample Date: Receive Date: Sample Age:	N/A	Material: Code: Source: Station:	Site Surface Water 1104PPCAMPS4 Fort Devens Plow Shop SW PS4	Client: Project:	EPA REGION 1
Comments:	ESAT Fort Devens Surface	ce Water PP	Chronic Toxicity Test - Plow Shop Pond		
Sample No: Sample Date: Receive Date: Sample Age:	07-2003-4760 04 Nov-04 N/A	Material: Code: Source: Station:	Site Surface Water 1104PPCAMPS5 Fort Devens Plow Shop SW PS5	Client: Project:	EPA REGION 1
Comments:	ESAT Fort Devens Surface	ce Water PP	Chronic Toxicity Test - Plow Shop Pond		
Sample No: Sample Date: Receive Date: Sample Age:	N/A	Material: Code: Source: Station:	Site Surface Water 1104PPCAMPS6 Fort Devens Plow Shop SW PS6	Client: Project:	EPA REGION 1
Comments:	ESAT Fort Devens Surface	ce Water PP	Chronic Toxicity Test - Plow Shop Pond		
Sample No: Sample Date: Receive Date: Sample Age:	17-3082-4894 04 Nov-04 N/A	Material: Code: Source: Station:	Site Surface Water 1104PPCAMPSF Fort Devens Plow Shop Flannagan S PSF	Client: Project:	EPA REGION 1
Comments:	ESAT Fort Devens Surface	ce Water PP	Chronic Toxicity Test - Plow Shop Pond		
Sample No: Sample Date: Receive Date: Sample Age:	N/A	Material: Code: Source: Station:	Potassium chloride 1104PPCAMPSLC Fort Devens Plow Shop LC SW PSLC	Client: Project:	EPA REGION 1
Comments:	ESAT Fort Devens Surface	ce Water PP	Chronic Toxicity Test - Plow Shop Pond		

CETIS Test Summary

Report Date: Link: 27 Apr-05 10:16 AM 07-8396-9673/PLOW

	,						LIIIK.	07-0390-9073/FLOW
7d Proportion Survived	Summary							
Sample Code	Reps	Mean	Minimum	Maximum	SE	SD	CV	
1104PPCAMPSLC	4	0.95000	0.90000	1.00000	0.02887	0.05774	6.08%	
1104PPCAMPSF	4	0.97500	0.90000	1.00000	0.02500	0.05000	5.13%	
1104PPCAMPS1	4	0.95000	0.80000	1.00000	0.05000	0.10000	10.53%	
1104PPCAMPS2	4	1.00000	1.00000	1.00000	0.00000	0.00000	0.00%	
1104PPCAMPS3	4	0.97500	0.90000	1.00000	0.02500	0.05000	5.13%	
1104PPCAMPS4	4	0.95000	0.90000	1.00000	0.02887	0.05774	6.08%	
1104PPCAMPS5	4	1.00000	1.00000	1.00000	0.00000	0.00000	0.00%	
1104PPCAMPS6	4	0.95000	0.90000	1.00000	0.02887	0.05774	6.08%	
Mean Dry Biomass-mg	Summary							
Sample Code	Reps	Mean	Minimum	Maximum	SE	SD	CV	
1104PPCAMPSLC	4	0.50050	0.42800	0.57301	0.03516	0.07033	14.05%	
1104PPCAMPSF	4	0.57425	0.48900	0.61799	0.02975	0.05950	10.36%	
1104PPCAMPS1	4	0.49250	0.31200	0.62200	0.06538	0.13076	26.55%	
1104PPCAMPS2	4	0.58300	0.53800	0.65699	0.02820	0.05641	9.68%	
1104PPCAMPS3	4	0.54700	0.47100	0.58500	0.02645	0.05289	9.67%	
1104PPCAMPS4	4	0.53250	0.45000	0.64000	0.03955	0.07911	14.86%	
1104PPCAMPS5	4	0.55275	0.51500	0.62200	0.02375	0.04749	8.59%	
1104PPCAMPS6	4	0.56175	0.51100	0.62600	0.02380	0.04759	8.47%	
7d Proportion Survived	Detail							
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4				
1104PPCAMPSLC	0.90000	0.90000	1.00000	1.00000				
1104PPCAMPSF	0.90000	1.00000	1.00000	1.00000				
1104PPCAMPS1	1.00000	1.00000	1.00000	0.80000				
1104PPCAMPS2	1.00000	1.00000	1.00000	1.00000				
1104PPCAMPS3	1.00000	0.90000	1.00000	1.00000				
1104PPCAMPS4	0.90000	1.00000	1.00000	0.90000				
1104PPCAMPS5	1.00000	1.00000	1.00000	1.00000				
1104PPCAMPS6	1.00000	1.00000	0.90000	0.90000				
Mean Dry Biomass-mg	Detail							
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4				
1104PPCAMPSLC	0.42800	0.54700	0.57301	0.45400				
1104PPCAMPSF	0.48900	0.57800	0.61200	0.61799				
1104PPCAMPS1	0.53600	0.50000	0.62200	0.31200				
1104PPCAMPS2	0.65699	0.53800	0.54000	0.59701				
1104PPCAMPS3	0.55100	0.47100	0.58500	0.58101				
1104PPCAMPS4	0.45000	0.51300	0.64000	0.52700				
1104PPCAMPS5	0.54199	0.51500	0.53199	0.62200				
1104PPCAMPS6	0.55499	0.62600	0.51100	0.55499				


		Larval Fish Growth and Survival Test-7 Day Survival												
Start Date: End Date: Sample Date:			Test ID: Lab ID: Protocol:		PA Freshwater	Sample ID: Sample Type: Test Species:	Plow FHM AMB1-Ambient water PP-Pimephales promelas							
Comments: Conc-	1		3	4										
L-Lab Control	0.9000	0.9000	1.0000	1.0000										
R-Reference	0.9000	1.0000	1.0000	1.0000		. •		,						
Plow 1	1.0000	1.0000	1.0000	0.8000										
Plow 2	1.0000	1.0000	1.0000	1.0000										
Plow 3	1.0000	0.9000	1.0000	1.0000		•								
Plow 4	0.9000	1.0000	1.0000	0.9000										
Plow 5	1.0000	1.0000	1.0000	1.0000				•						
Plow 6	1.0000	1.0000	0.9000	0.9000										
	* *													

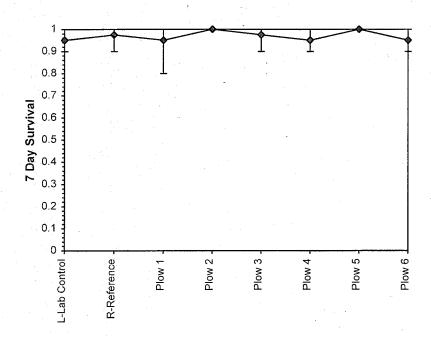
			Tr	ansform:	Arcsin So	quare Roo	Rank	1-Tailed		
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
L-Lab Control	0.9500	0.9744	1.3305	1.2490	1.4120	7.072	4			
R-Reference	0.9750	1.0000	1.3713	1.2490	1.4120	5.942	4			
Plow 1	0.9500	0.9744	1.3358	1.1071	1.4120	11.411	4	19.00	10.00	
Plow 2	1.0000	1.0256	1.4120	1.4120	1.4120	0.000	4	22.00	10.00	
Plow 3	0.9750	1.0000	1.3713	1.2490	1.4120	5.942	4	20.00	10.00	
Plow 4	0.9500	0.9744	1.3305	1.2490	1.4120	7.072	4	18.00	10.00	
Plow 5	1.0000	1.0256	1.4120	1.4120	1.4120	0.000	4	22.00	10.00	
Plow 6	0.9500	0.9744	1.3305	1.2490	1.4120	7.072	4	18.00	10.00	•

Auxiliary Tests	Statistic	Critical	Skew Kurl
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.86255	0.896	-0.9839 0.8650
Equality of variance cannot be confirmed			
The control means are not significantly different (p = 0.54)	0.65465	2.44691	
Hypothesis Test (1-tail, 0.05)			

Steel's Many-One Rank Test indicates no significant differences

Dose-Response Plot

Comparison to Ref.


		Larval Fish Growth and Survival Test-7 Day Survival												
Start Date:			Test ID:	Plow P.p.	Sample ID:	Plow FHM								
End Date:			Lab ID:		Sample Type:	AMB1-Ambient water								
Sample Date:			Protocol:	EPAF 91-EPA Freshwater	Test Species:	PP-Pimephales promelas								
Comments:														
Conc-	1	2	3	4										
L-Lab Control	0.9000	0.9000	1.0000	1.0000										
R-Reference	0.9000	1.0000	1.0000	1.0000			•							
Plow 1	1.0000	1.0000	1.0000	0.8000										
Plow 2	1.0000	1.0000	1.0000	1.0000										
Plow 3	1.0000	0.9000	1.0000	1.0000	' .									
Plow 4	0.9000	1.0000	1.0000	0.9000										
Plow 5	1.0000	1.0000	1.0000	1.0000										
Plow 6	1.0000	1.0000	0.9000	0.9000										

		1.	Tra	ansform:	Arcsin Sc	quare Roo	t	Rank	1-Tailed	
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	
L-Lab Control	0.9500	0.9744	1.3305	1.2490	1.4120	7.072	4		•	
R-Reference	0.9750	1.0000	1.3713	1.2490	1.4120	5.942	4			•
Plow 1	0.9500	0.9744	1.3358	1.1071	1.4120	11.411	4	17.50	10.00	
Plow 2	1.0000	1.0256	1.4120	1.4120	1.4120	0.000	4	20.00	10.00	
Plow 3	0.9750	1.0000	1.3713	1.2490	1.4120	5.942	4	18.00	10.00	
Plow 4	0.9500	0.9744	1.3305	1.2490	1.4120	7.072	4	16.00	10.00	
Plow 5	1.0000	1.0256	1.4120	1.4120	1.4120	0.000	4	20.00	10.00	
Plow 6	0.9500	0.9744	1.3305	1.2490	1.4120	7.072	4	16.00	10.00	

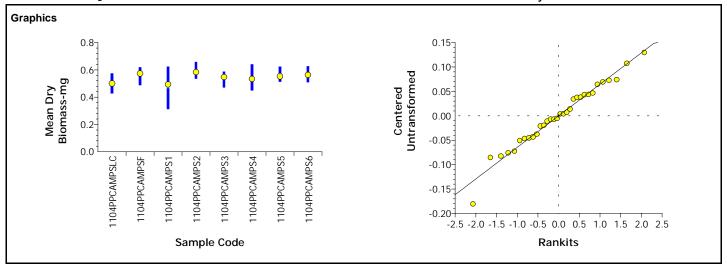
Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.8625	0.896	-1.1832 1.2883
Equality of variance cannot be confirmed			
The control means are not significantly different (p = 0.54)	0.65465	2.44691	
Hypothesis Test (1-tail, 0.05)			

Steel's Many-One Rank Test indicates no significant differences

Dose-Response Plot

Comparisons:

Page 1 of 2


27 Apr-05 10:20 AM 06-2655-7272/PLOW

CETIS Analysis Detail

Report Date: 27 A Analysis: 06-26

Fathead Minnow 7-	d Larval Survival a	and Growth T	est				Analysis.	U.S. EPA I	Region I Lab
Endpoint	Ana	alysis Type		Sample L	ink Contro	ol Link	Date Analyzed	Version	
Mean Dry Biomass-r		mparison		07-8396-9		6-9673	01 Apr-05 8:56 AM		
Method	Alt	H Data	Transform	Z	NOEL	LOEL	Toxic Units	ChV	MSDp
Dunnett's Multiple Co			nsformed		INGEL .	LOLL	N/A	0•	шовр
•	·								
ANOVA Assumption	ns								
	est	Statis			Level	Decisio			
	Bartlett	5.275			.62643		ariances		
Distribution S	Shapiro-Wilk W	0.979	35 0.9	90435 0	.81536	Normal	Distribution		
ANOVA Table									
Source	Sum of Squares	Mean Squ	are DF	F Statist	ic P Level	l	Decision(0.05)		
Between	0.0300225	0.0042889	7	0.81	0.58742	2	Non-Significant Ef	ffect	
Error	0.1270289	0.0052929	24						
Total	0.15705135	0.0095818	31						
Group Comparison	s								
Sample vs		Statistic	Critical	P Level	MSD	Dec	cision(0.05)		
1104PPCAMPS		-1.4335	2.48	> 0.0500	0.12758		n-Significant Effect		
1104PPCAMPS		0.15560	2.48	> 0.0500	0.12758		n-Significant Effect		
1104PPCAMPS		-1.6037	2.48	> 0.0500	0.12758		n-Significant Effect		
1104PPCAMPS		-0.9038	2.48	> 0.0500	0.12758		n-Significant Effect		
1104PPCAMPS		-0.622	2.48	> 0.0500	0.12758		n-Significant Effect		
1104PPCAMPS		-1.0155	2.48	> 0.0500	0.12758		n-Significant Effect		
1104PPCAMPS	1104PPCAMPS	-1.1905	2.48	> 0.0500	0.12758		n-Significant Effect		
Data Summary			Orig	inal Data			Transfo	rmed Data	
Sample Code	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maximum	SD
1104PPCAMPSLC	4	0.50050	0.42800	0.57301	0.07033				
1104PPCAMPSF	4	0.57425	0.48900	0.61799	0.05950				
1104PPCAMPS1	4	0.49250	0.31200	0.62200	0.13076				
1104PPCAMPS2	4	0.58300	0.53800	0.65699	0.05641				
1104PPCAMPS3	4	0.54700	0.47100	0.58500	0.05289				
1104PPCAMPS4	4	0.53250	0.45000	0.64000	0.07911				
1104PPCAMPS5	4	0.55275	0.51500	0.62200	0.04749				
1104PPCAMPS6	4	0.56175	0.51100	0.62600	0.04759				
Data Detail						·			
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5 Re	ep 6	Rep 7 Rep 8	Rep 9	Rep 10
1104PPCAMPSLC	0.42800		0.57301	0.45400					
1104PPCAMPSF	0.48900	0.57800	0.61200	0.61799					
1104PPCAMPS1	0.53600	0.50000	0.62200	0.31200					
1104PPCAMPS2	0.65699	0.53800	0.54000	0.59701					
1104PPCAMPS3	0.55100	0.47100	0.58500	0.58101					
1104PPCAMPS4	0.45000	0.51300	0.64000	0.52700					
1104PPCAMPS5	0.54199	0.51500	0.53199	0.62200					
1104PPCAMPS6	0.55499	0.62600	0.51100	0.55499					

Comparisons: Report Date: Analysis: Page 2 of 2 27 Apr-05 10:20 AM 06-2655-7272/PLOW

Comparisons:

Page 1 of 2

Report Date:

27 Apr-05 10:24 AM

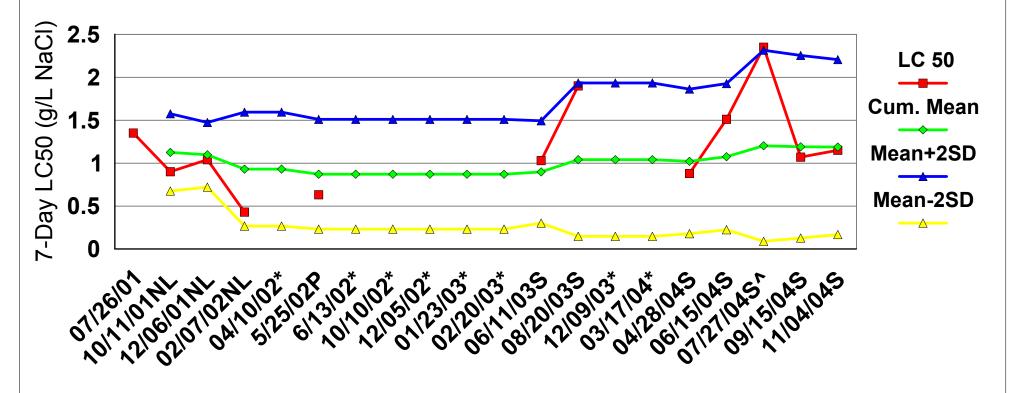
CETIS Analysis Detail

05-0205-9702/PLOW Analysis: Fathead Minnow 7-d Larval Survival and Growth Test U.S. EPA Region I Lab **Endpoint Analysis Type** Sample Link **Control Link Date Analyzed** Version Mean Dry Biomass-mg Comparison 07-8396-9673 07-8396-9673 01 Apr-05 8:56 AM CETISv1.025 Method Alt H Ζ NOEL LOEL ChV **MSDp Data Transform Toxic Units** Dunnett's Multiple Comparison Untransformed C > TN/A **ANOVA Assumptions** Attribute Test **Statistic** Critical P Level Decision(0.01) Variances **Bartlett** 5.25904 16.81190 0.51104 **Equal Variances** Shapiro-Wilk W Distribution 0.97560 0.89591 0.74658 Normal Distribution **ANOVA Table** DF Source F Statistic Decision(0.05) **Sum of Squares** Mean Square P Level Between 0.0217547 0.0036258 6 0.68 0.66845 Non-Significant Effect Error 0.1121915 0.0053425 21 Total 0.13394613 0.0089682 27

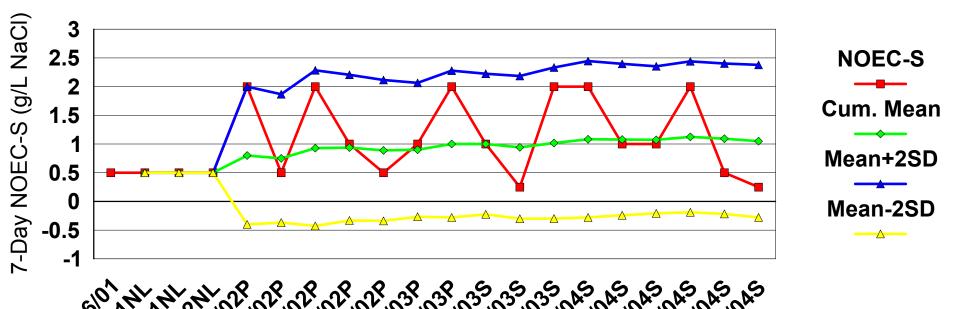
Group Comparisons										
Sample vs	Sample	Statistic	Critical	P Level	MSD	Decision(0.05)				
1104PPCAMPS	1104PPCAMPS	1.58174	2.45143	> 0.0500	0.1267	Non-Significant Effect				
1104PPCAMPS	1104PPCAMPS	-0.1693	2.45143	> 0.0500	0.1267	Non-Significant Effect				
1104PPCAMPS	1104PPCAMPS	0.52723	2.45143	> 0.0500	0.1267	Non-Significant Effect				
1104PPCAMPS	1104PPCAMPS	0.80776	2.45143	> 0.0500	0.1267	Non-Significant Effect				
1104PPCAMPS	1104PPCAMPS	0.41604	2.45143	> 0.0500	0.1267	Non-Significant Effect				
1104PPCAMPS	1104PPCAMPS	0.24191	2.45143	> 0.0500	0.1267	Non-Significant Effect				

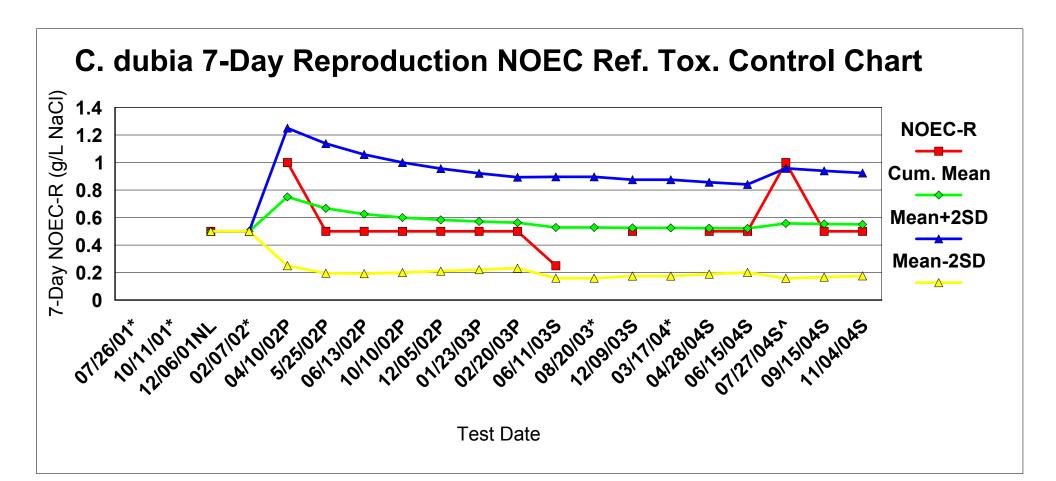
Data Summary			Origi	nal Data		Transformed Data					
Sample Code	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maximum	SD		
1104PPCAMPSF	4	0.57425	0.48900	0.61799	0.05950						
1104PPCAMPS1	4	0.49250	0.31200	0.62200	0.13076						
1104PPCAMPS2	4	0.58300	0.53800	0.65699	0.05641						
1104PPCAMPS3	4	0.54700	0.47100	0.58500	0.05289						
1104PPCAMPS4	4	0.53250	0.45000	0.64000	0.07911						
1104PPCAMPS5	4	0.55275	0.51500	0.62200	0.04749						
1104PPCAMPS6	4	0.56175	0.51100	0.62600	0.04759						

Data Detail										
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
1104PPCAMPSF	0.48900	0.57800	0.61200	0.61799						
1104PPCAMPS1	0.53600	0.50000	0.62200	0.31200						
1104PPCAMPS2	0.65699	0.53800	0.54000	0.59701						
1104PPCAMPS3	0.55100	0.47100	0.58500	0.58101						
1104PPCAMPS4	0.45000	0.51300	0.64000	0.52700						
1104PPCAMPS5	0.54199	0.51500	0.53199	0.62200						
1104PPCAMPS6	0.55499	0.62600	0.51100	0.55499						

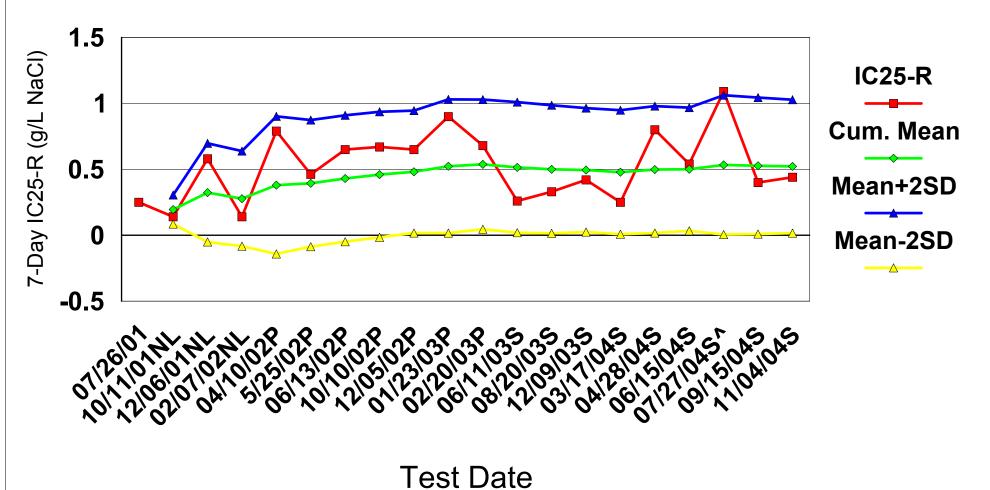

Comparisons: Report Date: Analysis: Page 2 of 2 27 Apr-05 10:24 AM 05-0205-9702/PLOW

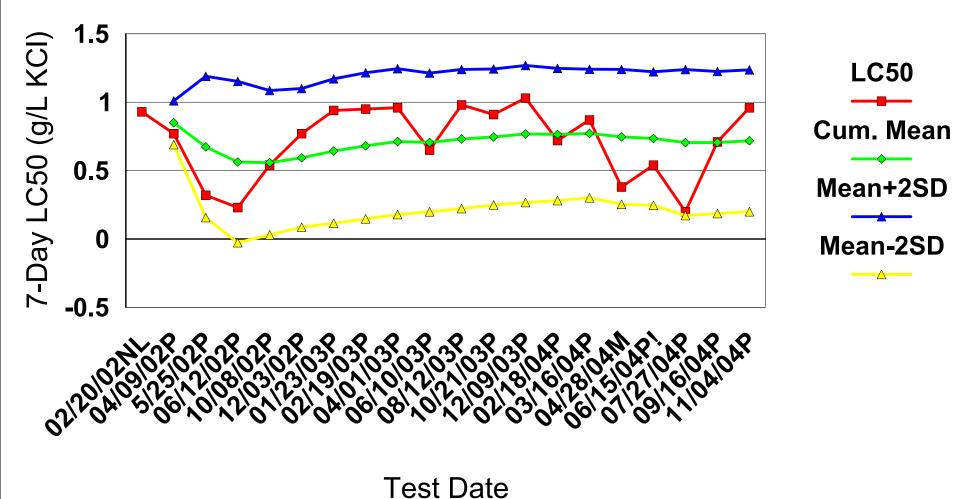
Appendix E

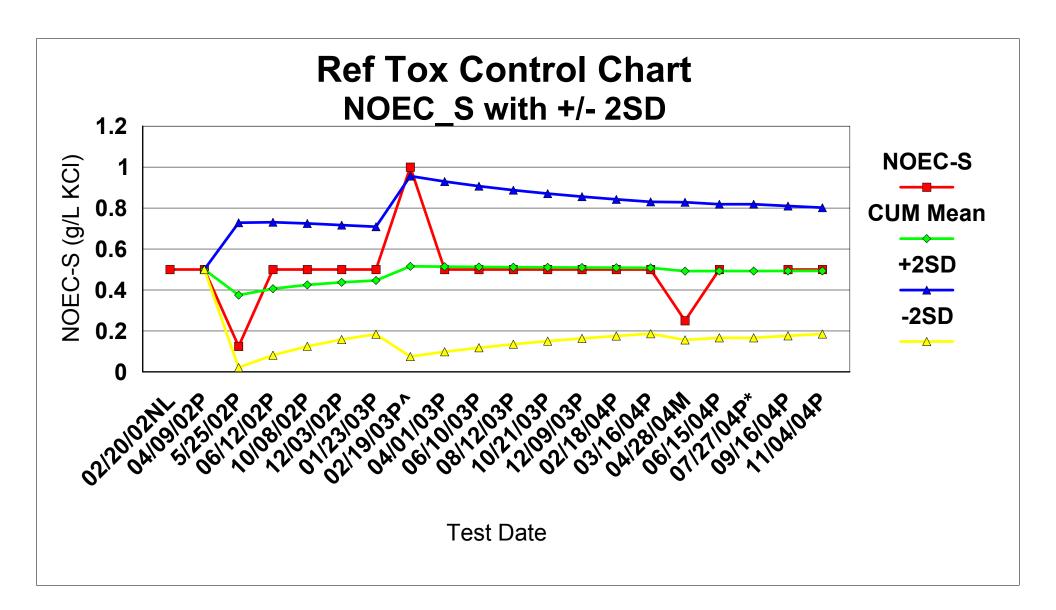

Control Charts for C. dubia and P. promelas

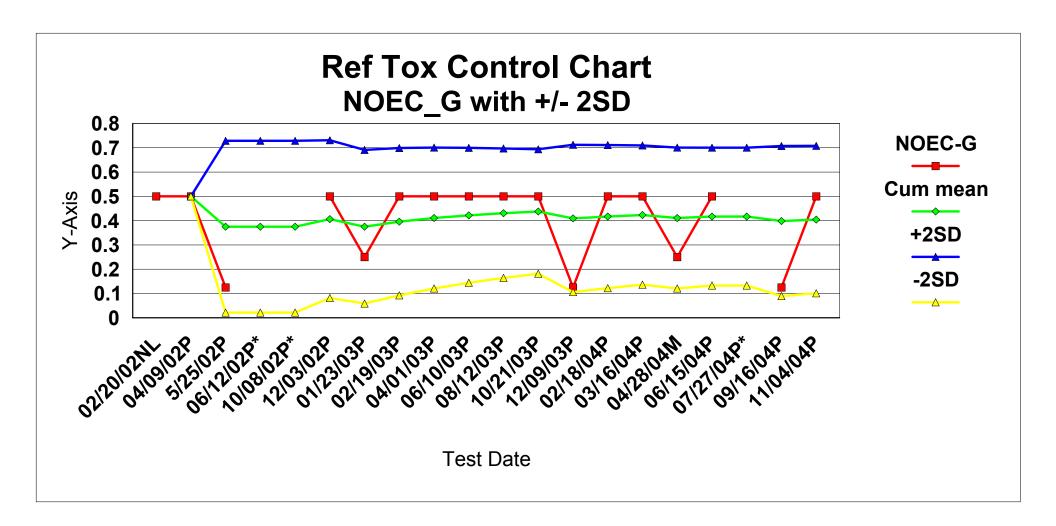


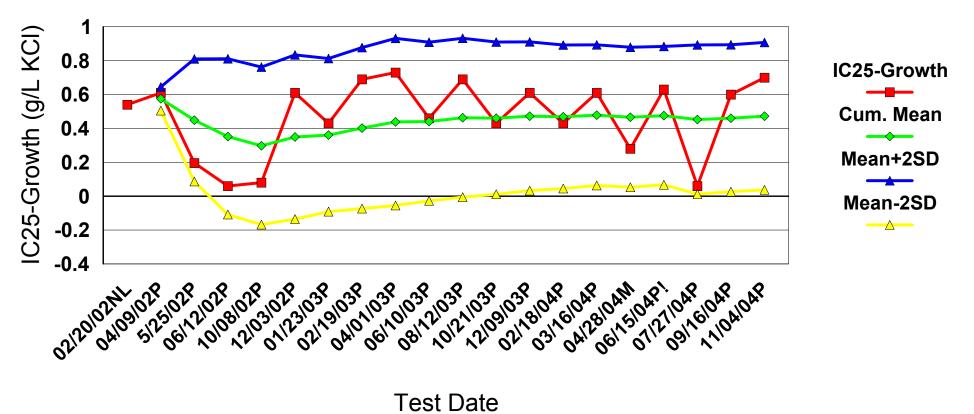
Test Date




Test Date




C. dubia 7-day IC25-Reproduction Ref. Tox. Control Chart


P. promelas 7-Day LC50 Ref. Tox. Control Chart

Appendix F

Surface Water Analytical Data

Appendix F: Surface water analytical data Grove Pond, Plow Shop Pond, and Flannagan Pond Fort Devens Superfund Site Ayer, Massachusetts

Ayer, Massachusetts														
Sample Name	Grove-SW-1	Grove-SW-2	Grove-SW-2 (DUP)	Grove-SW-3	Grove-SW-4	Grove-SW-5	Grove-SW-6	Plow-SW-1	Plow-SW-2	Plow-SW-3	Plow-SW-4	Plow-SW-5	Plow-SW-6	Flan-SW-1
Laboratory Sample ID	56312	56313	56325	56314	56315	56316	56317	56318	56319	56320	56321	56322	56323	56324
Sampling date	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004
Total Recoverable Metals	s (ug/l)													
Aluminum	19 J	8 J	10 J	48 J	13 J	27 J	18 J	12 J	10 J	8 J	16 J	12 J	11 J	720 J
Antimony	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Arsenic	2.3	4.6	4.6	1.1	1.3	1.4	1.9	2	1.4	1 ND	1 ND	1 ND	1 ND	5
Barium	23	13	13	18	15	14	15	11	9.2	9.7	9.4	11	11	17
Beryllium	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Cadmium	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Calcium	27,000	21,000	21,000	17,000	12,000	11,000	12,000	12,000	11,000	10,000	10,000	10,000	10,000	7,100
Chromium	20	5 J	5 J	1 J	0.8 J	0.8 J	0.8 J	0.9 J	0.8 J	0.9 J	1	1 J	1 J	2 J
Cobalt	0.2 ND	0.2 ND	0.2 ND	0.28	0.2 ND	0.3	0.43	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.72
Copper	3 J	2 J	32	3 J	1 J	3 J	2 J	2 J	2 J	1 J	3 J	6 J	2 J	3 J
Iron	390	460 J	500	130	620	650	940	420	280	220	220	260	280	1800
Lead	2 J	0.5 J	3.4	0.4 J	0.3 J	0.6 J	0.5 J	0.3 J	0.2 J	0.2 ND	0.4 J	0.3 J	0.4 J	3.5
Magnesium	3,100	2,500	2,500	2,300	2,200	2,300	2,300	2,300	2,100	2,000	1,900	2,000	2,000	1,300
Manganese	200	600	610	57	210	180	350	34	16	27	29	91	87	310
Mercury (total)	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Molybdenum	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Nickel	1.4	1	1.2	2.5	1.1	1.6	1.3	1	0.91	0.8	1.4	0.85	0.94	1.8
Selenium	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND
Silver	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Thallium	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Vanadium	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	1.3
Zinc	6 J	5 J	8 J	8 J	8 J	8 J	7 J	3 J	9 J	4 J	6 J	8 J	7 J	13 J
Dissolved Metals (ug/l)														
Aluminum	5 ND	5 ND	5 ND	15	5 ND	6.2	6.4	5 ND	5 ND	5 ND	5 ND	5 ND	5 ND	5 ND
Antimony	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Arsenic	1.7	4	3.9	1.3	0.88	1	1.4	1.2	1	0.76	0.82	0.76	0.77	0.58
Barium	21	13	13	18	13	12	14	10	9.2	9.5	9.3	11	11	7.6
Beryllium	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Cadmium	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Calcium	27,000	21,000	21,000	16,000	11,000	12,000	12,000	11,000	11,000	10,000	10,000	10,000	10,000	6,500
Chromium	3.9	2.1	2.1	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Cobalt	0.2 ND	1.1	0.3	0.44	1.7	3.7	4	0.32	3.3	0.86	0.33	0.29	0.3	0.55
Copper	1.7	0.91	1.4	0.52	0.95	0.66	0.73	1.1	1.1	0.86	0.82	1.1	1.1	1 50 ND
Iron	160	240	260	58	180	240	350	110	97	87	89	120	120	50 ND
Lead	0.39	0.22	0.24	0.2 ND	0.24	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.23	0.2 ND	0.2 ND
Magnesium	3,100	2,500	2,600	2,200	2,200	2,400	2,400	2,200	2,200	2,000	2,100	2,100	2,100	1,100
Manganese	130	540	520	46	50	120	310	28	16	15	20 0.5 ND	78	74	6.9
Total Mercury in Water	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Molybdenum	0.5 ND 1.2	0.5 ND 0.98	0.5 ND 0.91	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND 0.94	0.5 ND	0.5 ND 0.71	0.5 ND 0.76	0.5 ND	0.5 ND 0.51
Nickel Selenium	1.2 1 ND	0.98 1 ND	0.91 1 ND	1.4 1 ND	1.1 1 ND	1.3 1 ND	1.3 1 ND	0.98 1 ND	0.94 1 ND	0.84 1 ND	0.71 1 ND	0.76 1 ND	0.76 1 ND	0.51 1 ND
Silver	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Thallium	0.2 ND	0.2 ND	0.5 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Vanadium	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND	0.5 ND
Zinc	5 ND	5 ND	5 ND	5 ND	6.3	0.2 ND	5 ND	5 ND	0.2 ND	5.3	5 ND	5 ND	5 ND	5 ND
ZIIIO	3 ND	3 110	JIND	JIND	0.5	JIND	JIND	JIND	3 110	3.3	JIND	JIND	JIND	JIND
Pesticides (ug/l)	+ -			+	-									
4,4'-DDD	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.030 ND
7,7 000	0.000 ND	0.020 ND	0.020 ND	0.020 ND	0.020 ND	0.020 ND	0.020 ND	0.020 ND	0.020 ND	0.020 ND	0.020 ND	0.020 ND	0.020 ND	0.000 ND

Appendix F: Surface water analytical data Grove Pond, Plow Shop Pond, and Flannagan Pond Fort Devens Superfund Site

Ayer, Massachusetts

		1 1				Ayer, Ivia	issaciiusetts					1		
			Grove-SW-2											
Sample Name	Grove-SW-1	Grove-SW-2	(DUP)	Grove-SW-3	Grove-SW-4	Grove-SW-5	Grove-SW-6	Plow-SW-1	Plow-SW-2	Plow-SW-3	Plow-SW-4	Plow-SW-5	Plow-SW-6	Flan-SW-1
Laboratory Sample ID	56312	56313	56325	56314	56315	56316	56317	56318	56319	56320	56321	56322	56323	56324
Sampling date	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/3/2004
4,4'-DDE	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.030 ND
4,4'-DDT	0.036 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.034 ND
Aldrin	0.065 ND	0.055 ND	0.055 ND	0.055 ND	0.055 ND	0.055 ND	0.055 ND	0.055 ND	0.055 ND	0.055 ND	0.055 ND	0.055 ND	0.055 ND	0.060 ND
Alpha Chlordane	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND		0.030 ND
Alpha-BHC	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND		0.030 ND
Beta-BHC	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.030 ND
Delta-BHC	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.030 ND
Dieldrin	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.030 ND
Endosulfan I	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.030 ND
Endosulfan II	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND		0.030 ND
Endosulfan Sulfate	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND		0.030 ND
Endrin	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND		0.030 ND
Endrin Aldehyde	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND		0.030 ND
Endrin Ketone	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND		0.030 ND
Gamma Chlordane	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND		0.030 ND
Gamma-BHC	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND		0.030 ND
Heptachlor	0.036 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND	0.031 ND		0.034 ND
Heptachlor Epoxide	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND		0.030 ND
Methoxychlor	0.033 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND	0.028 ND		0.030 ND
Technical Chlordane	0.650 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.600 ND
Toxaphene	0.650 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.600 ND
Polychlorinated biphenyl	s (ug/l)													
Aroclor-1016	0.650 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.600 ND
Aroclor-1221	0.650 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.600 ND
Aroclor-1232	0.650 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.600 ND
Aroclor-1242	0.650 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.600 ND
Aroclor-1248	0.650 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.600 ND
Aroclor-1254	0.650 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND		0.600 ND
Aroclor-1260	0.650 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.600 ND
Aroclor-1262	0.650 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.600 ND
Aroclor-1268	0.650 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.550 ND	0.600 ND
ND = non detected														
ND values represent report	ting limits													
· · · · · · · · · · · · · · · · · · ·														

Appendix G

Latitude and Longitude Values for Sample Locations

Surface Water Sampling Location Latitude and Longitude Values for Grove, Plow Shop and Flannagan Ponds

Fort Devens Superfund Site Ayer, Massachusetts

Sample Location	Latitude	Longitude
G1	42.554995	-71.587915
G2	42.555018	-71.589177
G3	42.550927	-71.588831
G4	42.553542	-71.584859
G5	42.552267	-71.581585
G6	42.552514	-71.580218
PS1	42.555340	-71.594269
PS2	42.554710	-71.594117
PS3	42.553738	-71.591770
PS4	42.553919	-71.591386
PS5	42.556271	-71.590910
PS6	42.557660	-71.590819
F1	42.558017	-71.572584

G - Grove Pond

PS - Plow Shop Pond

F - Flannagan Pond

TOXICITY TESTING RESULTS USING SEDIMENT SAMPLES FROM GROVE, PLOW SHOP AND FLANNAGAN PONDS THE FORT DEVENS SUPERFUND SITE AYER, MASSACHUSETTS

Submitted to the:

Office of Environmental Measurement and Evaluation
United States Environmental Protection Agency - New England
11 Technology Drive
North Chelmsford, Massachusetts 01863

ESAT - Region I Lockheed Martin Information Technologies The Wannalancit Mills, 175 Cabot Street, Suite 415 Lowell, Massachusetts 01854

> TDF No. 1440I Task Order No. 21 Task No. 5

1.0 INTRODUCTION

This report describes the results of two rounds of sediment toxicity tests performed on composite samples collected from eleven locations in Plow Shop Pond (PS-1 through PS-11), and three locations in Grove Pond (G-1 through G-3). Both ponds are located in the vicinity of the Fort Devens Superfund Site in Ayer, Massachusetts and may potentially be impacted by the closed Shepley's Hill Landfill to the east of Plow Shop Pond, a former railroad roundhouse on the eastern bank of Plow Shop Pond, and a former tannery on the north-west corner of Grove Pond. A background composite sample was collected from Flannagan Pond, located upgradient from Grove Pond, as a reference location (F-1). These sediment toxicity tests were performed to evaluate the potential impact on benthic (sediment-dwelling) organisms resulting from exposure to contamination originating from the landfill, former railroad roundhouse, and former tannery.

The sediment samples from Plow Shop Pond were collected on February 1, 2005, and those from Grove Pond and Flannagan Pond were collected on February 2, 2005 by members of ESAT and EPA. The samples were delivered to the EPA Office of Ecosystem Management and Evaluation (OEME) facility in North Chelmsford, Massachusetts on the day of collection. Sediment samples to be analyzed for AVS/SEM were delivered to Alpha Analytical in Westborough, Massachusetts on the day of collection. All sediment samples were kept at 4°C until test initiation. Separate sediment samples were submitted to the OEME chemistry laboratory for chemical analysis.

The tests consisted of 10-day exposures using two benthic invertebrate species selected to represent sensitive sediment-dwelling organisms that might be found in New England. The two species used were the midge-fly, *Chironomus tentans*, and the amphipod, *Hyallela azteca*. These test organisms are used for toxicity testing at the EPA/OEME, Biology Section Laboratory and are cultured in-house. Both species are routinely monitored for quality through a reference toxicity testing program at the EPA/OEME facility.

2.0 STUDY OBJECTIVES

Previous investigations of the ponds have indicated the presence of high levels of trace metals in sediments, including arsenic, cadmium, chromium, mercury, manganese, nickel, and zinc. Mercury is a major contaminant of concern (COC) for this site because it tends to bioconcentrate in the food chain (USEPA, 1999). The source(s) of contamination have not been determined with certainty. Potential sources include the closed Shepley's Hill Landfill to the east of Plow Shop Pond, a former railroad roundhouse on Plow Shop Pond, and a former tannery on Grove Pond. The purpose of this study was to determine if survival or growth of the test organisms exposed to site sediment differed significantly compared to the background sample. The laboratory control sample was only used to verify that the organisms were healthy and that the test passed the test acceptability criteria (TAC) specified in EPA (1994).

The measured endpoints were survival and growth. For both species, survival was determined by counting the number of live organisms at the end of the 10-day test. Growth for *C. tentans* was measured as the ash-free dry weight (AFDW) of the surviving organisms at the end of the test. For *H. azteca*, it was measured using the dry weight of the surviving organisms at the end of the test. The results from these tests will help determine if any of the potential sources of contamination are adversely affecting sediment-dwelling organisms in the ponds.

3.0 MATERIALS AND METHODS

3.1 Sample Processing

The composite sediment samples were obtained by EPA and ESAT on February 1 and 2, 2005. The sampling locations are indicated in Figures 1 and 2 in Appendix A. PS-1 and PS-2 were collected from Plow Shop Pond along the shore upgradient (north east) of the landfill. PS-11 and PS-3 were collected from within Red Cove, which is downgradient of the landfill. PS-4 and PS-5 are located just outside of Red Cove. PS-8 and PS-9 were collected near the shore adjacent to the former railroad roundhouse. PS-10 was collected near the culvert that flows from Grove Shop into Plow Shop Pond. G-1 was collected near the middle of Grove Pond. G-2 was collected within the cove where Grove Pond.

discharges into Plow Shop Pond. G-3 was collected near the shore where the former tannery was located. Most of the sediment samples collected from Plow Shop Pond and Grove Pond contained large fractions of organic material. F1 was collected from Flannagan Pond, located upgradient from Grove Pond. Its contaminant load reflected general background conditions upstream from the two target ponds.

Sediment was collected from each location using a Petit Ponar (see Figure 1 in Appendix A for sample locations and Appendix G for sample-specific latitudes and longitudes). The surficial (0-6") sediment was then placed into 20-liter Cubitainers with the tops removed and homogenized using dedicated plastic scoops. Sample jars to be sent to the lab for chemical analysis and larger nalgene bottles (1-4 Liter bottles) for the sediment toxicity test were filled from the Cubitainer. All jars and bottles were placed on ice and kept in coolers until delivery at the OEME facility or Alpha Analytical. Samples were held at 4°C until test initiation.

The first round of toxicity testing was started on February 8, 2005 (*C.tentans* and *H. azteca*) and ended on February 17, 2005; the second round of testing began on February 14, 2005 (*C. tentans*) and February 15, 2005 (*H. azteca*) and ended February 23, 2005, and February 24, 2005, respectively. The sediment sample jars were submitted to the OEME chemistry laboratory for analysis of metals, total organic carbon (TOC), polycyclic aromatic hydrocarbons (PAHs), pesticides, polychlorinated biphenyls (PCBs). Acid volatile sulfides/simultaneously extracted metals (AVS/SEM) were analyzed by Alpha Analytical. A summary of the sediment analytical data is provided in **Appendix F**. Chain-of-custody records are included in **Appendix B** of this report.

3.2 Toxicity Test Methods

The toxicity tests were performed according to procedures detailed in the EPA OEME Biology Section Standard Operating Procedure (SOP) Number 2.6, which describes sediment toxicity tests methods used by EPA/OEME according to EPA (2000).

Test chambers consisted of 300-ml glass beakers with Nitex-covered notched openings to allow for a flow-through system. Eight replicates per treatment were used. Each test chamber received approximately 100 ml of sediment, and 175 ml of overlying water. Artificial sediment was used for the laboratory control. Overlying water consisted of 90 mg CaCO₃ /liter hardness process water (HPW). Prior to starting the test, the 90 HPW was poured by hand to fill the beakers and left to sit overnight before introducing the organisms. Hardness was checked by titration with each new batch of water prepared.

Ten second-to-third instar larval stage organisms (age 11-12 days) were randomly introduced to each test chamber. The organisms were carefully pipetted, keeping each one completely submerged in water from holding tray to test chamber. Only the most healthy and active organisms were selected for the test. The organisms were maintained throughout the 10-day exposure period at 23 ± 1°C in the Sediment Toxicity Testing System (STTS) at the OEME laboratory with a 16:8 hour light/dark cycle using cool-white fluorescent lights. Water renewals occurred between 2 and 4 times daily using the automatic renewal system associated with the STTS. The number of renewals was based upon dissolved oxygen (DO) readings and discussions with the TOPO. Due to suspected high levels of mercury in the Grove 3 sediment, these replicates were kept separately in chamber 204A at 25°C with a 16:8 hour light/dark cycle using cool-white fluorescent lights. These test beakers were renewed manually twice a day. All organisms were fed once a day after the morning renewal. Each *H. azteca* replicate was fed 1.0 ml of a yeast-alfalfa-trout chow mixture (YAT). Each *C. tentans* replicate was fed 1.5 ml of 4 grams/liter TeiShake (4 grams Tetramin flakes/1liter distilled deionized water).

Temperature, pH, DO, conductivity, hardness, alkalinity, and ammonia were measured in the H. azteca overlying water at the start of the test. Each subsequent morning throughout the exposure period, pH, temperature, and DO were measured in a composite sample of overlying water for each station (i.e., Plow Shop sediment location 1) and each test (H. azteca and C. tentans). Temperature, pH, DO, conductivity, hardness, alkalinity, and ammonia were measured in a composite sample of overlying water for each station and each test at the end of the exposure period. Water chemistry data are summarized in Appendix C of this report.

At the end of the 10-day exposure period, the renewal cycle was terminated and the organisms were retrieved from the sediment toxicity test vessels. The *H. azteca* were counted, rinsed, and placed on pre-dried, pre-numbered pans. The *C. tentans* were counted, rinsed, and placed on pre-muffled, pre-weighed, and pre-numbered pans. The pan number, station, species, and number of organisms recovered were recorded on laboratory bench sheets. All pans with organisms were placed in a drying oven at 70°C for 24 hours. After 24 hours, dry weights were obtained for each pan. Once dry weights were obtained for the *C. tentans*, the pans containing the test organisms were placed in a muffle furnace at 550°C for 2 hours. These pans were allowed to cool in a dessicator and then re-weighed. The tissue weight was determined as the difference between the dry weight of the pan and organisms and the ash weight of the pan and organisms. All laboratory bench sheets, and dry and ashed weight readings are included in **Appendix D**.

3.3 Statistical Analysis of Data

Statistical analyses of the survival and growth data for both tests were conducted using CETIS ® (Comprehensive Environmental Toxicity Information System) according to the EPA decision tree in EPA (2000). Survival and growth data were analyzed separately.

Data were first compiled and analyzed using the Kolmogorov-Smironov D test to check for normality of data, and Bartlett's test to check for homogeneity of variance. Data with normal distribution and homogeneous variance were analyzed using Dunnett's Multiple Comparison Test. Non-normal and/or heterogeneous data were analyzed using Steels's Many-One Rank Test.

Any data sets with samples containing a different number of replicates (i.e. one replicate was removed because it had been compromised) and had normal distribution with homogeneous variance data were analyzed using Bonferroni Adjusted t-Test. Non-normal and/or heterogeneous data were analyzed using Bonferroni Adjusted Wilcoxon Rank Sum Test. All of the statistical tests mentioned above were used when appropriate to determine if there was a significant difference between the pond samples and background sample.

The CETIS ® statistical print-outs are provided in **Appendix D**. Growth for *C. tentans* was measured as the ash-free dry weight (AFDW) of the surviving organisms at the end of the test and analyzed by calculating the average sample ash-free dry biomass. Growth for *H. azteca* was measured as dry weight and analyzed by calculating the average sample dry biomass. The *H. azteca* were not ashed since AFDW is an impractical measure due to the small mass of these organisms.

4.0 RESULTS

4.1 Hyallela azteca TOXICITY TEST RESULTS

The endpoints measured for *H. azteca* were survival and growth after 10 days of exposure. The survival and growth data for this species are presented in **Tables 1** through **4**.

	Laboratory	F-sed-1 (reference)	P-sed-1	P-sed-2	P-sed-3	P-sed-4	P-sed-5	9-pes-d	P-sed-7
Replicate			Number	of Organis	sms Surviv	ving at En	d of Test		
1	10	9	9 .	10	10	7	10	9	10
2	10	9	10	8	9	8	10	9	10
3	10	10	10	10	10	7	10	7	10

	Laboratory	F-sed-1 (reference)	P-sed-1	P-sed-2	P-sed-3	P-sed-4	P-sed-5	P-sed-6	P-sed-7						
Replicate	Number of Organisms Surviving at End of Test														
4	10	10	9	8	10	8	10	10	10						
5	10	9	8	10	9	10	9	9	9						
6	10	10	9 .	2*	9	6	9	' 9	9						
7	10	10	7	9	10	9	9	9	9						
8	10	9	10	8	9	9	8	10	9						
% Survival	100%	95%	90%	90%	95%	80%	93.75%	90%	95%						

^{* -} The beaker was spilled during organism retrieval and the replicate was removed from the statistical analysis.

Note that the numbers in the table above reflect the number of organisms in the pan count and not necessarily the number of organisms actually recovered from the sediment toxicity testing beakers.

	Laboratory Control	F-sed-1(a) (reference)	P-sed-8	P-sed-9	P-sed-10	P-sed-11	G-sed-1	G-sed-2	G-sed-3
Replicate	T A		Númber	of Organism	ns Survi	ving at End	of Test		
1	10	9	9	4	10	6	7	10	0**
2	10	9	10	5.	9	10	11*	10	6
3	10	10	9	6	9	9	9	10	8
4	10	10	9	6	9	9	9	9	10
5	10	9	9	8	10	10	9	10	10
6	10	10	8	4	10	10	10	10	10
7	10	10	10	5	9	10	10	8	7
8	9	9	9	1	10	. 7	10	10	10
% Survival	98.75%	95%	91.25%	48.75%	95%	88.75%	92.5%	96.25%	87.149

[a] - Flannagan was only tested in the first round and is repeated here for comparison.

11 organisms were introduced at the beginning of the test; a value of 10 was used to calculate % survival.

Note that the numbers in the table above reflect the number of organisms in the pan count and not necessarily the number of organisms actually recovered from the sediment toxicity testing beakers.

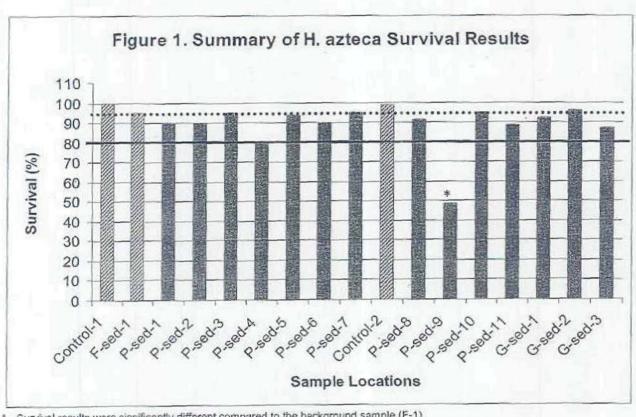
The minimum acceptable survival for this test is 80% as specified in EPA (2000). Survival in the laboratory control was 100% in round 1 and 98.75% in round 2, both of which met the test acceptance criteria (TAC) listed in EPA (2000). Survival in the background sample was 95%, which exceeded the minimum acceptable survival threshold of 80%. Survival in the sediment samples from Plow Shop Pond and Grove Pond were above 80% except for Plow Shop-9, in which survival equaled 48.75%. The low

^{** -} This replicate was removed from the statistical analysis because the organisms were most likely eaten by a live damseifly larva found in the sediment sample at the end of the 10-day exposure.

survival in replicate 1 of Grove-3 was attributed to the presence of a live damselfly larva found in this replicate, which likely consumed all of the test organisms during the 10-day exposure period.

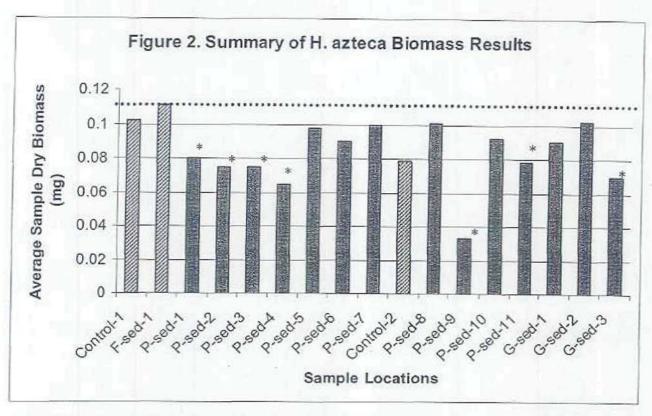
Replicate ^[b]	Laboratory Control	F-sed-1 (reference)	P-sed-1	P-sed-2	P-sed-3	P-sed-4	P-sed-5	P-sed-6	P-sed-7
1	0.085	0.148	0.104	0.075	0.089	0.069	0.116	0.098	0.090
2	0.112	0.100	0.088	0.063	0.078	0.078	0.087	0.116	0.103
3	0.098	0.117	0.059	0.083	0.070	0.050	0.119	0.047	0.094
4	0.134	0.090	0.032	0.068	0.080	0.076	0.108	0.099	0.134
5	0.092	0.133	0.052	0.103	0.058	0.074	0.085	0.089	0.098
6	0.084	0.079	0.101	NA	0.064	0.061	0.074	0.097	0.100
7	0.146	0.136	0.086	0.068	0.095	0.065	0.097	0.088	0.069
8	0.068	0.083	0.120	0.063	0.064	0.048	0.096	0.084	0.112
Average Sample Dry Biomass (mg) [6]	0.102	0.111	0.080	0.075	0.075	0.065	0.098	0.090	0.100

[[]b] the replicate dry biomass = measured dry weight + number of organisms exposed [c] the average sample dry biomass = the sum of the replicate dry biomass + number of replicates


Table	4: Fort D	evens Sed	Iment 10	xicity res	iting: H. a	zteca Bio	mass - R	ouna 2	
Replicate [b]	Laboratory Control	F-sed-1 (a) (reference)	P-sed-8	6-pes-d	P-sed-10	P-sed-11	G-sed-1	G-sed-2	G-sed-3
1	0.090	0.148	0.086	0.028	0.097	0.041	0.045	0.129	NA
. 2	0.077	0.100	0.093	0.023	0.082	0.083	0.077	0.093	0.064
3	0.064	0.117	0.083	0.040	0.069	0.062	0.082	0.108	0.069
4	0.116	0.090	0.158	0.039	0.076	0.085	0.088	0.107	0.079
5	0.079	0.133	0.095	0.073	0.087	0.084	0.074	0.104	0.065
6	0.086	0.079	0.090	0.027	0.122	0.095	0.173	0.110	0.082
7	0.061	0.136	0.117	0.022	0.114	0.110	0.082	0.070	0.049
8	0.061	0.083	0.087	0.009	0.089	0.062	0.099	0.094	0.082
Average Sample Dry Biomass (mg) [c]	0.079	0.111	0.101	0.033	0.092	0.078	0.090	0.102	0.070

[[]a] — Flannagan was only tested in the first round and is repeated here for comparison.

[b] the replicate dry blomass = measured dry weight + number of organisms exposed


[c] the average sample dry blomass = the sum of the replicate dry blomass + number of replicates

The growth data met test acceptability criteria, which required that the controls have measurable growth during the test. The Bonferroni Adjusted Wilcoxon Rank Sum Test and Bonferroni Adjusted t-Test were used determine whether survival and biomass in the Plow Shop Pond and Grove Pond samples differed significantly from the background sample. The statistical analysis found that survival was significantly reduced only in Plow Shop-9. Statistical analysis of growth showed a significant responsein Plow Shop-1, Plow Shop-2, Plow Shop-3, and Plow Shop-4, Plow Shop-9, Plow Shop-11, and Grove-3. The results of the statistical analyses on growth and survival are summarized in Figures 1 and 2 (see also Appendix D).

Survival results were significantly different compared to the background sample (F-1)

Background sample reference line Minimum test acceptability criteria reference line for the laboratory control sample

^{* -} Growth results were significantly different compared to the background sample (F-1) Background sample reference line

4.2 Chironomus tentans TOXICITY TEST RESULTS

The C. tentans test endpoints were survival and growth after 10 days of exposure. The results were used to determine if the percent survival and the mean organism weight at the end of the test differed between the background sample and the pond samples. The C. tentans survival data are presented in Tables 5 and 6 below.

Tal		SAME OF SAME	Sediment 1	foxicity I	esting: 0	tentans	Surviyal	Round 1	
	Laboratory	F-sed-1 (reference)	P-sed-1	P-sed-2	P-sed-3	P-sed-4	P-sed-5	P-sed-6	P-sed-7
Replicate			Number	of Organ	isms Surv	iving at En	d of Test		
1	8	10	9	10	8	10	9	10	9
2	10	10	10	11*	10	10	10	10	10
3	10	10	10	10	10	9	9	10	11*
4	9	10	11*	10	10	10	9	10	10
5	9	10	10	10	10	10	10	10	10
6	9	10	10	10	10	10	10	8	10
7	9	10	10	10	10	10	8	10	9
8	10	10	10	10	10	10	10	10	10
% Survival	92.5%	100%	98.75%	100%	97.5%	98.75%	93.75%	97.5%	97.5%

^{* -} The test replicate received additional test organisms during organism introduction; a value of 10 was used to calculate % survival

Table	6. Fort.D	levens Se	liment To	xicity Te	ting: C.t	entans S	urvival - F	tound 2															
	Laboratory Control	F-sed-1 ^[a] (reference)	P-sed-8	P-sed-9	P-sed-10	P-sed-11	G-sed-1	G-sed-2	G-sed-3														
Replicate			Number o	of Organis	sms Surviv	ing at En	d of Test																
1	8	10	10	3	10	10	8	10	10														
2	10	10	10	4	9	8	10	10	9														
3	9	10	9	6	10	8	9	10	8														
4	9		9	9	9				9	9	9	9	9	9	9	10	10	2	8	9	9	10	10
5	7	10	8	3	10	10	10	9	10														
6	7	10	8	8	12*	9	10	20*	10														
7	9	10	9	7	9	10	9	10	12*														
8	9	10	9	3	10	8	9	10	10														
% Survival	85%	100%	91.25%	45%	95%	90%	92.5%	98.75%	96.25%														

^{* -} The test replicate received additional test organisms during organism introduction; a value of 10 was used to calculate % survival [a] - Flannagan was only tested in the first round and is repeated here for comparison.

The C, tentans test met the survival threshold of 70% for the laboratory control as specified in EPA (2000). The data for the C. tentans test were evaluated using Steel's One-Many Rank Test. Plow Shop-9 was the only location where survival was found to be significantly impaired when compared to survival in the background sample.

The C. tentans growth data are presented in Tables 7 and 8 below.

1 (10)	e at ron	Devens S	ediment 1	Coxicity T	esting: O	tentans	Biomass	Round	
	Laboratory	F-sed-1 (reference)	P-sed-1	P-sed-2	P-sed-3	P-sed-4	P-sed-5	P-sed-6	P-sed-7
Replicate ^(b)						1 11	1 0	1 0	10
1	1.137	0.893	1.073	0.979	1.049	1.331	1.185	1.207	0.940
2	1.133	0.957	1.158	1.061	0.902	1.224	1.187	1.064	
3	1.331	1.045	1.221	0.969	1.049	1.213	1.099		1.180
4	1.248	0.884	1.035	1.057	1.212	1.350	1.087	1.361	1.360
5	1.259	0.915	1.047	0.802	0.954	The same and		1.314	1.300
6	1.113	0.786	1.096	THE WHEET		1.193	1.157	1.055	1.110
7			700 000	0.999	1.232	1.400	1.119	0.993	1.215
	1.267	0.988	1.035	1.148	1.056	1.318	1.023	1.284	1.221
8	1.416	1.130	1.049	1.067	1.052	1.344	1.162	1.388	1.105
erage Sample AFDB (mg) [4] BB = ash-free dry bi	1.238	0.950	1.089	1.010	1.063	1.297	1.127	1.208	1.179

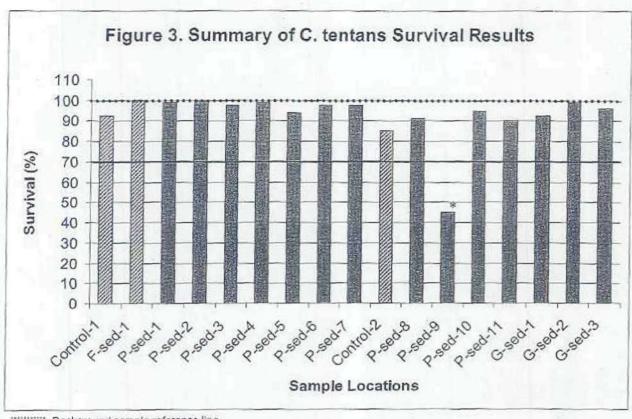
AFDW = ash-free dry weight

[b] = the replicate AFDB = measured AFDW + number of organisms exposed

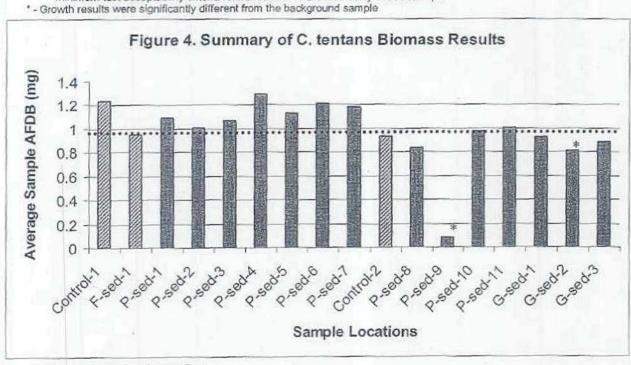
[c] = the average sample AFDB = the sum of the replicate AFDBs + number of replicates

Table	8; Fort De	vens Sec	iment To	xicity Tes	ting. C. t	entans B	omass.	Round 2	
	Laboratory Control	F-sed-1[a] (reference)	P-sed-8	P-sed-9	P-sed-10	P-sed-11	G-sed-1	G-sed-2	G-sed-3
Replicate [b]									
1	0.793	0.893	0.967	0.044	0.814	0.802	0.773	0.779	0.996
2	1.192	0.957	0.816	0.071	0.955	1.013	0.831	0.838	0.812
3	0.969	1.045	0.857	0.153	0.965	0.849	0.815	0.887	0.723
4	0.903	0.884	0.700	0.020	0.866	1.069	1.049	0.815	1.041
5	0.805	0.915	0.842	0.034	1.133	1.188	1.154	0.917	0.855
6	0.922	0.786	0.753	0.119	1.106	0.963	0.807	0.622	0.988
7	0.999	0.988	0.898	0.145	0.782	0.991	0.861	0.873	0.800
8	0.856	1.130	0.842	0.073	1.180	1,152	1.134	0.750	0.887
Average Sample AFDB (mg) ^{lel}	0.930	0.950	0.834	0.082	0.975	1.003	0.928	0.810	0.888

AFDB = ash-free dry biomass


AFDW = ash-free dry weight

[a] - Flannagan was only tested in the first round and is repeated here for comparison.


[b] = the replicate AFDB = measured AFDW + number of organisms exposed

[c] = the average sample AFDB = the sum of the replicate AFDBs - number of replicates

EPA (2000) stipulates a minimum mean weight of 0.48 mg AFDW per surviving control organism as a test acceptability criterion. This criterion was met and exceeded at all sampling location, except Plow Shop-9. The growth data were evaluated using Dunnett's Multiple Comparison Test to determine if growth in the Plow Shop Pond and Grove Pond samples was significantly different from the background sample. A significant growth reduction was observed only in Plow Shop Pond-9. In addition, a significant effect on *C. tentans* biomass was detected at Grove-2. However, this difference was barely significant (statistic = 2.408, critical value = 2.394). The results of the statistical analyses are summarized in Figures 3 and 4 (see also Appendix D).

Background sample reference line
 Minimum test acceptability criteria reference line for the laboratory control sample

Background sample reference line
 Growth results were significantly different from the background sample

5.0 DISCUSSION AND CONCLUSIONS

The controls in the *H. azteca* and *C. tentans* toxicity tests met acceptability criteria for survival and growth. The *H. azteca* and *C. tentans* toxicity tests both showed that survival and growth at Plow Shop-9 were significantly reduced compared to the background sample (Flannagan-1). This finding was consistent with laboratory observations, including a fuel smell and sheen on the Plow Shop-9 replicates and also sediment avoidance behavior by the *C. tentans* noted in this sample. The *H. azteca* toxicity test also showed significant reduction in growth at Plow Shop locations 1, 2, 3, 4, and 11 and at Grove-3. In addition, a significant effect on *C. tentans* biomass was detected at Grove-2. However, this difference was barely significant (statistic = 2.408, critical value = 2.394).

In conclusion, the evidence indicated that there was toxicity at Plow Shop-9 with respect to survival and growth in both test species. The *H. azteca* toxicity test also showed the presence of toxicity at several Plow Shop locations associated with Shepley's Hill Landfill and Red Cove. The Grove 3 location in Grove Pond is associated with the former tannery also showed the presence of toxicity. Finally, growth in *C. tentans* was reduced at Grove-2. The reason for this response is not known since Grove-2 is in the middle of Grove Pond and not associated with historical releases. Ammonia was not a major factor affecting toxicity for either species. All ammonia data were less than 5.5 ppm for both species.

6.0 REFERENCES

U. S. Environmental Protection Agency. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA/600/R-99/064, March, 2000.

CETIS v1.0.25b. Tidepool Scientific Software. Copyright 2001-2004. Michael A. Ives.

U.S. Environment Protection Agency. 1999. Screening-Level Ecological Risk Assessment - Fort Devens. April 19, 1999.

Appendix A

Sediment Sampling Stations

Figure 1. Plow Shop and Grove Pond Sediment Sample Locations

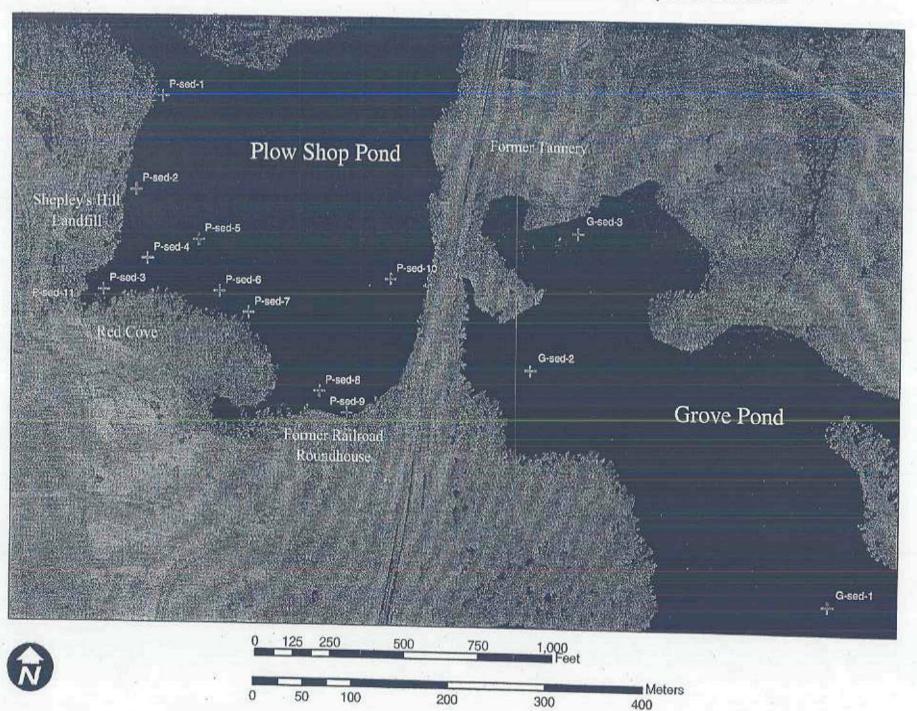
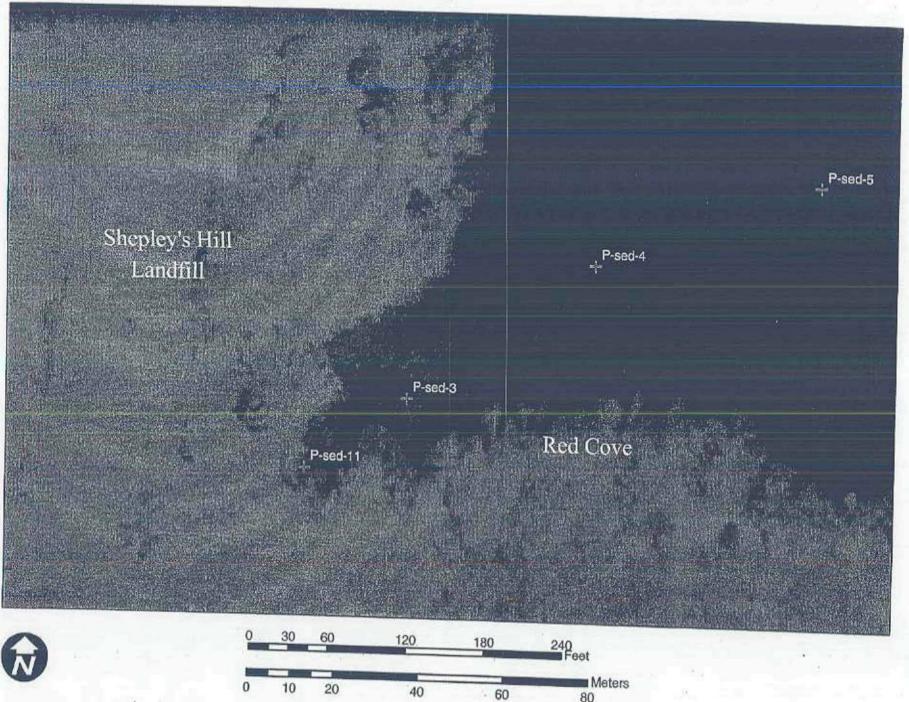



Figure 2. Plow Shop Pond Red Cove Sediment Sample Locations

Appendix B

Chain of Custody Records

EPA Region 1 / ESAT - Lockheed Martin

11 Technology Drive, North Chelmsford MA 01483 Phone (617) 918-8681

CHAIN OF CUSTODY DOCUMENT

Page of Project Name: Fort Devens Project No.t Project Manager: Bart Hoskins Field Team: Bart Hoskins, Stan Panwels, Mika Ferrier, Rayann Richard, Eugene Wafo Total Usera may North and Company and the property of the company 02/01/05 16:15 Plow-Sed-1 7 3 02/01/05 15:15 Plow-Sed-2 7 3 02/01/05 1 14:40 Plow-Sed-3 7 3 1 02/01/05 14:15 Plow-Sed-4 7 3 1 02/01/05 13:25 Plow-Sod-5 x 3 1 6 02/01/05 13:15 x Plow-Sed-6 7 3 02/01/05 12:55 1 X Plow-Sed-7 7 3 8 02/01/05 11:30 Plow-Sed-8 7 3 1 9 02/01/05 11:20 Plow-Sed-9 7 3 10 02/01/05 12:00 × Plow-Sed-10 7 3 11 02/01/05 15:00 x Plow-Sed-11 7 3 . 1 12 02/01/05 13:25 x Plow-Sed-5 (DUP) 1 1 4.2 14 02/02/05 11:30 Grove-Sed-1 x 6 2 15 02/02/05 12:03 x Grove-Sed-2 6 2 1 1 16 02/02/05 12:40 Grove-Sed-3 6. 2 1 1 17 02/02/05 12:40 x Grove-Sed-3 (DUP) 4 18 19 02/02/05 14:10 × Flan-Sed-1 8 4 11 20 21 02/01/05 14:00 Plow-Rinsato Blank 2 2 02/02/05 12:20 Grove-Rinsate-Blank Relinquished by (Print Name): 500000. |Date: 2|5/05 Relinquished by (Print Namo): Date: Time: 9'00 Ard Signature; Time: Received by Lab (Print Name): Date; Received by Lab (Print Name): Date: 02/05/05 Signature: Time: Signature: Time: 9:00

-	M			•
6	k in	-	A.	
-	-	_	-	

REGION 1

CHAIN OF CUSTODY RECORD

AMPLER	S: ISIgma	turo)			ns, Aye		OF CON-		10		//	//			REMARKS
TA, NO.	DATE	TIME.	COMP.	GRAB	STATION	LOCATION	TAINERS	/)	//	/	//		·	
	2/2/05	11:30		30	Grove-SE	[-d.	1	1		9					
	2015	A CONTRACTOR OF THE PARTY OF TH			Grave-S	ED-2	1	V		10					
	24/05	12:40			Grove-5	ED-3	1	V		٠.			•		
		12:40			Corcus - St	=0-3Ap		V							
	别公	2:10			Flan-S	ED-1	11	V		,					
													Y		
							4		14"		1				. 1
											1				
		. 1				1 11				-					
		1.11	1		1 4 2	-									
					9.					1			1,		
6															
				-											4. ***
												10		10	
		1 :				4 1 1							V 1		
Relinqui				10	Date / Time 2/9/65 15:25	Received by Tsignet	15-25	Reli	nquish	ned by:	Signatu	re)	Date	/Time	Received by: (Signature)
Relinqui	shed by:	(Signaturi		18	Date / Time	Received by: Islaner	ire)	Reli	nquish	ned by:	Signatu	rel	Date	/Time	Received by: (Signature)
Relinqui	shed by:	(Signatur	e)		Date / Time	Received for Laborat (Signature)	tory by:		Dat	e /Time		Remarks			

CHAIN OF CUSTODY RECORD

PROJ. N	1	ROJECT	T	vo.	Police Ferritary n Parina 15 Eusene mate Revenue Richard	NO. OF	. /	1				REMARKS
STA. NO.		TIME	COMP.	GHAB	STATION LOCATION	TAINERS	A STATE OF THE STA	1/		//		
	211105	415			PHU-SED-1		V					
	21105				Plan-36D-2	. 1	1					
	211105	2.40		4	Place-5=D-3	ľ			Tarille 1			
	211/05	2:15			Plaw-5ED-4:							
	21105	1125			Pau-5617-5	1	1	4				
	211105	1:15	1/4		Plaw-SED-6:	1	1					
	211/05	12:55			Plow-SED-7	I	1					
	21105	11:30		+	Plow-560 - 8		1.					-
	211/05	11:20			Plan-5ED-9	1.	1	1				
	211105		14		Plaw- 50-10	1	1					
	21/165	3:00			P.600-560-11		1		Line I			
	211105	185			Plow-SED-5 DUP	f.	~	1.				
		9						-				
	1999 1190				15 A			1				
		,					*					
Relinquis Sim	Hed by	Signature	-		Date / Time Received by: (Signature)	A	Reling			nature)	Date / Time	Received by: (Signature)
Relinquis					Date / Time Received by: (Signature)	1 1.	Relinqu	ished b	γ: (Sigi	néture)	Date / Time	Received by: (Signature)
Relinquis	hed by: (Signeture	,		Date / Time Received for Laborator (Signature)	ry by:		ate /T	me	Remar	ks	

Appendix C

Toxicity Test Chemistry Summary

Chemistry Data for the Hyallela azteca Sediment Toxicity 10 day Exposure Test

				Exposure Test histry - Day 0 (
Sample ID	DO (mg/L)	pH	Temp	Conductivity (µmhos/cm)*	Alkalinity (mg/L as CaCO ₅)	Hardness (mgl as CaCO ₂)	Total Ammonia (ppm NH ₃) [8]
Plow-SED-I	5.29	6.72	21.88	247	24	52	0.37
Plow-SED-2	4.75	6.85	,21.53	282	49.5	68	2.6
Plow-SED-3	5.61	6.92	21.53	249	65.5	68.	2.2
Plow-SED-4	4.33	6.77	21.77	269	63.5	80	1.8
Plow-SED-5	6.13	6.84	21.56	275	52.5	62	1.4
Plow-SED-6	7.10	7.18	21.81	285	63	84	1.6.
Plow-SED-7	7.11 [b]	7.17	21.77	290	68	92	1.2
Flan-SED-1	4.96	6.69	21.70	215	35.5	52	0.75
Control	8.01	7.92	21.90	311	71	84	0.47

The control consisted of artificial sediment
*- 1 microsiemen/cm (µS/cm) = 1 microimbo/cm (µmho/cm)
[a] - Total ammonia was performed on inital C. tentans overlying water and is repeated here,
[b] - Red toggle switch accidentally turned on, and then immediately turned off but high DO may have resulted

H. azteca 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 1 (2/9/05)						
Sample ID	DO (mg/L)	pН	Temperature (°C)			
Plow-SED-1	5.97	6.96	22,25			
Plow-SED-2	5.68	7.07	21.64			
Plow-SED-3	6.36	7.26	21.55			
Plow-SED-4	5.84	7.06	21.56			
Plow-SED-5	6.64	7.24	21.63			
Plow-SED-6	7.03	7.41	21.60			
Plow-SED-7	6.82	7.44	21.64			
Flan-SED-1	7.22	7.56	21.60			
Control	7.35	7.83	21.65			

H. azteca 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 2 (2/10/05)						
Sample ID	DO (mg/L)	pН	Temperature (°C)			
Plow-SED-1	6.50	7.35	22.07			
Plow-SED-2	6.17	7.22	22.10			
Plow-SED-3	6.56	7.33	22.02			
Plow-SED-4	6.26	7.11	22.07			
Plow-SED-5	. 7.02	7.35	21.98			
Plow-SED-6	6.90	7.48	21.93			
Plow-SED-7	7.35	7.48	22.02			
Flan-SED-1	7.54	7.66	22.06 .			
Control	7.53	7.93	21.98			

H. azteca 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 3 (2/11/05)						
Sample ID	DO (mg/L)	pH	Temperature (°C)			
Plow-SED-1	7.01	7.59	22.11			
Plow-SED-2	7.00 %	7.48	22.03			
Plow-SED-3	6.92	7.47 .	22.18			
Plow-SED-4	7.12	7.37	22.15			
Plow-SED-5	7.33	7.50	22.15			
Plow-SED-6	7.27	7.61	22.11			
Plow-SED-7	7.25	7.54	22.06			
Flan-SED-1	7.49	7.71	22.08			
Control	7.03	7.70	22.06			

H. azteca 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 4 (2/12/05)						
Sample ID	DO (mg/L)	рН	Temperature (°C)			
Plow-SED-1	6.91	7.67	22.17			

7.78

7.81

22.27

22.26

7.45

7.24

Flan-SED-1

Control

H. azteca 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 5 (2/13/05)						
Sample ID	. DO (mg/L)	pH	Temperature (*C)			
Plow-SED-1	7.00	7.47	22.36			
Plow-SED-2	6.95	7.50	22.20			
Plow-SED-3	7.17	7.52	22.12			
Plow-SED-4	6.84	7.41	22.10			
Plow-SED-5	7.28	7.57	22.05			
Plow-SED-6	7.02	. 7.68	22.13			
Plow-SED-7	7.35	7.66	22.05			
Flan-SED-1	7.28	7.78	22.05			
Control	6.88	7.78	22.08			

H. azteca 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 6 (2/14/05)						
Sample ID	DO (mg/L)	pH	Temperature (*c)			
Plow-SED-1	6.81	7.92	22.33			
Plow-SED-2	6.80	7.85	22.15			
Plow-SED-3	6.97	7.90	22.14			
Plow-SED-4	6.80	7.84	22.11			

H. azteca 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 6 (2/14/05)						
Sample ID	DO (mg/L)	pН	Temperature (°C)			
Plow-SED-5	6.89	7.88	22.11			
Plow-SED-6	7.09	8.01	22.08			
Plow-SED-7	6.98	7.93	22.06			
Flan-SED-1	7.18	8.06	21.07			
Control	6.38	7.98	21.23			

H. azteca 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 7 (2/15/05)						
Sample ID	DO (mg/L)	pH	Temperature (*C)			
Plow-SED-1	6.78	7.66	21.95			
Plow-SED-2	6.73	7.60	21.86			
Plow-SED-3	7.04	7.67	21.81			
Plow-SED-4	6.65	7.52	21.72			
Plow-SED-5	6.86	7,67	21.85			
Plow-SED-6	6.95	7.73	21.78			
Plow-SED-7	6,83	7.73	21.77			
Flan-SED-1	6.93	7.71	21.71			
Control	6.31	7.74	21.90			

H. azteca 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 8 (2/16/05)						
Sample ID	DO (mg/L)	pН	Temperature (°C)			
Plow-SED-1	6.58	7.64	22,30			
Plow-SED-2	6.55	7.64	21.94			
Plow-SED-3	6.83	7.68	21.92			
Plow-SED-4	6.84	7.59	21.90			
Plow-SED-5	6.71	7.70	21.93			
Plow-SED-6	6.70	7.77	21.87			
Plow-SED-7	7.13	7.78	21.93			

	zteca 10 day Expo te Water Chemist		
Sample ID	DO (mg/L)	pН	Temperature (°C)
Flan-SED-1	6.45	7.74	22.18
Control	5.81	7.73	22.09

	teca 10 day Expo e Water Chemist		
Sample ID	DO (mg/L)	pН	Temperature (°C)
Plow-SED-1	5.92	7,58	22.47
Plow-SED-2	5.98	7.61	22.18
Plow-SED-3	6.18	7.61	22.12
Plow-SED-4	6.07	7.54	22.11
Plow-SED-5	6.43	7.71	22.05
Plow-SED-6	6.20	7.77	22.14
Plow-SED-7	6.38	7.71	22.03
Flan-SED-1	6.27	7.70	21.98
Control	4.38	7.63	22,04

H. azteca 10 day Exposure Test - Round 1 Final Chemistry - Day 10 (2/18/05)							
Sample ID	DO (mgL)	pН	Temp	Conductivity (µmhos/om)*	Alkalinity (mg/L as CaCO ₂)	Hardness (mg/L as CaCO ₃)	Total Ammonia (ppm NB ₃) [8]
Plow-SED-1	5.47	7.70	21.38	. 294	89	88	0.19
Plow-SED-2	5,52	7.73	21.40	296	90.5	100	0.76
Plow-SED-3	5.90	7.70	21.37.	298	87.5	98	1.0
Plow-SED-4	5.37	7,63	21.46	297	89.5	98	1.0
Plow-SED-5	5.40	7.68	21.46	295	87	96	0.91
Plow-SED-6	5.55	7.73	21.41	297	88	98	0.88
Plow-SED-7	5.35	7.73	21.41	296	88	98	0.78

H. azteca 10 day Exposure Test - Round 1 Final Chemistry - Day 10 (2/18/05)

Sample ID	DO (mg1)	рН	Temp	Conductivity (µmhos/cm)*	Alkalinity (mg/L as CaCO ₃)	Hardness (mgL ≈ CaCO ₃)	Total Ammonia
Flan-SED-1	5.30	7.73	21.48	291	83.5	94	0.43
Control	4.61	7.65	21.45	311	97	106	0.36

[[]a] - Total Ammonia was performed on 2/25/05 due to lack of pillow packets *- 1 microsiemen/em (µS/em) = 1 micromho/em (µmho/em)

Chemistry Data for the Hyallela azteca Sediment Toxicity 10 day Exposure Test

	1	THE RESERVE OF THE PERSON NAMED IN		Exposure Tes istry - Day 0 (2		47	
Sample ID	DO (mg/L)	pH	Temp (°C)	Conductivity (umhos/cm)*	Alkalinity (mg/L as Ca(O ₂)	Hardness (mg/Las CaCO ₃)	Total - Ammonia (ppm NH ₃) ^[a]
Plow-SED-8	5.22	7.10	21.98	266	. 54.5	60	0.74
Plow-SED-9	5.62	7.26	21.46	263	64	80	0.22
Plow-SED-10	6.29	7.40	21.41	290	61	74	0.28
Plow-SED-11	5.86	7.48	21.43	291	72	80	1,2
Grove-SED-1	4.74	8.06	21:40	355	128	124	0.30
Grove-SED-2	6.08	7.86	21:41	346	341.5	110	1.0
Grove-SED-3 [6]	5.80	8.05	25.02	607	228	184	5.5
Control	7.73	8.24	21.52	303	85	92	0.091

The control consisted of artificial sediment
*- I microsiemen/cm (µS/cm) = I micromino/cm (µmho/cm)
[a] - Total ammonia was performed on Plow-SED-10 and Grove-SED-1 on 2/25/05 due to lack of pillow packs. Ammonia values are from non-preserved samples.
[b] - Grove-SBD-3 was stored in Chamber 204 for the duration of the test

H. azteca 10 day Exposure Test -Round 2 Waste Water Chemistry - Day 1 (2/16/05)					
Sample ID	DO (mg/L)	pH	Temperature (°C)		
Plow-SED-8	5.78	7.55	22.29		
Plow-SED-9	6.15	7.60	22.12		
Plow-SED-10	5.77	7.46	22.14		
Plow-SED-11	6.13	7.52	22,15		
Grove-SED-1	5.82	7.99	22.15		
Grove-SED-2	5.80	7.80	22.19		
Grove-SED-3	. 6.40	8.12	22.09		
Control	6.48	7.98	22.20		

H. azteca 10 day Exposure Test -Round 2 Waste Water Chemistry - Day 2 (2/17/05)					
Sample ID	DO (mg/L)	рН	Temperature (*c)		
Plow-SED-8	5.45	7.51	21.91		
Plow-SED-9	5.73	7.53	22.04		
Plow-SED-10	5.12	7.32	22.05		
Plow-SED-11	5.55	7.42	21.98		
Grove-SED-1	5:50	. 7.96	21,98		
Grove-SED-2	5.50	7.73	21.99		
Grove-SED-3	6.10	8.06	24.34		
Control	5.81	7.89	22,25		

Sample ID	DO (mg/L)	pH	Temperature (°C)
Plow-SED-8	5.40	7,67	21.90
Plow-SED-9	5.90	7.70	21.87
Plow-SED-10	5.46	7.52	21.93
Plow-SED-11	6.22	7.67	21.94
Grove-SED-1	6.48	8.24	21.83
Grove-SED-2	6.16	7.97	21.79
Grove-SED-3	6.28	8.14	21.81
Control	6.80	8.19	21.82

H. azteca 10 day Exposure Test -Round 2 Waste Water Chemistry - Day 4 (2/19/05)					
Sample ID	DO (mg/L)	pН	Temperature (°C)		
Plow-SED-8	5.88	7.65	21.98		
Plow-SED-9	6:20	7.67	. 21.95		
Plow-SED-10	5.57	7.43	21.96		
Plow-SED-11	6.07	7.59	21.96		

H. azteca 10 day Exposure Test -Round 2 Waste Water Chemistry - Day 4 (2/19/05)					
Sample ID	DO (mg/L)	pН	Temperature (°C)		
Grove-SED-1	6.64	8.15	21.95		
Grove-SED-2	6.27	7.85	21.94		
Grove-SED-3	5.52	7.92	21.93		
Control	6.49	8.01	21.95		

H. azteca 10 day Exposure Test -Round 2 Waste Water Chemistry - Day 5 (2/20/05)				
Sample ID	DO (mg/L)	pH	Temperature (°C)	
Plow-SED-8	5.11	7.56	21.84	
Plow-SED-9	4.87	7,55	21.85	
Plow-SED-10	4.32	7.33	21.79	
Plow-SED-11	5.20	7,57	21.78	
Grove-SED-1	5.18	7.97	21.82	
Grove-SED-2	4.73	7.68	21.80	
Grove-SED-3	5.99	8.05	21.80	
Control	4.23	7.67	21.79	

H. azteca 10 day Exposure Test -Round 2 Waste Water Chemistry - Day 6 (2/21/05)					
Sample ID	DO (mg/L)	pH	Temperature (°C)		
Plow-SED-8	5.18	7.68	21.89		
Plow-SED-9	5.41	7.73	21.88		
Plow-SED-10	4.83	7.50	21.84		
Plow-SED-11	5.35	7.71	. 21.84		
Grove-SED-1	5.67	8.13	21.83		
Grove-SED-2	5.26	7.89	21.88		
Grove-SED-3	5.89*	8.14	21,88		
Control	4.93	7.82	21.8		

⁻ Accidentally turned on red toggle switch resulting in a possibly higher DO value

H. azteca 10 day Exposure Test -Round 2 Waste Water Chemistry - Day 7 (2/22/05)					
Sample ID	. DO (mg/L)	pH .	Temperature (°C)		
Plow-SED-8	5.64	7.55	22,40		
Plow-SED-9	5.82	7,66	22.18		
Plow-SED-10	5,55	7.54	22.12		
Plow-SED-11	5.89	7.65	22.12		
Grove-SED-1	6.12	8.13	22.07		
Grove-SED-2	5.78	7.77	22.08		
Grove-SED-3	5.52	8.05	22.10		
Control	5.76	7.70	22.01		

H. azteca 10 day Exposure Test -Round 2 Waste Water Chemistry - Day 8 (2/23/05)						
Sample ID	DO (mg/L)	pН	Temperature (°C)			
Plow-SED-8	6.20	7.70	22,29			
Plow-SED-9	6.26	7.77	21.95			
Plow-SED-10	6.10	7.70	21.93			
Plow-SED-11	6.46	7.81	21.88			
Grove-SED-1	6.98	8.25	21.89			
Grove-SED-2	6.34	7.93	21.86			
Grove-SED-3	6.40	8.13	21.88			
Control	6.34	7.79	21.95			

H. azteca 10 day Exposure Test -Round 2 Waste Water Chemistry - Day 9 (2/24/05)					
Sample ID	DO (mg/L)	pH	Temperature (*c)		
Plow-SED-8	6.20	7.78	22.28		
Plow-SED-9	6.33	7.83	22.18		
Plow-SED-10	6.14	7.73	22.17		
Plow-SED-11	6.56	7.85	22.18		

H. azteca 10 day Exposure Test -Round 2 Waste Water Chemistry - Day 9 (2/24/05)						
Sample ID	DO (mg/L)	pН	Temperature (°C)			
Grove-SED-1	6.83	8.24	22.18			
Grove-SED-2	6.51	7.94	22.13			
Grove-SED-3	6.30	8.12	22.21			
Control	5,90	7.76	22.12			

H. azteca 10 day Exposure Test -Round 2 Final Chemistry - Day 10 (2/25/05)							
Sample ID	DO (mg/L)	pН	Temp	Conductivity	Alkalinity	Hardness (mg/L at CaCO ₃)	Total Ammonia (ppm NH ₃) [a]
Plow-SED-8	5.30	7.45	22.34	298	84.5	98	0.57
Plow-SED-9	5.45	7.45	22.11	296	85	94	0.69
Plow-SED-10	5.52	7.42	22.07	293	83	90	0.66
Plow-SED-11	6.06	7.56	22.02	297	85	94	0.68
Grove-SED-1	6.19	7.95	22.03	308	91.5	100	0.72
Grove-SED-2	5.64	7.63	22.06	300	87.5	96	0.80
Grove-SED-3	5.75	7.87	22.10	399	128	130	1.9
Control .	5.39	7.45	22.04	310	93,5	140	0.20

[[]a] - Total Ammonia was performed on 2/25/05 due to lack of pillow packets
*- 1 microssiemen/cm (µS/cm) = I micromho/cm (µmho/cm)

Chemistry Data for the Chironomus tentans Sediment Toxicity 10 day Exposure Test

C. tentans 10 day Exposure Test - Round 1 Initial Chemistry - Day 0 (2/7/05)							
Sample ID	DO (mgL)	pН	Temp (℃)	Conductivity	Alkalinity (mg/L as CaCO ₃)	Hardness (mg/L == CaCOy)	Total Ammonia (ppm NH ₃)
Plow-SED-1	5.29	6.72	21.88	247	24	52	0.37
Plow-SED-2	4.75	6.85	21.53	282 -	49.5	68	2.6
Plow-SED-3	5.61	6.92	21.53	249	65.5	68	2.2
Plow-SED-4	4.33	-6.77	21.77	269	63.5	. 80	1.8
Plow-SED-5	6.13	6.84	21.56	275	52.5	62	1.4
Plow-SED-6	7.10	7.18	21.81	285	63	84	1.6
Plow-SED-7	7.11 (1)	7.17	21.77	290	68	92 .	1,2
Flan-SED-1	4.96	6.69	21.70	215	35.5	52	0.75
Control -	8.01	7.92	21.90	311	71	84	0.47

The control consisted of artificial sediment
*-1 microsiemen/cm (µS/cm) = 1 micromho/cm (µmho/cm)
DO, pH, Temp, Conductivity, Alkalinity and Hardness were performed on initial overlying water from H. axteca and are repeated here.
[a] - Red toggle switch was accidentally turned on, and then immediately turned off but high DO may have resulted

C. tentans 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 1 (2/9/05)						
Sample ID	DO (mg/L)	pН	Temperature (°C)			
Plow-SED-1	3.46	6.73	21.68			
Plow-SED-2	3.67	6.84	21.61			
Plow-SED-3	4.35	7.08	21.57			
Plow-SED-4	3.93	6,87	21.55			
Plow-SED-5	4.24	6.80	21.59			
Plow-SED-6	4.41	7.01 -	21.60			
Plow-SED-7	4.50	6.97	21.63			
Flan-SED-1	5.17	7.11	21.63			
Control	5.31	7.55	21.65			

	<i>itans</i> 10 day Expo te Water Chemist			
Sample ID	DO (mg/L)	pН	Temperature (°C)	
Plow-SED-1	3.90	6.68	21.88	
Plow-SED-2	3.26	6.70.	21.95	
Plow-SED-3	5.25	7.12	21.95	
Plow-SED-4	4.59	6.86	22.04	
Plow-SED-5	4.66	6.72	21.95	
Plow-SED-6	5.43	7.05	21.96	
Plow-SED-7	4.89	6.92	21.94	
Flan-SED-1	5.90	7.09	22.09	
Control	6.21	7.71	22.03	

Sample ID	DO (mg/L)	pН	Temperature (°C)	
Plow-SED-1	7.36	7.22	22,46	
Plow-SED-2	6.19	7.14	22.18	
Plow-SED-3	7.03	7.43	22.20	
Plow-SED-4	6.62	7.24	22.24	
Plow-SED-5	6.08	7.01	22.26	
Plow-SED-6	7.36	7.47	22.15	
Plow-SED-7	6.88	7.29	. 22,10	
Flan-SED-1	7.12	7.44	22.04	
Control	7.72	7.91	22.13	

C. tentans 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 4 (2/12/05)						
Sample ID	DO (mg/L)	pН	Temperature (°C)			
Plow-SED-1	4.92	6.88				
Plow-SED-2	4.60	6.99	22.19			
Plow-SED-3	6.44	7.35	22.19			

	ans 10 day Expo Water Chemist		
Sample ID	DO (mg/L)	pН	Temperature (°C)
Plow-SED-4	5.06	7.09	22,16
Plow-SED-5	5.70	7.06	22.35
Plow-SED-6	5.62	7.22	22.30
Plow-SED-7	5.83	7.27	22.17
Plan-SED-1	6.53	7.45	22.14
Control	6.58	7.79	22.22

C. tentans 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 5 (2/13/05)							
Sample ID	DO (mg/L)	- pH	Temperature (°C)				
Plow-SED-1	4.33	7.03	22.05				
Plow-SED-2	4.91	7.19	22.08				
Plow-SED-3	6.55	7.49	. 22.01				
Plow-SED-4	5.43	7.24	22.22				
Plow-SED-5	5.54	7.12	22.04				
Plow-SED-6	5.48	7.28	21.97				
Plow-SED-7	5.68	7.30	21.97				
Flan-SED-1	6.50	7.43	22.13				
Control	6.60	7.78	22.02				

7650 cl

C. tentans 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 6 (2/14/05)						
Sample ID	DO (mgL)	pН	Temperature (°C)			
Plow-SED-1	5.08	7.22	21.97			
Plow-SED-2	5.13	7.36	22.06			
Plow-SED-3	6.71	-7.77	22.01			
Plow-SED-4	5,59	7.47	22.01			
Plow-SED-5	5.88	7.44	22,01			
Plow-SED-6	5,91	7.56	22.01			

C. tentans 10 day Exposure Test - Round 1 Waste Water Chemistry - Day 6 (2/14/05)					
Sample ID	DO (mg/L)	pH	Temperature (°C)		
Plow-SED-7	6.01	7.51	22.00		
Flan-SED-1	6.31	7.65	22.00		
Control	6.52	7.98	22.00		

	ntans 10 day Expo te Water Chemist		
Sample ID	DO (mg/L)	pН	Temperature (°C)
Plow-SED-1	5,42	7.09	21.69
Plow-SED-2	5.43	7.20	21.67
Plow-SED-3	6.48	7.52	21.67
Plow-SED-4	5,83	7.28	21.65
Plow-SED-5	5.85	7.07	21.67
Plow-SED-6	6.17	- 7.37	. 21.70
Plow-SED-7	5.84	7.37	21.66
Flan-SED-1	6.31	7.31	21.83
Control	6.16	7.78	21.89

wasi	e Water Chemist	ry - Day o (2/10/05)
Sample ID	DO (mg/L)	pН	Temperature (°C)
Plow-SED-1	6.23	7.34	21.87
Plow-SED-2	5.66	7.29	21.82
Plow-SED-3	6.36	7.55	21.83
Plow-SED-4	5.91	7.37	21.82
Plow-SED-5	5.55	7.12	21.85
Plow-SED-6	6.44	7.48	21.83
Plow-SED-7	5,83	7.38	21.83
Flan-SED-1	. 5.46	7.33	21.87
Control	5.62	7.72	21.84

Sample ID	DO (mg/L)	рН	Temperature (°C)	
Plow-SED-1	4.45	7.12	21.99	
Plow-SED-2	4.56	7.18	22.01	
Plow-SED-3	5.55	7.45	22.01	
Plow-SED-4	4.65	7.25	22.04	
Plow-SED-5	4.63	7.07	22.00	
Plow-SED-6	5.09	7.29	21.98	
Plow-SED-7	5.05	7.36	21.99	
Flan-SED-1	4.87	7.31	21.93	
Control	4.50	7.62	21.85	

C. tentans 10 day Exposure Test - Round 1 Final Chemistry - Day 10 (2/18/05)										
Sample ID	DO (mg/L)	рН	Temp	Conductivity (junhos/cm)*	Alkalinity (mg/L as CaCO ₄)	Hardness (mg/L == CaCO _d)	Total Ammonia (ppm NH ₂) [n]			
Plow-SED-1	2.53	6.92	22.24	279	64.5	86	2			
Plow-SED-2	2.11	6.99	21.72	288	72	88	1.8			
Plow-SED-3	4.03	7.31	21.68	296	82.5	96	1.6			
Plow-SED-4	2.51	7.14	21.66	294	79.5	96	1.5			
Plow-SED-5	2.90	6.98	21.59	260	58.5	74	1.6			
Plow-SED-6	2.89	7.23	21.46	281	71 .	86	1.6			
Plow-SED-7	2,42	7.22	21.51	281	74	88 .	1.5			
Flan-SED-1	2.80	7.26	21.55	281	73	90	1.4			
Control	2.84	7.56	21.52	329	101.5	112	0.63			

[a] - Total Ammonia was performed on 2/25/05 due to lack of pillow packets
*-1 microsiemen/cm (µS/cm) = 1 micromho/cm (µmho/cm)

Chemistry Data for the Chironomus tentans Sediment Toxicity 10 day Exposure Test

	(L tenta Init	ns 10 day ial Chem	Exposure Tes istry - Day 0 (2	t - Round 2 2/14/05)		
Sample ID	DO (mg/L)	рН	Temp	Conductivity	Alkalinity (mg/L as CaCo)	Hardness	Total Ammonia (ppm NH ₃)
Plow-SED-8	5,22	7.10	21.98	266	54.5	60	0.74
Plow-SED-9	5.62	7.26	21.46	263	64	80	0.22
Plow-SED-10	6.29	7.40	21.41	290	61	- 74	0.28
Plow-SED-11	.5.86	7.48	21.43	291	72	80	1.2
Grove-SED-1	4.74	8.06	21.40	355	128	124	0.30
Grove-SED-2	6.08	7.86	21.41	346	341.5	110	1.0
Grove-SED-3 [4]	5.80	8.05	25.02	607	228	184	5.5
Control	7.73	8.24	21.52	303	85	92	0.091.

The control consisted of artificial sediment

DO, pH, Temp, Conductivity, Alkalinity and Hardness were performed on initial overlying water from H. arteca and are repeated here.

* - 1 microsiemen/cm (µS/cm) = 1 micromho/cm (µmho/cm)

[a] - Grove-SED-3 was stored in Chamber 204 for the duration of the test

Waste V	s 10 day Expo Vater Chemist	sure Test - ry - Day 1 (Round 2 (2/15/05)
Sample ID	DO (mg/L)	pН	Temperature (°C)
Plow-SED-8	6.52	7.38	21.90
Plow-SED-9	7.03	7.59	21.88
Plow-SED-10	6.56	7.44	21.85
Plow-SED-11	6.48	7.34	21.84
Grove-SED-1	6.75	8.06	21.86
Grove-SED-2	6.46	7.76	21.83
Grove-SED-3	5.48	7.91	24.27
Control	7.27	8.10	21.85

	tans 10 day Expe e Water Chemist		
Sample ID	DO (mg/L)	pН	Temperature (°C)
Plow-SED-8	5.30	7.34	22.11
Plow-SED-9	6.25	7.60	22.10
Plow-SED-10	5.36	7.31	22.08
Plow-SED-11	5.24	7.29	22.14
Grove-SED-1	5.53	7,99	22.06
Grove-SED-2	5.26	7.70	22.13
Grove-SED-3	6.21	8.01	22.10
Control	6.14	7.95	22.12

	tans 10 day Expo e Water Chemist		The Annual Control of the Control of
Sample ID	DO (mg/L)	рН	Temperature (*C)
Plow-SED-8	3,88	7.16	21.95
Plow-SED-9	5.00	7.52	22.00
Plow-SED-10	3.88	7.08	22.03
Plow-SED-11	4.47	7.19	22.10
Grove-SED-1	3.86	7.79	21.95
Grove-SED-2	4.27	7.56	21.99
Grove-SED-3	5.51	7.91	24.50
Control	4.36	7.65	22.28

C. tentans 10 day Exposure Test - Round 2 Waste Water Chemistry - Day 4 (2/18/05)					
Sample ID	· DO(mg/L)	pН	Temperature (°C)		
Plow-SED-8	7.22	7.63	22.17		
Plow-SED-9	7.31	7.90	22.04		
Plow-SED-10	6.76	7.50	22.04		
Plow-SED-11	6.77	7.52	22.03		
Grove-SED-1	6.85	8.02	21.98		

	is 10 day Expo Vater Chemist						
Sample ID	DO (mg/L)	рН	Temperature (°C)				
Grove-SED-2	6.62	7.74	21.99				
Grove-SED-3	6.63	8.13	22.00				
Control	6.88 - 7.95 22.12						

C. tentans 10 day Exposure Test - Round 2 Waste Water Chemistry - Day 5 (2/19/05)					
Sample ID	DO (mg/L)	pН	Temperature (°C)		
Plow-SED-8	4.51	7.30	22.01		
Plow-SED-9	5.94	7.74	21.95		
Plow-SED-10	4.95	7.31	21.98		
Plow-SED-11	4.70	7.25	21.98		
Grove-SED-1	5.24	7.97	22.01		
Grove-SED-2	4.65	7.65	21.97		
Grove-SED-3	6.39	8.19	21.99		
Control	4.95	7.77	21.94		

	C. tentans 10 day e Water Chemist		
Sample ID	DO (mg/L)	рН	Temperature (°C)
Plow-SED-8	2.83	7.01	22.32
Plow-SED-9	5.13	7.52	21.89
Plow-SED-10	3.26	7.13	21.83
Plow-SED-11	3.30	7.14	21.85
Grove-SED-1	3.89	7.90	21.82
Grove-SED-2	3.42	7.56	21.82
Grove-SED-3	4.33	7.85	21.89
Control	2.93	7.63	21.84

	tans 10 day Expo e Water Chemist			
Sample ID	DO (mg/L)	pН	Temperature (°C)	
Plow-SED-8	2.71	7.19	22.48	
Plow-SED-9	4.21	7.61	22.04	
Plow-SED-10	3.12	7.25	21.97	
Pløw-SED-11	2.81	7.24	. 21.97	
Grove-SED-1	3.36	7.91	21.95	
Grove-SED-2	2.65	7.58	22,02	
Grove-SED-3	3.35	7.93	22,12	
Control	2.22	7.68	21.95	

* CONTROL OF THE PARTY OF THE P	10 day Expo ater Chemist		250 Table 2500 CO. Co.
Sample ID	DO (mg/L)	pН	Temperature (°C)
Plow-SED-8	4.36	7.27	21,93
Plow-SED-9	6.26	7.79	21.98
Plow-SED-10	4.68	7.34	21.92
Plow-SED-11	4.05	7.31	21.98
Grove-SED-1	5.33	8.00	22.00
Grove-SED-2	4.62	7.65	21.95
Grove-SED-3	3.89	7.81	22.01
Control	4.73	7.66	22.00

C. tentans 10 day Exposure Test - Round 2 Waste Water Chemistry - Day 9 (2/23/05)					
Sample ID	DO (mg/L)	pН	Temperature (°C)		
Plow-SED-8	4.53	7.09	21.92		
Plow-SED-9	6.23	- 7.62	21.97		
Plow-SED-10	5.11	7.31	22.04		
Plow-SED-11	3.73	7.17	22.02		
Grove-SED-1	5.34	8.05	21.99		

C. tentans 10 day Exposure Test - Round 2 Waste Water Chemistry - Day 9 (2/23/05)							
Sample ID	DO (mgL)	pН	Temperature (°C				
Grove-SED-2	5.19	7.62	21.97				
Grove-SED-3	4.58	7.83	21.96				
Control	rol 4.24 7.33 22.43						

C. tentans 10 day Exposure Test - Round 2 Final Chemistry - Day 10 (2/24/05)							
Sample ID	DO (mg/L)	рН	Temp	Conductivity (µmhos/cm)*	Alkalinity (mg/L ss CaCO ₂)	Hardness (mg/L = CaCO ₃)	Total Ammonia (ppm NH ₃) ^[a]
Plow-SED-8	6.21	7.50	21.91	282	94.5	84	0.58
Plow-SED-9	6.94	7.85	21.85	295	106.5	96	0.72
Plow-SED-10	6.27	7.57	21,66	283	97.5	- 90	0.82
Plow-SED-11	5.32	7.44	22.03	295	101.5	98	0.85
Grove-SED-1	6.65	8.09	21.98	318	118	110	0.82
Grove-SED-2	6.57	7.82	21.91	304	107.5	100	0.77
Grove-SED-3	4.82	7.91	22.04	434	167	130	2.7
Control	5.90	7.88	21.97	325	120.5	110	0.40

[[]a] - Total Ammonia was performed on 2/25/05 due to lack of pillow packets * - 1 microsiemen/cm (µS/cm) = 1 micromho/cm (µmho/cm)

Appendix D

Bench Sheets and Statistical Test Print-outs

Pan Numbe	Station	Number Alive	Number Dead	% Survival	Comments	Initials
1	Plow-SED-7-1	10				IK
2	Plow-SED-1-6	9			The second	200 000 000
3	Plow-SED-5-3	10.				MMG
4	Plow-SED-6-6	1.9				M
5	Plow-SED-4-4	107		100		M
6	Plow-SED-5-6	(0)				MUB
7	Control-1	10				1000011100
8	Flan-SED-1-3	10				MMB
9	Plow-SED-1-8	10.				e e e e
10	Plow-SED-4-8	. 9				M
11	Plow-SED-7-8	10				JSK
12	Plow-SED-3-5	9				~
13	Plow-SED-1-5	8				M
14	Plow-SED-6-1	9				MMG
15	Plow-SED-2-6	Sentul 2				AF
16	Plow-SED-6-3	7				384
17	Plow-SED-4-3	17				PAR
18	Plow-SED-2-7	9				革
19	Plow-SED-1-3	10				502
20	Plow-SED-4-5	10				MMG
21	Plow-SED-5-7	9				N
22	Plow-SED-3-2	10				284
23	Plow-SED-1-2	10				704
24	Flan-SED-1-4	10				PAR
25	Plow-SED-6-7	9				MAG
26	Plow-SED-2-4	8				NE
27	Plow-SED-6-4	10				5BH
28	Plow-SED-2-2	8				JBH
29	Plow-SED-3-1	10				RAFE
30	Plow-SED-4-1	7				M
31	Control-5	10				JBH
32	Plow-SED-1-4	9				PAR
33	Plow-SED-3-8	9		9		MMGIT
7	Plow-SED-2-1	10				+ &III
1	Plow-SED-3-3	10				TBH
	Plow-SED-5-8	8	ida .			JBH JBH

Pan Number	Station	Number Alive	Number Dead	% Survival	Comments	Initials
37	Control-3	- lb				120
38	Plow-SED-2-8	8				JBA
39	Control-8	10				ums
40	Flan-SED-1-8	9				38 #
41	Plow-SED-7-3	10				M
42	Plow-SED-4-7	9				Me
43	Plow-SED-2-3	10				Sp
-44	Plow-SED-3-6	9				TO
45	Plow-SED-6-5	9				1 de
46	Plow-SED-5-4	10			- 1, 1	MMG
47	Plow-SED-7-2	10	4			W
48	Plow-SED-6-2	a				ment
49	Plow-SED-3-7	10				aume
50	Plow-SED-5-1	10.				15
51	Plow-SED-3-4	10				ME
52	Plow-SED-4-6	6			1	100
53	Plow-SED-7-5	9				MR
54	Flan-SED-1-6	10				SBH
55	Flan-SED-1-1	9				naid
56	Plow-SED-2-5	10	4			AF
57	Plow-SED-5-2	10				MMB
58	Plow-SED-1-7	7				- Pro-
59	Control-6	10	1			J84.
60	Plow-SED-4-2	11801				100
61	Plow-SED-5-5	0. 9				Me
62	Flan-SED-1-2	9				Mail
63	Control-4	10			The state of the s	378 H
64	Plow-SED-7-6	19				MMB
65	Flan-SED-1-5	9				180
.66	Plow-SED-1-1	9				mms
67 .	Piow-SED-7-4	10				PAR
68	Flan-SED-1-7	10		to the state of		NE
69	Control-7	10				JOSH
70	Plow-SED-7-7	9	0			RAK
71	Plow-SED-6-8	10				MB
72	Control-2	10			1.1.6.11	JBH

Pan Number	Station	Number Alive	Number Dead	% Survival	Comments	Initials
1	Grove-SED-1-8	10	0	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SP
. 2	Plow-SED-10-3	9	1	90.	ICI pupae in sand	MET
3	Plow-SED-11-1	G	0		The state of the state of	T3 #
. 4	Grove-SED-2-7	9			144 - 14 15 164	ME
- 5	Plow-SED-11-5	10	. 0	100	Shrine	SA
6	Plow-SED-9-4	6			te its hapsel	MMB
7	Grove-SED-2-3	10	0 .	100		80
8	Plow-SED-8-7	9	1	90	e la la la la la la la la la la la la la	Mais
9	Plow-SED-10-1	- 10	0			58H
10	Plow-SED-8-4	9	- 1'	.4090		RAR
- 11	Control-1	10				M
12	Plow-SED-10-7	9	. 0 .	4 .		584
13	Grove-SED-3-3	8.	2	80	1 co Danae	huis
14	Grove-SED-1-1	7			rice disposit	MMB
15	Plow-SED-11-7	10		1 0	Louvio	M
16	Grove-SED-1-6	. 10.	0	100	1 12 T38 ovás	SP
17	Plow-SED-8-8	9	1	90%		RAR
18	Grove-SED-1-3	9		90%	I CT puper	MMD
19	Control-4	.10			10105-000	NF.
20	Control-8	9	0		C 0 0 00	OND
21	Plow-SED-9-8		9	10%	Strong full swell i	30
22	Grove-SED-1-2	11				MMG
23	Plow-SED-9-5	8	· 2	80%		PAR
24	Plow-SED-8-3	9				at-
25	Plow-SED-9-1	5	0	02.6		584
26	Plow-SED-11-4	9		90%		hard
27	Grove-SED-2-1	10		0.00	planta I soud	JBAL
28	Plow-SED-8-6	9	1	90%	I three blew out	new
29	Plow-SED-11-6	10				M
30	Plow-SED-8-2	10	,			5811
31	Control-6	10	0 .	100	a contract to the contract to	86
32	Grove-SED-3-6	10	number of			M
33	Grove-SED-1-7	10	0	100		80
34	Plow-SED-9-2	5	5	507	Strong feulgmell)	50
35	Grove-SED-2-4	9	1 1	900	0 0	PAR
	Grove-SED-3-2	6	4	60%	2 CTs tound	AMD.

Study Fort Devens Sediment Toxicity Test
Test Date

Pan Number	Station	Number Alive	Number Dead	% Survival	Comments	Initials
37	Grove-SED-3-4	10	. 0			TOUR.
38	Grove-SED-2-2	10				JRH
39	Plow-SED-10-6	10	.0.		3 1	PAR
40	Plow-SED-11-3	9		90%		150
41	Control-3	10	0	100%		mus
42	Grove-SED-3-5	1.0	0	160		PAR
43	Grove-SED-2-6	10				A
44	Grove-SED-3-8	10	0.	1		03/4
45	Control-2	10	ی			JBH
46	Grove-SED-1-4	9	1			hund
: 47	Plow-SED-11-2	10	0	100%		150
48	Plow-SED-9-7	5			it is a second	SMA
49	Grove-SED-2-8	10		1	Notice sides	M
€ 50	Grove-SED-2-5	10	0	1,00		PAR
51	Control-5	10			i Lesi wa	MMG
52	Grove-SED-3-7	7	3	70%	at the public	nemo
53	Plow-SED-9-3	6	4	100 %.		PAR
54	Plow-SED-10-4	10	0.	100		SP
55	Grove-SED-1-5	9				M
56	Plow-SED-8-5	9				MMG
57	Grove-SED-3-1	0		02	five damastry nymph	50
58	Plow-SED-10-2	9	-1:	90%	V it - mid	RAK
59	Control-7	10				MMB
60	Plow-SED-9-6	4	6	40%	Strong fuel smell;	50
61	Plow-SED-11-8	7	3	70%	93.4	mind
62	Plow-SED-10-8	10	0	100%		ME
63	Plow-SED-10-5	10.	.0			2814
64	Plow-SED-8-1	9	16-11			MAG

Pan Number	Station	Number Alive	Number Dead	% Survival	Comments	Initials
1	Plow-SED-7-1	9	•	90	•	SP
2	Plow-SED-1-6	10	0	160		PAR
3	Plow-SED-5-3	9	T I	90	. A Verment	. 80
4	Plow-SED-6-6	8	2	80		PAR
- 5	Plow-SED-4-4	10	0	[00]		SP
6	Plow-SED-5-6	10	0	100		PAR
7	Control-1	. 8	02	80		1 SP
8	Flan-SED-1-3	lo	0	100		PAR
9	Plow-SED-1-8	10	. 0	100		Sp
10	Plow-SED-4-8	10	6	601		huit
11	Plow-SED-7-8	10	0	100		50
12	Plow-SED-3-5	10	0	100		rund
13 .	Plow-SED-1-5	10	0	100	4	nexis
14	Plow-SED-6-1	10	0	100		80
15	Plow-SED-2-6	10	0.	100		PAR_
16	Plow-SED-6-3	.10	0	100		MASS
17 - 0.	Plow-SED-4-3	9	1.	90		SP
18	Plow-SED-2-7	10-	0	100		PARC
19	Plow-SED-1-3	10 .	:0:	100		180
g 20	Plow-SED-4-5	10	0	100		nino
21	Plow-SED-5-7	8	2	80		SP
22	Plow-SED-3-2	10.	0	180		ruled
23	Plow-SED-1-2	10	0	100		Sp
24	Flan-SED-1-4	10	0 .	100		mus
25	Plow-SED-6-7	- 10	0.	100		.84
26	Plow-SED-2-4	. 10	0.	100 %		Luis
27	Plow-SED-6-4	10	0.	[00]		180
- 28	Plow-SED-2-2	-11	0	110%		mad
29	Plow-SED-3-1 . *	8	2 .	80		SP
30	Plow-SED-4-1	.10	0 .	100		rimed
31	Control-5	9.	1.	90		8P .
32	Piow-SED-1-4	-11-	.0.	110%		diaris
33	Plow-SED-3-8	. 10	. 0	100		1.80
34	Plów-SED-2-1	10	Ó	190		MUD
35	Plow-SED-3-3	10	. 0	[00]		50
36	Plow-SED-5-8	10.	δ	100		mato

Pan Number	Station	Number Alive	Number Dead	% Survival	Comments	Initials
37	Control-3	10	.0	100%		Muso
38	Plow-SED-2-8	10	0	1.00		80
39	Control-8	10	0	100		anu
40	Flan-SED-1-8	10	0	100		150
41	Plow-SED-7-3	11	0	100.		054
42	Plow-SED-4-7	104	0	100		180
43	Plow-SED-2-3	10	0	100		PAR
44	Plow-SED-3-6	10	0	100		90
45	Plow-SED-6-5	16	6 .	150%		4
46	Plow-SED-5-4	9		90		PAR
47	Plow-SED-7-2	10	0	100		SP.
48	Plow-SED-6-2	10	G	100		RAP
49	Plow-SED-3-7	10	- 0	100		d
50	Plow-SED-5-1	9		90		80
51	Plow-SED-3-4	10	0	100	1- 1-25	PAR
52	Plow-SED-4-6	10	0	100	1	PAR.
53	Plow-SED-7-5	10	6	100		2
54	Flan-SED-1-6	10	0	100		mus
55	Flan-SED-1-1	10	0	100	- 1. 3	De
56	Plow-SED-2-5	10	0	100		PAR
57	Plow-SED-5-2	10	0.	100		0
58	Plow-SED-1-7	10	0	100		MINID
. 59 3	Control-6	9	1	90		PARZ
60	Plow-SED-4-2	10.	0	100		2
61	Plow-SED-5-5	10	0	100		MMD
62	Flan-SED-1-2	10	0	. [00]	1 1 1 2 1	42
63	Control-4	9	1	90		R
64	Plow-SED-7-8	10	. 0	100		80
65	Flan-SED-1-5	10	0	00		50
66	Plow-SED-1-1	19	1	90		aus
67	Plow-SED-7-4	10	0	. 100		ST
68	Flan-SED-1-7	.10	0	100		mino
69	Control-7	.9	1-	90	war a land one	SP
70	Plow-SED-7-7	9	- 1	90		Mario
71	Plow-SED-6-8	10	0	100		80
. 72	Control-2	10	0	100	1 small 9 Large	mont

Pan Number	Station	Number Alive	Number Dead	% Survival	Comments	Initials
1	Grove-SED-1-8	9				M
2	Plow-SED-10-3	10				ME
3	Plow-SED-11-1	10				M
4	Grove-SED-2-7	10		. 100		MM
5	Plow-SED-11-5	10				M
6	Plow-SED-9-4	2				Lind
7	Grove-SED-2-3	10	77.7			MM
8	Plow-SED-8-7	9				NF.
9	Plow-SED-10-1	10				HUM
10	Plow-SED-8-4	10				LAND
11	Control-1	8		53		1F
12	Plow-SED-10-7	9				MME
13	Grove-SED-3-3	8				acris
14	Grove-SED-1-1	8				M
15	Plow-SED-11-7	10				M
16	Grove-SED-1-6	10				MMG
17	Plow-SED-8-8	9			27.	M=
18	Grove-SED-1-3	9				nino
19	Control-4	9			one floating-dead	MMB
20	Control-8	9.				NF.
21	Plow-SED-9-8	3				MMG
22	Grove-SED-1-2	10	* *			M
23	Plow-SED-9-5	3		782		PAR
24	Plow-SED-8-3	9	. 1			#
25	Plow-SED-9-1	3		1.00		nund
26	Plow-SED-11-4	9		4.50		PAR
27	Grove-SED-2-1	10		عالي:		M
28	Plow-SED-8-6	8	+	4 17		AF
29	Plow-SED-11-6	9				and
30	Plow-SED-8-2	10				M
31 - 0	Control-6	7				MARIO
	Grove-SED-3-6	10	3 3-			nuso
	Grove-SED-1-7	9				N
	Plow-SED-9-2	4				M
-	Grove-SED-2-4	10	21.5	2/11/0		mari
	Grove-SED-3-2	9				MMG

Pan Number	Station	Number Alive	Number Dead	% Survival	Comments	Initials
37	Grove-SED-3-4	10				MW
38	Grove-SED-2-2	1.10.				nime
39	Plow-SED-10-6	12		1 29		M
40	Plow-SED-11-3	4		2.1		MW.
41	Control-3	1 9			1 2 2 2 3	mus
42	Grove-SED-3-5	10			d 1974 ye	M
43	Grove-SED-2-6	1.20			Double-Trioculated	
44	Grove-SED-3-8	10	i i i		La Company	m
45	Control-2	10		10	and are un	J84
46	Grove-SED-1-4	9			To VAN	MMG
47	Plow-SED-11-2	8			2 forhall	Mans
48	Plow-SED-9-7	7		1		ME
49	Grove-SED-2-8	10			and the constant	584
50	Grove-SED-2-5	9		. A	-5/01	MMB
51	Control-5	17			Kewed wo	MMG
52	Grove-SED-3-7	12 0 MD	- market	1 1 15	- Tabley	news
53	Plow-SED-9-3	6				hims
54	Plow-SED-10-4	8				MMA
55	Grove-SED-1-5	10				much
56	Plow-SED-8-5	8			110	M
57	Grove-SED-3-1	10				mais
58	Plow-SED-10-2	9410	22_			MING
59	Control-7	9:1		1		MUB
60	Plow-SED-9-6	8,		A MEAN		MILE
61	Plow-SED-11-8	8			~ ***	MMB
62	Plow-SED-10-8	10				remo .
63	Plow-SED-10-5	10	u to			muis
64	Plow-SED-8-1	10	4/			MAIM

	1	Devien	5 3	red	TOX	Test	A. 0	izteca
Poin # andonital)	I station #	1800	Panton Tore want	10000	Drynt	ASh Free	1 State	or Ash-Free
1	Plow 4	1	1.23760	10	1, 23850	10 3	08 # of	2 /
2	Plow 1	6	1.22167	g	1.22268	9	Boston EN	eds /
3	Pau 5	3.	1.24566		1. 24 685	10		-
4	Plano	6	1,24088	9	1.24185	9	++-	
5	Plan 4	4	1.23029		1,23105	4.		1
6	Plaw 5	6	1.22344	1	1-22418	6 10		
+	Control	1	1.22095	The second second	1.22180	10 \		
8	Flant	3	1.23014	and a second	1.23131	10	- 1	
9	Plow 1	8	1.23732	10	1.23852	10		
10	Plan 4.	1.8	1-217-03	a	1.21751	9		/-
VI	Plan 7	8	1.23285	9	1.23397	10		/
12.	Plow 3	5	1.24056	9	1.24114	9		
13	Plow 1	5	1.23728	d	1.23780	8		
. 14	Plow 6	I	1.22256	_4		9		
15	Plow 2	6		-	1.22354	2		
16	Plow 6	3	1.21947		1.21994	7	//	
VŦ	Plow4	.3 /	1.23251	7	1.23301	4		
18	Plowa	4	1.22341	9	1, 22409	9	1	1
19	Plow 1	3	1.24837	10	1. 34896	10		1
20	Plow 4	5	1,22917		1,22991	10		
2)	Plow 5	7	1.23789	10	1. 33886	9/		
22	Plan 3	a	1.23849	9	1.23927	10/		1
23	Plau I	9				10/		- /-
24	Flan	A. A. A.	1.24229	10	1.24317			
25	Plan 6	4	1.24169	10	1:24259	100		1
26		11	1.24515	7	1.24603	10	Car and the	1
27	Plow 2		1.23482	8	1,23550	18		1
at .	Plan 6	4	1.21534	D	1.21633	1 W		

			bonow 2	SED	TOX T	iest	H. azeteca (cont.
Pan#	Stations	1800	Partition in the	# of	Bryns	Mish Erre	and the Ash Fred
28	· POWA	3	1.23273	8	1. 23536	180 =>	#G # 200
29	Plow 3	1	1.24070	10	1,24159	AO	pata 8 mest
30	Plan 4	1	1.21418	7	1.21487	1	
31	Control	5	1.22328	10	1-22420	10	
32	Plaws	4	1.21930	9	1. 21962	9	
33	Plan 3	8	1.23596	9	1-23660	9.	
34	Plow 2	1	122426	10	1. 33501	10	
35	Plow 3	3	1.21467	10.	1.21537	Ю	
36	Plow 5	8	1.22453	8	1.22549	8.	
37	Control	3	1.26998	10	1.21096	10.	
38 -	Plow 2	8	1.23879	8	1.23942	8	\./
37	Control	8	1.21585	10	1.21653	10	X
40	Flan 1	8	1-21643	9	1.21726	9	
41	Pow 7	3	1.21778	10	1.21872	10	
42	010W4	7	1.20289	9	1.20354	9.	
43	Plowa	3	1:23132	10	1.23215	. 10	
44	Plan 3	6.	1.22366	9	1.22430	, q:	
45	Plow 6	5	1.23247	.9	1.23336	9	
46	Play 5	4	1.22600	10	1.22706	10	
47	Plan 7	2	1.21417	10	1.21520	10 /	
48	Plow 6	2	1.22238	9	1.22354	9 /	
49	Plan 3	7	1.22792	10	1.22887	90/	
50	Plan 5	1	1.21277	10	121393	10/	
51	Plow3	4	1.21530	10	1.21610	10/	
52	Plow 4	6	1,24339	6	1.24408	6	
53	Plow 7	5	1.23578	9	1.23676	A	N CHAIL
54	Flan I	6	1-24037	10	1.24116	10	

Pan #		Dever	12 m Sed	4 0	TOX .	Tess	H	arteca (conti)
(andonizationale)	Stetlen#	lep	Barr Aleha	arganisms	Dry not	ASh Free	चान्युक्स सम्बद्धाः	ONG ASH From
55	Flans	1	1.2615	9	121763	18	OR HO	10 Wagnt
56	Plow a	5	1.23575	10	1.23648	0	Dodas	Track /
84	Plan 5	a	1.24462	NO XID	1.24549	ià	Dunce	, week
58	Plow 1	7	1.24022	1	1.24108	7	A.	
59	Control .	6	1.22434	10	1.22518	10		
60	Plans 4	a	1.22806	8	1. 22884	1		
(ol	Plow 5	5	1.217011	9	1.21796	8		
69	Flan 1	2/	1.22318	9	1.23146	9	1	
63	Control	4	1.230.46	910	1.22452	10	-	-
64	Plow 7	6	1.21848	9	1.21948	9.	-	
65	Flan I	5	1.23018	. 9	1.23151	Of .		
66	Plow 1	1	1.22677	0.	The state of the s	a		-/
(6T	Plas 7	4	1.22535	10	1.22781	170.00		/
68	Floor 1	7	1.23628	10	1.22669	10	\/	
69	Portros	7	1.22895	10	1.23041	10	/	
70 ·	Plow 7	7	1-21380	9		9		1
71	Plow 6	8	1.22010	10	1.21449	,	-/-	
72	Control.	2	1.32808	10	1:22094	10	-/	_
				10	1.22920	10.	-	_
PAR alla	05 - To	50 1	40:00	7.4		-	1	
	Part of the second	1	Serie 1	14,				
PAR 2/22/	05 = DW	1. 103	ahl			1		
	1	-	21rd					
				700	100	/	1.00.0	
		100				-/-		
3						/		1
			-			1		
						/		

- dediction of

The state of the second

fan # Contomization #)	Station#	Bex	Pan-Areh Tare weight	# of openisms	Bush	ASh-Free	org dry	log ash-free
-1	Plous 4	7	1.22440	9	1.23618	1-22678 "	0	3 -
2	Plow I	16	122686	10	1.24013	1.22917	,	
3	Plans	3	1-23324	9	1.24705	L23606		
4	Plow 6	6	1.22756	8	1.23993	1.23000		F
5	Pow 4	4	1-22779	10	1.24589	1.232,39	0	
6	Plow 5	6	1.20949	10	1.22291	1.21172		
+	Control	1	1.21889	K	1.23354	122217		
8	Flan 1	3	1.22080	10	1,23313	L 22268		
9	Pau I	8	1.23012	10	1.24309	1 23260		
10	Pow 4	8.	1-23493	10	1.25603	1.24259		
N	F COOP	8	1.23860	10	1.25256	1.24151		
12	Pow3	5	1.22421	10	1.24472	1.23518		
13	Plows	5	1222 79	10		1.22541		
14	Plante	1.	1.22884	10	1.23588	1.23156		
15	Powa	6	1.20325	10	1.24363	1.20529		
16	Plowb	3	1.22945	10	1.21528	1.23305		
17	Pow4	.3	1.24753	9	1.24666	L25157		
18	Plowa	7	1-23636	. 10	1.26370	1-23894		
19	Pow1	3	1.23883	10	1,25042	1-24196		
20	Plowy	5	1.22093	10	1.25417	1,22427		
21	Pas 5	7	1.21033	8	1.23620	1.21300		
22	Pau 3	2		10				-
23	Past	2	1.20219	10	1.23708	1.22806		
24	Flan 1	4	1.24733	10	1.21649	1.20491		
85	Planto		1.21093	10	1,25827	1.24943		Total Control
26	Plan 2	- 200	1-22.064	10	1. 22.729	1. 21445		
27	Plows	4	1.23330	a Committee of the Comm	1,233.50	1.22293	1	Maria de la companya del companya de la companya del companya de la companya de l
15-	1	(d)	1.02330	10	1,24972	1.23658		

Pon # (Honderston #)	Solodien W	160	Pon Ash.	the of	Dryond	ACH Free	Ore diff	org Ash Free
28	Plan 2	2	1.24083	M.	1,2,5490	1.24323	0	- 0
29	Plaus 3	4	1.22856	8	1.24437	1.23388	. 414	
30	Plan 4	1	1.23196	10	1.24907	123576		1
31	Control	5	1.21472	9	1.23152	1-21893	1. 1.5	
32	Pow I	4	1.21367	11	1.22714	1.21579	5 7 B	
33	Plow 3	8	1.20663	10	1.22490	1.21.438	1 150	
34	flow a	1	1.212 466	10	1. 22453	121474	10 10	
35	Phu 3	3	1.20038	10	1,21834	1-20785	4 4 4	
36	Pow 5	8	1. 21450	10	1. 22868	1,21706	2.25	1
37	Control	3	1-22545	10	1.24380	L23049	* * ******	
38	Plowa	8	1.22302	10	1.23661	L22594	1'	1
89	Control	8	1.21835	10	1.23836	L22420	1. 1417	
40	Flow 1	8	1-21971	10	1,23343	122213	1 2 2 34	
41	Plow 7	3	1.20815	11	1.22526	1-21166	s.W	1
42	Plow 4	7	1,20022	10	1.21743	1. 20425	Sept 1	
43	Plow 2	3	1.21631	10	1.22760	11,21791		
44	Pbw3	6	1.22264	10	124312	1:23080	"V , 22"	
45	Pous 6	5	1.22540	10	1.23861	1, 22,806	and t	
46	Plan 5	4	1.20232	9	1.21532	120445		
47	Plow 7	2	1.200 79	10	1.22142	420962		
48	Plow 6	2	1-20747	10	1.22058	1.20994	1	
49	Pow.3	7	1.21433	10	1.23223	1.22 Het	100	
50	Plan 5		1.19929	9	1.21375	120190		-
51	Plow 3	4	1.20663	10	1.22655	621443	A NO.	
52	Plow 4	6	120183	10	1,22004	1.20604		
53	Plow 7	5	1.20380	10	1/21775	1,201065		
54	Flan 1	6	1.20618	10	621567	1.20781		

		Davi	ens Soc	7	TOX Tex	of C.	Tentons	
Pan#	Hnotofe	Rep	Pon Ash Ton wuth	# of	Dry	Help Free	meght	Org ASh-Free
55	Flan I	1	1-21303	10	1.22418	1.21525	2	
56	Plan 2	5	1.2.0938	10	1.21981	1-21179	Y	
57	PKW 5	2	1.20145	10	1,21583	1.20396		
58	Plous	7	1.22345	10	1.23620	L23585		79
69	Control	6	1.20627	9	1.22147	1-21034		
60	Plan 4	2	1.21372	10	1.23008	121784	** Y. (k.)	
61	Plow 5	5	1:20644	10	1.22055	1-20898	1 ·	
62	Flan I	2	1.20617	10	12/805	PS HO	1.20848	
63	Control	4'	1,21703	9 -	1. 23513	1.22265		•
64	Plow 7	6	1.21861	10	1. 23375	1,22160		
65	Flan 1	K	1.21307	10	1.2249 38	1,21523	1,1	
66	Plant.	1	1.20735	9	1.22057	1-20984		4
67	Plow 7	4.	1.23179	10	1,24770	1.33400		
68 Flar	Plow I MAR	7	1.21981	D.	1.23191	1,22203		
69	Control	7	1-22400	9	1.24052	1, 22785		
70	Plow 7	4	1-21507	9	1.23071	1.21850	1	1
71	Plowle	8	1.20352	10	1.22127	1.20739		0 -
72	control	a	1.20335	10	1,21803	L20670		11.5
PAR 2/16/05	- Tone was	ant		E _{ste}		· · · · · · · · · · · · · · · · · · ·		To 2.1
MAN 2/23/65	- Day wes	Prt -		-		P. B. T. C.		
PAR 2124/05	Ash we			TH.	-			
MC 2/28/05	- Dry word	Mal As	h woughts	11.9 (6)		The state of	•	
	1 10	710	Jus		,			
			4.41	3				
			A .	1				

		Bevers	800	Tox Test	
Pan#	Staten# 1	Rep Pry Tore	Hal		H. aztaca
2	caroure 1	8 1-21515	10	- But moult	agenson weight
2	Plow 10	3 1.20177	9	1.27614	3 3
3	Plow 11	1 1.21141	10 TH 10 TH	1.262.46	
4	Grove 2	7 1-21777	8	1.21182	
5	Plow 11.	5 1:23001	The state of the s	1.21847	
6	01 -	4 1.21899		1.23684	
7 ;	1 1	0	6	1. 21938	4 1
8		10000	10	1-20869	
9	\$10w10	150000		1.20451	- No. 1
10		1.21579	10	1.21676	
1.1	Control	1.00 49	9	1.21387	
2	04	1.90342	10	1.20432	
13		100000	9	1.21350	
14	1	3 1.20332	8.	1. 20401	
15	Coroue 1	1 121093	7	1.21135	
16	1 - 1		10	1.21855	
17	Grove 1 1	100	10	1.20579	the state of the s
18	Plan 8 8	THE WAY SIX	9	1.21607	
19	Conoue 1 3	1.00	9	1.22.490	
38	Control 4	10003+	10	1.20753	
	Control 8	1.20465	7	1.20526	
22	Plow 9 8	1.20134 1		1.20143	
23	Grave 1 2	100	1	1.21324	
24	Plan9 8	101	8	1.21174	5 49
0.5	plans 3	100000	9	1.2230	
	Plow 9 1	1.22359	4	1. 22387	
let.	Plow 4 4	121955	1		We the second se
VI	Grove a 1	1.22651 1) 1011	1.0000,40	The state of the s
160	1	1	1	1.22780	

Ont		Deven.	5 Sed	TOX TO	187	H. aztea (lont)
Pen# candomization#	# collabs	Rep	Dry Tane wagnet	At of Johns	[Du comb	
-88	MOW8	6	1.20558	Somono	1.20648	organism weight
29	Plow 11	6	1.20389	10	1,20484	
30	Plow 8	2	1.21371	10	1.21464	
31	Control.	6	1.22310	10	122396	
32	E sucra)	6	1.22681	10	The state of the s	
33	Corona 1	1,4	1.20710	10	1-22763	
34	Pow9	12	1.23276	5	1,20792	
3.5	Grove 2	14	1-204 29	9	1,20536	4 4
36	Corove 3	a	1.19920	10		-
37	Corrup 3	4	1.19991	10	1.19984	
38	Grove a	2	120610	_10	1,200 40	
39	Plaw 10	6	1-21689	10	1, 20703	
40	11 wd9	3	1.20449	g	1.21811	
41	Control	3	1.26804	10	1.20511	
42	Corrive 3	5	1.21375	10	1.20868	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
43	Corove 2	6	1.219741	10	1.21440	
44	Grove 3	8	1-21540	10	1.19851	
45	Control	2	1.21177	10	1.216322	
46	Carous 1	4	1.21117	0	1.21254	1.
47	Pow 11	2	1.20355	10	1.21205	190
48	Plow 9	7	1.20534	15	1.20438	
49	Grove 2	8	1, 20673		1. 20556	
50	Corove 2	5		10	1.20767	
57	Cantrol	5	1.21379	10	1-21483	
Sa	Grove 3	Total Little	1.2088	10	1.20960	
53	010W 9	2115	1-26348	7-70-	1.20391	
54			1.20501	6	1.20541	
-01	Plaw 10	4	1.21486	9	1.21562	

un # Home content	Station #	1 Rio	ns sed	TOX Test	H. a	Eteca (cont.)
55	Corove 1	5	Try lave weigh	Hot organisms	Dry weight	account were
56	Plow 8	5	1000		1.22573	and and drawn
57	Grove 3	1	1.23472	9	1.21170	
58	Plow 10.	2	1.19948	9	_	
59	Control	1	1.20384		1.20030	- I - I
60.	Plow 9	6	1-21544	10	1.20445	
(a) *	Plow 11	X	1.22852	7	1.21571	
62	Plau 10	8	1.21920	_10	1. 22914	
63	P1000 10	5	1.22.343		1.22609	
64	Plan 8		1.21321	10	1.22430	
	PAR		10139	9	1.21407	
RAR 215	105 - Tare	Library				
0	The state of the s	THE COURT			1 11 1	
PAR 3111	5 - DWI	howht			- A 1	
VAC 3111	05 - DOY	neight			A 1	
MAR 3111	05 - Days	weight			- A 13	
MAR 3111	05 - Days	weight				
MARC 3111	05 - Dry	height				
MARC 3111	05 - Dry 1	height				
VAC 3111	05 - Dry 1	height				
VAC 3111	05 - Dry 1	height				
VAC 3111	05 - Dry 1	height				
	os - Dry	height				
VAC 3111	05 - Dry	height				
	05 - Dry 1	height				
	os - Dry	height				
	os - Dry	height				
	os - Dry	huight				

# # 4		He	vens	Sad.	TOX -	hest	C.	Tentans
nden martian#)	Stration #	Rep	Pan fish	at of organisms	Bryght	ASh Free	Organya	ors Ash-Free
	Grove 1	8	1.20825	9.	1. 23 382	The second secon	magaz	mondy
2	Plow 10	3	1.21311	10	1.22533			27
3	Plow 11	1	1.20366	10	1,21773	1.20971		
4	Grave 2	7	1.20052	10	1.21193	1.20320		
9	Plow 11	5	1-20045	10	1.21580	1.20392		
6	Plas 9	4	1.22325	2	1.22360	L22340		1
7	Grove 2	3	1.21254	10	1.22393			
8	Plow 8	7	1.20513	9:	1.21594	1-21506		
9	Plow 10	. 1	1.20670	10.	1.21695	1,20696		
10	Plow 8	4	1-2008	10		1.90881		
kl	Central.	1	1.20203	8	1.22002	1.21302		and the second
12	Plow 10	4	1.22612	9	1.23587	1.20446		
13	Grove 3	3	1.20215	8		1.22805		
14	Grove 1	1	1.22468	8	1.21076	1.20353		-
15	Plow 11	7	1.21801	10	1.23712	1.22939		
16	Grove	6	1.22081	10	1.23052	1.9901		
17	Plow 8	8	1.26450	9	1.23339	1-22532		
18	Corone 1	3	1.20520	9	1-21539	1-20697		
19	Control	4	1.22379	9	The state of the s	1-20969		
20	Confrd	8	1.20478	9		1.22656		1.02
21	Plan 9	8	1 2244	3	121518	1.9019109		
22	Grove 1	2	1.22442	Section 1	1.22528	1.22455	Lay Land	1
23	Plani9	5	-	10	1.235 ldo	1.22785		
24	Plow 8	3	1.21808	3	1.21855	1.21821		
	Plan 9	1	1.21563	9	1,22,707	1.21850		
0.0	Play 11	4	1.21947	3		L21982		
1-1		-	1.21719	9		122035		
	Grovea	1 .	1.20923	to		1.2186		1 1

the standard property of the standard of the s

		De	nous :	SED	TOX	Trest	C.T	entans (cont
Panth (Autopant)	Station #	1 Rop	Ponosh	#of	Pryint	ASN Freq.	Sigdry+	
88	Plow 8	6	1.20360	8	(1		Might	org Ash From
29	Plow 11	6	1.20748	9	1.21376	1120563		
30.	Plan 8	2	1.22534	10	1. 23577	1.21017		1
3	Control	6	1.20712	7	1.22044	122461		
32	Grove 3	6	1.20687			1-21122		
33	Grove 1	7	121709	9	1.21900	1.20912	_	-
34 :	Plow 9	2	1.22279	4	1.22987			-
35	Grove 2	4	1.20512	10	1.22409	1 22338		
36	Grace 3	2	1.21604	.9	1.21529	1.207 14	N	
37	Grove 3	4	1.20683	10	1.22636	100000000000000000000000000000000000000		1
38	Grove 2	a	1.20371	10		1-20931		
39	Plow 10	6	1.21362	12	1.21452	1-20614		
40	90w 11	3	1.22358	8	1.22999	1.21672		
41	Control	3	1.21941	9	1.23414	1.22565		
42	Grove 3	5	1.22362	10	1.23176	122207		
43	Grove 2	6	1.20400	20	1.23435	1.22580		
.44	GTOW. 3	8	1.21597	10	1.22030	120786	-	ti.
45	Control	2	121911	10	1,22,725	1.218438		
46	Grove 1	Ы	1.22072	9	1. 23494	122302		
47	Plaw 11	a	1.20374	8		1.22546		
48	Maw 9	7	1. 21581 OX		1:2178512			
49	Grave 2	X	1.20499	9 5	+217-85°K	The second secon		Co
50	COFONE 2	5			1. 22938 5	1.26749		
51	Central	5		20	1, 21499 "	422021	11.00	
52	Grove 3	in	1.20683	7	1.21663	1.20858		3 1 7 1
53	Plow 9		The state of the s	12	1, 22098	1.21138		The Name of
54		4 1	F.22526	6	1,22407	22554		
01	Plow 10	7.	-21034	8	1. az 2			100

Pan##	I all to	r ·	wens so		TOX Tes	24	C. Ten	tans Cont.
	143001141	Rop	Pan Ash Tare weight	# OF	us Dry weight	ASH Free	organy.	
_55	Grove 1	5	1.20512	18	1. 22205	1.21051	THEIR	org Ash From
56	Plan 8	5	187181	4	1.22835	The second secon		-
24	Grove 3	1	1.207.33	10	121996	1.21993	+1.	
58	Plow 10.	12.	1.20951	9		1.21000		
59	Contral	4	1.21088	9	1.22114	1.21159	1	
60	Pais 9	6	1.20190	8	1.22348	1.21349	100	
(6)	Plow 11	8	1,20709		1-20378	1.20259	1.5	
62	Plow 10	8		8	1.22145	1.20993		
63	Plow 10	5	1.20651	10_	1.22094	1.20914		
64	Plow 8	1	1.21104	10	1.22543	121410		
	The CO	1	1.20623	10	1. 21801	1.20834		
PAR 2/23/	5 - bry	weigh	5/ Ash weigh	p4	9 9 9			
0	5 - bry	weak	5/ Ash weigh tsh weigh	/p4				
AAR 3/1/0	5 - bry	weak	5/ Ash weigh	7µ4				
AAR 3/1/0	5 - bry	weak	5/ Ash weigh	p4				
PAR 3/1/0	5 - bry	weak	5/ Ash weigh	p4				
PAR 3/1/0	5 - bry	weak	5/ Ash weigh	p4				
PAR 3/1/0	5 - bry	weak	5/ Ash weigh	p4				
PAR 3/1/0	5 - bry	weak	5/ Ash weigh	p4				
AAR 3/1/0	5 - bry	weak	5/ Ash weigh	p4				
PAR 3/1/0	5 - bry	shi y	5/ Ash weigh	7p4				
PAR 3/1/0	- Dry We	shi y	5/ Ash weigh	p4				

Page 1 of 2

CETIS Data Worksheet

Report Date:

22 Apr-05 3:10 PM

Link:

06-3816-4762/Round 1

U.S. EPA Region I Lab

Hyalella 10-d Survival and Growth Sediment Test

Start Date: Ending Date: 08 Feb-05

Species: Hyalella azteca

Protocol: EPA/600/R-99/064 (2000)

Sample Code:

0205HACSTLC1

Sample Source: Fort Devens LC SD 1

Sample Code	Rep	Pos	#Exposed	# Survived	Total Weight-mg	Tare Weight-ma	Pan Count	Mann I await was	The second second
0205HACSTLC1	1		10	10	1221.8	1220.95	10	Mean Length-mm	Notes
D205HACSTLC1	2		10	10	1229.2	1228.08	10		
0205HACSTLC1	3		10	10	1210.96	1209.98			
0205HACSTLC1	4		10	. 10	1224.52	1223.18	10		
205HACSTLC1	. 5		10	10	1224.32		10		W.W.
205HACSTLC1	6		10	10	1225.18	1223.28	10		The state of
0205HACSTLC1	7		10	10	1230.41	1224.34	10		
205HACSTLC1	8		10	10	1216.53	1228.95	10		The second
205HACSTF1	1		10	9	1217.63	1215.85	10		
205HACSTF1	2		10	9		1216.15	9	A STATE OF THE PARTY OF THE PAR	
205HACSTF1	3		10	10	1231.46	1230.46	9		
205HACSTF1	4	-	10	10	1231.31	1230.14	10		
205HACSTF1	5	-	18	. 9	1242.59	1241.69	10		
205HACSTF1	6		10	10	1231.51	1230.18	9		27.
205HACSTF1	7	-	10		1241.16	1240.37	10		
205HACSTF1	8		10	9	1237.64	1236.28	10		
205HACSTPS1	1		10	9	1217.28	1216.43	9		
205HACSTPS1	2		10	10	1227.81	1228.77	9		
205HACSTPS1	3		10	10	1243.17	1242.29	10		
205HACSTPS1	4	-	10	-	1248.96	1248.37	10		4
205HACSTPS1	5		10	8	1219.62	1219.3	9		41.0
205HACSTPS1	6	-	10	9	1237.8	1237.28	8		1000
205HACSTPS1	7	-		7	1222.68	1221.67	9		#
205HACSTPS1	8	-	10		1241.08	1240.22	7		
205HACSTPS2	1		10	10	1238.52	1237.32	10		4-41
205HACSTPS2	2	-	10	10	1225.01	1224.26	10		1
205HACSTPS2	3	-		8	1233.35	1232.73	8		38
205HACSTPS2	4	-	10	10	1232.15	1231.32	10		
205HACSTPS2	5	-		8	1235.5	1234.82	8		
205HACSTPS2	6	-	10	10	1236.78	1235.75	10		
205HACSTPS2	7	-	10	9 8	1224.09	1223.41	9		
205HACSTPS3	1			10	1239.42	1238.79	8		
205HACSTPS3	2		10	9	1241,59	1240.7	10		
205HACSTPS3	3		10	10	1239.27	1238.49	9		
205HACSTPS3	4				1215,37	1214.67	10		
205HACSTPS3	5	-	10	9	1216.1	1215.3	10		
205HACSTPS3	6	-	10	9	1241.14	1240.56	. 9		
05HACSTPS3	7	-	10		1224.3	1223.66	9		
		-		10	1228.87	1227.92	10		
205HACSTPS3 205HACSTPS4	8		10	. 9	1236.6	1235.96	9		
	1	-	10	7	1214.87	1214.18	7		
05HACSTPS4	2	-	10	8	1228.84	1228.06	8		
05HACSTPS4	3		10	7	1233.01	1232.51	7		
05HACSTPS4	4	-	10	8	1231.05	1230.29	8		
05HACSTPS4	5.	-	10 -	10	1229.91	1229.17	10		
05HACSTPS4	6	-	10	6	1244	1243.39	6		
05HACSTPS4	7		10	9	1203.54	1202.89	9		
05HACSTPS4	8		10	9	1217.51	1217.03	9		
05HACSTPS5	1		10	10	1213.93	1212.77	10		
05HACSTPS5	2		10	10	1245,49	1244.62	10		
05HACSTPS5	3		10	10	1246.85	1245.68	10		
05HACSTPS5	4		10	10	1227.08	1226	10		
05HACSTPS5	5		10	9	1217.96	1217.11	9		100
05HACSTPS5	6		10	9	1224.18	1223.44	9		11 300

CETIS Data Worksheet

Report Date:

Page 2 of 2

22 Apr-05 3:10 PM 06-3816-4762/Round 1

	_							Link:	06-3816-4762/Round
Sample Code	Rep	Pos	#Exposed	# Survived	Total Weight-mg	Tare Weight-mg	Pan Count	Mean Length-mm	Notes
0205HACSTPS5	7		10	g -	1238.86	1237.89	9		The state of the
0205HACSTPS5	8	-	10	8	1225.49	1224.53	8		100
0205HACSTPS6	1		10	9	1223.54	1222.56	9.	1 7 7 1 TO 1 TO 1 TO 1 TO 1 TO 1 TO 1 TO	-
205HACSTPS6	2		10	9	1223.54	1222.38	9		
205HACSTPS6	3		10	.7	1219.94	1219.47	7		
205HACSTPS5	4		10	10 .	1216.33	1215,34	10		
205HACSTPS6	5		10	9	1233.36	1232.47	9		
0205HACSTPS6	6	2 0	10	9	1241.85	1240.88	9		
205HACSTPS6	7		10	9	1246.03	1245,15	9		
205HACSTPS6	8		10	10	1220.94	1220.1	10		
205HACSTPS7	1		10	10	1238.5	1237.6	10	3	
205HACSTPS7	2		10	10	1215.2	1214.17	10		E Ly le
205HACSTPS7	3		10	10	1218,72	1217.78	10		
205HACSTPS7	4		10	10	1226,69	1225.35	10		Mary - The same
205HACSTPS7	5		10	9	1236.76	1235.78	9		
205HACSTPS7	6		10	9	1219.48	1218.48	9	E ELL-RICE AND	
205HACSTPS7	7		10	9	1214.49	1213.8	9		
205HACSTPS7	8		10	9	1233.97	1232.85	9		The second

CETIS Test Summary

Report Date:

Page 1 of 2 . 22 Apr-05 2:40 PM

Link:

06-3816-4762/Round 1

Test No:	13-2527-7965	Took Time	: Survival-Growth		U.S. EPA Region I
Start Date:	08 Feb-05	Protocol:	EPA/600/R-99/064 (2000)	Duration	
Ending Date		Dil Water:		Species:	
Setup Date:		Brine:	None	Source:	In-House Culture
Comments:	Fort Devens Sedimen	The second second	Round 1		A CONTRACTOR OF THE PARTY OF TH
Camala Nas	non avelancializacia in				
Sample No:	12-4569-5350 e: 02 Feb-05 02:10 PM	Material:	Reference sediment	Client:	EPA REGION 1
Receive Date	A CONTRACTOR OF STREET	Code:	0205HACSTF1	Project:	Fort Devens Sediment Toxicity Te
Sample Age:	2.5	Source: Station:	Fort Devens Flannagan SD F1		
Comments:	Fort Devens Sediment		F.I.		
	Castellie William 11				
Sample No:	10-5013-8838	Material:	LAB ARTIFICIAL SEDIMENT	Client:	EPA REGION 1
Sample Date		Code:	0205HACSTLC1	Project	Fort Devens Sediment Toxicity Tes
Receive Date		Source:	Fort Devens LC SD 1		
Sample Age:	NO. OF THE PARTY O	Station:	LC1	- Vita - 120	
Comments:	Fort Devens Sediment	The state of the s	CROASIN .		
Sample No:	06-2559-6491	Material:	Site Sediment Sample	Client	EPA REGION 1
	01 Feb-05 04:15 PM	Code:	0205HACSTPS1	Project:	Fort Devens Sediment Toxicity Test
Receive Date		Source:	Fort Devens Plow Shop SD	interes .	
Sample Age:		Station:	PS1	(0)	
Comments:	Fort Devens Sediment	Toxicity Test			E MEMBER L. C. PRINT
Sample No:	15-1307-3691	Material:	Site Sediment Sample	Client:	EPA REGION 1
	01 Feb-05 03:15 PM	Code:	0205HACSTPS2	Project	Fort Devens Sediment Toxicity Test
Receive Date:		Source:	Fort Devens Plow Shop SD		
Sample Age:	6d 6h	Station:	PS2	The same	
Comments:	Fort Devens Sediment	Toxicity Test	Consideration to the constant of the constant		
Sample No:	02-3051-5023	Material:	Site Sediment Sample	Client:	EPA REGION 1
Sample Date:	01 Feb-05 02:40 PM		0205HACSTPS3	Project:	Fort Devens Sediment Toxicity Test
Receive Date:		Source:	Fort Devens Plow Shop SD		
ample Age:	6d 9h	Station:	PS3	its the	
omments:	Fort Devens Sediment 1	Taxicity Test			
ample No:	07-6595-6937	Material:	Site Sediment Sample	Client:	EPA REGION 1
ample Date:	01 Feb-05 02:15 PM	Code:	0205HACSTPS4	Project:	Fort Devens Sediment Toxicity Test
Receive Date:		Source:	Fort Devens Plow Shop SD		
ample Age:	6d 9h	Station:	PS4		
omments:	Fort Devens Sediment T	Toxicity Test		10 To 10	
ample No:	18-3003-6058	Material:	Site Sediment Sample	Client	EPA REGION 1
ample Date:	01 Feb-05 01:25 PM	Code:	205HACSTPS5	Project:	Fort Devens Sediment Toxicity Test
eceive Date:		Source:	Fort Devens Plow Shop SD		-10
ample Age:	6d 10h	Station:	PS5 .		
omments:	Fort Devens Sediment T	oxicity Test		ELEWY-EIL	
ample No:	11-4943-4728	Material: S	Site Sediment Sample	Client:	EPA REGION 1
Mary Control of the C	01 Feb-05 01:15 PM		205HACSTPS6		Fort Devens Sediment Toxicity Test
eceive Date:			Fort Devens Plow Shop SD		Tonion Test
ample Age:	6d 10h		PS6		
		oxidity Test	-		

Page 2 of 2

CETIS Test Summary Report Date: 22 Apr-05 2:40 PM Link: 06-3816-4762/Round 1 Sample No: 10-2222-3442 Material: Site Sediment Sample Client: **EPA REGION 1** Sample Date: 01 Feb-05 12:55 PM Code: 0205HACSTPS7 Project: Fort Devens Sediment Toxicity Test Receive Date: Source: Fort Devens Plow Shop SD Sample Age: 6d 11h Station: PS7 Fort Devens Sediment Toxicity Test Comments: Mean Dry Blomass-mg Summary Sample Code Mean Minimum Maximum SE SD CV 0205HACSTLC1 8 0.10238 0.06801 0.14601 0.00940 0.02657 25.96% 0205HACSTF1 8 0.11075 0.07900 0.14800 0.00934 0.02641 23.85% 0205HACSTPS1 8 0.08025 0.03199 0.12001 0.01056 0.02987 37.22% 0205HACSTPS2 0.07472 0.06300 0.10300 0.00542 0.01434 19.19% 0205HACSTPS3 8 0.07475 0.05800 0.09500 0.00460 0.01301 17.41% 0205HACSTPS4 8 0.06512 0.04800 0.07799 0.00405 0.01144 17.57% 0205HACSTPS5 8 0.09775 0.07401 0.11899 0.00557 0.01574 16.11% 0205HACSTPS6 0.08975 0.04700 0.11600 0.00702 0.01986 22.12% 0205HACSTPS7 0.10000 0.06899 0.13400 0.00656 0.01856 18.56% **Proportion Survived Summary** Sample Code Reps Mean Minimum Maximum SE SD CV 0205HACSTLC1 a 1.00000 1.00000 1.00000 0.00000 0.00000 0.00% 0205HACSTF1 8 0.95000 0.90000 1.00000 0.01890 0.05345 5.63% 0205HACSTPS1 8 0.90000 0.70000 1.00000 0.03780 0.10690 11.88% 0205HACSTPS2 7 0.90000 0.80000 1.00000 0.03780 0.10000 11.11% 0205HACSTPS3 8 0.95000 0.90000 1.00000 0.01890 0.05345 5.63% 0205HACSTPS4 8 0.80000 0.60000 1.00000 0.04629 0.13093 16.37% 0205HACSTPS5 8 0.93750 0.80000 1.00000 0.02631 0.07440 7.94% 0205HACSTPS6 B 0.90000 0.70000 1.00000 0.03273 0.09258 10.29% 0205HACSTPS7 8 0.95000 0.90000 1.00000 0.01890 0.05345 5.63% Mean Dry Biomass-mg Detail Sample Code Rep 1 Rep 3 Rep 2 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 0205HACSTLC1 0.09800 0.08501 0.11200 0.13400 0.09199 0.08401 0.14601 0.06801 0205HACSTF1 0.14800 0.10000 0.11700 0.09000 0.13300 0.07900 0.13600 0.08300 0205HACSTPS1 0.10400 0.08800 0.05900 0.03199 0.05200 0.10100 0.08600 0.12001 0205HACSTPS2 0.07500 0.06300 0.08301 0.06801 0.10300 0.06799 0.06300 0205HACSTPS3 0.08900 0.07800 0.07000 0.07999 0.05800 0.06400 0.09500 0.06400 0205HACSTPS4 0.06899 0.07799 0.05000 0.07600 0.07400 0.06100 0.06500 0.04800 0205HACSTPS5 0.08700 0.11600 0.11899 0.10800 0.08500 0.07401 0.09700 0.09600 0205HACSTPS6 0.09800 0.11600 0.04700 0.09900 0.08900. 0.09700 0.08800 0.08400 0205HACSTPS7 0.09000 0.10299 0.09399 0.13400 0.09800 0.10000 0.06899 0.11200 **Proportion Survived Detail** Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 0205HACSTLC1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.90000 0.90000 1.00000 1.00000 1.00000 0205HACSTF1 0.90000 1.00000 0.90000

0-049-125-1	CETIS™ v1.025B	Analyst:	Approval:

0.90000

1.00000

1.00000

0.70000

1.00000

0.90000

1.00000

1.00000

0.80000

0.90000

0.80000

1.00000

0.90000

1.00000

0205HACSTPS1

0205HACSTPS2

0205HACSTPS3

0205HACSTPS4

0205HACSTPS5

0205HACSTPS6

0205HACSTPS7

00

1.00000

1.00000

1.00000

0.70000

1.00000

0.70000

1.00000

0.90000

0.80000

1.00000

0.80000

1.00000

1.00000

1.00000

0.80000

1.00000

0.90000

1.00000

0.90000

0.90000

0.90000

0.90000

0.90000

0.90000

0.60000

0.90000

0.90000

0.90000

0.70000

0.80000

1.00000

0.90000

0.90000

0.90000

0.90000

1.00000

0.90000

0.90000

0.80000

1.00000

0.90000

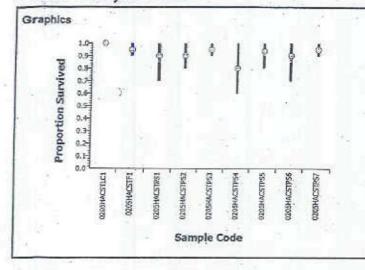
CETIS Analysis Detail

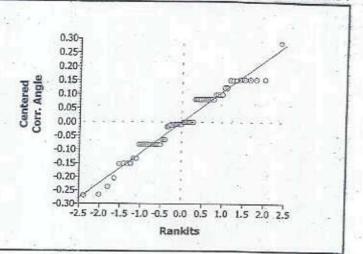
Comparisons:

Page 1 of 2 22 Apr-05 2:49 PM

Report Date: Analysis:

15-7641-7495/Round 1


Figalella 10-0 Sti	rvival and Growth	aediment-l e	51			- 4			U.S. EP	A Region I	
Endpoint Proportion Survived		Analysis Type Comparison			Sample Link Control I			e Analyzed	Version	Version A CETISy1.025	
					06-3816-4762		06-3816-4762 21 /		The second secon		
Method		Alt H Dar	ta Transform		NO	EL L	OEL To:	xic Units	ChV	MSDp	
Bonferroni Adj Wi	lcoxon Rank Sum (C>T Ang	gular (Correct	ed)			N/A		0.	шерр	
ANOVA Assumpt	tions		4		177	T	HHTDI		THE VE		
Attribute	Test	Sta	tistic	Critical	P Lovel		Decision(0.0	(1)			
Variances	Bartlett	211.10430		20.09024 0.00000		Unequal Variances		- 50			
Distribution Kolmogorov-Smi		imov D 0,14611 (0.12261	2261 0:00070		Non-normal Distribution				
ANOVA Table								1 1			
Source	Sum of Square	s Mean So	uare DF	F Sta	fistic i	P Level	Dasi	sion(0.05)			
Between	0.4054415	0.050680		3.56		0.00189		ficant Effect	-	*	
Епог	0.8837983	0.014254			-	2.00100	Sigil	III EII EII			
Total	1.28923976	0.064935				7					
Group Compariso	ons						-				
Sample - vs	Sample	Statistic	Critical	P Level	Ties		Decision	(0.05)			
0205HACSTLC1	0205HACSTF1	52		0.0524	2			ificant Effect		-	
0205HACSTLC1	0205HACSTPS1	48		0.0190	2			ificant Effect	4.		
D205HACSTLC1	0205HACSTPS2			0.0361	2		Non-Significant Effect				
0205HACSTLC1	0205HACSTPS3			0.0524	2			ficant Effect			
0205HACSTLC1			0.0009	4				7.1			
0205HACSTLC1	0205HACSTPS5	52		0.0524	2			ficant Effect			
0205HACSTLC1	0205HACSTPS6 44		0.0052	2 Significant Effect			- 240				
0205HACSTLC1	0205HACSTPS7	52 .	I.s.	0.0524	2			ficant Effect			
Data Summary		Original			ta			Transformed Data			
Sample Code	Count	Mean	Minimum	Maximu	m SD	-	Mean	Minimum	Maximum	SD	
0205HACSTLC1	- 8	1.00000	1.00000	1.00000	0.000	000 1	.41202	1.41202	1.41202	0.00025	
0205HACSTF1	8	0.95000	0.90000	1.00000	0.053			1.24905	1.41202	0.08711	
0205HACSTPS1	8	0.90000	0.70000	1.00000	0.106	390 1		0.99116	1.41202	0.15368	
0205HACSTPS2	7	0.90000	0.80000	1.00000	0.100	000 1	.25808	1.10715	1.41202	0.15249	
D205HACSTPS3	8	0.95000	0.90000	1.00000	0.053	345 . 1	.33053	1.24905	1.41202	0.08711	
D205HACSTPS4	8	0.80000	0.60000	1.00000	0.130	193 1	12410	0.88608	1,41202	0.17184	
0205HACSTPS5	8	0.93750	0.80000	1.00000	0.074	40 1	.31279	1.10715	1.41202	0.11580	
0205HACSTPS6	8	0.90000	0.70000	1.00000	0.092	58 1	.25755	0.99116	1.41202	0.13041	
0205HACSTPS7	8 ~	0.95000	- 0.90000	1.00000	0.053	45 1	.33053	1.24905	1.41202	0.08711	
Data Detail							4 4 4				
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	
205HACSTLC1	1,0000	1.00000	1.00000	1.00000	1.00000	1.0000	0 1.00000	1.00000			
205HACSTF1	0.9000	0.90000	1.00000	1.00000	0.90000	1.0000	0 1.00000	0.90000			
205HACSTPS1	0.9000	1,00000	1.00000	0.90000	0.80000	0.9000	0.70000	1.00000			
205HACSTPS2	1.0000	000008.0	1.00000	0.80000	1.00000	0,9000	0.80000				
205HACSTPS3	1.0000	0.90000	1.00000	1.00000	0.90000	0.9000	0 1.00000	0.90000			
205HACSTPS4	0.70000	0.80000	0.70000	0,80000	1.00000	0.6000	0.90000	0.90000			
205HACSTPS5	1.0000	1.00000	1.00000	1.00000	0.90000	0.9000	0.90000	0.80000			
205HACSTPS6	0.9000	0.90000	0.70000	1.00000	0.90000	0.9000	0.90000	1.00000			
205HACSTPS7	1.00000	1.00000	1.00000	1.00000	0.90000	0.9000					


CETIS Analysis Detail

Comparisons: Report Date:

Analysis:

Page 2 of 2 22 Apr-05 2:49 PM 15-7641-7495/Round 1

Comparisons:

Report Date:

Analysis:

Page 1 of 8 22 Apr-05 2:40 PM 05-1101-0543/Round 1

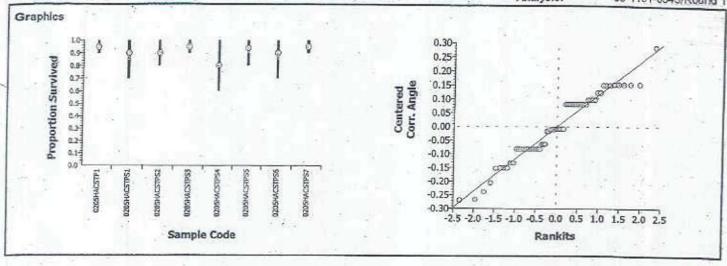
Endpoint	17/			100	2000		1/02:157			A Region
Proportion Survivo	POLICE TO THE PO	malysis Typ	0		ole Link	Control I		Analyzed		ion
1 Toportion Survivi	ou C	Comparison	47	06-38	16-4762	06-3816~	4762 21 A	pr-05 3:58	PM CETI	Sv1.025
Method			ta Transform	_ Z	NOE	L LO	EL Tox	ic Units	ChV	MSDp
Bonferroni Adj Wil	looxon Rank Sum C	>T An	gular (Correct	led)		TUT	N/A		2111	шопр
ANOVA Assumpt	ions		- 19	Walter A						-
Attribute	Test	Sta	tistic (Critical	P Level	D	ecision(0.0	3)		
Variances	Bartlett	7.00	3737 1	18.47531	0.42190		qual Variano	-		-
Distribution	Kolmogorov-Smirn	ov D 0.18	3111 0	.12995	0.00002		on-normal D			
ANOVA Table					1	111-18				7
Source	Sum of Squares	Mean Sq	uare DF	F Stat	listic P	Level	Doct	ion(0.05)		
Between	.0.2737571	0.039108		2.43		03019		icant Effect		
Error	0.8837983	0.016069			- 0.		Signi	want Ellect	4	
Total	1.15755540	0.055177								
Group Compariso	ns		7.1				1 1			
Sample vs	Sample	Statistic	Critical	P Level	Ties		Decision(0.053		
0205HACSTF1	0205HACSTPS1	60		0.2209	2			cant Effect		
0205HACSTF1	0205HACSTPS2	48		0.1984	3	9%	THE RESERVE	icant Effect		
0205HACSTF1	0205HACSTPS3	68		0.4796	2			icant Effect		
0205HACSTF1	0205HACSTPS4	46		0.0103	4			icant Effect		
0205HACSTF1	0205HACSTPS5	66		0.4392	2			cant Effect	A	
0205HACSTF1	0205HACSTPS6	58		0.1641	2			cant Effect	18	
0205HACSTF1	0205HACSTPS7	68		0.4796	2			cant Effect		
Data Summary			Orig	linal Data				Transfor	med Data	
Sample Code	Count	Mean	Minimum	Maximur	n SD	Me	an M	Minimum	Maximum	SD
205HACSTF1	8	0.95000	0.90000	1.00000	0.0534	5 . 1.3	and the same of	24905	1.41202	0.08711
205HACSTPS1	8	0,90000	0.70000	1.00000	0.1069			.99116	1.41202	0.15368
205HACSTPS2	7	0.90000	0.80000	1,00000	0.1000	0 1.2	5808 1	.10715	1.41202 .	0.15249
205HACSTPS3	8	0.95000	0.90000	1.00000	0.0534	5 1.3		24905	1.41202	0.08711
205HACSTPS4	8	0.80000	0.60000	1.00000	0.1309	3 1.1	2410 D	88608	1.41202	0.17184
205HACSTPS5	8	0.93750	0.80000	1.00000	0.0744	0 1.3	1279 1	10715	1.41202	0.11580
205HACSTPS6	8	0.90000	0.70000	1.00000	0.0925	8 1.2		99116	1.41202	0.13041
205HACSTPS7	8	0.95000	0.90000	1.00000	0.0534	5 1.3		24905	1.41202	0.08711
ata Detail				12					THE PARTY	
ample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
205HACSTF1	0.90000	0.90000	1.00000	1.00000	0.90000	1.00000	1.00000	0.90000		10
205HACSTPS1	0.90000	1.00000	1.00000	0.90000	0.80000	0.90000	0.70000	1.00000		
205HACSTPS2	1.00000	0.80000	1.00000	0.80000	1.00000	0.90000	0.80000			
205HACSTPS3	1.00000	0.90000	1.00000		0.90000	0.90000	1.00000	0.90000		
205HACSTPS4	0.70000	0.80000	0.70000		1.00000	0.60000	0.90000	0.90000		
205HACSTPS5	1.00000	1.00000	1.00000		0.90000	0.90000	0.90000	000008.0		
205HACSTPS6	0.90000	0.90000	0.70000		0.90000	0.90000	0.90000	1.00000		
EUGI MUUTI UU										

Comparisons:

Report Date:

Analysis:

Page 1 of 8 22 Apr-05 2:40 PM 05-1101-0543/Round 1


Endpoint	17/			100	2000		1/02:157			A Region
Proportion Survivo	POLICE TO THE PO	malysis Typ	0		ole Link	Control I		Analyzed		ion
1 Toportion Survivi	ou C	Comparison	47	06-38	16-4762	06-3816~	4762 21 A	pr-05 3:58	PM CETI	Sv1.025
Method			ta Transform	_ Z	NOE	L LO	EL Tox	ic Units	ChV	MSDp
Bonferroni Adj Wil	looxon Rank Sum C	>T An	gular (Correct	led)		TUT	N/A		2111	шопр
ANOVA Assumpt	ions		- 19	Walter A						-
Attribute	Test	Sta	tistic (Critical	P Level	D	ecision(0.0	3)		
Variances	Bartlett	7.00	3737 1	18.47531	0.42190		qual Variano	-		-
Distribution	Kolmogorov-Smirn	ov D 0.18	3111 0	.12995	0.00002		on-normal D			
ANOVA Table					1	111-18				7
Source	Sum of Squares	Mean Sq	uare DF	F Stat	listic P	Level	Doct	ion(0.05)		
Between	.0.2737571	0.039108		2.43		03019		icant Effect		
Error	0.8837983	0.016069			- 0.		Signi	want Ellect	4	
Total	1.15755540	0.055177								
Group Compariso	ns		7.1				1 1			
Sample vs	Sample	Statistic	Critical	P Level	Ties		Decision(0.053		
0205HACSTF1	0205HACSTPS1	60		0.2209	2			cant Effect		
0205HACSTF1	0205HACSTPS2	48		0.1984	3	9%	THE RESERVE	icant Effect		
0205HACSTF1	0205HACSTPS3	68		0.4796	2			icant Effect		
0205HACSTF1	0205HACSTPS4	46		0.0103	4			icant Effect		
0205HACSTF1	0205HACSTPS5	66		0.4392	2			cant Effect	A	
0205HACSTF1	0205HACSTPS6	58		0.1641	2			cant Effect	18	
0205HACSTF1	0205HACSTPS7	68		0.4796	2			cant Effect		
Data Summary			Orig	linal Data				Transfor	med Data	
Sample Code	Count	Mean	Minimum	Maximur	n SD	Me	an M	Minimum	Maximum	SD
205HACSTF1	8	0.95000	0.90000	1.00000	0.0534	5 . 1.3	and the same of	24905	1.41202	0.08711
205HACSTPS1	8	0,90000	0.70000	1.00000	0.1069			.99116	1.41202	0.15368
205HACSTPS2	7	0.90000	0.80000	1,00000	0.1000	0 1.2	5808 1	.10715	1.41202 .	0.15249
205HACSTPS3	8	0.95000	0.90000	1.00000	0.0534	5 1.3		24905	1.41202	0.08711
205HACSTPS4	8	0.80000	0.60000	1.00000	0.1309	3 1.1	2410 D	88608	1.41202	0.17184
205HACSTPS5	8	0.93750	0.80000	1.00000	0.0744	0 1.3	1279 1	10715	1.41202	0.11580
205HACSTPS6	8	0.90000	0.70000	1.00000	0.0925	8 1.2		99116	1.41202	0.13041
205HACSTPS7	8	0.95000	0.90000	1.00000	0.0534	5 1.3		24905	1.41202	0.08711
ata Detail				12					THE PARTY	
ample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
205HACSTF1	0.90000	0.90000	1.00000	1.00000	0.90000	1.00000	1.00000	0.90000		10
205HACSTPS1	0.90000	1.00000	1.00000	0.90000	0.80000	0.90000	0.70000	1.00000		
205HACSTPS2	1.00000	0.80000	1.00000	0.80000	1.00000	0.90000	0.80000			
205HACSTPS3	1.00000	0.90000	1.00000		0.90000	0.90000	1.00000	0.90000		
205HACSTPS4	0.70000	0.80000	0.70000		1.00000	0.60000	0.90000	0.90000		
205HACSTPS5	1.00000	1.00000	1.00000		0.90000	0.90000	0.90000	000008.0		
205HACSTPS6	0.90000	0.90000	0.70000		0.90000	0.90000	0.90000	1.00000		
EUGI MUUTI UU										

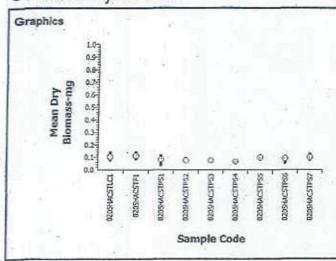
Comparisons:

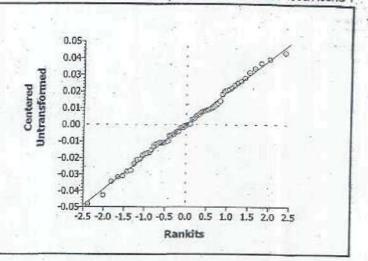
Page 2 of 8 22 Apr-05 2:40 PM

Report Date: Analysis:

05-1101-0543/Round 1

Comparisons:


Report Date: Analysis:


Page 5 of 8 22 Apr-05 2:40 PM 16-3141-4968/Round 1

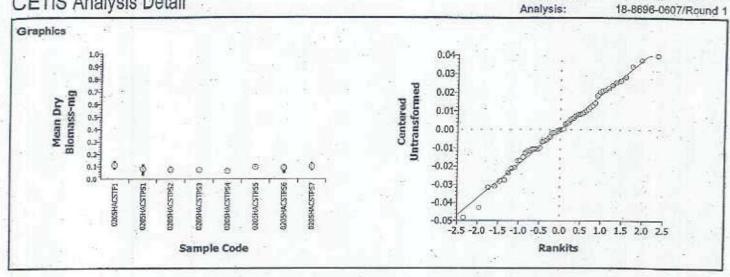
	rvival and Growth				_		_			U.S. EF	A Region I
Endpoint		Analysis Type	2	TOTAL TOTAL	le Lini	-	rol Li		Analyzed	Vers	ion
Mean Dry Bioma:	ss-mg C	Comparison		06-38	16-476	2 06-38	316-47	62 21 4	pr-05 3:58 I	PM CETI	Sv1.025
Method	A	It H Dat	a Transform	Z		NOEL	LOE	L Tox	de Units	ChV	MSDp
Bonferroni Adj t	C	>T Unt	ransformed	•				N/A			
ANOVA Assump	tions		- 1							3	
Attribute	Test	Stat	tistic C	Critical	P Le	vel	De	cision(0.0	1)	£ .	S. U.S.
Variances	Bartlett	11.8	37206 2	0.09024	0.15	700	Equ	ial Varian	ces		
Distribution	Kolmogorov-Smirn	ov D 0.04	794 0	.12261	1.00	000	Nor	mal Distri	bution	Se IND	
ANOVA Table	CENTER TO										8
Source	Sum of Square:	s Mean Sq	uare DF	F Stat	intio	P Leve			10.600		
Between	0.0150142	0.001876		4.42	SUC	0.0002	_		sion(0.05)	-	4 1
Error	0.0263140	0.000424	70	77.77.6		0.0002	0	Signi	ficant Effect		
Total	0.04132824	0.002301				. 5					
Group Compariso	ons						-		_		
Sample vs	Sample	Statistic	Critical	P Level	P.	ISD		Decision	(0.05)		
0205HACSTLC1	0205HACSTF1	-0.8128	2.57266	0.7903		.02650			ficant Effect		
0205HACSTLC1	0205HACSTPS1	2.14808	2.57266	0.0178		.02650			ficant Effect		
0205HACSTLC1	0205HACSTPS2		2.57266	0.0059		.02743		Significan			-
0205HACSTLC1	0205HACSTPS3		2.57266	0.0047		.02650		Significan			
0205HACSTLC1	0205HACSTPS4		2.57266	0.0003		.02650		Significan			
0205HACSTLC1	0205HACSTPS5	0.44929	2.57266	0.3274		02650			ficant Effect		e-
0205HACSTLC1	0205HACSTPS6		2.57266	0.1124		02650			ficant Effect	- 6	
0205HACSTLC1	0205HACSTPS7	0.23109	2.57266	0.4090		02650			icant Effect		
Data Summary			Orig	inal Data					Transfor	med Data	
Sample Code	Count	Mean	Minimum	Maximu	m s	D	Mea	in	Minimum	Maximum	SD
0205HACSTLC1	8	0.10238	0.06801	0.14601	0.	02657					
205HACSTF1	8	0.11075	0.07900	0.14800	0.	02641					
205HACSTPS1	8	0.08025	0.03199	0.12001	0.	02987					
205HACSTPS2	7	0.07472	0.06300	0.10300	0.	01434					
205HACSTPS3	8	0.07475	0.05800	0.09500	0.0	01301					
205HACSTPS4	8	0.06512	0.04800	0.07799	0,0	01144		4			
205HACSTPS5	8	0.09775	0.07401	0.11899	0.0	01574					
0205HACSTPS6	8	0.08975	0.04700	0.11600	0.0	01986				-	
205HACSTPS7	8	0.10000	0.06899	0.13400	0.0	1856					
Data Detail											
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8	Rep 9	Rep 10
205HACSTLC1	0.08501		0.09800	0.13400	0.0919	99 0.08	3401	0.14601	0.06801		at Temperate
205HACSTF1	0.14800	0.10000	0.11700	0.09000	0.1330	0.07	900	0.13600	0.08300	18. 54	
205HACSTPS1	0.10400	0.0880.0	0,05900	0.03199	0.0520	00 0.10	100	0.08600	0.12001		
205HACSTPS2	0.07500	0.06300	0.08301	0.06801	0.1030	30,0	799	0.06300			
205HACSTPS3	0.08900	0.07800	0.07000	0.07999	0.0580	0.00	400	0.09500	0.06400		
205HACSTPS4	0.06899	0.07799	0.05000	0.07600	0.0740	0.06	100	0.06500	0.04800		
205HACSTPS5	0.11600	0.08700	0.11899	0.10800	0.0850	0,07	401	0.09700	0.09600		
205HACSTPS6	0.09800	0.11600	0.04700	0.09900	0.0890	0.09	700	0.08800	0.08400		
205HACSTPS7	0.09000	0.10299	0.09399	0.13400	0.0980	00 0 10	000	0.06899			

Comparisons: Report Date: Analysis:

Page 6 of 8 22 Apr-05 2:40 PM 16-3141-4968/Round 1

Comparisons:

Page 7 of 8 22 Apr-05 2:40 PM


Report Date: Analysis:

18-8698-0607/Round 1

Hyalella 10-d Su	rvival and Growth 8	Sediment Te	st		0.00				U.S. EP	A Region
Endpoint	A	nalysis Type		Sampl	e Link	Control L	ink Date	Analyzed	Version	on.
Mean Dry Biomas	s-mg C	comparison		06-381	6-4762	06-3816-4	762 21 A	pr-05 3:58 F		v1.025
Method	A	It H Dat	a Transform	* Z	NOE	L LO	EL Toxi	ic Units	ChV	MSDp
Bonferroni Adj t	C	>T Unt	ransformed				N/A			шорр
ANOVA Assumpt	ions						The		5-1-0	
Attribute	Tost	Stat	tistic C	ritical	P Level	De	ecision(0.01	0		
Variances	Bartlett		DOMESTIC STATE	8.47531	0.15518		qual Variano		1113-1	-
Distribution	Kolmogorov-Smirn	ov D 0.05	767 0	.12995	0.89993		ormal Distrib			
ANOVA Table	77778	7		-					3	
Source	Sum of Squares	Mean Sq	uare DF	F Stati	istic P	Level	Donle	ion(0.05)		
Between	0.0132971	0.001899		4.89		.00024		cant Effect		
Error	0.0213705	0.000388			-		- Spinis	CALL THOSE		
Total	0.03466765	0.002288								
Group Compariso	ns	F TO DE					- 2			
Sample vs	Sample	Statistic	Critical	P Level	MSD		Decision(0.05)		
0205HACSTF1	0205HACSTPS1	3.09452	2.53039	0.0015	0.024		Significant			
0205HACSTF1	0205HACSTPS2	3.53212	2.53039	0.0004	0.025	81	Significant			
0205HACSTF1	0205HACSTPS3	3.6528	2.53039	0.0003	0.024	94	Significant			
0205HACSTF1	0205HACSTPS4	4.6294	2.53039	0.0000	0.024	94	Significant			
0205HACSTF1	0205HACSTPS5	1.31906 .	2.53039	0.0963	0.024	94 .	Non-Signifi			
0205HACSTF1	0205HACSTPS6	2.13077	2.53039	0.0188	0.024	94	Non-Signifi			
0205HACSTF1	0205HACSTPS7	1.09101	2.53039	0,1400	0.024		Non-Signifi		10	
Data Summary			Orig	inal Data				Transfor	med Data	
Sample Code	Count	Mean	Minimum	Maximun	n SD	Me	an N	linimum	Maximum	SD
0205HACSTF1	8	0.11075	0.07900	0.14800	0.026	41				
205HACSTPS1	8	0.08025	0.03199	0.12001	0.029	87			10.00	
205HACSTPS2	. 7	0.07472	0.06300	0.10300	0.014	34				
205HACSTPS3	8	0.07475	0.05800	0.09500	0.013	01				
205HACSTPS4	8	0.06512	0.04800	0.07799	0.011	44				
205HACSTPS5	8	0.09775	0.07401	0.11899	0.015	74				
205HACSTPS6	8	0.08975	0.04700	0.11600	0.019					
205HACSTPS7	8	0.10000	0.06899	0.13400	0,018	56				
Data Detail									W 58 5	
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
205HACSTF1	0.14800	0,10000	0.11700	A PROPERTY OF THE PARTY OF THE	0.13300	0.07900	0.13600	0.08300		
205HACSTPS1	0.10400	0.08800	0.05900	0.03199	0.05200	0.10100	0.08600	0.12001		
205HACSTPS2	0.07500	0.06300	0.08301	0.06801	0.10300	0.06799	0.06300			
205HACSTP83	0.08900		0.07000		0.05800	0.06400	0.09500	0.06400		
205HACSTPS4	0.06899		0.05000		0.07400	0.06100	0.06500	0.04800		
205HACSTPS5	0.11600		0.11899		0.08500	0.07401	0.09700	0.09600		
205HACSTPS8	0.09800		0.04700		0.08900	0.09700	0.08800	0.08400		
								4.40.100		

Comparisons: Report Date:

Page 8 of 8 22 Apr-05 2:40 PM 18-8696-0607/Round 1

CETIS Data Worksheet Report Date:

22 Apr-05 3:12 PM

Hyalella 10-d S	Survival	and Gr	owth Sedi	ment Test	10 - 1			Link:	15-1902-6066/Round
Start Date:	15 Mar-0						1	A second	U.S. EPA Region I Lab
Ending Date:	27. 4.2326		P	rotocol:	Hyalella azteca EPA/600/R-99/064 (:		Sample Sample	Code: 0205HACS Source: Fort Dever	
Sample Date:	09 Mar-0				LAB ARTIFICIAL SE		Sample	Station: LC2	00002
Sample Code	-	Pos			ed Total Weight-mg	Tare Weight-mg	Pan Count	Mean Length-mm	Notes
0205HACSTLC2	1	-	10	10	1204.32	1203.42	10		ivotes
0205HACSTLC2	2	1	10	10	1212.54	1211.77	10		
0205HACSTLC2	3		10	10	1208.68	1208.04	10		
0205HACSTLC2	4		10	10	1207,53	1206,37	10		
0205HACSTLC2	5		10	10	1209,6	1208.81	10		
0205HACSTLC2	6		10	10	1223.96	1223.1	10		
0205HACSTLC2	7		10	10	1204.45	1203.84	10	9	1 1 20 0000
0205HACSTLC2	8	A	. 10	9	1205.26	1204.65	- 9		- Particular
0205HACSTF1	1		10	9	1217.63	1218,15	9		7 - 1
0205HACSTF1	2		10	9	1231.46	1230,46	9		
0205HACSTF1	3		10	10	1231,31	-1230.14	10		200,00
0205HACSTF1	4		10 -	10	1242.59	1241.69	10		FEB. 16-11.70
0205HACSTF1	5		10	9 -	1231.51	1230,18	9		
0205HACSTF1	6		10	10	1241.16	1240,37	10		15 15
205HACSTF1	7		10	10.	1237.64	1236.28	10		
0205HACSTF1	8	-	10	9.	1217.26	1216.43	9		
205HACSTPS8	1		10	9	1214.07	1213.21	9		
205HACSTPS8	2		10	10	1214:64	1213.71	10		
205HACSTPS8	3		10	9	1223.01	1222.18	9		
205HACSTPS8	4		10	9	1213.87	1212.29	9		
205HACSTPS8	5		10	9	1211.7	1210.75	9		
205HACSTPS8	6		10	8	1208,48	1295.58	8		
205HACSTPS8	7		10	10	1204.51	1203.34	10		
205HACSTPS8	8		10	9	1216.07	1215.2	9		
205HACSTPS9	1		10	4	1223.87	1223.59	4 '		
205HACSTPS9	2		10	5	1232.99	1232.76	5		\$t
205HACSTPS9 -	3		10	- 6	1205.41	1205.01	6		
205HACSTPS9	4		10	8	1219.38	1218.99	6		0 1
205HACSTPS9	5		10	- 8	1211.74	1211.01	8		100 pt 10
205HACSTPS9	6		10	4	1215.71	1215.44	4.		
205HACSTPS9	7.	11/1/	10	5	1205.58	1205.34	5		-
205HACSTPS9	8		- 10	1	1201,43	1201.34	1		
205HACSTP810	1		10	10	1216.76	1215.79	10		
205HACSTP810	2		10	9	1200.3	1199.48	9		4 *
205HACSTPS10	3		10	9	1202.46	1201.77	9		
205HACSTPS10	4		10	9	1215,62	1214.86	9		
205HACSTPS10	5		10	10	1224.3	1223.43	10		
205HACSTPS10	6		10	10	1218.11				
05HACSTPS10	7		10	9	1213.5	1218.89	10		100
05HACSTPS10	8		10	10	1220.09	210000000	9		
05HACSTPS11	1		10	6	The second secon	1219.2	10		Set 1
05HACSTPS11	2	-	10		1211,82	1211.41	6		
				10	1204,38	1203.55	10		
05HACSTPS11	3	-	10	9	1205.11	1204,49	9		
05HACSTPS11	4		10	9	1220.4	1219.55	9		
05HACSTPS11	5		10	10	1230.84	1230	10		
05HACSTPS11	6	-	10	10	1204.84	1203.89	10		
05HACSTPS11	7		10	10	1218.55	1217,45	10		
05HACSTPS11	. 8		10	7	1229.14	1228.52	7		
05HACSTG1	1	1	10	7	1211.38	1210.93	7		
05HACSTG1	2		11	11	1213.24	1212.39	11		
05HACSTG1	3		10	9	1224.9	1224.08	9		
SHACETOS			40		TO STATE OF THE ST	COSTOL COSTO			

0205HACSTG1 000-049-125-1

0205HACSTG1

10

10

9

9

1211.17

1224.99

1212.05

9

9

Page 1 of 2

CETIS Data Worksheet

Report Date: 22 Apr-05 3:12 PM Link:

Sample Code	Rep	Pos	# Exposed	# Survived	Total Weight-mg	Tare Weight-mg	Pan Count	Mean Length-mm	10-19UZ-6066/Round 2
0205RACSTG1	6		10	10	1205.79	1204.06	The state of the s	arean cangur-mm	Notes
	-	-					10		the entire of
0205HACSTG1	7		10	10	1207.92	1207.1	- 10		= 53.7
0205HACSTG1	8		10	10	1216.14	1215.15	10		
0205HACSTG2	1	- B	10	10	1227.8	1226.51	10		
0205HACSTG2	2		10	10	1207.03	1206.1	10	5 2 - 1 1 3	
D205HACSTG2	3		10	10	1208.69	1207.61	10		
0205HACSTG2	4		10	9	1205.38	- 1204.29	9		
0205HACSTG2	5		10	10	1214.83	1213.79	10		
D2D5HACSTG2	6		10	10	1198.51	1197.41	10		14.
D205HACSTG2	7		10	8	1218.47	1217.77	8		
0205HACSTG2	8	-	10	10	1207.67	1206.73	10		
0205HACSTG3	2		10	6	1199.84	1199.2	6		
0205HACSTG3	3		10	8	1204.01	1203.32	8		
0205HACSTG3	4		10	10	1200.7	1199.91	10		
0205HACSTG3	5		10	10	1214.4	1213.75	10		
0205HACSTG3	6		10	10	1227.63	1226.81	10		
0205HACSTG3	7		10	7	1203.91	1203.42*	7		
0205HACSTG3	8		10	10	1216.22	1215.4	10		

Page 1 of 2

Report Date:

22 Apr-05 3:22 PM

Link:

06-3816-4762/Round 1

Hyalella 10-d Survival and Growth Sediment Test U.S. EPA Region I Lab 13-2527-7965 Test No: Test Type: Survival-Growth Duration: N/A Start Date: Protocol: EPA/600/R-99/064 (2000) 08 Feb-05 Species: Hyalella azteca Ending Date: Dil Water: None Source: In-House Culture Setup Date: 08 Feb-05 Brine: Comments: Fort Devens Sediment Toxicity Test Round 1 Sample No: 12-4569-5350 Material: Reference sediment Client: **EPA REGION 1** Sample Date: 02 Feb-05 02:10 PM Code: 0205HACSTF1 Fort Devens Sediment Toxicity Test Project: Receive Date: Source: Fort Devens Flannagan SD Sample Age: 5d 9h Station: Comments: Fort Devens Sediment Toxicity Test Sample No: 10-5013-8838 Material: LAB ARTIFICIAL SEDIMENT Cliente EPA REGION 1 Sample Date: 07 Feb-05 Code: -0205HACSTLC1 Project: Fort Devens Sediment Toxicity Test Fort Devens LC SD 1 Receive Date: Source: Sample Age: 24h Station: LC1 Comments: Fort Devens Sediment Toxicity Test Round 1 Sample No: 06-2559-6491 Material: Site Sediment Sample Client: **EPA REGION 1** Sample Date: 01 Feb-05 04:15 PM Code: 0205HACSTPS1 Project: Fort Devens Sediment Toxicity Test Receive Date: Source: Fort Devens Plow Shop SD Sample Age: 6d 7h Station: Fort Devens Sediment Toxicity Test Comments: Sample No: 15-1307-3691 Material: Site Sediment Sample Client: **EPA REGION 1** Sample Date: 01 Feb-05 03:15 PM Code: 0205HACSTPS2 Fort Devens Sediment Texicity Test Project: Receive Date: Source: Fort Devens Plow Shop SD Sample Age: 6d 8h Station: Comments: Fort Devens Sediment Toxicity Test Sample No: 02-3051-5023 Material: Site Sediment Sample Client: **EPA REGION 1** Sample Date: 01 Feb-05 02:40 PM Code: 0205HACSTPS3 Fort Devens Sediment Toxicity Test Project Receive Date: Source: Fort Devens Plow Shop SD Sample Age: 6d 9h Station: Comments: Fort Devens Sediment Toxicity Test 07-6595-6937 Sample No: Material: Site Sediment Sample Client: **EPA REGION 1** Sample Date: 01 Feb-05 02:15 PM Code: 0205HACSTPS4 Project: Fort Devens Sediment Toxicity Test Receive Date: Source: Fort Devens Plow Shop SD Sample Age: 6d 9h Station: PS4 Comments: Fort Devens Sediment Toxicity Test 18-3003-6058 Sample No: Material: Site Sediment Sample Client: EPA REGION 1 Sample Date: 01 Feb-05 01:25 PM Code: 0205HACSTPS5 Fort Devens Sediment Toxicity Test Project Receive Date: Source: Fort Devens Plow Shop SD Station: PS5 Sample Age: 8d 10h Comments: Fort Devens Sediment Toxicity Test 11-4943-4728 Site Sediment Sample Sample No: Material: Client: **EPA REGION 1** 0205HACSTPS6 Fort Devens Sediment Toxicity Test Sample Date: 01 Feb-05 01:15 PM Code: Project: Receive Date: Source: Fort Devens Plow Shop SD Station: PS6 Sample Age: 6d 10h Fort Devens Sediment Toxicity Test Comments:

CETIS Test Summary

Page 2 of 2

CETIS Test Summary

Report Date:

Link:

22 Apr-05 3:22 PM 06-3816-4762/Round 1

Sample No: 10-2222-3442 Material: Sité Sediment Sample Client: **EPA REGION 1** Sample Date: 01 Feb-05 12:55 PM Code: 0205HACSTPS7 Project: Fort Devens Sediment Toxicity Test Receive Date: Source: Fort Devens Plow Shop SD Sample Age: 6d 11h Station: Comments: Fort Devens Sediment Toxicity Test Mean Dry Blomass-mg Summary Sample Code Reps Minimum Maximum SE SD CV Mean 0205HACSTLC1 8 0.10238 0.06801 0.14601 0.00940 0.02657 25.96% 0205HACSTF1 8 0.11075 0.07900 0.14800 0.00934 0.02641 23.85% 0205HACSTP\$1 8 0.08025 0.03199 0.12001 0.01056 0.02987 37.22% 0205HACSTPS2 0.06300 7 0.07472 0.10300 0.00542 0.01434 19.19% 0205HACSTPS3 8 0.07475 0.05800 0.09500 0.00460 0.01301 17.41% 0205HACSTPS4 8 0.06512 0.04800 0.07799 0.00405 0.01144 17:57% 0205HACSTPS5 8 0.09775 0.07401 0.11899 0.00557 0.01574 16.11% 0205HACSTPS6 8 0.08975 0.04700 0.11600 0.00702 0.01986 22,12% 0205HACSTPS7 0.10000 0.06899 0.13400 0.00656 0.01856 18.56% Proportion Survived Summary Sample Code Reps Mean Minimum Maximum SE SD CV 8 1.00000 0205HACSTLC1 1.00000 1.00000 0.00000 0.00% 0.00000 0205HACSTF1 8 0.95000 0.90000 1.00000 0.01890 0.05345 5.63% 0205HACSTPS1 8 0.90000 0.70000 1.00000 0.03780 0.10690 11.88% 0205HACSTPS2 7 0.90000 0.80000 1.00000 0.03780 0.10000 11.11% 0205HACSTPS3 8 0.95000 0.90000 1,00000 0.01890 0.05345 5.63% 0205HACSTPS4 8 0.80000 0.60000 1.00000 0.04629 0.13093 16,37% 0205HACSTPS5 8 0.93750 0.80000 1.00000 0.02631 0.07440 7.94% 0205HACSTPS6 8 0.90000 0.70000 1.00000 0.03273 0.09258 10.29% 0.95000 0.90000 1.00000 0.01890 0.05345 0205HACSTPS7 5.63% Mean Dry Blomass-mg Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 0205HACSTLC1 0.08501 0.11200 0.09800 0.13400 0.09199 0:08401 0.14601 0.06801 0205HACSTF1 0.14800 0.10000 0.11700 0.09000 0.13300 0.07900 0.13600 0.08300 0.08600 0.10400 0.08800 0.05900 0.03199 0.05200 0.10100 0205HACSTPS1 0.12001 0205HACSTPS2 0.07500 0.06300 0.08301 0.06801 0.10300 0.06799 0.06300 0.05800 0205HACSTPS3 0.08900 0.07800 0.07000 0.07999 0.06400 0.09500 0.06400 0205HACSTPS4 0.06899 0.07799 0.05000 0.07600 0.07400 0.06100 0.06500 0.04800 0205HACSTPS5 0.11600 0.08700 0.11899 0.10800 0.08500 0.07401 0.09700 0.09600 0.08900 0205HACSTPS6 0.09800 0.11600 0.04700 0.09900 0.09700 0.08800 0.08400 0.10000 0.09000 0.10299 0.09399 0,13400 0.09800 0.06899 0205HACSTPS7 0.11200 Proportion Survived Detail Rep 6 Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 7 Rep 8 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0205HACSTLC1 0.90000 0.90000 1.00000 1.00000 0.90000 1.00000 1.00000 0.90000 0205HACSTF1 0205HACSTPS1 0.90000 1.00000 1.00000 0.90000 0.80000 0.90000 0.70000 1.00000 0205HACSTPS2 1.00000 0.80000 1.00000 0.80000 1.00000 0.90000 0.80000 0.90000 1.00000 1.00000 0.90000 0.90000 1.00000 0.90000 0205HACSTPS3 1.00000 0.80000 0.70000 0.80000 1.00000 0.60000 0.90000 0.90000 0205HACSTPS4 0.70000 0.90000 0.90000 0.90000 1.00000 1.00000 0.80000 1.00000 1.00000 0205HACSTPS5 0.70000 1.00000 0.90000 0.90000 0.90000 1.00000 0205HACSTPS6 0.90000 0.90000 0.90000 0.90000 1.00000 1.00000 1.00000 0.90000 0.90000 0205HACSTPS7 1.00000

Comparisons:

Page 1 of 2

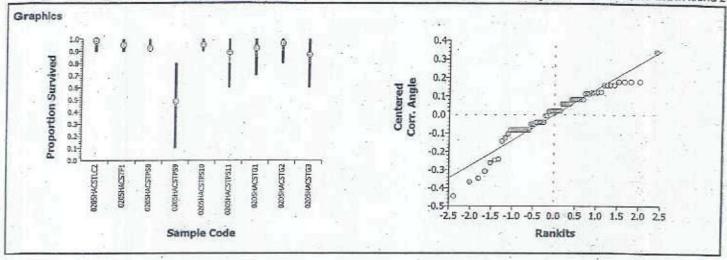
Report Date:

22 Apr-05 2:18 PM

Analysis:

12-8187-2920/Round 2

Hyalella 10-d Sur	rvival and Growth	Sediment Tes	et					Analysis;	15.00	67-2920/Ro A Region I I
Endpoint		Analysis Type	12.	Samp	le Link	Contro	Link	Date Analyzed	Versi	
Proportion Survive		Comparison		7.50		- 201103	THE RESERVE	22 Apr-05 1:59		Sv1.025
Method		Alt H Dat	a Transform	Z	NOEL	1	OEL			AUGUS DE
	coxon Rank Sum		ular (Correct		NOEL		UEL	Toxic Units N/A	ChV	MSDp
ANOVA Assumpt	ions			440						
Attribute	Test	Stat	istic C	critical	P Level		Decision	(0 04)		
Variances	Bartlett			0.09024	0.00133			Variances		
Distribution	Kolmogorov-Smir			.12261	0.00188		1	nal Distribution		
ANOVA Table		15865		ASSESSED AND ASSESSED	1040-2 (PAN)	_		THE STREET		
	0				aviant in the	DATE OF THE PARTY	16			
Source Bétween	Sum of Square					Level		Decision(0.05)		0
Error ·	2.245327	0.280665	2	12.43	0.0	00000		Significant Effect		
Total	1.400303 3.64562964	0.022585		-						
TORS	3,04302804	0.303201	+ /0						Tie .	
Group Compariso										-
Sample vs	Sample	Statistic	Critical	P Level	Ties		Decis	sion(0.05)	1	
0205HACSTLC2	0205HACSTF1	56		0.1172	2			Significant Effect		
0205HACSTLC2	0205HACSTPS8			0.0190	2			Significant Effect	t	
205HACSTLC2	0205HACSTPS9	1 - 3 - 3		0.0001	4		-	Icant Effect		
205HACSTLC2	0205HACSTPS1			0.1172	2	- 1	Non-S	Significant Effect		
0205HACSTLC2	0205HACSTPS1		a	0.0974	2			Significant Effect		
0205HACSTLG2	0205HACSTG1	59		0.1911	2		Non-S	Significant Effect	4 2 3	
0205HACSTLC2	0205HACSTG2	63.5		0.3227	2		Non-S	Significant Effect	530	
)205HACSTLC2	0205HACSTG3	46	Later Later	0.1405	- 1		Non-S	Significant Effect	2	
Data Summary			Orig	inal Data				Transfo	rmed Data	
Sample Code	Coun	t Mean	Minimum	Maximur	n SD		Mean	Minimum	Maximum	SD
205HACSTEC2	8	0.98750	0.90000	1.00000	0.0353	6	1.39164	1.24905	1.41202	0.05762
205HACSTF1	8	0.95000	0.90000	1.00000	0.0534	5	1,33053	1.24905	1.41202	0.08711
205HACSTPS8	8	0.92500	0.90000	1.00000	0.0462	9	1.28979	1.24905	1.41202	0.07544
205HACSTPS9	8	0.48750	0.10000	0.80000	0.2031	Dun.	0.76766	0.32175	1.10715	0.22568
205HACSTPS10	8	0.95000	0.90000	1.00000	0.0534	5	1,33053	1.24905	1.41202	0.08711
205HACSTPS11	8	0.88750	0.60000	1.00000	0.1552	6	1.25292	0.88608	1.41202	0.20852
205HACSTG1	8	0:92500	0.70000	1.00000	0.1035	1	1.29923	0.99116	1.41946	0.14884
205HACSTG2	8	0.96250	0.80000	1.00000	0.0744	0	1.35354	1.10715	1,41202	0.11473
205HACSTG3	7	0.87143	0.60000	1.00000	0.1704	3	1.23321	0.88608	1.41202	0.23197
ata Detail				-				-		
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Re Re	p 7 Rep 8	Rep 9	Rep 10
205HACSTLC2	1.0000	00000,1	1.00000	1.00000	1.00000	1.000	00 .1.0	0.9000	0	- PASSES 11 - 11
205HACSTF1	0.9000	0.90000	1.00000	1.00000	0.90000	1.000	00 1.0	0.9000	0	
205HACSTPS8	0.9000	1.00000	0.90000	0.90000	0.90000	0.900	00 1.0	0.9000	0	
205HACSTPS9	0.4000	0.50000	0.60000	0.60000	0.80000	0.400	00 0.5	0.10000)	
205HACSTPS10	1.0000	0.90000	0.90000	0.90000	1.00000	1.000	00 0.9	0000 1.00000)	
205HACSTPS11	0.6000	0 1.00000	0.90000	0.90000	1.00000	1.000	00 1.0	0000 0.70000	3	
205HACSTG1	0.7000	0 1,00000	0.90000	0.90000	0.90000	1.000		0000 1.00000		
205HACSTG2	1.0000		1.00000	0.90000	1.00000	1.000		0000 1.00000		
205HACSTG3	0.6000		1,00000		1.00000	0.700		0000		


Analyst

Comparisons: Report Date:

Page 2 of 2 22 Apr-05 2:18 PM

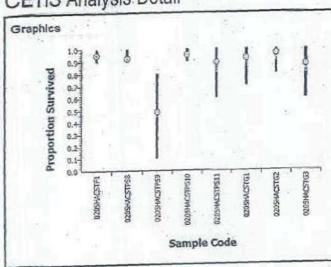
Analysis:

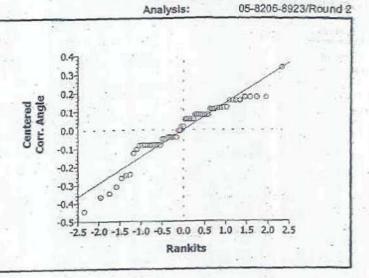
12-8167-2920/Round 2

Comparisons:

Report Date:

Page 1 of 2 22 Apr-05 2:21 PM


Analysis:


05-8206-8923/Round 2

Endnaint		and min Ton		-		100		W San Ji	77.74	A Region
Proportion Surviv		Analysis Type Comparison	-		le Link 02-6066	TATE OF STREET		ate Analyzed	Versle	
1 Jopanion ou IIV		AMPRIBULI		10-181	00000	15-190	02-6066 2	2 Apr-05 1:59 F	M CETIS	9v1.025
Method			Transform	_ Z	NO	EL	LOEL 1	Foxic Units	ChV	MSDp
Bonferroni Adj Wi	Icoxon Rank Sum C	>T Angi	ular (Correcte	ed)			. 1	V/A		
ANOVA Assumpt	tions					STE STE	-		-	
Attribute	Test	Stat	stic C	ritical	P Leve	d	Decision(0.01)		
Variances	Bartlett	18.0	2836 1	8.47531	0.0118	4	Equal Vari	ances		
Distribution	Kolmogorov-Smirn	ov D 0.146	507 0	.12995	0.0019	0	Non-norma	al Distribution	1	
ANOVA Table				7 11 5			1	->		
Source	Sum of Square	s Mean Squ	are DF	F Stat	istic	P Level	De	ecision(0.05)		
Between	2.064769	0.294967	7	11.78		0.00000	-	gnificant Effect	-	
Error	1.377063	0.0250375		100.0				president check		
Total	3.44183242	0.3200045	A 1957							100
Group Compariso	ons						777			7710
Sample vs	Sample	Statistic	Critical	P Lavel	Ties	s	Decision	on(0.05)	1 1	
0205HACSTF1	0205HACSTPS8	60	1	0.2209	2	TENT	421 10 - 100	gnificant Effect		3
0205HACSTF1	0205HACSTPS9	36		0.0001	5			ant Effect		
0205HACSTF1	0205HACSTPS1	68	Si bra	0.4796	2			onlificant Effect		
0205HACSTF1	0205HACSTPS1	64	100	0.3605	2		A CHARLESTEE	gnificant Effect		
0205HACSTF1	0205HACSTG1	68		0.4796	2			gnificant Effect		
0205HACSTF1	0205HACSTG2	74		0.7131	- 2			gnificant Effect		
0205HACSTF1	0205HACSTG3	52		0.3472	2			gnificant Effect	- Oliv	
Data Summary			Orig	inal Data				Transfor	med Data	
Sample Code	Count	Mean	Minimum	Maximur	n SD		Mean	Minimum	Maximum	SD
D205HACSTF1	8	0.95000	0.90000	1.00000	0.05	345	1.33053	1.24905	1.41202	0.08711
0205HACSTPS8	8	0.92500	0.90000	1.00000	0.04	629	1.28979	1.24905	1.41202	0.07544
0205HACSTPS9	8	0.48750	0.10000	0.80000	0.20	310	0.76766	0.32175	1.10715	0.22568
0205HACSTPS10	8	0.95000	0.90000	1.00000	0.05	345	1.33053	1.24905	1.41202	0.08711
0205HACSTPS11	8	0.88750	0.60000	1.00000	0.15	526	1.25292	0.88608	1.41202	0.20852
0205HACSTG1	8	0,92500	0.70000	1.00000	0.10	351	1.29923	0.99116	1.41946	0.14884
0205HACSTG2	. 8	0.96250	0.80000	1.00000	0.07	440	1.35354	1.10715	1.41202	0.11473
D205HACSTG3	.7	0.87143	0.60000	1.00000	0.17	043	1.23321	0.88608	1.41202	0.23197
Data Detail										SWI FILE
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep	6 Rep	7 Rep 8	Rep 9	Rep 10
0205HACSTF1	0.90000	0.90000	1.00000	1.00000	0.90000	1.000	000 1.000	00000.0		-
205HACSTPS8	0.90000	1.00000	0.90000	0.90000	0.90000	0.900	000,1	0.90000		
205HACSTPS9	0.40000	0.50000	0.60000	0.60000	0.80000	0.400	0.500	0.10000		
205HACSTPS10	1.00000	0,90000	0.90000	0.90000	1.00000	1.000	000,000	1.00000		
205HACSTPS11	0.60000	1.00000	0.90000	0.90000	1.00000	1,000	000 1.000	000 0.70000		
205HACSTG1	0.70000	1.00000	0.90000	0.90000	0.90000	1.000	000 1.000	000 1,00000		
205HACSTG2	1.00000	1.00000	1.00000	0.90000	1.00000	1.000	008.0	1.00000		
205HACSTG3	1.00000	1.00000	1,00000	0.70000	1.00000	0.600	008.0	100		

Comparisons: Report Date:

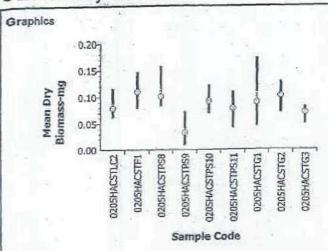
Page 2 of 2 22 Apr-05 2:21 PM. 05-8206-8923/Round 2

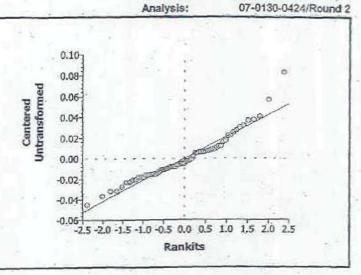
Comparisons:

Report Date: Analysis:

Page 1 of 2 22 Apr-05 2:11 PM 07-0130-0424/Round 2

137	rvival and Growth	Sediment I	est						U.S. E	A Region
Endpoint	A 10 (apple (2))	Analysis Typ	00	Sam	ple Link	Control	Link Dat	e Analyzed	Vers	2500
Mean Dry Bioma	ss-mg	-Comparison		15-1	902-6066	15-1902	CONTRACTOR OF THE PARTY OF THE	Apr-05 1:59 P		Sv1.025
Method		Alt H Da	ata Transform	n	z No	EL L	OEL To	xic Units	12-24/0	
Bonferroni Adj t		C>T Ur	transformed				N/A		ChV	MSDp
ANOVA Assump	tions						15			
Attribute	Test	Sta	atistic	Critical	P Leve	1	Desiries /n :			
Variances	Bartlett			20.09024	0.23699		Decision(0.0 Equal Varian			-
Distribution	Kolmogorov-Smir			0.12261	0.02615		Cquai vanan Normal Distri			
ANOVA Table		2.						instruct.		
Source	Sum of Square	es Mean S	quare Di	F FSH	atistic	P Level				1
Between	0.0344067	0.00430		8.23		0.00000		sion(0.05)		
Error	0.0323864	0.00052			-	0.00000	Signi	ficant Effect		
Total	0.0667931	0.00482								
Group Compariso	ons							-		
Sample vs	Sample	Statistic	Critical	P Level	MSI		Declar	(5 ort)		
0205HACSTLC2	0205HACSTF1	-2.7566	2.57266	0.9962	0.02		Decision Non-Sign	(0.05) ficant Effect		
0205HACSTLC2	0205HACSTPS8		2.57266	0.9699	0.02			ficant Effect		
D205HACSTLC2	0205HACSTPS9		2.57266	0.0001	0.02		Significan			
0205HACSTLC2	0205HACSTPS1		2.57266	0.8656	0.02					
0205HACSTLC2	0205HACSTPS1		2.57266	0.4480	0.02			ficant Effect ficant Effect		
0205HACSTLC2	0205HACSTG1	-0.9439	2.57266	0.8256	0.02			icant Effect		
0205HACSTLC2	0205HACSTG2	-1:9799	2.57266	0.9739	0.02			icant Effect	- 1	
205HACSTLC2	0205HACSTG3	0.78195	2.57266	0.2186	0.03			cant Effect	-	
Data Summary			Ori	ginal Data			-55	Transform	ned Date	
Sample Code	Count	Mean	Minimum		m SD	N	fean I	Minimum	Maximum	00
205HACSTLC2	8	0.07925	0.06100	0.11600	0.018			an and reality	maximum	SD
205HACSTF1	8	0.11075	0.07900	0.14800	0.026	41				
205HACSTPS8	8	0.10112	0.08300	0.15800	0.025	27				
205HACSTPS9	8	0.03263	0:00901	0.07300	0.019	05			7.5	
205HACSTPS10	8	0.09200	0.06899	0.12200	0.018					
205HACSTPS11	8	0.07775	0.04099	0.11001	0.021					
205HACSTG1	В	0.09003	0.04500	0.17300	0.036					
205HACSTG2	8	0.10187	0.07000	0.12900	0.017	02				
205HACSTG3	7	0.07000	0.04900	0.08199	0.012	05				
ata Detail			141							
ample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
205HACSTLC2	0.0899	9 0.07700	0.06400	0.11600	0.07899	0.08600		0.06100	1,000	Mob 10
205HACSTF1	0.1480	0.10000	0.11700	0.09000	0.13300	0.07900		0.08300		
205HACSTPS8	0.0860	0.09301	0.08300	0.15800	0.09500	0.09000		0.08700		
205HACSTPS9	0.0280	0.02300	0.04000	0.03900	0.07300	0.02700		0.00901		
205HACSTPS10	0.09700	0.08201	0.06899	0.07600	0.08700	0.12200		0.08900		
205HACSTPS11	0.04099	0.08300	0.06200	0.08500	0.08400	0.09500		0.06200		
205HACSTG1	0.04500	0.07727	0.08201	0.0880.0	0.07400	0.17300		0.09900		
205HACSTG2	0.12900		0.10800	0:10699	0.10399	0.11000		0.09401		


000-049-125-1


CETIS™ v1.025B

Analyst_ Approval:

Comparisons: Report Date:

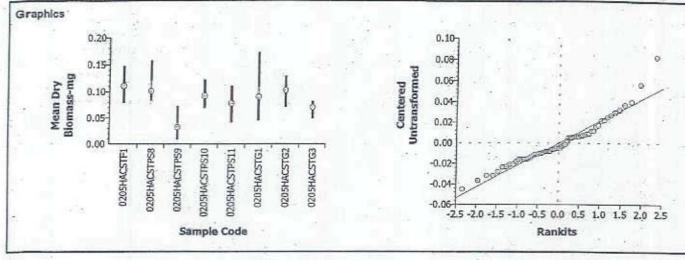
Page 2 of 2 22 Apr-05 2:11 PM 07-0130-0424/Round 2

Comparisons:

Report Date:

Analysis:

Page 1 of 2 22 Apr-05 2:05 PM 09-4449-9793/Round 2


F. Property Co.	The second second	TAULE ELLE		Sample Link Control Link					0.0. 21	A Region
Endpoint		Analysis Type	9	Samp	ie Link	Control	Link Date	Analyzed	Versi	on
Mean Dry Biomas	ss-mg	Comparison		15-19	02-6066	15-1902	100000000000000000000000000000000000000	pr-05 1:59	The state of the s	V1.025
Method		Alt H Dat	ta Transform	2	NOE	L L	OEL To:	tic Units	ChV	MSDp
Bonferroni Adj I		C>T Unt	ransformed				N/A		OHE	docui
ANOVA Assump	tions						1			
Attribute	Test	Sta	tistic C	Critical	P Level		Decision(0.0	1)		
Variances	Bartlett			8.47531	0.19647		Equal Varian			
Distribution	Kolmogorov-Smi	mov D 0.11	1904 0	.12995	0.02687		Vormal Distri	and the same of th		-
ANOVA Table									4	
Source	Sum of Square	res Mean Sq	uare DF	F Stat	listic I	Level	Decl	sion(0.05)	- 3	
Between	0.0341918	0.004884		8.96		0.00000		ficant Effect		
Error	0.0299708	0.000544		ALC:			Olgin	LIION		
Total	0.06416262	0.005429		-70						
Group Compariso	ons	- 1					W.T.		E E	
Sample vs	Sample -	Statistic	Critical	P Level	MSD		Decision	(0.05)		
0205HACSTF1	0205HACSTPS		2.53039	0.2066	0,02		and the second second second	ficant Effect		-
0205HACSTF1	0205HACSTPS		2.53039	0.0000	0.02		Significan			
0205HACSTF1	0205HACSTPS	1 1.60644	2.53039	0.0570	0.029			ficant Effect		
0205HACSTF1	0205HACSTPS		2.53039	0.0033	0.029		Significan			
0205HACSTF1	0205HACSTG1	1.77482	2.53039	0.0407	0.029			ficant Effect		in .
0205HACSTF1	0205HACSTG2	0.76047	2.53039	0.2251	0.029			icant Effect		
0205HACSTF1	0205HACSTG3	3.37304	2,53039	0.0007	0.030		Significant		- 6	
Data Summary			Orig	inal Data				Transfor	med Data	42
Sample Code	Cour	nt Mean	Minimum	Maximu	m SD	N.	fean	Minimum	Maximum	SD
0205HACSTF1	8	0.11075	0.07900	0.14800	0.026				9.	
0205HACSTPS8	8	0.10112	0.08300	0.15800	0.025	27			1350	
0205HACSTPS9	- 8	0.03263	0.00901	0.07300	0.019	05				
205HACSTPS10	8	0.09200	0.06899	0.12200	0.018	24				
205HACSTPS11	8	0.07775	0.04099	0.11001	0.021	73				
205HACSTG1	8	0.09003	0.04500	0.17300	0.036	93				
205HACSTG2	8	0.10187	0.07000	0.12900	0.017	02				
205HACSTG3	7	0.07000	0.04900	0.08199	0.012	05	-20.00			
Data Detail									1 3	
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
205HACSTF1	0.148	00 0.10000	0.11700	0.09000	0.13300	0.0790	0.13600	A STATE OF THE STA		
205HACSTPS8	0.086	00 0.09301	0.08300	0.15800	0.09500	0.0900	0 0.11700	0.08700		
205HACSTPS9	0.028	00 0.02300	0.04000	0.03900	0.07300	0.0270	0.02201	0.00901	i i	
205HACSTPS10	0.097	00 0.08201	0.06899	0.07600	0.08700	0.1220	0 0.11400	0.08900		
205HACSTPS11	0.040	99 0.08300	0.06200	0.08500	0.08400	0.0950	0.11001	0.06200		
205HACSTG1	0.045	00 0.07727	0.08201	0.08800	0.07400	0.1730	0.08201	0.09900	-	
205HACSTG2	0.129	00 0.09301	0.10800	0.10699	0.10399	0.1100				
205HACSTG3	0.064		0.07899	0.06500	0.08199	0.0490				

Comparisons: . Report Date:

Page 2 of 2 22 Apr-05 2:05 PM

09-4449-9793/Round 2

Report Date: Link:

25 Apr-05 1:53 PM 17-3527-7025/Round 1

Chironomus 10-d Survival and Growth Sediment Test

U.S. EPA Region I Lab

Start Date: 08 Feb-05 Ending Date:

Species: Chironomus tentans

Protocol: EPA/600/R-99/064 (2000)

Sample Code: Sample Source: Fort Devens LC SD 1

0205CTCSTLC1

Sample Code	Rep	Pos	# Exposed	# Survived	Total Weight-mg	Ashed Weight-mg	Pan Count	Mean Length-mm	Notes
0205CTCSTLC1	1		10	8	1233.54	1222.17	8		Hotes
0205CTCSTLC1	- 2		10	- 10	1218,03	1206.7	10		
205CTCSTLC1	3		10	10	1243.8	1230.49	10	-	
205CTCSTLC1	4		10	9	1235.13	1222.65	9		
0205CTCSTLC1	5		10	9 .	1231.52	1218.93	9		
0205CTCSTLC1	6		10	9	1221,47	1210.34	9 -		
205CTCSTLC1	7		10	9	1240.52	1227.85	9		
205CTCSTLC1	8		10	10	1238.36	1224.2	10	-	3-7
205CYCSTF1	1		10	10	1224,18	1215.25	10		
0205CTCSTF1	2		10	10	1218.05	1208.48	10		
205CTCSTF1	3		10	10	1233,13	1222,68	10		
205CTCSTF1	4		10	10	1258.27	1249,43	10		
205CTCSTF1	5		10	10	1224.38	1215.23	10		
205CTCSTF1	6		10	10	1215.87	1207.81	10		
205CTCSTF1	7 1		10	10	1231.91	1222.03	10		
205CTCSTF1	8	+	10	10	1233.43	1222.03	10		
202CTCSTPS1	1	-	10	9	1220,57	1209.84	9		
202CTCSTPS1	2	-	10	10	1218.49	1204.91	10		
202CTCSTPS1	3		10	10	1254.17	1241.96	10		
202CTCSTPS1	4		11	11	1227.14	1215.75	- 11		
	5	-	10	10	1235.88	1225.41	10		
202CTCSTPS1 202CTCSTPS1	6	-	10	10	1240.13	1229.17	10		- A
	7	-	10	10	1236.2	1225.85	10		-
202CTCSTPS1	8		10	10	1243.09	1232.6	10		The second
202CTCSTPS1	1	-	10	-10	1224.53	1214.74	10		305
205CTCSTPS2	2	-	11	11	1254.9	1243.23	. 11		1
205CTCSTPS2 205CTCSTPS2	3	-	10	10	1227.6	1217.91	10		1.74
205CTCSTP32	4	-	10	10	1233.5	1222.93	10		
205CTCSTPS2	5	-	10	10	1219,81	1211.79	10		
205CTCSTP32	6	-	10	10	1215,28	1205.29	10		
205CTCSTP32	7	-	10	10	1250.42	1238.94	10		
205CTCSTP32	8	-	10	10	1235.61	1225.94	10		
205CTCSTPS2	1	-	- 10	8	1244.37	1233.88	8		
205CTCSTPS3	2	-	10	10	1237.08	1228.06	- 10		
205CTCSTPS3	3	-	10	10	1218,34	1207.85	10		
205CTCSTPS3	4		10	10	1226.55	1214.43	10		
205CTCSTPS3	5		10	10	1244.72	1235,18	10		
205CTCSTPS3	6	-	10	10	1243,12	1230.8	10		
	7	-	10	10	1232.23	1221.67	10		
205CTCSTPS3	8		10	10	1224.9	1214.38	10		
205CTCSTP\$3	-			10	1249.07	1235.76	10		
205CTCSTPS4	1	-	10	10	1230.08	1217.84	10		7
205CTCSTPS4	2	-	10			1251.57	9	-	
205CTCSTPS4	3		10	9	1263.7	1232.39	10		
205CTCSTPS4	4		10	10	1245,89		10		-
205CTCSTPS4	5	-	10	10	1238.2	1224,27			
205CTCSTPS4	6	_	10	10	1220.04	1206.04	10		
205CTCSTPS4	7		10	10	1217.43	1204.25	10		
205CTCSTPS4	8		-18	10	1256.03	1242,59	10		
205CTCSTPS5	1		10	9	1213.75	1201.9	9		
205CTCSTPS5	2		10	10	1215.83	1203.98	10		
205CTCSTPS5	3		10	9	1247.05	1238,06	9		
205CTCSTPS5	4		10	9	1215,32	1204.45	9		
205CTCSTPS5	5		10 -	10	1220.55	1208.98	10	THE RESERVE	

	-			

Page 2 of 2

Report Date:

Link:

25 Apr-05 1:54 PM 17-3527-7025/Round 1

								Hth.	11-3021-1020(ROUNG	
Sample Code	Rep	Pos	# Exposed	# Survived	Total Weight-mg	Ashed Weight-mg	Pan Count	Mean Length-mr	Notes	
0205CTCSTPS5	6	12	- 10	10	1222.91	1211.72	10	- Company	A STATE OF THE PARTY OF THE PAR	
0205CTCSTPS5	7		10	- 8	1223.23	1213	8		Contract of the second	
0205CTCSTPS5	8		10	10	1228.58	1217.06	- 10		W. District Control	
205CTCSTPS6	1	A section	10	10	1243.63	1231.56	10			
205CTCSTPS6	2		10	10	1220.58	1209.94	10	15 M		
0205CTCSTPS6	3		10	10	1246.66	1233.05	10			
0205CTCSTPS6	4		10	10	1249.72	1236.58	10	.5		
205CTCSTPS6	5		10	10	1238.61	1228.06	10			
205CTCSTPS6	6		10	8	1239.93	1230	8		2 2 2 2 2 2	
205CTCSTPS6	7.		10	10	1227.29	1214.45	10	100		
205CTCSTPS6	8		10	10	1221.27	1207.39	10			
205CTCSTPS7	1		10	9	1236.18	1226.78	9			
205CTCSTPS7	2		10	10	1221.42	1209.62	10			
205CTCSTPS7	3		11	- 11	1225.26	1211.66	11		199	
205CTCSTPS7 ·	4		10	10	1247.7	1234.7	10			
205CTCSTPS7	5		10	10	1217.75	1206.65	10			
205CTCSTPS7	6		10	10	1233.75	1221.6	10			
205CTCSTPS7	7		10	9	1230.71	1218.5	9			
205CTCSTPS7	8		10	10	1252.58	1241.51	10			

CETIS Data Worksheet

CETIS Test Summary

Report Date:

25 Apr-05 1:55 PM

17-3527-7025/Round 1

Chironomu	s 10-d Survival and Gro	with Sediment	Test			U.S. EPA Region I Lai
Test No: Start Date: Ending Date: Setup Date:		Test Typ Protocol Dil Water Brine:			Duration Species Source:	n: N/A : Chironomus tentans
Comments:	Devens Sediment To	xicity Test First	Round 1			
Sample No:	18-7764-3638	Material:	Site Sediment Sample		Client:	EPA REGION 1
Receive Date		Code: Source:	0202CTCSTPS1 Fort Devens Plow Shop SD		Project	Fort Devens Sediment Toxicity Test
Sample Age:		Station:	PS1		- 20	
Comments:	Fort Devens Sedimen	t Toxicity Test				
Sample No: Sample Date Receive Date Sample Ago:		Material: Code: Source: Station:	Reference sediment 0205CTCSTF1 Fort Devens Flannagan SD F1	7	Client: Project:	EPA REGION 1 Fort Devens Sediment Toxicity Test
Comments:	Fort Devens Sediment	Toxicity Test			7	
Sample No: Sample Date: Receive Date: Sample Age:		Material: Code: Source: Station:	LAB ARTIFICIAL SEDIMENT 0205CTCSTLC1 Fort Devens LC SD 1 LC1		Client: Project:	EPA REGION 1 Fort Devens Sediment Toxicity Test
Comments:	Fort Devens Sediment	Toxicity Test			ST 19 N 1	
Sample No: Sample Date: Receive Date: Sample Age:		Material: Code: Source: Station:	Site Sediment Sample 0205CTCSTPS2 Fort Devens Plow Shop SD PS2		Client: Project:	EPA REGION 1 Fort Devens Sediment Toxicity Test
Comments:	Fort Devens Sediment	Toxicity Test				***
sample No: sample Date: Receive Date: sample Age:	03-6846-3737 01 Feb-05 02:40 PM 6d 9h	Material: Code: Source: Station:	Site Sediment Sample 0205CTCSTPS3 Fort Devens Plow Shop SD PS3		Client: Project:	EPA REGION 1 Fort Devens Sediment Toxicity Test
omments:	Fort Devens Sediment 1	axiaty Test	A HE WAY	1		A Section 1997 Television
eceive Date:	01-6054-7316 01 Feb-05 02:15 PM 6d 9h	Code: Source:	Site Sediment Sample 0205CTCSTPS4 Fort Devens Plow Shop SD PS4		Client: Project:	EPA REGION 1 Fort Devens Sediment Toxicity Test
omments:	Fort Devens Sediment T	oxicity Test				
ample Date: eceive Date: ample Age:	09-7663-6141 01 Feb-05 01:25 PM 6d 10h	Code: Source: Station:	Site Sediment Sample 0205CTCSTPS5 Fort Devens Plow Shop SD PS5	ile in the second		EPA REGION 1 Fort Devens Sediment Toxicity Test
Marian San San San San San San San San San S	Fort Devens Sediment T	oxicity Test			2	
ample Date: eceive Date:	07-0182-8113 01 Feb-05 01:15 PM 6d 10h	Code: 0	Site Sediment Sample 0205CTCSTPS6 Fort Devens Plow Shop SD 0256			EPA REGION 1 Fort Devens Sediment Toxicity Test
omments:	Fort Devens Sediment To	wiele, Test	7			

CETIS Test Summary

Report Date:

25 Apr-05 1:55 PM

Link: 17-3527-7025/Round 1 Sample No: 04-0046-0821 Material: Site Sediment Sample Client: **EPA REGION 1** Sample Date: 01 Feb-05 12:55 PM Code: 0205CTCSTPS7 Fort Devens Sediment Toxicity Test Project: Receive Date: Source: Fort Devens Plow Shop SD Sample Age: 6d 11h Station: Comments: Fort Devens Sediment Toxicity Test Mean AF Biomass-mg Summary Sample Code Reps Mean Minimum Maximum SD CV 0205CTCSTLC1 1.41600 1.23800 1.11300 0.03746 0.10594 8.58% 0205CTCSTF1 0.94975 0.78600 8 1.13000 0.03747 0.10600 11.16% 0202CTCSTPS1 8 1.08931 1.03500 1.22101 0.02377 0.06723 6.17% 0205CTCSTPS2 8 1.01024 0.80200 1.14801 0.03614 0.10221 10.12% 0205CTCSTPS3 8 1.06325 0.90199 1.23199 0.03989 0.11284 10.61% 0205CTCSTPS4 8 1.29662 1.19299 1.40000 0.02687 0.07599 5.86% 0205CTCSTPS5 8 1.12738 1.02300 1,18700 0.01998 0.05651 5 01% 0205CTCSTPS6 8 1.20750 0.99301 1.38800 0.05368 0.15184 12.57% 0205CTCSTPS7 1.16342 0.94000 1.30000 0.03928 0.11110 9.55% **Proportion Survived Summary** Sample Code Reps Mean Minimum Maximum SE SD CV 0205CTGSTLC1 0.80000 1,00000 8 0.92500 0.02500 0.07071 7.64% 0205CTCSTF1 8 1,00000 1.00000 1.00000 0.00000 0.00000 0.00% 0202CTCSTPS1 8 0.98750 0.90000 1.00000 0.01250 0.03536 3.58% 0205CTCSTPS2 8 1.00000 1.00000 1.00000 0.00000 0.00000 0.00% 0205CTCSTPS3 0.97500 0.80000 8 1.00000 0.02500 0.07071 7.25% 0205CTCSTPS4 8 0.98750 0.90000 1.00000 0.01250 0.03536 3.58% 8 0205CTCSTPS5 0.93750 0.80000 1,00000 0.02631 0.07440 7.94% 4 0205CTCSTPS6 8 0.97500 0.80000 1.00000 0.02500 0.07071 7.25% 0.90000 0205CTCSTPS7 0.97500 1.00000 0.01637 0.04629 4.75% Mean AF Biomass-mg Detail Sample Code Rep 3 Rep 1 Rep 2 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 0205CTCSTLC1 1.13700 1.13301 1.33101 1.24800 1.25900 1,11300 1.26700 1.41600 0.89301 1.04500 0.88400 0.91500 0205CTCSTF1 0.95701 0.78600 0.98800 -1.13000 1.22101 0202CTCSTPS1 1.07300 1.15800 1.03548 1.04700 1.09600 1.03500 1.04900 0.97900 0.96899 1.05699 0.80200 0205CTCSTPS2 1.06091 0.99900 1.14801 1.06700 0205CTCSTPS3 1.04900 0.90199 1.04900 1.21200 0.95399 1.05599 1.23199 1.05200 0205CTCSTPS4 1.33099 1.22400 1.21300 1.35000 1.19299 1.40000 1.31801 1.34401 1.18500 1.18700 1.09900 1.08700 1.15701 1.02300 0205CTCSTPS5 1.11901 1.16200 1.35499 1.31400 1.05499 0205CTCSTPS6 1.20699 1.06400 0.99301 1.28401 1.38800 0.94000 1.18000 1.23636 0205CTCSTPS7 1.30000 1.11000 1.21500 1.22100 1.10500 Proportion Survived Detail Rep 5 Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 6 Rep 7 Rep 8 0.90000 0.80000 1.00000 1.00000 0.90000 0.90000 0.90000 0205CTCSTLC1 1.00000 1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0205CTCSTF1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0202CTCSTP\$1 0.90000 0205CTCSTPS2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0205CTCSTPS3 0.80000 1,00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.90000 1.00000 1.00000 1.00000 1.000000 1.00000 1.00000 1.00000 0205CTCSTPS4 1.00000 0.80000 0205CTCSTPS5 0.90000 1.00000 0.90000 0.90000 1.00000 1.00000

1.00000

1.00000

1.00000

1,00000

000008.0

1.00000

1,00000

0.90000

Analyst

1.00000

1.00000

1.00000

1.00000

1.00000

0,90000

1.00000

1.00000

0205CTCSTPS6

0205CTCSTPS7

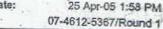
Comparisons:

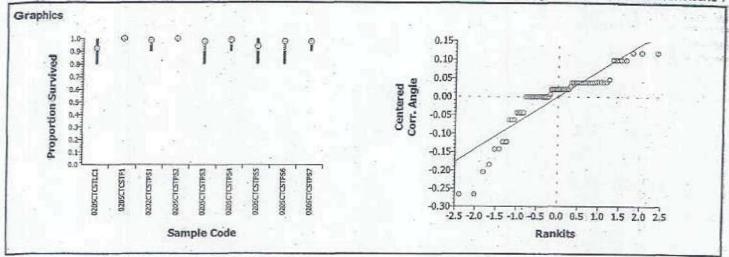
Page 1 of 2

Report Date:

25 Apr-05 1:58 PM

Analysis:


07-4612-5367/Round 1


- Total Control	d Survival and Gro	owar agains	ant rest						U.S. E	PA Region
Endpoint		Analysis Ty	00	Sam	ple Link	Contr	ol Link	Date Analyzed	Ver	sion .
Proportion Surviv	red	Comparison		17-3	527-7025	17-35		28 Mar-05 11:05		ISv1.025
Method	4.	Alt H D	ata Transform	n	z NOI	EL	LOEL	Toxic Units	ChV	Line
Steel's Many-One	Rank . (C>T. Ar	ngular (Correc	ted)				N/A	Olla	MSDp
ANOVA Assump	tions									1
Attribute	Test	St	atistic	Critical	P Level	1	Decision	(0.04)		
Variances	Bartlett			20.09024	0.00000	_	The second second	Variances		-
Distribution	Kolmogorov-Smin			0.12177	0.00000	-		nal Distribution	-	
ANOVA Table						41	72			
Source	Sum of Square	s Mean S	quare Di	F Sta	itistic I	P Level		taninia-in art		
Between	0.1112961	0.01391		2.04		0.05514		lecision(0.05) Ion-Significant E	Ha al	
Error	0.428648	0.00680			-	1,00014	N	wi-organicant E	nect	
Total	0.53994408	0.02071								
Group Compariso	ons	1						100		
Sample vs	Sample	Statistic	Critical	P Level	Ties		Doolo	ion(0.05)		
0205CTCSTLC1	0205CTCSTF1	88	45	> 0.0500	2			ion(u.us) ignificant Effect		
0205CTCSTLC1	0202CTCSTPS1		45	> 0.0500	2			ignificant Effect		
0205CTCSTLC1	0205CTCSTPS2	89.5	45	> 0.0500	2			ignificant Effect		
0205CTCSTLC1	0205CTCSTPS3	82	45	> 0.0500	3			ignificant Effect		
205CTCSTLC1	0205CTCSTPS4	84.5	45	> 0.0500	. 2	1.0		ignificant Effect		
205CTCSTLC1	0205CTCSTPS5	71.5	45	> 0.0500	3			ignificant Effect	7	
205CTCSTLC1	0205CTCSTPS6	82	45	>0.0500				ignificant Effect		000
205CTCSTLC1	0205CTCSTPS7	82.5	45	> 0.0500	2	8		gnificant Effect		
Data Summary			Ori	ginal Data	100				med Data	
Sample Code	Count	Mean	Minimum	TO COLUMN TO STATE OF THE PARTY	m SD		Mean	Minimum	Maximum	SD
205CTCSTLC1	8	0.92500	0.80000	1.00000		71	1.29242	1,10715	1.41202	0.11004
205CTCSTF1	8	1.00000	1.00000	1.00000	0.000	000	1.41202	1.41202	1.41202	0.00025
202CTCSTPS1	8	0.98750	0.90000	1,00000	0.035	36	1.39258	1.24905	1.41946	0.05805
205CTCSTPS2	8	1.00000	1.00000	1.00000	0.000	100	1.41295	1.41202	1.41946	0.00265
205CTCSTPS3	8	0.97500	0.80000	1.00000	0.070	71	1.37391	1.10715	1.41202	0.10779
205CTCSTPS4	. 8	0.98750	0.90000	1.00000	0.035	36.	1.39164	1.24905	1.41202	0.05762
205CTCSTPS5	8	0.93750	0.80000	1.00000	0.074	40	1.31279	1.10715	1.41202	0.11580
205CTCSTPS6	8	0.97500	0.80000	1.00000	0.070	71,	1.37391	1.10715	1.41202	0.10779
205CTCSTPS7	8	0.97500	0.90000	1.00000	0.046	29	1.37220	1.24905	1.41946	0.07606
ata Detail		4 0 1		-		7.27				
ample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep	6 Rep	7 Rep 8	Rep 9	Rep 10
205CTCSTLC1	0.80000	1.00000	1.00000	0.90000	0.90000	0.900	A CANADA AND A P.	CERTAIN TO SECURITION OF THE S		Top 10
205CTCSTF1	1.00000	1.00000	1.00000	1.00000	1.00000	1.000	000 1.00			
202CTCSTPS1	0.90000	1.00000	1.00000	1.00000	1.00000	1.000	00 1.00			
205CTCSTPS2	1.00000	1.00000	1.00000	1.00000	1.00000	1.000				
205CTCSTPS3	0.80000	1.00000	1.00000	1.00000	1.00000	1.000				
205CTCSTPS4	1.00000	1.00000	0.90000	1.00000	1.00000	1.000				
205CTCSTPS5	0.90000	1.00000	0.90000	0.90000	1.00000	1.000				
205CTCSTPS6	1.00000	1.00000	1.00000	1.00000	1.00000	0.800				

Comparisons: Report Date:

Page 2 of 2 25 Apr-05 1:58 PM

Comparisons:

Page 1 of 2

Report Date:

25 Apr-05 2:01 PM

Analysis: 07-4912-9473/Round 1 Chironomus 10-d Survival and Growth Sediment Test U.S. EPA Region I Lab Endpoint Analysis Type Sample Link Control Link Date Analyzed Version Proportion Survived Comparison 17-3527-7025 17-3527-7025 28 Mar-05 11:06 AM **CETISV1.025** Method Alt H Data Transform z NOEL LOEL Toxic Units ChV Steel's Many-One Rank MSDp C>T Angular (Corrected) N/A ANOVA Assumptions Attribute Test Statistic Critical P Level Decision(0.01) Variances Bartlett 244.64990 18.47531 0.00000 Unequal Variances Distribution Kolmogorov-Smirnov D 0.33872 0.12896 0.00000 Non-normal Distribution ANOVA Table Source Sum of Squares Mean Square DF F Statistic P Level Decision(0.05) Between 0.0564437 0.0080634 7. 1.31 0.26131 Non-Significant Effect Error 0.3438876 0.0061408 56 T'otal 0.40033131 0.0142042 63 Group Comparisons Sample Sample Statistic Critical P Level Ties Decision(0.05) 0205CTCSTF1 0202CTCSTPS1 45 > 0.0500 1 Non-Significant Effect 0205CTCSTF1 0205CTCSTPS2 72 45 > 0.0500 Non-Significant Effect 1 0205CTCSTF1 0205CTCSTPS3 64 45 > 0.0500 1 Non-Significant Effect 0205CTCSTF1 0205CTCSTPS4 45 > 0.0500 1: Non-Significant Effect 0205CTCSTF1 0205CTCSTPS5 52 45 > 0.0500 2 Non-Significant Effect 0205CTCSTF1 0205CTCSTPS6 64 45 > 0.0500 1 Non-Significant Effect 0205CTCSTF1 0205CTCSTPS7 45 > 0.0500 2 Non-Significant Effect Data Summary Original Data Transformed Data Sample Code Count Mean Minimum Maximum SD Mean Minimum Maximum -SD 0205CTCSTF1 8 1.00000 1,00000 0.00000 1.00000 1.41202 1.41202 1.41202 0.00025 0202CTCSTPS1 8 0.98750 0.90000 1.00000 0.03536 1.39258 1.24905 1.41946 0.05805 0205CTCSTPS2 B 1.00000 1.00000 1.00000 0.00000 1.41295 1,41202 1.41946 0.00265 O205CTCSTPS3 8 0.97500 0.80000 1.00000 0.07071 1.37391 1.10715 1.41202 0.10779 0205CTCSTPS4 8 0.98750 0.90000 1.00000 0.03536 1.39164 1.24905 1.41202 0.05762 0205CTCSTPS5 8 0.93750 0.80000 1.00000 0.07440 1.31279 1.10715 1.41202 0.11580 0205CTCSTPS6 8 0.97500 0.80000 1,00000 0.07071 1.37391 1.10715 1.41202 0.10779 0205CTCSTPS7 8 0.97500 0.90000 1.00000 0.04629 1.37220 1.24905 1.41946 0.07606 Data Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 Rep 10 0205CTCSTF1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0202CTCSTPS1 0.90000 1.00000 1.00000 1.00000 1,00000 1,00000 1.00000 1.00000 0205CTCSTPS2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0205CTCSTPS3 0.80000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0205CTCSTPS4 1.00000 1.00000 0.90000 1.00000 1.00000 1.00000 1.00000 1.00000 0205CTCSTPS5 0.90000 1.00000 0.90000 0.90000 1.00000 1.00000 0.80000 1.00000

0205CTCSTPS6

0205CTCSTPS7

1.00000

0.90000

1.00000

1.00000

1.00000

1.00000

1.00000

1.00000

1.00000

1.00000

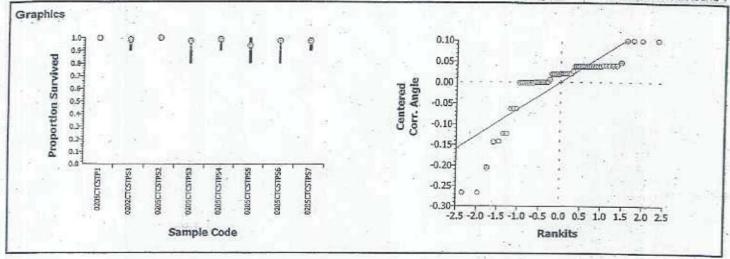
0.80000

1.00000

1.00000

0.90000

1.00000

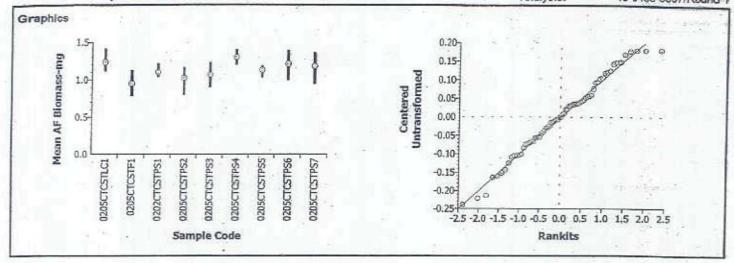

1.00000

Comparisons: Report Date:

Page 2 of 2 25 Apr-05 2:01 PM

Analysis:

07-4912-9473/Round 1



Page 1 of 2 25 Apr-05 2:05 PM

18-0483-0887/Round 1

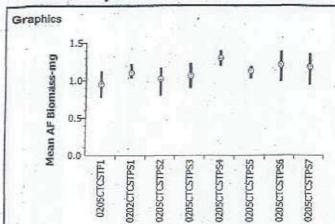
CETIS Ana	alysis Detail				14 to			Comparison Report Date: Analysis:		Page 1 o 25 Apr-05 2:05 0483-0887/Roun
Chironomus 10-	d Survival and Gro	wth Sedimer	nt Test							PA Region I La
Endpoint		Analysis Type	9	Samp	le Link	Control	Link D	ate Analyzed	1 5 2	sion
Mean AF Biomas	s-mg (Comparison		17-35	27-7025	17-3527	-7025 24	Mar-05 11:24		TISV1.025
Method	100	It H Dat	ta Transfori	m 2	NO	EL L	OEL T	oxic Units	ChV	MSDp
Dunnett's Multiple	Comparison C	>T Unt	ransformed				N	/A		mesp
ANOVA Assump	tions									
Attribute	Test	Sta	tistic	Critical	P Leve	1	Decision(0	.01)		Sec.
Variances	Bartlett	10.	11309	20.09024	0.25718	3	Equal Varia	inces -		
Distribution	Kolmogorov-Smirn	ov D 0.08	355	0.12177	0.90437	7 1	Normal Dis	tribution		
ANOVA Table						- 100			1	to an analysis
Source	Sum of Square	Mean So	uare D	F FSta	tistic	P Level	De	cision(0.05)		
Between	0.7748421	0.096855				0.00000	- 20	nificant Effect		-
Епог	0.7119169	0.011300	3 6:	3			-18	- In amout		
Total	1.48675901	0.108155	5 7	1						
Group Compariso	ons									
Sample vs	Sample	Statistic	Critical	P Level	MSI	0	Decisio	n(0.05)		
D205CTCSTLC1	0205CTCSTF1	5.42321	2.43714	<= 0.0500	0.12	954		ant Effect		
0205CTCSTLC1	0202CTCSTPS1	2.55408	2.43714	<= 0.0500	0.12	0.12954 Sig		Significant Effect		
0205CTCSTLC1	0205CTCSTPS2	4.03565	2.43714	<= 0.0500.	0.12	954	Significa	ant Effect		
O205CTCSTLC1	0205CTCSTPS3		2.43714	<= 0.0500	0.12		Significa	ant Effect	1,1	
O205CTCSTLC1		-1.1029	2.43714	> 0.0500	0.12		Non-Significant Effect			
0205CTCSTLC1		2.08134	2.43714	> 0.0500	0.12			nificant Effect		
0205CTCSTLC1 0205CTCSTLC1	0205CTCSTPS6 0205CTCSTPS7		2.43714	> 0.0500 > 0.0500	0.12		13.00	nificant Effect		**
	023001001101	HILLATI	Aug	- Washington and American	U. 12	004	NorFaig	nificant Effect		
Data Summary		- Control of the Cont		Iginal Data				THE RESERVE OF THE PARTY OF THE	med Data	
Sample Code 0205CTCSTLC1	Gount 8	Mean 1.23800	Minimur				Mean	Minimum	Maximur	n SD
0205CTCSTECT	8	0.94975	1.11300 0.78600	1.41600	0.10					
0202CTCSTPS1	8	1,10225	1,03500	1.22101	0.108					
0205CTCSTPS2	8	1.02350	0.80200	1.16700	0.115					
0205CTCSTPS3	8	1.06325	0.90199	1.23199	0.112					
0205CTCSTPS4	8	1.29662	1.19299	1.40000	0.075					
0205CTCSTPS5	8	1.12738	1.02300	1.18700	0.056	351				
0205CTCSTPS6	8	1.20750	0.99301	1.38800	0.151	184				
0205CTCSTPS7	8	1.17888	0,94000	1.36000	0.129	974				21
Data Detail			100					7	4-13-1	FERE
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0205CTCSTLC1	1.13700	1.13301	1.33101	1.24800	1.25900	1.1130	STREET, STREET	THE RESERVE TO BE STORY OF THE PARTY OF THE		
0205CTCSTF1	0.89301	0.95701	1.04500	0.88400	0.91500	0.7860	0.988	00 1.13000		
0202CTCSTPS1	1.07300	1.15800	1.22101	1.13900	1.04700	1.0960	0 1.035	00 1.04900		
0205CTCSTPS2	0.97900		0.96899	1.05699	0.80200	0.9990		1.06700		
0205CTCSTPS3	1.04900		1.04900	1.21200	0.95399	1,2319		99 1.05200		
0205CTCSTPS4	1.33099		1.21300	1.35000	1.19299	1.4000				
0205CTCSTPS5	1.18500		1.09900	1.08700	1.15701	1.1190				
0205CTCSTPS6	1.20699		1.35499	1.31400	1.05499	0.9930				
205CTCSTPS7	0.94000	1.18000	1.36000	1.30000	1.11000	1.2150	0 1.221	00 1.10500		

Comparisons: Report Date: Analysis: Page 2 of 2 25 Apr-05 2:05 PM 18-0483-0887/Round 1

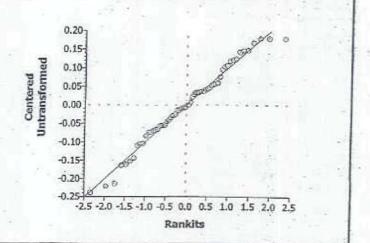
Analyst_

Comparisons:

Report Date:


Analysis:

Page 1 of 2 25 Apr-05 2:07 PM 05-2808-3272/Round 1


Endpoint		Analysis Typ	10		ele List	- CONTRACTOR		Car Walter Day		A Region
Mean AF Bioma	The second secon	Comparison	ie.		ple Link 527-702			ite Analyzed	The second second	
Method							1-1025 24	Mar-05 11:2	4 AM CET	Sv1.025
Dunnett's Multiple			transformed	1	Z N	OEL L		oxic Units	ChV	MSDp
		-	a di loroni lo di			-	N	A		
ANOVA Assump			alie =							
Attribute Variances	Test			Critical	PLev		Decision(0	.01)		
Distribution	Bartlett		Control Control	18.47531	0.182	-	Equal Varia		2011	
Distribution	Kolmogorov-Smirr	10V D 0.0	5876 (0.12896	0.858	60	Normal Dist	ribution	4	
ANOVA Table						7		7 7 7 1	1 3/5	7
Source	Sum of Square	s Mean Sc	quare DF	FSta	tistic	P Level	Dec	ision(0,05)		
Between	0.673529	0.096218	34 7	8.51		0.00000		ifficant Effect		
Error	0.6333501	0.011309	98 56		- 5			The second second		
Total	1.30687910	0.107528	32 63	Ei	8		1		- × -	
Group Comparis	ons	2							7-1-1	
Sample vs	Sample	Statistic	Critical	P Level	Ms	SD	Decision	1/0.051		
0205CTGSTF1	0202CTCSTPS1	-2.8679	2.39429	> 0.0500	-	12731		nificant Effect		
D205CTCSTF1	0205CTCSTPS2	-1.387	2.39429	> 0.0500		12731		nificant Effect		
205CTGSTF1	0205CTCSTPS3	-2.1344	2.39429	> 0.0500		0.12731		ificant Effect		1
0205CTCSTF1	0205CTCSTPS4	-6.5234	2.39429	> 0.0500		2731		ificant Effect		
205CTCSTF1	0205CTCSTPS5	-3.3405	2.39429	> 0.0500		2731		ificant Effect		
205CTCSTF1	0205CTCSTPS6	-4.8473	2.39429	> 0.0500		2731		ificant Effect		
205CTCSTF1	0205CTCSTPS7	-4.309	2.39429	> 0.0500		2731		ificant Effect		E
Data Summary	Ŧ		Orig	Inal Data	411			Transfor	med Data	
Sample Code	Count	Mean	Minimum	Maximu	m SD	1	Mean	Minimum	Maximum	00
205CTCSTF1	8	0.94975	0.78600	1.13000		0599	110011	MINIMALONI	waximum	SD
202CTCSTPS1	8	1.10225	1.03500	1.22101	0.0	6532	*		2.5	
205CTCSTPS2	8	1.02350	0.80200	1.16700	0.1	1571				
205CTCSTPS3	8	1.06325	0.90199	1.23199		1284				
205CTCSTPS4	- 8	1.29662	1.19299	1,40000	0.07	7599				
205CTCSTPS5	8	1.12738	1.02300	1.18700	0.08	5651				
205CTCSTPS6	8	1.20750	0.99301	1.38800	0.15	5184				
205CTCSTPS7	8	1.17888	0.94000	1.36000	0.12	2974				
ata Detail				0						
ample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
205CTCSTF1	0.89301	0.95701	1.04500	0.88400	0.91500		A Prince of the Park	The second second second		rep 10
202CTCSTPS1	1.07300	1,15800	1.22101	1.13900	1.04700					
205CTCSTPS2	0.97900	1.16700	0.96899	1.05699	0.80200					
205CTCSTPS3	1.04900	0.90199	1.04900		0.95399					
205CTCSTPS4	1.33099		1.21300		1.19299					
05CTCSTPS5	1.18500		1.09900	1.08700	1.15701					
205CTCSTPS6	1.38800		1.06400		1.31400					
05CTCSTPS7	0.94000	1.18000 -			1.11000			1.10500		

Comparisons: Report Date: Analysis:

Page 2 of 2 25 Apr-05 2:07 PM 05-2808-3272/Round 1

Sample Code

Page 1 of 2

Report Date:

25 Apr-05 1:25 PM

Link:

12-2945-4726/Round 2

CETIS Data Worksheet

Chironomus 10-d Survival and Growth Sediment Test Start Date:

Ending Date:

Species: Chironomus tentans

Protocol: EPA/600/R-99/064 (2000)

Sample Code:

U.S. EPA Region I Lab 0205CTCSTLC2

Sample Code	Rep	Pos	# Exposed	# Survived	Total Weight-mg	Ashed Weight-mg			
0205CTCSTLC2	1		10	8	1212.39	750000		Mean Length-mn	Notes
0205CTCSTLC2	2		10	10	1234.94	1204.46	8		
D205CTCSTLC2	3		10	-9	1231,76	1223,02	10		
0205CTCSTLC2	4		10	9 7	1235.59	1220.7	9		
205CTCSTLC2	- 5		10	7		1226.56	9		Tex .
205CTCSTLC2	6		10	7	1216.63	1208.58	7		
0205CTCSTLC2	7.		10	9	1220.44	1211.22	7 -		
205CTCSTLC2	8		10	9	1223.48	1213.49	9		118
205CTCSTF1	1		10	10	1215.18	1205,62	9		
205CTCSTF1	2		10	10	1224.18	1215.25	10		
205CTCSTF1	3		10		1218.05	1208.48	10		
205CTCSTF1	4		10	10	1233,13	1222.68	10		375
205CTCSTF1	5		10		1258,27	1249.43	10		46
205CTCSTF1	6		10	10	1224.38	1215.23	10		6 1
205CTCSTF1	7		10	15-50-50-50-50-50-50-50-50-50-50-50-50-50	1215.67	1207,81	10		4-34
205CTCSTF1	8	-	10	10	1231.91	1222.03	10		
205CTCSTPS8	1		10	10	1233.43	1222,13	10		
205CTCSTPS8	2	-	10	10	1218.01	1208.34	10		
205CTCSTPS8	3	-	10	9	1235.77	1227.61	10		
205CTCSTPS8	4		10		1227.07	1218.5	9		
205CTCSTPS8	5			10	1220.02	1213.02	10		
205CTCSTPS8	6	-	10	8	1228.35	1219.93	8		14
205CTCSTPS8	7			8	1213.16	1205.63	8		100
205CTCSTPS8	В	-	10	9 -	1215,94	1206.96	9		
205CTCSTPS9	1	-	10	9	1215.39	1206,97	9		5%
205CTCSTPS9	2		10	3	1220.26	1219.82	3		
205CTCSTPS9	3		10	4	1224.09	1223.38	4		
205CTCSTPS9	4	20	10	6	1227,07	1225.54	6		
05CTCSTPS9	5	-	10	2	1223.5	1223.4	2	-	
05CTCSTPS9	6		10	3 8	1218.55	1218.21	3		
05CTCSTPS9	7		10		1203.78	1202.59	8		
05CTCSTPS9	8 -	-	10	3	1217.85	1216,4	7		
05CTCSTPS10	1	-	10	1000	1225.28	1224.55	3		
05CTCSTPS10	2	-	10	10	1216.95	1208.81	10		
05CTCSTPS10	3	-		9	1221.14	1211.59	. 9		
05CTCSTPS10	4		10	10	1225,33	1215.68	10		
05CTCSTPS10	5	-	10	8	1221,12	1212.46	8		
05CTCSTPS10	6		10	10	1225.43	1214.1	10		
05CTCSTPS10	-	-	12	12	1229.99	1216.72	12		
05CTCSTPS10	7		10	9	1235,87	1228.05	9		
and the same of th	8		10	10	1220.94	1209.14	10	19/1	5.0
05CTCSTPS11 05CTCSTPS11	1	-	10	10	1217.73	1209,71	10		
	2	-	10	8	1216,3	1206.17	8		
05CTCSTPS11	3	-	10	8	1234.14	1225.65	8		
D5CTCSTPS11	4	-	10	9	1231.04	1220.35	9		
05CTCSTPS11	5	-	10	10	1215.8	1203.2	10		
05CTCSTPS11	6		10	9	1219.8	1210.17	9		90-00
D5CTCSTPS11	7		10	10	1230,52	1220.61	10		
DECTESTPS11	8		10	8	1221.45	1209.93	8		SE
05CTCSTG1	1		10	8	1237.12	1229.39	8		32 324
D5CTCSTG1	2		10	10	1235.86	1227.35	10		
DECTOSTG1	3		10	9	1217.84	1209.69	9		The vertical section of the section
05CTCSTG1	4		10	9	1235.95	1225.46	9		
06CTCSTG1	5		10	10	1222.05	1210.51	10		

Page 2 of 2

CETIS Data Worksheet

Report Date:

Link:

25 Apr-05 1:25 PM 12-2945-4726/Round 2

Sample Code	Rep	Pos	# Exposed	# Survived	Total Weight-mg	Ashed Weight-mg	Pan Count	Mean Length-mm	Notes
0205CTCSTG1	6	3.5	10	10	1233.39	1225.32	10		
0205CTCSTG1	7		10	9	1229.87	1221.26	9		- 1200 L
0205CTCSTG1	8		10	9	1223.82	1212.48	9		tite tords
0205CTCSTG2	1		10	10	1219.65	1211.86	10		
0205CTCSTG2	2		10	10	1214.52	1206.14	10		
02 05 CTCSTG2	3		10	10	1223.93	1215.06	10		
205CTCSTG2	4		10	10	1215.29	1207.14	- 10		
0205CTCSTG2	5		10	9	1229.38	1220.21	9		
205CTCSTG2	6		20	20	1220.3	1207.86	20		2 4 280
205¢TCSTG2	7		10	10	1211,93	1203.2	- 10		Territoria de la compansión de la compan
205CTCSTG2	8		10	10	1214.99	1207.49	10		
205CTCSTG3	1		10 -	10	1219.96	1210	10		
205CTCSTG3	2		10	9	1226.36	1218.24	9		
205CTCSTG3	3		10	- 8	1210.76	1203.53	. 8		
205CTCSTG3	4		10	. 10	1219.72	1209.31	10		2 0 0
205CTCSTG3	5		10	10	1234.35	1225.8	10		
205CTCSTG3	.6		10	10	1219	1209.12	10		
205CTCSTG3	7		12	12	1220.98	1211.38	12		37 - 12 - 13
205CTCSTG3	8		10	10	1227.25	1218.38	10		

CETIS™ v1.025B

Analyst:_____ Reviewed By:_

CETIS Test Summary

Report Date: Link: 11 May-05 1:34 PM 12-2945-4726/Round 2

Chironomu	s 10-d Survival and Gro	wth Sediment	Test	*	U.S. EPA Region J La
Test No: Start Date: Ending Date: Setup Date:		Test Type Protocol: Dil Water: Brine:	: Survival-AF Growth EPA/600/R-99/064 (2000) None	Duration Species Source:	n: N/A STATE OF THE STATE OF TH
Comments:	Fort Devens Sedimen	nt Toxicity Test F	Round 2		A CORP. STORY
Sample No: Sample Dat Receive Dat Sample Age	e: 02 Feb-05 02:10 PM e:	Material: Code: Source: Station:	Reference sediment 0205CTCSTF1 Fort Devens Flannagan SD F1	Client: Project	EPA REGION 1 Fort Devens Sediment Toxicity Test
Comments:	Fort Devens Sedimen	t Toxicity Test			The second second
Receive Date Sample Age:	: 02 Feb-05 11:30 AM e: : 39d 12h	Material: Code: Source: Station:	Site Sediment Sample 0205CTCSTG1 Fort Devens Grove SD G1	Client: Project:	EPA REGION 1 Fort Devens Sediment Toxicity Test
Comments:	Fort Devens Sediment	Toxicity Test			Live Hearth Street
Sample No: Sample Date Receive Date Sample Age:	Street and the street	Code: Source:	Site Sediment Sample 0205CTCSTG2 Fort Devens Grove SD G2	Client: Project:	EPA REGION 1 Fort Devens Sediment Toxicity Test
Comments:	Fort Devens Sediment	Toxicity Test	P. P. S. S. S. S. S. S. S. S. S. S. S. S. S.		A CONTRACTOR OF THE PARTY OF TH
Sample No: Sample Date: Receive Date Sample Age:	12-2847-5938 02 Feb-05 12:40 PM : 39d 11h	Code:	Site Sediment Sample 0205CTCSTG3 Fort Devens Grove SD G3	Client: Project:	EPA REGION 1 Fort Devens Sediment Toxicity Test
Comments:	Fort Devens Sediment	Toxicity Test		the state of the	
Sample No: Sample Date: Receive Date: Sample Age:	35d 0h	Code: 0 Source: F Station: L	AB ARTIFICIAL SEDIMENT 205CTCSTLC2 Fort-Devens LC SD 2 C2	Client: Project:	EPA REGION 1 Fort Devens Sediment Toxicity Test
comments:	Fort Devens Sediment 7	Toxicity Test Rou	ind 2	A RELITE	
ample No: ample Date: Seceive Date: ample Age:	06-6005-0150 01 Feb-05 12:00 PM 40d 12h	Code: 0 Source: F	ite Sediment Sample 205CTCSTPS10 ort Devens Plow Shop SD S10	Client: Project	EPA REGION 1 Fort Devens Sediment Toxicity Test
omments:	Fort Devens Sediment T	oxicity Test		4	
ample No: ample Date: ecelve Date: ample Age:	09-2820-2109 01 Feb-05 03:00 PM 40d 9h	Code: 0: Source: Fo	ite Sediment Sample 205CTCSTPS11 ort Devens Plow Shop SD S11	Client: Project:	EPA REGION 1 Fort Devens Sediment Toxicity Test
omments:	Fort Devens Sediment T	oxicity Test			
555 N. 555 N. 5	08-4418-3857 01 Feb-05 11:30-AM 40d 12h	Code: 02 Source: Fo	te Sediment Sample 205CTCSTPS8 ort Devens Plow Shop SD S8		EPA REGION 1 Fort Devens Sediment Toxicity Test
omments:	Fort Devens Sediment To	oxicity Test			

CETIS Test Summary

Report Date:

11 May-05 1:34 PM

Link

12-2945-4726/Round 2

11-9199-4343 Site Sediment Sample Sample No: Material: Client: **EPA REGION 1** Sample Date: 01 Feb-05 11:20 AM Code: 0205CTCSTPS9 Fort Devens Sediment Toxicity Test Project: Receive Date: Source: Fort Devens Plow Shop SD Sample Age: 40d 12h Station: Comments: Fort Devens Sediment Toxicity Test Mean AF Biomass-mg Summary Sample Code Reps Mean Minimum Maximum SE SD CV 0205CTCSTLC2 8 0.92988 0.79301 1.19199 0.04543 0.12850 13.82% 0205CTCSTF1 8 0.94975 0.78600 1.13000 0.03747 0.10600 11.16% 0205CTCSTPS8 8 0.83438 0.70000 0.96700 0.02906 0.08219 9.85% 0205CTCSTPS9 R 0.08237 0.02000 0.15299 0.01801 0.05095 61.85% 0205CTCSTPS10 8 0.97510 0.78199 1.17999 0.05340 0.15103 15.49% 0205CTCSTPS11 1.00338 0.80200 1.18800 0.04757 0.13456 13.41% 0205CTGSTG1 8 0.92800 0.77300 1.15400 0.05566 0.15743 16.96% 0205CTCSTG2 8 0.81013 0.62200 0.91700 0.03329 0.09418 11.62% 0205CTCSTG3 0.88775 0.72300 1.04099 0.03939 0.11142 12.55% **Proportion Survived Summary** Sample Code Reps Minimum Mean Maximum SE SD CV 0205CTCSTLC2 8 0.85000 0.70000 1.00000 0.03780 0.10690 12.58% 0205CTCSTF1 8 1.000000 1.00000 1.00000 0.00000 0.00000 0.00% 0205CTCSTPS8 8 0.91250 0.80000 1.00000 0.02950 0.08345 9 15% 0205CTCSTPS9 8 0.45000 0.20000 0.07792 0.80000 0.22039 48 98% 0205CTCSTPS10 8 0.95000 0.80000 1.00000 0.02673 0.07559 7.96% 8 0205CTCSTPS11 0.90000 0.80000 1.00000 0.03273 0.09258 10.29% 0205CTCSTG1 8 0.92500 0.80000 1.00000 0.02500 0.07071 7 84% 0205CTCSTG2 8 0.98750 0.90000 1.00000 0.01250 0.03536 3 58% 0205CTCSTG3 0.96250 0.80000 8 1.80000 0.02631 0.07440 7.73% Mean AF Biomass-mg Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 0205CTCSTLC2 0.79301 0.96901 1 19199 0.90299 0.80500 0.92200 0.99900 0.85601 0205CTCSTF1 0.89301 0.95701 1.04500 0.88400 0.91500 0.78600 0.98800 1.13000 0205CTCSTPS8 0.96700 0.81600 0.85699 0.70000 0.84199 0.75300 0.89800 0.84200 0205CTCSTPS9 0.04401 0.07100 0.15299 0.02000 0.03401 0.11901 0.14500 0.07300 0205CTCSTPS10 0.81399 0.95500 0.96499 0.86600 1.13301 1.10583 0.78199 1.17999 0.80200 0.84900 1.01300 0205CTCSTPS11 1.06901 1.18800 0.96300 0.99100 1.15199 0205CTCSTG1 0.77300 0.83101 0.81500 1.04900 1.15400 0.80701 0.86100 1.13400 0205CTCSTG2 0.77900 0.83800 0.88700 0.81500 0.91700 0.62200 0.87301 0.75000 0.99600 0.72300 0.98800 0205CTCSTG3 0.81200 1.04099 0.85499 0.80000 0.88700 **Proportion Survived Detail** Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 0205CTCSTLC2 0.80000 1.00000 0.90000 0.90000 0.70000 0.70000 0.90000 0.90000 0205CTCSTF1 1.00000 1.00000 1,00000 1.00000 1.00000 1.00000 1.00000 1.00000 0205CTCSTPS8 1.00000 1.00000 0.90000 1.00000 0.80000 0.80000 0.90000 0.90000 0205CTCSTPS9 0.30000 0.40000 0.60000 0.20000 0.30000 0.80000 0.70000 0.30000 0.90000 1.00000 0.90000 0205CTCSTPS10 1.00000 0.80000 1.00000 1.00000 1.00000 0.80000 0205CTCSTPS11 1.00000 0.80000 0.90000 1.00000 0.90000 1.00000 000008.0 0.80000 1.00000 0.90000 0.90000 0.90000 1,00000 1.00000 0.90000 0205CTCSTG1 1.00000 1.00000 1.00000 1.00000 0.90000 1.00000 1.00000 0205CTCSTG2 1.00000 0.90000 0.80000 1.00000 1.00000 1.00000 1.00000 1.00000 0205CTCSTG3 1.00000

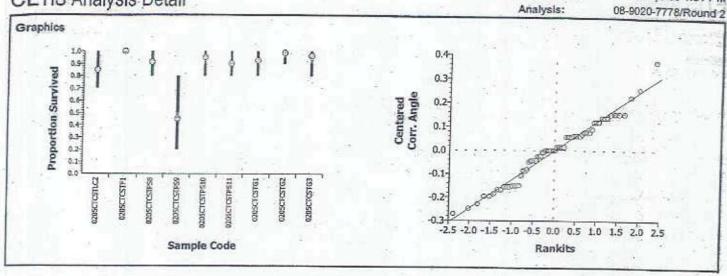
Analyst

Comparisons:

Page 1 of 2

Report Date:

25 Apr-05 1:31 PM


Analysis:

08-9020-7778/Round 2

San Street						-			U.S. EP	A Region
Endpoint		Analysis Typ	e	The state of the s	ple Link	Contro		Date Analyzed		on
Proportion Surviv	ed	Comparison		12-20	945-4726	12-294	5-4726 2	28 Mar-05 10:5	7 AM CET	Sv1.025
Method		Alt H Da	ta Transform	n	Z NO	EL I	OEL	Toxic Units	ChV	MSDp
Steel's Many-One	Rank	C>T An	gular (Correc	cted)				N/A	Olly	мэир
ANOVA Assumpt	tions									
Attribute	Test	Sta	tistic	Critical	P Level	1	Decision	(0.04)		
Variances	Bartlett		COLUMN TO THE REAL PROPERTY.	20.09024	0.00000		Unequal \			
Distribution	Kolmogorov-Smiri			0.12177	0.07446		Normal Di			-
ANOVA Table										
Source	Sum of Square	s Mean So	uare D	E E C+-	tistic i	D 11	. 2			
Between	2.711926	0.338990		19.71		D.00000	100	ecision(0.05)		
Error	1.083336	0.017195			9	5.00000	S	gnificant Effect		11 12
Total	3.79526138	0.356186								
Group Compariso						_				
	DESCRIPTION TO	Challesta	0.11	· Lange						
Sample vs 0205CTCSTLC2	Sample 0205CTCSTF1	Statistic 96	Critical	P Level	Ties			on(0.05)		
D205CTCSTLC2	0205CTCSTP18		45	> 0.0500	3			gnificant Effect		2
D205CTCSTLC2	0205CTCSTPS0	39.5	45	> 0.0500	4		Non-Significant Effe			
0205CTCSTLC2	0205CTCSTPS9		45	<= 0.0500	4			ant Effect		
0205CTCSTLC2	0205CTCSTPS1	86.5	45	> 0.0500	4		Non-Significant Ef			
D205CTCSTLC2		76	45	> 0.0500	4		Non-Significant Ef			
0205CTCSTLC2	0205CTCSTG1	81	45	> 0.0500	4			gnificant Effect		
0205CTCSTLC2	0205CTCSTG2 0205CTCSTG3	94	45	> 0.0500	3			gnificant Effect	4	
77	02030103163	89	45	> 0.0500	4	**	Non-Si	gnificant Effect		
Data Summary -		_	Ori	ginal Data				Transfor	med Data	
Sample Code	Count		Minimun	n Maximu	m SD		Mean	Minimum	Maximum	SD
0205CTCSTLC2	8	0.85000	0.70000	1.00000	0.106	90	1.18721	0.99116	1.41202	0.14595
205CTCSTF1	8	1,00000	1.00000	1.00000	0.000	100	1.41202	1.41202	1.41202	0.00025
205CTCSTPS8	8	0.91250	0.80000	1.00000	0.083	45	1.27469	1.10715	1.41202	0.12800
205CTCSTPS9	8	0.45000	0.20000	0.80000	0.220	39 (73396	0.46385	1.10715	0.23161
205CTCSTPS10	8	0.95000	0.80000	1.00000	0.075	59 1	.33491	1.10715	1.42595	0.11874
205CTCSTPS11	8	0.90000	0.80000	1.00000	0.092		.25695	1.10715	1.41202	0.14121
205CTCSTG1	8	0.92500	0.80000	1.00000	0.070		.29242	1.10715	1.41202	0.11004
205CTCSTG2	8	0.98750	0.90000	1.00000	0.035	073	.39749	1.24905	1.45876	0.06217
205CTCSTG3	8	0.96250	0.80000	1.00000	0.074	40 1	.35528	1.10715	1.42595	0,11585
ata Detail								3144		
ample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep	7 Rep 8	Rep 9	Rep 10
205CTCSTLC2	0.80000	1.00000	0.90000	0.90000	0.70000	0.7000	0.900			
205CTCSTF1	1.00000	1.00000	1.00000	1.00000	1.00000	1.0000	00 1.000	000 1.00000		
205CTCSTPS8	1.00000	1.00000	0.90000	1.00000	0.80000	0.8000	0.900			
205CTCSTPS9	0.30000	0.40000	0.60000	0.20000	0.30000	0.8000				
205CTCSTPS10	1.00000	0.90000	1.00000	0.80000	1.00000	1.0000				
205CTCSTPS11	1.00000	0.80000	0.80000	0.90000	1.00000	0.9000				
205CTCSTG1	0.80000	1.00000	0.90000	0.90000	1.00000	1.0000				
205CTCSTG2	1.00000		1.00000	1.00000	0.90000	1.0000				
	1.00000			111572	FIGURE 9-3/24	District Control	7.	7- 7-00000		

Comparisons: Report Date:

Page 2 of 2 25 Apr-05 1:31 PM

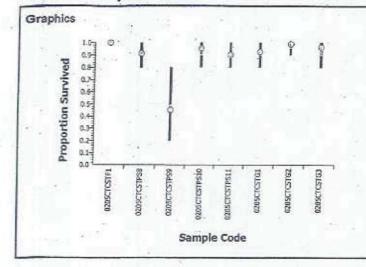
Comparisons:

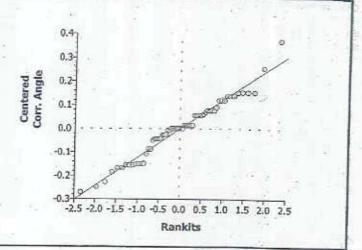
Report Date:

Page 1 of 2 25 Apr-05 1:35 PM

Analysis:

12-6107-4784/Round 2


				-		-51					Region
Endpoint		nalysis Type)	Sampl	e Link (Control	Link	Date A	nalyzed	Version	m-
Proportion Surviv	ed C	omparlson		12-294	5-4726	12-2945	-4726	28 Mar	-05 10:57	AM CETIS	v1.025
Method	A	It H Dat	a Transform	Z	NOEL	L	OEL	Toxic	Units	ChV	MSDp
Steel's Many-One	Rank C	>T Ang	ular (Correcte	ed)				N/A			1 22
ANOVA Assumpt	tions -						THE STATE OF			1,6	
Attribute	Test	Stat	istic C	Critical	P Level		Decision	(0.01)			
Variances	Bartlett	216.	97580 1	8.47531	0.00000		Unequal	Variand	ces		
Distribution .	Kolmogorov-Smirne	ov D 0.09	913 0	.12896	0.11661		Normal D	istribut	ion		HI
ANOVA Table										- FV -	7
Source	Sum of Squares	Mean Sq	uare DF	F Stati	stic P	Level		Declsin	n(0.05)		
Between	2,877078	0.382439		22,92		00000			ant Effect	1	
Effor	0.9342195	0.016682				CONTRACTOR OF THE PARTY OF THE		S. Allion	-		
Total	3.61129540	0.399121								-	
Group Compariso	ons							-			
Sample vs	Sample	Statistic	Critical	P Level	Ties		Decis	slon(0.	05)		
D205CTCSTF1	0205CTCSTPS8	48	45	> 0.0500	3				ant Effect		-
D205CTCSTF1	0205CTCSTPS9	100	45	<= 0.0500	2			icant E			
0205CTCSTF1	0205CTCSTPS1	60	45	> 0.0500	2				ant Effect		
0205CTCSTF1	0205CTCSTPS1	48	45	> 0.0500	3				ant Effect		
0205CTCSTF1	0205CTCSTG1	48	45	> 0.0500	2				ant Effect		
0205CTCSTF1	0205CTCSTG2	68	45	> 0.0500	1				ant Effect		
D205CTCSTF1	0205CTCSTG3	64	45	> 0.0500	1 .				ant Effect	VIEW VIEW	
Data Summary			Orig	ginal Data					Transfor	med Data	10
Sample Code	Count	Mean	Minimum	Maximun	n SD	1	Mean	Mi	nimum	Maximum	SD
0205CTCSTF1	- 8	1.00000	1.00000	1.00000	0.0000		1.41202		1202	1.41202	0.00025
0205CTCSTPS8	8	0,91250	0.80000	1.00000	0.0834		1,27469		0715	1.41202	0.12800
0205CTCSTPS9	. 8	0.45000	0.20000	0.80000	0.2203		1.73396		6365	1.107.15	0.23161
0205CTCSTPS10	8	0.95000	0.80000	1.00000	0.0755		1.33491		0715	1.42595	0.11874
0205CTCSTPS11	8	0.90000	0.80000	1.00000	0.0925		25695		0715	1.41202	0.14121
0205CTCSTG1	8	0.92500	0.80000	1.00000	0.0707		.29242		0715	1.41202	0.11004
0205CTCSTG2	8	0.98750	0.90000	1.00000	0.0353		.39749		4905	1,45876	0.06217
0205CTCSTG3	8	0.96250	0.80000	1.00000	0.0744	0 1	.35528	1.1	0715	1.42595	0.11585
Data Detail											
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	17-7	p7	Rep 8	Rep 9	Rep 10
0205CTCSTF1	1,0000		1.00000	1.00000	1.00000	1.0000		0000	1.00000		
205CTCSTPS8	1.0000	1,00000	0.90000	1.00000	0.80000	0.8000		0000	0.90000		1
205CTCSTPS9	0.3000	0,40000	0.60000	0.20000	0.30000	0.8000		0000	0.30000		
0205CTCSTPS10	1.0000	0.90000	1.00000	0.80000	1.00000	1.0000		0000	1.00000		
205CTCSTPS11	1.0000	0.80000	0.80000	0.90000	1.00000	0.9000	30 1.0	0000	0.80000		
0205CTCSTG1	0.8000	1.00000	0.90000	0.90000	1.00000	1.0000	0.9	0000	0.90000		
0205CTCSTG2	1.0000	0 1.00000	1.00000	1.00000	0.90000	1.0000	00 1.0	0000	1.00000		
0205CTCSTG3	1.0000	0.90000	0.80000	1.00000	1,00000	1.0000	20 40	0000	1.00000		


Comparisons: Report Date:

Page 2 of 2 25 Apr-05 1:35 PM

Analysis:

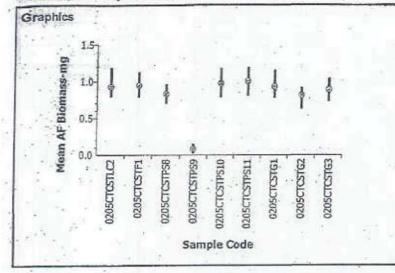
12-6107-4784/Round 2

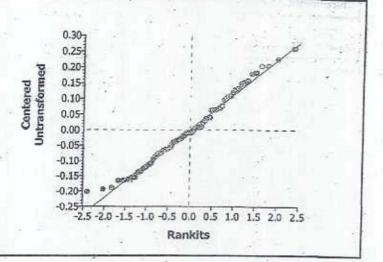
Comparisons:

Page 3 of 4

Report Date:

04 May-05 12:53 PM


Analysis:


16-8386-0426/Round 2

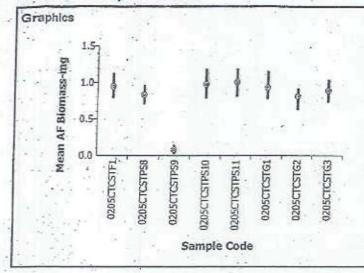
Endpoint .		Analysis T	vpe	San	npie Link	Contr	ol Link Dat				A Regio
Mean AF Biomas	ss-mg	Comparison			945-4726		The state of the s	e Analyzed		Versio	The second second
Method	in the second						10-4120 U41	May-05 11:5	5 AM	CETIS	v1.025
Dunnett's Multiple	Annual Control of the		Data Transfor		Z NO	DEL	LOEL To	xic Units	Chy	7	MSD
		0>1	Intransformed	41			- N/A			16	
ANOVA Assump	otions	1		TE T	1			7			1.50
Attribute	Test	S	tatistic	Critical	P Leve	el	Decision(0.0	41			
Variances	Bartlett	- 1	0.57847	20.09024	0.2267		Equal Varian				
Distribution	Kolmogorov-Smir	nov D 0.	07644	0.12177	0.3438	174	Normal Distri	The state of the s	- 2		
ANOVA Table				-							
Source	Sum of Square	e Maan	Square D	E 504	-11-11-	2.	40.000				
Between	5,177542	0.6471	A CONTRACTOR OF THE PARTY OF TH		CALL STREET	P Level		sion(0.05)			-
Error .	0.8685305	0.0137	37		1 1	0.00000	Signi	ficant Effect		2	
Total	6.04607219	0.6609	10.0				*				
Group Compariso	ons				. **					TA	
Sample vs	Sample	Statistic	Critical	P Level	MS	D	Decision	0.05)		27	
205CTCSTLC2	0205CTCSTF1	-0.3386	2.43714	>0.0500	279,572	1308		ficant Effect	-		-
205CTCSTLC2	0205CTCSTPS8	1.62672	2.43714	> 0.0500		1308		ficant Effect			
205CTCSTLC2	0205CTCSTPS9	14,4360	2.43714	<= 0.0500		1308	Significant				
205CTCSTLC2	0205CTCSTPS1	-0.7704	2.43714	> 0.0500	0.14			icant Effect			7
205CTCSTLC2	0205CTCSTPS1	-1.252	2.43744	> 0.0500	0.14	225 July 20		icant Effect			
205CTCSTLC2	0205CTCSTG1	0.03192	2,43714	> 0.0500	0.14	1000000		icant Effect			1
205CTCSTLC2	0205CTCSTG2	2.03973	2.43714	> 0.0500	0.14			icant Effect			
205CTCSTLC2	0205CTCSTG3	0.7176	2.43714	> 0.0500	0.14			cant Effect	- 3	D.	
ata Summary			Ori	ginal Data							
ample Code	Count	Mean	Minimun		ım SD	:	Viean N	Transfor			
205CTCSTLC2	. 8	0.92988	0.79301	1.19199	-		viean n	linimum	Maxim	um	SD
205CTCSTF1	. 8	0.94975	0.78600	1.13000					-		
205CTCSTPS8	8	0.83438	0.70000	0.96700				-			
205CTCSTPS9	8	0.08237	0.02000	0.15299							
205CTCSTPS10	. 8	0.97510	0.78199	1.17999	70000						
205CTCSTPS11	8	1.00338	0.80200	1.18800	0.134						
205CTCSTG1	8	0.92800	0.77300	1.15400	0,157						
205CTCSTG2	8	0.81013	0.62200	0.91700	0.094						,
205CTCSTG3	. 8	0.88775	0.72300	1.04099	. 0.111		072		V		
ata Detail	*										
ample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Don 0	-		
05CTCSTLC2	0.79301			0.90299	0.80500	0.9220		Rep 8	Rep	a	Rep 10
05CTCSTF1	0.89301			0.88400	0.91500	0.7860		0.85601			
OSCTCSTPS8 .	0.98700			0.70000	0.84199	0.7530					
05CTCSTPS9	0.04401			0.02000	0.03401	0.1190		0.84200			
05CTCSTPS10	0.81399				1.13301			0.07300			
05CTCSTPS11	0.80200			1.06901		1.1058		- 1.17999			
COCATA DE LA CASA DEL CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DEL CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CASA DE LA CA			0.81500	1.05901	1.18800	0.9630		1.15199			
	0.77200					43.80170	0.86100	4 42400			
05CTCSTG1	0,77300							1.13400		a l	
	. 0.77900 0.99600	0.83800	0.88700	0.81500	0.91700 0.85499	0.6220	0.87301	0.75000		Ģ.	

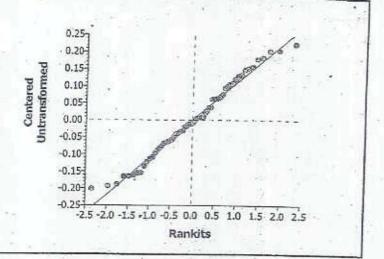
Comparisons: Report Date: Analysis:

Page 4 of 4 04 May-05 12:53 PM 16-8386-0426/Round 2

Comparisons: Report Date:

Page 1 of 4 . 04 May-05 12:53 PM


Analysis:


06-3167-6932/Round 2

				ment Test							U.S	. EPA	Region
Endpoint			Analysis		San	nple L	ink C	ontrol	Link D	ate Analyze	d V	ersion	,
Mean AF Biomas	s-mg		Compariso	n	12-2	945-4	728 1	2-2945		May-05 11:		ETISV	
Method	0.749		Alt H	Data Transfor	m	z	NOEL	1	OEL T	oxic Units	ChV		
Dunnett's Multiple	Compariso	on (2>T	Untransformed			0.000	1 4		VA	CHV		MSDp-
ANOVA Assump	tions	TO T			× 6.			-				-	-
Attribute	Test			Statistic	Critical	P	_evel		Decision(6	04)			
Variances	Bartlett			10.44041	18.47531		6496		Equal Varia		-	-	
Distribution	Kolmogori	ov-Smirr	nov D (0.07430	0.12896		7707		Vormal Dis		-	-	
ANOVA Table	4 (2		100000					-			-	-	
Source	Sum of	Square	s Mean	Square D	F FSt	atistic	DI	evel		-1-1			
Setween	5.07339		0.724	The state of the s	17 1000	2.77-2-7-11-1-	- Annahaman	0000		cision(0.05)			
Error	0.75294	CETA	0.0134				0.00	0000	219	nificant Effec			
Total	5.82634	-	0.7382			-							
Group Compariso	ns	_					-						E 13
Sample vs	Sample		Statistic	Critical	P Level		MSD		Decisio	m/0.053	1		a
205CTCSTF1	0205CTC	STPS8	1.99002	2.39429	> 0.0500	_	0.13881			nificant Effec			
205CTCSTF1	0205CTC	STPS9	14.9606	2.39429	<= 0.0500		0.13881				t		
205CTCSTF1	0205CTC	STPS1	-0.4373	2.39429	> 0.0500		0.13881			ant Effect nificant Effec			
205CTCSTF1	0205CTC		-0.9249	~2.39429	> 0.0500		0.13881			nificant Effec			
205CTCSTF1	0205CTC		0.37514	2.39429	> 0.0500		0.13881			nificant Effect		1	
205CTCSTF1	-0205CTC		2,40824	2.39429	<= 0.0500		0.13881			nt Effect		13	74
205CTCSTF1	0205CTC	STG3	1.06946	- 2.39429	> 0.0500		0.13881	1		nificant Effect			*
ata Summary				Or	iginal Data	Y.		1			med Dat	-	
ample Code	3 - 1 -	Count	Mean	Minimur	n Maximu	ım :	SD	M	еап	Minimum	Maximu		SD
205CTCSTF1		8	0.94975	0.78600	1.13000		.10599			The state of the s		4111	30
205CTCSTPS8		8	0.83438	-0.70000	0.96700		.08219				. 30		
205CTCSTP89	14.5	8	0.08237	0.02000	0.15299	0	.05095						
205CTCSTPS10	18	8	0.97510	100.000 30.000	1.17999	0	.15103				1.0		2
205CTCSTPS11		8	1.00338	0.80200	1.18800	. 0	.13456						
205CTCSTG1		8	0.92800	0.77300	,1.15400	0	.15743						
205CTCSTG2	100	8	0.81013	0.62200	0.91700	0	.09416						
205CTCSTG3		8	0.88775	0.72300	1.04099	0	.11142				41.7		
ata Detail	1 1 4 3			\$6 °						100	- SA - 150		
ample Code	1 2 9	Rep 1	Rep 2	Rep 3	Rep 4	Rep	5 F	Rep 6	Rep 7	Rep 8	Rep 9	9.	Rep 10
05CTCSTF1		0.89301	0.9570	1 1:04500	0.88400	0.918	500 0	.78600	The second second		100000	P 15	
05CTCSTPS8		0.96700	0.8160	0 0.85699	0.70000	0.84	99 0	.75300	0.8980				
05CTCSTPS9		0.04401	0.0710	0 0,15299	0.02000	0.034	101 0	.11901	0.1450		FD4		
05CTCSTPS10	ly and	0.81399	0.9550	0 0.96499	0.86600	1.133	01 1	.10583	0.7819				
05CTCSTPS11	- 1	0.80200	1.0130	0.84900	1.06901	1.188	00 0	.96300					
05CTCSTG1	- 1	0.77300	0.8310	1 0.81500	1.04900	1.154	00 0	.80701	0.8610				
05CTCSTG2	. (0.77900	0.8380	0.88700	0.81500	0.917		62200					
05CTCSTG3		0.99600	0.8120	0.72300	1.04099	0.854		98800		0.88700			

Comparisons: Report Date: Analysis:

Page 2 of 4 04 May-05 12:53 PM 06-3167-6932/Round 2

Appendix E

Control Charts for H. azteca and C. tentans

TABLE E-1 Apportionment of Risk MAX Grove Pond Raccoon

				Uptake	(mg/kg-d) a					IQ.	R	isk Apport	ionment (%	6 of COPC uptak	e for each d	lietary item	1) ^b
												Surface				Swallow	1
Chemical	Sediment	Surface Water	Fish	Invertebrates	Frog	Swallow Eggs	Plants	Total Uptake	NOAEL	LOAEL	Sediment	Water	Fish	Invertebrates	Frog	Eggs	Plants
aluminum	2042.86	0.01	1.04	1.51	5.45	1.51	1.20	2053.59	1064	106	99	0.00	0.05	0.07	0.27	0.07	0.06
Antimony	0.27	0.00	0.00	0.55	0.55	0.55	0.01	1.93	15	2	14	0.00	0.00	28	28	28	0.42
arsenic	20.66	0.01	0.01	0.09	0.02	0.05	0.11	20.94	166	17	99	0.05	0.03	0.41	0.12	0.23	0.52
barium	10.67	0.00	0.19	1.89	0.69	1.89	0.23	15.56	3.05	1.02	69	0.01	1.19	12.15	4.44	12.15	1.51
Beryllium	0.32	0.00	0.05	0.64	0.00	0.64	0.00	1.65	2.50	0.83	19	0.00	3.02	39	0.00	39	0.03
cadmium	16.57	0.00	0.05	0.05	0.01	0.03	0.88	17.60	18	6	94	0.00	0.29	0.31	0.08	0.15	5.03
Cobalt	1.59	0.00	0.00	3.53	3.53	3.53	0.23	12.41	1.69	0.66	13	0.00	0.00	28	28	28	1.88
copper	295.08	0.00	0.07	1.28	2.99	1.28	17.31	318.01	27	21	93	0.00	0.02	0.40	0.94	0.40	5.44
ead	39.95	0.00	0.25	0.04	0.14	0.02	0.26	40.67	5.08	0.51	98	0.01	0.62	0.11	0.33	0.06	0.65
manganese	56.75	0.09	2.72	39.60	3.55	39.60	8.32	150.62	1.71	0.53	38	0.06	1.81	26	2.35	26	5.53
Methylmercury	0.00	0.00	0.05	0.00	0.01	0.00	0.00	0.07	2.29	0.46	2.18	0.00	75	3.16	17	3.16	0.04
selenium	0.94	0.00	0.03	0.00	0.03	0.00	0.00	1.00	4.99	3	94	0.00	2.80	0.00	3.26	0.00	0.22
Thallium	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.03	4.3	0.43	14	0.00	0.00	29	29	29	0.01
vanadium	3.18	0.00	0.05	7.06	0.02	7.06	0.47	17.83	84.9	8	18	0.00	0.26	40	0.09	40	2.61
PAH (Total)	0.95	0.00	0.00	2.63	2.63	2.63	0.00	8.84	8.84	0.88	11	0.00	0.00	30	30	30	0.03

a. Calculated using EPC and exposure parameters in Table 37.
 b. Risk % calculated by 100*Uptake/Total Uptake, for each dietary component "I".

TABLE E-2 Apportionment of Risk Average **Grove Pond Raccoon**

				Uptake (m	g/kg-d) ^a			Total	ŀ	IQ.	F	lisk Appor Surface	tionment (% of COPC uptake	e for each d	lietary item Swallow	ı) ^b
Chemical	Sediment	Surface Water	Fish	Invertebrates	Frog	Swallow Eggs	Plants	Uptake	NOAEL	LOAEL	Sediment	Water	Fish	Invertebrates	Frog	Eggs	Plants
Inorganics													-			-	
aluminum	242.34	0.00	0.31	1.35	1.11	1.35	0.14	246.59	128	13	98	0.00	0.12	0.55	0.45	0.55	0.06
Antimony	0.25	0.00	0.00	0.50	0.50	0.50	0.01	1.76	14	1.4	14	0.00	0.00	28	28	28	0.42
arsenic	1.79	0.00	0.01	0.04	0.01	0.01	0.01	1.87	15	1.5	96	0.06	0.53	2.31	0.39	0.67	0.50
barium	1.88	0.00	0.06	1.54	0.24	1.54	0.04	5.31	1.0	0.35	35	0.02	1.21	29	4.54	29	0.78
manganese	13.55	0.02	0.88	36.28	1.16	36.28	1.99	90.17	1.0	0.32	15	0.02	0.98	40	1.29	40	2.20
Methylmercury	0.00	0.00	0.01	0.00	0.00	0.03	0.00	0.04	1.4	0.28	1.09	0.00	22	2.89	9.07	65	0.02
selenium	0.17	0.00	0.02	0.00	0.01	0.00	0.00	0.20	1.0	0.61	85	0.00	8.51	0.00	6.18	0.00	0.20
Thallium	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.03	3.4	0.34	14	0.00	0	29	29	29	0.01
vanadium	0.74	0.00	0.01	1.64	0.01	1.64	0.11	4.13	20	2.0	18	0.00	0.14	40	0.31	40	2.61
SVOC													-				
PAH (Total)	0.13	0.00	0.00	0.35	0.35	0.35	0.00	1.16	1.2	0.39	11	0.00	0.00	30	30	30	0.03

a. Calculated using EPC and exposure parameters in Table 38.
 b. Risk % calculated by 100*Uptake/Total Uptake, for each dietary component "I".

TABLE E-3 Apportionment of Risk _{Max} Plow Shop Pond Raccoon

				Uptake (mg/kg-d) ^a				ŀ	łQ	Ris	sk Apportio	onment (%	of COPC uptake f	or each die	etary item) b	,
		Surface		Invertebrate		Swallow						Surface				Swallow	
Chemical	Sediment	Water	Fish	s	Frog	Eggs	Plants	Total	NOAEL	LOAEL	Sediment	Water	Fish	Invertebrates	Frog	Eggs	Plants
aluminum	612.86	0.02	0.23	0.15	16.65	0.15	0.36	630.40	327	33	97	0	0	0	3	0	0
Antimony	0.70	0.00	0.00	1.39	1.39	1.39	0.02	4.90	39	4	14	0	0	28	28	28	0
arsenic	154.35	0.03	0.07	0.12	0.04	0.03	0.81	155.45	1274	127	99	0	0	0	0	0	1
barium	8.40	0.00	0.22	4.80	0.99	4.80	0.18	19.40	3.80	1.3	43	0	1	25	5	25	1
cadmium	1.50	0.00	0.00	0.03	0.01	0.00	0.08	1.63	1.63	0.54	92	0	0	2	1	0	5
Cobalt	1.34	0.00	0.01	2.98	2.98	2.98	0.20	10.47	1.43	0.55	13	0	0	28	28	28	2
copper	78.31	0.00	0.07	1.23	0.27	1.23	4.59	85.70	7.32	5.6	91	0	0	1	0	1	5
lead	27.56	0.00	0.01	0.02	0.05	0.02	0.18	27.86	3.48	0.35	99	0	0	0	0	0	1
manganese	1243.87	0.05	4.78	52.56	2.40	52.56	182.43	1538.65	17	5.4	81	0	0	3	0	3	12
Methylmercury	0.00	0.00	0.13	0.00	0.01	0.05	0.00	0.20	6.21	1.2	1	0	65	1	6	27	0
selenium	0.33	0.00	0.03	0.01	0.04	0.01	0.00	0.43	2.14	1.3	78	0	8	2	9	2	0
Thallium	0.67	0.00	0.00	1.33	1.33	1.33	0.00	4.67	632	63.2	14	0	0	29	29	29	0
vanadium	3.77	0.00	0.04	8.37	0.03	8.37	0.55	21.14	101	10.1	18	0	0	40	0	40	3
PAH (Total)	2.24	0.00	0.00	6.17	6.17	6.17	0.01	20.76	21	6.9	11	0	0	30	30	30	0

a. Calculated using EPC and exposure parameters in Table 43.
 b. Risk % calculated by 100*Uptake/Total Uptake, for each dietary component "I".

TABLE E-4 Apportionment of Risk Average Plow Shop Pond Raccoon

				Uptake	(mg/kg-d) a				1	HQ	Ris	k Apportio	nment (%	of COPC uptake	for each d	lietary item) b
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrate s (mg/kg)	Frog (mg/kg)	Swallow Eggs (mg/kg)	Plants (mg/kg)	Total	NOAEL	LOAEL	Sediment	Surface Water	Fish	Invertebrates	Frog	Swallow Eggs	Plants
aluminum	186.77	0.00	0.10	0.10	3.78	0.10	0.11	190.97	99	9.9	98	0.00	0.05	0.05	1.98	0.05	0.06
Antimony	0.35	0.00		0.71	0.71	0.71	0.01	2.48	20	2.0	14	0.00	0.00	28	28	28	0.42
arsenic	12.30	0.00	0.02	0.05	0.01	0.00	0.06	12.45	101	10	99	0.01	0.16	0.42	0.10	0.00	0.52
barium	2.29	0.00	0.08	3.15	0.37	3.15	0.05	9.08	1.8	0.59	25	0.01	0.86	35	4.02	35	0.55
manganese	53.29	0.01	1.52	33.91	0.85	33.91	7.82	131.30	1.5	0.46	41	0.01	1.16	26	0.64	26	5.95
Methylmercury	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.03	1.09	0.22	2.39	0.00	85	3.59	9.22	0	0.05
selenium	0.33	0.00	0.02	0.01	0.02	0.01	0.00	0.38	1.9	1.2	85	0.11	5.12	2.26	5.14	2.26	0.20
Thallium	0.53	0.00	0.00	1.06	1.06	1.06	0.00	3.71	501	50	14	0.01	0	29	29	29	0.01
vanadium	0.60	0.00	0.02	1.34	0.02	1.34	0.09	3.41	16	1.6	18	0.00	0.53	39	0.49	39	2.60
PAH (Total)	0.23	0.00	0.00	0.63	0.63	0.63	0.00	2.12	2.1	0.71	11	0.00	0.00	30	29.73	30	0.03

a. Calculated using EPC and exposure parameters in Table 44.
 b. Risk % calculated by 100*Uptake/Total Uptake, for each dietary component "I".

			(mg/kg-d) ^a		ı	HQ	Risk Apport	ionment (% of COF dietary item)	
Chemical	Sediment	Surface Water	Fish	Total	NOAEL	LOAEL	Sediment	Surface Water	Fish
aluminum	126.00	0.01	2.87	128.88	66.78	6.68	98	0.02	2.23
arsenic	1.27	0.01	0.02	1.30	10.34	1.03	98	0.10	1.42
cadmium	1.02	0.00	0.14	1.16	1.16	0.39	88	0.00	12
copper	18.20	0.00	0.19	18.39	1.57	1.19	99	0.16	1.02
Methylmercury	0.00	0.00	0.15	0.15	4.71	0.94	0	0.00	100
vanadium	0.20	0.00	0.13	0.32	1.54	0.15	61	0.00	39

a. Calculated using EPC and exposure parameters in Table 45.

b. Risk % calculated by 100*Uptake,/Total Uptake, for each dietary component "I".

TABLE E-6
Apportionment of Risk Average Grove Pond Mink

		Uptake (n	ng/kg-d) a		HQ		Risk Apportion	ment (% of COP dietary item) ^b	C uptake for each
Chemical	Sediment	Surface Water	Fish	Total	NOAEL	LOAEL	Sediment	Surface Water	Fish
aluminum	14.95	0.00	0.84	15.79	8.18	0.82	95	0.04	5.31
arsenic	0.11	0.00	0.03	0.14	1.10	0.11	79	0.10	20

- a. Calculated using EPC and exposure parameters in Table 46.
- b. Risk % calculated by 100*Uptake, Total Uptake, for each dietary component "I".

TABLE E-7 Apportionment of Risk $_{\mbox{\scriptsize Max}}$ Plow Shop Pond Mink

		Uptake	(mg/kg-d) a			HQ	Risk Apportion	ment (% of CO	PC uptake for each
		Surface						Surface	
Chemical	Sediment	Water	Fish	Total	NOAEL	LOAEL	Sediment	Water	Fish
aluminum	38	0.02	0.62	38	20	1.99	98	0	2
arsenic	10	0.03	0	10	189	18.91	98	0	2
manganese	77	0.05	13	90	1.02	0.32	85	5	15
Methylmercury	0.00	0.00	0.36	0.36	11.11	2.22	0	0	100
Thallium	0.04	0.00	0.00	0.04	5.78	0.58	96	0	0
vanadium	0.23	0.00	0.11	0.34	1.64	0.16	68	0	32

a. Calculated using EPC and exposure parameters in Table 47.

b. Risk % calculated by 100*Uptake, Total Uptake, for each dietary component "I".

TABLE E-8
Apportionment of Risk Average Plow Shop Pond Mink

		Uptake (n	ng/kg-d) a		НО	!	1	ionment (% of C each dietary ite	OPC uptake for ท) ^b
Chemical	Sediment	Surface Water	Fish	Total	NOAEL	LOAEL	Sediment	Surface Water	Fish
aluminum	11.52	0.00	0.29	11.81	6.12	0.61	98	0.02	2.42
arsenic	0.76	0.00	0.04	0.80	12.27	1.23	95	0.01	5
Methylmercury	0.00	0.00	0.08	0.08	2.54	0.51	0	0.00	100
Thallium	0.03	0.00	0.00	0.03	4.46	0.45	99	0.01	0.00

- a. Calculated using EPC and exposure parameters in Table 48.
- b. Risk % calculated by 100*Uptake,/Total Uptake, for each dietary component "I".

TABLE E-9 Apportionment of Risk $_{\mbox{\scriptsize Max}}$ Grove Pond Belted Kingfisher

	Uptake (mg	/kg-d) ^a		1	НQ	Risk Apportionn uptake for eacl	nent (% of COPC n dietary item) ^b
Chemical	Surface Water	Fish	Total	NOAEL	LOAEL	Surface Water	Fish
lead	0.0030	2.48	2.48	2.20	0.22	1.20E-03	100
Methylmercury	0.0000	0.54	0.54	83.79	8.38	5.15E-08	100
DDT		0.06	0.06	4.58	0.46	0	100
DDE		0.13	0.13	9.51	0.95	0	100
Total PCB		0.23	0.23	1.29	0.13	0	100

a. Calculated using EPC and exposure parameters in Table 53.

b. Risk % calculated by 100*Uptake,/Total Uptake, for each dietary component "I".

TABLE E-10
Apportionment of Risk Average Grove Pond Belted Kingfisher

	Uptake (mg/kç	g-d)	ŀ	IQ	Risk Apportionment (% of COPC uptake for each dietary item)
Chemical	Fish	Total	NOAEL	LOAEL	Fish
Methylmercury	0.10	0.10	15.11	1.51	100
DDD	0.02	0.02	1.40	0.14	100
DDE	0.04	0.04	3.13	0.31	100

TABLE E-11 Apportionment of Risk $_{\mbox{\scriptsize Max}}$ Plow Shop Pond Belted Kingfisher

		Uptake (mg/kg	-d)	Н	Q	Risk Apportionment (% of COPC uptake for each dietary item) _b			
Chemical	Surface Water	Fish	Total	NOAEL	LOAEL	Surface Water	Fish		
arsenic	4.18E-02	6.41E-01	6.83E-01	1.30E-01	5.00E-02	6	94		
Methylmercury		1.27E+00	1.27E+00	1.98E+02	1.98E+01		100		
4,4'-DDD		5.43E-02	5.43E-02	3.88E+00	3.88E-01		100		
4,4'-DDE		1.87E-01	1.87E-01	1.34E+01	1.34E+00		100		

- a. Calculated using EPC and exposure parameters in Table 55.
- b. Risk % calculated by 100*Uptake, Total Uptake, for each dietary component "I".

Table E-12
Apportionment of Risk Average Plow Shop Pond Belted Kingfisher

	Uptake (m	g/kg-d)	н	Q	Risk Apportionment (% of COPC uptake for each dietary item)
Chemical	Fish	Total	NOAEL	LOAEL	Fish
Methylmercury	0.29	0.29	45	4.5	100
4,4'-DDE	0.04	0.04	2.9	0.3	100

TABLE E-13 Apportionment of Risk $_{\mbox{\scriptsize Max}}$ Grove Pond Black -Crowned Night Heron

			Upta	ake (mg/kg-d) ^a				HQ	Risk App	ortionment (% of COPC u	ptake for each die	etary item) ^b
Chemical	Sediment	Surface Water	Fish	Invertebrates	Frog	Total	NOAEL	LOAEL	Sediment	Surface Water	Fish	Invertebrates	Frog
aluminum	478.64	0.01	1.82	2.63	9.48	492.57	4.5	1.5	97	0.00	0.37	1	2
Antimony	0.06	0.00	0.00	0.96	0.96	1.98	16	1.6	3.26	0.00	0.00	48	48
Beryllium	0.07	0.00	0.09	1.11	0.00	1.28	1.9	0.64	5.88	0.00	6.80	87	0
cadmium	3.88	0.00	0.09	0.09	0.02	4.09	2.8	0.20	95	0.00	2.20	2	1
chromium	276.55	0.01	0.16	0.31	1.00	278.02	278	56	99	0.00	0.06	0	0
Cobalt	0.37	0.00	0.00	6.14	6.14	12.66	1.7	0.69	2.94	0.00	0.00	49	49
copper	69.14	0.00	0.12	2.23	5.19	76.68	1.6	1.2	90	0.00	0.15	3	7
lead	9.36	0.00	0.44	0.08	0.24	10.12	9.0	0.90	93	0.01	4.36	1	2
Mercury (inorganic)	2.24	0.00	0.01	0.00	0.02	2.27	5.1	2.5	99	0.00	0.22	0	1
Methylmercury	0.00	0.00	0.10	0.00	0.02	0.12	19	1.9	0.31	0.00	79	3	18
Thallium	0.00	0.00	0.00	0.02	0.02	0.03	4.4	0.44	3.26	0.00	0.00	48	48
vanadium	0.74	0.00	0.08	12.29	0.03	13.14	1.2	0.38	5.67	0.00	0.62	94	0
DDD	0.01	0.00	0.01	0.21	0.21	0.44	32	3.2	3.01	0.00	2.58	47	47
DDE	0.01	0.00	0.02	0.08	0.08	0.19	14	1.4	2.71	0.00	12	42	42
DDT	0.02	0.00	0.00	0.28	0.28	0.57	41	4.1	3.09	0.00	0.00	48	48

a. Calculated using EPC and exposure parameters in Table 49.

b. Risk % calculated by 100*Uptake/Total Uptake, for each dietary component "I".

TABLE E-14
Apportionment of Risk Average Grove Pond Black -Crowned Night Heron

			Upta	ke (mg/kg-d) ^a			ŀ	IQ.	Risk App	ortionment (%	6 of COPC up	take for each die	tary item) ^b
		Surface								Surface			
Chemical	Sediment	Water	Fish	Invertebrates	Frog	Total	NOAEL	LOAEL	Sediment	Water	Fish	Invertebrates	Frog
Antimony	0.06	0.00	0.00	0.87	0.87	1.80	14	1.4	3.26	0.00	0.00	48	48
chromium	31.16	0.00	0.06	0.11	0.10	31.43	31	6.3	99	0.00	0.19	0.35	0.33
lead	1.40	0.00	0.06	0.03	0.04	1.53	1.4	0.14	91	0.02	4.09	2.00	2.90
Methylmercury	0.00	0.00	0.02	0.00	0.01	0.03	4.2	0.42	0.43	0.00	65	8.43	27
Thallium	0.00	0.00	0.00	0.01	0.01	0.03	3.5	0.35	3.26	0.00	0.00	48	48
DDD	0.00	0.00	0.00	0.03	0.03	0.06	4.2	0.42	2.91	0.00	5.95	46	46
DDE	0.00	0.00	0.01	0.01	0.01	0.029	2.1	0.21	2.25	0.00	27	35	35
DDT	0.00	0.00	0.00	0.01	0.01	0.016	1.1	0.11	3.09	0.00	0.00	48	48

a. Calculated using EPC and exposure parameters in Table 50.

b. Risk % calculated by 100*Uptake/Total Uptake, for each dietary component "I".

TABLE E-15 Apportionment of Risk $_{\mbox{\scriptsize Max}}$ Plow Shop Pond Black-Crowned Night Heron

			Uptak	e (mg/kg-d) ^a			н	Q	Risk Appor	tionment (%	of COPC u	ptake for each die	tary item) ^b
		Surface								Surface			
Chemical	Sediment	Water	Fish	Invertebrates	Frog	Total	NOAEL	LOAEL	Sediment	Water	Fish	Invertebrates	Frog
aluminum	1.44E+02	1.01E-02	3.95E-01	2.58E-01	2.90E+01	1.73E+02	1.6	0.53	83	0	0	0	17
Antimony	1.63E-01	2.25E-04	0.00E+00	2.42E+00	2.42E+00	5.01E+00	40	4.0	3	0	0	48	48
arsenic	3.62E+01	1.71E-02	1.14E-01	2.15E-01	6.19E-02	3.66E+01	8.9	3.6	99	0	0	1	0
chromium	2.01E+02	1.35E-04	8.69E-02	2.80E-01	9.48E-01	2.02E+02	202	40	99	0	0	0	0
Cobalt	3.14E-01	5.85E-04	1.49E-02	5.18E+00	5.18E+00	1.07E+01	1.4	0.58	3	0	0	48	48
lead	6.46E+00	2.25E-04	1.58E-02	4.12E-02	9.56E-02	6.61E+00	5.9	0.59	98	0	0	1	1
Mercury (inorganic)	1.33E+00	0.00E+00	1.18E-02	6.05E-03	1.76E-02	1.37E+00	3.0	1.5	97	0	1	0	1
Methylmercury	4.36E-04	0.00E+00	2.25E-01	4.91E-03	1.97E-02	2.50E-01	39	3.9	0	0	90	2	8
Thallium	1.56E-01	9.00E-04	0.00E+00	2.32E+00	2.32E+00	4.80E+00	649	65	3	0	0	48	48
vanadium	8.83E-01	6.75E-05	7.02E-02	1.46E+01	6.08E-02	1.56E+01	1.4	0.46	6	0	0	93	0
4,4'-DDD	9.57E-03	0.00E+00	9.65E-03	1.50E-01	1.50E-01	3.19E-01	23	2.3	3	0	3	47	47
4,4'-DDE	6.91E-03	0.00E+00	3.33E-02	1.08E-01	1.08E-01	2.57E-01	18	1.8	3	0	13	42	42
4,4'-DDT	6.91E-04	0.00E+00	1.23E-03	1.08E-02	1.08E-02	2.36E-02	1.7	0.17	3	0	5	46	46

a. Calculated using EPC and exposure parameters in Table 51.

b. Risk % calculated by 100*Uptake,/Total Uptake, for each dietary component "I".

TABLE E-16
Apportionment of Risk Average Plow Shop Pond Black- Crowed Night Heron

		Uptake (mg/kg-d) ^a						Q Risk Apportionment (% of COPC uptake for each dietary item					
Chemical	Sediment	Surface					NOAEL	LOAEL	Sediment	Surface Water		Invertebrates	Frog
Antimony	8.27E-02	6.54E-05		1.23E+00	1.23E+00	2.54E+00	20	2.0	3.26	0.00	0.00	48	48
chromium	1.21E+01	6.85E-05	4.72E-02	1.09E-01	1.45E-01	1.24E+01	12	2.5	98	0.00	0.38	0.88	1.17
Methylmercury	1.95E-04	0.00E+00	5.14E-02	2.18E-03	5.59E-03	5.94E-02	9.3	0.93	0.33	0.00	87	3.66	9.42
Thallium	1.24E-01	2.15E-04	0.00E+00	1.84E+00	1.84E+00	3.81E+00	515	51	3.26	0.01	0.00	48	48
4,4'-DDD	4.43E-04		1.75E-03	6.94E-03	6.94E-03	1.61E-02	1.1	0.11	2.75	0.00	11	43	43
4,4'-DDE	3.24E-04		7.20E-03	5.08E-03	5.08E-03	1.77E-02	1.3	0.13	1.83	0.00	41	29	29

a. Calculated using EPC and exposure parameters in Table 52.

b. Risk % calculated by 100*Uptake/Total Uptake, for each dietary component "I".

TABLE E-17 Apportionment of Risk $_{\rm Max}$ Grove Pond Tree Swallow

	Uptake (n	ng/kg-d)		HQ	Risk Apportionment (% of COPC uptake for each dietary item)
Chemical	Swallow stomach contents	Total	NOAEL	LOAEL	Swallow stomach contents
Arsenic	6.87E+00	6.87E+00	1.34	0.55	100
Chromium	1.12E+03	1.12E+03	1124	225	100
Lead	5.43E+00	5.43E+00	4.81	0.48	100
Methylmercury	1.79E-01	1.79E-01	28	2.79	100

TABLE E-18
Apportionment of Risk Average Grove Pond Tree Swallow

	Uptake (n	ng/kg-d)		HQ	Risk Apportionment (% of COPC uptak for each dietary item)				
Chemical	Swallow stomach contents	Total	NOAEL	LOAEL	Swallow stomach contents				
Chromium	1.99E+02	1.99E+02	199	40	100				
Lead	2.48E+00	2.48E+00	2.2	0.2	100				
Methylmercury	1.30E-01	1.30E-01	20	2.0	100				

TABLE E-19 Apportionment of Risk $_{\mbox{\scriptsize Max}}$ Plow Shop Pond Tree Swallow

	Uptake (mg/kg-	d)	ı	-IQ	Risk Apportionment (% of COPC uptake for each dietary item)
Chemical	Swallow stomach contents	Total	NOAEL	LOAEL	Swallow stomach contents
Inorganics					
Cadmium	2.99	3.02E+00	2.08E+00	1.51E-01	100
Chromium	189	1.91E+02	1.91E+02	3.82E+01	100
Lead	1.57	1.58E+00	1.40E+00	1.40E-01	100
Methylmercury	0.13715	1.38E-01	2.16E+01	2.16E+00	100

TABLE E-20
Apportionment of Risk Average Plow Shop Pond Tree Swallow

	Uptake	(mg/kg-d)	ŀ	НQ	Risk Apportionment (% of COPC uptake for each dietary item)			
Chemical	Swallow stomach contents	Total	NOAEL	LOAEL	Swallow stomach contents			
Chromium	1.18E+02	1.18E+02	118	24	100			
Lead	1.26E+00	1.26E+00	1.1	0.1	100			
Methylmercury	1.28E-01	1.28E-01	20	2.0	100			

TABLE F-1
MAX HQ Adjustment for Mercury by Fish Species Plow Shop Pond Raccoon

				EPCs					TRV (mg/l	kg-d)	H	IQ
	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Swallow Eggs (mg/kg)	Plants (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Methylmercury												
all species	8.19E-02		2.57E+00	5.60E-02	2.24E-01	1.06E+00	1.35E-03	0.20	0.03	0.16	6.21	1.24
largemouth bass	8.19E-02		2.57E+00	5.60E-02	2.24E-01	1.06E+00	1.35E-03	0.20	0.03	0.16	6.21	1.24
bullhead	8.19E-02		3.80E-01	5.60E-02	2.24E-01	1.06E+00	1.35E-03	0.09	0.03	0.16	2.77	0.55
bluegill	8.19E-02		5.10E-01	5.60E-02	2.24E-01	1.06E+00	1.35E-03	0.10	0.03	0.16	2.97	0.59
black crappie	8.19E-02		6.70E-01	5.60E-02	2.24E-01	1.06E+00	1.35E-03	0.10	0.03	0.16	3.23	0.65

TABLE F-2
Max HQ Adjustment by Fish Species Plow Shop Pond Mink

		EPCs			TRV (mg/kg-d)			HQ	
	Sediment (mg/kg)	Surface Water (mg/L)		Uptake ^a (mg/kg- d)	NOAEL	LOAEL	NOAEL	LOAEL	
Methylmercury									
All species	8.19E-02		2.57E+00	0.36	0.03	0.16	11.11	2.22	
Largemouth bass	8.19E-02		2.57E+00	0.36	0.03	0.16	11.11	2.22	
bullhead	8.19E-02		3.80E-01	0.05	0.03	0.16	1.65	0.33	
bluegill	8.19E-02		5.10E-01	0.07	0.03	0.16	2.21	0.44	
black crappie	8.19E-02		6.65E-01	0.09	0.03	0.16	2.88	0.58	

TABLE F-3
Max HQ Adjustment for Mercury by Fish Species Grove Pond Black Crowned Night Heron

			EPCs				TRV	TRV (mg/kg-d)		HQ	
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Uptake ^a (mg/kg- d)	NOAEL	LOAEL	NOAEL	LOAEL	
Methylmercury	(99/	(3)	(gg,	(99)		-,			11011		
All Species	0.07044	2.51E-07	1.09E+00	4.60E-02	2.43E-01	0.12	0.01	0.06	18.97	1.90	
Brown Bullhead	0.07044	2.51E-07	3.32E-02	4.60E-02	2.43E-01	0.03	0.01	0.06	4.48	0.45	
Yellow Bullhead	0.07044	2.51E-07	1.22E-01	4.60E-02	2.43E-01	0.04	0.01	0.06	5.69	0.57	
Bluegill	0.07044	2.51E-07	2.23E-01	4.60E-02	2.43E-01	0.05	0.01	0.06	7.08	0.71	
Largemouth Bass	0.07044	2.51E-07	1.09E+00	4.60E-02	2.43E-01	0.12	0.01	0.06	18.92	1.89	
Pickerel	0.07044	2.51E-07	5.89E-01	4.60E-02	2.43E-01	0.08	0.01	0.06	12.10	1.21	
Black Crappie	0.07044	2.51E-07	<0.21	4.60E-02	2.43E-01	0.03	0.01	0.06	4.02	0.40	

TABLE F-4
Max HQ Adjustment for Mercury by Fish Species Plow Shop Pond Black-Crowned Night Heron

		EPCs						TRV (mg/kg-d)		Q
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Methylmercury										
All species	8.19E-02		2.57E+00	5.60E-02	2.24E-01	2.50E-01	6.40E-03	6.40E-02	39	3.9
Largemouth bass	8.19E-02		2.57E+00	5.60E-02	2.24E-01	2.50E-01	6.40E-03	6.40E-02	39	3.9
bullhead	8.19E-02		3.80E-01	5.60E-02	2.24E-01	5.84E-02	6.40E-03	6.40E-02	9.1	0.9
Bluegill	8.19E-02		5.13E-01	5.60E-02	2.24E-01	7.00E-02	6.40E-03	6.40E-02	11	1.1
Black crappie	8.19E-02		6.65E-01	5.60E-02	2.24E-01	8.34E-02	6.40E-03	6.40E-02	13	1.3

TABLE F-5
Average HQ Adjustment for Mercury by Fish Species Plow Shop Pond Black -Crowned Night Heron

	EPCs						TRV (mg/kg-d)			HQ	
	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL	
Methylmercury											
All species	3.67E-02		5.86E-01	2.48E-02	6.37E-02	5.94E-02	6.40E-03	6.40E-02	9.3	0.9	
Largemouth bass	3.67E-02		1.32E+00	2.48E-02	6.37E-02	1.24E-01	6.40E-03	6.40E-02	19	1.9	
Bullhead	3.67E-02		2.68E-01	2.48E-02	6.37E-02	3.15E-02	6.40E-03	6.40E-02	4.9	0.5	
Bluegill	3.67E-02		2.97E-01	2.48E-02	6.37E-02	3.40E-02	6.40E-03	6.40E-02	5.3	0.5	
Black crappie	3.67E-02		5.90E-01	2.48E-02	6.37E-02	5.97E-02	6.40E-03	6.40E-02	9.3	0.9	

TABLE F-6
Max HQ Adjustment for Mercury by Fish Species Grove Pond Belted Kingfisher

	EP	Cs		TRV (mg/l	(g-d)	l	IQ
Chemical	Surface Water (mg/L)	Fish (mg/kg)	Uptake ^a (mg/kg d)	NOAEL	LOAEL	NOAEL	LOAEL
Methylmercury							
All Species	2.51E-07	1.09E+00	0.54	0.0064	0.06	84	8.4
Brown Bullhead	2.51E-07	3.32E-02	0.02	0.0064	0.06	2.6	0.26
Yellow Bullhead	2.51E-07	1.22E-01	0.06	0.0064	0.06	9.4	0.94
Bluegill	2.51E-07	2.23E-01	0.11	0.0064	0.06	17	1.7
Largemouth Bass	2.51E-07	1.09E+00	0.54	0.0064	0.06	84	8.4
Pickerel	2.51E-07	5.89E-01	0.29	0.0064	0.06	45	4.5
Black Crappie	2.51E-07	<0.21	0.00	0.0064	0.06	4.31E-06	4.31E-07
DDE							
All Species		2.70E-01	0.13	0.01	0.14	9.5	0.95
Brown Bullhead		4.00E-02	0.02	0.01	0.14	1.4	0.14
Yellow Bullhead		1.10E-01	0.05	0.01	0.14	3.9	0.39
Bluegill		1.30E-01	0.06	0.01	0.14	4.6	0.46
Largemouth Bass		2.70E-01	0.13	0.01	0.14	9.5	0.95
Pickerel		1.70E-01	0.08	0.01	0.14	6.0	0.60
Black Crappie		1.20E-01	0.06	0.01	0.14	4.2	0.42

TABLE F-7
Average HQ Adjustment for Mercury by Fish Species Grove Pond Belted Kingfisher

	E	PCs		TRV (mg/l	(g-d)	HQ	
Chemical	Surface Water (mg/L)	Fish (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Methylmercury							
Brown bullhead		2.04E-02	0.01	0.0064	0.06	1.6	0.16
Yellow Bullhead		7.90E-02	0.04	0.0064	0.06	6.1	0.61
Bluegill		1.60E-01	0.08	0.0064	0.06	12	1.2
Largemouth bass		3.57E-01	0.18	0.0064	0.06	28	2.8
pickerel		0.62	0.31	0.0064	0.06	48	4.8
black crappie		ND	NA	0.0064	0.06	NA	NA

TABLE F-8
Max HQ Adjustment for Mercury by Fish Species Plow Shop Pond Belted Kingfisher

	EPCs			TRV (mg/kg-d)		Н	Q
Chemical	Surface Water (mg/L)	Fish (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Methylmercury		, ,					
All species		2.57E+00	1.27E+00	6.40E-03	6.40E-02	198	20
Largemouth bass		2.57E+00	1.27E+00	6.40E-03	6.40E-02	198	20
bullhead		3.80E-01	1.87E-01	6.40E-03	6.40E-02	29	2.9
Bluegill		5.40E-01	2.66E-01	6.40E-03	6.40E-02	42	4.2
Black crappie		6.65E-01	3.28E-01	6.40E-03	6.40E-02	51	5.1
4,4'-DDE							
All species		3.80E-01	1.87E-01	1.40E-02	1.40E-01	13	1.3
Largemouth bass		3.80E-01	1.87E-01	1.40E-02	1.40E-01	13	1.3
bullhead		3.30E-02	1.63E-02	1.40E-02	1.40E-01	1.2	0.1
Bluegill		1.60E-01	7.89E-02	1.40E-02	1.40E-01	5.6	0.6
Black crappie		1.80E-01	8.88E-02	1.40E-02	1.40E-01	6.3	0.6

TABLE F-9
Average HQ Adjustment for Mercury by Fish Species Plow Shop Pond Belted Kingfisher

		EPCs		TRV (mg	/kg-d)	HQ	
Chemical	Surface Water (mg/L)	Fish (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Methylmercury							
Largemouth bass		1.32E+00	6.49E-01	6.40E-03	6.40E-02	101	10
Bullhead		2.68E-01	1.32E-01	6.40E-03	6.40E-02	21	2.1
Bluegill		2.97E-01	1.47E-01	6.40E-03	6.40E-02	23	2.3
Black crappie		5.89E-01	2.91E-01	6.40E-03	6.40E-02	45	4.5

TABLE G-1 Grove Pond BSAFs

Max EPCs

		Aquatic Invert	ebrates	Frogs		Swallow	Eggs
	Sediment	Measured Concentration		Measured Concentration (mg/kg		Measured Concentration	
Chemical	(mg/kg)	(mg/kg ww)	BSAF	ww)	BSAF	(mg/kg ww)	BSAF
Aluminum	90000	30	3.33E-04	108	1.20E-03		
Arsenic	910	1.72	1.89E-03	0.478	5.25E-04	0.95	1.04E-03
Barium	470	37.5	7.98E-02	13.7	2.91E-02		
Beryllium	14.1	NA	NA	ND	0		
Cadmium	730	1.07	1.47E-03	0.269	3.68E-04	0.53	7.26E-04
Chromium	52000	3.54	6.81E-05	11.4	2.19E-04	0.61	1.17E-05
Copper	13000	25.4	1.95E-03	59.2	4.55E-03		
Lead	1760	0.89	5.06E-04	2.69	1.53E-03	0.47	2.67E-04
Manganese	2500	785	3.14E-01	70.3	2.81E-02		
Mercury (inorganic)	422	0.051	1.21E-04	0.239	5.66E-04	1.075	2.55E-03
Methylmercury	0.07044	0.046	6.53E-01	0.243	3.45E+00		
Selenium	41.2	nd	0.00E+00	0.644	1.56E-02		
Vanadium	140	NA	NA	0.308	2.20E-03		

Avg EPCs

		Aquatic Inverto	ebrates	Frogs		Swallow	Eggs
	Sediment	Measured Concentration		Measured Concentration (mg/kg		Measured Concentration	
Chemical	(mg/kg)	(mg/kg ww)	BSAF	ww)	BSAF	(mg/kg ww)	BSAF
Aluminum	1.07E+04	26.7	2.50E-03	22	2.06E-03		
Arsenic	7.89E+01	0.9	1.09E-02	0.14	1.81E-03	0.248	3.14E-03
Barium	8.28E+01	30.5	3.69E-01	4.78	5.78E-02		
Beryllium	1.17E+00	NA	NA	ND	0		
Cadmium	1.79E+01	0.2	1.36E-02	0.07	4.04E-03	0.079	4.42E-03
Chromium	5.86E+03	1.2	2.13E-04	1.18	2.02E-04	0.215	3.66E-05
Copper	1.46E+02	19.0	1.30E-01	5.89	4.04E-02		
Lead	2.63E+02	0.4	1.33E-03	0.51	1.93E-03	0.216	8.23E-04
Manganese	5.97E+02	719.3	1.20E+00	23	3.86E-02		
Mercury (inorganic)	2.19E+01	0.0319	1.46E-03	0.072	3.29E-03	0.5742	2.62E-02
Methylmercury	2.15E-02	0.0256	1.19E+00	0.080	3.74E+00	0.5742	2.67E+01
Selenium	7.61E+00	ND	0	0.25	3.27E-02		
Vanadium	3.24E+01	NA	NA	0.25	7.72E-03		

TABLE G-2 Plow Shop Pond BSAFs

Max EPCs

		Aquatic Invert	tebrates	Frogs	1	Swallow	Eggs
		Measured		Measured		Measured	
	Sediment	Concentration (mg/kg		Concentration		Concentration	
Chemical	(mg/kg dw)	ww)	BSAF	(mg/kg ww)	BSAF	(mg/kg ww)	BSAF
Aluminum	27000	2.94	1.09E-04	330	1.22E-02		
Arsenic	6800	2.45	3.60E-04	0.705	1.04E-04	0.58	8.53E-05
Barium	370	95.1	2.57E-01	19.7	5.32E-02		
Beryllium	2.72	NA	NA	nd	0.00E+00		
Cadmium	66	0.62	9.39E-03	0.29	4.39E-03	ND	0.00E+00
Chromium	37800	3.19	8.44E-05	10.8	2.86E-04	0.47	1.24E-05
Copper	3450	24.4	7.07E-03	5.29	1.53E-03		
Lead	1214.31	0.47	3.87E-04	1.09	8.98E-04	0.47	3.87E-04
Manganese	54800	1042	1.90E-02	47.5	8.67E-04		
Mercury (inorganic)	250	0.069	2.76E-04	0.201	8.04E-04	1.059	4.24E-03
Methylmercury	0.08189	0.056	6.84E-01	0.224	2.74E+00	1.059	1.29E+01
Selenium	14.7	0.18	1.22E-02	0.797	5.42E-02		
Vanadium	166	NA	NA	0.693	4.17E-03		

Avg EPCs

			Avg Li 03				
		Aquatic Invert	ebrates	Frogs		Swallow 1	Eggs
		Measured		Measured		Measured	
	Sediment	Concentration (mg/kg		Concentration		Concentration	
Chemical	(mg/kg dw)	ww)	BSAF	(mg/kg ww)	BSAF	(mg/kg ww)	BSAF
Aluminum	8228	2.03	2.47E-04	74.9	9.11E-03		
Arsenic	542	1.03	1.90E-03	0.3	4.72E-04	0.191	3.53E-04
Barium	101	62	6.20E-01	7.2	7.19E-02		
Beryllium	1.42	NA	NA	ND	0		
Cadmium	10	0.23	2.20E-02	0.1	1.15E-02	ND	0
Chromium	2275	1.24	5.46E-04	1.6	7.25E-04	0.217	9.55E-05
Copper	123	4.08	3.33E-02	2.6	2.16E-02		
Lead	169	0.17	9.94E-04	0.4	2.59E-03	0.204	1.21E-03
Manganese	2348	672	2.86E-01	16.8	7.14E-03		
Mercury (inorganic)	27	0.04	1.65E-03	0.1	2.30E-03	0.615	2.28E-02
Methylmercury	0.04	0.02	6.77E-01	0.1	1.74E+00	0.615	1.68E+01
Selenium	14	0.17	1.20E-02	0.4	2.72E-02		
Vanadium	27	NA	NA	0.3	1.25E-02		

TABLE G3 Summary of Site-Specif BSAF for Grove Pond and Plow Shop[and Plow Shop Pond used for Background FCM

Aquatic Invertebrates

			Sediment		Sediment (mg/kg		Sediment	
Chemical	Sediment (mg/kg)	BSAF	(mg/kg)	BSAF	dw)	BSAF	(mg/kg dw)	BSAF
Aluminum	90000	3.33E-04	10676	2.50E-03	27000	1.09E-04	8228	2.47E-04
Arsenic	910	1.89E-03	79	1.09E-02	6800	3.60E-04	542	1.90E-03
Barium	470	7.98E-02	83	3.69E-01	370	2.57E-01	101	6.20E-01
Beryllium	14.1	NA	1.2	NA	2.72	NA	1.42	NA
Cadmium	730	1.47E-03	18	1.36E-02	66	9.39E-03	10	2.20E-02
Chromium	52000	6.81E-05	5859	2.13E-04	37800	8.44E-05	2275	5.46E-04
Copper	13000	1.95E-03	146	1.30E-01	3450	7.07E-03	123	3.33E-02
Lead	1760	5.06E-04	263	1.33E-03	1214.31	3.87E-04	169	9.94E-04
Manganese	2500	3.14E-01	597	1.20E+00	54800	1.90E-02	2348	2.86E-01
Mercury (inorganic)	422	1.21E-04	22	1.46E-03	250	2.76E-04	27	1.65E-03
Methylmercury	0.07044	6.53E-01	0.021	1.19E+00	0.08189	6.84E-01	0.04	6.77E-01
Selenium	41.2	0	7.6	0	14.7	1.22E-02	14	1.20E-02
Vanadium	140	NA	32	NA	166	NA	27	NA

Frogs

			Sediment		Sediment (mg/kg		Sediment	
Chemical	Sediment (mg/kg)	BSAF	(mg/kg)	BSAF	dw)	BSAF	(mg/kg dw)	BSAF
Aluminum	90000	1.20E-03	10676	2.06E-03	27000	1.22E-02	8228	9.11E-03
Arsenic	910	5.25E-04	79	1.81E-03	6800	1.04E-04	542	4.72E-04
Barium	470	2.91E-02	83	5.78E-02	370	5.32E-02	101	7.19E-02
Beryllium	14.1	0	1.2	0	2.72	0	1.42	0
Cadmium	730	3.68E-04	18	4.04E-03	66	4.39E-03	10	1.15E-02
Chromium	52000	2.19E-04	5859	2.02E-04	37800	2.86E-04	2275	7.25E-04
Copper	13000	4.55E-03	146	4.04E-02	3450	1.53E-03	123	2.16E-02
Lead	1760	1.53E-03	263	1.93E-03	1214.31	8.98E-04	169	2.59E-03
Manganese	2500	2.81E-02	597	3.86E-02	54800	8.67E-04	2348	7.14E-03
Mercury (inorganic)	422	5.66E-04	22	3.29E-03	250	8.04E-04	27	2.30E-03
Methylmercury	0.07044	3.45E+00	0.021	3.74E+00	0.08189	2.74E+00	0.04	1.74E+00
Selenium	41.2	1.56E-02	8	3.27E-02	14.7	5.42E-02	14	2.72E-02
Vanadium	140	2.20E-03	32	7.72E-03	166	4.17E-03	27	1.25E-02

Swallow

				Swallow				
			Sediment		Sediment (mg/kg		Sediment	
Chemical	Sediment (mg/kg)	BSAF	(mg/kg)	BSAF	dw)	BSAF	(mg/kg dw)	BSAF
Aluminum	90000		10676		27000		8228	
Arsenic	910	1.04E-03	79	3.14E-03	6800	8.53E-05	542	3.53E-04
Barium	470		83		370		101	
Beryllium	14.1		1.2		2.72		1.42	
Cadmium	730	7.26E-04	18	4.42E-03	66	0	10	0
Chromium	52000	1.17E-05	5859	3.66E-05	37800	1.24E-05	2275	9.55E-05
Copper	13000		146		3450		123	
Lead	1760	2.67E-04	263	8.23E-04	1214.31	3.87E-04	169	1.21E-03
Manganese	2500		597		54800		2348	
Mercury (inorganic)	422	2.55E-03	22	2.62E-02	250	4.24E-03	27	2.28E-02
Methylmercury	0.07044		0.021	2.67E+01	0.08189	1.29E+01	0.04	1.68E+01
Selenium	41.2		8		14.7		14	
Vanadium	140		32		166		27	

 $Shaded = BSAF \ for \ sediment \ concentration \ closest \ to \ background \ sediment \ concentration.$

TABLE G-4
Bioaccumulation Factors used for Background FMC Calculations

Chemical	Aquatic Invertebrate BSAF ^a	Notes	Frog BSAF ^a	Notes	Swallow Egg BSAF ^a	Notes	PUF^{d}	Notes
Inorganics								
Aluminum	2.47E-04	b	9.11E-03	b			0.004	С
Antimony	NA		NA		NA		NA	
Arsenic	1.09E-02	b	1.81E-03	b	3.14E-03	b	0.036	С
Barium	3.69E-01	b	5.78E-02	b			0.15	С
Beryllium	0.9	С	0	b			0.01	С
Cadmium	2.20E-02	b	1.15E-02	b	0	b	0.364	С
Chromium	5.46E-04	b	7.25E-04	b	9.55E-05	b	0.0075	С
Cobalt	1	e	1	h			1	e
Copper	3.33E-02	b	2.16E-02	b			0.4	С
Lead	9.94E-04	b	2.59E-03	b	1.21E-03	b	0.045	С
Manganese	1.20E+00	b	3.86E-02	b			1	e
Mercury (Total)	1.46E-03	b	3.29E-03	b	2.62E-02	b	0.0375	С
Mercury (Methyl)	1.19E+00	b	3.74E+00	b	2.67E+01	b	0.137	С
Selenium	NA		NA		NA		NA	
Thallium	NA		NA		NA		NA	
Vanadium	1	e	7.72E-03	b			1	e
Pesticides/PCBs								
4,4'-DDD	0.95	c,f					0.00937	c,f
4,4'-DDE	0.95	С					0.00937	C
4,4'-DDT	0.95	c,f					0.00937	c,f
Total PCBs	0.53	c,g					0.01	c,g
SVOC			<u> </u>					
Total PAH	1.24	С					0.02	С

NA = chemical was not detected in background sediment; BSAF modeling not applicable.

- a. BSAFs are in (Mg COCP/Kg wet tissue)/(mg COPC/kg dry sediment).
- b. BSAFs calculated from Grove Pond and Plow Shop sediment data and invertebrate, frog, and egg data.
- c. BSAFs are from USEPA. 1999. Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities.
- d. Plant Uptake Factor (PUF) in (Mg COPC/Kg dry plant tissue)/(mg COPC/Kg dry sediment)
- e. Conservative assumption in absence of literature value.
- f. Values for DDT and DDT based on value for DDE as surrogate.
- g. Value for Total PCB based on value for Aroclor 1254 as surrogate.
- h. In the absence of a Grove Pond/ Plow Shop Pond derived BSAF or a literature value, the BSAF for invertebrates was used.

TABLE G-5
Background Maximum Exposure Point Concentrations

				Aquatic				
	Surface Water			Invertebrates	Frogs (mg/kg	Swallow Eggs	Plants (mg/kg	Plants (mg/kg
Chemical	(mg/L)	Sediment (mg/kg)	Fish (mg/kg ww)	(mg/kg ww) ^a	ww) ^a	(mg/kg ww) ^{a,b}	dw) ^c	$\mathbf{ww})^{\mathbf{d}}$
Inorganics								
Aluminum	7.20E-01	7.80E+03	7.80E+00	1.93E+00	7.10E+01	1.93E+00	3.12E+01	3.74E+00
Antimony	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	5.80E-04	1.10E+02	ND	1.20E+00	2.00E-01	1.20E+00	3.96E+00	4.75E-01
Barium	7.60E-03	9.20E+01	3.50E+00	3.39E+01	5.31E+00	3.39E+01	1.38E+01	1.66E+00
Beryllium	ND	1.10E+00	ND	9.90E-01	0.00E+00	9.90E-01	1.10E-02	1.32E-03
Cadmium	ND	1.30E+01	ND	2.86E-01	1.50E-01	0.00E+00	4.73E+00	5.68E-01
Chromium	2.00E-03	2.10E+01	8.40E-01	1.15E-02	1.52E-02	2.01E-03	1.58E-01	1.89E-02
Cobalt	7.20E-04	1.20E+01	ND	1.20E+01	1.20E+01	1.20E+01	1.20E+01	1.44E+00
Copper	3.00E-03	3.60E+01	5.10E-01	1.20E+00	7.77E-01	1.20E+00	1.44E+01	1.73E+00
Lead	3.50E-03	2.00E+02	ND	1.99E-01	5.18E-01	2.42E-01	9.00E+00	1.08E+00
Manganese	3.10E-01	6.90E+02	3.70E+01	8.28E+02	2.66E+01	8.28E+02	6.90E+02	8.28E+01
Mercury (inorganic)	ND	3.00E-01	1.50E-02	4.38E-04	9.88E-04	7.86E-03	1.13E-02	1.35E-03
Mercury (Methyl) ^{e,f}	NA	1.50E-02	2.85E-01	1.79E-02	5.62E-02	4.01E-01	2.06E-03	2.47E-04
Selenium	ND	ND	ND	ND	ND	ND	ND	ND
Thallium	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	1.30E-03	3.90E+01	ND	3.90E+01	3.01E-01	3.90E+01	3.90E+01	4.68E+00
Pesticides/PCBs								
4,4'-DDD	ND	5.00E-02	3.30E-02	4.75E-02	4.75E-02	4.75E-02	4.69E-04	5.62E-05
4,4'-DDE	ND	1.70E-01	2.80E-01	1.62E-01	1.62E-01	1.62E-01	1.59E-03	1.91E-04
4,4'-DDT	ND	7.20E-03	ND	6.84E-03	6.84E-03	6.84E-03	6.75E-05	8.10E-06
Total PCBs	ND	ND	ND	NA	NA	NA	NA	NA
SVOC								
Total PAH	NA	1.23E+01	NA	1.53E+01	1.53E+01	1.53E+01	2.47E-01	2.96E-02

NA indicates chemical was not analyzed in abiotic medium and cannot be estimated in tissue using bioaccumulation factors.

- a. Concentration estimated by multiplying maximum sediment concentration by BSAF in Table [G-4].
- b. Based on invertebrate EPCs in absence of BSAF for bird eggs.
- c. Concentration estimated by multiplying maximum sediment concentration by PUF in Table [G-4].
- d. The plant EPC been converted to wet weight from dry weight by multiplying by (1-%moisture), with % moisture assumed to equal 88%.
- e. MeHg concentration in sediment calculated from total Hg concentration using the assumption that 5% of Hg in sediment is MeHg.
- f. MeHg concentration in fish calculated from total Hg concentration using the assumption that 95% of Hg in fish is MeHg.

TABLE G-6
Maximum Background Uptake and Hazard Quotient Calculations - Raccoon

				EPCs					TRV (mg/	kg-d)		HQ
	Sediment	Surface Water	_	Invertebrates	Frog	Swallow Eggs						
Chemical	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Plants (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics												
aluminum	7.80E+03	7.20E-01	7.80E+00	1.93E+00	7.10E+01	1.93E+00	3.74E+00	181.38	1.93	19.30	94	9.4
Antimony								0.00	0.13	1.25	0.0	0.0
arsenic	1.10E+02	5.80E-04		1.20E+00	2.00E-01	1.20E+00	4.75E-01	2.64	0.13	1.26	21	2.1
barium	9.20E+01	7.60E-03	3.50E+00	3.39E+01	5.31E+00	3.39E+01	1.66E+00	6.00	5.10	15.30	1.2	0.4
Beryllium	1.10E+00			9.90E-01	0.00E+00	9.90E-01	1.32E-03	0.12	0.66	1.98	0.2	0.1
cadmium	1.30E+01			2.86E-01	1.50E-01	0.00E+00	5.68E-01	0.33	1.00	3.00	0.3	0.1
Cobalt	1.20E+01	7.20E-04		1.20E+01	1.20E+01	1.20E+01	1.44E+00	2.13	7.33	18.90	0.3	0.1
copper	3.60E+01	3.00E-03	5.10E-01	1.20E+00	7.77E-01	1.20E+00	1.73E+00	1.05	11.70	15.40	0.1	0.1
lead	2.00E+02	3.50E-03		1.99E-01	5.18E-01	2.42E-01	1.08E+00	4.62	8.00	80.00	0.6	0.1
manganese	6.90E+02	3.10E-01	3.70E+01	8.28E+02	2.66E+01	8.28E+02	8.28E+01	104.72	88.00	284.00	1.2	0.4
Mercury (Methyl)	1.50E-02		2.85E-01	1.79E-02	5.62E-02	4.01E-01	2.47E-04	0.04	0.03	0.16	1.2	0.2
selenium								0.00	0.20	0.33	0.0	0.0
Thallium					Ì			0.00	0.01	0.07	0.0	0.0
vanadium	3.90E+01	1.30E-03		3.90E+01	3.01E-01	3.90E+01	4.68E+00	4.96	0.21	2.10	24	2.4
svoc												+
PAH (Total)	1.23E+01			1.53E+01	1.53E+01	1.53E+01	2.96E-02	2.59	1.00	3.00	2.6	0.9

 $a.\ Uptake = (FIR*(EPC_{SD}*SD + EPC_{FI}*FI + EPC_{IN}*IN + EPC_{FR}*FR + EPC_{EG}*EG + EPC_{PL}*PL) + WIR*EPC_{SW})*AUF/BW$

Exposure para	meters as	presented	in Table X are the following:
Symbol	Value	Units	
BW	5.67	Kg	
FIR	1.43E+00	Kg/day	
FI	0.2	unitless	
IN	0.2	unitless	
FR	0.2	unitless	
EG	0.2	unitless	
PL	0.11	unitless	
SD	0.09	unitless	
WIR	0.468	L/d	
AUF	1	unitless	

TABLE G- 7
Maximum Background Uptake and Hazard Quotient Calculations - Mink

		EPCs			TRV (mg/kg-d)	ŀ	HQ.
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics								
aluminum	7.80E+03	7.20E-01	7.80E+00	12.06	1.93	19.30	6.25	0.62
arsenic	1.10E+02	5.80E-04		0.15	0.13	1.26	1.22	0.12
cadmium	1.30E+01			0.02	1.00	3.00	0.02	0.01
copper	3.60E+01	3.00E-03	5.10E-01	0.12	11.70	15.40	0.01	0.01
manganese	6.90E+02	3.10E-01	3.70E+01	6.12	88.00	284.00	0.07	0.02
Mercury (Methyl)	1.50E-02		2.85E-01	0.04	0.03	0.16	1.24	0.25
Thallium				0.00	0.01	0.07	0.00	0.00
Vanadium	3.90E+01	1.30E-03		0.05	0.21	2.10	0.26	0.03

a. Uptake=(FIR*(EPC_{SD}*SD+EPC_{FI}*FI)+WIR*EPC_{SW})

Exposure pa	rameters as p	resented in Ta	ble X are the f	following:	
Symbol	Value	Units			
BW	1.40	Kg			
FIR	1.96E-01	Kg/day			
FI	0.99	unitless			
SD	0.01	unitless			
WIR	0.111	L/d			
HR	2.24	Km shoreline			
AUF	1	unitless			

TABLE G-8
Maximum Background Uptake and Hazard Quotient Calculations - Belted

	EP	Cs		TRV (mg/l	(g-d)	Н	Q
Chemical	Surface Water (mg/L)	Fish (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics							
arsenic	5.80E-04		0.00006	5.14	12.48	0.000012	0.000005
lead	3.50E-03		0.00039	1.13	11.30	0.000341	0.000034
Mercury (Methyl)		2.85E-01	0.14	0.01	0.06	21.97	2.20
Pesticides/PCBs							
DDD		3.30E-02	0.02	0.01	0.14	1.16	0.12
DDE		2.80E-01	0.14	0.01	0.14	9.87	0.99
Total PCB			0	0.18	1.80	0	0

a. Uptake=(FIR*(EPC $_{FI}$ *FI)+WIR*EPC $_{SW}$)*AUF/BW

Exposure par	ameters as p	resented in T	able X are t	he followir	ng:
Symbol	Value	Units			
BW	0.15	Kg			
FIR	7.40E-02	Kg/day			
FI	1	unitless			
WIR	0.0165	L/d			
AUF	1	unitless			

TABLE G-9
Maximum Background Uptake and Hazard Quotient - Black Crowned Night Heron

			EPCs				TRV ((mg/kg-d)	l	HQ.
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Invertebrates (mg/kg)	Frog (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics	, , ,	,	, , ,	, , ,	0 , 0 ,	,				
aluminum	7.80E+03	7.20E-01	7.80E+00	1.93E+00	7.10E+01	48.60	109.70	329.10	0.44	0.15
Antimony						0.00	0.13	1.25	0.00	0.00
arsenic	1.10E+02	5.80E-04		1.20E+00	2.00E-01	0.71	5.14	12.48	0.14	0.06
Beryllium	1.10E+00			9.90E-01	0.00E+00	0.09	0.66	1.98	0.14	0.05
cadmium	1.30E+01			2.86E-01	1.50E-01	0.11	1.45	20.00	0.07	0.01
chromium	2.10E+01	2.00E-03	8.40E-01	1.15E-02	1.52E-02	0.19	1.00	5.00	0.19	0.04
Cobalt	1.20E+01	7.20E-04		1.20E+01	1.20E+01	2.17	7.61	18.34	0.29	0.12
copper	3.60E+01	3.00E-03	5.10E-01	1.20E+00	7.77E-01	0.41	47.00	61.70	0.01	0.01
lead	2.00E+02	3.50E-03		1.99E-01	5.18E-01	1.13	1.13	11.30	1.00	0.10
Mercury (inorganic)	3.00E-01		1.50E-02	4.38E-04	9.88E-04	0.00	0.45	0.90	0.01	0.00
Mercury (Methyl)	1.50E-02		2.85E-01	1.79E-02	5.62E-02	0.03	0.01	0.06	4.94	0.49
Thallium						0.00	0.0074	0.074		
vanadium	3.90E+01	1.30E-03		3.90E+01	3.01E-01	3.66	11.40	34.20	0.32	0.11
Pesticides/PCBs										
DDD	5.00E-02		3.30E-02	4.75E-02	4.75E-02	0.01	0.01	0.14	0.82	0.08
DDE	1.70E-01		2.80E-01	1.62E-01	1.62E-01	0.05	0.01	0.14	3.84	0.38
DDT	7.20E-03			6.84E-03	6.84E-03	0.00	0.01	0.14	0.09	0.01

 $a.\ Uptake = (FIR^*(EPC_{SD}^*SD + EPC_{FI}^*FI + EPC_{IN}^*IN + EPC_{FR}^*FR) + WIR^*EPC_{SW})^*AUF/BW$

Exposure pa	rameters as prese	nted in Table	X are the following:	
Symbol	Value	Units		
BW	0.88	Kg		
FIR	2.34E-01	Kg/day		
FI	0.33	unitless		
IN	0.33	unitless		
FR	0.33	unitless		
SD	0.02	unitless		
WIR	0.0396	L/d		
AUF	1	unitless		

TABLE G-10 Maximum Background Uptake and Hazard Quotient Calculations - Tree Swallow

No background data available for tree swallow stomach contents.

TABLE G-12
Background Average Exposure Point Concentrations

				Aquatic				
	Surface Water			Invertebrates	Frogs (mg/kg	Swallow Eggs	Plants (mg/kg	Plants (mg/kg
Chemical	(mg/L)	Sediment (mg/kg)	Fish (mg/kg ww)	(mg/kg ww) ^a	ww) ^a	(mg/kg ww) ^{a,b}	dw) ^c	ww) ^d
Inorganics								
Aluminum	7.20E-01	7.10E+03	3.80E+00	1.75E+00	6.47E+01	1.75E+00	2.84E+01	3.41E+00
Antimony	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	5.80E-04	8.25E+01	ND	8.97E-01	1.50E-01	8.97E-01	2.97E+00	3.56E-01
Barium	7.60E-03	8.25E+01	2.24E+00	3.04E+01	4.77E+00	3.04E+01	1.24E+01	1.49E+00
Beryllium	ND	1.25E+00	ND	1.13E+00	0.00E+00	1.13E+00	1.25E-02	1.50E-03
Cadmium	ND	1.20E+01	ND	2.64E-01	1.38E-01	0.00E+00	4.37E+00	5.24E-01
Chromium	2.00E-03	1.75E+01	7.47E-01	9.55E-03	1.27E-02	1.67E-03	1.31E-01	1.58E-02
Cobalt	7.20E-04	1.10E+01	ND	1.10E+01	1.10E+01	1.10E+01	1.10E+01	1.32E+00
Copper	3.00E-03	3.20E+01	4.33E-01	1.07E+00	6.90E-01	1.07E+00	1.28E+01	1.54E+00
Lead	3.50E-03	1.60E+02	ND	1.59E-01	4.14E-01	1.94E-01	7.20E+00	8.64E-01
Manganese	3.10E-01	5.75E+02	2.20E+01	6.90E+02	2.22E+01	6.90E+02	5.75E+02	6.90E+01
Mercury (inorganic)	ND	1.50E-02	9.33E-03	2.19E-05	4.94E-05	3.93E-04	5.63E-04	6.75E-05
Mercury (Methyl) ^{e,f}	NA	2.85E-01	1.77E-01	1.79E-02	1.07E+00	7.61E+00	3.90E-02	4.69E-03
Selenium	ND	ND	ND	ND	ND	ND	ND	ND
Thallium	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	1.30E-03	3.00E+01	ND	3.00E+01	2.32E-01	3.00E+01	3.00E+01	3.60E+00
Pesticides/PCBs							1	
4,4'-DDD	ND	5.00E-02	2.47E-02	4.75E-02	4.75E-02	4.75E-02	4.69E-04	5.62E-05
4,4'-DDE	ND	1.70E-01	1.63E-01	1.62E-01	1.62E-01	1.62E-01	1.59E-03	1.91E-04
4,4'-DDT	ND	7.20E-03	ND	6.84E-03	6.84E-03	6.84E-03	6.75E-05	8.10E-06
Total PCBs	ND	ND	ND	NA	NA	NA	NA	NA
SVOC								
Total PAH	NA	1.23E+01	NA	1.53E+01	1.53E+01	1.53E+01	2.47E-01	2.96E-02

NA indicates chemical was not analyzed in abiotic medium and cannot be estimated in tissue using bioaccumulation factors.

- a. Concentration estimated by multiplying average sediment concentration by BSAF in Table [G-4].
- b. Based on invertebrate EPCs in absence of BSAF for bird eggs.
- c. Concentration estimated by multiplying average sediment concentration by PUF in Table [G-4].
- d. The plant EPC been converted to wet weight from dry weight by multiplying by (1-%moisture), with % moisture assumed to equal 88%.
- e. MeHg concentration in sediment calculated from total Hg concentration using the assumption that 5% of Hg in sediment is MeHg.
- f. MeHg concentration in fish calculated from total Hg concentration using the assumption that 95% of Hg in fish is MeHg.

TABLE G-13
Average Background Uptake and Hazard Quotient Calculations -Raccoon

				EPCs					TRV (mg/l	kg-d)	HQ	
	Sediment	Surface Water	Fish	Invertebrates	Frog	Swallow Eggs		_				
Chemical	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Plants (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics												
aluminum	7.10E+03	7.20E-01	3.80E+00	1.75E+00	6.47E+01	1.75E+00	3.41E+00	164.94	1.93	19.30	85	8.5
Antimony								0.00	0.13	1.25	0.0	0.0
arsenic	8.25E+01	5.80E-04		8.97E-01	1.50E-01	8.97E-01	3.56E-01	1.98	0.13	1.26	16	1.6
barium	8.25E+01	7.60E-03	2.24E+00	3.04E+01	4.77E+00	3.04E+01	1.49E+00	5.34	5.10	15.30	1.0	0.3
Beryllium	1.25E+00			1.13E+00	0.00E+00	1.13E+00	1.50E-03	0.14	0.66	1.98	0.2	0.1
cadmium	1.20E+01			2.64E-01	1.38E-01	0.00E+00	5.24E-01	0.31	1.00	3.00	0.3	0.1
Cobalt	1.10E+01	7.20E-04		1.10E+01	1.10E+01	1.10E+01	1.32E+00	1.95	7.33	18.90	0.3	0.1
copper	3.20E+01	3.00E-03	4.33E-01	1.07E+00	6.90E-01	1.07E+00	1.54E+00	0.93	11.70	15.40	0.1	0.1
lead	1.60E+02	3.50E-03		1.59E-01	4.14E-01	1.94E-01	8.64E-01	3.69	8.00	80.00	0.5	0.0
manganese	5.75E+02	3.10E-01	2.20E+01	6.90E+02	2.22E+01	6.90E+02	6.90E+01	86.83	88.00	284.00	1.0	0.3
Mercury (Methyl)	2.85E-01		1.77E-01	1.79E-02	1.07E+00	7.61E+00	4.69E-03	0.45	0.03	0.16	14.2	2.8
selenium								0.00	0.20	0.33	0.0	0.0
Thallium								0.00	0.01	0.07	0.0	0.0
vanadium	3.00E+01	1.30E-03		3.00E+01	2.32E-01	3.00E+01	3.60E+00	3.82	0.21	2.10	18	1.8
svoc												
PAH (Total)	1.23E+01			1.53E+01	1.53E+01	1.53E+01	2.96E-02	2.59	1.00	3.00	2.6	0.9

 $a.\ Uptake = (FIR*(EPC_{SD}*SD+EPC_{FI}*FI+EPC_{IN}*IN+EPC_{FR}*FR+EPC_{EG}*EG+EPC_{PL}*PL) + WIR*EPC_{SW})*AUF/BW$

Exposure para	meters as	presented	in Table X are th	e following	j:
Symbol	Value	Units			
BW	5.67	Kg			
FIR	1.43E+00	Kg/day			
FI	0.2	unitless			
IN	0.2	unitless			
FR	0.2	unitless			
EG	0.2	unitless			
PL	0.11	unitless			
SD	0.09	unitless			
WIR	0.468	L/d			
AUF	1	unitless			

TABLE G-14
Average Background Uptake and Hazard Quotient Calculations - Mink

		EPCs	ī		TRV	(mg/kg-d)	l	IQ
Chemical	Sediment (mg/kg)	Surface Water (mg/L)	Fish (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics								
aluminum	7.10E+03	7.20E-01	3.80E+00	10.52	1.93	19.30	5.45	0.55
arsenic	8.25E+01	5.80E-04		0.12	0.13	1.26	0.92	0.09
cadmium	1.20E+01			0.02	1.00	3.00	0.02	0.01
copper	3.20E+01	3.00E-03	4.33E-01	0.11	11.70	15.40	0.01	0.01
manganese	5.75E+02	3.10E-01	2.20E+01	3.88	88.00	284.00	0.04	0.01
Mercury (Methyl)	2.85E-01		1.77E-01	0.02	0.03	0.16	0.78	0.16
Thallium				0.00	0.01	0.07	0.00	0.00
Vanadium	3.00E+01	1.30E-03		0.04	0.21	2.10	0.20	0.02

a. Uptake=(FIR*(EPC_{SD}*SD+EPC_{FI}*FI)+WIR*EPC_{SW})

Exposure pa	xposure parameters as presented in Table X are the following:								
Symbol	Value	Units							
BW	1.40	Kg							
FIR	1.96E-01	Kg/day							
FI	0.99	unitless							
SD	0.01	unitless							
WIR	0.111	L/d							
HR	2.24	Km shoreline							
AUF	1	unitless							

TABLE G-15
Average Background Uptake and Hazard Quotient Calculations - Belted Kingfisher

	EP	EPCs		TRV (mg/kg-d)		HQ	
Chemical	Surface Water (mg/L)	Fish (mg/kg)	Uptake ^a (mg/kg-d)	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics							
arsenic	5.80E-04		0.00006	5.14	12.48	0.000012	0.000005
lead	3.50E-03		0.00039	1.13	11.30	0.000341	0.000034
Mercury (Methyl)		1.77E-01	0.09	0.01	0.06	13.67	1.37
Pesticides/PCBs							
DDD		2.47E-02	0.01	0.01	0.14	0.87	0.09
DDE		1.63E-01	0.08	0.01	0.14	5.73	0.57
Total PCB			0	0.18	1.80	0	0

a. Uptake=(FIR*(EPC $_{FI}$ *FI)+WIR*EPC $_{SW}$)*AUF/BW

Exposure parameters as presented in Table X are the following:								
Symbol	Value	Units						
BW	0.15	Kg						
FIR	7.40E-02	Kg/day						
FI	1	unitless						
WIR	0.0165	L/d						
AUF	1	unitless						

TABLE G-16
Average Background Uptake and Hazard Quotient Calculations - Black-Crowned Night Heron

		EPCs						TRV (mg/kg-d)		HQ	
	Sediment	Surface Water		Invertebrates		Uptake ^a (mg/kg-					
Chemical	(mg/kg)	(mg/L)	Fish (mg/kg)	(mg/kg)	Frog (mg/kg)	d)	NOAEL	LOAEL	NOAEL	LOAEL	
Inorganics											
aluminum	7.10E+03	7.20E-01	3.80E+00	1.75E+00	6.47E+01	43.95	109.70	329.10	0.40	0.13	
Antimony						0.00	0.13	1.25	0.00	0.00	
arsenic	8.25E+01	5.80E-04		8.97E-01	1.50E-01	0.53	5.14	12.48	0.10	0.04	
Beryllium	1.25E+00			1.13E+00	0.00E+00	0.11	0.66	1.98	0.16	0.05	
cadmium	1.20E+01			2.64E-01	1.38E-01	0.10	1.45	20.00	0.07	0.00	
chromium	1.75E+01	2.00E-03	7.47E-01	9.55E-03	1.27E-02	0.16	1.00	5.00	0.16	0.03	
Cobalt	1.10E+01	7.20E-04		1.10E+01	1.10E+01	1.99	7.61	18.34	0.26	0.11	
copper	3.20E+01	3.00E-03	4.33E-01	1.07E+00	6.90E-01	0.36	47.00	61.70	0.01	0.01	
lead	1.60E+02	3.50E-03		1.59E-01	4.14E-01	0.90	1.13	11.30	0.80	0.08	
Mercury (inorganic)	1.50E-02		9.33E-03	2.19E-05	4.94E-05	0.00	0.45	0.90	0.00	0.00	
Mercury (Methyl)	2.85E-01		1.77E-01	1.79E-02	1.07E+00	0.11	0.01	0.06	17.55	1.75	
Thallium						0.00	0.0074	0.074			
vanadium	3.00E+01	1.30E-03		3.00E+01	2.32E-01	2.81	11.40	34.20	0.25	0.08	
Pesticides/PCBs										+	
DDD	5.00E-02		2.47E-02	4.75E-02	4.75E-02	0.01	0.01	0.14	0.77	0.08	
DDE	1.70E-01		1.63E-01	1.62E-01	1.62E-01	0.04	0.01	0.14	3.11	0.31	
DDT	7.20E-03			6.84E-03	6.84E-03	0.00	0.01	0.14	0.09	0.01	

 $a.\ Uptake = (FIR*(EPC_{SD}*SD+EPC_{FI}*FI+EPC_{IN}*IN+EPC_{FR}*FR) + WIR*EPC_{SW})*AUF/BW$

Exposure par	Exposure parameters as presented in Table X are the following:							
Symbol	Value	Units						
BW	0.88	Kg						
FIR	2.34E-01	Kg/day						
FI	0.33	unitless						
IN	0.33	unitless						
FR	0.33	unitless						
SD	0.02	unitless						
WIR	0.0396	L/d						
AUF	1	unitless						

TABLE G-17 Average Background Uptake and Hazard Quotient Calculations - Tree Swallow

No background data available for tree swallow stomach contents.

Lockheed Martin Information Technologies Environmental Services Assistance Team, Region I

The Wannalancit Mills, 175 Cabot Street, Suite 415, Lowell, MA 01854

Phone: 978-275-9730 Fax: 978-275-9489

Office of Environmental Measurement and Evaluation US EPA - Region I
11 Technology Drive
North Chelmsford, MA 01863

July 21, 2005

To: Mr. Bart Hoskins, EPA TOPO Via: Mr. Louis Macri, Program Manager

TDF No. 1807 C Task Order No. 21 Task No. 2

Subject: Comparison of the 1994 and 2005 Sediment Toxicity Tests Performed at Plow Shop Pond

Dear Mr. Hoskins:

Environmental Services Assistance Team (ESAT) members, Melissa Grable, Stan Pauwels, and Rayann Richard have summarized and compared the findings of two sediment toxicity tests performed in 1994 and 2005 using surface water and sediment samples collected at the Former Fort Devens Superfund Site in Ayer, MA.

The task was requested by Bart Hoskins, the Task Order Project Officer (TOPO), and was authorized under Technical Direction Form (TDF) No. 1807 B. This TDF was modified on June 14, 2005 to request that ESAT (1) attend a meeting to discuss the plans for the final baseline ecological risk assessment, and (2) review recent toxicity test results from 2005 for comparison against toxicity tests performed in 1994 by ABB Environmental Services. Inc.

The TDF was further modified on June 21, 2005 requesting ESAT to (1) develop one or more maps displaying toxicity testing results in a readily-interpreted form, and (2) develop a narrative text, and summary tables to compare the toxicity data sets.

The TDF was modified one last time on July 14, 2005 (TDF 1807C) requesting ESAT to compile the 2005 surface water and 2004 and 2005 sediment sample location latitude and longitude values and chemical data, along with fish tissue chemical data from 2004 into one excel file. The file was saved to G:\ALLSHARE\ESATBIO\DEVENS\TOX TESTS\Master Sample Location and Data.xls

Should you have any questions or comments, please contact Rayann Richard of ESAT-Lockheed Martin at (617)-918-8648, located in the EPA/OEME Biology Section, North Chelmsford, MA.

Sincerely,

Lockheed Martin Information Technologies

Rayann Richard Environmental Scientist

Comparison of The 1994 and 2005 Sediment Toxicity Tests Performed at Plow Shop Pond The former Fort Devens Superfund Site Ayer, Massachusetts

Submitted to the:

Office of Environmental Measurement and Evaluation
United States Environmental Protection Agency - New England
11 Technology Drive
North Chelmsford, Massachusetts 01863

ESAT - Region I Lockheed Martin Information Technologies The Wannalancit Mills, 175 Cabot Street, Suite 415 Lowell, Massachusetts 01854

> TDF No. 1807 C Task Order No. 21 Task No. 2

> > July 21, 2005

1.0 GENERAL INTRODUCTION

On June 7, 2005, EPA issued TDF No.1807 requesting an ESAT member to attend an afternoon base realignment and closure (BRAC) cleanup team (BCT) meeting regarding the Devens Ponds site on June 9, 2005 and an evening meeting in the evening of June 9, 2005 to present a powerpoint summary of past ecological risk activities and recent toxicity testing in the ponds.

The TDF was modified on June 14, 2005 (TDF 1807A), requesting ESAT to (1) participate in a conference call to discuss plans for the final baseline ecological risk assessment for the Devens Ponds to be performed by Gannett Fleming and (2) review the recent toxicity test results for comparison against the findings of toxicity testing performed in 1994 by ABB Environmental Services, Inc.

The TDF was further modified on June 21, 2005 (TDF 1807B), requesting that ESAT (1) develop one or more maps displaying the results of all available sediment toxicity testing in Plow Shop Pond in a readily-interpreted format and develop a narrative text and summary tables to compare the various data sets.

The TDF was modified one last time on July 14, 2005 (TDF 1807C) requesting ESAT to compile the 2005 surface water and 2004 and 2005 sediment sample location latitude and longitude values and chemical data, along with fish tissue chemical data from 2004 into one excel file. The file was saved to G:\ALLSHARE\ESATBIO\DEVENS\TOX TESTS\Master Sample Location and Data.xls

The remainder of this technical memorandum is organized as follows: section 2 summarizes the sediment toxicity test procedures for the 1994 and 2005 tests, section 3 summarizes the results of the these sediment toxicity tests, section 4 provides a summary and conclusions, and section 5 provides references.

2.0 SUMMARY OF 1994 AND 2005 SEDIMENT TOXICITY TEST PROCEDURES

Two 10-day sediment toxicity tests (September 1994 and February 2005) were performed on sediment samples collected from Plow Shop Pond. Both tests evaluated the potential toxicity of sediments to aquatic organisms by conducting exposures using two freshwater invertebrates the amphipod, *H. azteca* and the insect, *C. tentans*. The following sections (2.1 and 2.2) describe the 1994 and 2005 sediment toxicity test procedures. **Table 1** summarizes the differences between the 1994 and 2005 sediment toxicity test procedures.

2.1 Sediment Toxicity Test - 1994

In September of 1994, 22 sediment samples (SHD-94-01X through SHD-94-22X) were collected from Plow Shop Pond (**Figure 1**). Sediment collected from Strohs Folly Brook in Wareham, MA was used as both the reference and control sample, referred to as the reference control sample. The overlying water used for all of the test and reference control samples was surface water collected from Plow Shop Pond. Before starting the test, all sediment samples were passed through a 2.0 mm stainless steel sieve to remove rocks, debris, and large clumps of sediment. The sediment toxicity test consisted of 10-day exposures using *H. azteca* and *C. tentans*. Biological observations and physical characteristics of the test solutions were recorded at test initiation and at each subsequent 24-hour interval. On renewal days, water quality measurements were performed on old and new test and reference control solutions. Hardness, alkalinity, and specific conductivity were measured at test initiation and termination on composite samples of overlying water from each test and reference control sample.

2.1.1 C. tentans

The 10-day *C. tentans* test evaluated survival and growth of 8-12 day old *C. tentans* larvae exposed to bulk sediment collected from Plow Shop Pond. The toxicity test was conducted according to the standard test procedures described in ASTM, "Guideline for Conducting Sediment Toxicity Tests with

Freshwater Invertebrates," (ASTM, 1993). Second instar *C. tentans* larvae were obtained from Springborn Laboratories, Inc. (SLI) cultures.

C. tentans larvae were introduced into polypropylene centrifuge tubes that contained 7.5 grams of wet sediment and 47 mL of overlying water. Fifteen replicates, each containing one *C. tentans*, were maintained for each sediment sample. The test was conducted in a temperature-controlled water bath at 22 ± 1 °C. Renewal of the overlying water occurred once daily, by carefully siphoning off about 75% of the overlying water and replacing it with fresh Plow Shop Pond water. The organisms were fed 0.1 mL of a suspension of finely-ground flaked fish food. Survival was determined after ten days by sieving the sediment from each test replicate and removing the surviving organisms. An analytical balance was used to weigh the surviving *C. tentans* after the organisms had been dried at 60°C for 24-hours.

Survival at test termination for each test sample was statistically compared to the performance of the reference control sample. A Fisher's Exact test was used to determine if survival was significantly different from the reference control. Survival was only analyzed for those site samples in which mean survival was less than that measured in the reference control sample. Growth was quantified as the percent growth change in the test samples relative to the reference control. The Toxicity Screening Report (ABB, 1995) did not state which statistical test was used to determine if change was significant.

2.1.2 H. azteca

The 10-day *H. azteca* test only evaluated survival of the test organisms exposed to bulk sediment samples collected from Plow Shop Pond. The toxicity test was based on standard procedures described in the 1993 ASTM "Guide for Conducting Sediment Toxicity Tests with Freshwater Invertebrates." *H. azteca* larvae (7-10 days old) were obtained from SLI cultures.

H. azteca larvea were introduced into 1-Liter beakers containing 200 mL of sediment and approximately 800 mL of overlying Plow Shop Pond surface water. Five replicates, each containing 20 H. *azteca*, were maintained for each sediment sample. The test was conducted in a temperature-controlled water bath at 20 ± 1 °C. The overlying water was renewed three times a week, by removing about 75% of the overlying water and replacing it with fresh Plow Shop Pond surface water. Every day, the H. *azteca* test vessels were fed a combination of 100 μ l Tetramin Flake Fish Food and 300 μ l Trout Chow suspension. Survival was determined at the end of 10 days by sieving the sediment from each test vessel to remove the surviving H. *azteca*.

Survival in each test sample was statistically compared to the reference control organisms to establish significance. Results were first analyzed using a t-test. Welch's t-test was used if different variances were observed. All statistically analyses were performed at the 95% level of certainty.

2.2 Sediment Toxicity Test - 2005

In February of 2005, a sediment toxicity test was conducted using 11 sediment samples from Plow Shop Pond, 3 sediment samples from Grove Pond, and 1 sediment sample from Flannagan Pond (reference location). The sediment toxicity test were performed in the Sediment Toxicity Testing System (STTS) at the Office of Environmental Measurement and Evaluation (OEME) laboratory.

Each test vessel consisted of a 300-mL glass beaker with Nitex-covered notched openings, designed for a flow-through system. Eight replicates per treatment were tested. Each vessel received about 100 mL of sediment, and 175 mL of overlying water. Artificial sediment was used for the laboratory control. Ninety mg CaCO₃ /Liter hardness process water (HPW) was used as overlying water. Prior to starting the test, the beakers received first the sediment and then the 90 HPW was added. They were left to sit overnight before introducing the organisms. Hardness and alkalinity was checked by titration with each new batch of 90 HPW prepared.

2.2.1 C. tentans and H. azteca

Ten second to third instar larval stage organisms (11-12 days old for *C. tentans* and 7-10 days old for *H. azteca*) were randomly introduced to each beaker. The organisms were carefully pipetted, keeping each one completely submerged in water from holding tray to test chamber. Only the most

healthy and active organisms were selected for the test. The organisms were maintained throughout the 10-day exposure period at $23 \pm 1^{\circ}$ C in the STTS with a 16:8 hour light/dark cycle using cool-white fluorescent lights. Water renewals occurred between two and four times daily using the automatic renewal system associated with the STTS. The number of renewals was based on dissolved oxygen (DO) readings and discussions with the TOPO. All organisms were fed once a day after the morning renewal. Each *H. azteca* replicate was fed 1.0 mL of a yeast-alfalfa-trout chow mixture (YAT). Each *C. tentans* replicate was fed 1.5 mL of 4 g/L TetShake (4 g Tetramin flakes/1L distilled deionized water).

3.0 SUMMARY OF 1994 AND 2005 SEDIMENT TOXICITY RESULTS

Figure 1 summarizes the results from the 1994 and 2005 sediment toxicity test reports. This figure shows the survival and growth for the *H. azteca* and *C. tentans* exposed to sediments from Plow Shop Pond. Toxic responses were observed near Shepley's Hill Landfill (especially Red Cove) and across from the former railroad roundhouse. In general, the sediment in the northern and central portion of the pond, across from the peninsula between Red Cove and the former railroad roundhouse, and by the outlet elicited less or no toxic responses. Also, *H. azteca* was consistently more sensitive than *C. tentans*.

3.1 The Shepley's Hill Landfill

Along the shoreline adjacent to the Shepley's Hill Landfill and within Red Cove, the *H. azteca* growth was adversely affected in the 2005 samples (P-sed-11, P-sed-3, P-sed-4, P-sed-2 and P-sed-1) and significant mortality was observed in two 1994 samples (SHD-94-13X and SHD-94-07X). The exact cause of toxicity is not known, but it likely due to high concentrations of arsenic measured in that general area (See **Figure 2**).

The *C. tentans* did not demonstrate any adverse affects to sediment samples taken near the Shepley's Hill Landfill or in Red Cove. One possible explanation for the lack of response in *C. tentans* is that *H. azteca* may be more sensitive to metals such as arsenic. A toxicity study performed using metal-contaminated sediment from the Upper Clark Fork River in Montana, determined that *H. azteca* were more sensitive to metal contaminants than *C. riparius*, rainbow trout, and *Daphnia magna* (Kemble, 1994).

3.2 The Former Railroad Roundhouse

Significant mortality *in H. azteca* was observed in three samples (SHD-94-01X, SH-94-09X, and P-sed-9) along the shoreline near the former railroad roundhouse. Significant *C. tentans* mortality was observed in two samples (SH-94-09X, and P-sed-9) and significant *C. tentans* and *H. azteca* growth reduction was observed in the one sample (P-sed-9). The exact cause of toxicity is not known but is likely due to high PAH concentrations measured in this area (See **Figure 3**).

The significant toxic responses by both organisms at the P-sed-9, which is the closest sample to the former railroad roundhouse, strongly suggests that contaminants associated with the former railroad roundhouse are present in the sediment.

3.3 Culvert

Figure 1 indicates, that one sediment sample, approximately 300 feet southwest of the culvert, affected *H. azteca* in 1994 (SHD-94-10X). In 2005, a sample collected about half-way between the culvert and SHD-94-10X, did not have adverse effects on *H. azteca*l. The reason(s) for the two different responses is not known. It may mean that (1) the contamination causing the *H. azteca* toxicity in SHD-94-10X did not come from the direction of culvert, (2) the contamination may be an isolated source, (3) the contamination may be coming from the former railroad roundhouse, or (4) the 1994 and 2005 sediment samples differ spatially and temporally.

4.0 SUMMARY AND CONCLUSIONS

The 1994 and 2005 sediment toxicity test results for Plow Shop Pond were reviewed and compared. The major trends can be summarized as follows:

- *H. azteca* showed a significant toxic response in 1994 survival and 2005 growth and survival when exposed to sediments collected near the Shepley's Hill Landfill and within Red Cove.
- *H azteca* and *C. tentans* showed a significant toxic response in 1994 survival and 2005 growth and survival when exposed to sediments collected near the former railroad roundhouse.
- There was no consistent pattern of toxicity in the two benthic species exposed to sediment collected elsewhere in Plow Shop Pond.

5.0 REFERENCES

ABB Environmental Services Inc, "Fort Devens Feasibility Study for Group 1A Sites – Draft Plow Shop Pond and Grove Pond Sediment Evaluation," October 1995.

Kemble, N.E, et. al. "Toxicity of Metal-Contaminated Sediments From the Upper Clark Fork River, Montana, to Aquatic Invertebrates and Fish in Laboratory Exposures," December 1991, *Environmental Toxicology and Chemistry*, pg 1985-1997.

American Society for Testing and Materials (AMST), "Standard Guide for Conducting Sediment Toxicity Test with Freshwater Invertebrates. 1994, Volume 11.04 Designation: E1383-94 pgs. 1196-1225.

Table 1. Differences in between the 1994 and 2005 Sediment Toxicity Test Procedures

Year	Introduction Age	Replicates	Organisms er Replicate	Amount of Sediment	Temp	Number of Renewals	Type of Overlying Water	Feeding Schedule	Reference Location	Statistical Analysis
	Int	Ä.	Org	Āø			. 0	Ξ 0	ъ.	S 4
						. tentans				
1994	8-12 days	15	1	7.5 g	22 <u>+</u> 1° C	One Daily renewal	Surface water from Plow Shop Pond	0.1 mL Tetramin shake daily (6g/L)	Stroh Folly Brook in Wareham, MA	Fisher's Exact test
2005	11-12 days	8	10	100 ml of semi- processed sediment ⁺	23 <u>+</u> 1° C	2-4 daily renewals	90 mg CaCO₃ /Liter hardness process water	1.5 ml of Tetramin Shake daily (4g/L)	Flannagan Pond in Ayer, MA	EPA Decision Tree*
					F	l. azteca				
1994	7-10 days	5	20	200 ml of sieved sediment	20 <u>+</u> 1° C	3 weekly renewals	Surface water from Plow Shop Pond	100 u/L fish flakes and 300 u/L Trout Chow daily [#]	Stroh Folly Brook in Wareham, MA	t-test or Welch's t-test
2005	7-10 days	8	10	100 ml of semi- processed sediment ⁺	23 <u>+</u> 1° C	2-4 daily renewals	90 mg CaCO ₃ /Liter hardness process water	1.0 ml of a yeast-alfalfa- trout chow mixture daily	Flannagan Pond in Ayer, MA	EPA Decision Tree*

⁺ Removed sticks, rocks, and visible indigenous and predatory organisms.
- Trout Chow suspension was a combination of Salmon trout food (50g) and dehydrated alfalfa (10g) mixed with dilution water (2L).
* Following the EPA Decision Tree the following types of statistical analyses were used when appropriate: Dunnett's Multiple Comparison Test, Steel's Many One Rank Test, Bonferroni-Adjusted t-Test, and Bonferroni-Adjusted Wilcoxon Rank Sum Test

Table 2. Summary of Sediment Effect Concentrations for Arsenic

Fort Devens Superfund Site

Aver, MA

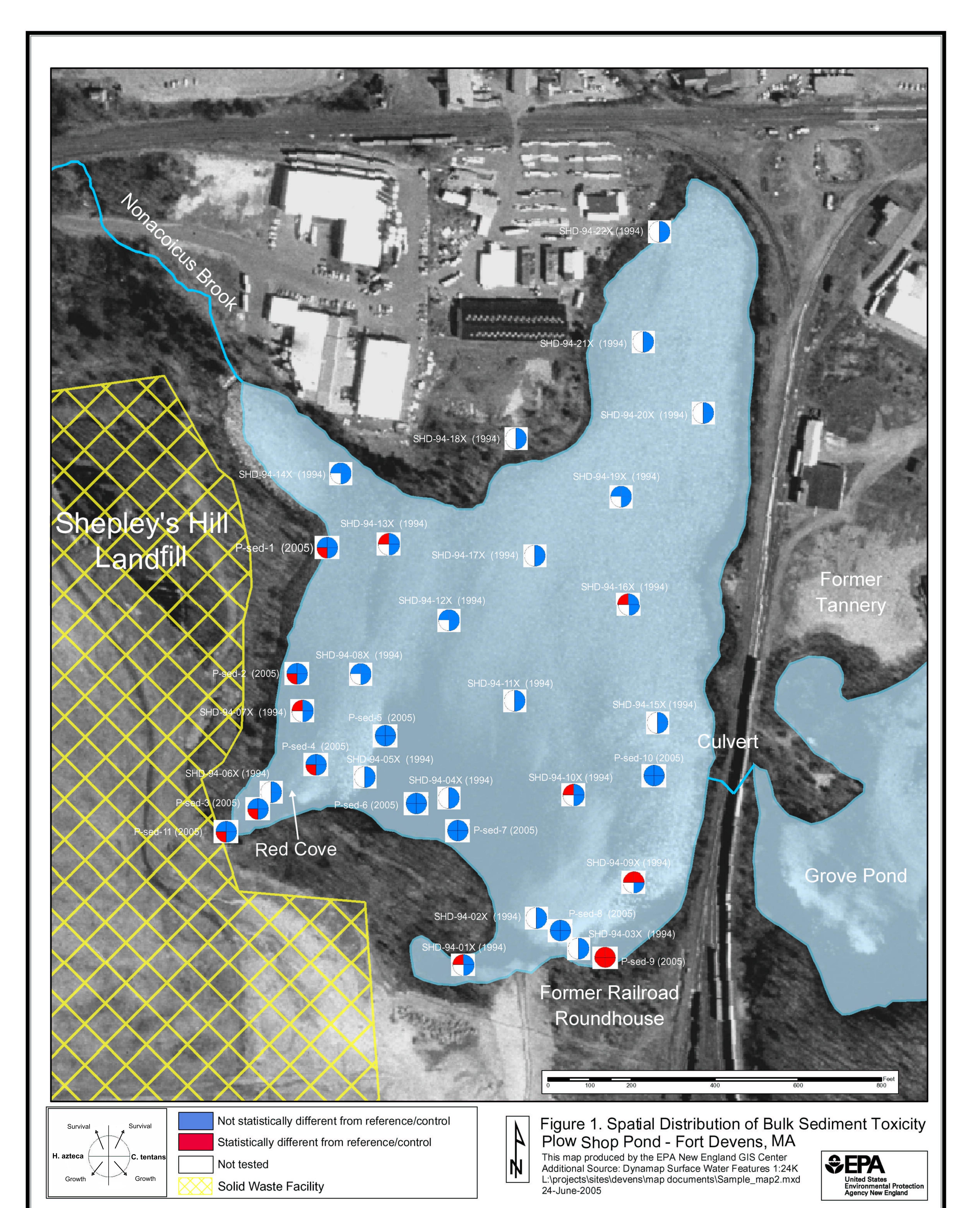
		ĺ	Toot		
		- .	Test		• • •
	Sample	Test	Length		Concentration
Analyte	Туре	Organism	(days)	SEC value	(ng/g = mg/kg)
Arsenic	BT	C. riparius	14	ERL	32000
Arsenic	BT	C. riparius	14	ERM	57000
Arsenic	BT	C. riparius	14	TEL	21762
Arsenic	BT	C. riparius	14	PEL	54022
Arsenic	BT	C. riparius	14	NEC	404000
Arsenic	BT	H. azteca	14	ERL	12100
Arsenic	BT	H. azteca	14	ERM	33000
Arsenic	BT	H. azteca	14	TEL	11245
Arsenic	BT	H. azteca	14	PEL	39466
Arsenic	BT	H. azteca	14	NEC	92900
Arsenic	BT	H. azteca	28	ERL	13100
Arsenic	BT	H. azteca	28	ERM	49600
Arsenic	BT	H. azteca	28	TEL	10798
Arsenic	BT	H. azteca	28	PEL	48385
Arsenic	BT	H. azteca	28	NEC	102000
Arsenic	BS	H. azteca	28	ERL	7400
Arsenic	BS	H. azteca	28	ERM	24800
Arsenic	BS	H. azteca	28	TEL	3332
Arsenic	BS	H. azteca	28	PEL	16366
Arsenic	BS	H. azteca	28	NEC	23800

Notes:

BT = Total extraction of sediment

BS = Weak acid digestion of sediment

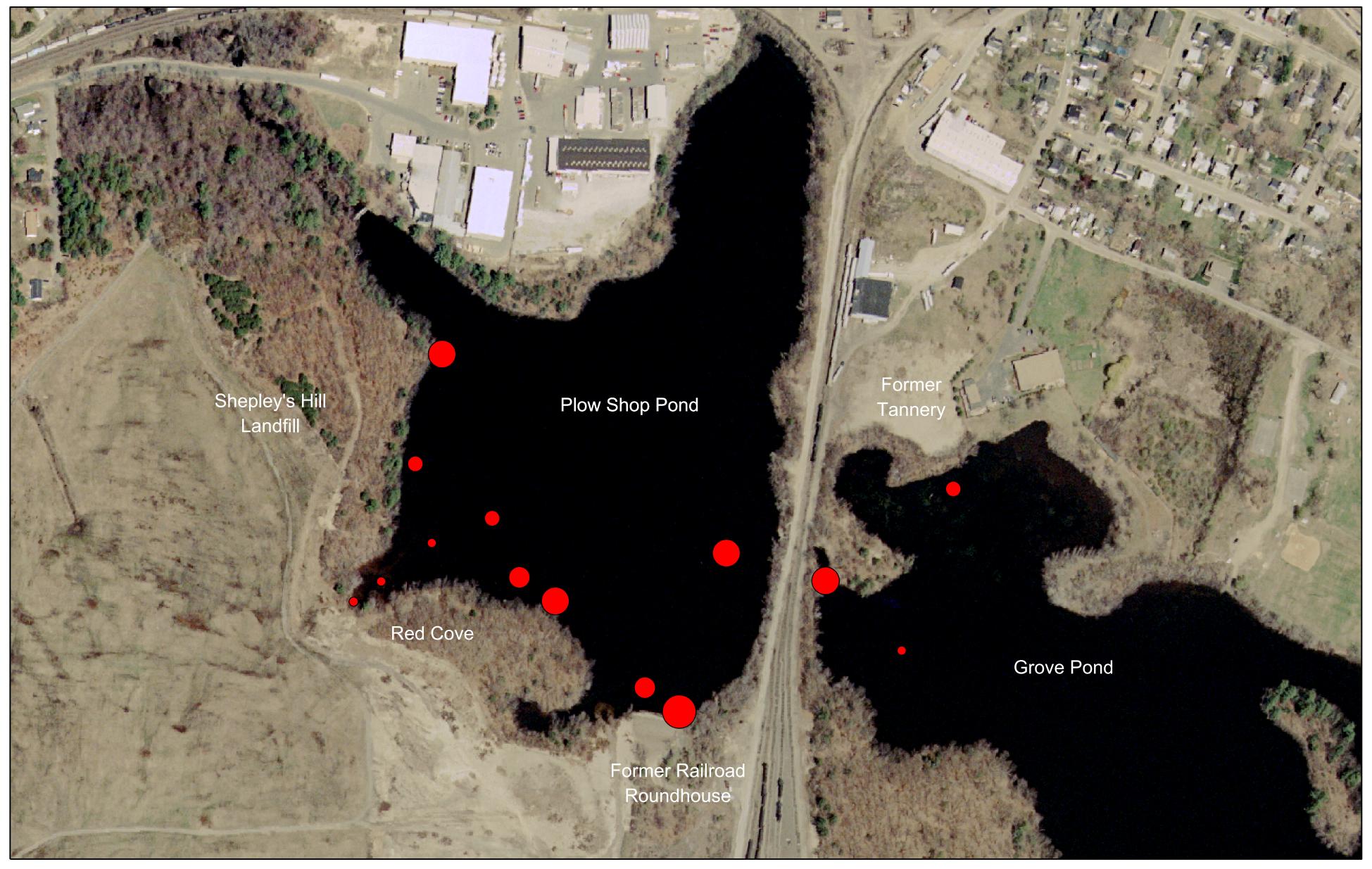
ERL = Effect Range Low


ERM = Effect Range Median

TEL = Threshold Effect Level

PEL = Probable Effect Level

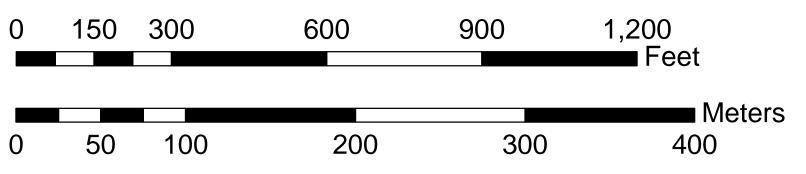
NEC = No Effect Concentration

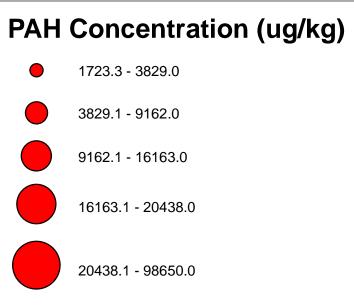

http://www.cerc.usgs.gov/pubs/sedtox/sec.htm

Collected in 2004 in Plow Shop and Grove Ponds Shepley's Hill Landfill Plow Shop Pond Grove Pond Former Railroad Roundhouse devensedsmarch04_mb_edit Events ARSENIC 941 - 2000 1,020 1,530 2,040 Feet 2001 - 3900 101 - 170 ■ Meters 171 - 370 320 480 80 160 640 3901 - 6800 O non-detect

Figure 2. Relative Arsenic Concentrations Measured in Sediment Samples

Collected in 2004 in Plow Shop and Grove Ponds





Created by: EPA Region 1 GIS Center
Data Source(s): MassGIS Color Digital Orthophoto;
PAH Concentration Data Capture by ESAT
Location: L:\Projects\Sites\devens\map
documents\devens_PAH.mxd
Date: 13-July-2005

Figure 3. Relative PAH Concentrations Measured in Sediment Samples Collected in 2005

Fort Devens Superfund Site Ayer, MA

Shepley's Hill Landfill Plow Shop Pond Grove Pond Former Railroad Roundhouse devensedsmarch04_mb_edit Events 1601 - 2700 CHROMIUM 2701 - 5100 0 11 - 76 1,020 2,040 Feet 1,530 O 77 - 190 5101 - 25000 0 191 - 690 Meters 640 691 - 1600 320 160 480 25001 - 52000 O non-detect

Figure 4. Relative Chromium Concentrations in Plow Shop and Grove Ponds