2008 Annual Report Shepley's Hill Landfill

Devens, Massachusetts

Agency for the Army BRAC ENVIRONMENTAL Box 100, Devens, Massachusetts

Contract Number W91ZLK-05-D-0009 Task Order - 0006

d West, Suite 340)1752

270 · Fax: 508-229-7737

TRANSMITTAL LETTER

33 Boston Post Road West Marlborough, MA 01752 508-229-2270 508-229-7737

DATE: 18 September 2009

5404.006.COR.026

TO:	COPIES:
Ginny Lombardo, USEPA	(3)
David Chaffin, MassDEP	(2)
Hui Liang, MassDEP	(2)
Ron Ostrowski, MassDevelopment	(1)
Deborah Gevalt, Haley & Aldrich, Inc.	(1)
Julia Corenzwit, (RAB Co-Chair)	(1)
Laurie Nehring, PACE	(1)
Richard Doherty, Engineering & Consulting Resources, Inc.	(1)
Town of Ayer Board of Health	(1)

Subject:

FINAL 2008 Annual Report -

Shepley's Hill Landfill and Treatment Plant, Long-Term Monitoring and O&M Services Contract Number W91ZLK-05-D-009, Task Order 0006

On behalf of the US Army BRAC Environmental Office at Devens, ECC is pleased to provide the *FINAL 2008 Annual Report – Shepley's Hill Landfill and Treatment Plant, Long-Term Monitoring and O&M Services.* This 2008 Annual Report discusses the operation and maintenance (O&M) of the existing groundwater extraction, treatment and discharge system, groundwater monitoring, and landfill monitoring and maintenance for the year 2008.

Sincerely,

Fred Santos, PG Project Manager

CC:(4)Robert J. Simeone, BRAC(1)William Brawner, BRAC(1)Mary Ellen Iorio, USACE(3)Christopher Abate, AMEC(1)ECC Project File(1)

2008 Annual Report Shepley's Hill Landfill

Devens, Massachusetts

September 2009

Prepared for:

Army Contracting Agency

for

Department of the Army BRAC ENVIRONMENTAL

30 Quebec Street, Box 100 Devens, Massachusetts

Contract Number W91ZLK-05-D-0009 Task Order - 0006

Prepared by:

ECC 33 Boston Post Road West Marlborough, MA 01752 Telephone: 508-229-2270 Facsimile: 508-229-7737

2008 Annual Report

Shepley's Hill Landfill and Treatment Plant Long-Term Monitoring and O&M Services Former Fort Devens, Massachusetts

September 2009

I hereby certify that the enclosed Annual Report, shown and marked in this submittal, is that proposed to be incorporated with Contract Number W91ZLK-05-D-0009 Task Order -0006. This Annual Report complies with the Performance Work Statement and is being submitted for Government approval.

Reviewed and Approved by:

Program Manager

Fred Santos 2009.09.17 16:31:27 -04'00'

Project Manager

Accepted by:

Contracting Officer's Representative

Date

Date

9/18/09

Date

EXEC	UTIVE	SUMMARYES-1
1.0	INTR	ODUCTION
1.1	Back	(ground
1.2	5-Ye	ear Review Status
1.3	Reg	ulatory Context 1-3
1.4	Obje	octives
1.5	Rep	ort Organization
2.0	LAN	DFILL MAINTENANCE AND MONITORING
2,1	Main	ntenance
2.2	Insp	ection 2-1
2	2.2.1	Recommendations
2.3	Land	fill Gas Monitoring
2	2.3.1	Perimeter Gas Monitoring
2	2.3.2	Landfill Gas Vent Results
3.0	ARSI	ENIC TREATMENT PLANT OPERATIONS, MAINTENANCE AND MONITORING3-
3,1	Ope	rations
3	8.1.1	System Description
3	3.1.2	System Efficiency
3.2	Mair	ntenance

3.2.1	Air Compressor Repair and Oil Upgrade
3.2.2	Microfilter Strainer Housing Replacement and Bypass
3.2.3	Chlorine Dioxide Control Valve and Actuator
3.2.4	Repair and Re-Piping of Effluent Pump P-511
3.2.5	Wellfield Maintenance
3.3 Mor	nitoring
3.3.1	Influent Inorganic Sampling
3.3.2	Effluent Arsenic Monitoring
3.3.3	Other Sampling Results
3.3.4	Discharge Permit Modification
3.4 Eva	luation of Treatment Plant Capacity
3.4.1	Chlorine Dioxide Feed Pump
3.4.2	CIP Frequency
3.4.3	Lack of Sufficient Hot Water for CIPs
3.4.4	FBRO Pumpout
3.4.5	Increased Sidestream Volume
3.5 Rec	ommendations
3.5.1	Upgrade Chlorine Dioxide Feed Pump
3.5.2	Increase System Retention Time

3	3.5.3	Direct Discharge of Sidestream Volume
з	8.5.4	Sufficient Hot Water Heater
3	8.5.5	Evaluate Alternative Filtration Options
4.0	GROU	JNDWATER MONITORING 4-1
4.1	Grou	ndwater Elevations
4.2	Geod	themical Results
4	1.2.1	Laboratory
4	.2.1.1	Arsenic Results
4	.2.1.2	Other COCs Results
4	.2.2	Field Parameters
4.3	Prop	osed Monitoring Program Optimization 4-5
5.0	SYST	EM PERFORMANCE METRICS AND ASSESSMENT
5.1	Hydr	aulic Capture Assessment 5-2
E	5.1.1	Gradient Vector Analysis 5-2
5	5.1.2	Capture Zone Width Calculation
£	5.1.3	Drawdown Assessment
5	5.1.4	Comparison to Numerical Model Results
5.2	Geod	chemical Monitoring Assessment
5	5.2.1	Advective Travel Time Analysis

5	.2.2	Geochemical Assessment	5-7
5.3	Perfo	ormance Assessment Summary	5-8
6.0	CONC	CLUSIONS AND RECOMMENDATIONS	6-1
6.1	Conc	lusions	6-1
6.2	Reco	ommendations	6-2
7.0	REFE	RENCES	7-1

-

TABLES

Table 1-1 Contaminants of Concern Cleanup Levels Table 3-1 Operations Summary January-December 2008 Table 3-2 Monthly Discharge Totals Table 3-3 Filter Bottom Rolloff Pumpout History Table 3-4 As/Fe/Mn Influent Concentrations Table 3-5 Monthly Effluent Sampling Results Table 3-6 Quarterly Effluent Sampling Results Table 3-7 Annual Effluent Sampling Results Table 3-8 Annual Influent VOC Sampling Results Table 4-1 Long Term Monitoring Network Table 4-2 Site-Wide Groundwater Elevation Surveys Table 4-3 Groundwater Analytical Results Table 4-4 In-Situ Water Quality Monitoring Results Table 4-5 Summary of Historic Arsenic Concentrations Table 5-1 Summary of Revised System Performance Assessment Metrics and Results Table 5-2 Groundwater Elevations 2005-2008 Table 5-3 Groundwater Model Mass Balance Comparison

FIGURES

Figure 1-1Former Fort Devens Vicinity and Shepley's Hill LandfillFigure 3-1Iron and Total As/Fe/Mn Influent ConcentrationsFigure 4-1LTMMP Well Network and Sampling FrequencyFigure 4-2Groundwater Elevations April 16, 2008Figure 4-3Groundwater Elevations September 30, 2008Figure 4-4Arsenic Concentrations April 2007 through October 2008

Figure 5-1	Horizontal Hydraulic Gradient Vectors: October 15, 2007, April 16, 2008,
	and September 30, 2008
Figure 5-2	Correlation Between Long Term Average and Predicted Groundwater
	Elevations: SHL005 Model
Figure 5-3	Correlation Between Observed (2/25 to 3/3/08) and Predicted Aquifer
	Drawdown: SHL005 Model
Figure 5-4	Comparison of Revised Model Prediction to Drawdown Observed During
	February 2008 System Shutdown
Figure 5-5	Model Predicted Capture Zones
Figure 5-6	N-S Cross-section through Extraction Wellfield with Projected Capture
	Zone Particle Tracks
Figure 5-7	Model Predicted Groundwater Travel Times

APPENDICES

- Appendix A Landfill Inspection Report
- Appendix B Landfill Gas Results
- Appendix C Field Forms
- Appendix D Analytical Data Validation Reports
- Appendix E Arsenic Trends
- Appendix F Agency Comments and Army Response

ACRONYMS AND ABBREVIATIONS

AMEC	AMEC Earth & Environmental Inc.
AOC	Area of Concern
AR	Annual Report
ATP	Arsenic Treatment Plant
BEC	Base Environmental Coordinator
BCT	BRAC Cleanup Team
bgs	Below Ground Surface
BRAC	Base Re-alignment and Closure
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
cfd	Cubic Feet per Day
CFR	Code of Federal Regulations
CIP	Clean-in-place
CMR	Code of Massachusetts Regulations
COC	Contaminant of Concern
COR	Contracting Officer's Representative
cy	cubic yard
ECC	Environmental Chemical Corporation
EPA	U.S. Environmental Protection Agency
FBRO	Filtered bottom roll-off
FS	Feasibility Study
FYR	Five Year Review
gal	gallon
gpm	gallons per minute
GWTP	Groundwater Treatment Plant
LEL	Lower explosive limit
LGP	Landfill gas probes
LTM	Long-Term Monitoring
LTMMP	Long Term Monitoring and Maintenance Plan
MassDEP	Massachusetts Department of Environmental Protection

MCL	Maximum concentration limit
MG	Million gallons
msi	Mean sea level
O&M	Operations and Maintenance
OPS	Operating Properly and Successfully
ORP	Oxidation reduction potential
ORD	U. S. Environmental Protection Agency, Office of Research and Development
PID	Photoionization detector
POTW	Publicly-Owned Treatment Works
PMP	Project Management Plan
ppb	parts per billion
ppm	parts per million
PVC	Polyvinyl chloride
RI	Remedial Investigation
ROD	Record of Decision
SHL	Shepley's Hill Landfill
SPC	Specific conductivity
SWET	Stone & Webster Environmental Technology & Services
USACE-NAE	U. S. Army Corps of Engineers, New England District
USEPA	U. S. Environmental Protection Agency
µg/L	Micrograms per liter
VOC	Volatile Organic Compound

EXECUTIVE SUMMARY

The Annual Report (AR) documents the long-term monitoring, inspection, and operations and maintenance activities conducted in 2008 at Shepley's Hill Landfill (SHL) at Former Fort Devens, Massachusetts. The Army has prepared this report in accordance with the final approved Revised Long Term Monitoring and Maintenance Plan (LTMMP) (CH2MHill, 2007b). The LTMMP provides the basis for monitoring of groundwater, landfill gas sampling, and landfill inspections that have been conducted since the mid 1990's, and now includes monitoring of the arsenic groundwater extraction, treatment, and POTW discharge system (Contingency Remedy) that has been in full time operation since March, 2006.

In addition, this 2008 AR includes a follow-up to the initial performance assessment for the Contingency Remedy that was included in the 2007 AR (ECC, 2008a). As described in the Record of Decision for Shepley's Hill Landfill (USAEC, 1995), the remedial response objectives are to:

- Protect potential residential receptors from exposure to contaminated groundwater migrating from the landfill having chemicals in excess of MCLs, and
- Prevent contaminated groundwater from contributing to the contamination of Plow Shop Pond sediments in excess of human health and ecological risk-based concentrations.

A full evaluation of off-site risks is presently being performed as part of the *Supplemental Groundwater Investigation and Landfill Cap Assessment* (AMEC, 2008). In addition, a separate RI/FS is being conducted for Area of Contamination (AOC) 72 (Plow Shop Pond), for which a work plan is currently in review. Therefore, the performance assessment included in this report is focused on extraction system hydraulics and demonstration of containment of contaminated groundwater in excess of MCLs, while the determination that the overall remedy (inclusive of the landfill cap, Contingency Remedy, and any future actions to mitigate unacceptable risks at AOC 72) is achieving the objectives above will necessarily be made in the future.

Landfill Maintenance and Monitoring

The overall condition of the landfill appears satisfactory with the exception of several settled areas where pooling of water has been observed, and damaged or non-existent fencing in a lew locations. Elevated levels of methane and percent lower explosive limit (LEL) were observed in live landfill gas probes (LGPs) (LGP-05-5X, LGP-05-9X, LGP-05-10X, LGP-05-13X, and LGP-

05-14X) on the southern end of the landfill during low barometric pressure conditions. These same LGPs were re-sampled during high pressure conditions and results were consistent with historic data. To enhance the perimeter landfill gas monitoring program quarterly sampling has been recommended and additional gas wells have been proposed to better characterize vadose zone conditions. Landfill gas vent results were generally consistent with historical results and indicate proper landfill gas venting.

Arsenic Treatment Plant Operations, Maintenance and Monitoring

During 2008 the Contingency Remedy groundwater extraction and treatment system was operated at full capacity. Accounting for recycling of filter back wash (sidestream flow), the average extraction rate during operation was 46 gpm for 2008. The system was on-line approximately 81% of the available time during the year. A significant portion of the downtime for 2008 was related to the approved drawdown assessment conducted in February-March, microfilter strainer basket replacement, and air compressor repairs. During routine operations, the largest contributor to downtime is the frequent need for filtered bottom roll-off (FBRO) pumpouts and clean-in-place maintenance on the microfiltration system. Based on total discharge to the POTW, the net average extraction rate for 2008 was 34 gpm.

The arsenic treatment plant (ATP) was extremely effective at removing arsenic from the groundwater. Average influent arsenic concentrations were just under 3,000 micrograms per liter (µg/L) based on periodic sampling. Effluent arsenic concentrations have been consistently low, averaging 1.55 µg/L during the year, well below the target goal of 10 µg/L. Through 31 December 2008, approximately 1.031 pounds of arsenic, 633 pounds of manganese, and 22,355 pounds of iron have been removed from groundwater.

Groundwater Monitoring

In general, arsenic concentrations in the LTMMP wells remain relatively stable or are decreasing, compared to historic levels. Only three wells, SHL-11, SHM-05-41C, and SHM-05-40X, had concentrations greater than historical averages. It should be noted that based on a comparison of filtered and unfiltered sampling results at SHL-19 total arsenic values are related to high turbidity and do not reflect dissolved concentrations. The majority of geochemical data collected to date do not indicate significant changes in redox conditions and arsenic concentrations. However, it should be noted that arsenic concentrations have been trending

downward in near-field monitoring wells SHM-93-22B and SHM-96-5B since system start-up in Spring 2006 with the most significant declines to date in the latest sampling round.

System Performance Metrics and Assessment

Consistent with EPA guidance including A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems (USEPA, 2008), a multiple lines of evidence approach was taken with respect to the performance assessment. Four individual assessment components were identified as part of a hydraulic capture zone analysis; gradient vector analysis, capture zone width calculation, comparison to model results, and a drawdown assessment. Two assessment components were identified as part of geochemical monitoring: an advective travel time analysis and a discussion of changes in relevant geochemical conditions. With respect to the hydraulic capture zone analysis, while no single component conclusively demonstrates capture effectiveness, all four indicate some degree of correspondence to the expected aquifer response to pumping. With respect to the geochemical monitoring, the data are encouraging but presently inconclusive. This too is consistent with expectations in that, based on estimated groundwater velocities, it will take many years to 'flush' currently impacted groundwater from areas outside the capture zone. Further, it will likely require additional time for new equilibrium redox conditions (presumably oxidizing) to be established, which in turn are expected to result in declines in arsenic concentration.

Given that a number of monitoring wells upgradient (i.e. SHL-15) or cross-gradient (i.e. SHM-93-10D) from the landfill, and well outside the influence of the groundwater extraction system, exhibit arsenic concentrations in excess of the MCL, the expectation that the Contingency Remedy can achieve the ROD objectives is potentially unrealistic. In particular, both EPA-ORD studies and groundwater flow modeling efforts to date have indicated that the Contingency Remedy does not preclude or significantly reduce groundwater discharge to Red Cove. Therefore, the discharge of shallow arsenic-impacted groundwater to Red Cove, evident in SHL-11 and SHP_01-38A, is expected to persist. Whether this condition poses a risk is to-bedetermined via the proposed RI/FS activities for AOC 72, however, these arsenic concentrations are an order of magnitude lower than those in the area north of the extraction wells. Thus, the Contingency Remedy, as presently configured, can be interpreted to contain the majority of arsenic mass being mobilized by landfill-induced reducing conditions and, therefore, the system is considered to be operating as designed.

Recommendations

It is recommended that settled areas where pooling and minor rutting damage has been observed should be repaired (filled, graded & seeded). This work has been initiated and will be completed in 2009. Small trees near the margin of the landfill should be removed and the gas vents painted. The frequency of the perimeter landfill gas monitoring should be increased to quarterly in 2009. Finally, a number of upgrades to the Shepley's Hill ATP process and components, including addition of a bag filter, a contact tank, a larger chlorine dioxide feed pump, and a larger hot water tank, will be implemented to increase treatment capacity and reduce plant downtime.

Future groundwater monitoring should be conducted consistent with the revised LTMMP; however, optimization of the monitoring program is recommended to reduce the numbers of wells and parameters which presently provide nominal performance monitoring value.

10.00

1.0 INTRODUCTION

This Annual Report (AR) was prepared by ECC for the U. S. Army to meet the required reporting for the Shepley's Hill Landfill, located at the Former Fort Devens. Massachusetts (Figure 1-1). This AR discusses the operation and maintenance (O&M) of the existing groundwater extraction, treatment and discharge system: groundwater monitoring, and landfill monitoring and maintenance for 2008. These activities were conducted as part of monitoring under the *Revised Long Term Maintenance and Monitoring Plan* (LTMMP) (CH2M HILL, 2007b). In addition, this report includes a revised system performance assessment incorporating results from a revised version of the site groundwater model.

1.1 Background

Shepley's Hill Landfill encompasses approximately 84 acres in the northeast corner of the main post of the former Fort Devens (Figure 1-1). The landfill is bordered to the east and northeast by Plow Shop Pond, to the north by Nonacoicus Brook (which drains the pond), to the west by Shepley's Hill, to the south by recent commercial development, and to the southeast by land formerly containing a railroad roundhouse.

The landfill was reportedly operating by the early 1940s, and evidence from test pits within the landfill suggests earlier usage, possibly as early as the mid-nineteenth century. The landfill contains a variety of waste materials, including incinerator ash, demolition debris, asbestos, sanitary wastes, spent shell casings, glass, and other wastes. Based on boring logs, the maximum depth of the refuse occurs in the central portion of the landfill and is estimated to be about 40 feet below ground surface (bgs). The volume of the landfill has been estimated at over 1.3×10^6 cubic yards (cy) (USAEC, 1995).

The landfill was closed in five phases between 1987 and 1992-93 in accordance with Massachusetts regulations 310 CMR 19.000. The Massachusetts Department of Environmental Protection (MassDEP) approved the closure plan in 1985. The closure consisted of installing a 30-mil and 40-mil polyvinyl chloride (PVC) membrane cap, covered with soil and vegetation and incorporating gas vents. The closure also included installation of wells to monitor groundwater quality around the landfill, and construction of drainage swales to control surface water runoff. MassDEP issued a Landfill Capping Compliance Letter approving the closure in February 1996.

Subsequent to closure, remedial investigations (RIs) evaluated soil, sediment, surface water, and groundwater conditions at and in the immediate vicinity of the landfill. The results confirmed the presence of various contaminants, particularly certain inorganics and volatile organic compounds (VOCs), in groundwater, sediments and surface water at or adjacent to Shepley's Hill Landfill. A Feasibility Study (FS) and Record of Decision (ROD), for Shepley's Hill Landfill Operable Unit, Area of Contamination 4, 5 and 18 (USAEC, 1995) resulted in a remedy, that required long term monitoring and maintenance of the existing landfill cap and groundwater monitoring. Table 1-1 lists the relevant COCs and their target cleanup levels. The ROD included a contingency provision, which required that a pump and treat system be installed if groundwater contaminant concentrations (primarily arsenic) did not meet risk-based performance standards over time. Due to continued elevated contaminant concentrations, the Army installed and started operating a groundwater extraction and treatment system (the Contingency Remedy) in 2006 to address groundwater contamination emanating from the northern portion of the landfill. Initially the system was operated at an extraction rate of 25 gpm. In July 2007 the extraction rate was increased from 25 gpm to the full design rate of 50 gpm.

1.2 5-Year Review Status

Stone & Webster Environmental Technology & Services (SWET) conducted the first two years of landfill post-closure monitoring in 1996 and 1997. These first two years of monitoring were included in the first Five Year Review (FYR), Shepley's Hill Landfill, Long Term Monitoring (SWET, 1998) after the final capping of the landfill in 1993. The USAGE, New England District conducted the monitoring between 1998 and 2005. In 2000, a comprehensive review for all Devens sites was performed and included in the *Five Year Review Report for Devens Reserve Forces Training Area, Devens, MA* (HLA, 2000) which included monitoring conducted for Shepley's Hill Landfill Operable Unit in 1996 through 1999. A second comprehensive FYR was completed in 2005 (Nobis, 2005) and included monitoring conducted from 1999 through 2004. In this review the Army and EPA deferred the protectiveness statement for the Shepley's Hill Landfill Operable Unit pending completion of Landfill Cap Maintenance and the CSA\CAAA (now referred to as the Supplemental Groundwater and Landfill Cap Assessment for Long-Term Monitoring and Maintenance). The first phase of Landfill Cap Maintenance was conducted in the fall of 2008 and will be completed in 2009. The Draft Supplemental Groundwater and Landfill Cap Assessment for Long-Term Monitoring and Maintenance report was submitted in

December 2008. The next FYR will be completed in 2010 and consequently will be the first to include discussion of the Contingency Remedy.

1.3 Regulatory Context

In accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 120(h)(3), lederal agencies are required to demonstrate that remedies are "operating properly and successfully" (OPS) prior to deed transfer of federally-owned property (USEPA, 1996a). CERCLA Section 120(h)(3) provides for transfer of property upon which remedial actions have taken place through the issuance of the CERCLA covenant to the property deed that warrants that (I) all remedial action necessary to protect human health and the environment with respect to any such substance remaining on the property has been taken before the date of such transfer and (II) any additional remedial action found to be necessary after the date of such transfer shall be conducted by the United States (CERCLA 120(h)(3)(A)(ii)).

Section 120(h)(3)(B), Covenant Requirements, of CERCLA goes on to state:

for the purposes of subparagraph (A)(ii)(i) and (C)(iii), all remedial action described in such subparagraph has been laken if the construction and installation of an approved remedial design has been completed, and the remedy has been demonstrated to the Administrator to be operating properly and successfully. The carrying out of long-term pumping and treating, or operation and maintenance, after the remedy has been demonstrated to the Administrator to be operating properly and successfully does not preclude the transfer of the property.

A remedial action or system is considered to be operating "properly" if it is operating as designed. A remedial system is operating successfully if "its operation will achieve the cleanup levels or performance goals delineated in the decision document (USEPA, 1996a)." As described in the Record of Decision for Shepley's Hill landfill (USAEC, 1995), the remedial response objectives are to:

- Protect potential residential receptors from exposure to contaminated groundwater migrating from the landfill having chemicals in excess of MCLs, and
- Prevent contaminated groundwater from contributing to the contamination of Plow Shop-Pond sediments in excess of human health and ecological risk-based concentrations.

The Supplemental Groundwater Investigation and Landfill Cap Assessment (AMEC, 2009) was initiated by the Army in 2005 to assess the adequacy of the landfill cap and the overall remedy at mitigating risks. The initial phase of this effort is focused on the area north of the landfill beyond the capture zone of the groundwater treatment system and the potential impacts associated with elevated arsenic concentrations in groundwater. Subsequently, the Red Cove area of Plow Shop Pond is to be addressed as part of the RI/FS for Area of Contamination (AOC) 72. In addition, USEPA's Office of Research and Development (ORD), has been conducting independent detailed investigations of the physical and geochemical processes related to arsenic accumulation in Red Cove.

The working hypothesis in these assessments is that the distribution of arsenic in groundwater is closely related to reducing conditions, which persist to the north of the landfill footprint to beyond W. Main St. and in groundwaters converging on Red Cove. With implementation of the Contingency Remedy, the source of reduced groundwater emanating from the landfill is presumably being contained; however, groundwater geochemistry and specifically redox conditions downgradient may not adjust to new equilibrium conditions within a reasonable timeframe necessary to achieve the MCL for Arsenic. Therefore, the performance assessment included as Section 5 is focused on extraction system hydraulics and demonstration of containment, while the determination that the overall remedy is "operating properly and successfully" will be addressed in the future, based on the *Supplemental Groundwater Investigation and Landfill Cap Assessment* (AMEC, 2009) and the subsequent AOG 72 reporting.

1.4 Objectives

2008 was the second year of monitoring under the revised LTMMP (CH2M HILL, 2007b) and the first complete year of operation of the Contingency Remedy at the target design rate of 50 gpm. The objectives of this Annual Report are as follows:

- Summarize landfill maintenance activities.
- Document landfill cap inspection to identify areas requiring future maintenance.
- Present landfill gas measurements at 18 gas vents and 13 permanent landfill perimeter gas
 monitoring wells to establish long-term trends with regard to gas production and venting.

- Summarize operations, maintenance, sampling, and reporting associated with the arsenic treatment plant (ATP) and provide recommendations for any modifications.
- Present results from LTMMP wells for groundwater elevations, laboratory geochemical analyses including COC concentrations, and field parameters to compare to cleanup levels established in the ROD.
- Advance the initial assessment system hydraulic performance presented in the 2007 AR, based on additional data collected in 2008 and the revised numerical model of groundwater flow developed as part of the Supplemental Groundwater Investigation and Landfill Cap Assessment (AMEC, 2009).

1.5 Report Organization

Section 2 of this report documents the routine landfill maintenance and inspection activities, and also includes the results of gas monitoring in both gas vents and perimeter soil gas wells. Section 3 of this report presents the ATP operations, maintenance, and monitoring. Section 4 summarizes the LTMMP groundwater monitoring resulting including synoptic water levels, arsenic concentrations and other water quality data. Section 5 presents the updated system performance assessment at the design rate of 50 gpm. Finally, Section 6 presents conclusions and recommendations for future system operations, monitoring, and assessments.

2.0 LANDFILL MAINTENANCE AND MONITORING

From March to November 2008, ECC conducted gas vent and soil gas probe sampling and in December 2008, performed a walk-over inspection of the landfill. This annual sampling and inspection is conducted to detect and correct problems such as erosion, settlement, or movement of soil on the cap, and to evaluate the effectiveness of the cap vent system. A summary of landfill cap maintenance, findings of the inspection and sampling are presented in the following sections. The landfill inspection checklist and supporting figures are presented in Appendix A.

2.1 Maintenance

In September and October of 2008 the landfill cap was mowed to an approximate height of 4 inches. The mowing event lasted approximately three weeks and included all areas within the landfill boundary with the exception of the extreme southeastern portion of the landfill (see Figure A-1). This area is primarily covered with loess, sandy soil that doesn't support good vegetative growth. A large area directly north of this area (adjacent to the landfill boundary) is being used for the staging of soil from nearby construction activities. In December 2008, filling of depressions on the landfill in accordance with past AR recommendations was initiated however work was stopped due to weather and will be completed in 2009. In addition, several areas within the dramage swales surrounding the landfill were cleared of minor vegetation/shrub/tree growth.

2.2 Inspection

The Shepley's Hill Landfill was inspected on 29 December 2008. Features of the landfill that were inspected included the cap, drainage system, gas vent system, access roads, monitoring wells, piezometers, and security Tence. Observations were made regarding the vegetative cover, vegetation types, erosion, settlement, and general conditions. The overall condition of the landfill appears satisfactory with the exception of several subsidence areas where ponding of water is frequently observed. A summary of the findings are presented in the following text and detailed inspection findings are presented in the Landfill Inspection Report in Appendix A.

Monitoring Wells: Inspection of the wells revealed no damage to the protective casings or caps, and the wells are in good condition.

Plezometers. Inspection of the plezometers revealed no damage to the protective casings or caps, and the plezometers are in good condition.

Cover Surface: No large (greater than 100 square feet) bare spots were observed, and there was no evidence of surface disruption caused by frost heaves.

Vegetative Growth: Overall, the vegetative cover appears to be in good condition. In a few locations, small trees have begun to grow near the margins of the landfill and should be removed.

Landfill Gas Vents: No damage to gas vents was observed, and no gas being vented could be visually detected. The non-galvanized vents are exhibiting rust and should be re-painted.

Drainage Swales: All drainage swales appeared to be in good condition. Several swales were without rip rap protection but did not exhibit any erosion. Substantial vegetative growth was observed in many places which should be removed.

Culverts: Culverts all appeared to be in good operating condition without the need for repair or clean-out.

Catch Basins: Catch basins were all in good operating condition without the need for clean-out, and there appears to be proper grading around the rims with the exception of Catch Basin #3 near the entrance to the site. The rim of this catch basin should be lowered to meet the surrounding grade. Catch Basin #2 has a broken grate but otherwise is functioning properly.

Settlement: There are many areas across the landfill where settlement has caused depressions to exist. These depressions have been observed after rainfall to hold water which indicates that the integrity of the cap is sound. However, these depressions should be filled and graded to conform to the slope of the surrounding landfill surface, a task that was initiated in December 2008 and will be completed in 2009.

Erosion: No erosion was noted anywhere over the landfill surface.

Access Roads: At the time of the inspection all access roads were in good condition. Minor erosion/rutting exists on the access road over the north end of the landfill; the roadway is in very

good condition from the soil staging area at the east center of the landfill south all the way to Cook Street.

Security Fencing. The fencing surrounding the site is in places non-existent, and along the western boundary where the fence runs over Shepley's Hill several tree falls have destroyed the fence. Along the eastern boundary there is a new railroad spur line that breaches the fence, and the fence is non-existent along much of the southern boundary. In general, there is open public access to the landfill from the western and southern portions of the site, though all access roads to the landfill are gated and locked.

Wetlands Encroachment: Wetland encroachment is taking place at several locations, but is not happening on a wide scale and individual areas of encroachment are all small. Wetland encroachment should be controlled by simple mowing in some areas, and by clearing channels in other areas.

Photographs taken during the landfill inspection are included in Appendix A.

2.2.1 Recommendations

The work to repair settled areas where ponding and minor rutting damage has been observed should be completed in 2009 (filled, graded & seeded). In addition, the small trees near the margin of the landfill should be removed and the gas vents painted.

2.3 Landfill Gas Monitoring

On 29 and 30 September 2008, annual sampling of all the gas vents and landfill gas probes (LGP) (adjacent to the cap) was completed (See Figure A-1 for locations). The method used for landfill gas sampling is the procedure described in the MADEP Landfill Technical Guidance Manual. The equipment that is typically used consists of a LandTech Gem 2000+ for reading carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, methane and LEL; and a Mini-Rae PID for total volatile organic compounds. The sampling device is connected directly to the sampling port at the top of the probe/vent to read initial levels of gas concentrations. After the initial readings the probes are purged of two (2) well volumes as suggested in the MADEP Landfill Technical Guidance Manual. After the probe is purged the gas sampling equipment is connected directly to the sampling port and the gas concentrations are read again. Sampling included the following parameters:

- Total Volatile Organic Compounds (ppm)
- Percent oxygen
- Hydrogen sullide concentration (ppm)
- Percent lower explosive limit (LEL)
- Carbon monoxide concentration (ppm).
- Percent carbon dioxide
- Percent methane

Results of the annual Landfill Gas Monitoring, including supplemental sampling of selected. LGPs, are presented in Appendix B and are discussed in the following sections.

2.3.1 Perimeter Gas Monitoring

Results from the September 2008 LGP sampling indicated the presence of elevated levels of methane and percent lower explosive limit (LEL) in five LGPs (LGP-05-5X, LGP-05-9X, LGP-05-10X, LGP-05-13X and LGP-05-14X) on the southern end of the landfill that were inconsistent with the majority of historical data from previous sampling events (though similar elevated readings were observed in three LGPs in 2007). The elevated levels of methane/LEL were not found upon resampling two weeks later. Three subsequent sampling events in October and November found that methane/LEL is elevated in these probes during periods of low atmospheric pressure weather conditions and return to fow/ND levels immediately after atmospheric pressure had increased to normal levels. Results of this sampling effort are summarized in a Technical Memorandum to Robert Simeone from Fred Santos and Willard Murray dated 12 November 2008 (Appendix B). This memo concludes that the elevated %LEL and methane gas levels are transient events and only persist for a short time while low barometric pressure resides over the landfill; furthermore the distance that landfill gas migrates away from the landfill during these low pressure events is less than 10 feet from the LGPs based on manual probing of shallow soil on 7 November 2008.

To further evaluate the potential for landfill gas migration, quarterly LGP sampling has been recommended in the Supplemental Landfill Gas Monitoring Well work plan (ECC, 2008b). In addition, a review of the existing LGP network indicates that existing LGPs are shallow and do not monitor the full thickness of the unsaturated zone. Therefore, installation of additional gas

wells in both the southern and northern boundary areas has also been recommended. Future sampling frequencies will be re-assessed in subsequent ARs.

2.3.2 Landfill Gas Vent Results

Several vents in the southern section of the landfill exhibited high levels of methane (>10%), carbon dioxide (>15%) and LEL (>100%). However, no vents showed presence of any VOCs or hydrogen sulfide. Oxygen levels ranged from 1.5% (GV-14) to 21.9% (GV-1, GV-4 and GV-11), with the lowest O_2 levels principally observed in vents exhibiting high levels of methane and %LEL. Landfill gas vent results were fairly consistent with historical results and indicate proper landfill gas venting.

3.0 ARSENIC TREATMENT PLANT OPERATIONS, MAINTENANCE AND MONITORING

The Shepley's Hill Arsenic Treatment Plant (ATP) treated and discharged approximately 18.0 million gallons of groundwater from 1 January through 31 December, 2008, bringing the cumulative discharge total to approximately 37.9 million gallons since system startup.

The operations, maintenance and monitoring history for the ATP for the period from 1 January 2008 through 31 December 2008 is presented in the following sections.

3.1 Operations

The following sections describe the ATP operations and system efficiency for the reporting period.

3.1.1 System Description

The ATP consists of the following major components:

- Two extraction wells
 - Chlorine dioxide generator and dosing system
 - Ferric chloride dosing system (currently not in use).
 - Microfiltration skid
 - Solids removal and dewatering system

Groundwater is pumped into the ATP via two extraction wells, each with the capacity to pump up to 50 gpm. The extraction wells are located at the northern border of the landfill cap and can be operated independently or in tandem to a maximum total influent flow of 50 gpm.

Groundwater from the extraction wells enters the ATP through a manifold where the flow is combined into a single influent waste stream. ATP influent is dosed with chlorine dioxide to oxidize inorganics (primarily iron, arsenic, and manganese). The oxidized morganics quickly form precipitates which can be liftered out of the waste stream by the microfiltration system. Filtrate from the microfiltration system is pumped into an effluent sump which then pumps the treated water into the Devens Publicly Owned Treatment Works (POTW) collection system.

It is noted that the ATP also has a terric chloride dosing system. The original design requires that the ATP influent contain approximately 40 parts per million (ppm) of iron to effectively precipitate and coagulate arsenic. However, current influent characteristics show iron concentrations well above the necessary level, therefore the ferric chloride system is not currently in use. Influent iron concentrations are monitored quarterly to ensure sufficient iron is present in the influent. If necessary the ferric chloride system can be activated.

The microfiltration system is periodically backwashed to clear the filtered precipitates from the filter membranes. Backwash solution is pumped into the solids removal system where the precipitates are allowed to settle in an inclined plate clarifier (IPC), the settled solids (sludge) is then conditioned with polymer and pumped into a filtered bottom roll-off (FBRO) for further dewatering. Supernatant from the IPC and leachate from the FBRO are periodically pumped back into the influent manifold.

Historical monthly treatment totals are shown in Table 3-2.

3.1.2 System Efficiency

During 2008 the treatment plant was operational approximately 81% of the available time. A significant part of the downtime was due to routine plant maintenance, primarily emptying sludge from the filter bottom roll-olf (FBRQ) and performing clean-in-place (CIP) maintenance on the micro-filtration skid. In addition to routine shutdowns, three specific events also contributed to plant downtime. The plant was off-line for approximately 140 hours for the approved Drawdown Assessment completed in February 2008, 260 hours to conduct air compressor maintenance, and 164 hours for the replacement and upgrade of the micro-filter strainer basket. The plant was also shutdown on three different occasions (70 hours total) at the request of the Massachusetts Development as they completed repairs and upgrades to their POTW collection system. A summary of on-line hours, flow totals, and operating status for each month is shown in Table 3-1.

The ATP system continues to generate a significant amount of sludge, requiring the FBRO to be emptied after treating approximately 900,000 gallons of groundwater, which is approximately every 15 days of continuous operations. The FBRO pumpout process requires the ATP be shutdown the day prior to the pumpout to allow excess leachate to drain from the FBRO. A subcontracted vendor uses a vactor truck to vacuum the dewatered sludge from the roll-off.

The sludge is transported to a secure landfill for off-site disposal. Once the FBRO pumpout is completed, the ATP is restarted. The typical downtime from an FBRO pumpout is approximately 24-36 hours.

The primary cause of the high sludge generation is the high concentration of inorganics (primarily iron) in the influent. Influent concentrations have decreased slightly since startup of the ATP, however the combined inorganic concentrations (iron, arsenic, and manganese) remains high at approximately 68 parts per million (ppm). Influent inorganic loading is discussed in more detail in Section 3.3.1. The FBRO pumpout history is shown in Table 3-3.

The ATP microfiltration system continues to require frequent clean-in-place (CIP) maintenance. CIPs are necessary when the microfiltration membranes become fouled and require increase pressure to pump the waste water through the system. CIPs are required approximately every two weeks and are typically scheduled in conjunction with the FBRO pumpouts in order to minimize downtime. However, several factors influence how effective the CIP procedures are and how often they are necessary.

Since startup, several different CIP processes have been tested and refined to determine the most effective approach. Current CIPs consist of closed-loop flow through the membrane modules with a solution of sulfuric and citric acid, combined with periodic air sparging of the filter modules. The solution is recirculated for approximately 8 hours, and then allowed to soak overnight. The microfiltration system is then drained and rinsed, and the process is repeated with a solution of caustic soda and sodium hypochlorite. This solution is recirculated for approximately 4 hours (no over night soak). The process is greatly influenced by how fouled the membranes were prior to the CIP, the amount of time the solutions are allowed to soak and by the temperature of the solution.

Effective CIPs typically result in the system being able to run approximately 15 days before another CIP is required. Approximately every other month an extended (prolonged soek) or double CIP (acid solution recirculation/soek repeated after caustic solution recirculation) is required to regain full recovery.

The CIP process continues to be evaluated and refined to improve the process and minimize downtime.

3.2 Maintenance

This section details several system maintenance highlights encountered or implemented during the year.

3.2.1 Air Compressor Repair and Oil Upgrade

In June 2008 the air compressor began repeatedly overheating. The service vendor discovered that the food grade oil (recommended by the microfilter vendor) was deteriorating faster than expected and was causing the compressor to overheat. In addition, it was discovered that when the compressor was idle for extended periods, the food grade oil would "varnish". This condition eventually resulted in significant damage to several of the air compressor components. In October 2008 the air compressor failed again, which required the GWTP to be shutdown for several days to replace the temperature switch, thermovalve, and screw element on the compressor. At this time, the air compressor vendor agreed that upgrading the oil from food grade to synthetic oil would have no negative impacts on the microfilter. The compressor system is equipped with dual air reservoirs and redundant filters that will prevent any oil particles from entering the supplied air and contaminating the microfilter membranes. The air compressor has run without incident since the oil was upgraded.

3.2.2 Microfilter Strainer Housing Replacement and Bypass

In July 2008 the original microfilter strainer housing began leaking due to corrosion from repeated exposure to the harsh CIP conditions. Temporary repairs were made and replacement housing was ordered. The housing was replaced on 25 July 2008. On 5 August 2008, during a CIP procedure, the replacement housing ruptured due to severe corrosion. The original (repaired) housing was re-installed to allow the system to stay on-line. The housing vendor inspected the failed replacement housing and determined that portions of the housing were not properly coated at the factory, thus a new replacement housing would no longer be exposed to the harsh CIP conditions. (Note: The strainer housing is only in use when the microfilter is treating water; during CIP process the strainer is not used but is still exposed to the CIP solution). On 20 August 2008 the bypass line was completed. The bypass line allows the strainer housing to be isolated from the harsh solution during CIPs, as a result no further corrosion issues are expected. The new strainer housing was received and installed on 10 October 2008.

3.2.3 Chlorine Dioxide Control Valve and Actuator

On 20 March 2008 the chlorine dioxide feed valve actuator was replaced with an upgraded model. The original chlorine dioxide feed valve model had been discontinued and the replacement model was not compatible with the original model actuator. The feed valve typically needs replacement every 6 months, when the original model valve was no longer available, the actuator needed to be replaced.

The chlorine dioxide system is operating at maximum capacity. The original chlorine dioxide leed pump was sized properly for the original application. The pump could easily deliver >2 gpm at a designed head of approximately 15 feet. In September 2005, during plant startup if was necessary to install an eductor on the influent pipe which created additional head pressure. This did not negatively affect the plant when operating at 25 gpm as the pump was not required to operate at full capacity. However, when the plant flow was increased to 50 gpm the head on the influent pipe was increased to more than 40 feet. At this pressure the chlorine dioxide feed pump struggles to maintain the necessary flow when the microfilter is operating at 53 gpm. On 27 October 2008 an upgraded chlorine dioxide control valve, which has a larger flow control orifice and therefore slightly reduced head pressure, was installed. The upgraded valve allows sufficient chlorine dioxide flow when the microfilter is operating at 53 gpm.

3.2.4 Repair and Re-Piping of Effluent Pump P-511

On 6 February 2008 the impeller and mechanical seal were replaced on Effluent Pump (P-511). In addition, the pump was re-piped and the check valve re-located to the bottom of the suction pipe. The original piping design had the check valve located on the discharge side of the pump. This condition resulted in the pump losing prime each time the pump shut off. The pump would re-prime when it turned on, but the re-priming caused undue strain and wear on the impeller and seal, ultimately causing the seal to leak and the pump to lose capacity. The pump has operated with out incident (and retains prime when off) since the changes were implement. (Note: The alternate Effluent Pump, P-512, has the check valve located property at the bottom of the suction pipe. The re-piping on P-S12 was performed shortly after startup by CH2M Hill when the pump would not self-prime. At that time P-511 would self-prime so the piping was not changed.)

3.2.5 Wellfield Maintenance

During the period of performance for this report no well field maintenance was performed or required. Both extraction wells continue to operate at designed flow with no problems observed.

3.3 Monitoring

The following sections detail the ATP sampling for arsenic and other contaminants of concern.

3.3.1 Influent Inorganic Sampling

Influent inorganic loading characteristics are assessed quarterly. Influent inorganic sampling is not required by either the discharge permit or by the LTMMP, but is periodically monitored to gauge system loading and to ensure that a sufficient iron concentration is maintained to promote iron and arsenic precipitant coagulation. (Note: As previously discussed, CH2M Hill Technical Memorandums during startup recommend a minimum iron concentration of 40 ppm. Influent iron concentration remains well above this level; however the ATP has the ability to add ferris chloride to the influent if necessary).

The total inorganic loading (iron, arsenic, and manganese) has slightly declined since system start-up, but remains high, averaging 68.56 ppm for 2008. Individual average concentrations for iron, arsenic and manganese were 63.63, 3.00, and 1.94 ppm respectively. Influent loading concentrations of iron, arsenic and manganese are shown in Table 3-4 and graphically illustrated in Figure 3-1.

3.3.2 Effluent Arsenic Monitoring

In accordance with the ATP's discharge permit, monthly effluent arsenic samples were collected each month throughout the year. Monthly sampling results are shown in Table 3-5.

Overall the plant has been extremely effective at removing arsenic from the groundwater. Effluent arsenic concentrations have been consistently low, averaging 4 ppb during the year, well below the permit level of 150 ppb. Through 31 December 2008 the ATP has removed approximately 1,031 pounds of arsenic from the treated groundwater.

3.3.3 Other Sampling Results

The discharge permit required quarterly sampling was conducted on 6 March 2008, 17 June 2008, 10 September 2008, and 2 December 2008. The required annual sampling was conducted concurrent with the 10 September 2008 event. All sampled parameters were within discharge limits. Quarterly and Annual sampling results are shown in Tables 3-6 and 3-7, respectively.

As required by the LTMMP, annual methane and volatile organic compounds (VOC) sampling of the plant influent was conducted. Results from methane sampling conducted on 10 September 2008 indicated a methane concentration of 14.5 ppm in EW-01 and 10.4 ppm in EW-04. Results from VOC sampling conducted on 2 October 2008 are presented in Table 3-8. Detections of low concentrations of VOCs were consistent with previous years sampling results.

3.3.4 Discharge Permit Modification

No discharge permit modifications were made during 2008. The current permit, issued by Massachusetts Development, expires on 28 June 2010.

3.4 Evaluation of Treatment Plant Capacity

The plant was operated at 50 gpm for 2-3 days in January 2006 for chlorine dioxide dosage and residual testing. From startup through July 2007, the plant discharge permit was limited to 25 gpm. In July 2007 the discharge permit was increased to 50 gpm and in August 2007 the plant flow was increased to maximum filtration capacity. As a result of operating the plant at the higher flow rate, several limitations were discovered that prohibit the plant from operating consistently and efficiently at an average flow of 50 gpm. The specific limitations and conclusions are described below.

3.4.1 Chlorine Dioxide Feed Pump

The original chlorine dioxide feed pump was sized properly for the original application. The pump could easily deliver >2 gpm at a designed head of approximately 15 feet. During startup, it was necessary to install an eductor on the influent pipe, which created an additional 20 feet, of head. This didn't negatively affect the plant when operating at 25 gpm, as the pump was not required to pump a full capacity. However, when the plant flow was increased to 50 gpm the head on the influent pipe was increase to >40 reet. The pump struggles to maintain the

necessary chlorine dioxide dosing when the microfilter is operating at 53 gpm. Any increase in flow or chlorine dioxide dosing rate will require the pump to be upgraded.

3.4.2 CIP Frequency

During startup, it was determined that the CIP frequency would likely be approximately once a month at a flowrate of 25 gpm. At an increased flow rate the CIP frequency has increased to approximately once every 2-3 weeks, which results in considerably more plant downtime.

3.4.3 Lack of Sufficient Hot Water for CIPs

The recommended CIP process requires approximately 120 gallons of water at 90° F. The original water tank has a capacity of 6 gallons, which is not adequate for the application. The lack of sufficient temperature can be compensated for by extending the soaking time of the CIP solution. At the recommended temperature the anticipated (according to the microfiltration vendor) CIP time is approximately 8-10 hours. Currently, the approximate CIP time is about 30 hours. An adequate hot water source could drastically reduce the shutdown time necessary to complete CIPs.

3.4.4 FBRO Pumpout

During startup it was determined that the FBRO pumpout would need to occur approximately every 4-5 weeks at a flow rate of 25 gpm, which is roughly about 1.2 MG of treated groundwater. At an increased flow rate, not only does the plant generate more sludge, but the FBRO rolloff fills at a faster rate as a result of the increase pumping rate into the FBRO and the reduced time for drainage. At the increased flow rate, the FBRO needs to be pumped out approximately every 15 days or 0.95 MG of treated water. This results in more shutdown time for the ATP.

3.4.5 Increased Sidestream Volume

During startup, the plant microfilter was operated at approximately 28 gpm and was backwashed approximately every 42 minutes. This resulted in approximately 39,000 gallons of treated water with 2,100 gallons of sidestream flow, about 5%.

At a flow rate of 52 gpm, the higher pressure and reduced retention time result in the microfilter fouling at a higher rate, which requires more frequent and higher volume backwashes.

Operating at 52 gpm, the microfilter is backwashed every 12 minutes. This results in approximately 67,000 gallons of treated water with 7500 gallons of sidestream flow, about 11%

In summary, at the increased flow rate the treatment plant is much less efficient. Sidestream volume is recycled into the plant influent and is retreated, effectively reducing the capacity of the plant.

3.5 Recommendations

Recommendations for improvements to increase the average ATP flow rate to approximately 50 gpm are described below.

3.5.1 Upgrade Chlorine Dioxide Feed Pump

As previously stated, the current chlorine dioxide pump is undersized for the current application and is operating at peak capacity. Upgrading the pump would allow more of a margin for proper chlorine dioxide dosing at the current and proper dosing at a higher rate of flow.

3.5.2 Increase System Retention Time

Currently the system has virtually no retention time (less than a minute) prior to the oxidized groundwater contacting the microfilter membranes. Grab samples have shown that even a short retention time of 5 minutes enhances the oxidation process, creates a better precipitant and reduces colodial solids. According to the microfiltration vendor, colodial solids quickly foul the membranes, resulting in more frequent backwashing. Adding a small (330 gal.) contact tank & mixer would decrease the fouling load, which would result in less backwashing (sidestreem) and less CIPs (downtime). Installation of this contact tank is recommended and scheduled to be completed in March 2009.

3.5.3 Direct Discharge of Sidestream Volume

At the current maximum flowrate, the plant generates approximately 7,600 gallons per day of sidestream water (backwash), which is pumped back into the plant influent (reducing pumped volume from the wells). It may be possible to use bag lilters to remove any residual solids from the Inclined Plate Clarifier (IPC) supernatant and direct discharge this volume directly into the plant effluent. Previous sampling data showed the filtered IPC supernatant (10 micron filter) contained approximately 350 ppb of As, it discharged with the existing plant effluent the

resulting effluent concentration would be around 40 ppb, which is below the discharge permit level of 120 ppb but exceeds an action level of 30 ppb that would trigger weekly sampling.

Recent improvements to the IPC have resulted in a better quality supernatant. Using a 5 micron (or even a 1 micron) bag filter would reduce the arsenic concentration in the sidestream water. Reducing the sidestream water arsenic concentration to around 100 ppb (or less) would result in an effluent concentration of approximately 12 ppb, which is well below the discharge permit level of 120 ppb. Installation of this bag filter is recommended and scheduled to be completed in March 2009.

3.5.4 Sufficient Hot Water Heater

A properly sized hot water tank, capable of providing sufficient volume and temperature of CIP solution would increase the effectiveness of CIPs, decrease the amount of time necessary to perform CIPs, and thereby increase total plant throughput. Installation of a larger hot water tank is recommended and scheduled to be completed in March 2009.

3.5.5 Evaluate Alternative Filtration Options

In response to the MCL for arsenic being lowered to 10 ppb for drinking water, several vendors have recently developed new technologies for achieving this level in drinking water supplies. The application at the Shepley's Hill ATP presents some unique challenges (extremely high inorganic loading), which limit the effectiveness and practicality of these technologies. However, as viable alternative treatment options become available, ECC will evaluate and recommend promising methods for potential bench and/or pilot scale testing.

4.0 GROUNDWATER MONITORING

Groundwater monitoring activities were conducted in accordance with the LTMMP (CH2M Hill, 2007b) for the period of 1 January 2008 through 31 December 2008. The details and results of these sampling events are presented in the following sections. Field forms for water levels and groundwater sampling are provided in Appendix C and analytical data validation reports are provided in Appendix D.

4.1 Groundwater Elevations

Groundwater level measurements at Shepley's Hill Landfill wells were collected as part of sitewide monitoring events on 16 April and 30 September 2008. Table 4-1 provides the relevant characteristics of the LTMMP monitoring well network including the geological unit(s) the well is screened in and screen depths or elevations. Figure 4-1 displays the locations of these wells, color coded by sampling frequency. Groundwater elevations for both sampling rounds are listed in Table 4-2. Groundwater elevations measured in April were on average one half foot higher than those in October. Contour maps of watertable elevation on 16 April and 30 September are presented in Figures 4-2 and 4-3. While precipitation was generally above average for much of 2008, as reflected in the increasing water levels (in 54 of 70 wells), the geometry of the watertable surface in both spring and fall is similar to that observed in previous years.

4.2 Geochemical Results

LTMMP monitoring wells were purged and sampled in accordance with EPA's guidance for low stress purging and sampling (U.S. EPA, 1996b & 2002). Samples for the Spring (April) and Fall (October) events were analyzed for inorganics and general water quality parameters.

4.2.1 Laboratory

Table 4-3 provides a summary of laboratory analytical and field parameter data collected from the April and October 2008 sampling events. The laboratory analytes include arsenic, iron, manganese, and a suite of cations including calcium, magnesium, potassium, and sodium. In addition, other general chemistry parameters include turbidity, alkalinity, chloride, nitrogen (as nitrate), and sulfate. Values that exceed the cleanup levels established in the ROD are highlighted in Table 4-3.

In-situ geochemical water quality measurements collected in conjunction with the "quarterly snapshot" sampling are presented in Table 4-4. Ouarterly snapshots supplement in-situ field parameters collected as part of semi-annual sampling events to provide additional data to assess trends in the nearfield area. Parameters include pH, specific conductivity (SPC), dissolved oxygen, temperature, and oxidation reduction potential (ORP). A summary of historical assent results at selected LTMMP wells is presented in Table 4-5. Arsenic (the primary COC) trends are discussed in Section 4.2.1.1, while ORP results (the primary indicator of redox conditions controlling assent mobility) are summarized in Section 4.2.2.

These data are being used to evaluate geochemical conditions as they change with operation of the Contingency Remedy, primarily downgradient of the wellfield. However, data were collected in other areas to provide a baseline of upgradient conditions. In general, nearlield and downgradient wells, in close proximity to the extraction wells, have not yet shown significant increases in ORP since the Contingency Remedy pumping rate was increased to the full 50 gpm design rate. However there have been notable systematic decreases in arsenic concentrations in some downgradient wells, as discussed below. Though conditions appear to be improving, additional data needs to be collected to determine if trends persist over time.

4.2.1.1 Arsenic Results

Arsenic was detected above its cleanup level in 28 of 38 monitoring wells sampled at the site during the 2008 sampling events, down from 31 wells in 2007. Figure 4-4 presents arsonic results for the 2007 and 2008 semi-annual sampling events. Historic arsenic data through 2008 for selected monitoring wells are provided in Table 4-5 and also plotted in chart form for selected wells in Appendix E. In general, arsenic concentrations in some wells have been relatively stable or decreasing, compared to historic levels. Only the following wells in 2008 were reported to have concentrations greater than historical averages: SHL-11, SHM-05-41C, and SHM-05-40X. As the latter two wells are in the downgradient area, well outside the extraction well capture zone, these results indicate the leading edge of the plume is still advancing.

The 2007 AR (ECC, 2008a) suggested the elevated arsenic concentration (885.1 µg/L) at SHL-19 observed in October 2007 was related to turbidity and recommended both filtered and unfiltered samples be collected during the October 2008 sampling round. Based on comparison

of the results for filtered (28 µg /L) and unfiltered (173.6 µg /L) samples, it is concluded that dissolved arsenic concentrations are considerably lower than previously thought at this location.

Arsenic concentrations at SHM-93-22B have continued to display a downward trend since the Spring 2006 sampling round. Overall, arsenic levels at nearby well SHL-96-5B also appear to be on a downward trend since its historical maximum of 5,110 µg/L in May 2000. This general pattern is interpreted to be related to the operation of the extraction wells; however, observations over a longer period will be necessary to confirm and better define these trends.

During the 2008 spring sampling event, SHM-05-41B and SHM-93-22B had the highest concentrations of arsenic at the site (2,349 and 1,721 µg/L respectively). Notably SHM-05-41B and SHM-93-22B are screened at similar depths in the sand/till unit located just above bedrock. During the 2008 fall sampling event, well SHM-05-40X had the highest concentration of arsenic, 4,920 µg/L, which is also the historical maximum for that well but similar to prior levels. During both sampling rounds in 2008, arsenic levels at SHL-8S and SHL-8D were below 1 µg/L. This is noteworthy because during the October 2007 sampling round, both wells had first time detections in excess of 10 µg/L. It is suspected that both detections were anomalies, however further observations will be necessary to validate this assumption.

4.2.1.2 Other COCs Results

The other COCs detected at concentrations above cleanup levels were iron, manganese, and sodium (Table 4-3). Wells that had concentrations of manganese above the cleanup level of 1,715 µg/L were: N-5 P-1, SHL-11, SHL-19, SHL-22, SHM-05-39A, SHM-05-39B, SHM-05-41B, SHM-05-41C, SHM-05-42B, SHM-93-22B, SHM-96-5B, SHM-96-5G, SHM-99-31C, SHM-99-32X, AND SHM-99-29X. The maximum value detected for manganese was 10,800 µg/L at SHM-96-5B in October 2008. Wells that had concentrations of sodium above the cleanup level of 20,000 µg/L were: SHL-13, SHL-20, SHL-22, SHM-05-39B, SHM-05-41C, SHM05-42B, SHM-93-22B, SHM-96-5B, SHM-96-5B, SHM-99-32X, and SHM-05-41C, SHM05-42B, SHM-93-22B, SHM-96-5B, SHM-96-5C, SHM-99-32X, and SHM-01-36X. The maximum value detected for sodium was 83,000 µg/L at SHM-05-39B in October 2008. Concentrations of iron above the cleanup level of 9,100 µg/L were detected at 19 wells with a maximum value of 100,000 µg/L at SHM-05-41B in April 2008. Filtered and unfiltered samples were collected at well SHL-19, both of which exceeded the standards for iron and manganese.

Similar to arsenic, trends iron and manganese concentrations are evident that may or may not be related to changes to the flow system resulting from Contingency Remedy operation. Wells In which both parameters appear to be decreasing include: SHL-20, SHL-4, SHL-5, SHM-05-39B, SHM-05-41A, SHM-93-22C, SHM-96-5C, SHM-99-31B, and SHM-99-31C. Of these wells, SHL-20, SHM-05-39B, SHM-05-41A, SHM-93-22C, SHM-96-5C, and SHM-99-31B have also exhibited arsenic declines in the most recent samples. Wells in which iron or manganese appear to be increasing include: SHL-13, SHL-15, SHL-22, SHM-05-40X, SHM-05-42B, and SHM-93-10D. Of these wells, SHL-15 and SHM-05-40X have also exhibited arsenic increases in the most recent samples.

4.2.2 Field Parameters

In-situ geochemical water quality measurements collected in 2008 are presented in Tables 4-3 and 4-4. While this sampling is conducted quarterly, the fourth round for 2007 was actually collected in January 2008. Therefore, the fourth quarter 2007 and first quarter 2008 rounds were combined, and the results are presented in this report. Future monitoring will adhere to the Jan-Apr-Jul-Oct schedule now established.

ORP is a particularly significant field parameter at Shepley's Hill Landfill. Since arsenic and iron are mobilized by reducing conditions, be they landfill-induced or due to natural conditions (i.e. peat deposits), higher concentrations are expected in locations where ORP values are negative. Arsenic concentrations and field ORP measurements from 2008 are listed in Table 4-3. As previously noted, the majority of samples with arsenic above 10 ug/L also have negative ORP values. One notable exception is SHL-15 which is upgradient of the landfill and considered a background well, yet presently has arsenic concentration of 75 ug/L. Other exceptions to this trend may reflect transition areas or seasonal influences.

Downgradient area wells that have negative ORP values include SHM-99-32X, SHM-99-31B, SHM-99-31C, SHM-05-39A, SHM-05-39B, SHM-05-40X, SHM-05-41B, SHM-05-41C, and SHM-05-42B. Nearfield area wells with negative ORP values include SHL-9, SHL-22, SHM-93-22B, SHM-93-22C, SHM-96-5B, and SHM-96-5C. Pond area wells with observed negative ORP values include SHP-01-38A, SHP-01-36X, and SHP-01-37X. Five upgradient area wells had negative ORP values: N-5 P-1, N-5 P-2, SHL-11, SHM-93-10C, and SHM-93-10D.

4.3 Proposed Monitoring Program Optimization

As part of the technical analysis for 2008 an evaluation of historical analytical results and the function each individual well serves in that program was performed. The objective of this evaluation was to categorize each well in terms of purpose and usefulness with respect to analytical monitoring and thereby optimize the program without compromising the data quality objectives. Based on this evaluation it is recommended that select monitoring wells be considered for omission from the LTMMP program moving forward if they meet the following criteria:

- Are not located downgradient of the landfill
- Have a consistent history of Arsenic concentrations at background levels.
- Are providing little value in terms of bounding the plume

Eight wells which appear to meet these criteria include: SHL-21, SHL-23, SHP-01-36X, SHP-01-37X, SHL-10, SHM-93-10C, and SHM-93-10D.

- SHL-21 is located in an area potentially downgradient of the landfill but is screened at the watertable, is therefore unlikely to be influenced by the landfill, and has never exhibited an Arsenic concentration in excess of the MCL.
- SHL-23 is located in an area where water from Shepley's Hill is interred to be recharging groundwater near the landfill toe, is therefore uninilluenced by the landfill, and has never exhibited an Arsenic concentration in excess of the MCL.
- SHP-01-36X is a watertable well located in an area near the 'hinge' between areas where Plow Shop Pond is inferred to be gaining or losing water with respect to groundwater, is therefore uninfluenced by the landfill, and has consistently exhibited Arsenic concentrations in excess of the MCL but similar to the background conditions observed at SHL-15 and elsewhere.
- Similarly, SHP-01-37X is located adjacent Plow Shop Pond and exhibits a water level very close to pond level, is therefore uninfluenced by the landfill, and has consistently exhibited an Arsenic concentration in excess of the MCL but similar to background.
- SHL-10, SHM-93-10C, and SHM-93-10D are water table and bedrock wells, respectively (though reported to be completed in bedrock the screened interval for SHM-93-10D is unknown). These wells are interpreted to be cross-gradient and therefore uninfluenced by the landfill, and have periodically exhibited Arsenic concentrations in excess of the MCL but similar to background.

It is recommended that these monitoring wells be removed from the LTMMP starting in 2009.

In addition, based on review of the results of field parameter sampling for 2007 and 2008, it is evident that rapid changes in ORP or other indicator parameters are not occurring and, therefore, sampling at a quarterly frequency does not provide much useful information. Therefore, it is recommended that sampling for field parameters should be conducted a maximum of twice a year, in conjunction with routine analytical sampling.

5.0 SYSTEM PERFORMANCE METRICS AND ASSESSMENT

In the 2007 AR (ECC, 2008a), a revised set of performance metrics were established and an initial system performance assessment was performed focused on system hydraulics and demonstration of containment of groundwater in excess of MCLs. Consistent with EPA guidance including A Systematic Approach for Evaluation of Gapture Zones at Pump and Treat Systems (USEPA, 2008), a multiple lines of evidence approach was taken with respect to the performance assessment. The assessment components include the following:

- Hydraulic Capture Zone Analysis
 - Gradient Vector Analysis
 - Capture Zone Width Calculation
 - Drawdown Assessment
 - Comparison to Numerical Model Results
- Geochemical Monitoring
 - Advective Travel Time Analysis
 - Geochemical Assessment

For 2008, individual components of the assessment have been updated only where new data is available. For example, because hydraulic gradients are largely unchanged since 2007, there is no need to update Capture Zone Width Calculation. Similarly, no new data are available on aquifer drawdown relative to that presented in the 2007 AR and, thus, the drawdown assessment was not updated, though the data was used to support modeling efforts as discussed below in Section 5.1.3.

As part of the Supplemental Groundwater Investigation and Landfill Cap Assessment (AMEC, 2009) the numerical model of groundwater flow used in extraction system design was revised and recalibrated to more accurately represent as-built conditions, with the extraction well screens completed only in the lower portion of the aquifer. In response to concerns raised over mass balance in this initial model update, further refinements have been recently completed. Consequently, the Comparison to Numerical Model Results and Advective Travel Time Analysis components of the assessment have been updated using the latest model.

In previous ARs quantitative assessment of Arsenic concentration declines was deferred based on the lact that the system had been operating at less than the full design rate of 50 gpm. Since July 2007 the system has been operating at full capacity and notably, declining Arsenic levels in nearfield wells, initially identified in the 2007 AR, persist. However, because arsenic declines have not been accompanied by changes in redox conditions a quantitative geochemical modelbased extrapolation of Arsenic concentrations cannot yet be performed. Thus, this assessment component remains largely a qualitative description of current geochemical conditions and apparent trends.

Table 5-1 provides a description of each assessment component, its data requirements, and a brief summary of the results. Additional details are provided in the following sections. The OPS determination for the overall remedy will be addressed in the future after Agency review of the *Supplemental Groundwater Investigation and Landlill Cap Assessment* (AMEC, 2009) and completion of the subsequent AOC 72 reporting.

5.1 Hydraulic Capture Assessment

The hydraulic capture assessment is comprised of four lines of evidence to support the evaluation. These components are presented in the following sections.

5.1.1 Gradient Vector Analysis

Horizontal hydraulic gradient vectors were computed for selected well triplets (3 adjacent wells with similar screened intervals) using data from three separate synoptic water level surveys, conducted on 15 October 2007, 16 April 2008, and 30 September 2008, under 50 gpm operating conditions. Figure 5-1 plots all three sets of vectors for comparison. Results are largely consistent with the previous analysis with two exceptions. The triplet comprised of SHL-5, SHM-05-42A and SHL-8S displays a markedly different flow direction for both events in 2008 relative to October 2007. This appears to be primarily a function of the anomalously low water level recorded at SHL-5 for October 2007, which is several feet below its historic mean value (unlike its near neighbors). In addition, the triplet comprised of N-1,P-3; SHP-05-43 and SHP-01-36X shows a significantly different flow direction for the April 2008 round. While this may reflect an actual reversal of flow direction related to the inferred "hingeline" between where the pord gains and loses groundwater, it is noteworthy that these water levels differ by less than 0.1 leet, so the gradient is essentially negligible.

As expected, gradient vectors in the nearfield area remain directed toward the extraction wells while those farfield exhibit an equal or greater apparent variation due to seasonal changes in watertable elevation. Vectors along the western edge of plow Shop Pond confirm (as previously interpreted) that there is hydraulic gradient toward the pond in the Red Cove area and away from the pond closer to the dam. As will be shown in Sections 5.1.4 and 5.2.1 below, calculated gradient vectors are also generally consistent with model predicted patterns of flow both inside and outside the capture zone.

5.1.2 Capture Zone Width Calculation

Calculation of capture zone width was performed based on the basic water balance equation for an idealized aquifer:

	Q = W B K I	
where:	Q = flow rate (vol/time) W = capture zone width (length) B = saturated thickness (length) K = hydraulic conductivity (length/time) i = hydraulic gradient (dimensionless)	
assuming:	 homogenous, isotropic aquifer constant saturated thickness no recharge 	

and in the l

Input parameter values are as follows:

- 1. Cumulative extraction rate of EW-01 and EW-04 is 50 gpm (9625 cubic leet per day).
- Saturated thickness at the extraction well area is a maximum of 94 feet with an average of 90 feet. The impacted portion in which the wells are screened is approximately 50 feet.
- Hydraulic conductivity of the overburden/waste deposits is estimated at 45 tt/day at the extraction wells and 35 tt/day upgradient within the landfill (Harding ESE, 2002; CH2M HILL, 2006).
- Hydraulic gradient across the extraction well area (based on 2007 and 2008 synoptic water levels from N5, P1 to SHM-93-22C) ranges from 0.0054 to 0.0072 ft/ft with an average of 0.0063 ft/ft.

Using the average hydraulic conductivity (40 ft/day) and gradient (0.0063 ft/ft), the calculated capture zone width is 763 feet based on the estimated saturated thickness of 50 feet. This saturated thickness value is considered representative of the impacted portion of the aquifer, across which the extraction wells are screened, as well as the full saturated thickness within the landfill proper just upgradient. For the full saturated thickness at the extraction wells (90 feet), the calculated capture zone width is 424 feet. Further upgradient, the overburden aquifer continues to thin as the bedrock surface rises and calculated capture zone width would increase proportionally.

Given the simplicity of this analytical solution approach, results are inversely proportional to both the hydraulic conductivity and saturated thickness parameters. Therefore, it is acknowledged that uncertainty in these values directly corresponds to uncertainty in the predicted capture zone width. Despite this limitation, based on an interpreted width of the impacted portion of the aquifer at the extraction wells of less than 444 feet (approximate distance from SHM-96-5B to SHL-23) the calculated capture zone width is considered sufficient to achieve full containment of the northward migrating plume lobe. It is noted that there is some uncertainty as to how far east of SHM-96-5B impacted groundwater persists, however data from SHL-8D, screened at a similar depth, and SHL-21, screened at the watertable, suggests the northern lobe is not contiguous with the elevated arsenic concentrations at SHL-11.

5.1.3 Drawdown Assessment

The 2007 AR (ECC, 2008a) included the results of an extraction system hydraulic drawdown assessment (performed February-March 2008) to calculate drawdown in the aquifer under ambient (non-pumping) and stressed (pumping) conditions. Based on comparison of observed drawdowns to contours of predicted drawdown developed using the existing (CH2MHill's run412') groundwater model, it was concluded that the model overpredicts the magnitude in the nearfield area due to the fact that: 1) some wells have shallow screens while the extraction wells are screened only in the deep portion of the aquifer whereas the overburden aquifer is represented in the model as a single integrated layer, and 2) the model does not presently account for vertical anisotropy in hydraulic conductivity of the aquifer which likely limits propagation of pumping stresses vertically in the field. Consequently, to improve correspondence with field observations and thereby the accuracy of model predictions, these data, along with synoptic water levels from 2/20/08, were used in recalibration of the existing numarical model of groundwater flow. The development of this initial 3-layer model (SHL004)

was documented in the Supplemental Groundwater Investigation and Landfill Cap Assessment (SGILCA) (AMEC, 2009).

5.1.4 Comparison to Numerical Model Results

In the 2007 AR, the then current groundwater flow model of operating conditions (referred to as 'run412' in various CH2M HILL reports) was utilized to delineate the extraction well capture zone and map flow patterns and advective travel time relationships in the downgradient area. As discussed above, in early 2008 the 'run412' model was revised and recalibrated as part of the SGILCA. Significant model revisions include: 1) subdivision of the single model fayer representing overburden into separate shallow and deep layers (the 'deep overburden' layer corresponding to the portion of the aquifer in which the extraction wells are completed) and 2) introduction of vertical anisotropy within the overburden ranging from 3:1 in the shallow portion to 10:1 in the deep portion.

Subsequent to the SGILCA, the 3-layer model has been further revised to resolve the mass balance issues acknowledged in that report and recalibrated. In addition, average water levels recorded since system operation began in Fall 2005 were calculated for comparison to the current calibration targets from Feb 2008 (Table 5-2). It was noted that synoptic water levels from Feb 2008 were higher than average, potentially due to active recharge from snowmelt before and during the survey. Thus, these water levels are not considered representative of long-term average conditions which the steady-state model simulates. Consequently, this latest model (SHL005) has been recalibrated to average water levels along with drawdown from the Feb 2008 shutdown test (Figures 5-2 through 5-4). A comparison of mass balance between the original 2-layer and most current 3-layer (SHL005) model is provided in Table 5-3. Changes to input parameters relative to the SHL004 (and SHL002) model variant include: 1) increase in bedrock hydraulic conductivity by a factor of 2 from 0.65 ft/day to 1.2 ft/day, 2) increase in hydraulic conductivity within the landfill and the overburden immediately downgradient to 50 ft/day (previous values ranged from 35 to 45 ft/day), 3) adjustment of vertical anisotropy to 10:1 throughout the overburden saturated thickness, and 4) utilization of the more stable PCG2 numerical solver.

Figure 5-5 shows the model predicted watertable elevation contours and capture zones as defined by backward particle tracking from the extraction well pair utilizing the SHL005 model. Three capture zones are depicted; the 50 gpm design rate, the average rate achieved for 2008

of 34 gpm (based on total discharge to the POTW), and 41.7 gpm, the average rate presently being achieved since system upgrades in May 2009. In addition, reverse particle tracks from monitoring well screens in which Arsenic exceeds the MCL have been developed using the ambient conditions model variant. The endpoints of these flowpaths indicate the source areas for this water (under current recharge conditions with the cap in place). This map indicates: 1) the predicted capture zone for the system as operated in 2008 effectively contains groundwater passing through the western half of the landfill footprint, and 2) the source areas for captured water correspond to the predicted source areas for arsenic impacted water downgradient. Therefore, the extraction system as currently being operated is considered sufficient to fully contain impacted groundwater migrating northward from the toe of the landfill, though this conclusion is subject to the uncertainty in the eastward extent of impacts cited above in Section 5.1.2.

Figure 5-6 depicts this same capture zone particle tracks from a cross-sectional perspective. Though partially obscured by particle tracks coming down from the elevated watertable under Shepley's Hill, this figure indicates the capture zone extends vertically upward well into the shallow overburden layer (layer 1) to an elevation of approximately 207 ft ngvd in the vicinity of the extraction wells and systematically higher as the aquifer thins and rises to the south.

Though modeling results are never unique, collectively, the correspondence to observed water levels, drawdowns, gradients and the prevailing conceptual hydrogeologic model suggest the revised model is a reasonable representation of the groundwater flow system under pumping conditions.

5.2 Geochemical Monitoring Assessment

Recent and historical trends in aquiter geochemistry and specifically arsenic are discussed in Section 4.2. Notably, since the Contingency Remedy has been in operation, arsenic concentrations in selected nearlield wells (SHM-96-5B and SHM-93-22B) have systematically declined. These apparent trends are discussed below in the context of site-wide flow patterns and travel times and also in terms of changes to prevailing geochemical conditions (redox) as they relate to expected time-to-cleanup.

5.2.1 Advective Travel Time Analysis

The existing groundwater flow model may be used to calculate travel time relationships throughout the flowfield. Figure 5-7 illustrates model-predicted travel times using time markers (arrows spaced at 2 year intervals) along forward particle paths initiated from a line south of the extraction wells. This map shows that groundwater in the downgradient area travels horizontally at an average velocity of less than 1 ft/day. For example, groundwater presently in the vicinity of SHL-21 will require approximately 4 years to reach SHP-99-31A along Molumco Road. As a consequence of this relatively slow advective transport velocity and the fact that redox conditions will likely take some time to fully equilibrate to flow system changes, rapid changes in ORP values and arsenic concentrations in downgradient wells are not expected.

5.2.2 Geochemical Assessment

As discussed in Section 4, based on available monitoring data, elevated metals concentrations and negative redox potential persist approximately 1500 feet downgradient of the landfill toe. Maximum arsenic concentrations in this plume lobe are at ppm levels, however, impacted groundwater primarily occurs in the lower half of the overburden aquifer and its vertical position as it extends downgradient, is controlled by the elevation of the bedrock-overburden contact. Impacted groundwater also exists outside the landfill footprint in the vicinity of Red Cove. Maximum arsenic concentrations are below 1 ppm and this plume lobe is generally found in the shallow portion of the overburden aquifer.

Notable declines in arsenic concentration within the toe plume were observed during the October 2007 sampling at SHM-96-5B and SHM-93-22B, the two impacted monitoring locations nearest the extraction wells, and these declines have generally persisted through 2008. These data are of interest as they potentially reflect the beginning of mitigation of arsenic impacts in the downgradient aquifer. Consequently, an initial evaluation of methods for quantifying and projecting these apparent trends was undertaken. Methods considered ranged from simple empirical curve fitting approaches to sophisticated geochemical modeling techniques. This evaluation concluded that, due to the complexities of redox chemistry and Fe-As relationships, empirical methods will tend to yield overly optimistic projections of the time to cleanup and only methods which consider overall geochemical conditions should be considered.

However, as presented in Section 4.2, overall geochemical conditions have not changed in these particular wells, as exhibited by field parameters, specifically redox potential, and other metals concentrations such as iron and manganese. These observations suggest the geochemical system is still in the process of equilibrating to the comparatively rapid changes in flow system dynamics that have resulted from operation of the extraction wells. Further, geochemical model-based studies of natural attenuation rates after capping at other arsenic impacted landfills suggest that, due to carbon adsorbed on the aquifer matrix which continues to consume oxygen, several 100s of aquifer pore volumes would need to be flushed with oxygenated water to reduce arsenic concentrations by 2 orders of magnitude (USGS, 2004). Consequently, based on approximately 4 years of groundwater travel time between the landfill toe and Molumco Rd, this portion of the aquifer would require ~1000 years to reach the target cleanup level. Thus, recent arsenic declines, however encouraging, are potentially ephemeral. Until overall geochemical conditions exhibit consistent and prevailing changes, specifically increases in redox potential and declines in both iron and arsenic, extrapolation of observed arsenic concentration trends by any method is not considered practical at this time.

5.3 Performance Assessment Summary

Consistent with EPA guidance including A Systematic Approach for Evaluating of Capture Zones at Pump and Treat Systems (USEPA, 2008), a multiple lines of evidence approach was taken with respect to the performance assessment. The individual assessment components, their data requirements, and a brief summary of the results are provided in Table 5-3. With respect to the hydraulic capture zone analysis, while no single component conclusively demonstrates capture effectiveness, all four indicate some degree of correspondence to the expected aquifer response to pumping. With respect to the geochemical monitoring, the data may reflect the beginning of mitigation of arsenic impacts in the downgradient aquifer, yet, based on estimated groundwater velocities, it will take many years to flush' currently impacted groundwater from areas outside the capture zone and then additional time for new equilibrium redox conditions (presumably oxidizing) to be established, which in turn are expected to result in declines in arsenic concentration.

Given that a number of monitoring wells upgradient (i.e. SHL-15) or cross-gradient (i.e. SHM-93-10D) from the landfill, and well outside the influence of the groundwater extraction system,

exhibit arsenic concentrations in excess of the MCL, the expectation that the Contingency Remedy can achieve the ROD objectives is potentially unrealistic. In particular, both EPA-ORD studies and groundwater flow modeling efforts to date have indicated that the Contingency Remedy does not preclude or significantly reduce groundwater discharge to Red Cove. Therefore, the discharge of shallow arsenic-impacted groundwater to Red Cove, evident in SHL-11 and SHP-01-38A, is expected to persist. Whether this condition poses a risk is to-be-determined via the proposed RI/FS activities for AOC 72, however, these arsenic concentrations are an order of magnitude lower than those in the northward migrating plume. Thus, the Contingency Remedy, as presently configured, can be interpreted to contain the majority of arsenic mass within the landfill footprint being mobilized by landfill-induced reducing conditions and, therefore, the system is considered to be operating as designed.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations resulting from the long-term monitoring and O&M services conducted at Shepley's Hill Landfill during 2008 are summarized in the following sections.

6.1 Conclusions

- The landfill cap was mowed to an approximate height of 4" in the fall of 2008 and areas within northern drainage swales were cleared of vegetation.
- The overall condition of the landfill appears satisfactory with the exception of several settled areas where pooling of water is frequently observed and, damaged or nonexistent fencing.
- Elevated levels of methane and percent lower explosive limit (LEL) were observed in five LGPs (LGP-05-5X, LGP-05-9X, LGP-05-10X, LGP-05-13X, and LGP-05-14X) on the southern end of the landfill during low barometric pressure conditions. These same LGPs were re-sampled during high pressure conditions and the results were consistent with historic data.
- Landfill gas vent results were consistent with historical results and indicate proper landfill gas venting.
- The Contingency Remedy groundwater extraction and treatment system was operated at a rate of 46 gpm, accounting for sidestream recirculation
- The ATP was on-line approximately 81% of the available time during the year. However, a significant part of the downtime for 2008 was related to the drawdown assessment conducted in February-March, microfilter strainer basket replacement, and air compressor repairs. During routine operations by far the largest contributor of downtime is the frequent need for filtered bottom roll-off (FBRO) pumpouts and clean-in-place maintenance on the microfiltration system. Based on total discharge to the POTW, the net average extraction rate for the year is 34 gpm.
- Several maintenance activities were completed, including microfilter strainer housing replacement, chlorine dioxide actuator replacement and effluent pump repair to maintain the ATP in good working condition;
- The ATP was extremely effective at removing arsenic from the groundwater. Average influent arsenic concentrations remain high at approximately 3,000 µg/L. Effluent arsenic concentrations have been consistently low, averaging 4 µg/L during the year.

well below the target goal of 10 µg/L. Through 31 December 2008 the ATP has removed approximately 1,031 pounds of arsenic from the treated groundwater.

- While 2008 water levels were generally higher than in 2007, the geometry of the watertable surface in both spring and fall is similar to that observed in previous years.
- In general, arsenic concentrations in the LTMMP wells remain relatively stable or decreasing, compared to historic levels. Only the following wells in 2007 were reported to have concentrations greater than historical averages: SHL-11, SHM-05-41C, and SHM-05-40X.
- Geochemical data collected to date have not displayed significant changes in redox chemistry related to the operation of the system, however systematic reductions in arsenic concentrations are apparent in two wells immediately downgradient of the capture zone.
- The hydraulic capture zone assessment indicates that the extraction wellfield is containing the majority of arsenic mass migrating northward from the landfill toe and, therefore, is operating as designed.

6.2 Recommendations

All recommendations made in the 2007 AR were completed in 2008 with the exception of the surface repairs and landfill gas monitoring assessment, which were completed in the first half of 2009 As discussed above, projection of Arsenic trends is deterred until monitoring data indicates consistent changes to related geochemical parameters such as dissolved iron, ORP, and DO are observed. Recommendations for 2009 are as follows:

- The settled areas where pooling and minor rutting damage has been observed should be repaired (filled, graded & seeded). In addition, the small trees near the margin of the landfill should be removed and the gas vents painted.
- The landfill perimeter gas monitoring network should be augmented with additional gas wells completed in the vadose zone in both the southern and northern boundary areas.
- The frequency of the perimeter landfill gas monitoring should be increased to quarterly in 2009.
- The current chlorine dioxide pump should be upgraded to allow for proper chlorine dioxide dosing at the higher rate of flow.
- A small (330 gal.) contact tank & mixer should be added to increase retention line and thereby create a better precipitant and reduce colloidal solids to decrease the fouling

load on the microfilter, which would result in less backwashing (sidestream) and less CIPs (downtime).

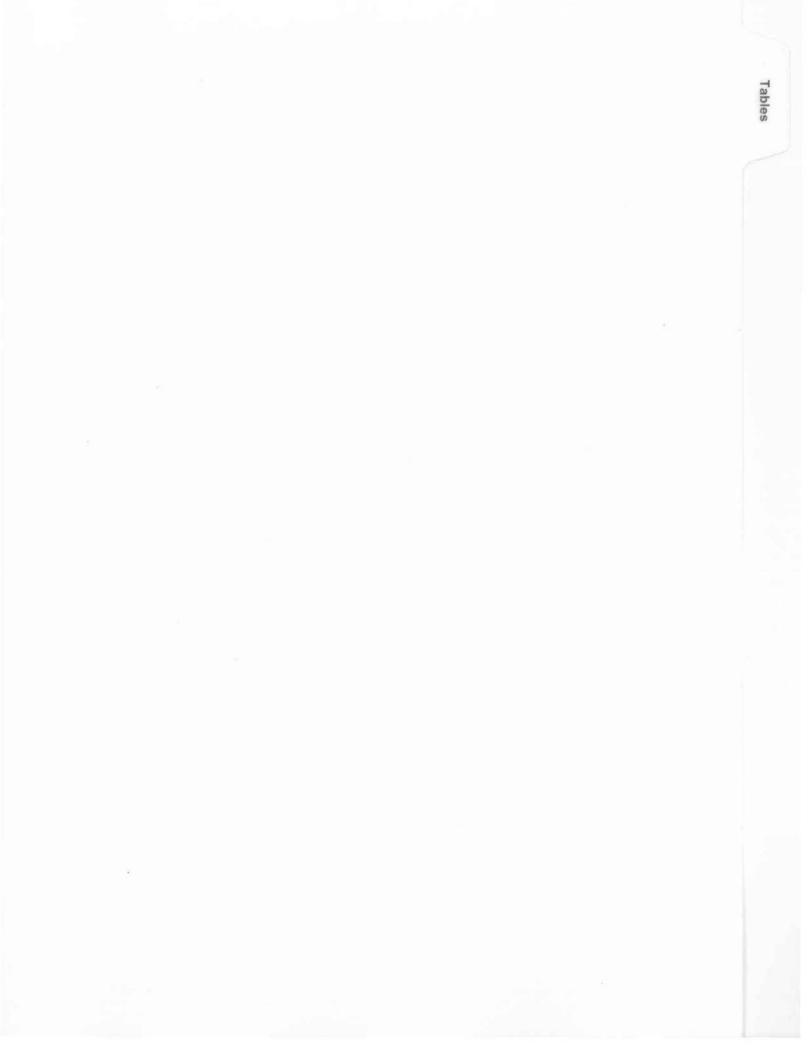
- Use bag filters to remove residual solids from the Inclined Plate Clarifier (IPC) supernatant and direct discharge this volume directly into the plant effluent and thereby eliminate the recycling of this 'sidestream' water which presently limits plant capacity.
- Increase the size of the hot water tank to provide sufficient volume & temperature of CIP solution to increase the effectiveness of CIPs, and decrease the amount of time necessary to perform CIPs.
- In order to address the bias of Arsenic concentrations due to turbidity, filtered samples should be collected from SHL-19 going forward.
- The groundwater monitoring program should be optimized to winnow monitoring locations and frequencies which provide minimal value. Wells SHL-21, SHL-23, SHP-01-36X, SHP-01-37X, SHL-10, SHM-93-10C, and SHM-93-10D should be removed from the LTMMP starting in 2009. Sampling for field parameters should be conducted twice a year in conjunction with analytical sampling.

7.0 REFERENCES

ABB Environmental, 1993, Method for Determining Background Concentrations, Inorganic Analytes in Soil and Groundwater, Fort Devens, Massachusetts.

- AMEC Earth & Environmental, Inc., (2009). Draft Final Supplemental Groundwater Investigation and Landfill Cap Assessment, June
- CH2M HILL. 2005. Explanation of Significant Differences, Groundwater Extraction, Treatment, and Discharge Contingency Remedy, Shepley's Hill Landfill, Fort Devens, MA., June.
- CH2M HILL, 2006. Final Technical Memorandum Start-Up Extraction Test Shepley's Hill Groundwater Extraction, Treatment, and Discharge System. February.
- CH2M HILL 2007a. 2007 Annual Report, Shepley's Hill Landlill, Long Term Monitoring and Maintenance, Devens, Massachusetts, May.
- CH2M HILL 2007b. Revised Long Term Monitoring and Maintenance Plan for Shepley's Hill Landfill, Devens, Massachusetts, May (final).

ECC, 2008a. 2007 Annual Report, Shepley's Hill Landfill. Devens, Massachusetts, August.


- ECC, 2008b. Supplemental Landfill Gas Monitoring Well Work Plan, Shepley's Hill Landfill, Devens, Massachusetts, December.
- Harding ESE, 2002. Revised Draft Snepley's Hill Landfill Supplemental Groundwater Investigation. Devens Reserve Forces Training Area, Devens, Massachusetts, February.
- Harding Lawson Associates (HLA), 2000. Final First Five-Year Review Report for Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the US Army Corps of Engineers, New England District. September.

- Nobis Engineering, 2005. 2005 Five-Year Review Report, Former Fort Devens, Devens, Massachusetts. Prepared for the US Army Corps of Engineers, New England District, September.
- Stone and Webster Environmental Technology & Services (SWET), 1998. Groundwater Pumping Test Report, Shepley's Hill Landtill, Devens, MA: January.
- Stone and Webster Environmental Technology & Services (SWET), 1998. Five Year Review, Shepley's Hill Landlill, Long Term Monitoring, August.
- U.S. Army Corps of Engineers, New England District (USACE), 2006. Geotechnical Engineering Fall 2005 Annual Inspection Report, Shepley's Hill Landfill, March.
- U.S. Army Environmental Center (USAEC), 1995. Record of Decision, Shepley's Hill Landfill Operable Unit. Fort Devens, Massachusetts. September.
- U.S. Environmental Protection Agency (USEPA), 1995. Record of Decision, Shepley's Hill Landfill Operable Unit, Fort Devens, September.
- U.S. Environmental Protection Agency (USEPA), 1996a. Guidance for Evaluation of Federal Agency Demonstrations that Remedial Action are Operating Properly and Successfully Under CERCLA Section 120(h)(3). Office of Solid Waste and Emergency Response, Federal Facilities Restoration and Reuse Office. Interim August.
- U.S. Environmental Protection Agency Region 1 (USEPA), 1996b. Low Stress (low llow) Purging and Sampling Procedure for the Collection of Ground Water Samples From Monitoring Wells. SOP #: GW 0001, Revision 2. July.
- U.S. Environmental Protection Agency (USEPA), 2002. Ground-Water Sampling Guidelines for Superiund and RCRA Project Managers Ground Water Forum Issue Paper, Attachment 3. Example Standard Operating Procedure: Standard Operating Procedure for Low-Stress (Low Flow)/Minimal Drawdown Ground-Water Sample Collection. Douglas Yeskis and Bernard Zavala. Office of Solid Waste and Emergency Response, EPA 542-S-02-001, May

- U.S. Environmental Protection Agency (USEPA), 2008. A Systematic Approach for Evaluating of Capture Zones at Pump and Treat Systems, Office of Solid Waste and Emergency Response, EPA 600-R-08-003, January.
- U.S. Geological Survey (USGS), 2004. Natural remediation of Arsenic Contaminated Ground Water Associated with Landfill Leachate, USGS Fact Sheet 2004-3057, May.

Table 1-1 Contaminants of Concern (COC) Cleanup Level Shepley's Hill Landfill Devens, Massachusetts

COC	Cleanup Level (µg/L)	Selection Basis
Arsenic	10	MCL ⁽¹⁾
Chromium	100	MCL
1,2-Dichlorobenzene	600	MCL
1,4-Dichlorobenzene	5	MCL
1,2-Dichloroethane	5	MCL
Lead	15	Action Level
Manganese	1715	Background ⁽²⁾
Nickel	100	MCL
Sodium	20000	Health Advisory
Aluminum	6870	Background
Iron	9100	Background

Notes:

1) Revised from ROD clean-up level of 50 µg/L

2) Revised ROD clean-up level based on background evaluation

MCL = Maximum Contaminant Level

Table 3-1 Operations Summary - January 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status
01/01/2008	23.5	62,900	System shutdown at 2330 for FBRO and CIP.
01/02/2008	8.75	22,900	FBRO & CIP completed, system restarted at 1515.
01/03/2008	21 75	55,200	System SCADA alarm at 2145, T-2 tank low, system remotely shutdown by operator.
01/04/2008	16.25	41,100	System restarted at 0745.
01/05/2008	24	60,300	Operating.
01/06/2008	24	60,000	Operating.
01/07/2008	24	59,700	Operating.
01/08/2008	24	58,900	Received 1500 gallons sodium hypochlorite.
01/09/2008	23.75	58,600	Changed chlorine cylinder.
01/10/2008	11	29,300	Completed monthly sampling, effluent As at 3.0 pp System shutdown at 1100 for CIP.
01/11/2008	12	29,700	CIP completed, system restarted at 1200
01/12/2008	24	60,200	Operating.
01/13/2008	24	60,200	Operating.
01/14/2008	24	61,200	Operating.
01/15/2008	23.75	62.200	Changed chlorine cylinder.
01/16/2008	24	61.700	Operating.
01/17/2008	24	64,100	Operating.
01/18/2008	8,5	24,400	System shutdown at 0830 for FBRO pumpout and CIF
01/19/2008	0	0	System shutdown.
01/20/2008	0	0	System shutdown.
01/21/2008	12.5	33.000	FBRO & CIP completed, system restarted at 1145.
01/22/2008	24	61,300	Operating.
01/23/2008	24	60,200	Operating.
01/24/2008	24	61,100	Changed chlorine cylinder.
01/25/2008	24	62,600	Operating.
01/26/2008	24	61.400	Operating.
01/27/2008	24	62,600	Operating.
01/28/2008	24	62,500	Operating.
01/29/2008	24	63,400	Operating.
01/30/2008	24	64,400	SCADA call at 2000, low air pressure. Operator responded and reset alarm, no downtime.
01/31/2008	24.	64,000	Operating.
Total Total Available	617.75 744	1,589,100	

Hours Percent On-Line

Table 3-1 Operations Summary - March 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status
03/01/2008	24	63,400	Operating.
03/02/2008	24	63 300	Operating.
03/03/2008	21.5	57,800	SCADA call at 0455, system shuldown due to faulty CLO2 valve. Operator restarted plant at 0730.
03/04/2008	24	63,600	Operating.
03/05/2008	24	62,000	Completed Integrity Test on microfilter skld.
03/06/2008	24	61,600	Changed chlorine cylinder. Completed monthly and quarterly effluent sampling, effluent arsenic at 1,1 ppb.
03/07/2008	24	61.000	Operating.
03/08/2008	24	60,800	Operating.
03/09/2008	3	8,500	SCADA call at 0225, system shutdown due to faulty CLO2 valve. Valve replaced. System remained off-line for CIP and FBRO pumpoul.
03/10/2008	8	22,400	CIP and FBRO pumpout completed, system restarted a 1500
03/11/2008	14	17,000	SCADA call at 1350, system shuidown, CLO2 actuator failure, replacement ordered.
03/12/2008	10	24,900	System restarted at 1410, CLO2 actuator replacement pending, replacement ordered.
03/13/2008	24	57,800	Operating.
03/14/2008	24	58,600	Operating_
03/15/2008	24	58,300	Operating
03/16/2008	24	58,500	Changed chlorine cylinder
03/17/2008	24	58,300	Operating.
03/18/2008	24	58,200	Operating.
03/19/2008	22,5	55,000	SCADA call at 2230, system shutdown due to CLO2 actuator failure.
03/20/2008	14.25	35,500	System restarted at 0800. System shutdown at 1015, actuator replaced, system restarted at 1200.
03/21/2008	24	58,600	Operating
03/22/2008	24	57,700	Operating
03/23/2008	24	58,700	Operating
03/24/2008	24	59,300	Operating.
03/25/2008	24	61,800	Changed chlorine cylinder.
03/26/2008	24	62,400	Operating.
03/27/2008	8	23,300	System shutdown at 0500 for CIP and FBRO pumpout
03/28/2008	10.5	26,900	CIP and FBRO pumpout completed, system restarted a 1330.
03/29/2008	24	60.400	Operating
03/30/2008	24	60,500	Operating.
03/31/2008	24	60,500	Changed chlorine cylinder.
Total Total Available	639.75 744	1,596,600	

Available Hours Percent On-Line

Table 3-1 Operations Summary - May 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status
05/01/2008	10.5	29,000	System shuldown at 1030 for CIP and FBRO pumpout
05/02/2008	14.5	37,700	CIP and FBRO pumpout completed, system restarted a 0930.
05/03/2008	24	60,600	Operating.
05/04/2008	24	61,500	Operating.
05/05/2008	24	60,900	Operating
05/06/2008	15.5	39,200	System shutdown at 0630 per request of MassDevelopment POTW System restarted at 1500.
05/07/2008	18	45,400	SCADA callout, system shutdown at 0130, momentary power failure. System restarted at 0730. Changed chlorine cylinder.
05/08/2008	24	60,600	Operating,
05/09/2008	24	61,300	Operating,
05/10/2008	24	61,000	Operating.
05/11/2008	24	60,200	Operating.
05/12/2008	24	60,900	Operating.
05/13/2008	24	61,400	Operating.
05/14/2008	24	60,200	Changed chlorine cylinder.
05/15/2008	24	61,200	Completed monthly samping, effluent As at 1.0 ppl
05/16/2008	24	61,300	Operating,
05/17/2008	12	30,800	SCADA callout, system shutdown at 1200. T-2 hi-hi. System left off for CIP and FBRO pumpout Performed Integrity Test on Micro filter. Started CIP.
05/18/2008	0	0	System shuldown, CIP ongoing
05/19/2008	14	35,700	FBRO pumpoul and CIP completed. System restarted at 1000.
05/20/2008	24	60,400	Operating.
05/21/2008	24	59,800	Operating.
05/22/2008	24	60,700	Operaling,
05/23/2008	24	60,600	Installed anti-siphon on sludge line to FBRO.
05/24/2008	24	60,400	Operating.
05/25/2008	24	59,800	Operating.
05/26/2008	24	60,500	Operating,
05/27/2008	9	22,900	System shutdown at 0900 at the request of Mass Development, pump station problem. Started a CIP.
05/28/2008	15	37.000	Completed CIP. Changed chlorine cylinder
05/29/2008	24	61,000	Operating.
05/30/2008	24	61,300	Operating.
05/31/2008	23.75	63,000	SCADA alarm 2109, high T-2 leve. System remotely shutdown by operator at 2350.
Total Total	636,25	1.616,300	T supported about of endor.
Available	744		
Percent On- Line	66		

Table 3-1 Operations Summary - January 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status
01/01/2008	23.5	62,900	System shutdown at 2330 for FBRO and CIP.
01/02/2008	8.75	22,900	FBRO & CIP completed, system restarted at 1515.
01/03/2008	21.75	55,200	System SCADA alarm at 2145, T-2 tank low, system remotely shuldown by operator.
01/04/2008	16.25	41,100	System restarted at 0745
01/05/2008	24	60,300	Operating.
01/06/2008	24	60.000	Operating.
01/07/2008	24	59,700	Operating.
01/08/2008	24	58,900	Received 1500 gallons sodium hypochlonte.
01/09/2008	23.75	58,600	Changed chlorine cylinder.
01/10/2008	11	29,300	Completed monthly sampling, effluent As at 3.0 pp System shutdown at 1100 for CIP.
01/11/2008	12	29,700	CIP completed, system restarted at 1200.
01/12/2008	24	60,200	Operating,
01/13/2008	24	60,200	Operating,
01/14/2008	24	61,200	Operating,
01/15/2008	23.75	62,200	Changed chlorine cylinder.
01/16/2008	24	61,700	Operating.
01/17/2008	24	64,100	Operating.
01/18/2008	8,5	24,400	System shutdown at 0830 for FBRO pumpout and Cl
01/19/2008	Ø	0	System shutdown
01/20/2008	Ö	0	System shutdown.
01/21/2008	12.5	33,000	FBRO & CIP completed, system restarted at 1145.
01/22/2008	24	61,300	Operating.
01/23/2008	24	60,200	Operating.
01/24/2008	24	61,100	Changed chlonne cylinder.
01/25/2008	24	62,600	Operating,
01/26/2008	24	61,400	Operating,
01/27/2008	24	62,600	Operating.
01/28/2008	24	62,500	Operating.
01/29/2008	24	63,400	Operating.
01/30/2008	24	64,400	SCADA call at 2000, low air pressure. Operator responded and reset alarm, no downtime.
01/31/2008	24	64,00D	Operating.
Total Total Available	617.75 744	1,589,100	

Available Hours Percent On-

83

Line

Table 3-1 Operations Summary - February 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status
02/01/2008	24	64,400	Operating.
02/02/2008	24	64,400	Operating.
02/03/2008	24	64,300	Operating.
02/04/2008	24	64,300	Changed chlorine cylinder.
02/05/2008	7.25	20,800	System shutdown at 0715 for FBRO pumpout and CIP
02/06/2008	14.25	37,500	FBRO pumpout and CIP completed, system restarted a 0945. Completed re-piping of P-511 effluent pump.
02/07/2008	24	64,200	Operating.
02/08/2008	24	64,100	Operating.
02/09/2008	24	64.000	Operating.
02/10/2008	24	63,800	Operating.
02/11/2008	24	63,700	Changed chlorine cylinder.
02/12/2008	24	64,100	Operating.
02/13/2008	24	63,900	Completed monthly sampling, effluent As at 1.0 pp
02/14/2008	24	64,300	Operating.
02/15/2008	24	63,600	Operating.
02/16/2008	24	63,600	Operating,
02/17/2008	24	64,200	Operating:
02/18/2008	24	63,300	Operating.
02/19/2008	24	64,600	Changed chlorine cylinder.
02/20/2008	12	33,500	System shutdown at 1200 for FBRO, CIP, and Drawdown Assessment.
02/21/2008	Ø	ā	System shutdown.
02/22/2008	0	1,800	System shutdown: FBRO pumpout completed, started CIP.
02/23/2008	0	0	System shutdown
02/24/2008	0	0	System shutdown
02/25/2008	0	õ	CIP completed. Air compressor maintenance completed.
02/26/2008	17	45,200	System restarted at 0710. Drawdown Assessment ongoing.
02/27/2008	24	63,500	Changed chlorine cylinder.
02/28/2008	24	63,400	Operating.
02/29/2008	24	63.600	Operating.
Total	530.5	1,418,100	

Total Available Hours Percent On-Line

.

76

Table 3-1 Operations Summary - March 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status
03/01/2008	24	63,400	Operating
03/02/2008	24	63,300	Operating
03/03/2008	21.5	57,800	SCADA call at 0455, system shutdown due to faulty CLO2 valve. Operator restarted plant at 0730.
03/04/2008	24	63,600	Operating
03/05/2008	24	62.000	Completed Integrity Test on microfilter skid.
03/06/2008	24	61,600	Changed chlorine cylinder. Completed monthly and quarterly effluent sempling, effluent arsenic at 1.1 ppb.
03/07/2008	24	61.000	Operating.
03/08/2008	24	60,800	Operating
03/09/2008	3	8,500	SCADA call at 0225, system shutdown due to faulty CLO2 valve Valve replaced. System remained off-line for CIP and FBRO pumpout.
03/10/2008	8	22,400	CIP and FBRO pumpoul completed, system restarted a 1500.
03/11/2008	14	17,000	SCADA call at 1350, system shutdown, CLO2 actuato failure, replacement ordered.
03/12/2008	10	24,900	System restarted at 1410, CLO2 actuator replacement pending, replacement ordered.
03/13/2008	24	57.800	Operating.
03/14/2008	24	58,600	Operating
03/15/2008	24	58,300	Operating
03/16/2008	24	58,500	Changed chlorine cylinder.
03/17/2008	24	58,300	Operating.
03/18/2008	24	58 200	Operating
03/19/2008	22.5	55,000	SCADA call at 2230, system shutdown due to CLO2 actuator failure.
03/20/2008	14,25	35,500	System reslarted at 0800. System shutdown at 1015, actualor replaced, system restarted at 1200.
03/21/2008	24	58,600	Operating_
03/22/2008	24	57,700	Operating
03/23/2008	24	58,700	Operating
03/24/2008	24	59,300	Operating
03/25/2008	24	61,800	Changed chlorine cylinder
03/26/2008	24	62,400	Operating.
03/27/2008	8	23.300	System shutdown at 0800 for CIP and FBRO pumpout
03/28/2008	10,5	26,900	CIP and FBRO pumpout completed, system restarted a 1330,
03/29/2008	24	60,400	Operating.
03/30/2008	24	60,500	Operating
03/31/2008	24	60,500	Changed chlonne cylinder.

Available 744 Hours Percent On-Line 86

2008 Annual Report

Table 3-1 **Operations Summary - April 2008** Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status
04/01/2008	24	61,100	Operating.
04/02/2008	24	61,200	Operating.
04/03/2008	10.75	28,100	System shutdown at 1045 for CIP.
04/04/2008	12	30,700	CIP completed, system back on at 1200.
04/05/2008	24	60,500	Operating.
04/06/2008	24	58,300	Operating.
04/07/2008	24	60,500	Annual fire alarm and sprinkler system inspection completed. Received 1500 gallon sodium chlorite delivery.
04/08/2008	24	63,600	Operating.
04/09/2008	24	60,200	Annual fire extinguisher Inspection completed.
04/10/2008	24	60,500	Changed chlorine cylinder. Completed monthly sampling, effluent As at 1.0 ppb.
04/11/2008	24	60,600	Operating.
04/12/2008	24	60,900	Operating.
04/13/2008	9	23,800	System shutdown at 0900 for CIP and FBRO pumpou
04/14/2008	14	34,800	CIP and FBRO pumpout completed. System restarter at 1000.
04/15/2008	24	60.600	Operating.
04/16/2008	24	60,800	Changed chlorine cylinder.
04/17/2008	24	60,700	Operating,
04/18/2008	24	61,500	Operating.
04/19/2008	24	60,700	Operating.
04/20/2008	ło	25,400	SCADA alarm at 1000, chlorine dioxide system trouble
04/21/2008	16	40,500	System restarted at 0800, chlorine dioxide feed valve replaced with used spare.
04/22/2008	13.25	34,200	System shutdown at 1315 by operator, chlorine dioxid valve leaking, new replacement valve ordered.
04/23/2008	12.25	31.100	Chlorine dioxide feed valve replaced, system restarter at 1215, Changed chlorine cylinder.
04/24/2008	24	62.000	Operating.
04/25/2008	24	62,900	Operating.
04/26/2008	24	61,700	Operating.
04/27/2008	24	62,600	Operating.
04/28/2008	.24	62,100	Operating.
04/29/2008	19.67	51.800	SCADA alarm at 0507, momentary power failure. System restarted at 0926.
04/30/2008	24	63,100	Operating.
Total Total Available Hours	620.92 720	1,586,500	

Hours Percent On-Line

Table 3-1 Operations Summary - May 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status
05/01/2008	10.5	29,000	System shutdown at 1030 for CIP and FBRO pumpout
05/02/2008	14.5	37,700	CIP and FBRO pumpout completed, system restarted a 0930.
05/03/2008	24	60,600	Operating,
05/04/2008	24	61,500	Operating.
05/05/2008	24	60,900	Operating,
05/06/2008	15.5	39,200	System shutdown at 0630 per request of MassDevelopment POTW. System restarted at 1500.
05/07/2008	18	45,400	SCADA callout, system shutdown at 0130, momentary power failure. System restarted at 0730. Changed chlorine cylinder.
05/08/2008	24	60,600	Operating.
05/09/2008	24	61,300	Operating.
05/10/2008	24	61,000	Operating,
05/11/2008	24	60,200	Operating.
05/12/2008	24	60,900	Operating.
05/13/2008	-24	61,400	Operating.
05/14/2008	-24	60,200	Changed chlorine cylinder.
05/15/2008	24	61,200	Completed monthly samping, effluent As at 1.0 ppl
05/16/2008	24	61,300	Operating
05/17/2008	12	30,800	SCADA callout, system shutdown at 1200, T-2 hi-hi System left off for CIP and FBRO pumpout. Performed Integrity Test on Micro filter. Started CIP.
05/18/2008	0	0	System shutdown, CIP ongoing.
05/19/2008	14	35,700	FBRO pumpout and CIP completed. System restarted at 1000.
05/20/2008	24	60,400	Operating,
05/21/2008	24	59,800	Operating
05/22/2008	24	60,700	Operating.
05/23/2008	24	60,600	Installed anti-siphon on sludge line to FBRO
05/24/2008	24	60,400	Operating,
05/25/2008	24	59,800	Operating.
05/26/2008	24	60,500	Operating.
05/27/2008	9	22,900	System shutdown at 0900 at the request of Mass Development, pump station problem. Started a CIP.
05/28/2008	15	37,000	Completed CIP. Changed chlorine cylinder.
05/29/2008	24	61 000	Operating.
05/30/2008	24	61,300	Operating.
05/31/2008	23.75	63,000	SCADA alarm 2109, high T-2 leve. System remotely shutdown by operator at 2350.
Total	636.25	1,616,300	
Total Available Hours	744	- Andrews	
Percent On- Line	86		

2008 Annual Report

Table 3-1 Operations Summary - June 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status
06/01/2008	0.75	1,200	System restarted at 0845 SCADA alarm at 0930, efluent sump high-high system left shutdown.
06/02/2008	10.5	27,000	Air compressor failure. Atlas Copco on-site for service, system restarted at 1330.
06/03/2008	24	62,800	Operating.
06/04/2008	24	61,600	Changed chlorine cylinder.
06/05/2008	22	57,300	SCADA callour at 2151, CLO2 trouble, automatic system shurdown
06/06/2008	15.5	14,800	CLO2 alarm reset system restarted at 0830 System shutdown at 1415 at the request of Mass Development problem with pump station Mass Development requested the system remain down for the weekend.
06/07/2008	0	1,000	Started CIP
06/08/2008	0	0	System off-line,
06/09/2008	12	28,800	FBRO purrout completed. CIP completed. System restarted at 1200
06/10/2008	24	60,800	Operating,
06/11/2008	24	61,200	Operating.
06/12/2008	24	60,600	Changed chlorine cylinder
06/13/2008	24	61,300	Operating.
D6/14/2008	24	61,200	Operating,
06/15/2008	24	60.300	Operating.
06/16/2008	24	61,200	Operating.
06/17/2008	24	60,800	Completed quarterly effluent sampling. Effluent As at ppb.
06/18/2008	24	61,700	Operating.
06/19/2008	24	60,600	Operating,
06/20/2008	23.25	59,300	AYD on-site to test 3 backflow devices, 1 failed. SCADA callout at 2315, system shutdown due to powe failure.
06/21/2008	16	41,100	VFDs reset by operator, system restarted at 0800.
06/22/2008	24	60,500	Operating.
06/23/2008	24	60,700	Operating.
06/24/2008	9	23,800	System shutdown at 0900 for CIP and FBRO pumpout
06/25/2008	10.5	25,800	CIP and FBRO pumpout completed. System restarted at 1330. Changed chlorine cylinder.
06/26/2008	18	45,400	SCADA callout at 0130, system shutdown for high thickener level. System restarted at 0730.
06/27/2008	24	60,600	Operaling
06/28/2008	24	61,100	Operaling.
06/29/2008	24	61,100	Operating,
06/30/2008	24	60,800	Completed repairs to backflow device.
Total Total Available Hours	569,5 720	1,424,400	

Percent On-Line

Table 3-1 Operations Summary - July 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status
07/01/2008	24	61,500	Changed chlorine cylinder.
07/02/2008	24	60,900	Operating.
07/03/2008	24	60,900	Operating.
07/04/2008	24	61,100	Operating,
07/05/2008	24	60,600	Operating.
07/06/2008	24	60,900	Operating,
07/07/2008	24	61.300	Operating.
07/08/2008	24	61,800	Completed monthly sampling, effluent As at 1.25 ppb.
07/09/2008	24	62,500	Changed chlorine cylinder.
07/10/2008	12.75	34,300	System shutdown at 1245 for FBRO pumpout and CIP
07/11/2008	8,75	22,700	FBRO and CIP completed. System restarted at 1515
07/12/2008	.24	62,000	Operating.
07/13/2008	24	62,300	Operating.
and the takes		-OENCICC	Completed temporary leak repair to MF strainer.
07/14/2008	20	51,500	Plugged leaking membrane strands on modules #1 & #6.
07/15/2008	24	62,500	Changed chlorine cylinder
07/16/2008	24	62,100	Operating.
07/17/2008	24	62,200	Operating.
07/18/2008	24	62.400	Operating.
07/19/2008	18.5	55,100	SCADA alarm at 1815, MF low air alarm. System remotely shutdown at 1830.
07/20/2008	0	200	System remains shutdown pending air compressor maintenance.
07/21/2008	0	٥	System shutdown
07/22/2008	Ö	ō	System shutdown.
07/23/2008	12	30,400	Air compressor repairs completed, system restarted at 1200.
07/24/2008	24	62:500	Operating,
07/25/2008	17.5	45,200	System shutdown at 0715 per request of Mass Development. Installed replacement strainer housing o MF skid, Tightened connections on modules 4 & 6. System restarted at 1345
07/26/2008	24	62,100	Operating.
07/27/2008	24	61,800	Operating.
07/28/2008	24	62,700	Operating
07/29/2008	24.	61,400	Changed chlorine cylinder.
07/30/2008	24	59,900	Operating.
07/31/2008	24	57,000	Operating.
Total Total	617.5	1,591,800	
Available Hours	744		
Percent On-	83		

Line

Table 3-1 Operations Summary - August 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status
08/01/2008	12.75	28,600	System shutdown at 1245 for CIP and FBRO pumpoul
08/02/2008	0	.0	System shutdown.
08/03/2008	0	0	System shutdown.
08/04/2008	10.5	26,100	CIP and FBRO pumpout completed. Major corrosion damage to strainer housing, replace with old housing. System back on-line at 1330.
08/05/2008	24	60,900	Changed chlorine cylinder,
08/06/2008	24	60,700	Completed monthly sampling, effluent As at 1,0 ppl
08/07/2008	23	58,400	SCADA atarm at 1630, system shutdown due to powe failure from electrical storm. On-call operator responde and restarted system at 1720,
08/08/2008	24	60,800	Operaling.
08/09/2008	14.	35,800	System shutdown at 1400 pending installation of strainer by-pass line on MF
08/10/2008	0	Ō	System shutdown.
08/11/2008	a l	Ô	System shutdown
08/12/2008	õ	ō	System shuldown
08/13/2008	0	0	System shuldown
08/14/2008	0	Ō	System shutdown.
08/15/2008	0	0	System shuldown
08/16/2008	13.5	33,100	System restarted at 1030.
08/17/2008	24	60,600	Operating.
08/18/2008	24	60,600	Operating.
08/19/2008	24	60,200	Operating.
08/20/2008	9.5	24,300	System shutdown at 0930 Installed strainer by-pass line on MF skid. Started CIP.
08/21/2008	10	25,400	Completed CIP. System restarted at 1400.
08/22/2008	24	60,000	Changed chlorine cylinder.
08/23/2008	24	60,200	Operating,
08/24/2008	24	60,800	Operating,
08/25/2008	22	55,500	SCADA atarm at 2150, system shutdown due to CLO2 trouble alarm.
08/26/2008	16,5	41,800	System restarted at 0730,
08/27/2008	24	61,300	Operating.
08/28/2008	8	21,700	System shuldown at 0800 for FBRO pumpout and CIF
08/29/2008	10	24,400	FBRO pumpout & CIP completed. System back on a 1400.
08/30/2008	24	60,100	Operating,
08/31/2008	24	60,400	Operating.
Total Total Available	437.75	1,101,700	

Hours Percent On-Line

Table 3-1 Operations Summary - September 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status
09/01/2008	.24	60,300	Operating.
09/02/2008	24	60,200	Operating.
09/03/2008	24	60,200	Operating.
09/04/2008	24	60.000	Operating.
09/05/2008	24	61,300	Operating.
09/06/2008	24	60,100	Operating.
09/07/2008	24	60.900	Operating.
09/08/2008	24	60.000	Changed chlorine cylinder.
09/09/2008	24	61,100	Operating.
09/10/2008	22.5	57,200	Completed monthly, quarterly and annual sampling. SCADA alarm at 2230, low air, system shutdown remotely by on-call operator. Completed monthly sampling, effluent As at 5.3 ppb.
09/11/2008	2.5	5,100	Replaced MF air solenoid, System restarted at 1500, SCADA alarm at 1730, low air, system shutdown remotely by on-call operator.
09/12/2008	16	38,700	Replaced faulty MF I/O card, system restarted at 0800
09/13/2008	24	60,800	Operaling.
09/14/2008	24	61,600	Operating.
09/15/2008	6	16,700	System shutdown at 0600 for CIP and FBRO pumpout FBRO pumpoul completed.
09/16/2008	9.5	23,500	CIP completed System restarted at 1430.
09/17/2008	24	60,800	Operating.
09/18/2008	24	60.400	Operating.
09/19/2008	24	60,700	Changed chlorine cylinder.
09/20/2008	24	59,700	Operating.
09/21/2008	24	60,600	Operaling.
09/22/2008	24	60,600	Operating.
09/23/2008	24	60,600	Operating.
09/24/2008	24	59.900	Operating.
09/25/2008	24	60,400	Changed chlorine cylinder
09/26/2008	24	60,100	Operating.
09/27/2008	24	60.700	Operating.
09/28/2008	.24	60.200	Operating.
09/29/200B	.24	60,300	Operating.
09/30/2008	24	60.100	Operating.
Total Total	656.5	1,652,800	
Available Hours	720		
Percent On-	D.f.		

Percent On-Line

Table 3-1 Operations Summary - October 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Dischargeti	Status
10/01/2008	24	51,200	Operating,
10/02/2008	13,3	34,100	Changed chlorine cylinder. System shutdown al 1318 for CIP and FBRO pumpout.
10/03/2008	1.25	2.500	CIP and FBRD pumpoul completed. System restaned al 1315. System shutdown on low pressure, air compressor high temp. Reset air compressor but if tripped again. System shutdown pending maintenance
10/04/2008	0	Ú U	System shutdown System shutdown
10/06/2008	0	0	Discovered faulty temp switch on compressor replacement ordered.
10/07/2008	0	Ω.	Temp switch replaced, discovered faulty thermovalve or compressor, replacement ordered.
10/08/2008	14.5	36,400	Thermovalve replaced. System restartred at 0924.
10/09/2008	5	13,000	SCADA alarm at 0412, MF low air pressure Air niemen bad on air compressor, replacement ordered.
10/10/2008	12:5	30,500	Air compressor element replaced. Replacment MF strainer housing installed. System restarted at 1130.
10/11/2008	24	60,000	Operating
10/12/2008	24	60,100	Operating.
10/13/2008	24	59,800	Operating,
10/14/2008	24	60,000	Changed chlorine cylinder, Completed monthly sampling, effluent As at 1.1 ppb.
10/15/2008	24	59.900	Operating,
10/16/2008	7.5	20,100	System shuldown at 0730 for CIP
10/17/2008	7.5	18,500	CIP completed, system restarted at 1630.
10/18/2008	24	60,300	Operating,
10/19/2008	24	60,200	Operating.
10/20/2008	24	59,800	Operating.
10/21/2008	24	\$9,700	Operating
10/22/2008	24	60,000	Operating.
10/23/2008	34	60,600	Operating.
10/24/2003	18.75	47,600	System shutdown remotely at 1845 to allow FBRO to drain.
10/25/2008	15	37,500	System restarted at 0900.
10/26/2008	8,5	24,500	System shutdown at 0830 for CIP and FBRO pumpout
10/27/2008	10	25,300	CIP and FBRO pumpout completed: Replaced CLO2 control valve, Changed chlorine cyliner, System restarted at 1400.
10/28/2008	24	59,300	Operating
10/29/2008	18.75	47.800	System shutdown at 0245, CLO2 trouble. System restarted at 0730 System shutdown at 1115, CLO2 trouble. Adjusted CLO2 limit switches, system restarted at 1145.
10/30/2008	24	60,700	Operating,
10/31/2008	24	59,400	Operating
Total	492.55	1,238,900	The second

Total Available Hours

744

66

Parcant On-

Line

Table 3-1 Operations Summary - November 2009 Shepley's Hill Landfili Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status					
11/01/2008	24	61,500	Operating.					
11/02/2008	24	61.700	Operating.					
11/03/2008	24	61,300	Operating.					
11/04/2008	24	63,800	Changed chlorine cylinder. Completed mon effluent sampling. As at 1.0 ppb.					
11/05/2008	24	61,100	Operating.					
11/06/2008	24	61,500	Operating.					
11/07/2008	24	61,800	Changed chlorine cylinder.					
11/08/2008	24	61,700	Operating.					
11/09/2008	6.25	18,100	System shuldown at 0615 for FBRO pumpout:					
11/10/2008	14.75	38,600	FBRO pumpout completed, system restarted at 0915					
11/11/2008	24	61,600	Operating.					
11/12/2008	24	60.200	Operating.					
11/13/2008	24	57,500	Conducted plant tours for Devens charter school.					
11/14/2008	24	57,700	Operating.					
11/15/2008	24	57,800	Operating.					
11/16/2008	24	57,700	Operating.					
11/17/2008	24	57,400	Operating.					
11/18/2008	24	57,600	Operating.					
11/19/2008	24	57,400	Changed chlorine cylinder.					
11/20/2008	24	57,500	Operating.					
11/21/2008	23.5	55,800	Adjusted limit switches on CLO2 control valve.					
11/22/2008	24	57,400	Operating.					
11/23/2008	24	57,400	Operating.					
11/24/2008	24	57,700	Operating.					
11/25/2008	10	24,300	Changed chlorine cylinder. System shutdown at 100 for CIP and FBRO pumpout:					
11/26/2008	9.5	23,200	Completed CIP and FBRO pumpout. Adjusted limit switches on CLO2 control valve.					
11/27/2008	24	60,100	Operating.					
11/28/2008	24	60,200	Operating.					
11/29/2008	24	59,400	Operating					
11/30/2008	24	60,500	Operating.					
Total	664	1.649,500	in the second se					
Total Available Hours	720	A desided						

Percent On-Line

92

2008 Annual Report

Table 3-1 Operations Summary - December 2008 Shepley's Hill Landfill Devens, Massachusetts

Date	Hours On-Line	Gallons Discharged	Status					
12/01/2008	24	60,400	Operating.					
12/02/2008	24	59,100	Completed monthly & quarterly effluent sampling.					
12/03/2008	24	60.200	Changed chlorine cylinder.					
12/04/2008	24	60.500	Operating.					
12/05/2008	24	60,200	Operating.					
12/06/2008	24	59,000	Operating.					
12/07/2008	.24	60.200	Operating					
12/08/2008	24	60,300	Operating.					
12/09/2008	24	60,000	Operating.					
12/10/2008	24	59,500	Operating.					
12/11/2008 14.5		36,700	Changed chlorine cylinder. System shutdown at 1430 for for FBRO pumpout.					
12/12/2008	0	Q	FBRO pumpout completed. Power loss at 0930 due to severe ice storm, system remained shutdown.					
12/13/2008	14	34,500	System restarted at 1000.					
12/14/2008	24	60,200	Operating.					
12/15/2008	24	60,000	Operating.					
12/16/2008	24	60,000	Operating.					
12/17/2008	24	59,600	Operating.					
12/18/2008	24	59,500	Operating.					
12/19/2008	24	59,900	Changed chlorine cylinder.					
12/20/2008	24	60,000	Operating.					
12/21/2008	24	60,300	Operating.					
12/22/2008	9.25	24,500	System shutdown for CIP and to allow FBRO to drain.					
12/23/2008	8	24.800	CIP completed, system restarted at 1500.					
12/24/2008	24	58,600	Operating.					
12/25/2008	16	39.200	System shutdown at 1600 to allow FBRO to drain.					
12/26/2008	15.5	37,100	System restarted at 0830.					
12/27/2008	11.5	28,200	System shutdown at 1130 to allow FBRO to drain.					
12/28/2008	13	31,500	System restarted at 0900. System remotely shuldown a 2200 to allow FBRO to drain.					
12/29/2008	13.25	32,200	FBRO pumpout completed. System restarted at 1045. Installed air sparge line from compressor to IPC.					
12/30/2008	22	53,100	SCADA alarm at 2200, system shutdown for high recycle level alarm.					
12/31/2008	17	42.100	System restarted al 0700.					
Total	610	1,521,400						
Total Available Hours	744							
Percent On- Line	82							

Line

2008 Annual Report

Table 3-2 Monthly Discharge Totals Arsenic Treatment Plant Shepley's Hill Landfill Deven's Massachusetts

Month	Discharge Flow (gallons)	Month	Discharge Flov (gallons)		
startup 8&9/2005	213,900	Jul-08	1,591,800		
Mar-06	555,800	Aug-08	1,101,700		
Apr-06	833,600	Sep-08	1,652,800		
May-06	941,700	Oct-08	1,238,900		
Jun-06	979,000	Nov-08	1,649,500		
Jul-06	646,600	Dec-08	1,521,400		
Aug-06	327,200				
Sep-06	453 500				
Oct-06	597,500				
Nov-06	562,500				
Dec-06	806,800	1			
Jan-07	739,600				
Feb-07	0				
Mar-07	672,400				
Apr-07	854,000	-			
May-07	974,700				
Jun-07	942,200				
Jul-07	970,500	1			
Aug-07	1,563,400	1			
Sep-07	1.809.100	1.0			
Oct-07	1,616,000	1			
Nov-07	1,436,200				
Dec-07	1,629,200	1			
Jan-08	1,589,100				
Feb-08	1,418,100				
Mar-08	1,596,600				
Apr-08	1,586,500	1			
May-08	1,616,300				
Jun-08	1,424,400	1	the second se		
		Cumulative Total	37,912,500		

Table 3-3 Filter Bottom Rolloff Pumpout History Arsenic Treatment Plant Shepley's Hill Landfill Devens, Massachusetts

FBRO Number	Total Volume Treated	Volume Treated per FBRO	Date Emptied		
1	850,000	850,000	3/29/06		
2	1,817,000	967,000	5/5/06		
3	2,860,400	1.043,400	6/8/06		
4	3,987,800	1,127,400	7/21/08		
5	5,326,400	1,338,600	10/23/06		
fi	6,321,500	995,100	12/5/06		
7	7,295,600	974,100	1/22/07		
8	8,327,100	1.031,500	4/6/07		
9	9,243,800	916,700	5/4/07		
	9,116,100	Changed to Efflue	And and a second se		
10	10,110,500	994,400	6/4/07		
11	10,957,600	847,100	7/2/07		
12	11,937,100	979,500	8/1/07		
13	12,845,700	908,600	8/20/07		
14	13.861,100	1,015,400	9/7/07		
15	14,758,100	897,000	9/21/07		
16	15,671,100	913,000	10/8/07		
17	16,575,600	904,500	10/26/07		
18	17,582,300	1,006,700	11/12/07		
19	18,530,500	948,200	12/5/07		
20	19,413,700	883,200	12/21/07		
21	20,055,100	641,400	1/2/08		
22	20,923,600	868,500	1/21/0		
23	21,858,300	934,700			
24	22,762,700	904,400	2/22/08		
25	23,500,200	737.500	3/10/08		
26	24.386.500	886,300	3/28/08		
27	25,284,800	898.300	4/14/08		
28	26,210,300	925,500	5/2/08		
29	27,094,500	884,200	5/19/08		
30	28,023,400	928,900	06/09/2008		
31	28,907,300	883,900	06/25/2008		
32	29,807,900	900.600	07/11/2008		
33	30,835,300	1,027,400	08/04/3008		
34	31,764,200	928,900	08/29/2008		
35	32,693,300	929,100	09/15/2008		
36	33,656,400	963,100	10/02/2008		
37	34,547,500	891,100	10/24/2008		
38	35,311,500	764,000	11/10/2008		
39	36,186,100	874,600	11/26/2008		
40	37,085,600	899,500	12/12/2008		
41	37,812,700	727,100	12/29/2008		

Table 3-4 As/Fe/Mn Influent Concentrations Arsenic Treatment Plant Shepley's Hill Landfill Devens, Massachusetts

Date	Flow	w EW-01			1	EW-04			Average			
	(gpm)	As	Fe	Mn	As	Fe	Mn	As	Fe	Mn	Total	
12/06/2006	40	2.8	92	2.5	5.0	72	1.8	3,9	82.0	2.1	88.0	
12/06/2006	50	2.8	90	2.5	5.2	72	1.7	4.0	81.0	2.1	87.1	
12/07/2006	25	2.6	87	2.4	4.9	70	1.7	3.8	78.5	2.1	84.4	
08/07/2007	55	2.4	88	2.5	4.1	67	1.7	3.2	77.5	2.1	82.8	
09/11/2007	55	2.6	80	2.3	4.0	54	1.5	3,3	67.0	1.9	72.2	
12/27/2007	51	2.5	77	2.3	3.9	56	1.7	3.2	66.5	2.0	71.6	
03/06/2008	52	2.4	74	2.2	3.7	50	1.6	3.1	62.0	1.9	67.0	
06/17/2008	52	2.4	75	2.2	3.6	50	1.6	3.0	62.5	1.9	67.4	
09/10/2008	52	2.2	78	2.2	3.6	54	1.8	2.9	66.0	2.0	70.9	
12/02/2008	52	2.3	78	2.3	3.6	50	1.7	3.0	64.0	2.0	69.0	

Note: All concentrations in mg/L.

Table 3-5 Monthly Effluent Sampling Results Arsenic Treatment Plant Shepley's Hill Landfill Devens, Massachusetts

Date	Effluent Arsenic Concentration (ppb)	Date	Effluent Arsenic Concentration (ppb)
08/29/2005	1.5	07/08/2008	1.25
08/30/2005	1.2	08/06/2008	1
08/31/2005	17.1	09/10/2008	5.3
09/01/2005	1	10/14/2008	1.1
09/02/2005	1	11/04/2008	1
09/06/2005	1 1	12/02/2008	0,87
09/08/2005	0.9		
09/09/2005	3		
03/10/2006	0.9		
03/15/2006	2		
03/23/2006	1		
04/07/2006	2		·
04/14/2006	1.3		
04/20/2006	9		
04/27/2006	2		
05/22/2006	2		
06/27/2006	0.0005(1)	÷	
07/12/2006	2		1
08/31/2006	13		1
09/28/2006	28		1
10/16/2006	4		
11/14/2006	2		
12/26/2006	34		
01/05/2007	19		1
01/16/2007	2		
01/23/2007	4		1
01/30/2007	1		
03/22/2007	2	-	1
04/11/2007	0.0005(1)		
05/16/2007	12		1
06/13/2007	1.3		
07/12/2007	1.4		
08/07/2007	1.5	1 C C C C C C C C C C C C C C C C C C C	
09/11/2007	1.3		1
10/10/2007	1.2		
11/06/2007	1.3		
12/27/2007	1.2		
01/10/2008	3		
02/13/2008	1		1
03/06/2008	1.1	-	
04/10/2008	1	0.0	
05/15/2008	1 1		Ì
06/17/2008	Í		

Notes:

Table includes all daily/weekly (when required) Arsenic sampling results (1) Reporting Limit for Non-detect

Table 3-6 Quarterly Effluent Sampling Results Arsenic Treatment Plant Shepley's Hill Landfill Devens, Massachusetts

Sample Date	09/02/2006	03/15/2006	06/27/2006	09/02/2006	12/26/2006	03/22/2007	06/13/2007	09/11/2007	12/27/2007	03/05/2003	06/17/2008	09/10/2008	12/02/2008
Analyse			1								1000 C	1	
BOD	NA	ND	ND.	1			1	-	-		1	1	
Solids, Total Suspended	ND	ND	ND		1			1				[
Gyanide, Total	ND	ND	0.007	ND	ND	ND	ND	1	1 1 1		1		
Chioride	54	44	50	100	50	68	56	60	67	80	60	58	62
pH	6.7	5.8	6,5	and and a second					1		-		
Mittogen, Nitrale	ND	ND	ND	ND	ND .	ND	0.18	0,32	0.21	0.36	0.26	0.16	0.3
Sulfate	ND	ND	ND .	2.6	160	70	2.2	2.7	3,3	3	3,1	2.8	3.2
Oil & Grease, Hem-Grav	ND	ND	ND					1			1 mm		
Metals	1	1	5-		1.1.1.1	and the second	1						
Aluminum, Total	ND	ND.	ND .	ND	ND.	ND	ND						
Animony, Total	MD	ND	MD	ND	ND	ND	ND	1			Torrest.	And and the owner of the	
Acsenic, Total	0.001	0.002	ND	0,628	0.034	0.002	0.0013	0.0013	0.0012	0.0011	0.00094	0.0053	0.00087
Banum Total	NO .	0.02	0.03	0.02	0.015	0.029	0.023	0.023	0.023	0.023	0.022	0.024	0,022
Baryllium, Total	ND	ND	ND	ND	ND	ND	ND	1				1	
Cadmium, Total	ND	ND	ND	ND	ND	ND	NO	1				1 mar 1	
Chromium, Total-	NO	ND	ND	ND	MD	ND	ND	ND	ND	ND	ND	ND	ND
Copper, Total	40	NG	ND	ND	0.026	0.017	0.015	0.0049	0,0076 J	0.015	0,13	0.0096J	0.011
Lead, Total	NO	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium, Total	60	8.5	3.6	9,1	8.4	5.1	7.5	7.1	7.6	6,9	6.9	7.1	6.8
Manganese, Total	ND	0.87	2,1	0.26	0.876	0.709	0.001	0.0026	0.0011 J	0.0008 J	ND	0.0026J	ND
Mercury, Total	ND	ND	ND	ND	ND	ND	ND	NO	0.00002.3	0.00002 J	0.00005.1	ND	ND
Nickel Total	ND	ND	ND	ND	ND	0.010	0.005	1	-		Sector Sector	-	
Selenium, Total	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND
Silver, Total	ND	ND	ND	ND	ND	ND	ND	ND	L 6000 0	ND.	ND	ND	ND
Thallium, Total	- 110	ND	ND	ND	ND	ND	ND	1	1				
Zinc Total	ND	ND	ND	ND	ND	0.007	0,005	R	1				
VOCs					· · · · · · · · · ·			(1				
Bis(2-ethylhesyl)phthalate	ND	ND	ND	ND	ND	ND	ND	1				1	

Noies

All units in mg/L encept pH (standard pH units) NA = N0t analyzed

NO = Non-onless #1 laboratory detection lamit.

Sharled areas indicate sampling parameter no longer required. All detection imits are below discharge limits J = Value is greater inan Reporting Limit but loss than MDI.

Table 3-7 Annual Effluent Sampling Results Arsenic Treatment Plant Shepley's Hill Landfill Devens, Massachusetts

Analyte YOCs	Cane.	Analyte Semi-Volatiles	Canc.	Pest & PCBs	Cenc.
1.1-TRICHLOROETHANE	ND	1.2.4-TRICHLOROBENZENE	ND	4.4-DDD	ND
1.2.2-TETRACHLOROETHANE	ND	11.2-BENZPHENANTHRACENE	ND	4.4-DDE	ND
12-TRICHLORDETHANE	ND	12-OKCHLOROBENZENE	ND	14:001	ND
the second se					
1-DICHLOROETHANE	0.49 J	1.4-DICHLOROBENZENE	NU	ALDRIN	ND
1-DICHLOROETHYLENE	ND	2.2-OXYBIS(1-CHLOROPROPAL	ND	ALPHA-BHG	ND
2-DICHLOROBENZENE	ND	2.4.5-TRICHLOROPHENOL	ND	ARIOGLOR 1221	MD
2-DICHLOROETHANE	ND	2.4-DICHLOROPHENOL	ND	AROCLOR 1254	ND
2-DICHLOROPROPANE	ND	2.4-DIMETHYLPHENOL	ND	ARIOCLOR 1260	ND
4-DICHLOROBENZENE	0.69.3	2.4-DINITROPHENOL	MU	AROCLOR-1016	ND
-CHLOROETHYL VINYL ETHER	the Real Property of Longs of the		ND	and which and so all and in the second business of the second sec	
	ND	2.4-DINITROTOLLIENE		ABOCLOB-1232	ND
CROLEIN	ND	2.6-DINITROTOLUENE	ND	AROGLOR-1242	ND
CRYLONITRILE	ND	2-CHLORONAPHTHALENE	MD	AROCLOR-1248	ND
BENZENE	0.91.1	12-CHLOROPHENOL	PJD	BETA-BHC	ND
ROMODICHLOROMETHANE	ND	2-METHYLPHENOL	ND	CAMPHECHLOR	WD.
ROMOMETHANE	ND	2-NITROPHENOL	ND	CHLORDANE	ND
and the second se					
ARBON TETRACHLORIDE	ND	3,3-DICHLOROBENZIDINE	ND	CIS-CHLORDANE	ND
SHLOROBENZENE	0.71 J	3.5.5-TRIMETHYL-2-CYCLOHE>	ND	DELTA-BHC	ND
HLORODIBROMOMETHANE	ND	3-METHYLPHENOL/4-METHYLF	ND	DIELORIN	ND
HLOROETHANE	0.82 J	4,6-DINITRO-2-METHYLPHENO	ND	ENDOSULFAN I	ND
CHLOROFORM			ND		ND
the last of the local division of the local	0.92.1	4-BROMOPHENYL PHENYL ETI		ENDOSULFAN II	
CHLOROMETHANE	ND	4-CHLORO-3-METHYLPHENOL	ND	ENDOSULFAN SULFAT	ND
SIS-1,3-DIDHLGROPROPENE	ND	4-CHLOROPHENYL PHENYL ET	ND	ENDRIN	ND
DICHLOROMETHANE	ND	H-NITROPHENOL	ND	ENDRIN ALDEHYDE	ND
THYLBENZENE	ND	ACENAPHTHENE	ND	BAMMA-BHC (LINDANE	ND
and the second state of th	A REAL PROPERTY OF A REAL PROPERTY OF	the second state of the se	a second dealer and the	and the second second in the second second second second	ND
J-DICHLOROBENZENE	ND	AGENAPHTHYLENE	ND	GAMMA-CHLORDANE	
METHYLBENZENE	ND	ANTHRACENE	ND	HEPTACHLOR	ND
TETRACHLORDETHENE	ND	AZOBENZENE	ND	HEPTACHLOR EPOXID	ND
RANS-1,2-DICHLOROETHENE	ND	IBENZIDINE	ND		
RANS-1,3-DICHLOROPROPENE	ND	BENZO(A)ANTHRACENE	ND	TPHs (total)	1430 1
RIBOMOMETHANE	ND	BENZOLAPPYRENE	ND	Trees (county	146.02 6
RICHLOROETHYLENE	ND	BENZO(B)FLUORANTHENE	ND	4	
/INVL CHLORIDE	ND	BENZO(G H,I)PERYLENE	ND		
		BENZO(IC)FLUORANTHENE	ND	1	
General	Conc	BENZYL BUTYL PHTHALATE	ND	1	
HLORIDE	58000	BIS(2-CHLORDETHOXY)METH/	ND		
	and the second				
BULFATE	2800	BIS(2-CHLOROETHYL)ETHER	ND		
NITHATE (AS N)	160	BIS(2-ETHYLHEXYL)PHTHALAT	ND		
		DIBENZ(A,H)ANTHRACENE	ND		
Metals	Conc.	DIETHYL PHTHALATE	ND	1	
SARIUM	24	DIMETHYL PHTHALATE	ND		
CADMIUM	ND	DI-N-BUTYLEHTHALATE	ND	-	
	Contraction of Contra				
CHROMIUM	ND	DI-N-OCTYLPHTHALATE	ND		
COPPER	961	FLUORANTHENE	ND		
RON	ND	FLUORENE	ND		
EAD	ND	HEXACHLORO-T 3-BUTADIENE	ND		
MAGNESIUM	7100	HEXACHLOROBENZENE	ND	1	
and the second se					
MANGANESE	261	HEXACHLOROGYCLOPENTADI	ND		
ELENIUM	ND	HEXACHLOROETHANE	ND		
BILVER	ND	INDENO(1,2,3-CD)PYRENE	ND		
ARSENIC	5.3	M-DICHLOROBENZENE	ND		
MERCURY	ND	METHANAMINE, N-METHYL-N-I	MD		
		NAPHTHALENE	ND		
······································	10100				
		NITROBENZENE	ND		
		N-NITROSODI-N-PROPYLAMINI	ND		
		N-NITROSODIPHENYLAMINE	ND		
		PENTACHLOROPHENOL	ND		
		PHENANTHRENE	ND		
		PHENOL	ND		
		PYRENE	ND		
		1			
		+	_	1	
		1			
		K			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
		1			
		1			
		1			

Notes: J = Value is below the reported detection timit but greater than the method detection timit, the value is estimated ND = Non-detect at laboratory detection timit. All detection timits are below discharge timits

Arsenic Treament Flant Shepley's Hill Landfill, Dovens, Massachusetts											
Shepley's	Hill Landfill										
EW-01		EW-04									
Analyte Melfiviene chloride	Result	Analyte	Result								
1.1-Dichloraethane	0.91	1.1-Dichloraethane	ND								
Chickiam	ND	Chlomform	NET								
anaon lettac itmide	ND	Carbon retrachtoride	NE								
12-Dichereprozame	ND	1.2-Elichlaropropane	NE								
Distamachlerone Hear	ND	Dibomochloromelfiane	NB								
1.1.2-Trichlonnithane	ND	1 1 2-Trichloroethans	NE								
Tetrachtomathana	NE	Tetrachloroathane	ND								
Thiarahenzena	1.1	Chlorobenzene	0.76								
Dichlarallucromethane	ND	Trichtorpfluoromathane	IVL5								
2-Dichtoraethane	ND	1,2-Dicbloroethenn	ND								
1 1 Trichiormalhans	ND	1.1.1.Trichloroslbane	ND								
Brom edichlarconethane	ND	Bromodichloromethane	ND								
rans 1 5-Outstoropropene	ND	Irans 1,3 Elichloropropene	NEX								
as-1,3-Dichloropropene	NE	cis-1.3-Dichloropropene	NEX								
1.1 Dichlampropene	ND	1 1 Dichloropropene	NET								
Bramatarm	ND	Bromolorm	NEX								
1/122/Tetrachloroialliane	ND	1122-Tetrachloroelhane	NO								
Senzene	1.5	Bénzene	0.66								
Toluene	ND	Toluene	NO								
Ethylbenzene	ND	Eihyllienzene	ND.								
Chloromethane	ND	Chloromelhane	NO								
Bromomelhane	ND	Branomélharre	NO								
Viny I ohloride	0.4.)	Vinyl chloride	ND								
Chloroetham	ND	Ghloroolhane	NE								
1,1 Dichlorpelhene	ND	1.1-Dichloroethene	(MEX)								
Irans-1,2-Dichlmoethenu	ND	trans-12 Dicition delhene	NE								
Inchlorgethere	AD.	Trichlorgeinene	TALEX.								
1,2 Oichiombertzene	0,23	1.2 Dichlorobenzene	(dE)								
1,5-Dichiorobenzene	ND	1.3 Dichlorobenzene	NO								
1.4-Dichiorobenzene	1,43	1.4 Dichlorobenzene	0.573								
Methyl leri butyl eltren	ND	Methyl (en buly) ether	NO								
p/m-Xylene	ND	p/m.Xylene	ND								
o-Xylene	NE	0-Xylene	DIG.								
cis-1,2-Duchiorostinene	3.7	dis-1,2-Dichlercrethene	0.74								
Dibromomename	ND	Dibromomethane	ND								
1,2.3-Tridhibropropane	ND	1.2.3-Thomoropropani	NO								
Styrene	ND	Styrens	NO								
Dichtorodifluoremethane	ND	Dishlocatifuccometiane	NO								
Aceture	ND	Acetone	NO.								
Carbon disulfide	ND	Carbon disulfide	NO								
2-Butanone	ND	2-Bulanone	MO.								
4-Methyl-2-pantation	ND	4-Methyl-2-pontanone	ND								
2-Heilinnin Bromachlaisian Uhuwe	ND	2-Heannone	NO								
	ND	Broinceitioremillinane	NO								
Tetraliyo/nitras, 2.2-Dichloropinpane	ND	Teirahydrofuren 2.3 Diceleurung son	ND ND								
1,2 (Dimumbelhane	ND	2.2-Dichloronopane 1.2-Dibrononihane	NO								
1,3-Dichicropiopane	ND	1 3-Dichloroningane	ND								
1,1,1,2-Tellachibibeinani	ND	1.1.1.2-Tetrachiometrivia	ND								
A standard and a	ND	Brundbruzene	1100								
n-Buivibenzene	ND	n-Brivitien_ene	ND								
sec-buiyiben/ene	ND	sec-Burythenzene	ND								
eri Bulyibenzare	ND	rent-Bulyibenzene	NO								
c-Chlorotoluens	ND	u-Chlorotoluone	NE								
c-Chlorotoluene	NO	p-Chiaramiuane	ND								
1.2 Dibrono-3-chiompropana	ND	1,2 Dibromo a-childromopane	ND								
ris achieves and a strange	ND	He rechtor dutadien	ND								
sonropyibenzene	ND	isciplepybenzane	NU								
-lisepropylicitume	ND	U-(somopyliciue)(s	ND								
Vaprimalaria	ND	Nanhihalena	ND								
Fropylbenzene	ND	n-Propylbenvene	ND								
1.2.5-Trichlarahanzene	ND	1,2 3-Triphtryphencene	ND								
1.2.4-Trichlordirenzene	ND	1,24-Triphicroptergenne	ND								
1.3.5-Frimelhylbenatine	ND	1,3/cTrimalhylhancond	ND								
1.2.4-Trimethylben.mas	NG	1,2.4 Trimelhylhengran	ND								
EWylamar	17	Ethyl alfuer	7.5								
aopropyl Elfor	ND	Isopropyi Ether	ND								
EINVI TRI Dury-Ether	ND	Ethyl-Ten Blayl-Ether	WD.								
Tentery Amyl Mathyl Ether	ND	Teritary Amyl Malnyl Elner	ND								
14-Diguane	ND	11,1-Dicyane	ND								
Total EW-01	22.21	Total EW-04	U BG								

Note: J = Value is below the reportable detection fimit but greater than the method detection limit. Its value is estimated. ND = Non-detect at lationalogy detection limit. All detection limits are below discharge runts. All units in ugit

Table 4-1 Long Term Wontbring Network Sheplay's Hill Landilli Dovens, Wassachusetts

	Surfice (1		Sensor Elevation (N		Qny Field	Dismistr		Hydramics
Wei/IC	melli Million pro-	bgal	(iem)	Thismail Designation	Farameters .	Fall	Spring	FAUSSIN
SHM-35-401	224.6	52/11-941	192.0 - 193.0	United Overham Tra	1 1	· · · · · · · · ·	- X 1	- 2
5+114-05-39A	322.9	3712-3910	CEU-RANT	1AS-Depth Overburgen		3)		J.
SERVICE STREET	222.9	an a- 20.6	1568-1549	Елар Сметлиран				
SHP-SE-JNR	219.8	40-100	209.8 - 199.9	Shallow Overtaupter 15T		x	1	x
SHP-38-318	216.5	50.0- 50 8	108-5 - 158-5	Ma-Depth Oversare		8		8
BHP-IB-DIC	213.5	68 0-78.0	145.5-135.5	Greep Oversuiden		.X-		x
5HX-53-3Z×					-			-
	280 0	72-0- BD/(148.15 188.7	Diagi Divimiliara i	-		-	X
SHE SHARE	-			Water Table		-	_ ÷	- X
STIP-05-94.8	-			Waler Tame	~		-	8
SHP-39-3- A	223 8	12,5 17.5	\$1T 20B. 1	Shallow Gventurden/WT		~		X
5NP+89-34-6	273 F	7415-78.5	149 1-144	David Oversurdary		- ×	+ ~	
DOWNGRADIENT - W								
SHNEDS-IIA	223 8	-201	181.8-179.8	Smallow, Elwerts and em	-	-10	*	-x0
SHIVED5-418	223.8	\$2,0-50.0	1876-1599	Wio-Dispitr OverSurder	~	W	*	X
SHUMBERIC	224	BR/0 - B3(2)) 18 (1-11) 3	Disku Grenwittan/Till	÷	19	×	- X
SH#105-124	245	41.0-42.0	17=5-172.5	S alter Overburdan		50	2	X
SHM-05-2E	2%6	7011-720	144.5 - 142.5	Mid-Great Divingrough		<u>8</u>	x	
VEARFIELD AREA		-						
HU-23	240	1211-331	217 = -207 4	Shallow Cyercuiden/WT	X	Х.	×	X
SHL S	322.9	15/1-2510	207.5-107.5	Stallow Grenwinden/WT	X	<u>x</u>	X	
SHLSI	219.6	10511-1130	712 E-104 E	Deep Oversunder	2	X+	×.	x
SHM-05-428	218.9	129-125	137 6-127 #	Mill-Doph Stanut	×		×	
SHINL93-3EC	217.9	12 - 3- 16- 5	93 6 - 83 6	Badentik	2	X.	1	X.
SHI-3	2(64	3.0-13.0	213.4 - 203	TW/natnutareyO wallarts	x	(%)	×.	8
SHM106-59	218.5	30.0-90.0	138.0-128.5	Base of Sant/Tat	8	×	5	x
SHMARS	218.0	58.11 - 80.0	188.0 - 158.7	Mic-Dirpit Mymria dan	x			- X
	-						8.	
shi-is	220 1	5211+541	168 1 - 168 1	Mid-Depth Oversurde	×		<u>x</u>	×
BHL-SD*	201	68,0+70.0	1521~100.1	Desci (Dylerpünder)	X	18	X	X
SHEQT	297.9	-現10-22-6	215-8-205 8	Shallow G tours nWT	x	2	x	×
SHR-US-ISA	327.3	210-250	207 3 - 202 3	Studiaw Ownencom		- ×	~	-30-
SHP-05-458	2279	654-950	16元 7~1527	Mid-D- (Vb Gormander	+	-	8	8
SHP-05-464	0.020 3	210-250	107 3-202 3	Shallow Overburter		~		X
SHP-05-463	327.1	55 8-75 8	162.1-152.1	Mid-Deptr Etvarburden		1	~	×
SHF-05-41	1000	Sec. D. water	500 au 400 m	and the second second	-			X0-
	289-	- 50.5 + BO.5	208.0 - 198 3	S JURDAN El Vension		100	-	
SHP-05-44	_			the second s		-	-	-
the second s	259-	51.0+61.0	208.4 - 195.4	Shullow Oversursee Mid-Deph Oversurden	-			x
SHP 45-14 Ponn Amen	_			the second s				-
SHP-05-44	2584	51.0+61.0	205 4~195 4	Mid-Dech Overbardén		X		×.
shp 46-44 Polyt Anex Shp 40-3ex Shp 40-3ex	2504 320 * 321 +	510-610 50-200 30-80	205 a - 195 4 215 a - 200 f 216 1 - 213 f	Mid-Depth Dyecturden Shakaw Oyerborsen/WT Shakaw Oyerborsen/WT				x x x
SHP 405-54 PDAT ANDA SHL 13 SHP 401-384 SHP 401-374	250-4 320 * 321 + 219 5	510+610 50-200 30+80 10+60	208.4-195.4 215.1-200.1 218.1-213.1 218.8-213.5	Mid-Decih Dyecourtén Shakov OsettorsenW/ Shakov Oversonkim/W/ Shakov Oversonkim/W/ Shakov Greatsurten/W/		77 38		x x x x
SHP 40-14 FOINT AREA SHE 13 SHP 40-384 SHP 40-371 SHP 40-384 SHP 41-384	2504 320 * 321 +	510-610 50-200 30-80	205 a - 195 4 215 a - 200 f 216 1 - 213 f	Mid-Depth Dyecountée Shailaw Opertursen/W/I Shailaw Oversum/an/W/I Shailaw Onersum/an/W/I Shailaw Oversum/an/W/I				x x x x x
54P 05-44 90 07 41 54 94P 40 - 354 54P 40 - 354 54P 40 - 354 54P 40 - 354 75 P 40 - 354 75 P 40 - 354	250-4 320 * 321 + 219 5	510+610 50-200 30+80 10+60	208.4-195.4 215.1-200.1 218.1-213.1 218.8-213.5	Mitt-Decity Divectuation Strailow Operbursen/WT Strailow Dventuation/WT Strailow Oversunter/WT Strailow Oversunter/WT Print Stage		77 38		x x x x x x
SHP 45-14 PD 47 AUEA PHL-13 SHP 40-38A SHP 40-38A SHP 40-38A PSP-01 SHP 40-38A PSP-01 SHP 40-38A	250-4 220 : 221 : 219 5 219 3	510+610 50-200 30+80 10+60	208.4-195.4 215.1-200.1 218.1-213.1 218.8-213.5	Mith-Decith Divectuation Shalikaw Orientuation/WT Shalikaw Orientuation/WT Shalikaw Orientuation/WT Shalikaw Orientuation/WT Prime Sauge Wales Table		77 38		x x x x x x x x
SHP 45-14 PD/0 7484 SHP 401-364 SHP 401-364 SHP 401-374 SHP 401-374 SHP 401-374 SHP 401-374 SHP 401-374 SHP 401-374 SHP 401-374 SHP 401-474 SHP 401-364 SHP 400-36	2504 2015 2311 2195 2193 2193	510+610 50-200 30+80 10+60	208.4-195.4 215.1-200.1 218.1-213.1 218.8-213.5	Mith-Dacith Divecturisten Shalilaw Operturisten/W/J Shalilaw Operturisten/W/J Shalilaw Operturisten/W/T Shalilaw Operturisten/W/T Prime Suge Water Table Class Overhandan		77 38		× × × × × × × ×
SHP 45-14 PO'07 7 ALEA DO'17 7 ALEA SHP 40-354 SHP 40-374 SHP 40-374 SHP 40-374 SHP 40-374 SHP 40-374 SHP 40-374 SHP 40-374 SHP 40-374 SHP 40-474 SHP 40-4	255-4 220 * 221 1 219 5 219 8 219 8 219 8 228 8	510+610 50-200 30+80 10+60	208.4-195.4 215.1-200.1 218.1-213.1 218.8-213.5	Mit-Decit Diversion Shallow Overtunsen/WJ Shallow Overtuinten/WT Shallow Overtuinten/WT Shallow Overtuinten/WT Shallow Overtuinten/WT Print Suge Water Toble 2 was Divertuinten was-Dace Diversioner		77 38		X X X X X X X X X X X
SHP 45-14 PD/05 AAR2A PD/1-13 SHP-01-35A SHP-01-35A SHP-01-35A SHP-05-17A B -01-471 -	2504 2015 2311 2195 2193 2193	510+610 50-200 30+80 10+60	208.4-195.4 215.1-200.1 218.1-213.1 218.8-213.5	Mith-Dacith Divecturisten Shalilaw Operturisten/W/J Shalilaw Operturisten/W/J Shalilaw Operturisten/W/T Shalilaw Operturisten/W/T Prime Suge Water Table Class Overhandan		77 38		× × × × × × × × ×
SHP 45-14 PD 47 AUEA PHL-13 SHP 40-38A SHP 40-38A SHP 40-38A PSP-01 SHP 40-38A PSP-01 SHP 40-38A	2584 220 5 2211 219 5 219 8 219 8 219 8 228 8	510+610 50-200 30+80 10+60	208.4-195.4 215.1-200.1 218.1-213.1 218.8-213.5	Mit-Decit Diversion Shallow Overtunsen/WJ Shallow Overtuinten/WT Shallow Overtuinten/WT Shallow Overtuinten/WT Shallow Overtuinten/WT Print Suge Water Toble 2 was Divertuinten was-Dace Diversioner		77 38		X X X X X X X X X X X
SHP 45-14 PD/05 AAR2A PD/1-13 SHP-01-35A SHP-01-35A SHP-01-35A SHP-05-17A B -01-471 -	255-4 220 5 221 11 219 5 219 8 219 8 219 8 228 8 228 8 228 8 228 8	510+610 50-200 30+80 10+60	208.4-195.4 215.1-200.1 218.1-213.1 218.8-213.5	MithDacith Diversions Shallow OvertunsteinW/J Shallow OvertuinteinW/J Shallow OvertuinteinW/J Shallow OvertuinteinW/J Rinni Suge Water Toble Class Divertuintein WithDace Diversion Shallow Overtuintein		77 38		X X X X X X X X X X X X
SHP 45-14 PD/07 A/12A PD/07 A/12A PD/07 A/12A SHP 401-35A SHP 401-35A PSP-401 SHP 401-35A PSP-401 SHP 401-35A SHP 401-35A MI-P21 MI-P21 MI-P21 MI-P21 MI-P21	255-4 2211 2193 2193 2193 2193 2193 2193 2193	50.0+51.0 50-200 30+80 10+80 1.5+85	208.4-195.4 215.1-200.1 218.1-213.1 218.8-213.5	Mith-Decith Divectuation Shallow Operbursen/WT Shallow Operbursen/WT Shallow Operbursen/WT Shallow Operbursen/WT Primt Shallow Washer Table Clean Operbursen Shallow Operbursen/WT Deem Operbursen/WT		77 38		X X X X X X X X X X X
SHP 45-14 PDVD 2012 A12A PDVD 2012 A12A SHP 40-35A SHP 40-35A SHP 40-35A SHP 40-35A SHP 40-35A SHP 40-35A NSHP 40-35A NSHP 40-35A SHP 40-35A SHP 40-35A SHP 40-44 SHP 40-45 SHP 40-35A SHP 40-35A	255-4 2211 2193 2193 2193 2193 2193 2193 2193	50.0+51.0 50-200 30+80 10+80 1.5+85	208.4 - 195.4 215.5 - 200.1 218.1 - 213 218.2 - 213.5 218.3 - 213.5	Mith-Decith Divectuation Shallow Operbursen/WF Shallow Diversuniter/WF Shallow Operburster/WF Shallow Operburster/WF Print: Stage Wales Toble Shallow Diversumer Shallow Operburster Held-Deciti Diversurber		77 38		X X X X X X X X X X X X
SHP 45-14 PD 10 A12A SHP 40-384 SHP 40-	250-4 220 5 2211 219 5 219 3 219 3 219 3 218 8 218 8 218 8 218 8 218 8 219 8	51.4-81.0 3.4-80.0 10-80.0 1.5-85.5 - - - - - - - - - - - - - - - - - -	208.7-149.4 218-300-1 218.1-213 218.8-213.5 218.8-213.5 218.8-213.5 218.8-213.5 218.8-213.5 218.8-213.5	Mith-Decith Divectuation Shallow Overbursen/W/I Shallow Overbursen/W/I Shallow Gestuarten/W/I Shallow Gestuarten/W/I Prind Suge Wales Table Sallow Dverburdain Mith-Decit Divectuation Shallow Diverburdain Disco Overbardien Disco Devotarten Disco Devotarten		77 38		× × × × × × × × × × × × × ×
SHP 45-14 PD 10 AD 25 SHP 40-354 SHP 40-358 SHP 40	2004 22111 2195 2195 2195 2195 2195 2195 219	51.4-81.0 3.4-80.0 10-80.0 1.5-85.5 - - - - - - - - - - - - - - - - - -	205.7-195.4 215.5-200.4 216.1-213 218.5-213.5 218.5-213.5 218.5-213.5 201.8-186.8 785.5-164.8	Mit-Decit Divertiaries Shallow Overbursen/W/T Shallow Overbursen/W/T Shallow Overbursen/W/T Shallow Overbursen/W/T Princi Sage grade toble grade toble grade toble shallow Overbursen/W/T Decit Diverbursen/W/T Decit Diverbursen Mit-Decit Diverbursen Diverbursen Diverbursen Diverbursen Diverbursen Diverbursen Diverbursen Diverbursen Diverbursen		77 38		× × × × × × × × × × × × × × × × × × ×
SHP 45-H4 PD 10 AREA PD 10 AREA SHP 40-35A SHP 40-35A SHP 40-35A SHP 40-35A SHP 40-35A SHP 40-35A (SP 40-	2004 22111 2195 2195 2195 2195 2195 2195 219	51.4-81.0 3.4-80.0 10-80.0 1.5-85.5 - - - - - - - - - - - - - - - - - -	205.7-195.4 215.5-200.4 216.1-213 218.5-213.5 218.5-213.5 218.5-213.5 201.8-186.8 785.5-164.8	Mit-Decit Divertiaries Shallow Overbursen/W/T Shallow Overbursen/W/T Shallow Overbursen/W/T Shallow Overbursen/W/T Princi Sage grade toble grade toble grade toble shallow Overbursen/W/T Decit Diverbursen/W/T Decit Diverbursen Mit-Decit Diverbursen Diverbursen Diverbursen Diverbursen Diverbursen Diverbursen Diverbursen Diverbursen Diverbursen		77 38		× × × × × × × × × × × × × × × × × × ×
SHP 45-H4 PD 10 AREA PD 10 AREA SHP 40-554 SHP 40-554 SHP 40-554 SHP 40-574 SHP 40-574 SHP 40-574 SHP 40-774 SHP 40-7747 SHP 40-774 SHP 40-774 SHP 40-7747 SHP 40-7747 SHP	2004 3205 2710 2195 2193 2193 2193 2293 2293 2293 2193 2193	51.0-81.0 30+80 10-80 1.5-85 - - - - - - - - - - - - - - - - - -	205.7-195.4 215.5-200.4 216.1-213 218.5-213.5 218.5-213.5 218.5-213.5 201.8-186.8 785.5-164.8	Mit-Decit Divectuation Stration Operbursen/WT Stration Operbursen/WT Stration Operbursen/WT Stration Operbursen/WT Stration Operbursen/WT Stration Operbursen Stration Operbursen Stration Operbursen Decident Operbursen Decident Ion Serricol Wale: Table				x x x x x x x x x x x x x x x x x x x
SHP 45-14 PD 10 AD 25 PD 10 AD 25 PD 10 AD 25 SHP 40-35A SHP 40-45 SHP 4	2004 2205 2210 2195 2195 2195 2195 2195 2195 2195 2195	51.4-81.0 3.4-80 3.4-80 1.0-80 1.6-85 	205.7-195.4 215-200-1 216.1-213 218.5-213.5 218.5-213.5 218.5-213.5 201.9-196.9 201.9-196.9 215.5-196.9 215.5-210.6	Mith-Decith Divectuation Shallow Overbursen/W/I Shallow Overbursen/W/I Shallow Overbursten/W/I Shallow Overbursten/W/I Print Sage Waler Toble Class Diverbursten Shallow Diverbursten Shallow Diverbursten Dises Dises Diverbursten Dises Dises Diverbursten Dises Dises Dises Dises Dises Diverbursten Dises Dises Dis				x x x x x x x x x x x x x x x x x x x
SHP 45-14 PD 10 AD 24 SHP 40-384 SHP 40	2004 22111 2195 2195 2195 2195 2195 2195 219	51.4-81.0 34-80 10-80 15-85 - - - - - - - - - - - - - - - - - -	205.7-195.4 215.5-200.4 216.1-213 218.5-213.5 218.5-213.5 218.5-213.5 201.8-196.9 735.5-164.6 215.6-210.8	Mit-Dacih Divertunsen Shaliow Overbunsen/W/T Shaliow Overbunsen/W/T Shaliow Overbunsen/W/T Shaliow Overbunsen/W/T Princi Sage grade Table Shaliow Overbunsen/W/T Shaliow Diverbunsen/W/T Decor Diverbunsen/W/T Decor Diverbunsen/W/T Decor Diverbunsen/W/T Shaliow Overbunsen/W/T Shaliow Overbunsen/W/T		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		× × × × × × × × × × × × × × × × × × ×
SHP 45-14 PD 10 A02A PD 10 A02A PD 10 A02A SHP 40-35A SHP 40-	2004 3205 2711 2195 2193 2193 2193 2293 2293 2493 2193 2193 2193 2193 2193 2193 2193 21	51.0-81.0 50200 30-80 10-60 1.5-85 - - - - - - - - - - - - -	208.4 - 199.4 215 - 300.4 218.1 - 213 218.2 - 213 215.8 - 210.8 97.2 - 92.7 221.5 - 216.7 223.5 - 213.5	Mith-Deciti Divectuation Shallow Operturneen/WT Shallow Operturneen/WT Shallow Operturneen/WT Shallow Operturneen/WT Print Suga Wate Table Deciden Operturneen/WT Deciden Operturneen Mith-Decit Operturneen Mith-Decit Operturneen Deciden Operturneen Shallow Operturneen Shallow Operturneen Shallow Operturneen/WT Bostings Wate Table Shallow Operturneen/WT Bostings		8 8 		× × × × × × × × × × × × × × × × × × ×
SHP 45-14 PD 10 AREA PD 10 AREA SHP 40-55A SHP 40-	2004 3205 32111 2195 2193 2193 2193 2293 2403 2403 2193 2193 2193 2193 2193 2193 2193 219	51.4-81.9 50200 30-80 10-60 1.5-85 - - - - - - - - - - - - -	208.4 - 195.4 215 - 200.4 218.1 - 213.5 218.0 - 213.5 218.0 - 213.5 218.0 - 213.5 	Mit-Decht Divectunten Straliow Overbursen/WT Straliow Overbursen/WT Straliow Overbursten/WT Straliow Overbursten/WT Straliow Overbursten/WT Brand Stug water Table Straliow Overbursten Udd-Decht Overbursten Decht Decht das Bernos Water Table Straliow Overbursten/WT Bioticow Overbursten/WT Bioplow Overbursten/WT Bioplow Overbursten/WT				x x x x x x x x x x x x x x x x x x x
SHP 45-44 PD 47 AREA PD 47 AREA SHP 40-554 SHP 40-554 SHP 40-554 SHP 40-554 SHP 40-564 SHP 40-564 SHP 40-564 SHP 40-564 SHP 40-584 SHP 40-	2004 3205 2711 2195 2193 2193 2193 2293 2488 2416 2193 2193 2193 2193 2193 200 1 2417 2417 2417 2417 2417 2417	51.0-81.0 3.0-20.0 3.0-80.0 1.0-80.0 1.6-85 	208.4 - 199.4 218 - 200.4 218 - 213 218 - 216 7 223 - 216 7 223 - 216 223 - 216 216 216 - 216 216 216 - 217 216 217 - 217 217 - 217 218 - 216 218 - 217 218 - 216 218	Mith-Deciti Divectuation Shallow Orienbursen/WT Shallow Orienbursen/WT Shallow Orienbursen/WT Shallow Orienbursen/WT Shallow Orienbursen/WT Brint Stage water Table Comparison Shallow Orienbursen/WT Decition Shallow Orienbursen/WT Biofrace Shallow Orienbursen/WT Biofrace Shallow Orienbursen/WT Biofrace Shallow Orienbursen/WT Dasp Orienbursen/WT Shallow Orienbursen/WT Dasp Orienbursen/WT		8 9 		x x x x x x x x x x x x x x x x x x x
SHP 45-14 PD 10 AD 25 PD 10 AD 25 PD 10 AD 25 SHP 40-35A SHP	2004 3205 2710 2195 2193 2193 2193 2193 2193 2193 2193 2193	51.0-81.0 30+80 10-80 1.5-85 - - - - - - - - - - - - -	208.7-195.4 218-200-1 218.1-213 218.2-213.5 218.2-213.5 218.2-213.5 218.2-213.5 218.2-184 215.8-210.8 97.7-92.7 221.5-210.8 97.7-92.7 223.5-213.5 1962.4-166.4 223.5-213.4	Mit-Dech Diverturden Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Dech Overbursen Mais Toble Contexture Shallow Overbursen/WT Sector Wate Toble Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT		8 8 9 9 9 9 9 9 9 8 8 8 8 8 8		x x x x x x x x x x x x x x x x x x x
SHP 45-14 PDV/07 APLEA PDV/07 APLEA PDV/07 APLEA SHP 40-356 SHP 40-356 S	2004 2205 2210 2195 2195 2195 2195 2195 2195 2195 2195	51.0-81.0 3.0-20.0 3.0-80.0 1.0-80.0 1.6-85 	208.4 - 199.4 218 - 200.4 218 - 213 218 - 216 7 223 - 216 7 223 - 216 223 - 216 216 216 - 216 216 216 - 217 216 217 - 217 217 - 217 218 - 216 218 - 217 218 - 216 218	Mith-Decith Divectuation Shallow Orienbursen/WT Shallow Orienbursen/WT Shallow Orienbursen/WT Shallow Orienbursen/WT Shallow Orienbursen/WT Brint Stage water Table Comparison Shallow Orienbursen/WT Decit Orienbursen/WT Biofizer Shallow Orienbursen/WT Biofizer Shallow Orienbursen/WT Biofizer/WT Biofizer/WT Biofizer/WT Biofizer/WT Biofizer/WT Biofizer/WT Biofizer/WT Biofizer/WT Biofizer/WT Biofizer/WT		8 9 		x x x x x x x x x x x x x x x x x x x
SHP 45-14 PDV/07 APLEA PDV/07 APLEA PDV/07 APLEA SHP 40-356 SHP 40-356 S	2004 3205 2710 2195 2193 2193 2193 2193 2193 2193 2193 2193	51.0-81.0 30+80 10-80 1.5-85 - - - - - - - - - - - - -	208.7-195.4 218-200-1 218.1-213 218.2-213.5 218.2-213.5 218.2-213.5 218.2-213.5 218.2-184 215.8-210.8 97.7-92.7 221.5-210.8 97.7-92.7 223.5-213.5 1962.4-166.4 223.5-213.4	Mit-Dech Diverturden Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Dech Overbursen Mais Toble Contexture Shallow Overbursen/WT Sector Wate Toble Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT		8 8 9 9 9 9 9 9 9 8 8 8 8 8 8		x x x x x x x x x x x x x x x x x x x
SHP 45-44 PD 10 ABL5 PD 10 ABL5 SHP 40-55 SHP 40-55	2004 2205 2210 2195 2195 2195 2195 2195 2195 2195 2195	51.0-81.0 30-200 30+80 1.0-80 1.5-85 - - - - - - - - - - - - -	208.4 - 195 4 215 - 200 1 216.1 - 213 218.2 - 213 5 218.2 - 213 5 215.8 - 210 5 37.7 - 292 7 221 (5 - 216 7 223 4 - 213 6 223 4 - 2166 A 223 4 - 2166 A 223 4 - 2166 A 223 4 - 213 4 215 5 - 219 5	Mith-Decith Divectuation Shallow Overbursen/W/I Shallow Overbursen/W/I Shallow Overbursten/W/I Shallow Overbursten/W/I Shallow Overbursten/W/I Dass Diverbursten Shallow Overbursten Mith-Diverbursten/W/I Dass Diverbursten Diverbursten Water Table Shallow Overbursten/W/I Shallow Overbursten/W/I		7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		x x x x x x x x x x x x x x
SHP 45-44 PD VIT AREA PD VIT AREA SHP 40-554 SHP 40-554 SHP 40-554 SHP 40-554 SHP 40-554 SHP 40-554 SHP 40-554 SHP 40-554 SHP 40-554 SHP 40-558 SHP 40-5588 SHP 40-5588 SHP 40-5588 SH	2004 3205 2711 2195 2193 2193 2193 2193 248 2415 2193 2193 2193 2193 2193 2193 2193 2193	51.0-81.0 50200 30-80 10-60 1.5-85 - - - - - - - - - - - - -	208.4 - 195 4 215 - 300-1 218.1 - 213 218.2 - 166.4 223.4 - 210.8 97.7 - 92.7 221.(7216.7) 223.5 - 213.6 196.2 - 166.4 223.4 - 213.4 218.2 - 213.5 223.4 - 213.4 218.2 - 213.5 223.4 - 213.5 223.4 - 213.5 223.5 - 210.5 223.5 - 210.5 225.5 - 21	Mith-Decith Divectuation Shallow Overbursen/W/I Shallow Overbursen/W/I Shallow Overbursen/W/I Shallow Overbursen/W/I Prind Suge Wales Table Cost Dive transfan Wales Table Shallow Overbursen Dawn Overbursten Wales Table Shallow Overbursen/W/I Shallow Overbursen/W/I		₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩		x x x x x x x x x x x x x x x x x x x
SHP 45-44 MD 37 AREA MD 37 AREA SHP 45-43 SHP 40-55A SHP 40-55B SH 40-55B SH 40-55B SH 40-55B SH 40-5	2004 3205 2711 2195 2193 2193 2193 2293 248 215 2193 2415 2193 2495 2193 2193 2193 2193 2193 2193 2193 2417 2417 2417 2417 2417 2417 2417 2417	51.0-81.0 50200 30-80 10-60 1.5-85 - - - - - - - - - - - - -	208.4 - 195 4 215 - 300-1 218.1 - 213 218.2 - 166.4 223.4 - 210.8 97.7 - 92.7 221.(7216.7) 223.5 - 213.6 196.2 - 166.4 223.4 - 213.4 218.2 - 213.5 223.4 - 213.4 218.2 - 213.5 223.4 - 213.5 223.4 - 213.5 223.5 - 210.5 223.5 - 210.5 225.5 - 21	Mith-Deciti Divectuation Shallow Overtuation/WT Shallow Overtuation/WT Shallow Overtuation/WT Shallow Overtuation/WT Shallow Overtuation/WT Shallow Overtuation Wate Total Shallow Overtuation Wate Total Shallow Overtuation Wate Total Shallow Overtuation Shallow Overtuat		8 8 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8		× × × × × × × × × × × × × × × × × × ×
SHP 45-H4 PD/07 APL5 PD/07 APL5 SHP 40-35A SHP 40-	2004 3205 2210 2195 2193 2193 2193 2193 2193 2193 2193 2193	51.0-81.0 3.0-20.0 3.0-20.0 1.0-60.0 1.0-65.5 	208.4 - 199.4 215 - 200.4 218.1 - 213 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 218.2 - 184.8 215.8 - 210.8 97.7 - 92.7 223.4 - 216.7 223.4 - 216.7 223.4 - 216.7 223.4 - 216.7 223.4 - 216.7 223.4 - 209.5 223.4 - 209.5 225.4 - 210.1 202.7 - 192.7 227.4 - 212.4	Mit-Decht Divectuiden Strallow Orerbursen/WT Strallow Orerbursen/WT Strallow Orerbursen/WT Strallow Orerbursten/WT Strallow Orerbursten/WT Print Stage Walet Toble Strallow Orerbursten Disco Diverbursten Strallow Orerbursten Wale Toble Strallow Orerbursten/WT Strallow Orerbursten/WT		8 8 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8		× × × × × × × × × × × × × × × × × × ×
SHP 45-14 PD/07 AREA SHP 40-54 SHP 40-55 SHP 4	2004 3205 2700 2195 2193 2193 2193 2193 2193 2193 2193 2193	51.0-81.0 50200 1060 1060 1.5-85 - - - - - - - - - - - - -	208.4 - 199.4 218 - 200.4 218 - 213.5 218 - 216.7 223 - 213.5 198 - 216.7 223 - 213.5 198 - 216.7 223 - 213.5 198 - 216.7 223 - 213.5 198 - 216.7 223 - 213.5 223 - 213.5 223 - 213.5 223 - 213.5 223 - 213.5 218 - 216.7 223 - 213.5 218 - 216.7 223 - 213.5 218 - 216.7 223 - 213.5 218 - 216.7 218	Mit-Dech Decturien Shallow Overbursen/WT Shallow Overbursen/WT		8 8 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8		X X X X X X X X X X X X X X X X X X X
SHP 45-44 PD/07 AREA PD/07 AREA PD/07 AREA SHP 40-354 SHP 40-	2004 2204 2210 2195 2195 2195 2195 2195 2195 2195 2195	51.0-81.0 30+80 10-80 1.5-85 - - - - - - - - - - - - -	208.4 - 199.4 215 - 200.4 216.1 - 213 218.9 - 213.5 218.9 - 213.5 218.9 - 213.5 218.9 - 213.5 218.9 - 213.5 201.9 - 196.8 215.8 - 210.8 97.7 - 92.7 223.4 - 213.4 223.4 - 2108.0 223.4 - 218.4 223.4 - 218.9 223.4 - 218.4 225.4 - 218.9 223.4 - 218.4 225.4 - 218.9 223.4 - 218.4 225.4 - 218.9 225.4 - 218.4 225.4 - 218	Mith-Decith Divectuation Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursten/WT Shallow Overbursten/WT Shallow Overbursten/WT Shallow Overbursten/WT Shallow Overbursten/WT Dass Dechartlen Mith-Decit Divectuation Dire Diverbursten/WT Dass Dechartlen Station Overbursten/WT Shallow Overbursten/WT		8 8 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8		
SHP 45-44 MD 37 AREA SHP 45-43 SHP 45-33A SHP 40-33A SHP 40-33B SHP	2004 3205 2711 2195 2193 2193 2193 2293 2293 2415 2193 2415 2193 2415 2193 2493 2493 2493 2493 2493 2493 2493 24	51.0-81.0 3.0-20.0 3.0-20.0 1.0-60.0 1.0-65.5 	208.4 - 199.4 215 - 200.4 218.1 - 213 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 218.2 - 184.8 215.8 - 210.8 97.7 - 92.7 223.4 - 216.7 223.4 - 216.7 223.4 - 216.7 223.4 - 216.7 223.4 - 216.7 223.4 - 209.5 223.4 - 209.5 225.4 - 210.1 202.7 - 192.7 227.4 - 212.4	Mit-Decit Dectarder Shalow OvertureenWT Shalow OvertureenWT Shalow OvertureenWT Shalow OvertureenWT Shalow OvertureenWT Print Sug water Table Southout Dectarder Water Table Dect OvertureenWT Dect OvertureenWT Shalow OvertureenWT		8 8 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8		
SHP 405-44 MD V07 AREA SHP 405-144 MD V07 AREA SHP 405-1564 SHP 405-1564 SHP 405-1564 SHP 405-1564 SHP 405-1564 SHP 405-1564 SHP 405-176 SHP 405-188 SHL 405-188	2004 3205 2711 2195 2193 2193 2193 2293 2403 2415 2193 2415 2193 2493 2493 2493 2493 2493 2493 2493 24	51.0-81.0 50200 30-200 10-60 10-60 15-85 - - - - - - - - - - - - -	208.4 - 195.4 215 - 200.4 218.1 - 213 218.0 - 213.5 218.0 - 213.5 218.0 - 213.5 218.0 - 213.5 218.0 - 213.5 	Mit-Dech Divertursen Shalaw Overtursen/WT Shalaw Overtursen/WT Shalaw Overtursen/WT Shalaw Overtursen/WT Shalaw Overtursen/WT Shalaw Overtursen/WT Shalaw Overtursen/WT Deen Overtursen/WT Deen Overtursen/WT Deen Overtursen/WT Shalaw Overtursen/WT		8 8 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8		
SHP 45-44 MD 37 AREA MD 37 AREA SHP 45-135 SHP 40-155A SHP 40-155 SHP 40-138B SHP 40-140 SHP 40-140 <td>2004 3205 2711 2195 2193 2193 2193 2193 2193 2193 2193 2193</td> <td>51.0-81.0 50200 30-80 10-60 15-85 - - - - - - - - - - - - -</td> <td>205.4 - 195.4 215.5 - 200.4 216.1 - 213 218.5 - 213.5 218.5 - 213.5 218.5 - 213.5 218.5 - 213.5 218.5 - 213.5 218.5 - 213.5 221.6 - 215.7 223.6 - 213.5 196.5 - 210.8 07.7 - 92.7 223.6 - 213.5 196.5 - 210.7 223.6 - 213.5 196.5 - 210.7 223.6 - 213.5 196.5 - 210.7 223.6 - 213.5 196.5 - 210.7 223.6 - 213.5 197.7 - 192.7 223.6 - 313.4 227.7 - 192.7 157.7 - 147.5 157.7 - 147.5</td> <td>Mit-Decit Dectored</td> <td></td> <td>8 8 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8</td> <td></td> <td>X X X X X X X X X X X X X X</td>	2004 3205 2711 2195 2193 2193 2193 2193 2193 2193 2193 2193	51.0-81.0 50200 30-80 10-60 15-85 - - - - - - - - - - - - -	205.4 - 195.4 215.5 - 200.4 216.1 - 213 218.5 - 213.5 218.5 - 213.5 218.5 - 213.5 218.5 - 213.5 218.5 - 213.5 218.5 - 213.5 221.6 - 215.7 223.6 - 213.5 196.5 - 210.8 07.7 - 92.7 223.6 - 213.5 196.5 - 210.7 223.6 - 213.5 196.5 - 210.7 223.6 - 213.5 196.5 - 210.7 223.6 - 213.5 196.5 - 210.7 223.6 - 213.5 197.7 - 192.7 223.6 - 313.4 227.7 - 192.7 157.7 - 147.5 157.7 - 147.5	Mit-Decit Dectored		8 8 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8		X X X X X X X X X X X X X X
SHP 45-44 MD 37 AREA SHP 45-54 SHP 45-554 SHP 41-356 SHP 41-358 SHP 41-358 SHP 41-358 SHP 41-358 SHP 41-358 SHP 41-358 SHP 42-358 SHP 42-358 SHP 42-358 SHP 42-358 SHL 419 SHL 410 SH	2004 3205 270 2195 2195 2195 2195 2195 2195 2195 2195	51.0-81.0 3.0-20.0 3.0-80.0 1.0-80.0 1.6-85 	208.4 - 195.4 215 - 200.4 218.1 - 213 218.0 - 213.5 218.0 - 213.5 218.0 - 213.5 218.0 - 213.5 218.0 - 213.5 	Mit-Dech Divertursen Shalaw Overtursen/WT Shalaw Overtursen/WT Shalaw Overtursen/WT Shalaw Overtursen/WT Shalaw Overtursen/WT Shalaw Overtursen/WT Shalaw Overtursen/WT Deen Overtursen/WT Deen Overtursen/WT Deen Overtursen/WT Shalaw Overtursen/WT		8 8 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8		X X X X X X X X X X X X X X
SHP 45-44 MD 37 AREA SHP 45-54 SHP 45-554 SHP 41-356 SHP 41-358 SHP 41-358 SHP 41-358 SHP 41-358 SHP 41-358 SHP 41-358 SHP 42-358 SHP 42-358 SHP 42-358 SHP 42-358 SHL 419 SHL 410 SH	2004 3205 2711 2195 2193 2193 2193 2193 2193 2193 2193 2193	51.0-81.0 50200 30-80 10-60 15-85 - - - - - - - - - - - - -	205.4 - 195.4 215.5 - 200.4 216.1 - 213 218.5 - 213.5 218.5 - 213.5 218.5 - 213.5 218.5 - 213.5 218.5 - 213.5 218.5 - 213.5 221.6 - 215.7 223.6 - 213.5 196.5 - 210.8 07.7 - 92.7 223.6 - 213.5 196.5 - 210.7 223.6 - 213.5 196.5 - 210.7 223.6 - 213.5 196.5 - 210.7 223.6 - 213.5 196.5 - 210.7 223.6 - 213.5 197.7 - 192.7 223.6 - 313.4 227.7 - 192.7 157.7 - 147.5 157.7 - 147.5	Mit-Decit Dectored		8 8 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8		X X X X X X X X X X X X X X
SHP 405-44 MD V07 AREA SHP 405-144 MD V07 AREA SHP 405-1564 SHP 405-1564 SHP 405-1564 SHP 405-1564 SHP 405-1564 SHP 405-1564 SHP 405-176 SHP 405-188 SHL 405-188	2004 3205 270 2195 2195 2195 2195 2195 2195 2195 2195	51.0-81.0 3.0-20.0 3.0-80.0 1.0-80.0 1.6-85 	208.4 - 199.4 215 - 200.4 216.1 - 213 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 219.2 - 210.5 221.4 - 210.7 223.4 - 210.7 223.4 - 210.7 223.4 - 210.7 223.4 - 210.7 223.4 - 210.7 223.5 - 213.4 219.5 - 210.7 202.7 - 192.7 202.7 - 192.7 203.8 - 219.4 219.4 - 210.5 229.4 - 219.4	Mit-Decht Divecturden Stration OrenbursenWT Stration OrenbursenWT Stration OrenbursenWT Stration OrenbursenWT Stration OrenbursenWT Stration OrenbursenWT Stration Orenbursen Stration Orenbursen Wate Tobie Stration Orenbursen Wate Tobie Stration OrenbursenWT Stration OrenbursenWT		8 8 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8		X X X X X X X X X X X X X X
SHP 45-44 PD/07 APLEA PD/07 APLEA PD/07 APLEA SHP 40-354 SHP 40-356 SHP	2004 2204 2210 2195 2195 2195 2195 2195 2195 2195 2195	51.0-81.0 30-200 30+20 10-60 10-60 10-60 10-60 10-60 20.0-250 10-50 20.0-250 10-50 20.0-250 10-50 20.0-250 10-50 20.0-250 10-50 20.0-250 10-50 20.0-250 10-50 20.0-250 10-60 20.0-250 10-60 20.0-250 20.0-200 20	208.4 - 199.4 215 - 200.4 216.1 - 213 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 218.2 - 213.5 219.2 - 210.5 221.4 - 210.7 223.4 - 210.7 223.4 - 210.7 223.4 - 210.7 223.4 - 210.7 223.4 - 210.7 223.5 - 213.4 219.5 - 210.7 202.7 - 192.7 202.7 - 192.7 203.8 - 219.4 219.4 - 210.5 229.4 - 219.4	Mit-Dech Diverturban Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Shallow Overbursen/WT Deen Overbursen/WT Deen Overbursen/WT Shallow Overbursen/WT		8 8 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8		

Hotes: In the set of period part of the set of mathematical set of the provided in the set of the international set of the international set of the international set of the international set of the international set of the international set of the international set of the international set of the international set of the international set of the international set of the international set of the international set of the international set of the international set of the international set of the international set of the international set of the set of the

Table 4-2 Site-Wide Groundwater Elevation Surveys Shepley's Hill Landfill Devens, Massachusetts

		04/	16/2008	09/	30/2008	-	Reference Elevation ¹² (ft msl)	04/	16/2008	09/30/2008	
Well (D	Reference Elevation ^{1,1} (it msl)	0TW (TOE) (ft)	Elevation (It qual)	DTW (TOC) (ft)	Elevation (firmsi)	Well ID		DTW (TOC) (ft)	Elevation (fi msl)	DTW (TOC) (ft)	Elevation (ft msl)
N-1, P-1	231	16.22	216.78	14.31	216,69	SHM-05-41C	223.6	9.2	214.4	10.06	213.54
N-1, P-2	221	13.81	217.19	14 07	216.93	SHM-05-42A	217.6	3.52	214 28	1.18	213.62
N-1 P-3	231.2	13.66	217.54	13.79	217 41	SHM-05-42B	217.8	3.49	214 31	4.21	213.69
N-2, P-1	223.1	5.25	217.85	5 35	217.75	SHM-93-10C	248.6	28.81	219.79	29.85	218 75
N-2, P-2	223	5.62	217.48	5.52	217.48	SHM-93-10D	248.9	29.93	218.97	28.81	220,09
N-3, P-1	221.8	4.41	217.39	4.51	217.29	SHM-93-18B	238.5	38.1	220.2	17.99	220.31
N-3, P-2	221.5	4.21	217.29	4.19	217.31	SHM-93-22C	221.7	694	214.76	7.78	213,92
N-5, P-1	243.7	22	221.7	23.57	220:33	SHM-96-22B	220,4	5.77	214.63	6.58	213,82
N-5, P-2	243.7	22.47	221.23	23.6	220.1	SHM-96-5B	220	4,99	215.01	5.71	214,29
N-6, P-1	259.9	35.4	224.5	36 69	223.21	SHM-96-5C	219.4	4.42	214.98	5.12	214 28
N-7: P-1	256.6	28 71	227.89	29.5	227 1	SHM-99-31A	215.4	1.94	213.46	1.58	213,82
N-7. P-2	257.1	28.75	228.35	29.55	227.55	SHM-99-31B	215.4	1.84	213.56	3.39	212.01
PSP-01	216.1	1.52	217 62	1.65	217 75	SHM-99-31G	215.8	3.11	212.69	371	212 09
SHL-10	248.8	30.45	218.35	30.67	218.13	SHM-99-32X	222.3	195.	NS	9.27	213.03
SHL-11	236.5	18.76	218.34	18.4	218.1	SHP-01-36X	225.1	751	217.59	7.54	217 56
SHL-13	221.8	5.09	215,71	6 49	215.31	SHP-01-37X	223.7	6.28	217.44	6.27	217.43
SHL-15	260.9	15.07	244.83	18.15	242.75	SHP-01-38A	2218	3.85	217.95	3.8	218
SHL-18	238.6	18.45	220.15	18.51	220 29	SHP-01-388	222	3.78	218.22	3.87	218.13
SHL-19	241.5	22.45	219.05	22.39	219,11	SHP-05-43	261.7	44.08	217.62	44.9	216.8
SHL-20	237	18.52	218.48	18.8	218.2	SHP-05-44	259.1	41.41	217 69	41.9	217.2
SHL-21	260	44.01	215.98	45.11	214.89	SHP-05-45A	229.5	14.57	214.93	15.43	214.07
SHL-22	220.6	5,82	214.68	67	213.9	SHP-05-45B	230.1	151	215	15.2	214,9
SHL-23	242.3	25.59	21671	27.7	214.6	SHP-05-46A	229.3	13.3	216	14.28	215.02
SHL-24	239.0	14.29	225,51	14.08	225.72	SHP-05-468	228.7	13.99	214.71	14.9	219.8
SHL-3	247.8	29.82	218.78	29.98	217.82	SHP-05-47A	218.5	4.32	214.18	4.35	214.15
SHL	2261	10.04	218.06	10.03	218.07	SHP-05-478	2163	2.25	214 05	2.02	214.28
SHL-5	2/66	2.63	215.97	22	216.4	SHP 05 48A	217	3 47	213.53	3.5	213.5
SHL-8D	221.6	6.51	215.29	7.07	214.73	SHP-05-18B	218.4	3.88	213.52	4.61	21379
SHL-8S	222	6.64	215,36	72	214 8	SHP-05-49A	217.8	5.43	212.37	121	213 69
BHL-9	223	8.11	214.89	8.99	214.01	SHP-05-498	215.2	4.92	211.28	5.29	210.91
SHM 05-39A	2226	10.31	212.29	10.99	21161	SHP-95-27X	238,5	13.98	224.52	13.25	225 25
SHM-05-39E	232.6	11.1	211.5	11.9	210.7	SHP-99-29X	244,41	21.28	228.19	23.35	221.06
SHM-05-40	224.4	12.92	211.48	13.82	210.58	SHP-99-34A	225.7	12.43	213.27	12.13	213.57
SHM-05-41A	228.5	9.09	214.41	10.03	213.47	SHP-99-348	225.6	12.28	218.32	12.66	212.94
SHM-05-418	225.3	3.91	214.39	9.86	213.44	SHP-99-35X	259.2	35.66	223 54	35.6	219,6

Notes 1. All ground software and information brand on ford solvery performed by Kenden Association. The Transvery July and August 2005 - when STE 10 which is based on groundwater monitoring will complete tog by Capitral, inc.

2 Elevations based upon import system reponds to be historial Execution Vestical Document 11011 (NGV11/1)

MISE = MIRIN BRITLEVILL

DTW = Deput to Venue

100 For of Casing

NS = Net Sammad

Table 4-2 Site-Wide Groundwater Elevation Surveys Shepley's Hill Landfill Devens, Massachusetts

	1	04/:	16/2008	09/	30/2008		Reference Elevation ^{1,2} (ft msl)	04/	16/2008	09/	30/2008
Well ID	Reference Elevation ^{1,2} (ft msl)	DTW (TOC) (ft)	Elevation (ft msl)	DTW (TOC) (ft)	Elevation (ft msl)	Well ID		DTW (TOC) (ft)	Elevation (ft msl)	DTW (TOC) (ft)	Elevation (ft msl)
N-1, P-1	231	14.22	216.78	14.31	216,69	SHM-05-41C	223.6	9.2	214.4	10.06	213.54
N-1, P-2	231	13.81	217.19	14.07	216.93	SHM-05-42A	217.8	3.52	214.28	4.18	213.62
N-1, P-3	231.2	13.66	217.54	13.79	217.41	SHM-05-42B	217.8	3.49	214.31	4.21	213.59
N-2, P-1	223.1	5.25	217.85	5.35	217.75	SHM-93-10C	248.6	28.81	219,79	29.85	218.75
N-2, P-2	223	5.52	217.48	5.52	217.48	SHM-93-10D	248.9	29.93	218.97	28.81	220.09
N-3, P-1	221.8	4.41	217.39	4.51	217.29	SHM-93-18B	238.3	18.1	220,2	17.99	220.31
N-3, P-2	221.5	4.21	217.29	4.19	217.31	SHM-93-22C	221.7	6.94	214.76	7.78	213.92
N-5, P-1	243.7	22	221.7	23.37	220.33	SHM-96-22B	220.4	5.77	214.63	6.58	213.82
N-5, P-2	243.7	22.47	221.23	23.6	220.1	SHM-96-5B	220	4.99	215.01	5.71	214.29
N-6, P-1	259.9	35.4	224.5	36.69	223.21	SHM-96-5C	219.4	4.42	214.98	5.12	214.28
N-7, P-1	256.6	28.71	227.89	29.5	227.1	SHM-99-31A	215.4	1.94	213.46	1.58	213.82
N-7, P-2	257.1	28.75	228.35	29.55	227.55	SHM-99-31B	215.4	1.84	213.56	3.39	212.01
PSP-01	216.1	1.52	217.62	1.65	217.75	SHM-99-31C	215.8	3.11	212.69	3.71	212.09
SHL-10	248.8	30.45	218.35	30.67	218.13	SHM-99-32X	222.3	NS	NS	9.27	213.03
SHL-11	236.5	18.16	218.34	18,4	218.1	SHP-01-36X	225.1	7.51	217.59	7.54	217.56
SHL-13	221.8	6.09	215.71	6.49	215.31	SHP-01-37X	223.7	6.26	217.44	6.27	217.43
SHL-15	260.9	16.07	244.83	18.15	242.75	SHP-01-38A	221.8	3.85	217.95	3.8	218
SHL-18	238.6	18.45	220.15	18.31	220.29	SHP-01-38B	222	3.78	218.22	3,87	218.13
SHL-19	241.5	22.45	219.05	22.39	219.11	SHP-05-43	261.7	44.08	217.62	44.9	216.8
SHL-20	237	18.52	218.48	18.8	218.2	SHP-05-44	259.1	41.41	217.69	41.9	217.2
SHL-21	260	44.01	215.99	45.11	214.89	SHP-05-45A	. 229.5	14.57	214.93	15.43	214.07
SHL-22	220.6	5.92	214.68	6.7	213.9	SHP-05-45B	230.1	15.1	215	15.2	214.9
SHL-23	242.3	25.59	216.71	27.7	214.6	SHP-05-46A	229.3	13.3	216	14.28	215.02
SHL-24	239.8	14.29	225.51	14.08	225.72	SHP-05-46B	228.7	13.99	214,71	14.9	213.8
SHL-3	247.8	29.82	218.78	29.98	217.82	SHP-05-47A	218.5	4.32	214.18	4.35	214.15
SHL-4	228.1	10.04	218.06	10.03	218.07	SHP-05-47B	216.3	2.25	214.05	2.02	214.28
SHL-5	218.6	2.63	215.97	2.2	216.4	SHP-05-48A	217	3.47	213.53	3.5	213.5
SHL-8D	221.8	6.51	215.29	7.07	214.73	SHP-05-48B	218.4	4.88	213.52	4.61	213.79
SHL-8S	222	6.64	215.36	7.2	214.8	SHP-05-49A	217.8	5.43	212.37	4.21	213.59
SHL-9	223	8.11	214,89	8.99	214.01	SHP-05-49B	216.2	4.92	211.28	5.29	210.91
SHM-05-39A	222.6	10.31	212,29	10.99	211.61	SHP-95-27X	238.5	13.98	224.52	13.25	225.25
SHM-05-39B	222.6	11.1	211.5	11.9	210.7	SHP-99-29X	244.41	21.28	223.13	23.35	221.06
SHM-05-40X	224.4	12.92	211.48	13.82	210.58	SHP-99-34A	225.7	12.43	213.27	12.13	213.57
SHM-05-41A	223.5	9.09	214.41	10.03	213.47	SHP-99-34B	225.6	12.28	213.32	12.66	212.94
SHM-05-41B	223.3	8.91	214.39	9,86	213.44	SHP-99-35X	259.2	35.66	223.54	39.6	219.6

Notes: 1. All ground surface and reference elevations based on field survey performed by Mendan Associates, Inc. between July and August 2005 except SHL-10, which is based on groundwater monitoring well completion log by ConTest, Inc.

2 Elevations based upon project system, reported to be National Geodetic Vertical Datum of 1929 (NGVD29)

MSL = Mean Sea Level

DTW = Depth to Water

TOC = Top of Casing

NS = Not Sampled

Table 4-3 Groundwater Analytical Results Shepley's Hill Landfill Devens, Massachusetts

Analaytical	1	MGL or	10000000			-					Sample ID							
Annaytical Parameter	Unite	ROD	SHL-US Apr-2001	SHL-85 Dct-2008	SHL-9 Apr-2006	SHL-9 Oct-2000	SHM-05-38A Oct-2008	SHM-05-398 Oct-2008	SHM-05-40X Oct-2008	5HM-05-41A Apr-2006	SHM-05-11A Oct-2008	BHM-00-41B Apr-2008	SHM-05-41B Oct-2008	SHM-05-HIC Apr-2008	SHM-05-41C Oct-2008	SHM-05-42A Apr-2008	SHM-05-42A Dct-2088	8HM-05-42B Apr-2008
ALKALINITY, TOTAL (AS CACO3)	ug/l	1	18000	1.5000	61000	72000	220000	320000	260000	31000	28000	330000	240000	340000	340000	15000	16400	470000
CHLORIDE	(igu		7000	7400	1600	6100	19000	90000	16000	6700	2100	21000	13000	100000	33000	1300	1200	45000
NITRATE (AS N)	light		150	100 123	57 J	100 1	130 J	180	48.3	61.2	85 J	250 J	1000 UJ	94 1	56 J	110	1.66	1000 U
SULFATE	Val.		1100	1700	7400	7400	3200	1700	2400	\$1000	7600	1000 U	2900	1800	390 1	7000	6700	2800
TURBIDITY	NTU		02 U	0.2 U	3.4	3	140	54	380	1.2	2.6	280	210	170	260	5.2	1.6	280
	1.000	100000000	-			-			000000	Dissolved	Metain by SW60	10/59/6020						
ARSENIC	Ng/L	10	NS	NS	NS	NS	N5	NS	NS	NS	NS	NS.	NS	NS	NS	NS	NS	NS
GALCIUM METAL	lig/l		NS	NS	NB	NE	NS	NS	NS	NS	NIS	NS	NS	NS	NS.	NS	NS-	NS
IRON	Ng/	9100	NS	NS	NB	NS.	NS	NS	NS	NS.	NS	NS	NS	NS	NS	NS	NS	NS
MAGNESIUM	lug/l		NS	NS	NS	NS	NS	NS	NS	NS-	NS	NS	NS	NS	NS	N5	NS	NS
MANGANESE	hpu	1715	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS-	NS	NS	NS:
POTASSIUM	high.		NE	NS:	NB	NS	NB	NS	NS	NE	NS-	NS	NS	NS	NS.	NIS	NS	NS
SODIUM	Lavi,	20000	NS	NS:	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS.	NE	NS.	NS	NS
	1	1				- 2.2				Total Me	etals by SW6010/	SW6020		and the second s		-		
ARSENIC	Ng/T	10	0.5 U	1 111	36,6	40.7	275.6	241.2	4920	26,9	18.7	2349	1910	662.2	789.1	.2.5	10	266.2
CALCIUM METAL	Nov.		4300	4300	22000	24000	37000	91000	49000	8800	7000	48000	31000	95000	99000	5500	5400	75000
IRON	nigit-	0100	50 U.	50 U	3500	1000	60000	4000	65000	3500	1900	100000	68000	16000	18000	690	80	73000
MAGNESIUM	NOT.		770	790	1600	1700	4800	13000	7400	1700	1400	6600	4400	13000	13000	1100	1100	12000
MANGANESE	ug/i	1715	12	14	426	452	1750	5320	1420	396	224	1780	1330	2960	5100	30	7.6.1	2530
POTASSIUM	(au)		1200 J	2500 U	L 0061	2500	10000	7400	8000	2100 J	2400 J	15000	12000	6700	3400	1600 J	1800 J	20000
SODIUM	ugi	20000	5200	5900	2000	3200	11000	83000	19000	4400	3400	16000	15000	75000	35000	2000 U	L 00Et	36000
Floid Readings	Unite	ROD Standard	SHL-05 Apr-2008	SHL-85 Oct-2990	SHL-9 Apr-200E	SHL-9 Oct-2006	001-2008	SHM-05-388 Det-2008	SHM-05-40X Det-2006	SHM-05-41A Apr-2005	SHM-65-41A Oct-2068	0HM-05-418 Apr-2008	3HM-05-118. Oct-2006	SHM-05-41C Apr-2008	SHM-05-41C Oct-2008	SHM-05-12A Apr-2006	SHM-05-42A Oct-2005	SHM-05-428 Apr-2008
DO	// form	il/a	2.03	1.07	0.27	- 1.1	0.2	0.25	0.22	D.55	0.27	-0.36	0.12	0.16	15.12	5.36	3.65	0.2
DRP	Millivotta	n/a	158	234,5	-12	-46	-76.1	-70.9	-104.2	35	10.8	-76	-89	-010	-149.5	230	179.6	-59
pH	ph Lints	nia	5.11	5,67	6,48	6,43	6,30	6,86	6.58	6,33	6,73	6,36	5,52	6,9	7.42	5.02	6.1	5.78
SPO	msiam	n/a	0.227	15,04	0.169	0.205	0.492	0.670	0.549	0.116	0.052	0.787	0.367	0.986	0.491	0.211	D,033	1.112
Temp	DEGI	n/a	8.85	10.4	7.28	8.85	7.58	9.82	7.91	9.76	t0.47	9.77	11,49	9.6	10.81	8.77	10.13	10.06
TURBIDITY	NTU	nia	NS	0.63	NS	NS	1.19	7.81	1/13	NŚ	7.96	NS	2.56	NS	8.7	NS	0.64	NS

Notes J = Estimated Detect U = Not detected at indicated reporting limit NS = Not Sampled Highlighted values exceed MCL or ROD standard

2008 Annual Report

Table 4-3 Groundwater Analytical Results Shepley's Hill Landfill Devens, Massachusetts

.

		MCL or	No. of Concession, Name		-					Sample IG							SHM-99-32X
Analoytical Poramoter	Units	ROD Standard	3HM-05-428 Oct-2088	SHM-93-10C Oct-2008	SHM-93-10D Oct-2008	SHM-53-22C Apr-2000	5HM-93-23C Det-2009	5HM-96-228 Apr-2001	SHM-96-328 Oct-2000	SHM-96-5B Apr-2008	SHM-95-5B Oct-2008	SHM-95-5C Apr-2005	SHM-98-5C Oct-2008	SHM-99-31A Oct-2008	SHM-69-318 Oct-2008	SHM-99-31C Oct-2008	8HM-99-32X Oct-2006
ALKALINITY, TOTAL (AS CACO3)	ugli		350000	170000	61000	180000	110000	320000	320000	330000	320000	330000	310000	47000	140000	360000	360000
CHLORIDE	ug/l		33000	24000	26000	25000	13000	29000	18000	22000	19080	28000	21000	16000	9200	32000	37000
NITRATE (AS N)	ug/l		310.1	100 111	100 UJ	78 .	290	100 U	1000 UJ	100 U	100 U	500 U.	100 UJ	100 U	500 U	.40 J	500 L
SULFATE	ugili		4600	19000	18000	9100	8600	3400	3400	4100	4800	620 J	1700	4300	3800	1800	5600
TURBIDITY	NTU		270	0,6	130	1.9	42	400	260	90	12	67	31	0.67	6.2	310	300
	1.000	-	Y			A			Dissolved Me	stals by SW6010	SW6020	1			Courses and		
ARSENIC	ugri	10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NG	NS	NS	NS	NS	NS
CALCIUM METAL	ugit		NS.	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
IRON	ngir	9100	NS	NS	NS.	NS	NS	NS	NS	NS	NS	NS	NE	NS	NS	NS	NS
MAGNESIUM	ug/i		NS	NS	NS	N5	NS	NS	NS	NS	NS-	NS	NS	NS	NS	NS	NS
MANGANESE	1/g/l	1715	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	N5	NS	NS
POTASSIUM	LID/		NS	N.S.	NS	NS	NS .	NS	NS	NS	N5_	NS	NS	NS	NS	MS	NS
SODIUM	lug/L	20000	NS	NS	NS.	NS	NS	NS	NS	NS	NS.	NS	NS	NS	NS	NS	NS
	1.000	1					Acres and a second s			a by SW6010/SV	V\$020						
ARSENIC	Ngci	10	256	10,1	214	29.4	12.7	1721	1374	1507	747.8	54.7	51,8	36.7	70.5	260,3	203,0
GALCIUM METAL	ug/l		64000	72000	82000	58000	36000	70000	71000	73000	82000	66000	65000	13000	30000	85800	92000
IRON	119/	9100	66000	60	17000	1000	640	72000	54000	18000	5300	25000	21000	8400	19000	36000	37000
MAGNESIUM	ligu		10000	4100	560	8400	5000	12000	11000	12000	13000	8600	8500	BRD	3200	13009	14800
MANGANESE	ug/l	1715	2410	40	140	335	150	2410	4320	9240	10801	3490	3990	495	068	3880	1200
POTASSIUM	leg/l		15000	4800	5000	1700	4330	14000	9500	10000	8500	14006	11000	2500 U	4600	10000	7800
SODIUM	log/i	20000	29000	8400	7700	13000	10000	27000	24660	22000	26000	27000	26600	11000	11000	33800	35000
Field Readings	Units.	ROD Standard	SHM-05-42B Det-2008	5HM-03-18C Dot-2008	SHM-93-10D Oct-2008	SHM-93-22C Apr-2008	SHM-93-22C Oct-2008	SI/M-96-22B Apr-2008	SHM-90-228 Oct-2008	SHM-95-5B Apr-2008	5HM-96-58 Oct-2008	SHM-96-5C Apr-2008	SHM-96-5C Oct-2006	SHM-99-31A Dct-2008	SHM-99-31B Oct-2008	SHM-99-31C Oct-2008	5HM-99-32X Oct-2008
00	mg/i	nla	0.13	0.77	0.12	0.35	0.31	-0.1	0.21	0.2	0.58	0.12	1.5	D.15	0.9	0.12	0.24
ORP	Millivolts	nia	-79	-12	-15,7	-142	-96.6	-96	-82.5	-11	.6	- 21	-57.7	28	-41.2	-90.8	-76.8
PHQ	pH Units	nla	6.67	7.27	11,35	7.53	7.87	6,84	6.47	5,82	6,21	5,24	6.21	5.8	6.48	6.59	6.44
SPG	ma/cm	nia	0.53	0.411	0.312	8,443	0,256	0.859	0.722	0.792	0.708	0.86	0.705	0.159	0.212	0.529	0,713
Temp	DEGIC	nla	10.31	8.67	8.99	B:44	7.75	7,01	7.41	9.78	9.64	9.49	7.51	10:87	10.91	10.79	6.98
TURBIDITY	NTU	ida	6.35	2.82	82.7	NS	5.16	NS	13	NS	1.02	NS	2.15	1.27	0.46	1.55	8.15

Notes: J = Estimated Detect U = Not detected at indicated reporting limit NS = Not Sampled Highlighted values exceed MCL or ROD standard

2008 Annual Report

Page 3 of 4

Table 4-3 Groundwater Analytical Results Shepley's Hill Landfill Devens, Massachusetts

1		MCL or	In the second second	Sar	mple ID	
Analaytical Parameter	Units	ROD Standard	SHP-01-36X Oct-2008	SHP-01-37X Oct-2008	SHP-01-38A Oct-2008	SHP-09-29X Oct-2008
ALKALINITY, TOTAL (AS CACO3)	ugl		38000	00086	140000 J	100000
CHLORIDE	սցմ		39000	25000	28000	2900
NITRATE (AS N)	ugň		100 U	100 U	500 UJ	1000 U
SULFATE	lug/l	1	1000 U	3400	16000	5900
TURBIDITY	NTU	1.000	0,2 U	0.2 U	33	9.9
all the second		A STREET, STRE	t.	Dissolved Metals	by SW6010/SW80	20
ARSENIC	Ngu	10	NS	NS	NS	NS
GALGIUM METAL	lug/l		NS	NS	NS	NS
IRON	lugil	9100	NS	NS	NS	NS
MAGNESIUM	hqu		NS	NS	NS	NS
MANGANESE	ugi	1715	NS	NS	NS	NS
POTASSIUM	Ngu		NS	NS	NS	NS.
SODIUM	Ngui	20000	NS	NS	NS	NS
				Total Metals by	SW6010/SW6020	And the second second
ARSENIC	ugA	10	27.9	38,1	602.4	2106
CALCIUM METAL	ug/L		96420	7300	28000	9000
IRON	ug/t	9100	5000	6800	26000	40000
MAGNESIUM	ug/i		1800	1400	4300	890
MANGANESE	ug/i	1715	119	310	664	5370
POTASSIUM	lug/		1800 J	1300 J	9200	2500 U
SODIUM	ug/l	20000	23000	19000	16000	2300
Field Readings	Units	NICL or ROD Standard	SHP-01-35X Oct-2008	SHP-01-37X Oct-2008	SHP-01-38A Oct-2008	SHP-89-29X Oct-2008
DO	mg/l	n/a	0.16	0.12	0.15	0.22
ORP	Milivolts	n/a	-38.7	-54.2	-60.9	14.6
pH	pH Units	n/a	6.37	6.51	6.3	5.3
SPC	ms/cm	n/a	0.219	0.175	0.418	0.226
Temp	DEGIC	n/a	17.37	15.59	12.96	11.77
TURBIDITY	NTU	n/a	0.31	0.09	0.04	4.4

Notes: J = Estimated Detect U = Not detected at indicated reporting limit NS = Not Sampled Highlighted values exceed MCL or ROD standard

2008 Annual Report

Table 4-4 In-Situ Water Quality Monitoring Results Shepley's Hill Landfill Devens, Massachusetts

50960	Event	Ome	DO (mg/)/	CIRF (MILLVOILL)	pH (pH Uots)	SPC (ms/cm)	Territo (DEG CI)	TUPEID T
SHL-21	Winter 2008	01/10/20081	10.16	176	6	0.049	12.61	NS
SHL-21	Spring 2008	04/18/20081	9.67	241	5.98	0,225	12.48	NS
SHL-21	Summer 2008	07/16/2008	9.99	252	5.22	0,061	12.64	0.39
SHL-21	Fail 2008	10/06/2008	8.78	127	6.02	0.066	9.73	12.91
	Con Ford	nuroure bizo	all a	(6)	NOUL.	distand.	0.70	12.54
SHL-22	Winter 2008	01/09/2008	0.68	-51	6,7	0,508	9.23	NS
SHL-22	Spring 2008	04/21/2008	0.21	2	6.89	0.767	7.98	NS
SHL-22	Summer 2008	07/15/2008	8 51	52.6	6.31	0,776	10,18	0,33
SHL-22	Fall 2008	10/01/2008	0.15	-21	G/5	0.736	7.41	0
SHL-23	Winter 2008	0.00000000	10.01	460	5.55	10.022	12.96	NC
		01/09/2008	10.01	150		0,033		NS
SHL-23	Spring 2008	04/21/2008	14:36	248	5.25	0.032	10.84	142
SHL-23	Summer 2008	07/16/2008	12.63	276	4.9	0.036	11.08	8.19
SHL-23	Fall 2008	10/06/2008]	12.11	184	5.94	0,041	8.2	0,51
iHL-5	Winter 2008	01/08/2008	0.67	60	5.42	0.079	4.72	NS
SHL-5	Spring 2008	04/17/2008	0.11	73	3.26	0.251	5.08	NS
HL-5	Summer 2008	07/15/2008	0.11	3	5.6	0.108	12.84	1.52
HL-5	Fall 2008	10/01/2008	0.11	17.7	5.57	0.095	11.48	1.65
SHL-BD	Winter 2009	01/08/2008	5,06	215	£.41	0.112	9.07	NS
HL-8D	Spring 2008	04/17/2008	1.57	233	5.88	0.313	9.64	NS
SHL-8D	Summer 2008	07/15/2008	1,09	121	6.08	0.163	10,82	0,18
HL-8D	Fall 2008	10/01/2008	1,53	225.6	5.B1	0.084	10.87	0.21
HL-8S	Winter 2008	01/08/2008	1.29	101	6.39	0.062	9.43	NS
HL-8S	Spring 2008	04/17/2008	2,03	158	B,11	0.227	8.85	NS
HL-85	Summer 2008	07/15/2008	1.32	149	6.03	0.073	10.68	0.51
SHL-8S	Fall 2008	10/01/2008	1.07	234.5	5.67	0.04	10.4	0.63
112.000			1.021					5104
SHL-9	Winter 2008	01/09/2008	0.1	-58	6.63	0.114	9.19	NS
HL-9	Spring 2008	04/21/2008	0.27	=12	6.48	0.159	7.28	NS
SHIL-9	Summer 2008	07/15/2008	0.21	-15	6,19	0.214	8.8	1.46
SHL-9	Fall 2008	10/01/2008	1.1	-45	6.43	0.205	8.85	NS
	Winter 2008	01/09/2008	0.28	-117	7.53	0.623	8.87	NS
And in case of the local division of the loc	Spring 2008	04/21/2008	0.35	-142	7.53	0.443	8.44	NS
	Summer 2008		0.2	-87.7	7.55	0.231	11,99	NS
HM-93-22C	Fail 2008	10/02/2008	0,31	-96.6	7.87	0,256	7.75	5.16
HM-96-22B	Winter 2008	01/09/20081	0.18	-84	6,68	0.728	94	NS
	Spring 2008	04/21/2008	D.1	-96	8.64	0.859	7.01	NS
		07/15/2008	0.38	-67.7	6.10	ErB	9.86	9,54
HM-96-22B	the second se	10/01/2008	0.21	-82.5	6,47	0.722	7,41	13
					0111			
HM-96-5E	Winter 2008	01/08/2008	0.17	-2	5.99	0.655	96	NS
HM-96-5B	Spring 2008	04/17/2008	0,2		5,52	0,792	0,79	NS
SHM-96-58		07/15/2008	0.35	10	6.08	0.891	11.36	0.81
6HM-96-5B	Fall 2008	10/01/2008	0.58	6	6,21	0.709	9.64	1,02
10100.50	harmen futfor	Da ing manage	0.90	35		0.305	8.8F	116
SHM-96-5C	Winter 2008	01/08/2008	0.26	-63	6.1	0.735	0.65	NS
SHM-96-5C	Spring 2008	04/17/2008	0.12	21	524	0.86	9,49	NS
HM-96-50	Summer 2008		0.17	-45	6,29	0.705	10,53	3,2
SHM-96-5C	Fall 2008	10/01/2008	1.5	-57.7	8,21	0.705	7 51	2.13

Notes . All parameters measured after stabilization using low-flow purging NS = Not Sampled

Table 4-5 Summary of Historical Arsenic Concentrations Shepley's Hill Landfill Devens, Massachusetts

Less - Die	a		That Put		SHEATO (T)	(T)	ahLHa /1)	当HL-3台 (7)	SHL-m (D)	3HL-19 (1)	SHUE 10	SHL21	RMLS III	94220 (1)	alan	s Lim	SHL 3 (T)	SHL-30 (7)		6-11 (T)	SHIMAUS- 36A (T)			5HM+D5-				
0 0 C	Umo I			-	RTD	320			-	340	198	-	17	-	135 1	260	23.0	-	-	17.0	1		-		-		-	-
01/1991	AUT(L	-	-	-	130	320		-	-	730	89		25		120	140	19.0		1	67.5		-	1	1	1	1		-
11/1993	MUL	-			280	340				390	330		12.9	-	ES	2.04	114			42.4	1					· · · · · · · · · · · · · · · · · · ·		1
11(98)	work	-	1	1	NS	NS				NS.	NS		16		NE	NS	AIS.			NE				1		0		
1/15/6	AGL		Tel	1	148	332				138	241		24 E	10 H	NS .	48.8	12.0			46.70	1							-
1/1483	and a	_			mb	25 <u>5</u> J	1.000	1	1	10.11	10.0		10.11			7361	111 W	-	-	18.1.1	-			1		1		-
	AUDIOL.	1			230	300			_	208	211		34.5		181	166	1040	-	10000	79,2	-	1	-	1	1	1	-	-
1/1398	NET-				511	346	-	-		77:3	297	-	10.6	-	51	31.4	ЪЦ	_	-	15.0	-			-	-	1		-
	MIL.	-	-	-	340	376				145	218	-	540	-	5#D	89.1	113		-	27.2	-						-	-
1/1660	NEW/L	_	-		27.8	451	-		_	158	215		1238	-	276	78-3 69-0	508		-	743	-	-	-	-		-	-	4-
	Lipt.	-	-		1.9.0	402				176 41.4	215		145	-	250	118	250			15,0	-				-		-	+
	hart	-	-	-	2511 471	613	-		-	154	172		45	-			18.8			31.4	-	-	-			-	-	+
	LAPL .	_	-		410	487			-	129	IAE		47.0	-	41.0		13.9		-	15.1		-		-		-	-	-
	Ma/L:	-			YEU	573		-	-	163	265		44.2		150	ee n	14.8		-	28 1	-	-		-		-		-
	Maple 1		-	-	40.9	469				10.9	154		65 9 B	-	2.6 B	47.8 B	11.98			144	-		-		-		-	-
	Jap/L	_	-		320	649		+	-	164	175		77.1	-	1211	EE 1	1211		-	29	-	-				1		-
	ATTL	-	-		470	488	1		-	35 10	1197		101		410		1.3			13.4					1	1	-	-
	ARGICE			_	a14	679				83.C	184		7E.4		6.1.0	114	47B		-	30,6	-	-				1		
	URIE		-	-	260	502	-			75	138		RGT	-	100	27 2	F # B			19.6				1	1	1.		
/2004	AND LT			-	ERU	612				(21	166		65.4		584	19.5	6.0 Đ			32.2						1		
/2018	No.		1000	1	450	524				26.	188		NS	-	4500	10.1	7.0 份		197	州五						2		
/200E	Lan.				510	587				156	189		154		INE .	50	EU		1000	18.0	1	1				1		
	light -			84			511						371			£	15		34	R1	-	-				1	-	
	ind -	-	_	1		1	-	-		-				-		1.1	1.1	511	1 m	-	289	5川)	1610	54	2,420	1	1	-
A A A A A A A A A A A A A A A A A A A	AZTECT:	1340	5	1			-	98				-			-			1	-			-		i line i		hin i		-
	UQ/L		-	1		_	-					50	_	6.0		-	-	-	-	_		-	-			1	ΞU	266
M2006	MALE .		_			-	-	-		1,790	-	-	-		30.		- · ·		-	-	1 1		1	-	1	1	-	-
	Ang/L	910	4E	5	511	13011	51	16.	-	1.700	346		-	-	510	311	G	211	-		-	-		-			-	-
a)Et in	intil	-	2.00			-					-		-	-		1		6.0	5U	-		-	3.42D	52	2720	E14		100
N2008	ANHIT.	-	-	-		-	-				-	-	167	БU	-	1.00		-	-	21	CAB	-	-	-	-	-	±0	241
	Light		-				-	-					-	ьu	-	-	-			-	Maa	634			-	-	-	+
0/201	unt.	-		-	-	-					-				-		-		-	-	-	0.84	3.512	41	2,730	8410	-	-
	im/L		-	10		-	50	-		-	-		109	-		-		SU +	511	46	2717	-	Stat pet-		124 P.0	PHO.	S U	276
	ADD .	asien	10	10	-	-	ALM.	44	-		-	9-0	TOIL .	411	-			Pro-		10	ALC:	415			-		2.11	100
	und 1		21-	6 U	SL	-	512			-		10.0	-		51)						1	115	-	-	-	-	-	296
	VIL	-	-		-		-	1		-			-	-	-			-	-	-	-	-	-	-	-	-	-	-
	have		1			BRR		1	-	162	361		715		5.0	20	6			53	248	-	4.075	36	2,380	RIBE"	EU	1
2055	lig1	1.1	1					·		-	1 m		·		5			L	Sec					1	1	1		1
2000	light	1 1931/1	ДĎ					83	1			30	1	510				11.6	511		2 2	412		1		0		
2005	(inter-			1			1				1	-			1									0				
	Walt:								1			- T	98	3.0					1	26			1.00	JU	1990	637	a ()	1949
/2007	NBL:	-	10.1	_		1		1				10		-	12.11	1		3.0	3月		1	200		11		1	1	1
	-91				-		1		1				1	1			63				1			1		1		1
201	16E	_	1	-	1.68.6	868.5		42		月6 5 T	1616.2	1.81 1	5年1			75				34/1	1			1				-
2017	1/21	-				-	1.1							1111							1918	309 4		24.0	259*	684.5	1011	3014
	Light	4838	29.1		-		1.8	-	1 m 1	-	-		_		-		18.2	118	22.8	-	-		4445		-	-	-	1
	Vall			-	-	-		1	-	-	-	-	-	1	-	-	41	USU	0.50	-	-		1000	-		-	28	1200
261	verU.	-	-	-	-	-		1		-	-	1.5 %	and n	11.191		-			-		-	-		100.0	24.01	Land D.	-	-
	Le/L	-	-	-	-	-	1.0	-	-	-		-	T/06.2	-	-	-	a 16/	6.64	10.01	14.6	-	-		28.9	25+1	1822	-	-
	10/1		-	-	-	-	3.3	-	-	-	-		01	-	-	-	11.15	124	075	40.7	here's	in the second	1000	1000	19/0	1995.0		1000
	Apple .	-216	ge e	-	D dr.	020 5	-	75	20	1910	7.0		-	-	-				-	-	2758	241.2	4000	19.T.		739.8	12	256
Tac HILPH	Walt:	1749	46.5		Diff	663.5	-	12	40	173.8	1.0	1.1		0.26	-	2.3	_		-	-		-		-	-		-	-

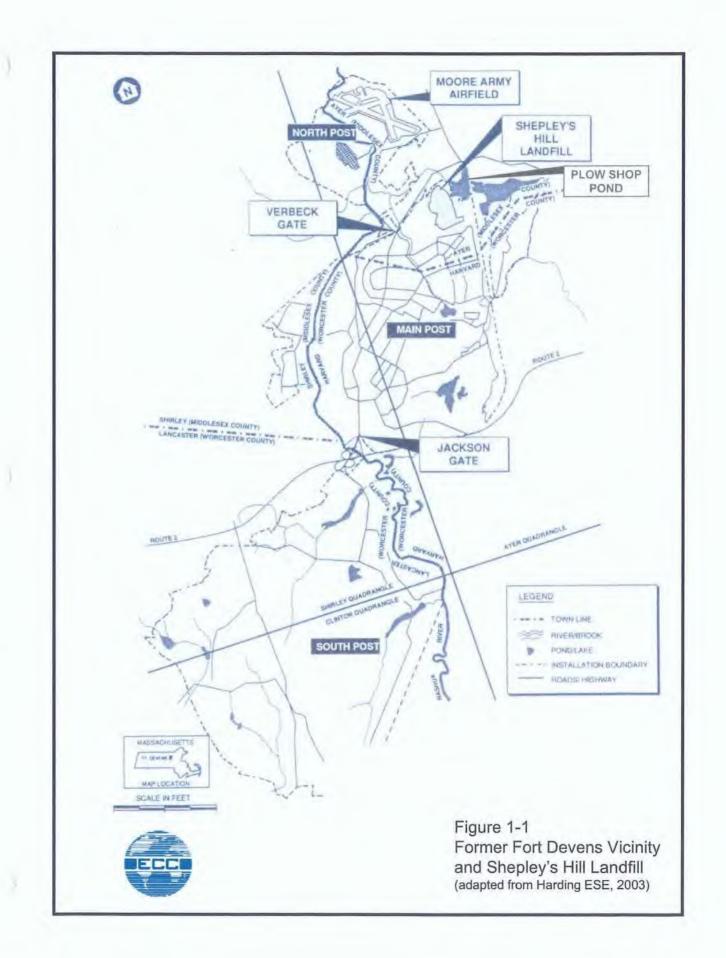
Table 4-5 Summary of Historical Arsenic Concentrations Shepley's Hill Landfill Devens, Massachusetts

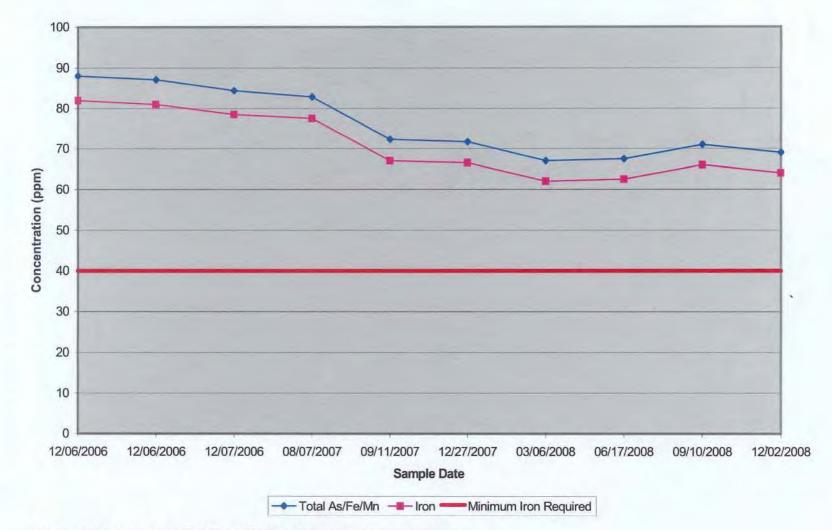
BUILD	1110	AB-ANKS (T) 2001	EHII 43- TIP (T)	SHOURS.	STILL ST. SB(T)	SHANING SHANING	51-64-09 9/C 173	171 Mill 85-	8 M 91 310 M	SHM SHM	SHMES	300 (T)	346.96	SHE D1 SEA (T)	SHE-SE
DOX OF	11 Avenue	10000		in the second se	Constant of the		1	-	-	1	1			-	
16071/1091	GENE	NE	1.00	INS	MS	N/I	(4.15)						1		1
2/11/1091	ugii.	NE	1	NS I	NE	N/S	NE						-	7	
EPPERIONAL	G8/4_	215		FL9. S	NS	NG	NS	2			1				1
11/01/1983	UB/L	16,1	1	49.8	NS	NS	NG				1	1	-		
11/11/199E	AUGUL .	10.4	1	44 E	(31)4	1,440	71						in the second		1
7861/10180	Met/L	憤し	1	40.4	318.1	1.005.6	43.2	1							
0/2111897	Mell.	10.5		10.0	353	3,040	43.1	2					1		-
liminnes.		¥.2	-	31.6	385	4.300	49,5	-							
1/01/1008		102	_	51.1	40E	1,080	AD E		-						
F/R MI RUE	u-at	10.86		42.9	707	3 190	57		-						
TANTITES	U	8.7	- L. L.	33.2	1 440	2.700	44.5						_	-	Agrin
Never Cabina	11271	591		31.1	1.860	5.710	10.2	-	_				1	1	-
CIT LOUP	UINL .	8.8	-	47.8	1.180	2-680	40.1		_				-	-	
05/01/2001	GOT.	6.0		10.7	1,540	3,800	80 S	_					-		1
10/01/2001		10 J		31.8	1.670	1.840	41.1	-	_	-				-	3800
0002/2002		71.9 B		96.56	2 040	3.800	80.4 B					-			
0002/2002		7.1		30.1	1.69	1.970	67,3	1							
15/01/10/01	TUTE -	8.8		21.0	2,070	3.020	6.D. J					-	1		
1/11/2003		5.2 V		29.8	2.500	2,980	40.3	-	-	-	-	1			
医电和minua	WOIL -	728		27.8	1.690	3,830	47.3				1				-
10-1-2004	AURIL	10.6E	1.	34.8	7.96/	2,110	40.5	-		_	-	0.000		1	-
10/21/2005		6.78	1	15.8	NS .	NB	间近								
11/01/2006	SUE)L	11.0		21.0	9,320	4,130	it3	1							
14-membre	Ugil	1			1890	3110	47	1			1		1		
MALINE CODE	IL IL	1	1	1		1	-	9	56	270	162				-
14/13/2006	ug/L		1			-			-	1	2	24	41	550	-
74/14/2006	upt		id		i	1							-		
MALE STICE	uc/L				1.000	2,780	创								
02/2006	UNIT	12		W.		-	1								-
WU09/2006	NEL	1			1	2760	51	_		1	186				-
0902586	um/, ·	1	1	1	8.440		I			I	1	22	49	496	4
1 12/200E	UTIL						1	12	53	27.5					1
1005/1113/200F	Signi.		22			1		()			1 mar 1				-
##20/2000	HD/L	1	10.000			1570	37	23	7d	306	202		-		-
10721/2000E	VEL				3110				10			307	40	691	
19/25/2008	100001	2 2	14	-		·		· · · · ·	-	1	1	-	1	1	
2/21/2006	well.		12	1		2,980	24					19	AF.		1
2009/2005	ugiL		1			28080	24						1		-
CUDE/2008	Jua/L	10		7	3,100			1							
12/07/2002	tion/i	1	1	1		t		18	72	5010	172-	-	1		
2	Hag/L	1	1					-	1						
2/18/2008	HOHL!											-	1.00	623	1.
14110/20167	间化			78	2:00								A		1
AUTIVILUE?	unit.					2030	117								1
15,29/11/07	UNIL	1.7	1				1		1				12.000	-	1
17/18/2007	140/1	Ð,B	1	72.8	1978				1	-		16.7	28.E	7014	1
0/17/2B03	UB(L			1		750	B1.1	227	BS S	292.1	218.3				
10/16/3/10*	sur /L		10,3	1						1			10	1	D REE
MATCHINA	ingit.		0			1687	94 7					1			
09718/280E	interstr.											1			
4/21/2008	WOIL		1	201.0	1721	1.5									
DATE NOT	ugil		1	1 million 1	1374	747.6	S1.8			4		1 -	1	1	
10.02 200E	tima	D	U	17.7		Aug	-	16.2	79.5	208.8	703.3	1			
W/03/200F	LUBIC :	10.1	23.4	1		1000	1	1			1				
Invoice (InA	1.0971											22-5	18.1	607.4	2408

Table 5-1 Summary of Revised System Performance Assessment Metrics and Results Shepley's Hill Landfill Devens, Massachuselts

Performance Assessment Jomponent	Method	Description	Data Utilized	Results	Interpretation	Conclusion
	Gradient Vestor Analysis	Compute horizontin hydraulic gradient vectors between groups of wells in nearfield hydraulic monitoring network under 50 gpm pumping conditions for comparison to non-pumping baseline conditions	Water level data from Fall 3207; April 2008: and September 2005.	Map comparing computed vectors under pumping conditions from the 10/15/07, 2/20/08 and 2/25/08 synoptic oventa	Lanea_	operating as designal
Hydraulic	Capilure Zone Width Calculation	Compute theoretical capture zone width using basic flow budget and conservative assumptions, regarding hydraulic conductivity and saturated hicknass.	Observed hydraulic gradients for 2007: aquillar properties as specified in existing model, saturated thickness from SGI cross sections and extraction well being lons	Calculated capture zone width is 763 /eet at the extraction wells, based on the saturated thickness of 50 /eet	Calculated capture zone width is adépyare to contain the institutated 444 foot width of impacted aquiter.	uperating as designed
Capture Zona Analysis	Companson to Numerical Model Results	Compare results of above analyses to particle track simulations using the revised (2009) 3-d numencal model of the aquiter flowheld.	Numerical simulation results for 34, 42 and 50 gpm pumping rates (AMEC's "SHL005" 3-layer model)	Gomparison maps series with predicted flow patterns and capture zone	Capture zona at 2008 average extraction rate (34 gpm) is transver and shifted west relative to design rate of 50 gpm. Effectively containing As >1000ppb in deep groundwater	operating as designed
	50 gpm Drawdown Awsessmeni	Compare reacheid water levels under 50 gpm pumping and non-pumping coudulons at next system shutdown to determine observed drawdown.	Two synoptic rounds just prior to and after a system restart at 50 gpm. (Completed 3/3/08)	Concessor map with observed vs. predicted drawdowns besed on inc February 2008 System	Distribution and magnitude of observed drawdown generally consistent with predicted	opereting as designed
Georgeontest	Advective Travel Time Analysis	Develop particle track-based travel times to predict when unimpacted groundwater from plume tlanks should arrive at downgradient impacted wells	Numencal simulation results for 50 gpm design pumping rate	Map plotting predicted 2 year travel lime markers	the state and the state of the state of the	aporating an designed
Geochemical Monitoring	Genshemical Assessment	Evaluate As concentrations and ORP data since System Startup for changes relative to historical conditions	Historic As, Fe and ORP data from Spring 2006 through 2008.	Despite notable declimes in As concentrations overall geochemistry has not changed significantly.	Simple best-fil empirical extrapolations are considered unrealistic. Development of geochemical model-based projections is recommended when data on As, Fe. and ORP suggest overall geochemistry is changing.	indonalusive

Table 5-2 Groundwater Elevations 2005-2008 Shepley's Hill Landfill Devens, Massachusetts

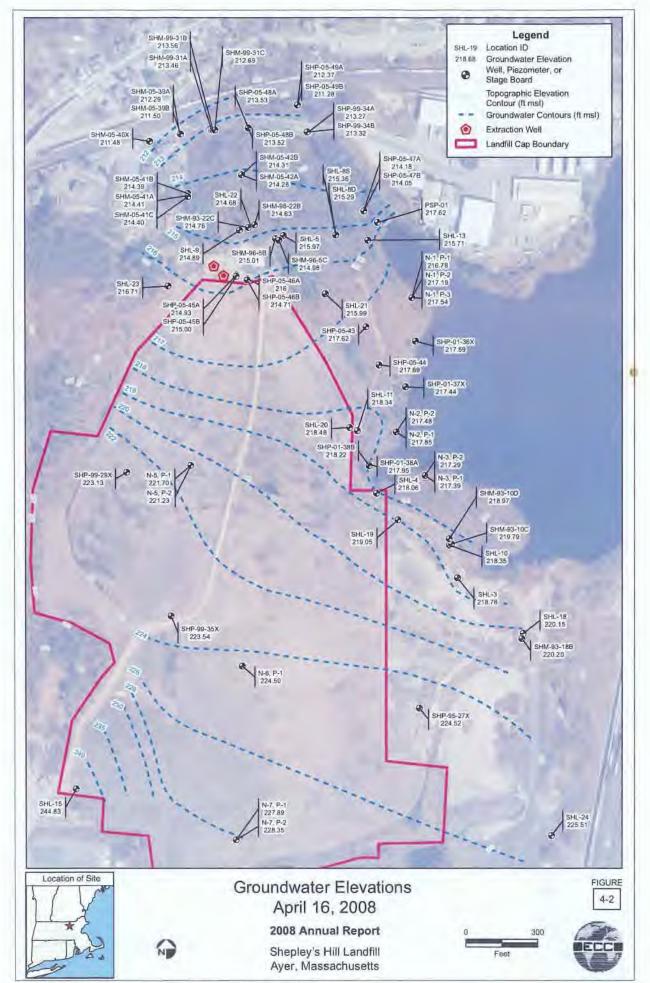

	1	SP /	St 1	Se 1	500 /	\$ 1	à 1	a la	3 1	3 /	30 /	por /	30 1	1	()	/	11
	1000	and and	and and and	and and	1000 1000	and	in and in the second	000 0000	217 -	and and and	and	Canal Canal	ant	14	15	13	
Well ID	216,1	216.3	217.0	216.3	216.5	216.3	216.9	217.6	217.0	217.3	216.8	216.7	216.7	216.1	217.8	13	216.7
L.P-2	218.2	216.5	217.4	216.4	216.9	216.4	217.3	217.7	217.4	217.1	217.2	216.9	217.0	216.2	217.7	15	217.0
L.P.3	216.7	216.9	216.0	216.9	217.3	215.6	218.1	218.2	217.8	217.6	217.5	217.4	217.2	215.8	218.2	2.4	2172
2. F-1	217.2	217.4	218.0	217.1	217.4	217.2	218.4	218.4	218.0	218.1	217.9	217.8	217.7	217.1	218.4	13	217.7
2.07	315.9	217.1	217.7	217.2	217.5	216.9	218.1	218.1	217.7	217.5	2115	2175	217.5	216.9	218.1	13	2175
8. P-1	217.0	216.8	217.0	217.1	216.9	216.7	217.6	218.3	217.6	217.9	217.1	217.3	217.3	216.7	218.3	17	217.3
S P-2	216.7	216.9	213.6	216.8	217.1	213.3	218.0	218.0	217.6	217.6	217.3	217.3	218.7	213.3	218.0	47	216.7
5. P-1	220.3	221.3	221.8	220.4	220.6	220.0	219.5	220.4	220.6	220.6	221.7	220.3	220.6	218.5	221.8	23	220.6
5. P-2	220.4	- B- B- B- M	. 66.UM		Brevriat.	223.7	219.3	219.5	219.8	220.8	221.2	220.1	220.5	219.3	223.7	44	220.5
6, Pill	223.4	224.3	224.8	223.7	223.3	223.0	222.3	2227	223/0	223 1	224.8	223.2	223.4	222.3	224.6	23	223.4
7. P-1	226.3	227.2	228.0	226.7	226.7	226.0	225.1	226.3	226.5	226.7	227.0	2211	226.7	225.1	228.0	2.9	226.7
7. F-2	226.7	227.7	227.4	227 2	227.1	226.4	225.4	226.6	227.0	227.1	228.4	227.6	227.0	225.4	228.4	28	227.0
P-01	217.0	217.2	217.6	217.0	216.6	217.4	2184	2183	217.9	217.5	217.6	217.8	217.5	216.6	218.4	1.8	217.5
1L-10	218.8	219.0	220.4	218.0	219.8	218.0	218.3	210.3	218.9	2185	218.4	218.1	218.9	Z19.0	220.4	24	218.9
1611	217.5	217.9	218.5	217.7	218.0	217.9	218.3	218.7	218.4	2183	218.8	218.1	218.7	2175	218.7	1.2	218.1
4L-13	214 2	214.8	216.1	214 5	215.4	215.2	215.0	216.3	216.0	215.8	215,7	2153	215.4	214.2	216.3	21	215.4
11-15	242.0	1418	244.9	241 5	243.5	244.0	240.3	245.8	245.4	245.1	244.8	242.8	243.6	240.3	245.6	5.3	243.6
IL-18	219.0	219.2	220.9	219.1	220.2	219.8	219.5	221.0	220.7	220.4	220.2	220.3	220.0	219.0	221.0	2.0	220.0
4L-19	218.1	7186	220.1	218.2		219.0	2187	220.0	219.8	2192	219.1	219.1	219.0	218.1	220 1	20	219.0
HL-20	217.7	218.1	218.7	217.8	218.1	218 1	216.3	218.6	218.5	218 4	218.8	218.2	218.3	217.7	Z18.8	11	218.3
11-21	214.2	215.0	216.3	214.3	215.5	214.9	210.9	216.0	216.1	215,8	216.0	214.9	2150	210,0	216.3	5.4	215.4
11-22	213.2	213.8	215.5	218.6	214.5	214.6	212.3	215.2	215.5	214.6	2147	2(3.9	214.3	2123	215.5	3.2	214.3
4L-23	214.1	215.0	217.2	214.1	216.0	215.9	2126	216.7	217.3	216.7	216.7	214.6	215.6	212.8	217.5	4.7	215.6
11-24	224.1		226.3	224 5	224.7	224.3	223.7	225.7	225.4	225.3	225.5	225.7	2250	2237	226.3	2.5	225.0
41-0	217.8	218.8	219.2		219.1	219.2	219.4	218.9	218.6	210.3	218.8	217.8	218.6	217.8	219.4	7.6	718.6
11-4	217.3	217.7	218.6	217.4	217.8	217.8	218.1	218.6	218.2	218.2	218.1	21B 1	218.0	217.3	218.8	1.3	218.0
(L-8	213.3	215.5	216.7	213.7	215.8	216.4	212.8	217.0	216.4	216.4	2160	216.4	218.5	212.8	217 D	4.2	215.8
11-012	213.8	214:4	215.8	213.9	214.9	214.6	213.8	215.8	215.7	215.3	215.3	214.7	214.8	211.6	215.8	2.0	214.8
IL-82	2138	214,5	215.8			2145	213.9		2157	215.4	215.4	214.8	214.9		215.8	20	214 9
(L/9	213.2	213.9	215.8	213.4	214.6	215.8	212.2	215.9	215.7	214.9	214.9	214.0	214.5	212.2	215.9	117	214.8
IM-05-39A	210.7	211.4	212.7	211.1	211.1	212.1	210.6	212.9	212.8		212.3	211.6	2118	210.6	212,9	23	211.8
(M-05-30B	209.9	210.8	211.8	210.4	207.0	211.2	209.9	212.1	212.0		211.5	210.7	210.6	207.0	212.1	5.1	210.6
IM-05-40X	209.9	210.4	211.9	210.3	211.2	211.2	209,7		212.1	211.6	211.5	210.6	211.0	209.7	212.1	2.4	211.0
IM-05-41A	212.8	213.4	215.1	213.0	214.2	214,3	212.0		215.2	214.4	214.4	213.5	213.9	212.0	215.2	3.2	2139
IM-05-41B	212.8	213.4	215.1	213.0	214.2	214.3	271.9	214.9	215.1	214.3	214.4	213.4	213.9	211.8	245.1	12	713.8
M-05-41C	212.9	213.5	215.1	213.1	214.3	214.3	212.0	215.0	215.2	214.6	214.4	213,5	214.0	212.0	2152	3.2	214.0
IM-05-42A	212.8	213.5	215.0	213.0	214.2	214.3	212.2	-			214.3	213.6	213.7	212.2	215.0	2.8	213.7
IM-05-428	212.9	213,5	215.1	213.T	214.2	214.4	212.2				214.3	213.6	213.7	212.2	215.1	2.9	213.7
M-93-10C	218.7	218.9	220.2	218.8	2197	219,4	219.3	220.5	220.2	220.0	219.8	218.8	219.5	218.7	220,5	1.B	210.5
CIOF-82-MH	218.3	218.6	211.7	218.4	219.3	218.7	218.8	220.0	219.9	219.6	219:0	220.1	219.2	218.3	220.3	1.8	219.2
IM 93 18B	219.0	219:2	220.0	219.1	220.2	2198	219.5	221.0	220.7	220.4	220,2	220.3	220,0	219.0	221.0	2.0	220.0
IM-93-22C	213.3	2118	215.5	213.4	214.8	214.7	212.3	215.6	215.5	214.8	214.8	213.9	214.3	212.3	215.8	8,3	214.3
IM-96-22B	213.2	213.7	215.4	213.4	214.5	214.5	212.4	214.3	214.2	213.5	214.6	213.8	214.8	212.4	215.4	3.1	214.0
M-96-58	216.8	214.2	215 B	2137	214.9	214.9	212.9		215.8	215.0	215.0	214.3	214.9	212.9	216.6	3.7	214.9
IM-96-5C	213,4	214.2	215.7	213.7	214.8	214.8	212.8	215.5	215,7	214.9	215.0	214.3	214.6	212.8	215.7	2,9	214.8
A1E-99-31A	211.0	212.9		211.7	213.5	213.6	211.5		213.7	213.6	213.5	213.8	213.0	211.0	2143	3.3	218.0
IM-99-318	211.1	2118	213.0	211.5	212.4	212.4	211.0		213.0	212.6	213.6	212:0	212.2	211.0	213.8	2.6	212.2
1M-99-31C	211.2	211,9	213.2	211.6	212.6	212.6	2111	1	213.2	212.8	212.7	212.1	2123	2111	213.2	2,1	212,3
M-99-32X	212.1	212.7	214.2	212.5		213.5	212.0	185.3	185.4	185.5		213.0	205.4	185.3	214.2	28.9	212.9
IP-01-36X	217.9		217.8	1	216.9	217.0	219.0			217.8	217.6	217.6	217.8	216.9		2.1	217.8
IF Q1-37X	216.8	217.0	217.7	217.0	217.2	216.9	215.1	218.1	2177	217.7	217.4	217.4	217.2	2151	218.1	3.0	217.2
P-01-38A	217.4	217.7	218.3	511.6	217.B	217.4	218.3	218.5	218.2	218.3	218.0	218.0	218.0	217.4	218.5	1.1	215.0
P-01-38B	217.5	217.9	218.5	217.7	217,9	217.6	218.4		218.3	218.4	218.2	218.1	218.1	217.5	218,6	1.1	218.1
P-05-43	216.3	216.8	217.5	216.4	217.1	208.4	216.7	217.7	217 8	217.6	217.6	216.8	216.5	209.4	217.8	8.4	217 1
P-05-44	216.6	217.0	217:3		217,2	206.5	218.0			217.7	217.7	217.2	216.5	206.5	218.0	1:55	217.4
IP-05-45A	213.8	214.3	216.0		214.3	214.7	212.3	215.5	216.2	274.8	214.9	214.1	214.5	212.3	216.2	3.8	214.6
P-05-45B	213.8	214.3	215.9	214.0	215.0	214.6	212.2	215.3	216.1	2148	215.0	214.9	214.7	212.2	218 1	G.E.	214.7
1P-08-46A	214.0	214.6	216.2	214.2	215,3	214,9	213.4		217.0	215.8	216.0	215.0	215,2	213.4	217.0	3.6	216.2
P-05-46B	214.1	214.6	216.3	214.8	215.2	214.9	2121	215.1	215.7	214.6	214.7	213.8	214.8	212.1	216.3	4.2	214.5
P-05-47A	212.5	213.1	-	212.8	213.8	212.9	213.0		214.2	214.2	214.2	214.2	213.5	212.5	214,2	1.7	2115
P 05-47B	212.4	213.1	1.1.1	2127	213.6	2137	213.2			214.2	214.1	214.3	213.5	212.4	210.3	1.9	213.5
P-05-48A	1.000	213.5	214.4	212.8	1.000	213.6			1.000		213.5	213.5	213.5	212.8	214.4	1.6	213.5
1F-05-48B	-	213.4	214.4	212,8	213.6	213.5		1	1.000		213.5	213.8	213.6	212.9		1.5	213.6
IP-05-49A	211.9	213.4	212.8		212.5		213.3	Les Arts	214.0		212.4	213.6	213.0	211.9		21	213.0
F-05-49B	211.9		213.1		212.0			211.6	210.8		2113	210.8	211.5	210.8		2,3	211.5
(P-95-27X	205.5	209.0	205 5	222.5	224.9	205.5	221.8		224.4	224.0	224.5	225.3	218.1	205.5	225,3	19.8	-
(P-99-29X							219.9		1	Y	223.1	221.1	221.3	219.9	223.1	33	221.3
IP-99-33A	210.9	212.0	213.5	211.4	212.5	-			-				212.1	270,9	213,5	2.6	212.1
IP-99-338	211.3	211.8	213.0	211.5	212.4	-		-		-	-		212.0	211.3		1.7	212.0
1P.99.34A	2181		214.2	1	201	213.0	212 4	214.2	215.4	213.4	213.3	213.6	213.3	212.1	214.2	21	2143
P 99 349	2123	212.3	213.6	2127	213.2	213.2		3133		213.8		212.9	213.0	211.8	214.0	22	213.0
	A STATE							222.2				218.6			223.B		


Table 5-3 Groundwater Model Mass Balance Comparison

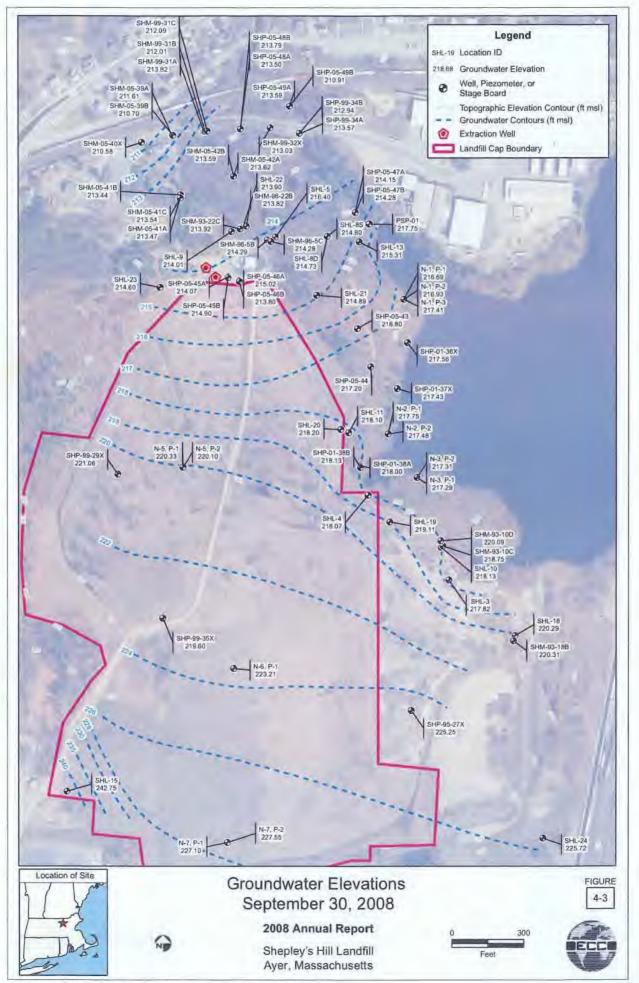
	SHL002	(2 layer)	SHL005 (rev	vised 3 layer)	SHL005amb (ambient conditions)			
Component	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow		
Recharge	556	0	556	0	556	0		
ET	0	0	0	0	0	0		
Constant Head	167	102	151	93	150	94		
River	306	814	296	794	282	821		
Lake	0	0	0	0	0	0		
Drain	0	11	0	12	0	20		
GHB	0	0	0	0	0	0		
Well	16	120	16	120	16	70		
Stream	0	0	0	0	0	0		
Storage	0	0	0	0	0	0		
TOTAL	1045	1047	1019	1019	1005	1005		
DIFFERENCE (%)	-0.22		0.0007		0.0008			

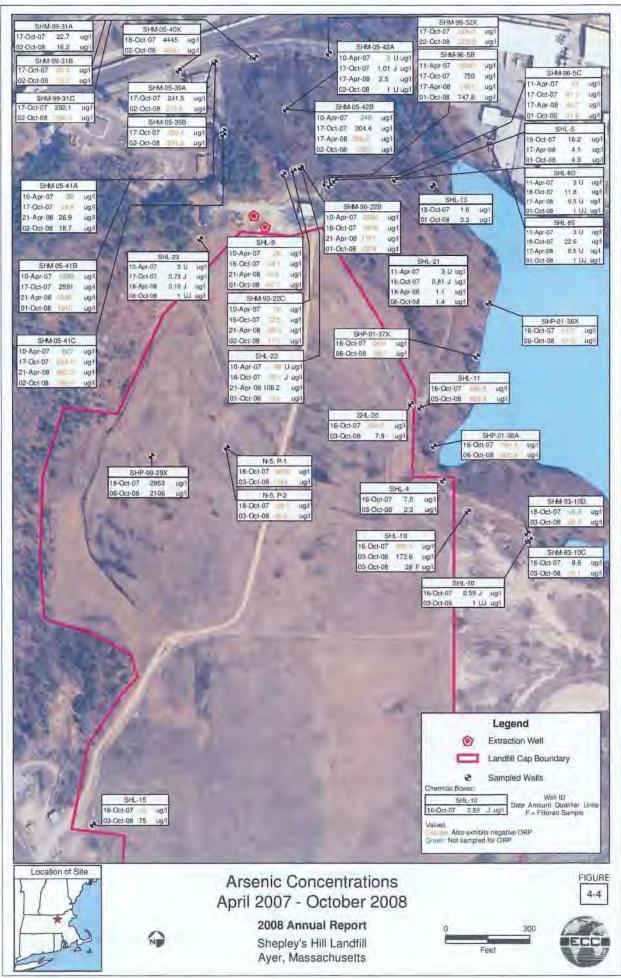
note: all units gallons per minute

Figures



2008 Annual Report


May 2009


H ShepleyLandfolfTasA2400XDFigure4.1 and H ShepleyLandforTasA26Expon0Figure6.1 pd January 20. 2019 DVAL Day CHAD KMP

H:ShopeyLandWTms24MMXDFEpune 2, minimed H:ShopeyLandWTask24EsportFigure-2, miniant May 2, 2006 DWN, DJK, APT, CHKD, AKK

HistorylaylandtilTank244.0XD/Figure4.1_eucliment Historylaylandt0.Tank24Expon/Figure4.3_eucliment.4_eucliment.244.0XD/Figure4.3_eucliment Historylaylandt0.Tank24Expon/Figure4.3_eucliment.4_eu

H ShenneyLandol Tangez MADI THAT AT Source H Briston and Transez Evans I THAT at the Persons & Sold DWA DAK Source KMP

H-ShepayLandtisTaek28MXD-Figure51 mid H-ShepleyLandtisTaek28ExportFigure5-1 pdf August 28, 2009 DWN DJK APC CHKD CA

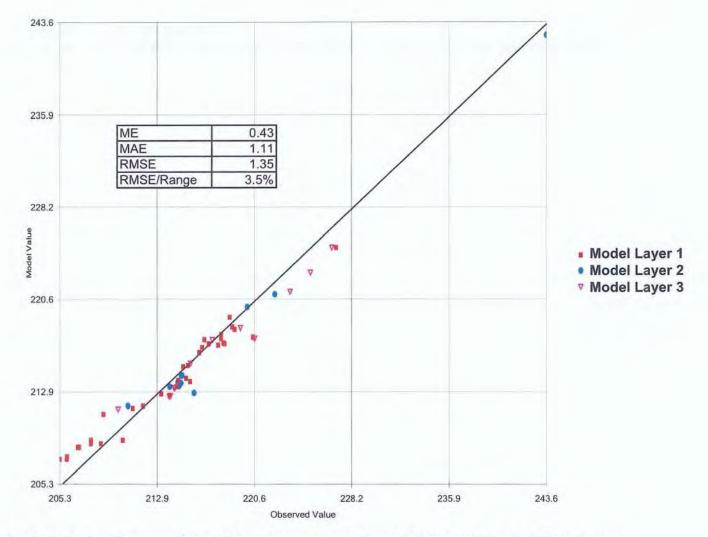


Figure 5-2. Correlation Between Long Term Average and Predicted Groundwater Elevations: SHL005 Model (calibrated)

August 2009

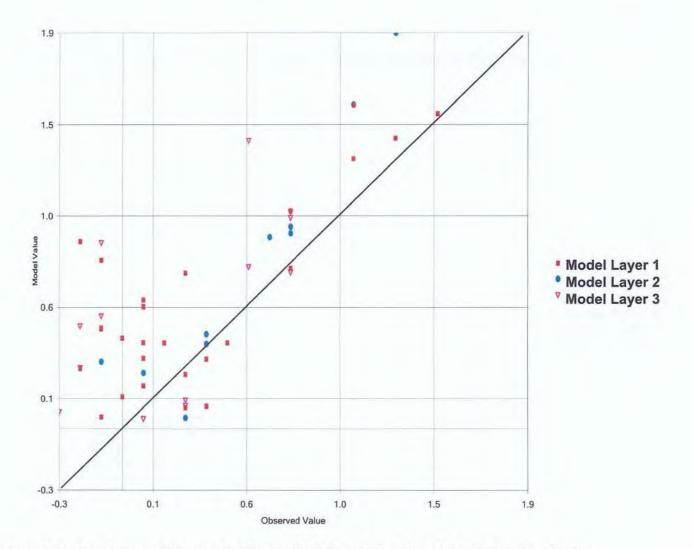
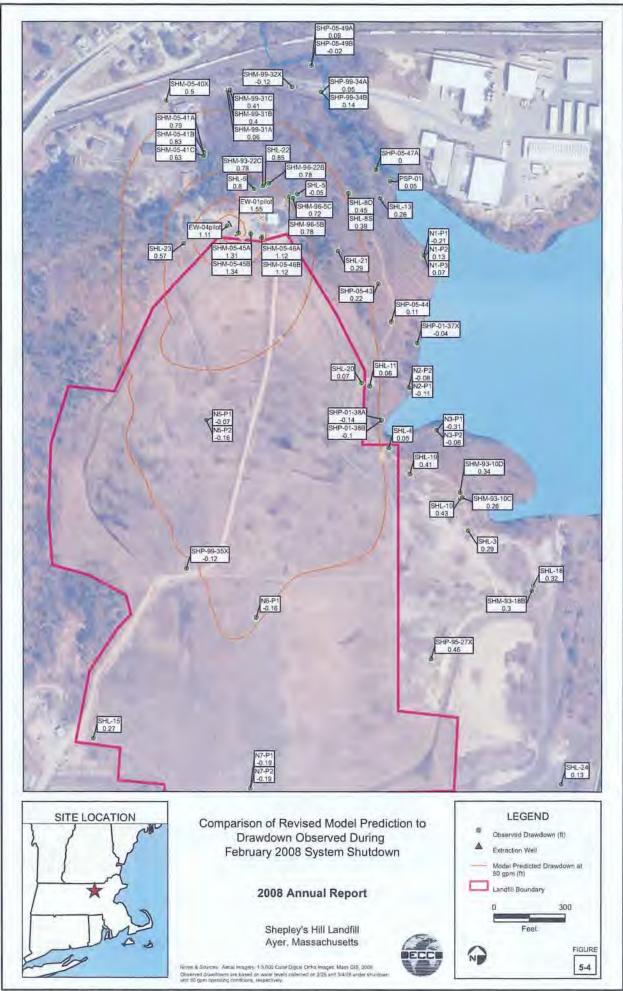
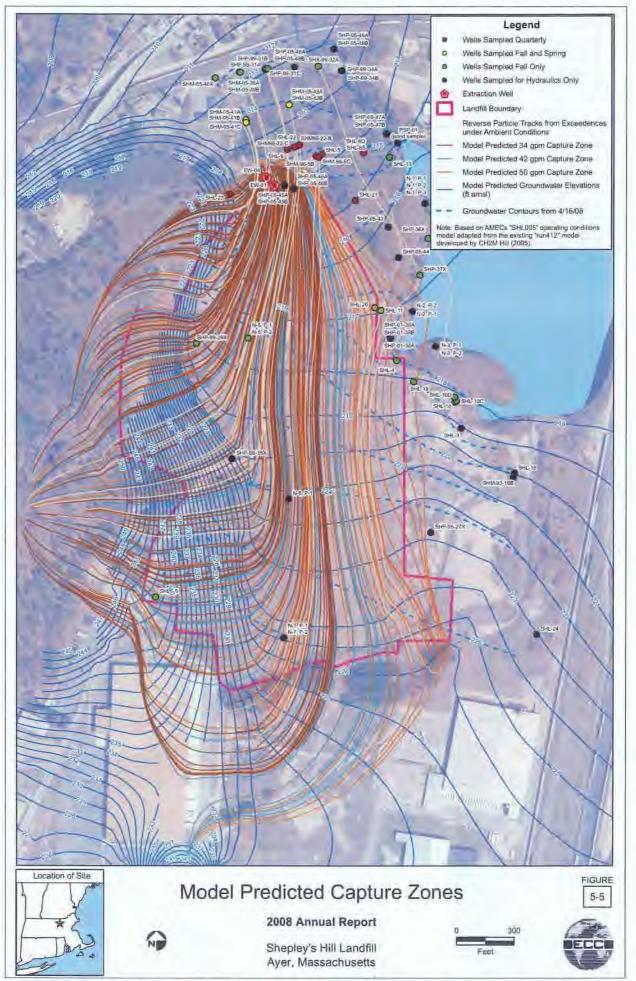




Figure 5-3. Correlation Between Observed (2/25 to 3/3/08) and Predicted Aquifer Drawdown: SHL005 Model (calibrated)

August 2009

HistophyLandTINTanK28IMXDF pants 2 mid: HistophyLandTINTank28Expat/Figure5-3.pdf August 12, 2006 JUNN DJK APC CHKD CA

II SheplayLandh Sak284KXDFFrancSill and HiShopayLannill/TaixO/Espan Franciscust August 20, 2009 DWA Die 1805 CHAD Cu

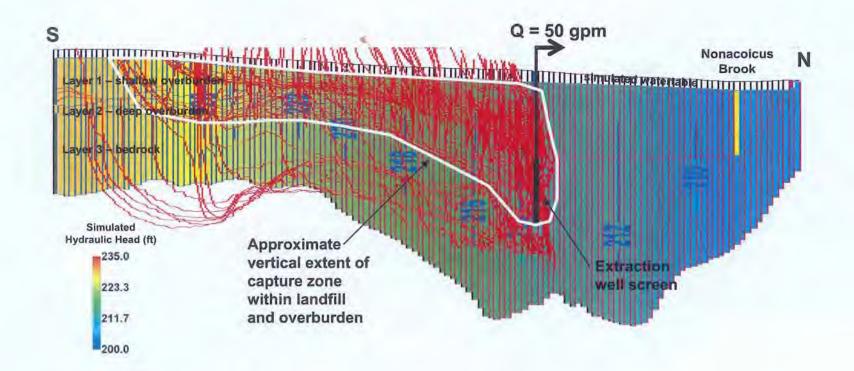
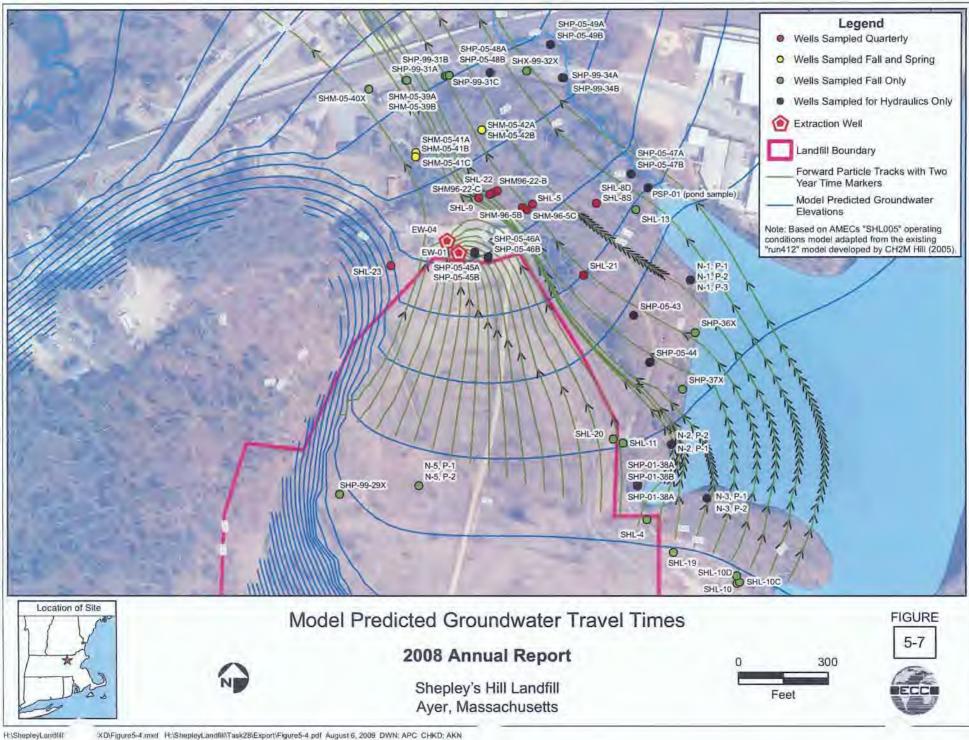
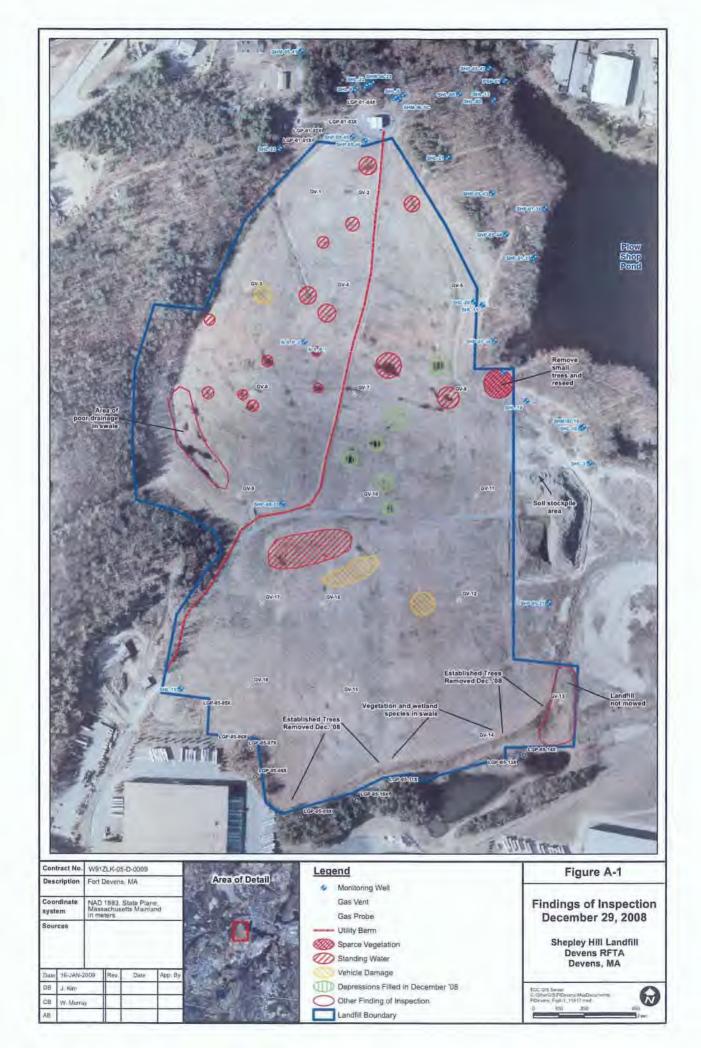



Figure 5-6 N-S Cross-section through Extraction Wellfield with Projected Capture Zone Particle Tracks

2008 Annual Report

August 2009

XD\Figure5-4.mxd Ht\ShepleyLandlil\Task28\Export\Figure5-4.pdf August 6, 2009 DWN: APC CHKD: AKN



2008 Annual Report – Shepley's Hill Landfill and Treatment Plant Long-Term Monitoring and O&M Services Contract Number W91ZLK-05-D-0009 Task Order -0006 August 2009

Appendix A

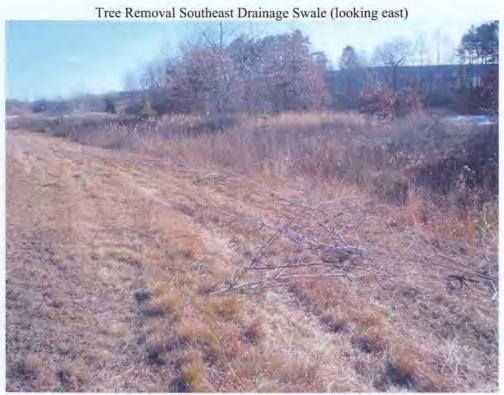
Landfill Inspection Report

Date: December 29, 2008 Inspectors: Fred Santos/Dave Reault /Willard Murray, Ph.D., P.E.

LANDFILL	OBSERVATIONS	RECOMMENDATIONS	SAT/UNSAT
	 The vegetation covering the majority of the landfill is adequate; a small area on the east edge has sparse vegetation due to a lack of topsoil but no significant erosion was observed in this area; mowed to about four inches height in September 2008. 	 See specific comments under the sections that follow. 	SAT
Cover Surface	2. The areas noted in the 2007 report where settlement has occurred were being filled and graded to conform to the slope of the surrounding landfill surface during this inspection. As reported in the <i>Draft</i> Supplemental Groundwater and Landfill Cap Assessment for Long-Term Monitoring and Maintenance (AMEC, 2008): "Depressions due to subsidence create standing water and additional hydraulic pressure on the geomembrane, and repairs to eliminate these were underway as of December 2008."	2. Monitor after completion of current repairs.	SAT
	3. No tree or shrub growth was observed on the landfill surface, but was observed in riprap drainage areas along the southern perimeter and in northern swale – the small tree growth was removed in December.	 Monitor for tree growth in future. Remove shrub/sapling growth as necessary. 	SAT
	4. A utility berm was constructed through the middle of the landfill in 2004. It provides utility service to the pumping station at the northeastern corner of the landfill. An access path was built over the utility berm in the fall of 2006 in the middle of the landfill, near GV-9. No adverse effects from this construction were observed.	 Continue observation of effects on drainage patterns in the vicinity of the utility berm during future inspections. 	SAT

LANDFILL	OBSERVATIONS	RECOMMENDATIONS	SAT/UNSAT
Vegetative Growth	 The previously reported sparse/eroded vegetation in the vicinity of gas vents 8, 11, and 12 appears to have been naturally revegetated and no erosion features are apparent. The area near SHL-4 has sparse vegetation cover, but no significant erosion. 	 Continuing observation of this area to detect any crosion or development of sparse vegetation cover should conducted annually. The area around SHL-4 should be revegetated. 	SAT
Landfill Gas Vents and Monitoring Wells	 The gas vents are in good condition. All screens and pipes are in functional condition. All of the non-galvanized vents are showing signs of rusting and corrosion. These include all gas vents except for GV-12 through GV-15. Monitoring wells and piezometers are all in good condition with no damage observed. All monitoring wells and piezometers have been equipped with keyed-alike padlocks with keys issued to necessary personnel. 	 Touch-up work on the non-galvanized vents should be conducted including scraping, cleaning and paiming. None 	SAT
Drainage Swales	 Some of the drainage swale on the south side is exhibiting growth of vegetation/wetland species. In the south-east side drainage swale, in the vicinity of GV-13 and continuing downstream to the rip rap lined channel, the drainage swale appears to have accumulations of silt in some areas. 	 The swale should be cleared of vegetation, accumulated sediment, and debris. The swale will be surveyed after snow melt in 2009 to determine the amount of silt removal needed to maintain a continuous slope of the channel bottom. 	UNSAT
	 Vegetation growing in rip rap lined channel located in the northern side (onder Sculley Road access road). 	3. The swale should be cleared of vegetation.	UNSAT

LANDFILL	OBSERVATIONS	RECOMMENDATIONS	SAT/UNSAT
Culverts	 The concrete drainage structure at the terminus of the catch basin and underground conduit system south of the landfill is overgrown with vegetation and is silting in Standing water is present and wetland species are becoming established as well. 	 This catch basin and drainage system were constructed specifically for runoff from the commercial buildings and parking lots south of the landfill, and are therefore not the responsibility of the Army. 	TAE
7.22	 Catch Basin #2 near the entrance to the site has a broken surface grate. 	1. The surface grate should be replaced, however this is outside the landfill boundary and does not affect landfill cap integrity.	SAT
Catch Basins	 Catch Basin #3 near the entrance to the site is not set to grade. The run of the basin is about six to eight inches higher than the surrounding ground. 	 The rim of this catch basin should be lowered to meet the surrounding grade, however this is outside the landfill boundary and does not affect landfill cap integrity. 	SAT
Settlement	1. Repairs to eliminate depressions caused by settlement were underway as of December 2008.	 An inspection of these areas should be conducted in 2009 to verify satisfactory repair. 	SAT
Erosion	1. No substantial crosion observed.	1. None	SAT
Access Roads	 The access roads on the landfill road are generally in good condition. 	I. None	SAT
Security/Fencing	 Perimeter fencing is damage and non-existent along much of the western boundary of the landfill (wooded area along Shepley's Hill). However, no roads have open access to the landfill. Existing fence gates across roads that access the landfill are secured with chains and padlocks. 	I. None.	SAT



LANDFILL ATTRIBUTE	OBSERVATIONS	RECOMMENDATIONS	SAT/UNSAT						
Wetland Encroachment									
should be addressed	quired: The following problem areas, from among those menti- before the next inspection:	oned in the comments above, are the most critical and	1						
	nent should be stopped by mowing and clearing as needed. ap lined channels and southern swale should be removed.								

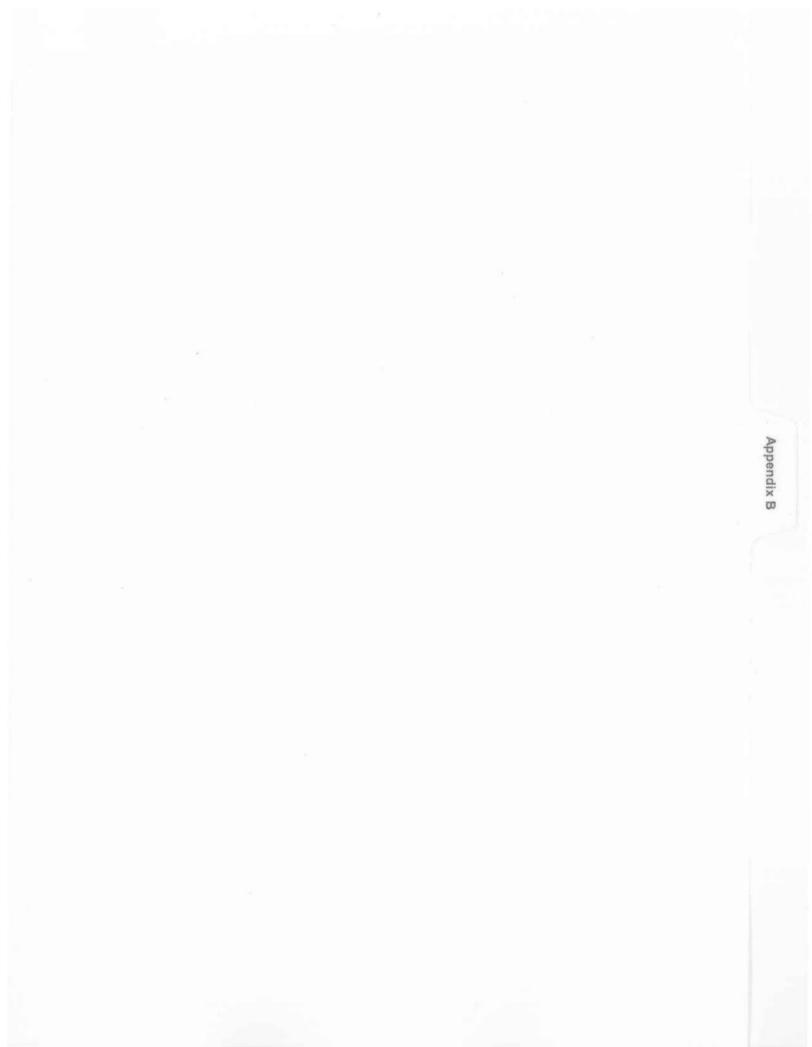
Depression Repair Looking Northeast (see Treatment Plant at north end)

Tree Removal Southern Drainage Swale (looking west)

Southern Drainage Swale (looking east)

Western Swale (looking north)

Northwestern Swale (looking northeast to treatment plant)



Depression Repair - Landfill Center East (looking southwest)

2008 Annual Report – Shepley's Hill Landfill and Treatment Plant Long-Term Monitoring and O&M Services Contract Number W91ZLK-05-D-0009 Task Order -0006 August 2009

Appendix B

Landfill Gas Results

Project: Shopley's Hill Landfill

VENT	DATE	AP	т ("Р)	voc ppm PID	O ₂ % GEM 500	H ₂ S ppm ISTMX	% LEL ISTWX	CO ppm ISTNUC	CQ1% GEM 500	GEM 50
1	11/19/1996	30.5	32	0.0	21,4	0.0	0.0	0.0	0.0	0.0
	10/28/1997	29.9	45	1.0	17.8	0.0	4.0	5.0	17	0,2
	10/26/1998	30,2	45	0.0	21,0	0,0	0.0	0.0	0.0	0.0
1	12/01/1999	30,0	25	0.0	2.0	3,0	100.0	0.0	13,4	35
-	12/07/1999	29.6	45	0.0	19.7	0,0	0,0	0.0	80	0.0
	10/30/2000	29.7	45	0.0	8.3	0.0	0.0	0.0	9.5	1.0
CILL & UPPETERS	12/05/2001	29.9	65	0.0	20.8	0.0	0.0	0.0	0.0	0.0
GV-1 (PH1)	11/05/2002	29.9	50	0.0	18,3	0.0	0.0	0.0	1,2	0.0
	11/17/2003	30,1	45	0.0	21.0	0,0	0.0	0,0	0.0	0,0
	11/16/2004	30,0	45	0.0	16.9	0,0	0,0	0.0	3.1	0.0
-	11/08/2005	29.9	55	0.0	5.6	0.0	32.0	0.0	10.8	1.7
F	12/14/2006	30.0	55.0	0.0	6.5	0.0	95.0	4.0	10.9	1.9
	10/23/2007	29.5	74	0.0	14.5	0.0	0.0	0.0	4.7	0.0
	09/30/2008	29,6	61	0.7	.21,9	0,0	0.0	0.0	0.0	0.0
-	11/19/1996	30,5	32	0.0	21.5	0,0	0,0	0.0	0.0	0.0
	10/29/1997	29,9	45	0.0	20,1	0,0	0.0	2.0	0.2	0.0
	10/26/1998	30.2	45	0.0	21,0	0,0	0,0	0.0	0.0	0.0
	12/01/1999	30.0	25	0.0	2.8	0.0	100.0	0.0	14.0	7.4
	12/07/1999	29.6	45	0.0	7.2	0.0	100.0	0.6	10.9	8.4
	10/30/2000	29,7	45	0.0	21.0	0,0	0.0	0.0	2.6	1.3
all a variable	12/05/2001	29,9	65	0.0	15.2	0.0	93.0	0.0	4.7	24
GV-2 (PH1)	11/05/2002	29.9	50	0.0	15.1	0,0	75.0	0.0	1.3	1.4
	11/17/2003	30.1	45	0.0	20.8	0.0	75.0	0.0	0.0	0.0
	11/16/2004	30.0	45	0.0	2.9	0.0	100.0	0.0	15.4	11.0
1	11/08/2005	29,9	55	0.0	5.2	0,0	100.0	0.0	12.8	8.6
-	12/14/2006	30.0	55.0	0.0	5.2	0,0	100.0	6.0	15.6	11.5
	10/23/2007	29.5	74	0.0	11,2	0.0	60.0	13.0	6.4	3.0
	09/30/2008	29.6	61	0.7	21.8	0.0	0.0	0.0	0.0	0.0
	11/19/1996	30.5	32	0.0	21.3	0.0	0.0	0.0	0.0	0.0
-	10/29/1997	29,9	45	1.0	14.3	0.0	20.0	1.0	3.8	0.9
F	10/26/1998	30,2	45	0.0	21,0	0.0	0,0	0.0	0,0	0.0
F	12/01/1999	30.0	25	0.0	0.9	0.0	100.0	0.0	18.9	14.6
F	12/07/1999	29.6	45	0.0	21.0	0.0	01	0.0	0.0	0.0
-	10/30/2000	29.7	45	0.0	11.5	0.0	.7.0	0.0	7.9	5.8
	12/05/2001	29.9	65	0.0	10.3	0.0	100.0	0.0	8.3	6.3
GV-3 (PH1) -	11/05/2002	29,9	50	0.0	10,7	0,0	100.0	0.0	5.7	34
	11/17/2003	30.1	45	0.0	20,6	0,0	0,0	0.0	0.0	0.0
F	11/15/2004	30.0	45	0.0	8.9	0.0	100.0	0.0	10.3	76
F	11/08/2005	29.9	55	0.0	2.8	0.0	100.0	0.0	15.1	9.0
F	12/14/2006	30.0	55.0	0.0	6.5	0.0	100.0	6.0	18.9	10.9
F	10/23/2007	29,5	74	0.0	8.2	0.0	94.0	0.0	8.3	4.7
-	09/30/2008	29.6	61	0.0	21.7	0,0	0,0	0.0	0.0	0,0

Project: Shepley's Hill Landfill

VENT	DATE	AP	T (°F)	VOC ppm PID	05 % GEM 500	H ₂ S ppm ISTMOX	% LEL ISTMX	CO ppm ISTMX	CO2 % GEM 500	CHL % GEM 50
1	11/19/1996	30.5	32	0.0	213	0.0	2.0	0.0	0.0	0.0
	10/29/1997	29,9	45	0.0	12.3	0.0	50.0	3.0	5.3	2.4
L. L.	10/26/1998	30.2	45	0.0	21.0	0.0	0.0	0.0	0.0	0.0
T	12/01/1999	30,0	25	0.0	1.4	0.0	100.0	0.0	16.2	9.3
	12/07/1999	29,6	45	0,0	16.2	0.0	3.0	0,0	4.1	2.0
1	10/30/2000	29,7	45	0.0	17.4	0.0	0.0	0,0	1.7	0.5
MUNIPUNI	12/05/2001	29.9	65	0.0	14,5	0.0	61.0	0.0	4.4	1.3
GV-4(PH1)	11/05/2002	29.9	50	0.0	1 14.1	0.0	100.0	0.0	4.0	0.9
-	11/17/2003	30.1	45	0.0	20.7	0.0	0.0	0.0	0.0	0.0
	11/16/2004	30,0	45	0.0	8.0	0.0	100.0	00	9.5	3.0
	11/08/2005	29,9	55	0,0	6.4	0.0	50.0	0,0	10,6	4.3
	12/14/2006	30.0	55,0	00	10,0	0.0	52.0	2.0	8.8	1.2
(F	10/23/2007	29.5	74	0.0	14.9	0.0	39.0	8.0	4.8	1.9
	09/30/2008	29.6	61	0.0	21.9	0.0	0.0	0.0	D.0	0.0
	11/19/1996	30.5	32	0.0	21.4	0.0	0.0	0.0	0.0	0.0
	10/29/1997	29.9	45	0.2	19.2	0.0	0.0	1.0	0.7	0.0
	10/26/1998	30.2	45	0.0	21.0	0.0	0.0	0.0	0.0	0.0
	12/01/1999	30,0	25	0.0	6,8	0.0	72.0	2.5	7.6	2.6
	12/07/1999	29.6	45	0.0	21,0	0.0	0.0	0.0	0.0	0.0
	10/30/2000	29.7	45	D.D	16.3	0.0	0.0	0.0	2.4	0.0
no runoon	12/05/2001	29.9	65	0.0	15.3	0.0	5.0	0.0	3.6	0.1
GV-5 (PH1)	11/05/2002	29.9	50	0.0	18.8	0.0	0,0	0.0	6,0	0.0
	11/17/2003	30,1	45	0.0	20.B	0.0	0.0	0.0	0.0	0.0
	11/16/2004	30.0	45	0.0	11.7	0.0	33.0	0.0	7.0	0.7
	11/08/2005	29.9	55	0.0	30.4	0.0	11.0	0.0	7.7	1.4
	12/14/2006	30.0	55.0	0.6	17.9	0.0	2.0	2.0	6.3	2.0
1	10/23/2007	29,5	74	0.0	18.2	0.0	0.0	4.0	1.8	0.0
	09/30/2008	29,6	61	0,3	21.8	0.0	0.0	0.0	0.0	0.0
	11/19/1996	30,5	32	0.0	21,4	0.0	0.0	0.0	0.0	0.0
	10/29/1997	29/9	45	0.0	17.2	0.0	8.0	1.0	1.7	0.4
1	10/26/1998	30.2	45	0.0	21.0	0.0	0.0	0.0	0.0	0.0
-	12/01/1999	30,0	25	0.0	14	0.0	100.0	0.0	16.2	10.8
Ú.	12/07/1999	29,6	45	0.0	21.0	0,0	0,5	0.0	0.0	0.0
1	10/30/2000	29,7	45	0,4	11,6	0.0	4,0	0.0	7.2	8,1
GV-6 (PH1)	12/05/2001	29.9	65	0.0	14.8	0.0	37.0	0.0	3.9	0.7
ovo (Phil)	11/05/2002	29.9	50	0.0	154	0.0	100.0	0.0	3.4	2.8
	11/17/2003	30.1	45	0.0	20.4	0.0	1.0	0.0	0.0	0.0
-	11/16/2004	30,0	45	0,0	11.6	0,0	78.0	0.0	6.6	2.2
	11/08/2005	29,9	55	0.0	0.4	0,0	100.0	0.0	18.9	12.5
F	12/14/2006	30.0	55.0	0.0	1.3	0.0	100.0	8.0	21.2	14.4
	10/23/2007	29.5	74	0.0	15,3	0.0	53.0	0.0	3.9	27
	09/30/2008	29.6	61	0.0	21.B	0.0	0.0	0.0	0.0	0.0

Project: Shepley's Hill Landfill

VENT	DATE	AP	Ŧ (*F)	VOC ppm DIP	0 ₂ % GEM 500	H ₂ S ppm ISTMX	% LEL ISTMX	CO ppm ISTMX	CO2% GEM 500	CH, % GEM 500
	11/19/1996	30.5	32	0.0	21.4	0,0	0.0	0.0	0.0	0.0
E	10/29/1997	29.9	45	0.0	20.3	0.0	0.0	1.0	0.1	0.0
E	10/26/1998	30.2	45	0.0	21.1	0.0	0.0	0.0	0.0	0.0
F	12/01/1999	30.0	25	0.0	3.8	0.0	54.0	0.0	9.1	0.8
E	12/07/1999	29.6	45	0.0	21.0	0,0	0.0	0.0	0.0	0.0
E F	10/30/2000	29.7	45	0.0	18.1	0,0	0.0	0.0	1.0	0,0
GV-7(PH1)	12/05/2001	29.9	65	0.0	16.4	0,0	31.0	0.0	2.4	0.7
GA-V(BUIL	11/05/2002	29.9	50	0.0	18.0	0.0	16.0	0.0	0.8	0.2
	11/17/2003	30.1	45	0.0	20.4	0.0	1.0	0.0	0.0	0.0
E C	11/16/2004	30.0	45	0.0	7.9	0.0	19.0	0.0	8.2	1.3
1	11/08/2005	29.9	55	0.0	2.1	0.0	14.0	0.0	12,2	4.4
	12/14/2006	30.0	55.0	0.0	1.1	0,0	100.0	8.0	17.1	6.0
E	10/23/2007	29,5	74	0.0	19,6	0,0	0,0	6.0	0,7	0.0
	09/30/2008	29.6	61	0.0	21.8	ũ ũ	0.0	0.0	0.0	0.0
	11/19/1996	30.5	32	0.0	21.2	0.0	2.0	0.0	0.1	0.1
	10/29/1997	29.9	45	0.0	18.7	0.0	4.0	1.0	1.0	0.2
	10/26/1998	30,2	45	0,0	21.0	0.0	0.0	0.0	0.0	0,0
	12/01/1999	30,0	25	0.0	4.8	0.0	100.0	1.0	9,6	2.2
	12/07/1999	29.6	45	0.0	12.7	0,0	0.0	0.0	6,1	0.0
	10/30/2000	29.7	45	0.0	19.3	0.0	0.0	0.0	0.1	0.1)
GV-8 (PH1)	12/05/2001	29.9	65	0.0	14.B	0.0	50.0	0.0	4.2	1.3
av-otenil	11/05/2002	29.9	50	0.0	16.1	0,0	40.0	0.0	2,4	0,6
	11/17/2003	30,1	45	0.0	19.7	0,0	0.0	0.0	0,2	0,0
	11/16/2004	30.0	45	0.0	7.5	0,0	31,0	0.0	9,6	0,9
	11/08/2005	29.9	55	0.0	8.3	0.0	25.0	0.0	8.9	4.2
	12/14/2006	30.0	55.0	0.0	16.3	0.0	23.0	3.0	11.6	1.2
-	10/23/2007	29,5	74	0.0	16.9	0.0	0.0	6.0	2.1	0.0
	09/30/2008	29,6	61	0.0	21.8	0,0	0.0	0,0	0,0	0,0
	11/19/1996	30,5	32	0.0	21.2	00	1.0	0.0	0,0	0,1
	10/29/1997	29.9	45	0.0	19.7	D.D	5.0	1.0	0,4	03
-	10/26/1998	30.2	45	0.0	21.1	D.D	0.0	0.0	0.0	0.0
	12/01/1999	30.0	25	0.0	E.0	0.0	100.0	1.0	23.2	26.6
	12/07/1999	29.6	45	0,0	20,2	0,0	0,5	0,0	0,6	0,5
E	10/30/2000	29,7	45	0.0	19.0	0.0	0.0	0,0	0,2	0,0
GV-9 (PH1)	12/05/2001	29.9	65	0.0	6.7	0.0	100.0	0.0	10.2	9,2
man (cont	11/05/2002	29.9	50	0.0	7.2	0.0	100.0	0.0	14.7	19.8
	11/17/2003	30.1	45	0.0	11.5	0.0	100.0	1.0	9.9	15.0
-	11/16/2004	30,0	45	0,0	A.1	0.0	100.0	0.0	18.6	29.9
	11/08/2005	29,9	55	0.0	0.0	0.0	100.0	0,0	21.8	26.4
	12/14/2006	30,0	55.0	0.0	65	0.0	100.0	60	23.6	32.0
0	10/23/2007	29.5	74	0.0	5.8	0.0	100.0	15.0	15.7	21.7
	09/30/2008	29.6	61	0.0	21.8	0.0	0.0	0.0	0.0	0.0

Project' Sheplay's Hill Landfill

VENT	DATE	AP	(⁶), T	VOC. ppm PID	02 % GEM 500	H ₂ 5 ppm ISTMX	% LEL ISTMR	CO ppm ISTMX	CO2% GEM 500	CH, % GEM 50
	11/19/1996	30.5	32	Q.Q.	21.2	0.0	0.0	0.0	0.0	0,0
	10/29/1997	29,9	45	0,2	19.5	0.0	0.0	1,0	0,2	0.0
	10/26/1998	30,2	45	0,0	21.1	0.0	0.0	0,0	0.0	0,0
	12/01/1999	30.0	25	0,0	0,5	0.0	100,0	2,0	17,7	7.0
-	12/07/1999	29.6	45	0.0	20.9	0.0	0.1	0.0	D.2	0.0
1000 C	10/30/2000]	29.7	45	0.0	19.1	0.0	0.0	0.0	0.2	0.0
GV-10	12/05/2001	29.9	65	0.0	13.8	0.0	55.0	0.0	4.1	1.4
(PH1)	11/05/2002	29.9	50	0.0	17.8	0.0	9.0	0,0	0.6	0,0
	11/17/2003	30.1	45	0,4	20.3	0,0	2.0	0,0	0.0	0,0
F	11/16/2004	30.0	45	0.0	0.3	0.0	100.0	4.0	17,6	6.5
F	11/08/2005	29.9	55	00	0.6	0.0	100.0	0.0	14 B	10.3
E E	12/14/2006	30.0	55.0	0.0	8.5	0.0	100.0	7.0	17.9	9.6
	10/23/2007	29.5	74	Q.0.	19.8	0.0	0.0	6.0	0.5	0,0
	09/30/2008	29.6	61	0.0	21.8	0.0	0.0	0.0	0.0	0,0
	11/19/1996	30.5	32	0,0	21.3	0,0	0.0	0,0	0.0	0,0
	10/29/1997	29.9	45	0,0	20.1	0.0	0.0	1.0	0.1	0.0
	10/26/1998	30.2	45	0.0	21.0	0.0	0.0	0.0	0:0	0.0
	12/01/1999	30.0	25	0.0	3.9	0.0	100.0	0.0	9.7	7.3
F	12/07/1999	29.6	45	0.0	21.0	0.0	0.0	0.0	0.0	0,0
	10/30/2000	29.7	45	0.0	19.3	0.0	0.0	0,0	0.1	0.0
CU ANDUNI	12/05/2001	29,9	65	0.0	14.7	0.0	69.0	0.0	3.4	2.5
GV-11(PH1)	11/05/2002	29.9	50	00	16.3	0.0	62,0	0,0	1.5	1.0
	11/17/2003	30.1	45	0.0	19.0	0.0	5.0	0.0	0.5	0.0
F	11/16/2004	30.0	45	0.0	8.4	0.0	100.0	0.0	7.4	4.2
	11/08/2005	29.9	55	0,0	10.1	0.0	12.0	0,0	6,4	2,2
F	12/14/2006	30.0	55,0	0.0	10.7	0.0	100.0	6.0	72	3,3
	10/23/2007	29.5	74	0.0	12.5	0.0	60.0	16.0	3.8	31
-	09/30/2008	29.6	B1	0.0	21.9	0.0	0.0	0.0	0.0	0,0
	11/19/1996	30.5	32	0.0	21.2	0.0	0.0	0.0	0.0	0.0
	10/29/1997	29.9	45	0.0	20.5	0.0	0.0	1.0	0,0	0,0
	10/26/1996	30.2	45	0.0	21.0	0,0	0,0	0,0	0,0	0.0
	12/01/1999	30.0	25	0.0	21	0,0	100.0	0,0	14,5	10,5
L	12/07/1999	29.6	45	0.0	20.6	0.0	0.0	0.0	0.6	0,0
	10/30/2000	29.7	45	0.0	4.9	0.0	20.0	0.0	8.2	2,7
SV-12(PH2)-	12/05/2001	29,9	65	0,0	1.2	0.0	100.0	4.0	13.6	B,0
at the tree	11/05/2002	29,9	50	0.0	20.5	0,0	0.0	0.0	0,0	0,0
	11/17/2003	30.1	45	0.0	19.8	0,0	0.0	0,0	0,0	0,0
	11/16/2004	30.0	45	0.0	20.6	0.0	46,0	0.0	0,8	0,5
	11/08/2005	29.9	55	0.0	2.8	0.0	100.0	0.0	9.4	6.4
E	12/14/2006	30.0	55.0	0.2	21.D	0.0	D.0	0.0	0.1	0,0
	10/23/2007	29.5	74	0.0	20.2	0.0	0.0	6.0	0.5	0,0
	09/30/2008	29.6	61	0,0	13.1	0.0	0.0	0.0	4,3	0,0

Project: Shepley's Hill Landfill

VENT	DATE	AF	Ť (¹ F)	VOC ppm FID	0, %. GEM 500	H ₂ S ppm ISTMIX	% LEL ISTMX	CO ppm ISTMX	CO2% GEM 500	CHL % GEM 50
	111000000	10 P	20	0.0	Da D	0.0	8 .5.	0.0	0.0	0.0
	11/19/1996	30.5	32	0.0	21.2	0.0	0.0	0.0	0.0	0.0
	10/29/1097	29.9	45	0.0	17.9	0.0	0.0	1.0	2.0	1.6
	10/26/1998	30.2	45	0.0	21.0	0.0	100.0	0.0	14.0	18.5
	12/01/1999	29.6	45	0.0	14.7	0.0	100.0	0.0	4.6	6.6
	11/01/2000	29.8	65	0.0	0.1	0.0	100.0	0.0	14.5	19.1
GV-13	12/05/2001	29.9	65	0.0	4.3	0.0	100.0	1.0	10.1	11.3
(PH2)	11/05/2002	29.9	50	0.0	9.3	0.0	100.0	0.0	6.3	4.9
(coa)	11/17/2003	30.1	45	0.0	19.2	0.0	2.0	0.0	0.3	0.0
	11/16/2004	30.0	45	0.0	212	0.0	75,0	0.0	0.1	0.2
	11/08/2005	29.9	45	0.0	20.2	0.0	25.0	0.0	0.5	0.5
	12/14/2006	30.0	55.0	0.2	20.2	0.0	0.0	0.0	0.2	0.0
	10/23/2007	29.5	74	0.0	0.2	0.0	100.0	0.0	18.1	14.7
	09/30/2008	29.6	61	0.0	5.2	0.0	>100.0	0.0	1.0	13.9
	distance of the	culu		- W.U	1 Die	0.0	2 100	1 0.0	110	10.4
	11/19/1996	20.5	22	0.0	212	0.0	0.0	0.0	0.0	0.0
	10/29/1997	29.9	45	0.0	20.4	0.0	0.0	1.0	0.0	0.0
	10/26/1998	30.2	45	0.0	21.2	0.0	0,0	0.0	0.0	0.0
	12/01/1999	30.0	25	0.0	1.7	20	100.0	0.0	22.2	34.1
	12/06/1999	29.7	45	0.0	17.0	D.D	100.0	0.0	5.2	0.8
S	11/01/2000	29.8	55	0.0	0.0	0.0	100.0	0,0	26,6	41.0
GV-14	12/05/2001	29.9	65	0.0	16	0,0	100,0	2,0	22.2	33.1
(PH2)	11/05/2002	29.9	50	0,0	2,2	0,0	100.0	0.0	15.7	18.6
	11/17/2003	30 1	45	0.0	5.8	0.0	57.0	0.0	7.8	3.8
1	11/16/2004	80.D	45	0.0	4.4	0.0	100.0	13.0	19.9	33.5
	11/08/2005	29.9	55	0.0	20.7	0.0	6.0	0.0	0.2	0.3
	12/14/2006	30,0	55.0	0.1	21,0	0,0	13.0	0.0	0.4	0.1
	10/23/2007	29,5	74	0.0	0.2	0,0	100.0	8.0	23.1	33.6
	09/30/2008	29,6	61	0.0	1.5	0.0	>100	0.0	20.0	26.8
	11/19/1996	30.5	32	0.0	20.1	aa	11.0	0.0	0.6	0.4
-	10/29/1997	29.9	45	0.0	13.4	0.0	46.0	1.0	42	2.2
	10/26/1998	30.2	45	0.0	21.6	0.0	0.0	0.0	0.0	0.0
	12/01/1999	30,0	25	0.0	2.1	0,0	100.0	0.0	22.5	23.7
	12/06/1999	29.7	45	0.0	20,2	0,0	0.4	0.0	07	0.6
1000	11/01/2000	29,8	55	0.0	0.1	0.0	100.0	0.0	26.6	27.7
GV-15	12/05/2001	29.9	65	0.0	0.3	0.0	100.0	0.0	22.9	23.4
(PH3)	11/05/2002	29.9	.50	0.0	4.2	0.0	100.0	0.0	12.2	10.6
an anex	11/17/2003	30,1	45	0.0	8.2	0,0	74.0	0.0	7.4	5.1
	11/16/2004	30,0	45	0.0	0.0	0,0	100.0	11.0	26.1	32.4
	11/08/2005	29,9	55	0.0	20,9	0,0	0.0	0.0	0.0	0.0
	12/14/2006	30.0	55.0	0.2	21.0	0.0	4.0	0.0	0.4	0.1
	10/23/2007	29.5	74	0.0	0.1	0.0	100.0	12.0	27.4	24.9
	09/30/2008	29.6	61	0.0	3.9	0.0	≥100	0.0	15.1	11.3

Project: Shepley's Hill Landfill

VENT	DATE	AP	T (ⁿ F)	VOC ppm PID	0, % GEM 500	H ₂ 5 ррт ISTMIC	% LEL ISTMX	CO ppm ISTMX	CO2 % GEM 500	CH4% GEM 50
	11/19/1996	30.5	32	0.0	.21.1	0.0	1.0	0.0	0.0	0.0
	10/29/1997	29.9	45	0.2	18.0	0.0	2.0	1.0	1.0	0.0
Ĩ	10/26/1998	30.2	45	0.0	21.0	0.0	0.0	0.0	0.0	0.0
	12/01/1999	30,0	25	0,0	1.8	0.0	100.0	0.0	19.2	13.0
	12/06/1999	29.7	45	0,0	20.9	0.0	0.0	0,0	0,0	0,0
-	11/01/2000	29.8	55	30.0	0.5	0.0	65.0	0.0	21.8	14.8
GV-16	12/05/2001	29.9	65	0.0	0.4	0.0	88,0	1.0	19.7	12.5
(PH3)	11/05/2002	29.9	50	0.0	20.7	0.0	0.0	0.0	0.0	0.0
	11/17/2003	30.1	45	0.0	15.0	0.0	29.0	0.0	2.3	1.0
i	11/16/2004	3D.0	45	0.0	0.1	0.0	100.0	10.0	24.6	22.6
	11/08/2005	29.9	55	0,0	0.0	00	100.0	2.0	23.7	20.7
	12/14/2006	30.0	55.0	0.0	20.1	0.0	1.0	0.0	1.1	02
	10/23/2007	29.5	74	0.0	0.1	10	100.0	11.0	25.3	15.1
	09/30/2008	29.6	61	0.0	3.8	D.D	96.0	0.0	16.7	4.8
									-	
	11/19/1996	30.5	32	0.0	21.0	0.0	20	0.0	0.2	.0.1
	10/29/1997	29.9	45	0,0	16.1	0.0	8.0	10	2,5	0,5
	10/26/1998	30,2	45	0,0	21.0	0.0	0.0	0.0	0,0	0,0
	12/01/1999	30.0	25	00	1.7	3.0	100.0	0.0	25.0	26.2
	12/06/1999	29.7	45	0.0	20.2	0.0	0.0	0.0	0,0	0.0
-	11/01/2000	29.8	55	40.0	0.1	0.0	100.0	0.0	29.2	32.0
GV-17	12/05/2001	29.9	65	0.0	2.2	0.0	100.0	3.0	19.6	17.1
(PH4A)	11/05/2002	29.9	50	0,0	14.9	0.0	17.0	0,0	3,0	0,5
	11/17/2003	30.1	45	0,4	14.8	0,0	7.0	0,0	21	0,4
	11/16/2004	30.0	45	0.0	0.0	0.0	100.0	10.0	27.6	37.6
1	11/08/2005	29.9	55	0.0	0.0	0.0	100.0	3.0	27.0	32.7
	12/14/2006	30.0	55.0	0.0	9.2	0,0	100.0	5.0	16.5	17.4
1	10/23/2007	29.5	74	0,0	16.2	0.0	100.0	0.0	15.2	22.1
	09/30/2008	29.6	61	0.0	21.0	0,0	26.0	0,0	1,0	1,3
	11/19/1996	30.5	32	0,0	21.2	0.0	20	0,0	0,1	0,2
	10/29/1997	29.9	45	0.0	18.6	0.0	50.0	0.0	2.4	2.7
	10/26/1998	30.2	45	0.0	21.1	0.0	0.0	0.0	0.0	0.0
ľ	12/01/1999	30.0	25	0.0	1.7	0.0	100.0	0.0	25.7	32.8
	12/06/1999	29.7	45	0,0	0.0	0,0	100.0	0,0	35.8	45.5
	11/01/2000	29.8	55	0.0	0.2	0,0	100.0	0,0	30.0	39.5
GV-16	12/05/2001	29.9	65	0.0	3.7	0.0	100.0	0.0	21.7	29.1
(PH4B)	11/05/2002	29.9	50	0.0	3.2	0.0	100.0	0.0	19.0	23.5
1000 B	11/17/2003	30.1	45	0.0	19.5	0.0	20	0.0	0.4	0.3
	11/16/2004	30.0	45	0,0	21.2	0.0	0,0	0,0	0.0	0.0
	11/08/2005	29.9	55	0,0	21.0	0,0	0.0	0,0	0,0	0,0
	12/14/2006	30.0	55.0	0,0	21.0	0.0	0.0	0,0	0.2	0.0
	10/23/2007	29.5	74	0.0	0.1	0.0	100.0	7.0	28.6	37.1
	09/30/2005	29.6	61	0.0	18.2	0.0	24.0	1.0	1.7	1.7

Project: Shepley's Hill Landfill

VENT	DATE	AF	T (⁶ F)	VOC ppm FID	0, % GEM 500	H ₂ S ppm ISTMX	% LEL ISTMX	CO ppm ISTMX	CØ ₂ % GEM 500	CH. % GEM 500
	12/05/2001	29.9	65.0	0,0	20.9	0.0	0.0	0.0	0.0	0,0
	11/05/2002	29,9	50.0	0,0	20.2	0,0	0,0	0,0	0.2	0.0
E	11/17/2003	30.1	45.0	0.8	200	0.0	0,0	0.0	0,3	0.0
E	11/16/2004	30.0	45.0	0.0	20.6	0.0	0,0	0.0	0.4	0.0
LGP-01-01X	11/08/2005	29.9	55.0	0.0	20.3	0.0	0.0	0.0	0.7	0.0
	12/11/2006	30.4	35.0	0.0	20.9	0,0:	0.0	0.0	0.0	0.0
1	10/23/2007	29.5	74	0.0	20.4	0.0.	0.0	0.0	07	0.0
	03/18/2008	30.4	50.0	0.0	20.9	0,0	0,0	0.0	0.1	0.0
1	09/29/2008	29.7	70	0	19.2	0	0	. 5	1.4	0
	12/05/2001	29.9	65.0	0.0	20.3	0.0	0.0	0.0	0.8	0.0
E E	11/05/2002	29.9	50.0	0.0	19.3	0.0	0,0	0.0	1.4	0.0
-	11/17/2002	29.9	45.0	0.0	18.8	0.0	0.0	0.0	1.7	0.0
-	11/16/2004	30.0	45.0	0.0	20.0	0.0	0.0	0.0	17	0.0
LGP-01-02X	11/08/2005	29.9	55.0	0.0	19.2	0.0	0.0	0.0	2.2	0.0
LOP-01-02A	12/11/2006	30.4	35.0	0.0	20.4	0.0	0.0	1.0	1,2	0.0
-	10/23/2007	29.5	74	0.0	19.7	0.0	0.0	0.0	1.5	0.0
-	03/18/2008	30.4	50.0	0.0	20.2	0.0	0.0	0.0	0.6	0.0
	09/29/2008	29.7	70	0.0	17.6	0,0	0.0	0.0	29	0.0
-	03/23/2000	2911	14	0.0	1.0.0	0,0	0,0	0.0	4.4	0.0
	12/05/2001	29.9	65.0	0.0	20.7	0,0	0,0	0.0	0.3	0.0
	11/05/2002	29.9	50.0	0.0	20,2	0,0	0,0	0.0	0.6	0,0
	11/17/2003	30.1	45.0	0.9	19.6	0,0	0.0	0.0	0.8	0.0
Contract L	11/16/2004	30.0	45.0	0.0	21.3	0.0	0.0	0.0	0.0	0.0
LGP-01-03X	11/08/2005	29.9	55.0	0.0	19.5	0.0	0.0	0.0	1.7	0.0
-	12/11/2006	30,4	35.0	0,0	20,6	0,0	0.0	0.0	1.7	0,0
-	10/23/2007	29.5	74	0.0	19,5	0,0	0,0	0.0	1.4	0.0
1	03/18/2008	30.4	50.0	0.0	20,5	0,0	0,0	0.0	0.4	0.0
	09/29/2008	29.7	70	0,0	18.7	0,0	0.0	2.0	1.5	0.0
	12/05/2001	29.9	65.0	0.0	20.8	0.0	0.0	0.0	0.1	0.0
	11/05/2002	29.9	50.0	0.0	20.2	0.0	0.0	0.0	0.2	0.0
F	11/17/2003	30.1	45.0	0.9	19.9	0,0	0,0	0.0	0.4	0.0
	11/16/2004	30.0	45.0	0.0	21.3	0.0	0.0	0.0	0.0	0.0
GP-01-04X	11/08/2005	29.9	55.0	0.0	20,3	0.0	0.0	0.0	0.6	0.0
	12/11/2006	30.4	35.0	1.5	20.6	0.0	0.0	0.0	0.5	0.0
	10/29/2007	29.5	74	0.0	20.2	0.0	0.0	0.0	0.6	0.0
	03/18/2008	30,4	50,0	0.0	20,4	0,0	0.0	0.0	0.1	0.1
	09/29/2008	29,7	70	0.0	19.6	0.0	0.0	3.0	0.8	0.0
	12/11/2006	30.4	35.0	0.0	20,3	0.0	0.0	0.0	1.5	0.0
E	10/23/2007	29.5	74	0.0	14.8	0.0	0.0	0.0	6.3	0.0
-	03/19/2008	30.4	50.0	0.0	21.0	0.0	<u></u>	0.0	0.5	0.1
and the second s	09/29/2008	29.7	70	0.0	0.0	0.0	>100	0.0	37.7	35.7
LGP-05-05X	10/12/2008	30,4	75	0.0	17.8	0.0		0.0	30	0.0
	10/12/2008	29.7	65	-	20.9		0.0		26	0.0
H	11/05/2008	30.2	65		3.0		00		15.2	0.0
-	11/07/2008	29.9	65		0.6		>100		24.8	15.8
	a nonzoob	649	0.0		9/9		100		2110	1010

Project Shepley's Hill Landfill

VENT	DATE	AB	τ (⁸ F)	VOC ppm PID	0, % GEM 500	H ₇ 5 ppm ISTMX	% LEL ISTMX	СО ррт ЈЅТМХ	CO3 % GEM 500	CH, % GEN 500
	12/11/2006	30.4	35.0	0.0	18,2	0.0	0.0	1.0	2.8	0.0
LGP-05-06X	10/23/2007	29.5	74	0.0	15.4	0.0	0.0	0.0	53	0.0
LGP-00-00A	03/18/2008	30.4	50.0	17:2	0.0	0.0	0.0	0.0	1.2	0.0
	09/29/2008	29.7	70	00	2.6	0.0	0.0	9.0	76	0.0
	12/11/2006	30.4	35.0	.0.3	17.3	0.0	0.0	1.0	4.1	0,0
LOD OF OTH	10/23/2007	29.5	74	0.0	16.6	0.0	0.0	0.0	6,3	0,0
LGP-05-07X	03/18/2008	30.4	50.0	17.8	0.0	0.0	0.0	00	21	0.0
	09/29/2008	29.7	70	0,0	20,1	0.0	0,0	0.0	0.1	0,0
	12/11/2006	30.4	35.0	0.0	10.4	0.0	0.0	4.0	12.3	0.0
COD OF DOUL	10/23/2007	29.5	74	0.0	5.3	0.0	0.0	0.0	16.0	0.0
LGP-05-06X-	03/18/2008	30.4	50.0	0.0	15.7	1.0	0.0	0.0	6.7	0,0
	09/29/2008	29.7	70	0.0	4.2	0.0	10.0	0.0	7.4	0,6
	12/11/2006	30.4	35.0	0,1	11.0	0.0	1.0	4.0	8.8	0.0
	10/23/2007	29.5	74	0.0	13.5	0.0	0.0	0.0	8.8	0.0
-	03/18/2008	30.4	50.0	0.0	15.6	0.0	1.0	0.0	4.8	01
	09/29/2008	29.7	70	0.0	0.0	0.0	>100	0.0	18.1	18.9
LGP-05-09X	10/12/2008	30.4	75		14.4	0.0	0.0	0.14	6.7	0,0
	10/16/2008	29.7	65		8.4		>100		10.6	8.6
	11/05/2008	30.2	65		6.4		0.0		10.3	0.0
	11/07/2008	29.9	65		0.1		>100	1	13.6	B.7
	12/11/2006	30.4	35.0	0.3	12.6	0.0	2.0	4.0	10.4	0.0
1	10/23/2007	29.5	74	0.0	0,1	1.0	>100	0.0	22.5	5.8
1	03/18/2008	30.4	50.0	0.0	18.1	0.0	1.0	0.0	5,5	0.1
and the same	09/29/2008	29,7	70	0.0	0.0	0.0	>100	0.0	19.9	10.1
LGP-05-10X	10/12/2008	30.4	75		14.2		0.0		7.2	0.0
	10/16/2008	29.7	65		5.8		>100		16.7	14.7
1	11/05/2008	30.2	65		22		0.0		13.2	0.0
	11/07/2008	29,9	65		0.6		>100	1	18.8	10.3
	12/11/2006	30.4	35.0	2,2	6.9	0.0	2,0	3,0	15.0	0,0
CRINE HAVE	10/23/2007	29.5	74	0.0	5.3	0.0	>100	0.0	17.7	5,9
LGP-05-11X	03/18/2008	30.4	50.0	0.0	20.9	0.0	0.0	0.0	1.2	0.0
	09/29/2008	29.7	70	0.0	1.0	0,0	0.0	8,0	7.1	0.0
	12/11/2006	30.4	35.0	0.2	18.5	0.0	D.D	0.0	3.2	0.0
	10/23/2007	29.5	74	0.0	2.9	0.0	88.0	0.0	14.5	4.4.
	03/18/2008	30.4	50.0	0.0	18.9	0.0	1.0	0,0	2,9	0,1
COD OF HOLE	09/29/2008	29.7	70	0.0	1.5	0.0	35,0	0.0	13.8	1.7
LGP-05-13X	10/12/2008	30.4	75	N.F.	17.5		0.0		3.5	0.0
	10/16/2008	29.7	65	1	20.5	-	0.0		0.0	0.0
1	11/05/2008	30.2	65	-	6.0	-	0.0		9.6	0.0
	11/07/2008	29.9	65	-	0.6		39.0		13.0	1.9

Gas Monitoring Data

VENT	DATE	AP	т (⁰ F)	VOC ppm PID	O ₂ % GEM 500	H ₂ S ppm ISTMX	% LEL ISTMX	CO ppm ISTMX	CO ₂ % GEM 500	CH4 % GEM 500
	12/11/2006	30.4	35.0	0,4	8.9	0.0	0.0	3.0	5.1	0.0
F	10/23/2007	29.5	74	0.0	19.5	0.0	37.0	8.0	5.3	0.1
	03/18/2008	30.4	50.0	0.0	13.7	0.0	1.0	0.0	1.3	0.1
CD OF MAY	09/29/2008	29.7	70	0.0	16.2	0.0	23.0	0.0	2.1	1.1
LGP-05-14X	10/12/2008	30.4	75		9.2		25.0		5.6	1.2
	10/16/2008	29.7	65	1	11.6		>100		5.0	7.1
	11/05/2008	30.2	65		7.4		18.0		7.3	0.1
	11/07/2008	29.9	65		3.4		>100		9.0	5.1

Typical Landfill Gases

C	Percent by				
Component	Volume				
NMOCs	0.01 to 0.6				
02	0.1 to 1.0				
Sulfides	0 to 1.0				
CO	0 to 0.2				
CO ₂	40 to 60				
CH₄	45 to 60				

SHEPLEY'S HILL LANDFILL GAS

TECHNICAL MEMORANDUM

TO:	ROBERT SIMEONE
FROM:	FRED SANTOS. WILLARD MURRAY
SUBJECT:	DEVENS SHEPLEY'S HILL LANDFILL GAS EVALUATION OF THE SOUTHERN PERIMETER
DATE:	11/12/08
CC:	FILE (CORRESPONDENCE LOGE 5404.006 COR.011). PAUL HUNT

Purpose:

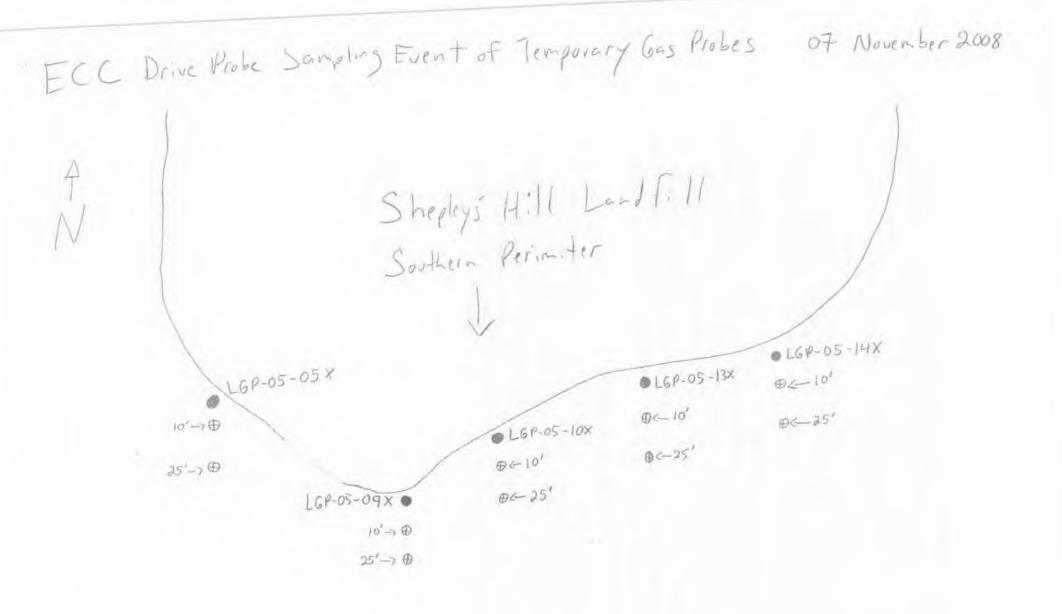
Review recent landfill gas probe measurements related to high and /low barometric pressure and determine extent of potential gas migration.

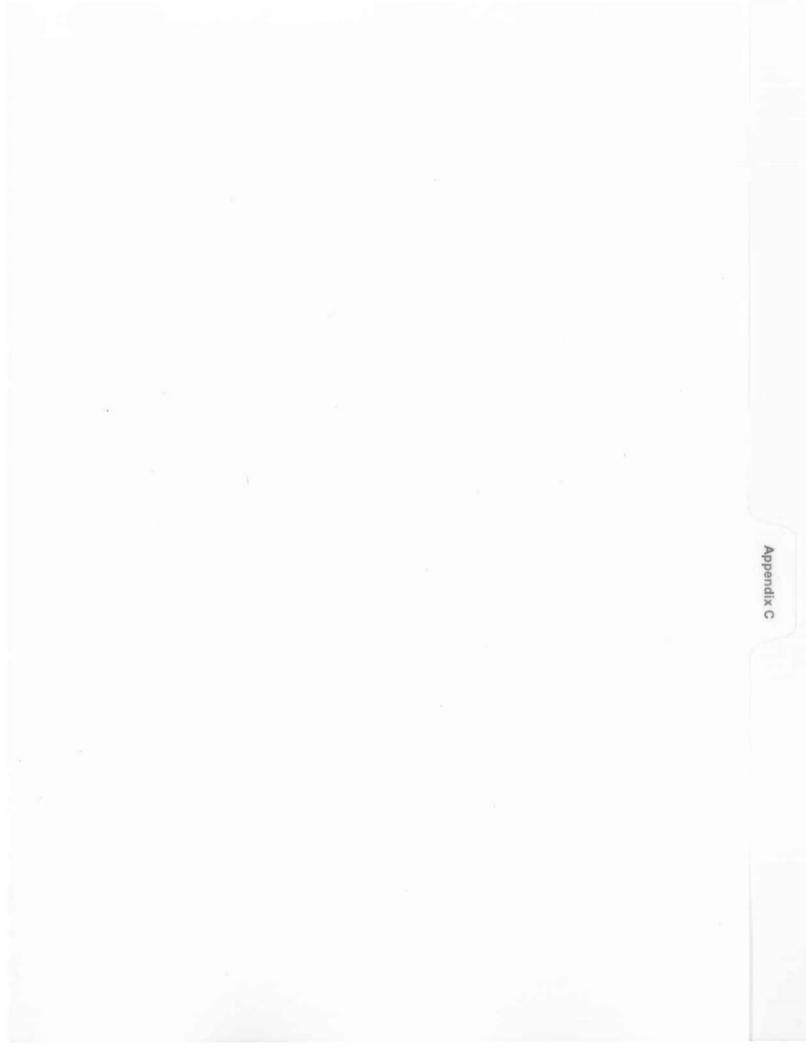
Summary Results of Recent Sampling Data at Landfill Gas Probes:

ECC has reviewed both the results of recent sampling of landfill gas probes on the southern end of the Shepley's Hill Landfill and the April 2008 Draft report entitled "Gas Trend Report, Shepley's Hill Landfill, Ayer, Massachusetts, by the US Army Corps of Engineers, New England District. This review has revealed the following:

- On 9/29/08 gas results along the southern edge of the landfill at LGP-5, LGP-9 and LGP-10 showed >100% LEL and LGP-13 showed 35% LEL; weather was cloudy and temperature was in the 70s and barometric pressure was 29.6 inches of mercury.
- On 10/12/08 gas results along the southern edge of the landfill at these same LGPs showed 0 % LEL; weather was clear with temperature in the 70s and barometric pressure was 30.1 inches of mercury.
- 3. On 10/16/08 gas results along the southern edge of the landfill at LGP-9, LGP-10 and LGP-14 showed >100% LEL; weather was cloudy with temperature in the 60s and barometric pressure was 29.8 inches of mercury. Storm drains and manholes near the southern perimeter of the landfill and Cook Street were checked for landfill gas during this sampling episode. Gas results showed zero methane and LEL in the manhole/storm drains.
- On 11/5/08 gas results along the southern edge of the landfill were once again at 0% LEL except for a reading of 18% LEL at LGP-14; weather was overcast with temperature in the 60s but the barometric pressure was high at 30.1 inches of mercury.
- On 11/7/08 gas results along the southern edge of the landfill at LGP-5, LGP-9, LGP-10 and LGP-14 showed >100% LEL and LGP-13 showed 39% LEL; weather was overcast with slight rain and barometric pressure at 29.9 inches of mercury; on this sampling episode drive probes were placed at distances of 10 to

25 feet out from the above LGPs to see if migration has occurred to greater distances from the landfill edge; at locations adjacent to LGP-5, LGP-9 and LGP-10 for sample depths of 3 ft and 6 ft the %LEL was zero, furthermore, at locations


LGP-13 and LGP-14 at sample depth of 3 ft the %LEL was zero and water was encountered at a depth of 5 to 6 ft.


 Prior to the September 2008 detection of excessive %LEL readings, the LGPs have detected little or no methane gas since installation at the northern or southern perimeter of the landfill, as reported in the April 2008 Gas Trend Report by the US Army Corps of Engineers.

It can clearly be seen that when the weather is clear and/or barometric pressure is high, there is no significant landfill gas migration outside the landfill cap. However, when the weather is cloudy and overcast and barometric pressure is relatively low, landfill gas tends to migrate laterally outside the landfill cap along the southern end of the landfill in the vicinity of LGP-5, LGP-9, LGP-10, LGP-13 and LGP-14. The distance migrated is small, less than 10 to 25 feet from the edge of the landfill cap during these periods of low barometric pressure. When high barometric pressure returns the landfill gas is apparently pushed back beneath the landfill cap.

Conclusions Regarding Landfill Gas Migration:

The observed high %LEL gas levels measured recently in landfill gas probes along the southern edge of the Shepley's Hill Landfill cap are transient events and only persist for a short time while a low barometric pressure system resides over the landfill. Furthermore, during this time of low pressure the distance gas migrates away from the edge of the landfill is very small, less than 10 to 25 feet. When the inclement weather and its associated low pressure are replaced by clear weather and relatively high atmospheric pressure, the landfill gas probes show that %LEL values return to zero or to very low values.

2008 Annual Report – Shepley's Hill Landfill and Treatment Plant Long-Term Monitoring and O&M Services Contract Number W91ZLK-05-D-0009 Task Order -0006 August 2009

Appendix C

Field Data Sheets

Environmental Chemical Corporation

Low Flow/Low Stress Groundwater Sampling Log

18	
	1
_	
color	Salinity
1	1
	1
-	
	-
	-

Sample Collection

Time	Sample ID	Container	# of Bottles	Preservative	Analyses
-					
-					

Date

Comments

Signature

Environmental Camical Corporation

Project:	Fort Dever	15			Date:	1/8/1	18	A	6	
Location	Ayer, MA				Sample	IT Revi	d Gre	<i>a</i> .	IEC	CCI
Well ID:	SHM	-96-5	C		PID Rea	ading	0.0		10.0	
Start Tim	e: 1040	End Time	1145							100
	struction:	4" PV	and the second se			Fie	d Testin	g Equip	ment	
Depth Io		5.9.	1,		Make	-	Model		Serial #	
Well Dep		79.4	1'		Y54		650 M	Di	DOLI	1207 AA
Water Co		73.5	7'		YSI		600×1		045	1600 AC
	ume Remo	ved (L)	32.5		Land	12		lingter		5-2305
					Geop	ump.	Pernto		700	21
Time	Removed	Firm Date	Depth to Water	Temp	pH	SPC	DO	ORP	Turbidity	
17mm	(itters)	(mi/min)	(ft)	(cetsius)	(STD)	mS/cm	(mg/L)	(mV)	Incounty	
100	10	500	5.98	9.52	613	12807	0.38	82	2	
1105	25	500	5.98	9.55	6.16	0.811	0.30	-83	7	
1110	2.5	500	5.98	19.60	6.17	0.510	0.29	-83	6	
1115	25	500	5.98	2.64	6.18	0810	0.29	-84	4	
1120	2.5	500	5.98	9.61	6.17	0.807	0.27	73	3	
1125	2.5	500	5.98	19.63	6.16	0.774	0.27	-76	2	
1130	25	500	5.98	19.59	6.12	0.746	0.27	-68	1	
185	2.5	500	5,98	19.62	6.11	0.740	0.27	-66	1	
1140	25	500	5.98	9.64	6.10	0.737	0.26	-64	17	
1145	2.5	500	5.98	9.65	6.10	0.735	0.26	-63	0	
								-		
Acc	eptance Cri	teria:	< 0.3 ft	3%	± 0.1	.3%	10%	±iQmv	L	
	And the second second		r 616 ml per loo			de la	1416			
_				Sam	ple Colle	ection	_	_	_	
Time	Sam	ple ID	Contair	ner	# of I	Bottles	Prese	rvative		Analysei
	10	Sample	Collectro	1		-	_			
	1							~		
-										
Commen	ts									
	- 1	1				1	11			

8/01

Date

Signature

Lamo

Environmental Ch., mical Corporation

Low Flow/Low Stress Groundwater Sampling Log

Project:	Fort Dever	ns			Date:	1/8	108		6	
Location:	Ayer, MA				Sample	- Dei	Al Co	W. RAV	BE	CCM
Well ID:	SHL	85			PID Rea		00			
	e:0940 struction:	End Time	1035			-	la Tablic	e Fallia		
		00	01		-	<u>r ie</u>	d Testin	id Eduibi		
Depth to			त्म । जन्म ।		Make VSI		Model	Se.	Serial #	1
Well Dept		23.1	88	-	10 F		(SOML		OOLI	- A -
Water Co	· · · · · · · · · · · · · · · · · · ·	48.1	0'		Dr	112	GOOXL		OUT	1600 AC
Total Vol	ume Romo	ved (L)	30.25	÷ .	Land		Periste	finite! Hic	58	21-2305
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celaius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	1
0955	825	550	10.34	939	676	0.061	1.19	1/39	11	1
1005	5.5	550	10.42	9.40	6.64	0.061	1.24	108	11	1
1010	2.75	550	10.43	9.43	6.58	0.062	1.24	101	1	1
1015	2.75	550	10.45	9,43	653	0.062	1.25	99	0	1
1020	2.75	550	10.46	9.47	6.47	0.062	128	199	0	1
1125	2.75	550	10.46	9.44	6.42	0.062	1.28	101	0	1
1030	2.75	550	10.47	9.44	641	0.067	1.28	102	0	1
1035	2.75	550	10.48	9.43	6.39	0.062	1.29	101	0	
	eptance Crit volume = 0,		< 0.3 h r 616 ml per foot		±01 ple Colle	3%	10%	±10mv		
Time	Sam	ple ID	Contain			lottles	Prese	vative		Analyse:
		Sample	collected							
							-			
	-									
Comment	<u>Is</u>									
					_					
	1001	n				1/8/	18			
	the second s	gnature					ate			

Environmental Chemical Corporation

Low Flow/Low Stress Groundwater Sampling Log

Project:	Fort Dever	15			Date:	1/8/	18		63	
Location:	Ayer, MA				Sample	C Dav.	d lom	Pa-	DE	CCE
Well ID:	SHL	-5			PID Rea	eding:	0.0		100.4	U
Start Tim	1149	End Time	: 1235						-	-
Well Cons		2"Pu	ĨĊ			Fie	Id Testin	g Equi	ment	
Depth to 1	water:	3.36'			Make		Model		Serial #	1.44
Well Dept	ih:	13.43'			YST	1	650MD	5	DOLIZO	7 AA
Water Col	lumn:	10.0	21		YSI	6	GOOXE		045160	O AC
Total Volt	ume Remo		18.4		Lamot	12 1	Turbidia	eter	5185-	2705
					Geop		Peristal	AVE.	202	1
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
1205	6.4	400	3.78	14.66	640	0.075	0.76	69	120	L
1215	.4.0	400	3.79	4.69	5.42	0.077	0.09	15	1	
1920	2.0	400	3.80	4.72	15.40	0.077	0.67	63	1	
1225	2.0	400	3.90	4.72	5.41	0.078	0.66	62	11	
1230	2.0	400	3.81	4.69	5.42	0.079	0.66	61	1	
1235	2.0	400	3.81	4.72	5.42	0.079	0.07	60	1'	
					-	-	1	-		
								-	-	
								-		
		-		1	-	-				
-		-		1	1	1				
	eptance Crit volume = 0		< 0,3 h r 616 mi per foo		±01	3%	10%	±10mi	v	
Timé	Sam	ple ID	Contail			Satline	Prese	rvative		Analyse:
TUTES				0		- directe				10.000
	NO	Samples	Collected	-				_		
-										
Comment	5									
					_					
		1					-			
	100	ne				1/8/	the second se			
	Si	gnature				D	ate			

Environmental Chemical Corporation

Low Flow/Low Stress Groundwater Sampling Log	Low	Flow/Low	Stress	Groundwater	Sampling	Loc
--	-----	----------	--------	-------------	----------	-----

Project: Fort Devens	Date: 1408	
Well ID: SHM-91-5B	PID Reading: MA	
	Pib Reading: (3-4)	
Start Time: 10-10 End Time: Well Construction: 5" PV/C	Field Testing Equipment	
Depth to water: 651	Make Model Serial #	
Well Depth: \$9.40		-
Water Column:		_
Total Volume Removed (L)		-

										_
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbide	A
050	\$45	450	6.92	9.35	6.43	0.654	0.79	20.	24	
1100	4.57	450	692	958	6.94	0.654	0.37	-2	0.7	
1115	1.500.54	450	692	9.56	636	0.656	0.22	-8	05	
1120	雪9	450	692	9.55	6.35	0.656	0.21	-9	1.1	
1125				9.58	631	0.655	0.19	-9		
1130	KBBS	450	692	9.61	6.24	2.653	0.19	-8	0.9	
135				963	6.20	0.657	0.18	-8	0.6	
1140	18	450	6.92	9.64	6-13	0.655	0.18	-6	0.6	
1145		1		969	6.03	0.657	0.17	-3		
1150	22.5	4150	692	9.57	5.98	0.656	0.18	0	0.8	
1155	27	450	692	9.60	599	0655	017	-2	0.7	
Acc	eptance Crit	erin:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	10%	

2" screen volume = 0.163 gal/lt or 616 ml per foot.

Sample	Cal	lection
--------	-----	---------

Time	Sample ID	Container	# of Bottles	Preservative	Analyses
	511M-96-88-010608	Here Hins	2	Her	Melland Tolhore
1.5					

Comments

Signature

Date

RUNASASA

Environmental Chemical Corporation Low Flow/Low Stress Groundwater Sampling Log

Well ID: <u>SHL-23</u>						Sampler: David Correav PID Reading: <u>0.0</u>				SP -		
Start Time: 125 End Time: 120 Well Construction: $4"PVc$ Depth to water: $28.43'$ Well Depth: $35.33'$ Water Column: $6.90'$			Make VSL	5 AH								
		6.90			YSI		the second s		1 F0657 AL			
Total Volu	ma Remov	red (L.)	12.1		Lamos		Turbidimeter		2912-5101			
Time	Volume Removed (liters)	Flow Rate (mi/min)	Depth to Water (ft)	Temp (celsius)	BANNO (STD)	SPC mS/cm	Controlli DO (mg/L)	ORP (mV)	eetor Turbidi			
1145	4.4	220	28.57	12.05	5.75	0.035	10.20	149	0			
1150	1.1	220	28.57	12.33	5.79	0.035	10.18	152	0			
1155	1.1	220	28.58	12.42	5.65	0.034	10.17	160	0			
1200	1.1	220	27.58	12.63	5.61	0.034	10.14	161	0			
1205	1.1	220	28.58	12.75	5,60	0.033	10.12	171	0			
210	11	220	28.59	10.93	5.57	0.033	10.08	176	0			
1215	1.1	220	28.59	13.01	5.56	0.033	10.06	177	0			
1220	- h l	220	2159	12.99	5.55	0-033	10.01	190	0			
	eptance Crit		< 0.3 ft 616 ml per foot	3%	±0,1	3%	10%	±10mv	10%			
				Sam	pla Colle	ction						
Time	Sample ID Contain			ler	# of E	Battles	Preser	vative	Analyses			

Comments

Signature

Date

Projest Fort Devens					Date:	1/9/1	18	-	6	
i serini	Ayer, MA		Sampler: Dav.d. Comtav							
i isiinii	SHM-G									
Insra This	o: 0441	End Tim.	1045						4.8	
	struction:		Field Testing Equipment							
Depth to	water:		Make	100	Model Series			£		
Well Depi	th:		YSE 65.0 MDS 0350955 H							
Water Co	lumo:	126.	01		VSI booxl 0180857 Al Lamothe Surbidimeter 2912-5101					
Total Vol	ume Remon	md (L)	32.5							
					Grino		Control	ler	982	3
-	Volume Reflaved (Illuss)	Flow Rate	Denkin to Water	Têmp (celsius)	pH (STD)	SPC roSfee	DO (mg/L)	ORP (mV)	Turbelity	
1020	20.0	500	24.21	9.42	17.52	0.623	2.35	1-140	7	r.
1025	2.5	500	25.10	9.44	254	0.621	0.46	-121	2	
1030	2.5	500	25.34	9.07	7.53	10,623	0.31	-112	11	1
1035	2.5	500	25.51	9.01	17.55	0.623	0.01	1-122	1	l.
1040	2.5	500	25.64	9.99	17.54	10.623	And and a second se	-120	1	1
1045	2.5	500	25.73	8.87	7.53	0.623	0.29	-117	0	
					-					
	1				1			-		
	1				4	-			-	
	-			-	1 -					
			-	-	-			-		
Acc.	eptence		<0.3 R	000	± 1	3%	10%	±10.00		1
	-1		< 0.3 n r 616 me _ r tool		ple Colle		. topic	= 10000		
Time	Sample (D) Contain					Intiles	Prest	MIN		Analyses
				7						
0	NO	Sample	calleded	9			*		en alle	
		1			-	_				-
1								_		
-										
Colt 4	and a									
							-			
							-	-		
X	Ol Com	in				1/9	108			
	the second se	afure				-	ate	1		

Environmental Chemical Corporation Low Flow/Low Stress Groundwater Sampling Log

Low Flow Low	Stress	Groundwater	Sampling	Log
--------------	--------	-------------	----------	-----

1	Project: Fort Devens					2 TAN		-	1	
Vell ID	SHC-2	Z			Sample PID Rea		D			17
	struction:	End Time:	1007		Anto	Fie	ld Testin	a Equips		
Depth to v		141			Make		Model		Serial #	-111
Well Dept		7100	0	-	YSI		650MP		03509	
Water Col		107.5			125	-	6001		DIFCES	
Total Volu	ime Remov	red (L)	21		Lamot	te	7010	5	885-2	305
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (R)	Temp (celsius)	pH (STD)	SPC m5/cm	DO (mg/L)	ORF (mV	Turbidity	
0957	18	300	7.91	9.33	671	0 508	0.75	-55.4	0.3	
1007	19.5	11 11	7.91	9.23	6 10	0 508	068	-52.2	0	1
1007	al	1. 11	7.91	9.23	6.70	0.508	0 68	- 51-1	0	
							_			
						-		-		
Acc	eptance Crit	terla;	< 0.3 ft	3%	±¤1	3%	10%	±10mv	-	

2" screen volume = 0.163 gai/ft or 616 mi per foot

Sample Collection

Time	Sample ID	Container	W of Britties	Preservative	Analyse

Signature

9 JAN 08 Date

	ell ID: SHL-9				le	9.5M 1:6.24 iding:		5	(EI	
Well Cons Depth to v Well Dept Water Col	water: h:	76.1	71		Make VSI VSI LUMO		Nodel Model GOM GOCZ 7070	9	senai # 03109 01F00 5785-	57
Time	Volume Removed (Ilters)	Flow Rate (mi/min)	in to Water (ft)	Temp (cetalus)	pH (STD)	SPC m5/cm	DO (mg/L)	ORP (mV)	Turbidity	
1045	10.5	300	10.07	9.31	6 95	0.154	0.98	-78.4	10	
1050	115	$\chi_{0} \in D^{-1}$	10.07	9.25	6 75	0.151	071	-67.3	09	
1055	13	99.10	10.02	9-26	6.64	0145	0.14	-59.3	OL	1
1100	14.5	9.11	10.02	9.70	6.64	0 144	011	-58.8	0	
1105	16	-m - 11	10.02	9.19	6.63	0 44	011	-57.6	0	
1110	17.5	n 4j.	10.07	9.19	6 63	0 144	010	-518	0	
	antanen Celi		1034	30/	+0.	914	41394	+10mu		ų.

2" screen volume = 0.163 gal/fl or 616 ml per foot

Sample Collection

Time	Sample ID	Continer	# of Bottles	Preservativé	Analyse
-					

Signature

9 TAN TODE Date

Well ID:	Aver, MA SHM-	05-39			Date: Sample PID Res	r: David	d Card	iew.		
	struction:	2" puc	1.54.2			Fid	eld Testin	a Equipr	nent	
Depth to	water:	11.7	the second s		Make	. 8	Model		Sorial #	
Well Depi	ht	38.6			YS1		650mD	5	035095	5AH
Water Co	lumn:	26.9	2'		YSI	-	GOOXL		01 F065 1	2 AD
Total Vol	ume Remov	red (L)	44.0		Lamot	e	Turbidi	meter	2912-510	2/
					Geor	UMD.	Perista	Hic	1118	
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Color Turbidity	
1505	33.0	550	11.70	10.19	6.50	0.513	0.56	-71	0	
1510	2.75	550	11.70	10.16	6.46	0.510	0.18	-72	0	
1515	2.75	550	11.70	10.13	645	0511	0.10	-76	0	
1520	2.75	550	11.70	10.17	6.45	0.512	0.10	-77	0	
1525	2.75	550	11-70	10.11	6.44	0.512	0.11	-76	0	
							1			
								1		
		-	-					-		
	-							1		

 Time
 Sample ID
 Container
 3 of Bottles
 Preservative
 Analyses

 1525
 SHM-05-39/A-010908
 40ml out
 2
 Hcl
 Method
 /// ethod

200 Signature

Date

Project: Fort Devens	Date: 1/4	108	
Location: Ayer, MA	Sampler: Gra	ft Cokinos	1
Well ID: SHM. OS 42B	PID Reading:	-0	
Start Time: 14/0 End Time: 15/0			
Well Construction: 1 14C		Field Testing Ed	auipment
Depth to water: 4/6/	Make	Model	Serial #
Well Depth: 76-30	VSI	GSOHOK	06D2588A6
Water Column: 71.69	YSE	640+1	045/1000 ABAF
Total Volume Removed (L) 165	LOWOTTE	2020	5885-2305

					a second and a second sec			and the second sec	
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidit
1415	1.5	300	*	9.20	642	0.346	0.48	-76 7	5
1420	3	6 11	_	9.19	6 40	0.357	0.46	-75.8	36
425	45	m h		919	6.39		046	-76.1	28
420	6	·		9.20	6.38		046	-74 8	26
435	7.5	14 W		9.76	6.34	0.590	0.50	-78.5	2.4
1440	9	× 1		9.31	6 35	0.633	0.79	-80.6	2.1
1445	1105	1. 11		434	6.35	0650	0.29	-81.6	1.6
1450	12	as - 6		9.35	6.35	0.655	0.29	-87.5	1
1455	13.5	55 h		939	636	0.666	029	-853	0
1500	15	19. 11		934	6 36	0 667	079	-84.2	0
1505	165	4. 4		432	£ 56	5667	0.29	-84.7	0
Act	eptance Crit	teria:	< 0,3 h	3%	±0.1	3%	10%	=10mv	

2" screen volume = 0.163 gal/ft or 616 ml per toot

_	Sample Collection										
Time	Sample 1D SHM-05-4213-010	Container	f of Bottles	Preservative	Analyses						
15 10	SHM-05-4213-010	900 GONIVIAI	9	ACI	Methane / Etand						
			~~~~								
1993											

+ Unuble to collect depth to whether while lowflowing well due to pue dimmeter when sumple tubing is LASINE placed Clising. 9 TAN ZOUR Signature Date

Project:	Fort Deven	15			Date:	1/9/	04					
Location:	Ayer, MA				Sample	r: Denz	1 Comen	2	MEC			
Well ID:	SHM	-05-3	39B		PID Rea	iding:	0.0					
Start Time	: 1330	End Time:	1500						-			
Well Cons	struction:	2"PV	6		Field Testing Equipment							
Depth to v	epth to water: 11.31				Make		Model		Serial#	100		
Well Dept					YSE		650M	Di	03509	ISS AH		
10 J.	Vater Column: 55.79'				85%		600X		01806	57 AD		
	me Remov	100 C	36.0		Lamor	He	Turbid		2912	-5101		
					Grund		Control		980	13		
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (It)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidia,	V		
1350	8.0	400	15.90	10.12	6.64	0.849	0.21	1-98	85			
1400	40	400	2037	11.51	678	0.549	0.36	-95	21			
1410	4.0	400	24.26	1415	6.85	0.949	0.23	-96	50			
1420	4.0	400	27.26	11.74	6.90	0.845	0.18	-84	18			
1430	4.0	400	29.25	11.93	6.92	0.944	0.18	-83	10			
440	40	400	29.10	11.68	692	0.946	0.16	-79	5			
1450	40	400	29.99	11.96	6.72	0.945	0.14	-17	0			
1455	2.0	400	30.33	12.18	6.91	0.842	0.15	-78	0			
1500	2.0	400	30.87	12.20	692	0.940	0.14	-27	0			
Acc	eptance Crit	berla:	< 0,3 ft	3%	±0.1	3%	10%	±10mv	10%			
2" screen	volume = 0.	163 gal/ft o	616 ml per foot		ple Colle	ection						
Time	Sam	ple ID	Contair	ier	# af	Bottles	Prese	rvative	0	Analyses		
1500			0.011908	(Idal)	and -	2	641			al Gab		

1000 Signature

Date

Project: Fort Devens	Date: 1/9	108	4
Well ID: SAM-05 - 413	Sample <u>r: Éc</u> PID Reáding:	off Cokilles	
Well Construction: 2"NC		Field Testing E	auipment
Depth to water: <u>10 44</u> Well Depth: 61 30	Niake VSF	Nodel 6 53 Mb 3	Serial # 060752846
Water Column: 50.56	VST	600×1	OY JILOOD AF
Total Volume Removed (L)	LUMAHE	2070	5885-2305

Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water [ft]	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
1325	5	250	10 51	10 67	6.18	0.676	0.61	-920	2.7
1330	6-25	10.01	10 51	10.54	679	0 674	034	-91 T	1
1335	7.5	114 11	10-51	10-53	6.70	0624	0.11	-93.2	0
1340	8 75	N II	10.51	10.40	6.70	0.671	021	-92 9	0
1345	10	55 11	10.51	10 30	621	0.618	0 20	-92.9	0
1350	11.25	11 11	10.51	10 29	621	0.618	020	-927	Ò
1355	12.5	15 11	1051	10 Z1	6.77	0 614	0-70	-927	0
1400	13.75	8 11	10-51	15.01	6 77	0.614	0 20	-91.8	D.
1405	15	in V	10 51	10.70	6-21	0.614	0.20	-92.1	0
					-				_
Aco	eptance Grit	teria:	< 0.3 11	356	± 0.1	.3%	10%	± 10mv	

Acceptance Griteria: < 0.3 ft 10% 355 きな10 3%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Time	Sample ID	Container	# of Bottles	Preservative	Analyse:
1410	SHM-05-4113 090	DIDADE YOMIVIAL	2	HCL	Methane lEthone
V U	54M-05-410-010	108 1/3/MSD 11 11	10. 45	is h	11 K
000D	DUP-010908		14.17	4 12	41 67
1.111				1.1	

Signature

9 Jan 2008. Dela

Low Flow/Low Stress Groundwater Sampling Log

	Ayer: MA			1/9/09 er: 600H ading:	-	Ś				
Well Con Depth to Well Dep Water Co	th:	Z " PUL 10 69 40 5 29-1	5 1		Make VSI VSI LQMot		Model Model 650MJ 600X 20 ZO ZO	0	nent Serial # GD 253 9 51400 7 885 -	BAG DOAF
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DD (mg/L)	ORP (mV)	Turbidity	
1245	1/8	300	10 81	10.75	6.26	0 061	020	-107	0	I
1250	19.5	40.20	15 81	10.76	6 26	0 064	011	-10.3	0	1
1255	21	45-21	18.01	10.76	6.16	0.066	0.21	-8.1	0	
	-									
	eptance Crit volume = 0.		< 0.3 ft r 616 ml per faol		±01 ple Colle	3%	10%	±10mv		1

Tima		Container	# of Botties	Preservative	Analyses
1300	SHM-05-412-010902	YOMINIAL	5	ACI	Nethar /Elisa
-					

Commania

Signature

9 JAN 2008 Date

Project: Fort Devens	Date: 1/4	801	and a
Location: Ayer, MA Well ID: SHM -05 - 4/C	Sample <u>r: Gcc</u> PID Reading:		
Start Time: 1146 End Time: 1240 Well Construction: 2" N/C		Field Testing Eq	uloment
Depth to water: 10.73	Make	Model	Serial II
Well Depth: 767-31	VSI	GSOMDS	060252846
Water Column: 76-58	YSI	GOON	045/6000AE
Total Volume Removed (L)	Lamotte	7070	5885-2305

Time	Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
1700	4	200	10:85	9.99	6.89	0.569	510	-159.5	16
1205	5	net th	10.85	10.07	6.90	0 565	0 11	-159.1	10
1210	6	11 11	10 85	10.13	691	0.540	0.10	-1582	7
1215	7	U (r	10.85	10 23	692	0.558	0 19	-157.1	6
1220	X	in h	10 85	10.29	6.43	0.561	0.19	-156.4	4.5
1225	9	11. 11	10 85	10.27	643	0 54	0 19	-155]	τ
1230	110	11 41	16-26021085	1076	6.43	0.561	019	-155-1	2
1240	14	wy	10 85	10 26	693	0561	0,19	-155-3	2
Apr	ceptance Crit	teria:	< 0,3 ft	3%	+0.1	3%	10%	±10rov	

Acceptance Criteria: < 0.3 R 3% ±01 3% 10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Volume

Sample Collection									
Time	Sample ID	Container	Ful Bottles	Preservative	Analyses				
1240		YOMINIAI	d	HC	Methone /Erhun				
	SHM-05-41C-010908 YOM/Wal 2 HC								
	Page								

Signature

9 JAN 08 Date

Start Time			Fu	d Testin	a Fadaa	nent .	1				
Well Construction:       4" PVC         Depth to water:       7.26'         Wall Depth:       92.10'         Water Column:       84.94'				Make YST VST	. 7	Model SOMD 600XL	5	ment Serial # 0370955 01F0157 /			
6162116 (F.F.)	me Remov		34.20		Landi Geop			meter		01	
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	caler Turbidity		
0920	14.25	570	7.26	9.43	6.65	0.777	0.24	- 88	22		
0930	5.7	570	7.26	9.42	6.15	0.729	0.24	-87	6		
0935	2.85	570	726	9.40	6.65	0.729	0.20	-87	6		
0940	2.85	570	7.26	9.35	6.65	0.728	0.18	-82	5		
0945	2.75	570	2.26	9.35	6.65	0.728	0.20	-81	5		
1950	2.85	570	7,26	9.34	6.65	0.727	0.19	-82	4		
0955	2.85	570	2:26	9.40	6.66	0.729	0.18	-94	4		
	eptance Crit		<0.3 h	3%	±0.1	3%	10%	±10mv	10%		

Time	Sample ID	Container	# of Bottles	Preservative	Analyses
0955	SHIM-96-22B	-010908 400	I vial 2	Hel	Metlene Lethane

Cones Signature

Date

Finit Fort Devens	10.1	anor					
Lormfont Ayer, M/	semmen weath Cakinos						
16-11 1- SHM- 99-31C							
Well Construction: Z"DUC		Field Testino E	oujom*ni.				
Depth to wath: 1.85	Wate	Model	Sorial #				
Well Depth: 15.65	VST	GRANDS	_ 0350955AH				
Water Column: 13 8	VSI	GOOXI	OFFOGSTAD				
Trail Volume Permoveri (L)	Unnotte	2020	5875-2305				
Volume							

Timo	Reinoved (liters)	Flow Rate (mi/min)	Depth to Water (it)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
1015	7.5	300	2.20	18.11	5.48	2078	0.14	114.31	12
020	9	A N	33. U	17.34	5.48	0.078	0.14	115.77	9.8
1025	105	a.h	16.11	1724	5.99	0076	10.14	11.45	3
1030	12	(9, 1)	× 11	7.24	5.47	0076	014	15.48	2.6
10 35	13.5	~ V.	H	7.74	5.41	0076	0.14	15.50	7.5
				1				-	
		-							
		-							
			1				1		
	1			1					
				1				1	
Acc	eptance Gri	teria:	< 0.3 ft	3%	20.1	3%	10%	±10mv	

2" screen volume = 0.163 gal/ft or 616 ml per foot

Analyses Hyde /Ethoda
Hule Film 1
THUC IC MONT

Commants

Signature

10 JAL

Project: Fort Devens	Date: 101	AN LOUS	
Location: Ayer, MA	Sampler GR	IF CERINOS	ELL
Well 101 SHM- 99- 33×	PID Rending:	and the second	1000
Start Time: 10/0 End Time: 1175			
Well Construction: Z"PVL		Field Testina E	auipment
Depth to water: 950	Make	Model	Serial #
Well Depth: 84.00	XST	GSDMDS	0350955AH
Water Column: 74.50	YST.	60011	OIFOGS TAD
Total Volume Removed (L) 22	Lamore	7070	5885-2305

								and and the second s	
Time	Volume Removed (liters)	Flow Rute (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
IDU	15	300	9.54	957	6.56	0 531	0 75	-88.7	0
105	17.5	S. 11	9.54	9.50	6.56	0 532	0.23	-88.4	0
IIID	18	1. 11	1.54	9.63	657	0536	0.20	-478	0
1115	20.5	Se 21	9.56	9.63	6 57	0533	0-14	-43.4	D
1170	22	AV N	9.56	964	4.5%	6 529	C 19	-93.9	0
_				1.00				1	
_						-			
				-			-	-	
							1	-	
					-	-			
						-		-	1
Åce	eptance Cri	teria:	< 0.3 h	3%	±01	3%	10%	±10mv	

2" screen volume = 0.183 gal/ft or 616 ml per foot

#### Sample Collection

lyser
Ethert
-
-
-

Signature

10 TAN ZON

Project: Fort Devens	Date: 10 Th	AN OF	
Location: Ayet, MA		off lok los	EDD
Well 10: SH M- 94-31A	PID Reading	0_	
Start Time: 07:45 End Time: 0850			
Well Construction: Z' DUC		Field Testing Ec	nipment
Depth to water: 407	Make	Nodel	Serial #
Well Depth: 78.15	VSE	65CMIXS	0350955AH
Water Column: 74.08	15=	Georg	OFFOGSTAD
Total Volume Removed (L)	LENGHE	0505	5885-2305

Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
0900	45	300	4.20	9.14	6.68	0 560	0.45	-1124	70
0905	6	15 11	7.70	914	661	0.558	0 36	-112 1	105
0910	7.5	38.91	4-70	906	647	0.555	031	-110,D	19-9
0915	9	11. 20	4.20	899	6.67	0.549	350	-1077	19.9
0470	10.5	AC 01	4.70	9.05	6.67	0,542	0.20	-100.2	12.2
0975	12	10.0	4.70	9.09	6.67	0.539	DIT	-93.4	11.5
0930	13.5	44	4.70	1.12	667	877	0.18	-97.5	10
0935	15	3A-40	4.70	9.11	667	0 537	0.18	-85.2	
0940	16.5	m =1.	4.20	9.10	667	0 536	0 18	-835	5.2
0945	18	w.lj	470	9.10	6.67	0536	DIT	-84.8	5

Acceptance Criteria: < 0.3 ft. 3% ± 0 1 3% 10% ±10mv

2" screen volume = 0.163 gal/II or 616 ml per fool

_		Sam	ple Collection		
Time	Sample ID	Container	# of Bottles	Preservative	Analyset
0950	SHM-44-31A-0/1002	Homillai	2	Hil	METHOR /EXIGN
Commons					

Signature

10 TAN 08 Date

#### Fevimental Operation Corporation Low Flow/Low Stress Groundwater Sampling Log

Firstwels.	Furl Daven	3		2.1	0-	10 JAN	30		
Locations	Ayar, MA			-11017	Groff	akinos			
MASHINE SHM-94-31B					E T E DE	- ( <del>1</del> -	_0		
Stori Three	m 0850	Ensi Jimes	1005						
Well Con	struction:	Z" DUG				Fie	d Testing	Equip	<u>117312</u>
Depth to	wathr:	13	75		Wate		Model		Serial #
Well Dept	th:	61	35		YSI		GSOAD	5 0:	STO955AH
Water Co	lumn:	51	1.60		VSI		600x1	01	F0657AD
Teral Vol	nuu Luinoi	enel (L)	- 21		Lanoi	te	7070	5	885-2305
Timo	Volume Romoved (liters)	Flow Rate (ml/min)	Depth to Water (R)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
0950	118	300	4.10	910	6.34	0.313	0.18	-41.3	0
OCICE	100	En D	0.10	1.25 1.4	7 37	71 212	1101	11-1-	0

600

0950	18	300	14.10	1910	16.34	0.313	0.18	-41.3	0
0955	19.5	10 11	910	19.11	6.34	0312	018	-425	0
0100-61	7]	41.11	4.10	9.4	6311	0.312	318	-47.3	0
				-					
				1		-			_
		-	-	1-					
			1	1					
Acce	ptance Cr	iteria:	< 0.3 n	3%	±01	3%	10%	±10mv	

2" screen volume = 0.163 gal/ft or 616 ml per toot

		Inc	pie collection		
000-	Sample 10	Comeiner	W of Pertiles	"macrvative	analyse:
1005	SHM-99-318-011008	HOMINICI	a	Hel	MethinelEthin
		and the second sec			
_	0				

Conments

Signature

10 Jan 08

Low Flow/Low Stress Groundwater Sampling Log

Project:	For Dove	ns			Date:	1/10	108		6	
Location:	Ayer, MA				Sample	r: Dav	ich Ge	Videv	III E	GCO
Well ID:	SHL	21			PID Rea	iding:	0.0			
Start Tim		End Time	0955			Fi	d Testin	n Emuin	ment	
Depth to		115 7	171	8	Make	<u>C8</u>	Model	id Edolpi	Serial #	
Well Dept		54	70'	-	VSI		650 M	26		1538 AG
Water Col		9.3	3'		VST	-	600XL			600 AF
	ume Ritmo		22.0		Lamet		Jurbia	inter	2912	-5101
					Grue	dis	Custo	oller	982	3
Time	Volume Removed (itlers)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC m5/cm	DO (mg/L)	ORP (mV)	Turbidity	
0930	19.5	1500	45.42	11.60	6.07	0.054	11.51	153	3	1
0935	25	500	45.42	12.30	6.06	0.052	9.49	158	201	]
0940	2.5	500	45.42	12.59	6.03	0.051	10.16	164	3	1
0945	25	500	45,42	12.63	6.02	0.050	10.19	170	nn	
0950	2.5	500	45.42	12.61	6.01	0.050	10.18	173	3	
0955	2.5	500	45.42	12.61	6.03	0.049	10,16	176	2	
					-		-			
-				-		-				
	eptance Crit volume = 0		< 0.3 h r 616 mi per fool		±01	3%	10%	±10mv		1
Time	Sam	ple ID	Contair	ner	# of	Bottias	Prese	rvative		Analyset
	NO	Samples	Glided	l						
Comment	5									_

100 los Signature

1/10/08 Date

Low Flow/Low Stress Groundwater Sampling Log

Project:	Fort Devel	ns			Date:	1-14	80.0		E	The second
Location	Ayer, MA				Sample	in D	R		<b>ME</b>	COM
	Ew.	-1			PID Rea		-			
Start Tim	e;	End Time:							10	1
Well Con	struction:					Fie	Id Testin	g Equip	ment	
Depth to	water:		1		Make		Model	1.00	Serial #	
Well Dep	th:									
Nater Co	lumn:									
Total Vol	ume Remo	ved (L)								
Time	Volume Ramoved (liters)	Flow Rate (mi/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
2840	-	-		10.83	6.23	0.760	3.97	-88	3.2	1
								100		1
						1	-	1		
		1				1				
						1				
	-					1				
	-					-				
						-			-	
-								-	-	
	L Col	l	< 0.3 ft	3%	± 0.1	204	10%	a d O mut		1
	eptance Crit Volume = 0		r 616 ml per foot		±0.1	3%	10%	±10mv		
Time	Sam	plo 1D Icthace	Contain	101		Bollies	Prese	vative		Analyses
	1		1 of man							
	-									
-	-									
	1.2									
Commen	18									
s summer			-							
										6
		nD	11			1	1			-
	17/	Rean	X			1101	08			

Signature

Date

Low Flow/Low Stress Groundwater Sampling Log

	Fort Dever	15			Date:	1/10/	28	-	9	
Well ID:	EW-	2			Sample PID Re		-		E	9
Start Tim	e:	End Time							-	
Well Con	struction:	_				Fie	Id Testin	g Equip	ment	
Depth to Well Dept					Make		Model		Serial #	
Water Co										
1000	ume Remo	ved (L)								
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
0830	-			10.29	628	0.530	4.21	- 88	31	1
										1
				1			1			
		1								
								-		
		-				-		-	-	
	-			-				-	-	
								-		
	-							1	-	
-					-	-		-	-	
						-		1		
	eptance Crit volume = 0.		< 0.3 ft r 616 ml per foot	3%	± 0.1	3%	10%	±10mv		
_		1.95			ple Colli	ection				
Time	Sam	ple ID	Contain uf Feilhame	1er	te #	Bottles	Prese	rvative		Analyset
			1							
-	-									
1	-									
Comment										
Commen	18									

an Signature

10/08 Date

Project/Site Name Fort Devens Gmeau Calibrated By_ JAVICA

Date

Instrument 650 MDS

Weather 50, Partily Clouchy Serial Number OOL1207 A

Parameters	Pre-calibration Reading	Post-calibration Reading	Temperature °C	Comments
Conductivity	1,413	1.467	13.98	
pH (7)	2.00	6.82	14.33	
pH (4)	3.95	4.31	14.36	
pH (10)	9.94	9.82	15.45	
ORP	240	236.7	14.32	
Dissolved Oxygen	100%	98.4	14.04	
Barometric Pressure	760			

Project/Site Name____ Devens pmeau Calibrated B _ Davi

Date Instrument 650 MDS

600X1

ourveast, Rain Weather 5 Serial Number 03 J09 55

Parameters	Pre-calibration Reading	Post-calibration Reading	Temperature °C	Comments
Conductivity	1.413	1-415	15.85	
pH (7)	7.00	7.00	16.24	
pH (4)	4.00	3.99	16.75	
pH (10)	9.98	999	16.51	
ORP	240	240.6	16.59	
Dissolved Oxygen	100	100	16.70	
Barometric Pressure	760	760		

Project/Site Name Devens

Date 1/9/02

Weather 50's OUEFCCIST, Rain

Instrument 650 MDS 600 x1 Serial Number 03.509554H 014065740

Parameters	Pre-calibration Reading	Post-calibration Reading	Temperature °C	Comments
Conductivity	1:413	1.411	15.88	
pH (7)	7.00	7.02	15.91	
pH (4)	4.00	4.00	16 02	
pH (10)	10.00	9.99	16.01	
ORP	240	240.3	15.99	
Dissolved Oxygen	100	99	15.81	
Barometric Pressure	760	760		

Project/Site Name Devers Calibrated By Geoff Cokinos Date 10 JAN 08 Instrument 650MDS 690 YL Weather <u>50's partly Cloudy</u> Serial Number <u>0602578 AG</u> <u>04516000 A F</u>

Parameters	Pre-calibration Reading	Post-calibration Reading	Temperature °C	Comments
Conductivity	1413	1.411	1353	
pH (7)	7.00	7.05	13.76	
pH (4)	4.00	4,17	13.41	
pH (10)	10 00	10.26	13.57	
ORP	240	239.8	13.36	
Dissolved Oxygen	100	102%	13.45	
Barometric Pressure	758			
				4

Project/Site Name Devers Calibrated By Geoff (OKINOS Date 10 JAN 08 Instrument 650 MDS 600+1

Weather <u>40's</u> partly closey Serial Number 03, 109554H 01F06574D

5

Parameters	Pre-calibration Reading	Post-calibration Reading	Temperature °C	Comments
Conductivity	1.413	1.411	13.52	
pH (7)	7.00	7 09	13.70	
pH (4)	4.00	3.98	13.21	
pH (10)	10.00	9.99	13.46	
ORP	240	238.6	13.30	
Dissolved Oxygen	100	100-2	13.07	
Barometric Pressure	760	760		

Project/Site Name_

Fort Devens

Calibrated By

Gmenn land

1

Instrument/Serial Number	Pre-cal 1-0 (NTU)	Pre-cal 10 (NTU)	Post-cal	Post-cal 10 (NTU)	Date
Lamotte Turbidimeter 5885-2305	1.05	10	0.95	9.8	1/8/08
Lamotte Turbidimeter 2912-5105	1.06	10	0.95	10.3	1/8/08
Lamotte Turbidimeter 5985-2305	100	10	0.98	101	1/9/08
Lamotte Turbidimeter 2912-5105	0.95	10	1.00	10.000	1/9/08
Lamotte Turbidimeter 2912-5105	1.00	10	1,27	11.0	1/10/08
Lamotte Turbidimeter 5875-2305	1.00	10	51/	11.1	1/10/08
Lamotte Turbidimeter					1 1
Lamotta Turbidimeter		1			
Lamotte Turbidimeter					
Lamotte Turbidimeter					
Lamotte Turbidimeter					
Lamotte Turbidimeter	1	1			

Project/Site Name DENENS Calibrated By Dave Recult

08 Weather clas, 40'S S Date Instrument 15/650 MDS Serial Number 03J0955 AH LODOXL A

Parameters	Pre-calibration Reading	Post-calibration Reading	Temperature °C	Comments
Conductivity	1.413	1.425	15.05	
pH (7)	7.00	7.11	15.25	
pH (4)	3.99	4.04	15.21	
pH (10)	9.97	9.86	15.31	
ORP	240.3	239.3	14.82	
Dissolved Oxygen	101.1 70	103.2%	14.10	
Barometric Pressure	760.0			
		A.		

#### **Shepley Hill Water Levels** Date: 4/16/2008

#### Project Site: Shepley Hill Landfill

#### Water Level Meter: Solinst #35560

6	
EC	-
	1
1	-

Field Crew: Dave Reault Bill Bearce

Weather: Clear, 50s Baro press @ 0745 = 30.27"

Well	Time	DTW	Well	Time	DTW
SHL-15	1347	16:07	SHM-96-58 #V	0905	11.99
N7-P1 WV	1743	28.71	SHM-96-6C	09010	4.42
NT-P2	1342	28.75	SHL-85 W	0916	664
SHP-99-35X	1354	35.66	SHL-6D	0914	6.51
N6-P1 00	1352	35.40	SHL-13	0916	1.09
SHP-95-27X X	1337	13,98	PSP-01	0915	1.50
SHL-24 1	1332	14,29	SHP-05-47A	1144	4.52
SHM-93-18B XV	1328	18.10	SHP-05-47B	1144	2.25
SHL-18	1329	18.45	SHM-93-228	0703	5.77
SHL-3 #	1325 1	39.81	STREET, NO.	0900	6.94
SHL-10D	1322	29.93	8HL-22 KV	1000	5.92
Sit M	1320	28.81	SHL-9 H	0557	8.11
1.41	1317	30,45	[H]-21	\$48	25.59
SHL-19 ¥	1315	22.45	SHM-05-41A	0945	909
SHL-4 #V	1312	10.04	SHM-05-41B	0944	8.91
SHL-11	13.09	18.16	SHM-08-41C	0946	9.20
SHL-20 K	1310	18.57	SHM-05-42A	0942	3.52
SHP-01-38A	1300	3.85	SHM-05-428	0942	3.49
SHP-01-38B	1301	3.78	SHM-05-39A	0953	10.31
N3-P1 X	1305	4.41	1-12 Luce	0953	11.10
N3-P2 14	1306	4.21	SHM-05-40X	0957	12.92
N2-P1	1255	5.25	SHP-99-31A	1008	1.94
N2-P2	1256	5.52	SHP-99-31B	100 8	1.84
SHP-36X	1245	7,51	SHP-99-31C	1008	3.11
SHP-37X	1250	626	SHP-05-48A	1010	3.47
N1-P1	1238	14.22	SHP-05-48B	1010	4.88
N1-P2	1237	13.81	SHP-99-32X XV	1013	8.66
N1-P3	1236	13.4	SHP-99-34A	1016	12.43
SHL21	1227	44,01	SHP-99-34B	JOIL	12.28
SHP-05-43	1230	44.08	SHP-05-49A	1028	5.43
SHP-05-44	1233	41.41	SHP-05-498	1528	4.92
N5-P1	1401	32.00	SHP-05-45A	0351	14.57
N5-P2	1402	22.47	SHP-05-45B	0851	15.10
SHP-99-29X W	1358	21.28	SHP-05-46A	0854	13 30
SHL-5	0908	263	SHP-05-46B XV	0854	13.99

(=p/t-b

Yellow = Peristattic

Red = Grundfos Bold = Spring only * - No part lock

Bold outline = Quarterly Snapshot

Project: Fort Devens	-	Date: 4[	21/08	
Well ID: SHIM-05-4/C-		Sampler: PID Reading:	ORUB	
Start Time: 1245 End Time: 1330				10.20
Well Construction:	_		Field Testing Equip	ment
Depth to water: 9.40 Well Depth:	-	Make	Model GookL	Serial #
Water Column:		451	GOD MDS	
Total Volume Removed (L)	2	Geophy	Geolech	27032
Volume Time Removed Flow Rate Depth to Wate (liters) (mi/min) (ff)	r Temp (celalua)	pH SP(		salar

0.000	(liters)	(mi/min)	(11)	(celsius)	(STD)	mS/cm	(mg/L)	(mV)	
1315	15	500	9.55	9.69	6.86	0.985	0.24	-80	6.06
1320			9.56	9.67	6.89	1.002	0.18	-107	6.27
1325	20	500	9.56	9.60	691	0.983	0.18	-109	6.00
1330	225	-	9.56	9.60	6.90	0.986	0.18	-110	5.09
	1					-	-		
				1					
	-				-		-		
		1			1	-	-		
	1								
				1					
Ace	eptance Cri	teria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Bottles	Preservative	Analyses
330	51119-05-41	6-042108	3		
-					

2111 Signature

Date

Project: Fort Devens Location: Ayer, MA Well ID: 5/(17-05-41/A	Date: 4/21/08 Sampler: DAWB PID Reading: DAWB
Start Time: 1210 End Time: 1305	Field Testing Equipment
Depth to water: 9.29 Well Depth: 942	Make Nodel Serial #
Water Column:	YSL 650 MDS
Total Volume Removed (L) 265	Geophy geoken 11141

Time	Removed (liters)	Flow Rate (ml/mln)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	color
1250	20	500	9.35	9.37	6.42	0.120	0.90	23	2.58
1255			9.34	9.44	6.38	0.118	0.64	32	1.64
1300	25	500	9.35	9.66	635	0.118	0.55	32	1.33
1305	27.5	500	9.35	9-76	6.33	0.116	0.55	35	1.02
					-				-
	-	1					1	1 1	
	-			-			-	1	
		-		-		-			
							1		
-									1
Aco	eptance Cri	leria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Bottles	Preservative	Analyses
305	SHM-96-41A-	20421.08	3		
_					
	-				

11 Signature

4 21 16 Date

Project: Fort Devens	Date: 4 21 09					
Location: Ayer, MA	Sampler: D/2					
Well ID: 5/1/4-90-2213	PID Reading:					
Start Time: 0845 End Time: 0735						
Well Construction:	Field Testing Equipment					
Depth to water: 5-88' Well Depth: 5-88'	Make Model Serial # VSI 600 X L					
Water Column:	YSI GOOMDS					
Total Volume Removed (L) 25	Genet Geyrwy bestern 07032					

Time	Volume Removed (ilters)	Flow Rate (ml/min)	Depth to Water (fi)	Temp (celelus)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	TUNO
0855	5	500	5.92	665	6.65	0.882	0.13	-84	9.43
2905	10	500	5.95	6.71	666	0.578	009	-87	1
0915	15	500	5.94	683	665	0.868	0.09	1-90	2.00
2925	20	500	5.95	6.94	6.64	0862	0.06	-86	1.72
1930			5.95	698	6.64	0.860	0.07	-94	1.80
35	25	500	5194	7.01	669	0.859	OID	-96	1.78
_							-	-	
	-							-	
A.,	ceptance Crit		<0.3 ft	3%	± 0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Time	Sample ID	Container	Ø of Bottles	Preservative	Analyses
2735	SHM-96-228-01	12/08			

Signature

Project: Fort Devens	Dato: 4/21 0 8					
Location: Ayer, MA	Sampler: DR DECCU					
Well ID: SHL-22	PID Reading:					
Start Time: 0900 End Time: 1005						
Well Construction:	Field Testing Equipment					
Depth to water: <u>6.04</u> Well Depth:	Make Model Serial# VSI 600XL					
Water Column:	451 650 MDS					
Total Volume Removed (L) 30-5	Generation 11141					

Time	Volume Removed (liters)	Flow Rate (mi/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	-selor Turb
0945	22.5	500	6.72	7.72	16.71	0.75	0.20	-22	0.07
0950	25	500	6.75	7.77	670	0.767	0.12	-11	OOL
0955			676	7.83		0.767	0.22	-7	-
1000	30	500	6.76	7.88	6.70	0.789	0.21	-4	041
1005	32.5	500	6.76	7,98	6.69	0.767	0.21	2	0.63
Aco	eptance Cri	borla:	< 0.3 ft.	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Time	Sample ID	Container	Ø of Bottles	Preservative	Analyses
1005	SHL-22-042108		3		
-					

Signature

Project: Fort Devens	Date: 4/21/08
Location: Ayer, MA	Sampler: DR
Well ID: SHM-96-226	PID Reading:
Start Time: 0953 End Time: 1105	
Well Construction:	Field Testing Equipment
Depth to water: <u>689</u> Well Depth:	Make Model Serial # YSI GODXL
Water Column:	YSI GOMDS
Total Volume Removed (L) 18	Grindfos (Edittav 2

Time	Kemoved (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	color
1025	200	300	22.38	9.18	7.36	0.465	1.79	-112	2.64
1030			22.91	8.32	7.47	0,445	0.57	-126	1
1035	23	300	2331	8.15	7.49	0.439	0.40	+127	2.22
1040			23.76	8.01	7.51	0,439	0.35	-124	
1045	26	250	24.18	8.11	752	0.441	033	-132	1.82
50	27.5	250	24.67	8.13	7.52	0.442	0.25	-140	T
1055	28.5	200	24.91	8.28	7.53	0.443	0.31	HO	1.76
1100	29.5	200	25.16	8:31	7.53	0.444	0.34	-141	1000
1105	30.5	200	25.34	8.44	7.53	0.443	0.35	-142	1.83
_								-	
Aco	eptance Crit	toria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Bottles	Preservative	Analyses
1105	SHM-96-220	-042108			

Comments

Level drupped quickly at stort, had be make several adjustments

Signature

4/21/08

Project: Fort Devens Location: Ayer, MA Well ID: SHL-9 Start Time: 1015 End Time: 1130 Well Construction:					Date: Sample PID Red		105		R	
						Fl	eld Testin	g Equipr	ment	
Depth to water: 8.29 Well Depth:				Make YSI		Model 600XL		Serial #		
Water Col Total Volu	umn: Ime Remov	red (L)	37.5		YS1 Geopu		otech	050	32-	_
Time	Volume Removed (liters)	Flow Rate (mi/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	color	
1120	32.5	500	8.98	713	6.53	2159	0.32	-12		
125	35	500	8.98	7:24	650	0.159	0.29	-13	1.52	
1130	37.5	500	8.98	7.28	6.48	0.159	0.27	-12	125	

Acceptance Criteria: < 0.3 ft 3% ±0.1 3% 10% ±10my 10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Time /(30	Sample ID	Container	# of Bottles	Preservative	Analyses
1130	SHL-9-042108		3		

gignature

Project: Fort Devens	Date: 4/21/08
Netlin: Ayer, MA	Sampler: DR/WB EEEE
Start Time: 1155 End Time: 1240 Well Construction:	Field Testing Equipment
Well Depth: 213 72	Make Model Serial # YSI 600XC
Water Column:	YSI 650 MDS
Total Volume Removed (L) 225	Grapunp Grotech 07032
Volume	

Time	Removed (liters)	Flow Rate (ml/min)	Depth to Water (R)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	NTU
1210		500	9.15	9.35	636	0.793	0.54	-71	22.8
1215	10	500	9.15	9.40	6.37	6.796	0.42	-69	437
1220	1		9.14	9.35	6.37	0.792	0.51	-73	292
1225	B15	500	9.14	9.35	637	0.791	0.38	-76	12.7
1230			9.15	9.57	637	0.789	0.38	-77	7,79
-35	20	500	9.14	7.78	637	0.787	0.37	1-76	8.03
1240	22.5	500	9,14	9.77	6.36	0.787	0.38	-76	5.37
Acc	eptance Cri	teria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

ime Sample ID	Container	# of Bottles	Preservative	Anniyses
40 SHM-05-41	5-042108	3		
- 010 - 00 T	0 010 00			

1 Reant Signature

4 21 Date

-303-8472 7345

Project: Fort Devens	Date: 4/18/08
Location: Ayer, MA	Sampler: DR
Well ID: SHL-23	PID Roading:
Start Time: 0945 End Time: 10 30	
Well Construction:	Field Testing Equipment
Depth to water:         25.74           Well Depth:         35.30	Make Model Serial # YSI 600XL-B-M
Water Column:	YSI ESOMDS
Total Volume Removed (L) 22.5	(snindos Keolistuu)

	Volume								
Time	Removed (liters)	Flow Rate (mi/min)	Depth to Water (ft)	Temp (celaius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	樂
0955	5	500	25.85	10,59	4.50	az13	12.54	340	
1000			1	10,70	4.26	0.211	12.51	380	1.46
1005	10	500	2587	10.74	4.13	0.209	1246	406	
1010		500	6.88	10.64	4.17	0.210	12.48	427	1.05
1.15	15	500	25.87	10.65	3.91	0.211	12.45	460	V.45
1020			25.87	10.71	3.51	0.207	12.38	493	
1025									
				_				-	
Acc	eptance Cri	toria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/lt or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Botles	Preservative	Analyses
1030	541-23-041808		3		
	L.				
201					

Signature

Low Flow/Low Stress Groundwater Sampling Log

Well ID: Start Time	n: Ayer, MA me: <u>CSB5</u> End Time: <u>0910</u> nstruction: <u>5HL-21</u> o water: <u>44.09</u> pth: <u>5Y.70</u>		e: $(8B)$ End Time: 0910 struction: 5HL-21 water: 44.09 th: 54.70				Date: Sample PID Res Make YSI	ading: <u>Fi</u> t	nent Serial #		
	ume Remov	red (L)	225			nelos	Sect.	LW		_	
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC m8/cm	DO (mg/L)	ORP (mV)	Turk	the	
08:5	5	500	44 20	11.98	6.89	0.722	12 33	221	1297	1	
05 44				12.28	666	0.223	10.35	224			
3575	10	500	44.21	12.29	646	0.223	10.22	226	0.48		
0550			44.20	12 37	6.24	0.225	10.10	232			
2853	15	500	44.21	12.46	6-17	0.224	10.00	234	0.47		
0700		2	49.20	1237	610	0.225	9.57	235			
0905	20	200	44.20	1242	5.99	0.225	9.70	239	E		
0910	22.5	520	44:21	12.46	5.98	0.225	9.67	24/	0.57		
-									1001	]	
	eptance Crit volume = 0.		< 0.3 ft 616 ml per (oo)		±0.1	3%	10%	±10mv	10%		
Time		ple ID	Contai	ner	# of	Bottles	Prese	rvative		Analyses	

0910 5141-21-041808 3 DUP-041808 3

field algolicate Comments Erophy Clartel Samo 4/15/05 an Signature

Low Flow/Low Stress Groundwater Sampling Log

1.1

Project: Location: Well ID:	Vell ID: SHL-23				Date: Sample PID Rea	1 26	NR N		E	
Start Tim	e: 1355	End Time:							-	-
Well Con	struction:					Fie	ld Testin	g Equip	ment	
Depth to Well Dept	Server 1	25.	91	-	Make YS	1 6	Model		Serial #	-
Water Co	lumn:				45	6	JO M	DS		
Total Vol	ume Remo	ved (L)			Free	des	Red.	Jan I	2	
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
1405	45	450	26.05	10.53	5.97	0.038	8.49	182	1.50	
1910			26.05	10.74	5.55	0.034	15.30	215		
1415	9	450	26.04	12.80	5.39	0.033	1546	228	132	
1920			2605	1074	5.30	0.03Z	15,02	239		

Acceptance Criteria: < 0.3 ft 3% ±0.1 3% 10% ±10mv

10.85

6.54

2" screen volume = 0.163 gal/ft or 616 ml per fool

450

450

5

13

16

1425

1430

26.05

2604

Sample Collection

7.C

5.25

034

0.032 14.36

6

248

42

Time Sample ID Container Preservative Analyses # of Bollies MA 16 Comments 1 SMapsha 10 Schupl + lead 175 01

Signature

Date

Project:	Fort Deve	ns					
Location:	Ayer, MA						
Well ID:	511	5112-5					
Start Tim		950 End Time:	1100				
Well Cont	struction:						
Depth to v	water:	Z.69'					
Well Dept	th:	13.35'					
Water Col	lumn:						
Total Volu	ume Remo	ved (L)	35				

Volume

Date: 4	108
Sampler:	DR
PID Reading	: <u>MA</u>



Make	Wodel 600xL-B-M	Serial # 0116-0643
451	650 MDS	02. 30644
Geopur	no beatern	07032

Timo	Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	color
1020	15	500	3.22	5.26	5.78	0.263	1.14	46	0.37
1030	20		3.23	4.92	4.63	0.253	0.14	35	
135			3.73	4.94	4.41	2.251	0.13	38	0.41
JOH D	25	500	3.23	4.93	4.32	azso	0.12	40	
1045			3.23	5.01	4.18	0.250	0.11	44	0.39
150	30	500	323	5.05	3.97	0.250	0.11	51	
1055		500	3.22	5.09	343	0.257	0,11	68	
1100	35	500	3.23	5.08	3.26	0.251	011	73	0.47
Aco	optance Cri	toria:	< 0.3 11	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Bollies	Preservative	Analysea
1100	542-5-041	708	3		

Signature

I8 Date

#### Low Flow/Low Stress Groundwater Sampling Log

Project: Fort Devens		Date: 4	1708	(IR)				
Location: Ayer, MA	1 3 50	Sampler:	DIL	Decen				
Well ID: <u>SHM-9</u>		PiD Reading	B: MA					
Start Time: 1030 En	d Time: 1200							
Well Construction:			Field Testing Egulpment					
Depth to water:	4.46	Mako	Model	Serial #				
Well Depth:	77.25	451	600XL-B-M	01 K0643				
Water Column:		451	650 MDS	DZBOG44 AH				
Total Volume Removed	(1) 40.5	Geopur	& Geollach	11141				
Volume								

Time	Removed (liters)	Flow Rate (mi/min)	Depth to Water (ft)	Temp (cetalus)	pH (STD)	SPC m8/cm	DO (mg/L)	ORP (mV)	color
1130	27	450	4.51	9.74	686	0382	0.99	-50	
1135			4.51	9.50	5,93	0.875	0.32	-47	0.46
140	31.5	450	4.52	9.45	5.53	0.869	0.20	-40	
1145			4.52	9.42	5.21	0.869	0.16	-28	0.57
1150	36	450	4.52	7.49	15.16	0.862	0.12	-22	1.1.1
1155			4.51	9.46	5.29	0.862	0.11	-23	0.43
1200	40.5	450	4.52	9.48	5.24	0.860	0.12	-21	0.41
_				-				-	
	eptance Crit	loda:	< 0.3 ft	3%	±0,1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot.

Sample Collection

Time	Sample ID	Container	# of Bottles	Preservative	Analyaes
1206	5/119-96-50-	041709			
_					
	1				
-					

Signature

4 Date

Project: Fort Devens	Date: 4/17/08	
Location: Ayer, MA Well ID: <u>SHM-96-513</u>	Sampler: DRIWB PID Reading: MA	
Start Time: /205 End Time: 12.50 Well Construction:	Field Testing Equipm	nent
Depth to water: <u>4.92</u> Well Depth: 92'	Make Model YSI 600XL-B-M	Serial # 01K-0643
Water Column:	YSI 650 MDS	OZBOGHH AN
Total Volume Removed (L) 18	Geopunp Geotech	07032
Volume		

Time	Removed (liters)	Flow Rate (ml/min)	Depth to Water (R)	Temp (celsius)	PH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	color
1215	4	400	年1537	9.73	5.07	0.799	0.41	-1	
1220		1200	540	272	5.29	0,778	0.31	-6	
275	8	400	5.37	9.77	5.45	2715	028	-10	1.43
230	10	430	5.38	9.74	5.53	0.775	0.26	-12	
235	12	400	5.39	9.65	5.51	0.794	0.22	-10	1.24
245	16	400	5.39	9.75	5.55	2793	0.21	-12	082
1250	18	400	5.38	9.78	5,52	0.792	020	-11	0.71
								-	
				-					1
Acc	eptance Cri	teria:	< 0.3 ft	3%	± 0,1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Bottles	Preservative	Analyses	
250	511M-96-5B	-041708	3			
-						

Signature

4 7/18 Date

Project:	Fort Devens
Location:	Ayer, MA
Well ID:	SHUMASH & F
Start Time	1325 End Time: 1405
Well Cone	struction:
Depth to	
Well Dept	th: 44.50'
Water Col	lumn:
Total Volu	ume Removed (L) 20

Date: 4/17	108
Sampler: 0/	a second of the second se
PID Reading:	NA



Mako	Model	Serial #
GEOREVAD	GEO TECH	07032
1/51	600xL-B-M	01KOL43
451	LED MODS	Dabourn 1-

Time	Volume Removed (liters)	Flow Rate (mi/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	color- TRIS
1335	5	500	4.02	9164	5.80	1225	4.85	130	7.77
1340			4.04	9.66	5.34	0.218	5.02	167	6.57
1345	10	500	4.04	9.65	5.13	0,214	5.15	188	5.71
1350			4.05	9.85	5.10	0212	5.24	203	4.65
1355	15	500	4.04	9.74	5.09	0.212	531	214	3.24
1400	17.5	400	4.04	9.81	5.03	0.211	5.36	Z28	4.06
1405	20	500	4.05	9.77	5.02	0.211	5.36	230	
Aco	eptance Crit	boria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Bottles	Proservative	Analyses
Time	5414-05-4ZA				

Signature

Project: Fort Devens	Date: 4/17/	08	
Location: Ayer, MA	Sampler: DR	+ wB	DECCE
Wall 1D: 5/14-05-42.B	PID Reading:	AL	S. 150.1
Start Time: 1325 End Time: 1425			
Well Construction:	E	ield Testing Equips	nent
Depth to water: 3.55	Make	Nodel	Serial #
Wall Depth: 73.60	Gia AVMAD	GIDTICH	11191
Water Column:	451°	600 XL- B-M	74/0643
Total Volume Removed (L) 50	451	650 mos	02BOLYYAN

Time	Removed (Itters)	Flow Rate (ml/min)	Depth to Water (R)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	TRE
1410	125	500	3.94	10.10	5.49	1.114	0.24	-51	1.04
7415	25	1	3.95	10.08	5.58	1.114	0.21	-53	0.84
1420	275	500	3.94	10.07	5.72	1.113	0.21	-56	0.99
1425	30	500	3.95	10.06	5.78	1.112	0.20	-59	1.02
1430									
									1
				-		-			
Aco	eptance Cri	teria:	< 0.3 権	3%	±0,1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Vale

Sample Collection

Time	Sample ID	Container	# of Bottles	Preservative	Analyses
425	SHM-05-42B-	041708	3		
	and the second s	C.M.J.C.M.			

Signature

Low Flow/Low Stress Groundwater Sampling Log

Project: Fort Devens Location: Ayer, MA	Date: 4/17/08
Well ID: 51-12-8 D	PID Reading: MA
Start Time: 0905 End Time: 1010	Field Testing Equipment
Depth to water: <u>6.52</u> Well Depth: <u>65.45</u>	Make Model Serial # VSI GOUXL-B-M 01k0643
Water Column: Total Volume Removed (L) 26	451 650 MDS OZBOG44 AH Geopurp Geolech 1/141
Voluma	the second second

Time	Removed (itters)	Flow Rate (mi/min)	Depth to Water (和)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	-solori
143	14	400	6.89	9.44	5.94	1312	1.56	173	0.08
1050	18		6.88	9.72	5.82	0.312	1.53	193	
2955	ZO	400	659	19.60	5-65	0.314	1.55	210	1
1000	22	400	6.90	9.59	5.61	0.314	1.57	223	0
1005	24	400	689	9.65	5.63	0,314	1.57	230	
1010	26	400	6-89	9.64	5.66	0.313	1.57	233	-
				-					
							-		
Acc	splance Cri	terla:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Time	Sample ID	Container	Ø of Botties	Presorvative	Analyses
010	SHL-8D-041708	Plestic		Lune	AIR
11	10	10	1	Poora Hovor	Melals
11	**	41	1	Norte	Turb, CI, NO, SO.
-				100 rd	in stort and the

Signature

George

Project:	Fort Devens
Location:	Ayer, MA
Well ID:	SNL-85
Start Tim	e: 0835 End Time: 0935
Well Com	struction:
Depth to	water: 6.66
Well Depl	th: 55.80
Water Co	ในกาศว
Total Vol	ume Removed (L) 24

Victor

Date:	4/11/00	
Sampler:	DR	ECC
PID Reading	ng: N/A	
1.2. 2.0.2		
	Field Testing Equi	ipment
Make	Field Testing Equi	ioment Serial #
Make	Model	Serial #
Make YSI		the second se

07032

geotisch

1112

Time	Removed (liters)	Flow Rate (mi/min)	Depth to Water (ft)	Temp (celsius)	PH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	eeler- Turb
0845	4	400		5.68	8.17	0.233	7.44	235	076
0850	6	400	\$ 75	2.44	7.34	0.2.29	5.88	243	
0900	10		8.90	8.50	6.88	0.228	3.71	206	
0905	12	400	892	8.54	6.60	0.228	2.53	187	1.42-
2910	14		8.92	861	6.44	0.228	2.35	173	
J9/5	16	400	892	8.63	6.35	0.228	2.52	167	0.91
2920	18		5.92	8.73	6.26	0.227	2.02	157	
8125	20	400	8.93	5.78	6.18	0.227	2.12	155	
2930	22			8.79	6-14	1227	207	157	0.41
7935	24	400	8.92	885	6.11	0.227	2.03	158	0,50
				1					1
Acc	eptance Cri	teria:	< 0.3 R	3%	± 0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

1935 SHL-88-041708 Physic S Nure/ANDR/HANZ	k	Muna/ADD/HADZ	2	DREALE	CONTRACTOR OF CONTRACTOR	
				Prestic	SHL-80-041102	1935
		1 1			4	14
			-			

Signature

Achs-358

## INSTRUMENT CALIBRATION LOG

Project/Site Name Fort Devens, Ayer, Ma.	Date 4/21/08	Weather Cloudy, 50's
Calibrated By Meents	Instrument YSI 600XL YSI 650 MDS	Serial Number OZA 1047 AB OLAL 431 AA

Parameters	Pre-calibration Reading	Post-calibration Reading	Temperature °C	Comments
Conductivity	1.413	1.426	15,41	
pH (7)	7.00	6.94	15.60	
pH (4)	3.99	3.94	15,45	
pH (10)	9.96	9.89	16.29	
ORP	239.1	239.7	15.81	
Dissolved Oxygen	99.470	104.1 %	15.66	
Barometric Pressure	30.3800800			

## INSTRUMENT CALIBRATION LOG

Project/Size Name DEVENS Calibrated By Dowe Recent

17/08 Date L Instrument 151 LOUXL-B-M 151 650 MOS

Weather clear, 50'S

Serial Number 01 K 0643 02 30644 APA

Parameters	Pre-calibration Reading	Post-calibration, Reading	Temperature °C	Comments
Conductivity	1.293	1.414/1.417	15.83	
pH (7)	7.16	7.00 / 7.08	15.79	
pH (4)	4.06	3.99 /4.16	15.75	
pH (10)	9.75	9.97/9.98	15.43	
ORP	246	240/238	15.83.	
Dissolved Oxygen	95.370	100.070/99.7%	16.11	
Barometric Pressure	30.22 @ 0745			

Page 1 of 1

41



### **Pine Environmental Services, Inc.**

### 155-E New Boston St., Woburn, MA 01801 800-519-PINE(Toll-Free) 781-932-9698(Phone) 781-932-9729(Fax) pine-ma@pine-environmental.com

#### Certificate of YSI 600 XL Calibration

YSI 600 XL Serial Number 01K0643AD was calibrated to the manufacturer's specifications with NIST standards.

Model: 600 XL Pine No: 5314 Serial No: 01K0643AD

#### lot Number: YSI 600XL/XLM/556

Calibration Standard	Instrument Output	Allowable Range	% Difference	
Dissolve Oxygen-Span1: 100%	100%	95-105 %	0%	
Conductivity-Span1: 1.413ms/cm	1.413ms/cm	1.34-1.48 ms/cm	0%	
Dissolve Oxygen-Zero1: 0mg/L	0.01mg/L	0-0 mg/L	0.01%	
PH-Span1: 4PH	4PH	3.8-4.2 PH	0%	
PH-Zero1: 7PH	7PH	6.65-7.35 PH	0%	
Redox: 240mv	240mv	228-252 mv	0%	

#### **Environmental Conditions of Test Area:**

Temperature Degree 70 %Relative Humidity 29 F:

Calibrated By: Elig Demorais

Date: 4/11/2008 10:20:00 AM

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 800-519-PINE for Technical Assistance

See attached packing list

### Pine Environmental Services, Inc

155-E New Boston St., Woburn, MA 01801 800-519-PINE(Toll-Free) 781-932-9698(Phone) 781-932-9729(Fax) pine-ma@pine-environmental.com

### YSI 600 XL Packing List

Pine No: 5314

Serial No: 01K0643AD

Standard Items	Prepared	QC Check	Received by Customer	Received by Pine
650 MDS Display Manual	4	1	_	=
Quick reference card Field cable (1000)	4			
Stand (base, claw, and rod)	1	1		
Probe guard w/ weight Storage/ calibration cup w/ sponge	4			
Flow through cell	1	1		
of each barb size (1/4, 3/8, and 1/2)	4			
DO probe reconditioning kit Calkaline batteries (4)		-4		
i-series communications cable	4	1		
SI Ecowatch software Calibration kit (pH, conductivity, and ORP)	4			
NIST traceable calibration sheet	1	1		
Prepared By:				

QC By: CC Date: 4/11/2008

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hrs. of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

For Technical Support call 800-519-PINE

Project:		Date:	7/15	108						
Location: Ayer, MA Well ID: <u>SHL-SD</u>					Sample	r. DR		BE		
					PID Res		NA			
Start Tim	e:0920		1020							
Well Construction: 2" PVC										
1.1.1.1.1.1.1	Depth to water: 5.08 Well Depth: 68.70			Make Model Serial # YSI GOD XL DIA DUI					DUPAA	
Water Column:				65	0 M	DS DI	spla		5158 AC	
Total Vol	ume Remov	red (L)	30		LA	Moble	202	2' '		
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turb	
0945	125	500	5.46	10.82	6-31	0.167	0.96	62	0,33	
0950	15	500	8.48	10.86	6.24	0.167	0.95	6.6	0.26	
3955	17.5	500	5.48	10.78	6.19	0.166	0.97	67	0,13	
1000	20	500	8.48	10.80	6.10	0.145	1.01	91	2.04	

1015 27.5 8.48 10.78 500 6.08 9 108 11 63 2  $\partial A$ 1020 30 10.82 6.08 2.163 121 8.48 500 109 0.18 ±0.1 10% Acceptance Criteria: < 0.3 ft 3% 3% 10% ±10mv

10-80

10.85

2" screen volume = 0.163 gal/ft or 616 ml per foot

500

500

8.48

8.48

1005

1010

22-5

25

Sample Collection

6.12

6.11

6.165

0.11.4

103

1.05

06

114

0.06

17/2

Sample ID Analyses Time Container # of Bottles Preservative Comments parameters only

Signature

-lider

AA

Project: Fort Devens	Date: 1/15/08
Vell ID: 5/42-85	Sampler: D/2 PID Reading: <u>N/4</u>
Start Time: 0940 End Time: 1040 Well Construction: Z" PVC	Field Testing Equipment
Depth to water: 8.3/ Well Depth: 58.90	Make Model Serial # 75/ LUOXL 01A0019
Water Column:	650 MDS Display 04JIS
Total Volume Removed (L) 30	La Mohe 2020
Volume Time Removed Flow Rate Depth to Water	Temp pH SPC DO ORP

Time	(liters)	(mi/min)	(ft)	(celsius)	(STD)	mS/cm	(mg/L)	(mV)	Turb
1025	22.5	500	10:50	10.57	6.09	0.077	1.45	135	1.17
1030	25	500	10.51	10.65	6.04	0.073	1.33	144	0.92
1035	27.5	500	10.51	10.62	6.04	0.073	1.33	147	0.57
1040	30	500	10.51	10:68	6.03	0.073	132	149	0.51
-									1
-	-	-						-	-
									1
-					-		-	-	
						1	-		
Acio	eptance Cri	toria:	< 0.3 8	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Comments porumeters only Nusamplin 18 Signature

Low Flow/Low Stress Groundwater Sampling Log

	Fort Deven Ayer, MA	19			Date: Sample		08 DR		Æ	
Wall ID:	SHM	-96-5	C		<b>FID Rea</b>	ding:	N/A	<u>.</u>		
Start Time Well Cons		1050 End Time: 1135							nenk	
Dapth to 4 Well Dept	0.000 C	79.51	0		Make YS (		Model	JIA	Serial #	1-14
Water Col	lumn:				650	MD.	S DIS	play	04515	TIST AC
Total Volu	ime Remov	red (L)	22.5		La	Marti	e 202	0		_
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	PH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	color	_
1100	5	500	6.42	10.48	6,21	12.754	0.19	-55	19.7	
1105	7.5	500	6,42	12.54	6.25	0.716	0.16	-48	6.18	
1110	10	500	6.42	10.41	6.26	0.708	0.19	-46	4.38	
1115	12.5	500	642	1249	627	0.705	0.18	-45	3.05	
1120	15	500	642	10.50	6.28	0.705	0.17	-45	2.76	0
1125	17.5	500	6.44	10.46	6.29	0.705	017	-45	2.80	
1130	20	500	6.43	10.56	6.28	0.704	0.17	-45	2.08	
1135			6.43	10.53	6.29	0.705	0.17		3.20	
and the second second	volume = 0.		< 0,3 ft 616 mi per foot		±0.1	3%	10%	±10mv	10%	
Time	Sam	ple ID	Contain	107	# of	Balties	Prese	rvative		Analyses
			1		7	1	1			-
	1	/	1	1	1	/	1	-	/	
		/	-	/				~		
200	1			-				-		
Comment		ino:	sampling	r po	erec ma	etrs	onl	7		
	NIG	Eant	1			7/	15/08			
	111					The second se	_	-		
	1 \$	ignature				10	ate			

Location: Well ID:	Ayer, MA	96-51	3		Sample PID Rea		MA			FEC,
Well Cons Depth to v Well Dept	itart Time:       1/00       End Time:       1/205         Vell Construction:       4" PVC         Depth to water:       6.92         Vell Depth:       85,4         Vater Column:			Field Testing Equipment Make Model Sorial # 451 GOOXL 01A0019 AA 650 MDS Display 04515158 AC						
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	otal Volume Removed (L) 32-5		325			Yoffe		/	4.4.	
Time	Volume Removed (Itters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORF (mV)	color	
1145	22.5	500	7.35	11.48	6.28	2692	0.21	-20	0.85	
1150	25	500	7.34	11.35	6.09	2.695	0.30	0	1.23	
1155	27.5	500	7,35	11.22	604	2694	0.34	9	0,96	1
(200	30	500	7.35	11.27	6.06	0.692	0.32	10	0.67	
1205	32.5	500	7.34	11.35	6.08	0.691	0,35	10	0,81	
	septanca Cril volume = 0.		< 0.3 ft 616 ml per foot	3% Sam	± 0.1	3%	10%	±10mv	10%	
Time	Sam	ple ID	Contair	107	# of	Battles	Preser	vative		Analyses
+	7	$\int$		_	-		1		L	/

Whenthe _7/15/08_

Project:	Fort Dev	ens			Date:	7/	1 100	2	-	
	n: Ayer, MA	1		-	- Content		200	2	Æ	
Well ID:		SHL-S		-	Samp	er: eding:	112	7	DE	CC.
Start Tin	ne: 1145	End Time	: 1225	-	()D (	secting:	M	1	The second	
Well Cor	struction:		PVC	-						
Depth to		5.4	5	-	Mako	E	ield Testi		ment	
Well Dep		13.8			45		Model		Serial :	
Water Co	dumn:			-	1.5	and the second se	and the second second	_ 01	A 00	19 AA
Total Vol	ume Remo	ved (L)	20		_650 _Lo	-Vuc H	20	207	34315	SISSAC
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO	ORP	aolor	
1210	12.5	500	5.95	12.89	5.73		(mg/L)	(mV)	Taul	
1215	15	500	5.95	12.89	5,62		0.12	3	2.24	+
1220	17.5	500	5.95	12.83		0.109	the second s	5	1.92	1
1225	20	500	5-95	12.54	5.00		the second s	3	152	
	-									
	-					1			1	
		-	-		-		-	-	-	1
			1		-	-	-	-		1
							-			1
	1	-			1					1
Acc	eptance Crit	eria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	10%	
2" screen v	volume = 0.1	163 gal/ft or	616 ml per foot							
_				Sam	ple Colle	ection				
Time	Sam	ole ID	Contain	or	# of E	Bottles (	Preser	vative	_	Analyses
		1	/	~	2.2		-	-	1	7
			. /	1			~		/	1
			-/			/	1	-/-		1
		0								
Comment	a /			-	+		1.			
	- 0	Va Stan	pling,	peru	met	15 2	nrs.			-
		à 1	0.1			-	-			
	DAK	eanl	X			7/1	-108			
		gnature				-/p	ate			
	(									

15 VALAT

Project: Location:	Fort Deven Ayer, MA				Date: Sample		129		AEC.	
Well ID: Start Time	5H 1245	End Time:	1350		PID Rei	ading:	MH			J
Well Cons	struction:	4 14	C			Fig	d Testin	g Equipr	nent	
Depth to v Well Dept		3.02			Make YS /	60			Serial #	AA
Water Col	lumn:			2 N	650	140	5 DI	splay 1	245151	58 AC
Total Volu	ime Remov	red (L)	30		Lu	Moth	2 202	to		
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	color	
1300	7.5	500	8.68	10.30	5.97	0.775	0.13	37	0.20	
1310	10	500	8,67	10.19	6.11	0.776	0.60	35.7	0.22	
1-1	9.1	1.000	2.0	10 ml	1	17. 14.062				

Aco	aptance Crit	boria:	< 0,3 h	3%	±0.1	3%	10%	±10mv	10%
1350	30	500	8.67	10.18	1.31	0.776	8:38	52.8	0.33
1345	27.5	500	8.67	10.10	6.31	0.777	0.55	49.7	0.37
1340	25	Son	8.67	10.09	6.32	0.778	12.57	44-7	0.47
1335	22,5	500	8.68	10.06	6.31	0.777	0.51	36.3	0.30
1330	20	500	8.68	10.06	6.30	0.776	0.54	34.7	0.28
1325	175	500	8-69	10.08	6.28	0.776	0.55	34.5	9.59
1320	15	500	8.69	10.19	625	0.776	0.47	37-1	0.58
1315	12.5	500	3-68	10.26	6.19	0.775	0.50	33.3	0.25
	10	100	10 × 10 1	10-11	and the second second		2.220	1. 2. 2. W. Law	and the second second

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Container Preservative Sample ID Analyses Time # of Botlles

Comments arcumeters only 7/15 08 Signature

Low Flow/Low Stress Groundwater Sampling Log

Project: Fort Devens	Date: 7/15/08
Location: Ayer, MA	Sampler: OR DECCO
Well ID: SHM-96-228	PID Reading: MA
Start Time: 1250 End Time: 1415	
Well Construction:	Field Testing Equipment
Depth to water: 7.78	Make Model Serial #
Well Depth: 9232	YSI GODXL UIAOUI9AA
Water Column:	650 MDS DISPLOY ONJIJISTS AL
Total Volume Removed (L) 34.5	La Mulle 2020
Volume	

Time	Removed (liters)	Flow Rate (mi/min)	Depth to Water (ft)	Temp (celaius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	color
13.55	24.5	500	7.80	10.08	621	,813	.89	-52.9	6.71
14:00	27	500	7.80	10.01	6.21	320	.39	-63.8	6.80
14:05	29.5	500	7.79	10.01	6,20	820	.38	-667	9,48
14,10	52	500	7.79	9.83	6.19	821	.39	-67.2	A.51
14:15	34.5	500	7.79	9.86	6,19	819	.38	-67.7	9.54
						-			
Acc	eptance Cri	beria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/lt or 616 ml per foot

5/40

Sample Collection Analyses Sample,ID Container Time # of Bottless Preservative parametris only Comments Sau 7 Signaturé

Project: Fort Devens	Data: 7/15/08					
Location: Ayer, MA	Samplor: DR					
Well ID: 54 M-96-22C	PID Reading: MA					
Start Time: 1330 End Time: 1445						
Well Construction:	Field Testing Equipment					
Well Depth: 136 8	Make Model Serial # YSI 600 XL 01 A0019 AA					
Water Column:	650 MDS DWDIG 04J ISISBAC					
Total Volume Removed (L) 40	Lavrelle 2020					

Time	Removed (liters)	Flow Rate (ml/min)	Depth to Water (it)	Temp (cetaius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	calor
1415	30	~ 500	32,75	10.96	7.12	,243	23	-113	6.89
1420	32.5		33.45	11.29	7.32	1234	.31	406	6.20
1425	35		33.85	11.91	7.44	a31	.13	-91.6	4.84
1430	365	300	34.34	11.46	7.51	- 233	114	-80,1	4.48
14135	38	275	34.72	11.64	7.53	.233	0.15	-806	5.21
.40	38.5	275	35.00	11.73	7.54	0,231	0.17	-80.9	4.83
1145	40	250	35-30	11.99	7.55	a231	0.20	-87.7	
								-	
	eptance Crit		< 0.3 ft	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/lt or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Bottles	Preservative	Analyses
-11	-		1	~	
1	/ /		1	- J-	
X	/			1	/

Comments ples 124 Grun lou /Signature

Project: Fort Devens	Date: 7/15/08
Location: Ayer, MA	Sampler: DR
Well ID: SHL-9	PID Reading: MA
Start Time: 1805 End Time: 1510	
Well Construction: 2" PVC.	Field Testing Equipment
Depth to water: 10.19	Make Model Serial #
Well Depth: 26-19	YSI GOOXL DIADDIG AA
Water Column:	GOD MDS DISPLOY 043 15158 AC
Total Volume Removed (L) 32.5	La Molte 2020

Time	Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (cetalus)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turb
1\$5	25	500	10.82	9.81	6.40	-215	0.39	1-24	1.32
1500	27.5	500	10.82	892	6.26	-214	0.24	-17	1.53
1505	30	500	10.82	8.85	6.21	.214	0.22	-15	1.43
1510	32.5	500	10.82	8.80	6.19	0,214	0.21	-15	1.46
									-
-					-		-		
				-				-	
Acc	eptance Cri	turia:	< 0.3 #	3%	± 0.1	3%	10%	±10mv	10%

2" screen volume = 0,163 gal/ft or 616 ml per foot

Volume

Sample Collection

Time	Sample ID	Container	# of Bottles	Preservative	Analyses
24	In				
-	1/~>		1		1
	1/			/	

7/ Signature Date

Project: Fort Devens	Date: 7/16/08
Vell ID: <u>S/-/L</u> -23	Sampler: DR PID Reading: NA
Start Time: 0900 End Time: 0935 Well Construction: 4 PUC	Field Testing Equipment
Depth to water: 28.82- Well Depth: 35.27	Make Model Seriel # YSI GOXL 01A0019 AIA
Water Column:	650 MDS Display 04JISISBAC
Total Volume Removed (L) 21	La multe 2820

Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	PLP6
0915	9	600	29.07	10.82	6.19	:039	12.81	241	5.49
0120	12	600	29.06	11.00	5.28	.037	12.86	264	7.62
0925	15	600	29.07	10.91	5.01	037	12.87	270	8.87
0930	18	600	29.06	11.04	4.21	0.037	12-86	273	8.81
1935	2/	600	29.08	1608	4.90	-036	12.83	276	8.19
Acc	optance Crit	toria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	10%

2" screen volume = 0.163 gal/lt or 616 ml per foot

Sample Collection Preservative Sample (D Container Analyses Time # of Bottles Well sumped Comments parameters on h Samplin GELLA Signature

Date:	110100	A second s
Sampler: PID Readin	BR NA	्वनन्
	Field Testing I	Equipment
Make 45/	Model 600XL	Serial # OIAOOIS DA
650 La	MOSDI Mote 20	20 24315158 AC
	PID Readin Make 451	PID Reading: <u>N/H</u> <u>Field Testing I</u> Make Model <u>YSI 600 XL</u> <u>650 MDS DI</u>

Time	Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	TUCO
1020	7.5	500	46.00	12.98	5.37	.064	8.90	219	1.16
1025	10	500	46.01	12.80	5,28	,066	9.32	230	0.67
1030	125	500	46.00	13.33	5.26	.065	9.33	236	0.56
1035	15	500	46.00	13.34	5.27	.063	9.75	240	0.65
1040	17.5	500	46.00	13.46	5.22	.061	9.89	247	0.58
1045	20	500	4601	13.65	5.22	261	9.93	250	0.62
1050	225	500	46.00	13:64	5.22	,061	9.99	252	0.39
Acc	aptance Crit	teria:	< 0.3 ft	3%	±0,1	3%	10%	±10mv	10%

2" screen volume = 0,163 gal/ft or 616 ml per foot

Volume

Sample Collection SampleUD Time Container Apf Botiles Preservative Analyses Comments parameters only Well purged of GR Signaturé Date

Page 1 of 1

### A Pine Environmental Services, Inc

1 Industrial Way, Suite 3, Portland, ME 04103 888-779-PINE(Toll-Free) 207-797-4100(Phone) 207-797-5174(Fax) pine-me@pine-environmental.com

#### YSI 600 XL Packing List

Pine No: 1678

QC By:

Date: 7/9/2008

Serial No: 01A0019AA

Standard Items	Received Prepared QC Check by Received by Pine Customer
650 MDS Display Manual Quick reference card Field cable Stand (base, claw, and rod) Probe guard w/ weight Storage/ calibration cup w/ sponge Flow through cell 2 of each barb size (1/4, 3/8, and 1/2) DO probe reconditioning kit C alkaline batteries (4) 6-series communications cable YSI Ecowatch software Calibration kit (pH, conductivity, and ORP) NIST traceable calibration sheet	

This packing list is to ensure that every item needed to operate the unit was sent and received. Upon receiving a shipment, please fill out the "Received by customer" column. Call Pine within 24 hrs. of receiving the equipment if any pieces are missing, damaged, or malfunctioning. Thank you for choosing Pine Environmental Services, Inc.

For Technical Support call \$88-779-PINE

RH)

Page 1 of 2

### Pine Environmental Services, Inc

### I Industrial Way, Suite 3, Portland, ME 04103 888-779-PINE(Toll-Free) 207-797-4100(Phone) 207-797-5174(Fax) pine-me@pine-environmental.com

#### Certificate of YSI 600 XL Calibration

YSI 600 XL Serial Number 01A0019AA was calibrated to the manufacturer's specifications with NIST standards.

Model: 600 XL Pine No: 1678 Serial No: 01A0019AA

lot Number:Sodium Sulphite

Calibration Standard	Instrument Output	Allowable Range	% Difference
Dissolve Oxygen-Zero1: 0%	0%	0-0 %	0%

lot Number:100% Saturated Air

Calibration Standard	Instrument Output	Allowable Range	% Difference
Dissolve Oxygen-Spanl: 100%	100%	95-105 %	0%

lot Number:g686 (ORP 240mV)

Calibration Standar	d Instrument Output	Allowable Range	% Difference
Redox: 240mv	240mv	228-252 mv	0%

lot Number:2509185 (Cond 1.413)

Calibration Standard	Instrument Output	Allowable Range	% Difference
Conductivity- Span1: 1.413ms/cm	1.413ms/cm	1,34-1,48 ms/cm	0%

lot Number:2409220.(PH 7)

Calibration Standard	Instrument Output	Allowable Range	% Difference
PH-Zero1: 7PH	7PH	6.65-7.35 PH	0%

lot Number:2407088 (PH4)

Calibration Standard	Instrument Output	Allowable Range	% Difference
PH-Span1:4PH	4PH	3.8-4.2 PH	0%

Environmental Conditions of Test Area: Temperature Degree %Relative Humidity F:

Calibrated By: Charles Hollien

Date: 7/9/2008 2:48:00 PM

All instruments are calibrated by Pine Environmental Services, Inc. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

#### Notify Pine Environmental Services, Inc. of any defect within 24 hours of receipt of equipment Please call 888-779-PINE for Technical Assistance

See attached packing list.

## INSTRUMENT CALIBRATION LOG

Project/Site Name Fort Devens, Ayer, Ma. DR

108 7/15 Date

Calibrated By

Instrument 6 451 650 MDS YSI GOOXL

Weather Cloudy, 70'S Serial Number 04515158AC 01A0019AA

Parameters	Pre-calibration Reading	Post-calibration Reading	Temperature °C	Comments
Conductivity	1.413	1.393	25.69	
pH (7)	7.03	6.83	25.51	
pH (4)	3.99	4.05	25,69	
pH (10)	12:00 9.92	9.79	20.34	_
ORP	238	236	25.54	
Dissolved Oxygen	99.6%	104.3%	22,20	
Barometric Pressure	756.9			
La Molle 2020	0.96/1.00	10.33/10.00		

Page 1 of 1

## INSTRUMENT CALIBRATION LOG

Project/Site Name Fort Devens, Ayer, Ma. 12 D

05 15 Date

Weather Clew; 80's

Calibrated By_

Instrument YSI 600 MDS OP XL

Serial Number 04315158AC 01 A0019 AA

Parametera	Pre-calibration Reading	Post-calibration Reading	Temperature 'C	Comments
Conductivity	1414	1.431	19.98	
pH (7)	7.00	6.88	19.57	
pH (4)	3.99	3 90	19.53	
pH (10)	9.91	9.89	19.60	
ORP	240	235	19.87	-
Dissolved Oxygen	100 70	102.4 70	23.67	
Barometric Pressure	760.2	760,1		
La molle 2020 Turbidity	-95 @ 1.00 9.97 @ 10.00	2.96 C1.20 9.97 C10.00		
			1	

Page 1 of 1

Low Flow/Low Stress Groundwater Sampling Log

11

1

	struction: water:		VC 61		Make V51		Hodel		Serial # 01 K 06 43 A
Water Col		59.1	2		151		650 M		0250534
Fotal Voli	ime Remo	ved (L)	27.5		Geotec		2020 600 pm		1680 - 090 H0600 302
Time	Volume Romoved (liters)	Flow Rate (mi/min)	Depth to Water (1)	Temp (celsius)	PH (STD)	SPC m5/cm	DO (mg/L)	ORP (mV)	Turbidity
1310	5	SUD ml	9.79	11.23	5.69	.373	.22	-99	4.00
1320	10	-W	9.79	11.31	5.97	.374	150	- 98	5.15
1330	15	- 11	9.79	11.42	534	,371	0.14	-92	4.32
1340	20	u	9.79	11.34	5.37	,370	0.12	-89	15.4
1345	22,5	11	9.79	11 45	5.46	369	0.14	-89	5,62
1350	25.0	=0.13	9.79	11.50	5.52	368	0.13	89	12.21
1355	27.5	-le-	9.7.9	11.49	5.52	1367	0.12	89	2.56
		-		-				-	

Time	Sample ID	Container	# of Buttles	Preservative	Analyses
1358	SHM-05-918 100	1200% 250 AL Plustic	1	Marc	Alk
1355		120015 250 ML FLAST'C	1	HADE	futals.
285	5HM-05-4118 100	12000 STORE PLAST.C		illent	Tool Cl. Ver 50

Comments

Dup taken

Signature

10-1-08 Date

Project: Shecley's H	
Location: Ayer. MA	designed and and and and and and and and and an
Well 10: 54-78-5	B
Start Time: X 140	End Time: 9:25
Well Construction:	4" PUC
Depth to water:	5.61
Well Depth:	89.75
Water Column:	84.14
Total Volume Remov	ad (L) 6.75

MECCH
P

Field Testing Equipment							
Make	Model	Serial #					
XSZ 63	SO MOS	O2KOSTAB					
XI 60	O XAR	OHJIS999AD					
Landik	2020	5303-3504					

							_		
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
8.35	Q.75	123	5,74	9,86	6.53	0.74	0.98	44.1	3,08
9:00	1.5	150	\$5.75	277	6:35	0,729	0.98	18.1	2,10
9:05	225	150	5.76	9.67	6,27	O.Tal	0.75	123	2.12
9:10	3,00	150	5.76	9.63	6,23	OTR	0.70	74	\$.76
9:15	3.75	150	5,76	9.65	6.21	0,710	0.60	6.1	1.86
9:20	4.50	150	5.76	9.64	6.21	0,708	0.58	6.0	102
	-					-			-
Ann	eptance Crit	asla:	< 0.3 ft	3%	± 0.1	3%	10%	±10mv	

2" screen volume = 0.163 gal/ft or 616 ml per foot

**Sample Collection** 

Time	Sample ID	Container	# of Bottles	Preservative	Analyse
9:25	SHM-96-50	10012005			
9:25		Apres and a second s			
9:25					

adar tes

Signature

Date

Project:	Shepley's Ayer, MA			10/1/0	F	-				
	SHL 83	5 1001 100	8			ading:			LEBD	
	e: 955 struction:		10:55			Fi	ld Testir	ig Equip	ment	
Depth to	water:	7,14	/		Make	-	Model		Serial #	
Well Dep	th:	55.86			Y51		soon o		KO693AF	
Water Co	lumn:		×		YSI 650AD			DEDSSYAN		
Total Vol	ume Remo	ved (L)	17.5	S 0	Lum	The	2020	_	680-0900	
				-	Geotes		Etophi	14.	40600 3023	
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
1000	2,0	200	7.14'	10,74	5.78	0.041	1.11	141.6	3.03	
1010	4,0	300	7.14'	10.44	5.71	0.040	1.07	178,2	2.54	
1020	7.0	300	7.14	10,43	5.69	0.040	1.06	181.7	1.09	
1030	10.0	300	7.14	10.42	5.68	DiOHI	1.06	199.5	0.44	
1040	13.0	300	7.14	10.40	5.67	0.041	1.07	223,6	0.68	
10.45	14.5	300	7.14	10.34	5.67	OTHO	106	233.2	0.59	
1050	160	300	7.14	10.38	5.67	0.041	1.06	2336	0.62	
1055	17.5	300	7.14	10,40	5.67	0.040	1.07	234.5	0.63	
Ace	eptance Cri	teria:	< 0,3 ft	3%	± 0,1	3%	10%	±10mv		

Sample Collection

Time	Sample ID	Container	# of Bottlas	Preservative	Analyses
10.55	SHL 85 10012008	250 m C plastic	1	Abore	Alk
1855	5HL85 10012008	250 ML Pholic	1	HNOS	Alethils
253	SHL85 10012007	500 ML PLASHE	1	None	Tuch, CI, Noz, 50

Comments

high calibration check ORP Andress second after sameling Adt 240.0 lation, Rela anyare Signature Date

Project:	Shepley's	HILLE		2	Date:	10/1/0	1	-	6.00	
ocation	Ayer, MA				Sample	r: Micha	Recent	2	MEC	20
Nell ID:	511/13	1001200	8		PID Re	ading:	0			
	e:345 struction:	End Time:				Fie	eld Testin	iq Equip	ment	
Depth to	water	6.41			Make		Model		Serial #	
Well Dep		21.56			Y51		GOOXL	2 2	NKOBY3	S.A.
Water Co	lumn:	15.15	1		YS1 650 MD5			026 0534		
Total Vol	ume Remo		9.0		Lamp		2620		680-01	CY 15.1
					Gote		Secard		HUBOC 3	
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
850	1.0	200	6.41	14.08	5.57	0,195	0.31	41.0	4.04	
900	3.0	200	6.41	19.25	5.99	0.147	0.31	46.6	2.60	
910	5.0	203	6.41	14,23	5.45	0.147	0.24	47.0	1.07	
920	10.0	2.00	6.41	14,25	5.45	Q147	0,21	98.0	0.75	
125	8.0	200	6.41	14.24	5.46	0.147	0.20	47.8	055	
930	9.0	200	6.41	14.24	5.45	0.147	9.20	48.1	0.61	
				-						
					1.			12 - 11		
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	volume = 0.	Contraction of the second	< 0,3 ft r 616 ml per foo		± 0.1 ple Colle	3%	10%	±10mv		
Time	Sam	ple ID	Contair	_		Botties	Prese	rvative		Anal
0.0.	-		1.	1. N				1.00000		-

1
his sa
1

Signature

1D

Date

Low Flow/Low Stress Groundwater Sampling Log	Low	Flow/Low	Stress	Groundwater	Sampling	Log
----------------------------------------------	-----	----------	--------	-------------	----------	-----

Project:			Date:	10-1-		-	6			
11. N. M. M. M. M.	SHL8D	10012008	r	5	Sample PID Rei		el Rice	.ver	UE1	24
	e://20	End Times	the second se	3		Fie	eld Testin	eg Equipi	ment	~
Depth to	water:	7.0	0		Make		Model		Serial #	
Well Dep		68.1			451		GEORL		11-06-43	AF
Water Co	and the second s	61,2		-	131		650 M		28052	
	ume Remo		18.0		Lent	HE	2020		80-090	
10000.10	Volume				Geote		George		10600 30	
Time	Removed (liters)	Flow Rate (ml/min)	Depth to Water (R)	Temp (celsius)	pH (STD)	SPC. mS/cm	100 (mg/L)	ORP (mV)	Turbidity	
1125	1,5	300	7.00'	10.90	5.90	0.077	0,84	12.7	1.72	
1135	4.5	300	7.001	10,73	3.81	0.081	1.64	15.0	0.98	
1145	8,5	300	7.00'	10:72	5.81	0.03	1.56	160,6	0 52	
1155	10.5	300	7.00'	10,80	5.82	0.083	1.54	186.4	0 46	
1205	13.5	300	7,00	10,79	5.81	O.OEY	1.54	210.8	0.31	
1210	14.08	0 300	7.00	10.85	5.82	0.089	1.53	218.7	0.45	
1215	16-5	300	7.00	10.92	5.81	0.084	1.53	223.2	0 32	
1220	18-0	300	7.00	10.87	5.81	0.084	153	25.6	0,21	
Act	eptance Crit	leriar	< 0.3 ft	396	± 0.1	3%	10%	±10mv		

2" screen volume = 0.163 gal/ft or 616 ml per fool

Sample Collection										
Time	Sample ID	Container	# of Goilles	Preservative	Analyses					
1220	SHE 80 100 2008	250 NG Plastic	×.	Ward	ALK					
1220	5.NLOD 10012008	250 m (Minster	1	HAI83	Malal 5					
12.20	SH2 2D 1001-200'	2 SD.M.L.Phetic		Abuc	Turbo Cl. No. 50.					

The Signature

10-1-08 Date

Project: Shepley's Hill LF		Date:	101	100	-	6				
Location:	Ayer, MA				Sample	19	LAFE		BEC	CCM
Well ID:	SHA	96 F	SHE-5	1	PID Rea	ading:	0	-		-7
125.000	truction:	End Time 2" F	1:25	-		Fie	d Testir	ng Equipr	ment	
Depth to v	Colore a strength	1.9			Make		Model		Serial #	
Well Dept			5 13.70		YSZ		SOME	ar a	etas	18.17
Water Col		11.	71	2	YSI		C X48		015999	Contraction
	ime Remo		16		Lange		020		23-350	
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	-
10.55	26	500	1.99	11,46	5.70	0.101	0,14	36.7	0,45	
11:00	8	400	1.99	1647	5.65	0.100	0.14	30.9	0.09	
11:05	10	400	1.97	11.46	5,60	0.100	0,12	266		
11:10	12	400	1.99	11.46	5,58	0,099	0,14	21.4	0.08	
11:15	14	400	1.99	11.46	5.56	0.099	0.11	21.3	022.	
11:20	16	400	1.99	11.48	5.57	2098	0.11	17.7	1.65	
								-		
	-				-					

Acceptance Criteria: < 0.3 R 3% ± 0.1 2" screen volume = 0.163 gal/fi or 616 ml per foot

and akenter

Sample Collection

Time	Sample ID	Container	# of Bottles	Preservative	Analyse
11:25	5/2-5-100	122008			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

Comments

Signature

Date

10%

±10mv

3%

Project: Shepley's Hill LF	Date: /6/	1/08	
Location: Ayer, MA	Sampler: TR	SINE	BECCH
Well 1D: 541-96-56	PID Reading	0	1.00.7
Start Time: 0945 End Time: 1035			
Well Construction: 4+90C		Field Testing Ed	uipment
Depth to water: 5.05	Make	Model	Serial #
Well Depth: 79.7	YSI	GSOMDS	00K05 1819 B
Water Column: 74.65	YSE	bookell	04515599112
Total Volume Removed (L) 25.0	Lemitte	2025	5303-350%

Time	Volume Removed (liters)	Flow Rate (ml/min)	Depiti to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
1000	10.0	500	5:07	7.63	6.22	0.771	211	-48.4	5.37
1005	12.5		5107	7,47	6.20	01713	1.8	-49,6	5.55
1010	15.0		5.07	7.49	6,00	0710	1.6	-50.5	6.15
1015	17.5		5.07	7.49	6.20	Ditos	16	-53.7	0.81
600	35,0		5.07	7.49	6,20	0,707	1.5	-55.0	4,13
1025	10.5		5.07	7.55	6.70	0.705	1.5	-56.7	3.41
1030	25.0	¢.	5.07	7,51	6.34	0.705	1.5	-57.7	2.13
-									
Are	eptance Crit	oria:	< 0.3 ft	3%	+0.1	3%	10%	±10mv	

2" screen volume = 0.163 gal/tt or 616 ml per foot

Sample Collection

Time	Sample ID	Container	it of Bottlea	Preservative	Analyse
1035	SHM-96-56-1	80021600			
5001					
	1				

Comments

Signature

Clear + ocharksi

Date

Low Flow/Low Stress Groundwater Sampling Log

Location: Well ID:	5111 1: 10:55 truction: vater:	- 93-6 End Time: - 44 4 - 6 4	13:40 PVC			r: <u>799</u> iding: <u>Fi</u> t	and the second second	a Equipr	nent Serial #
Water Col Total Volu	ime Remo		12.0		<u>Ks2</u> Locat	-	2020		2457157999A) 303-3604
Time	Volume Removed (liters)	Flow Rate (mi/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC m5/cm	DO (mg/L)	ORF (mV)	Turbidity
13:10	4.5	300	6.45	7.5	6.66	0.227	1,42	-86.7	39
13.15	6.0	300	6.50	7.46	6.53	0.72/	0.32	-90.5	31
13:20	7.5	300	6.50	7.44	6.5	0.721	0.23	-886	22
13,25	20	300	6.50	7.38	6.48	0.741	0.22	-872	19
13:30	10.5	300	6.50	7.46	6.48	0,721	0,22	-8-29	16
13:35	120	300	6.50	7.91	6.47	0.722	0.21	-325	13
	ptance Crit		< 0.3 ft 616 ml per foot	3%	± 0.1	3%	10%	±10mv	

Sample Collection

Time	Sample ID	Container 23-10012008	# of Botties	Preservative	Analysa
13:40	5419-93 20	23-100/2008			
		at processing			

chetter

Comments

Signature

alar

6/1/0 Date

### Low Flow/Low Stress Groundwater Sampling Log

Project: Shepley's Hill-	Orlec .	10/11/00	
Logation: Ayer, MA	Sampla	" TBLUE	ERCCE.
Well ID: SHL-22	PID Rea	ading: _O	
Start Time: 11.55 End Time: 1245			
Well Construction: 4 PUC		Field Testing Eq	uipment
Depth to water:5	Make	Model	Serial #
Well Depth: 6.62	VIST	650,003	OPKO598AS
Water Column: 103.85	455	GOOKLR	04515999,40
Total Volume Removed (L) _/5.25	lind	0806 3	5303-3504
Volume			an Annas
Time Removed Flow Rate Depth to Water	Temp pH (relative) (STD)	1. THE	RP Turbidity

	(liters)	(ml/min)	(ft)	(celsius)	(STD)	mS/cm	(mg/L)	(mV)	
12:10	5.25	350	214	17.23	6.78	0.737	0,27	-61	0.0
12:15	7.00	1	7-14	7,30	6.44	0.737	0,03	-12.3	0.0
12:20	8.75		7.15	7.29	6.44	10.735	Didl	-13 6	0,0
1225	10.00		7.15	7.07	6.46	01735	0,20	15.8	0.0
1830	12.25		7.15	7,36	6.48	0.736	0.19	-18.8	0.0
1235	14,00		1	7.37	6.49	0.736	0.17	-20.7	0.0
1240	15175	+	v	7.41	6,50	0,736	0,15	-21.0	0.0
						11		1	
				-					
				1					
Acc	eptance Crit	teria:	< 0.3 //	3%	±0.1	3%	10%	±10mv	

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Sample ID	Container	# of Bottias	Preservative	Analyses
SHL-33-1001	2008			
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	2 - 1			
		Sample ID Container		

Comments

glibrated purch or to twice and still read O for all this Liker + oderless

Signature

10/1105

Date

Project: Shepley's Hill LF	Date: /0	1108	EAR.
Location: Ayer, MA	Sampler: 7	TO/NG	BECCB
Well ID: SHL-9	PID Reading	g: _ O	
Start Time: 1400 End Time: 1445			
Well Construction: 2 "		Field Testing Equ	uipment
Depth to water: 18.95	Make	Model	Serial #
Well Depth: 25.54	YSI	GSOMPS	021059843
Water Column: //e.69	YST	600 XCR	C4J15999AD
Total Volume Removed (L)	Lawette	2020	1303 - 3504

Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Walar (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
1415	6,0	400	9.10	\$.81	6.51	0,302	2.4	-37.0	0.0
1430	8.0	400	9.10	8.73	6.46	0,200	2.0	386	
1425	10,0	400	9.10	8.74	6.45	0.000	1.6	-41.8	*
1450	12.0	400	9.10	8.82	6.44	0.201	24	-436	4.11
1435	14.0	1		8.71	6.43	0.204	13	-44,0	2.81
1440	16.0	1 L	×.	P185	6.43	0.205	1.1	-46.01	1.65
-									
					-				
Ann	eptance Crit	and at	<038	3%	±0,1	3%	10%	±10mv	

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Sample ID	Container	# of Battles	Preservative	Analyse
SHL-9-10012	008			
	Sample ID SHL-9 - 10012	Sample ID Container	Sample ID Container # of Bottles	Sample ID Container # of Bottles Preservative

recal. Switched to east Two netes out of rol - won't 1680-0900 64 150 Stan 10- 5 10/1/08 Signature Date

Low Flow/Low Stress Groundwater Sampling Log

	Shepley's	ann LP		<		10/3		-	(
	Ayer, MA			-			leco,	1.60	4 3
Well ID:	SHA	993/1	3 100220	200	PID Res	uding:	0	-	
Start Thm	14110	End Time:	14:55						
Well Cons	truction:	2"	PVC	2		Fie	d Testin	o Equini	nem
Depth to	water:	3:	3/	2	Make		Model		Serial #
Well Dept	h:	61	45		KSZ	6	DOXL	0	KOKS
Water Col	umn:	58,	14		ISZ	- 63	0/10	5 00	EOS35
Total Volu	me Remo		225		Lon	the a	1020		10-090
		-			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	· · · · · · · · · · · · · · · · · · ·	Sensis		10600
Time	Volume Removed (liters)	Flow Rate (mil/min)	Depth to Water (ft)	Temp (celsius)	PH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
14:15	2.5	500	3.31	11.01	6.60	0.079	4.1	27	10.33
14:25	7.5	500	3.31	10.95		0.183	1.3	-38.1	0.45
14:35	12.5	500	3.31	10.96	6.52	0.198	10	-41.6	0,23
14:45	17.5	500	7.31	10.95	6.49	0.207	0.9	- 41.6	0.06
	200	500	3.31	10.90	6.47	0.210	0.9	-41.4	0.22
14:50	avic.	200							
A POLY A POLY	22.5	500	3.31	10.91	and the second second	0.212	0.9	-41.2	0.46
A DOLLAR A DOLLAR			the second s	1	and the second second	0.212	0.9	-41.2	0.46
A DOLLAR A DOLLAR			the second s	1	and the second second	0.212	0.9	-41.2	0.46
A DOLLAR A DOLLAR			the second s	1	and the second second	0.212	0.9	-41.2	0.46
A DOLLAR A DOLLAR			the second s	1	and the second second	0.212	0.9	-41-2	0.46
a book a book -			the second s	1	and the second second	0.212	0.9	-41.2	0.46
14:55		500	the second s	1	and the second second	3%	10%	-41-2	0.46

			ubic periodial		
Time	Sample ID	Container	# of Batties	Preservative	Analyse
14:55	SKM 9931B1	mazar 250mb	Jachie 1	Mare	Alk
14:55	SH(19971BROM	soor asant a	ladir 1	ina	Metal
14:55	SHATTEL DIONIZ	cox soont pl	adie 1	Mare	Turket NO 3

Third Signature

IO/2/08 Date

Location:	Ayer, MA	9931	C 10022	008		.N.Ed	107 aand 4,		
Well Cons	struction:	2"	14:00 PVC			Fie	Id Testin	g Equip	
Depth to y	Sec. 1		60		Make		Model		Serial #
Well Dept			2.05		152	6	DOXL	. 0	1×06431
Water Col	umn:	- 70	5.45	-	PSZ	6	50 M	25 6	22E0534
Total Volu	ime Remov	red (L)	22,5	-	Late	the a	2020	16	80-090
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	HOLOO
13:20	2.5	500	3.60	11.25	6.57	0.495	0.98	-53.3	27.3
13:30	7.5	500	3.60	10.93	6.39	0,542	0.21	-84.0	17.0
13:40	12,5	500	3.60	10.92	6.53	0.536	0,15	-89.1	524
13:50	17.5	500	3.60	10,79	6.59	0,531	0.13	-70.6	2.57
13:55	20.0	500	3,60	10.73	6.60	0.531	0,12	-907	204
14:00	22.5	500	3.60	10.79	6.59	0.529	0.12	-90,8	1.55
	eptance Crit		< 0,3 ft	3%	± 0.1	396	10%	±10my	
2" screen v	volume = 0.	163 yal/ii o	r 616 mi per lógi		ple Colle	ction			
Time	Sam	ole ID	Contain	ner	# of 5	lotties	Preser	vative	Analy
14:00 14:00 14:00	5411 561979		100200 23008 250 23008 500	caliplic	~ 1.	plan	Her	Alex	e Alk Metas Ididity, C

The Edwards Signature

10/2/07 Date

Low Flow/Low Stress Groundwater Sampling Log

Location Well ID: Start Tim Well Con Depth to	e <u>: /430</u> struction: water:		Date: Sample PID Rea Make	nding:	Id Testin Model	- 19 Equip	Serial #			
Well Depth:         83.9           Water Column:         74.79           Total Volume Removed (L)         12.0				YSE		650mas 600 xch		0%5159840 0%51599940		
			2	Lest		9090		and the second second second	0900	
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
1435	6.0	400	9.15	7.00	6.33	0,713	0.29	- 73.7		
1440	8.0			7,01	6.39	0.713	0.35	-74,2		
1445	10,0			7.04	6.42	0.713	0.24	75.1		
14.50	12.0	¢	¥.	6198	6.44	0.713	0,94	-7615	8:35	
Acc	eptance Crit	teria:	< 0.3 ft	3%	± 0.1	3%	10%	±10mV		

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Bottles	Preservative	Analyse
1455	SHM-09-32k	100208			
	1 4 - 40				

min @ 400 million before starting multoring for 15 sample 01

Signature

10/2/08 Date

Low Flow/Low Stress Groundwater Sampling Log

Project:	roject: Shepley's Hill LF				Date:	10/2			6	
Location	: Ayer, MA						Bans	77	BED	CE
Well ID:	SHM -	9931A			PID Rei		0			
	10:11.50			0.				-		
100000	struction:	1 million 1	PUR	-			eld Testin		The second second	
Depth to	water:	lde	1		Make		Model		Serial #	
Well Depth: 15.65			YSI		650 MDS		Oakossa Ho			
Water Column: 14.04				45	F	Gook	un	0451399	AD	
Total Volume Removed (L) 14.0			lanthe		3020		1600-0500			
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	-
1345	6.0	400	1.76	10.60	5.89	0.159	0.46	35.8		
1350	8.0	1	1.26	10,65	5186	0.159	0,36	33.3		
1355	10.0		1.76	10,69	5.83	0.159	0.15	30.7		
1400	12.0		1,76	10.61	5.81	0.161	0.16	29.1		
1405	14.0	¥	1.74	10.67	5.80	0.159	9.15	98.0	1.27	
-										
				-						
-										

Acceptance Criteria: < 0.3 // 3% ±01 396 10% ±10mv

2" screen volume = 0.163 gai/ft or 616 ml per foot

Sample Collection								
Time	Sample ID	Container	# of Betiles	Preservative	Analyse:			
1410	SHM-99-31A 100305							
1	-							

Comments

400 mb Imin Seture start of monitor 15 min @ Tradentess clear

Stork

Signature

Royed

10/0/08 Date

Low Flow/Low Stress Groundwater Sampling Log

Project: Shepley's Hill LF	Date: 10/2/08
Location: Ayer, MA	Sampler: Tyler Brand IT DECCI
Well ID: SHM-05-40K	PID Reading: 0
Start Time:/245 End Time: 1300	
Well Construction: 2" Puc	Field Testing Equipment
Depth to water: /3.7/	Make Model Serial #
Well Depth: 33,53	VE GEMOS CORDSSEAD
Water Column: /9.92	45E GOOKER 643/5395 AD
Total Volume Removed (L) 12-0	Lantha 20,00 /680-0502
Volume	

Time	Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
1300	6.0	400	13.76	7,61	6.51	0.557	0.48	-103,0	1
1305	810	Ĩ.	13.76	7,43	6-56	0.531	0.25	-100.8	
1310	10.0		13,76	7.65	6,57	0.549	0,33	-100,9	
1315	12:0	+	13.76	7,91	6.58	0.545	0.22	-104.2	14.3
Acc	eptance Crit	eria:	< 0.3 ft	3%	± 0.1	3%	10%	±10mv	

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Bollies	Preservative	Analyses
1320	SHM-05-40× 10020	8			
1					
1					
11					

15 mis p 400 ml /min betwee stort of monthing s t mlark 06 5136 1 5.1h 0/2/0 Signatore Date

Project:	Project: Shepley's Hill LF				Date:	10/2	108			
	Ayer, MA		-		Sample	THE THE	Bend	17	BEC	CCU
Well ID:	SHM	1-05-	39 A		PID Rea	ading:	D			
Start Tim	e: 1145	End Time:	1240							~
Well Con	struction:	9	PUC			Ei	eld Testin	a Equip	nent	
Depth to	Depth to water: 10.5%				Make		Model		Serial #	
Well Depth: 38.51				YSI		Gomos		03/0558AA		
Water Column: 27.7					USE		Gooke	Ŕ	09315	595 AZ
Total Volume Removed (L)			line the		He	2020		1680-0900		
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
1215	15.0	500	11.05	7.84	6.70	0.515	1.81	-70.6	1	
1220	17,5	500	11,05	7.65	6.53	0.494	0.47	-72.9		
1225	20.0	500	11.60	7.76	6.45	0.490	0,36	76.5	1	
1230	55.0	400	11.10	7,65	6.39	0.491	0.27	-77.2		
1235	24.0	-/00	11.10	7.58	6,38	0.493	0.00	-76.1	1.19	

1215	15.0	500	11.00	7.84	6.70	0.515	1-81	- 10.6	-
1220	h,5	500	11,05	7.65	6.53	0.494	0.47	-72.5	
1225	20.0	500	11.00	7.76	6.45	0.490	0,36	76.5	
1230	55.0	400	11.10	7,65	6.39	0.491	0.27	-77.3	
1235	34.0	-100	11.10	7.58	6,35	0.492	0.30	-76.1	1.19
		-							
				-			-		
Acc	eptance Cri	teria:	< 0.3 ft	3%	±0,1	396	10%	±10mv	

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection									
Time	Sample ID	Container	# of Bottles	Preservative	Analyse				
1240	SHM-05-39A	100308							
coce i	1.2	2.5							

Comments

1 for ~ 30 min @ 500 millionin Stat of month 1.5730

Sample Clip todarkss.

Signature

12/0/08

Date

1 of 2

Project: Shepley's Hill LF	Date: 1	12/00			
Location: Ayer, MA	Sampler: 7	310 Beach	DECCO		
Well ID: SHM-05-393	PiD Reading: D				
Start Time: 1050 End Time: 1315			and the second		
Well Construction: 2" PUC		Field Testing Eq	uipment		
Depth to water: 13.5	Make	Model	Serial #		
Well Depth: 61.05	YST	650MDS	Oak STS ALS		
Water Column: 53-25	YSE	WOORLR.	04515555 10		
Total Volume Removed (L) 19.0	inste	2000	1650-0900		

Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
110	4.0	300	17.42	8.68	7.01	0.983	0.50	-7.3	
115	4.75	150	17.74	9,39	6.93	0.975	051	-5.2	
120	550	150	18.45	9,65	6.90	0.983	OM	-9.5	
1135	7.0	300	19.30	9:38	6.87	0.963	0.30	-30.7	
1130	8.5	300.	215	9,40	6.85	0,983	0.26	-51.4	
1135	10.0	300	81.77	9.46	6.85	0.918	0.34	-53.1	
1140	11.5	300	28.53	9.46	6.05	0.915	0.35	59.5	1
1145	12.5	3-20	23,51	9.55	6.83	0.815	0.21	-59.5	
1150	13.5	200	24,43	9.35	6.55	0,906	0.33	-67.6	
1155	11.0	500	25.55	9.00	6.86	0.878	0.48	-60.2	
1200	17.0	3.95	24.30	9.31	6.86	0.895	0.31	-63.6	
205	18.0	200	86,75	9,60	6,84	0,903	0.35	-68.4	
Acc	eptance Crit	eria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	

2" screen volume = 0.163 gal/fl or 616 ml per foot

Signature

		Sa	mple Collection		
Time	Sample ID	Container	ii of Bottles	Preservative	Analysa
1215	SHM-05-39B 100	908			
-					_
-					

1057

64

lo/s/or Date

for east 20 min before

Theis 1-4 1kg

Comments

2042

Low Flow/Low Stress Groundwater Sampling Log

Well ID: Start Tim Well Con Depth to Well Depl Water Co	Ayer, MA SHC e; 1650 struction: water: th:	End Time			Sample PID Re Make	Fig	D Id Testin Model		nent Serial #	9
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
1210	19,0	300	26.75	9.80	6.86	0.879	0.25	-747	7.81	
										1
										1
										1
				-	-	-		-	-	
	0.2			1			1			
					2				_	]
				-						
						-				
	×eptance Crit volume ≠ D.		< 0.3 ft r 616 ml per foot		± 0,1 ple Colle	3% ection	10%	±10mv		
Time		ne ID	Contain	ier	# of (	Bottles	Preser	vative		Analyzes
Comment	-5		eur talaiks	13		10/2 De				

Project:	Shepley's	Hill LF			Date:	10/21	03		6	
Location	Ayer, MA	1			Sample	ET Tolo	Berett		<b>HEC</b>	CE
Well ID:	SHA	-91-90	τ		PID Rea	ding:	0			
Start Tim	0145	End Time:	1015							
Well Con	struction:	y" 1	PUC			E	old Testin	a Equip	ment	
Depth to	water:	7.64	11		Make		Model		Serial #	
Well Dept	th:	21	Do.'		YST		650 000	25	Oako	578AS
Water Co	lumn:	3			YST	-	600 xc	¢.	045159	59.40
Total Vol	ume Remo	ved (L)	50.35		Land	fe	3090		1480	Offic
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (fi)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
1000	1 2 2	1.00	The second second		1.4.2.1	1.2.2.4.1	1.25.2	lane i		

	(liters)	(ml/min)	(fi)	(celsius)	(STD)	mS/cm	(mg/L)	(mV)
OF/0	35.0	600	25.07	7.53	7.80	0,049	0.73	7.7.4
0815	37.0	400	25.75	7.32	7.77	0.246	0.12	32.8
0000	35.00	400	26-3	7.34	7,77	0.244	0.13	1.0
50935	40.5	300	35.27	11.63	7.86	01005	10.71	57.0
0935	43.5	300	29.15	7.07	7.58	0.277	0.47	-83.1
0540	44.5	300	34.75	7.35	7.73	0.746	0.55	-88.7
0945	45.5	300	29.97	7.53	7.80	0.262	0.59	-89.1
0950	46.25	150	30.33	7.63	7.83	0.259	0,48	-98.2
0955	47.25	300	30.00	7.65	7.85	0,750	0.40	- 23,6
1000	78.25	300	30.70	7.58	7,86	0.255	0.37	- 99.9
1005	49.35	300	30.87	7.64	7.86	0.56	0.34	-97,2
1010	50.05	300	30.97	7.75	7.87	0.756	a31	-96.6 5.16
Acce	eptance Crit	eria:	<038	3%	±0.1	3%	10%	±10mv

2" screen volume = 0.163 gai/ft or 616 ml per foot

Sam	ple	Col	lection
	_		

Sample ID	Container	i of Bodles	Preservative	Analyse
SHM-99-22()	20600			
1	0.0			
		Sample ID Container		

cles DHO Sample 7 Comments

25 Setor nite. in the in algh hield Screw Anne (20525 (here high realing); 53 rebuilt corrected issue. न 0/2/08 Signature Date

Low Flow/Low Stress Groundwater Sampling Log

Location Well ID: Stari Tim	struction:	-42A	re		Date: Sample PID Res		OF  Licc.  D  d Testir Model		ment Serial A	
Well Dep		44.3			451		LOOXL		OLKOBS	13 AF
Water Co		39,80			151		50,40		DZEOSS	
1 mil 100	ume Ramo		30 0		Kamo	12.2	2020		1680-0	
	Volume		-		Geoter	the second s	Geogra		H0600	
Time	Removal (liters)	Flow Rate (ml/min)	Depth is Water (ft)	Temp (celsius)	pH (STD)	SPC m5/cm	00 (mg/L)	DRF. (mV)	таныну	
1155	2,5	500	4,50	10.33	6.70	.043	3.57	0.6	31,0	
1205	7,5	500	4,50	10.20	6,34	,033	3.63	59.5	14.6	
1215	12.5	500	4,50	10.15	6.22	032	3.67	92.7	2.76	
1225	17.5	500	4.50	10.11	6.18	.033	3.67	117.5	1.80	
1235	22.5	500	4.50	10.14	6.13	033	5.67	157.2	097	
1240	25,0	500	4150	10.12	6.11	,033	3165	167.1	0.85	
1245	27.5	500	4.50	10.13	6.10	.035	3.65	171.0	0.92	
1250	30.0	500	4.50	10.15	6:10	1033	3.65	179.6	0.64	
							_			
	ceptance Crit		= 0.3 ft r 616 mil per faoi	3%	±01	(3º%)	10%	±10mv		

Sample Collection

Time	Sample ID	Container	# of Botties	Preservative	Analyses
1250	5HM0542A10022008	250 nL plastic	1	Alleine	Alk
1250	5HM 05 42 A 10022005	250,46 pks Ac	1	HAPS	Ale tx.15
1250	SHI4 05 42A 10022008	500ml plastic	1	Abre	Turby Cly Allos Sou

Signature

10-2-08 Bate

	Sheplay's		100,2,200 8		Sample PID Res	10-2- Minlulk	Orcio/M	Sunds.	E	5
	atruction:	1"PVC				Fie	ld Testin	a Equip	ment	-
Depth to	water:	4.07			Make		Model		Serial #	
Well Dep	th:	73.6	2'		Y51	6	DOXL	1	DIKO69	5 AF
Water Go	lume	69.5	31		451	4	\$ MOS	5 0	20053	1 AM
Total Vol	ume Ramo	1011 (L)	27.5		Lanott	te i	2020		16.70-0	500
					Geoter		Geoply	40	H060030	25
Time	Removed (liters)	Flow Rate	Depth to Water	Temp (celature)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
1100	2.5	500	4.07	10.37	6.71	,510	,53	-70.8	15.2	
1110	7.5	500	4.07	10.34	6.70	.526	1 33	-73.9	13.8	
1120	12.5	500	4.07	10.34	6.70	1529	123	- 75.7	6.64	
1130	17.5	500	4.07	10.30	6.70	,530	115	-77.1	5.95	
1135	20.0	500	4.07	10.31	6.68	1531	114	- 77.8	5.63	
1140	22.5	500	4.07	10.30	6.66	1531	.13	-78.5	4.52	
1145	25.0	500	4.07	10.30	6.67	1531	.13	-78.9	634	
1150	27,5	500	4.07	10.31	6.67	,530	,13	-79.0	6,35	
									-	
Ác	ceptance Grit	leria:	> 0.3 ñ	344	=0.1	11%	1044	±10mv		

Low Flow/Low Stress Groundwater Sampling Log

2 screen volume = 0 163 gal/ft or 616 ml per foot

Time	Sample ID	Container	1000	= of Bottles	Preservative	Analysa
1150	SHM 0542B 10022008	250 al	plastic	1	None	Alk
1150	5HM 0542B10022008	250 ml	PESTIC	4	HNOZ	Autals
1150	SHM 05428 10022008	500.Ml.	plastic	1	None	Turby Cly Nos, SO

Exmain Collastion

Signature

102-08 Balle

	Ayer, MA <u>5<i>H/</i>9</u> (8/5 10:775		1012200F				the second se	/ mare	
	struction:	2" PV				Eie	Id Testin	q Equip	nent
Depth to Well Dep		9.91' 40 61'	-		Make YS1		Model 600 X		Serial # OILOG43
Water Co		29,70			YS1.	-	65DM	100 million 100 million	02E05921
Total Vol	ume Remo	ved (L)	20		Landter Taroter		2020		1670-0900 HO60030:
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
750	2	400	9.91	10.47	6,66	1066	157	11.0.7	16.99
800	6	400	9.91	10.46	6.70	1054	0.38	45.2	6,09
310	10	400	9.91	10.43	6.73	.053	0.29	17.3	212
120	14	400	9.91	10.43	6.74	052	0.30	11.8	1.67
825	16	400	7.91	10.53	6.75	.053	0,28	11.9	1.19
830	19	400	9.91	10.44	6.74	052	0,25	11.6	1.58
835	20	400	9.91	10.47	6.73	.052	0,27	10.8	1.96
	-								

#### Sample Collection

Time	Sample ID	Container	# of Botlies	Preservative	Analyset
135	SMAN OS 41 A 100-200	\$ 250 ML plastic	3	Noul	Alk
835		1250 mL clastic	3	HAIDZ	Metals
135	SHIM 05 41 A 100200		3	Norte	Turby CL, NO2,

ius/MSD taken

Signature

10/2/08

Date

Low Flow/Low Stress Groundwater Sampling Log

10 1

Project:	Shepley's	HILE			Date:	10/2/1	28	-		
Location	Ayer, MA				Sample	r: Alla	(Racio)	Wich Ed	DE	CC
Well ID:	SHIM	0541C	10022008	1	PID Rea	ading:	_0_			
Start Tim Well Con	e:850 struction:		940 C			E	eld Testin	la Equipi	nent	-
Depth to Well Dept		9.85	1		Make YS1		Model 600XL	01	Serial #	
Water Co			76		Y51	-	650 MD		E0535	A 1997 A 1997
Total Vol	ume Remo	ved (L)	20		Lawier	He	2020	10.0	10-09	
					Geote	ch	Geopung		DEDORE	
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC m5/cm	DO (mg/L)	ORP (mV)	Turbidity	
900	4	400	9.85	10.81	7.35	.528	0.29	-133.2	76.0	
910	8	400	9.85	10.82	7.93	1492	0,15	-140.8	22.5	
920	12	400	9.85	10,81	7.43	1490	0.14	-146.7	9.72	
930	16	400	9.85	10.32	7.94	,491	0,13	-148.7	9.62	
935	18	400	9.85	10.80	7.48	1491	012	-149.3	5.30	
940	20	400	9.85	10 81	7.42	#491	0,12	-141.5	470	
	eptance Crit volume = 0.		< 0.3 ft r 616 ml per fool		± 0.1	3%	10%	±10mv		
Time		ale ID	Destal		ple Colle		Deter	a indhan		Analuna
Time		FIC IDE	Contair	NI chuch		Bottles	Alou	rvative		Analyse A/k

Time	Sample ID	Container	# of Bottles	Preservative	Analyses
940	SHIM 05 41C 10023008	250 ML Elus	tic L	NOUL	A/K_
940	5HM 05 410 1002 2008	250 ML P/A	stil 1	HAUOZ	iketals
940	SHIM 05 412 10023008		Plastic 1	Maria	Turb, CI, NO2, SA
		ALC: NOT			
_		0			

Signature

10-2-06 Date

Date: 10/	104	
Sampler: T	br Brutt	DECCE
PID Reading:	0	Viel.
	Field Testing Equ	aipment
Make	Model	Serial #
YST	(isamlis	ODK 5548193
YST	GOOKER	04 J15595 AD
Inothe	2030	2496-501
	Sampler <u>: Tr</u> PID Reading: Make <u>VST</u> <u>V</u> ST	Sampler: Tyter Brautt PID Reading: <u>Field Testing Equ</u> Make Model <u>YST</u> (somuls <u>YST</u> (somuls)

Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
1310	4.5	3.0	18:45	8.64	7,03	0.450	0.36	-74,5	43.4
1315	6.0	300	18.45	8157	6.83	0.455	0,33	-7510	29.1
1320	1.5	300	18:45	\$ 55	6.71	OHSE	6.32	-74.4	24.0
1305	9.0	300	18.45	8.57	6.62	0.455	0.30	-73.8	19.8
1330	10.5	300	18.45	8.59	6.56	0.454	0.32	- 73.6	17.5
1335	17.0	300	18.45	8,72	6.50	0.451	0 34	-77.1	19.2

Acceptance Criteria:

2" screen volume = 0.163 gal/fl or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Botties	Preservative	Analyse
1340	SHL-11/00308				
1.000					

15 Min Q 300 ml/min before monidoring Sugar, Silty & manders ava

Signature

10/3/08 Date

Low Flow/Low Stress Groundwater Sampling Log

Project: Shepley's Hill LF	Date: 10	12108	
Location: Ayer, MA	Sampler:	Tyle Bert	BECCH
Well 10: SHP- 93-100	PID Readin	ig: 0	7
Start Time: 1/35 End Time:			-
Well Construction: 4" Metal		Field Testing	Equipment
Depth to water: 79,00	Make	Model	Serial #
Well Depth:	YSI	Gramos	Oak 0558 AB
Water Column:	YSE	. GOUXER	04515595190
Total Volume Removed (L) _/5,75	lasette	2000	2496-1501

Time	Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
1150	17.5	400	32,20	7.75	10.65	0.378	0.75	1.1	39.7
1155	9.5	400	39.88	8.63	11.00	0.301	0,21	-3.8	19.3
1200	11.5	400	33,19	8.64	11,13	0.310	0.15	-6.6	49.9
1705	13.35	250	33.63	8143	11.35	10:311	0,18	-9.7	63.0
1310	14.0	150	34.15	8,74	11.28	0.311	0.21	-Ilil	74.3
1215	15,5	300	34,54	8,50	11.30	01313	DIS	-13.9	79,5
1220	17.0	300	35.21	8183	1/33	DIBIB	Oill	-14,2	84.5
1225	18.75	250	35,73	8199	11.35	0,311	0,17	-157	82.7
Acc	eptance Crit	eria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	

2" screen volume = 0.163 gal/lt or 616 ml per foot

Sample Collection

1013 /08 Date

Time	Sample ID	Container	# of Bottles	Preservative	Analyse
Time	5H7-93-100 1003	08			
1523					
1.1.1.1					
_					

Comments

Oriela 500 ml min before Smin montonia D Ser. abile: 5.14 Stinlly

Signature

Project: Shepley's Hill LF	Date: 101	3/08	
Jocation: Ayer, MA         Well ID:       Start Time: ///JO         Start Time: ///JS       End Time: ///JO         Vell Construction:       4" PUC         Depth to water:       38.73         Vell Depth:       56.59	Sampler: 7	ho Bearett	BECCE
Well ID: SHM-93 IDC	PID Reading:	D	
Start Time: 1015 End Time: 1120			
Well Construction: 4" PUC		Field Testing Eq	uipment
Depth to water: 39.73	Make	Model	Serial #
Well Depth: 56.50	455	650MBS	ODKOSSE 1B
Water Column: 27.77	YSE	booker	04015999 AD
Total Volume Removed (L) 24.0	Canothe	3090	3496 - 594

Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
1035	8.0	400	30.40	8,13*	701	0.413	1.65	62.2	7.39
1040	10.0	400	30,50	8,40	7.08	0.414	1.43	45.6	6.55
1045	12.0	400	30,54	8.44	7.14	0.413	1.22	26.6	5.00
1050	14.0	400	30,62	8,53	7.19	0.113	1.12	10.7	4.24
1055	16.0	400	30.60	8.93	7.27	0,40	1.24	0.4	3,91
1100	18.0	400	30.62	8146	7.24	Q.H.M.	4.07	-5.0	4.1
1105	20,P	400	30.74	8.69	7.25	0.411	0.93	-8.5	3,36
110	32.00	400	30,77	8.84	7.76	0,411	0.86	-11,7	3,0
1115	24.0	400	30.81	5.67	7,27	0.411	10.77	-12.0	3.67
				-		-			
			1		-	-			1
	eptance Criv	i itia	< 0.3 ft	3%	±0,1	3%	10%	±10mv	-

2" screen volume = 0.163 gal/ft or 616 ml per foot

Sample Collection								
Sample ID	Container	# of Bottles	Preservative	Analyse				
	301	14.000						
	Sample ID SHm - 93-10( 100	the second se	Sample ID Container # of Bottles	Sample ID Container # of Bottles Preservative				

Comments

20 min the 400 ml lower Latin minitimum 50000 CLESS

Signature

*10/3/08* Date

Project: Shepley's Hil	ILF	Date: 10.	3/08	
Location: Ayer, MA		Sampler: 7	Sh Benett	BECCE
Well ID: 5HL-1	0	PID Reading	r _ O	
Start Time:0830 E	nd Time: 0545			
Well Construction:	an puc		Field Testing Equ	lioment
Depth to water:	30.62	Make	Model	Serial #
Well Depth:	38,65	YSI	650005	02100598A3
Water Column:	8.03	45E	GODATER	04515999 AD
Total Volume Removed	1(L) 28.0	Lamitte	2000	0000000
				2456-561

Time	Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
0845	6.0	400	30.71	9.26	7,42	0.070	11.59	149.3	
0850	8.0	400	30.71	9.15	7.34	0.069	11.56	144,4	
0555	10.0	400	30.71	9,33	7,17	O.OE9	11.46	143.9	1
0100	12.0	400	30.71	9.33	7,00	0.069	11,45	140.4	
oner	14.0	400	30.71	9,70	6.53	0,068	11.46	138.7	
0910	160	400	30,71	9.37	6,87	01068	11.41	135.3	
0915	180	400	30.71	9.56	6,83	0,001	11.29	129.7	
0420	20.00	400	30.71	9.71	6.75	0.065	11.31	1151	
0135	33.0	400	30,71	9.83	6,74	0,068	11.33	112.3	
0930	24.0	400	30.71	9.80	6,73	0.069	11.31	1037	1
0935	26.0	400	30,71	\$1,78	6.71	0.068	1.85	93.7	1
0940	28.0	400	30.71	9,57	6,69	0.068	11.33	95.1	3.09
Acc	eptance Crit	leria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	

2" screen volume = 0.163 gal/R or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Bottles	Preservative	Analyse
Selie O	Sample ID				

Pirged for 15 min (4 400 ml/min before monitoring began Sand cheart odarless

Signature

Date

Well Depth:         26.34         V31         600xL         0           Weier Column:         8.30         V31         600xL         0           Total Volume Removed (L)         02.5         V31         600xL         0           Volume         Removed (L)         02.5         Value         0         0           Volume         Removed Flow Rate         Depth to Water         Temp         pH         SPC         DO         0RP           Volume         (liters)         (ml/min)         (ft)         (ceisius)         (STD)         mS/cm         (mg/L)         (mV)           8/30         7.5         500         18.04         12.35         5.75         .141         .45         42.0           8/40         12.5         500         18.04         12.88         5.75         .140         34         42.2	
Well Construction: $4^{\prime\prime}PVC$ Field Testing EquipmentDepth to water: $18.09$ MakeModelWell Depth: $36.34$ $851$ $600XL$ $0$ Water Column: $8.30$ $751$ $600XL$ $0$ Total Volume Removed (L) $22.5$ $14$ Noffe $302$ VolumeTime Removed Flow Rate Depth to Water TemppHSPCDOORP(liters) $(ml/min)$ (ft)(celsius)(STD)mS/cm(mg/L) $830$ $7.5$ $500$ $18.04$ $12.35$ $5.79$ $.441$ $.45$ $42.2$ $84a$ $12.5$ $500$ $18.04$ $12.88$ $5.75$ $.140$ $39$ $42.2$	
Well Depth:         26.34         831         6008L         0           Water Column:         8.30         731         6008L         0         0           Total Volume Removed (L)         02.5         1         6008L         0         0           Volume         Removed Flow Rate         Depth to Water         Temp         pH         SPC         DO         0RP           Volume         (liters)         (ml/min)         (ft)         (celsius)         (STD)         mS/cm         (mg/L)         (mV)           8 30         7.5         500         18.04         12.35         5.75         .141         .45         42.0           8 4a         12.5         500         18.04         12.88         5.75         .140         34         42.2	al all a
Well Depth:         26.34         831         6008L         0           Water Column:         8.30         731         6008L         0         0           Total Volume Removed (L)         02.5         1         6008L         0         0           Volume         Removed Flow Rate         Depth to Water         Temp         pH         SPC         DO         0RP           Volume         (liters)         (ml/min)         (ft)         (celsius)         (STD)         mS/cm         (mg/L)         (mV)           8 30         7.5         500         18.04         12.35         5.75         .141         .45         42.0           8 40         12.5         500         18.04         12.88         5.75         .140         34         42.2	Serial #
Water Column:         8.30         V31         6.90/4.05         0.           Total Volume Removed (L)         22.5         Italkoffe         2020         10           Volume         Volume         Volume         Time         Removed Flow Rate         Depth to Water         Temp         pH         SPC         DO         ORP           (liters)         (ml/min)         (ft)         (celsius)         (STD)         mS/cm         (mg/L)         (mV)           8 30         7.5         500         18.04         12.35         5.75         .141         .45         42.0           8 40         12.5         500         18.04         12.85         5.75         .140         34         42.2	IKOL43AF
Total Volume Removed (L)         Jd. 5         La Note         Jd. 201         N           Volume         Volume         Volume         Volume         Volume         Volume         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         <	2E0534 A14
Volume           Time         Removed         Flow Rate         Depth to Water         Temp         pH         SPC         DO         ORP           (liters)         (ml/min)         (ft)         (ceisius)         (STD)         mS/cm         (mg/L)         (mV)           830         7:5         500         18:04         12:35         5:89         .141         .45         44:0           840         18:5         500         18:04         12:88         5:75         :140         34         42:2	60-0900
Volume           Time         Removed         Flow Rate         Depth to Water         Temp         pH         SPC         DO         ORP           (liters)         (ml/min)         (ft)         (celsius)         (STD)         mS/cm         (mg/L)         (mV)           830         7.5         500         18.04         12.33         5.79         .141         .45         44.0           840         18.5         500         18.04         12.88         5.75         .140         34         42.2	10600 3023
840 12.5 500 18.24 1288 5.75 140 34 42.2	Turbidity
	5.43
55 he a 10 10 10 110 110 110 110 110 110 110	1.10
850 17.5 500 17.04 12.11 5.69 140 .15 42.0	130
255 20.0 500 18.04 12.90 5.69 139 .14 40.9	1,60
900 225 500 R.04 12.90 5.69 110 113 413	1.40
Acceptance Criteria: < 0.3 ft 3% ± 0.1 3% 10% ±10mv	

2" screen volume = 0.163 gal/ft or 616 ml per foot

#### Sample Collection

Time	Sample ID	Container	# of Botline	Preservative	Analyses
100	SHL 15 140308	250 ML HAShe	1	None	#1K
100	541115100308	250ml plustic	T	HILLOZ	4RA/S
900	SHL15100308	500 al plate	1	differen	TOUTH CI BED

Comments

Ruged for 15 min. before recording late

-S-02 Date

Signature

Low Flow/Low Stress Groundwater Sampling Log

Project: Location Well ID:	Shepley's Ayer, MA SHL 19	100308		Date: 10-3-0-8 Sampler: Alechane   Record BID Reading: 0				wo.		H
10 C 10 C 10 C	struction:	End Time	17.50			· Eis	ld Testin	er Caulie	mant	
Depth to Well Dep	water: th:	32.3	36 Y		Make YSI VSI	<u>Els</u>	Model 600X 650 AL		Serial # 01k064 D2E05	
Water Co Total Vol	ume Remov		17.5		Lampt		020		1680-09	80
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	HOGOO30 Turbidity	9K.5
1235	10.0.	500	22.36	12.94	6.08	1.149	0.25	4.4	68.9	
12.40	12.5	500	2236	13.00	6.05	199	028	48	60.8	
1245	150	500	22.36	13.04	6.04	-149	0.29	5.1	59.4	
1250	17.5	520	22.36	1304	6.05	.149	0.28	53	60.5	
	septance Crit	L.	< 0.3 ft	3%	±0,1	3%	10%	±10mv		
	10. 11 C. 11		r 616 ml per fool	8	ple Colle		10.94	TIMIN		

Time	Sample ID	Container	# of Boilles	Preservative	Analyset
1250	5AL 15 100300	250 ML plastic	1	Mare	AIR
1250	5HL 14 100388	250 MIL plastic	1	HINDS	Metals.
1250	5HL 19 100308	SOU ML Mastic	10	lover	Tothe 1 504. MG
12.50	SHL11 100308 F	-25 Orat 500ml	1	Nene	Dayhell trails
		THE PLAN	h¢.		
Statement of					

Purged for 20 min then took reading a Comments 10-308 Signature Date

Project: Shepley's Hill LF	Date: 10-	3-08	
Location: Ayer, MA	Sampler: /	idenal Rice o	
Well ID: SHL 20100308	PID Readin	g:	and the
Start Time: 13 10 End Time: 1355			
Well Construction: 4" /VC		Field Testing Ed	uipment
Depth to water: 18.72	Make	Model	Ser
Well Depth: 50. 47	451	600xc	OIR
Water Column: 31.75	151	650 MOS	02É
Total Volume Removed (L) 22.5	Lasnotte	2020	1680
	4.02.0	-	1.1.4

BECC

Make	Model	Serial #
451	600xc	OLKOBYSAF
151	650MDS	02 E0534 AM
Lasnothe	2020	1680-0900
Geokah	George	HOBE 3023

Time	Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
1325	7.5	500	18 72	12.01	6.64	.295	0.64	14.4	17.1
335	25	500	18.72	11.95	661	299	0.30	30.8	14.7
1345	17.5	500	18.72	12.06	6.51	,300	021	63.6	14.7
1350	20.0	500	18.72	1210	6.48	,300	0,20	8314	13.3
1355	22.5	500	18.72	12.18	6.44	-301	0,19	90,1	13.2
							_		
Ac	ceptance Crit	terla:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	

2" screen volume = 0.163 gal/ft or 616 ml per foot

Volume

Time						
1000	Sample ID	Container	# of Bettles	Preservative	Analyses	
1355 51	HL 20 10030E	250 ml plustic	Y	Noul	Alk	
1355 SH	4L20 100308	250 ml dactic		HNOS	Medils	
	4L20100508	500 ML plastic	X.	Abre	Turb CI Nos 500	

comments Purged for 15min before recording dela

Signature

10-2-08 Date

	Shepley's	HILLE			Date:	10-3		÷.		
ocation	Ayer, MA				Sample	r: Mich	ue/Rice	20	BECC	
Nell ID:	SHLY.	100308			PID Rea	:gnibe	0			
Stari Tio	10/15	End Time	1155							
	struction:	2"PVC				Ei	Id Testir	ng Equip	ment	
epth to		10.09			Make	-	Model		Serial #	
Vell Dep	1 0 m 1 1	15.54			151		600 x	6 0	IKO443AF	
Vater Co		5.45			Y51		GOND		2EO53YAM	
	lume Remo		200		Lawoth		2020		80-0900	
222.30				12		Chestich	Geogra		4000000000000	
	Volume		7.114 MATLE A	10×		A		1	and Alberta	
Time	Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	(mg/L)	ORP (mV)	Turbidity	
130	7.5	500	10.09	12.40	5.68	1069	171	2649	572	
140	125	500	10.09	11,29	5.46	.058	188	276.9	2.34	
145	15.0	500	10 09	11.86	5,73	054	.90	2778	1.05	
150	17.5	500	10.09	11.85	5.72	054	187	280.8	1.17	
1.55	200	500	10.09	11.80	571	1053	, 91	201.3	1.04	
				1	1	1	-200			
					1		-			
-			1	1		1				
	100.001		1			-	-			
				-	-	-				
-		-		1.000	-		-			
	-				-	-				
Ac	ceptance Crit		< 0.3 ft	3%	±0.1	3%	10%	±10mv		
A	volume = 0.	.163 gal/ft o	r 616 ml per foo							
'screen				Sam	ple Colle	ction	Contraction of the second			
_	Same	Ol ala	Contain	ARY .	WAT	N of Bollies			Analyse	
Time		ple ID	Contain 2.57	1	Noti	actives.	Prese			
_	SHL 4 SHC 4	ple ID 100508 100308 100308		Mastic	ot   	Bollies	Prese Abr HAU Non	13	Analyse A/k ML J= 15 THEFL (, NES)	

Silli

Location: Well ID: Start Tim Well Con	Shepley's           Λ, π, ΜΑ           Λ/Γ - 1           e:         /4/0           struction:	P End Time /S			Sample PID Rea	ding:	Angl O	-		
Depth to		- 33,7			Make	10.00	Model		Serial #	
Well Depi		_ 37.6	1.2	-	YSI		booke		OPKOSYAAB	
Water Co		8.9		8 3	YSE	_	100 million (100 million)	-	04515	
Total Vol	ume Remov	ved (L)	13.0	-	terstit		3020	-	24.96 - 1	5-91
Fime	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
1485	4.05	750	×	7.82	6.07	0.599	DSF	-57.0	3,0	
1430	6.0	1		7.75	6.06	0.997	0.15	-55-5	0.92	
1435	7,75			700	6.05	01994	Dito	-57.5	0.87	
1440	9.50			7.67	6.05	0,994	0.34	-57,8	0.83	
1445	11,35			7.65	6,05	0.453	0.34	-55.5	0.0	
1450	13,0	×	23.75	7.66	6.04	0,953	0.34	-53.4	0.0	
	entance Crit		(038	306	*01	304	10%	*10mv		

2" screen volume = 0.165 gal/IL or 616 ml per foot

Sample Collection

Time	Sample ID	Container	# of Bottlas	Preservative	Analyse
Time 1455	N5-P1 100300				
1	1				

Pro for 15 min @ 250 ml min water -of with to-bone ini u 5 r 1

Signature

10/3/03 Date

Start Tim Well Con	struction:	End Time:				Fie	d Testin	a Equipi	nent
Depth to		23 2			Make		Model		Serial #
Well Dep		100.92		-	151		DOXC		IROGYSA
Water Co		\$1.64		-	151	1	SOMO		DEOSSYA
Total Vol	ume Remov	ved (L)	800		Lamot	1	2020		680-090
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (R)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity
1945	3.25	250	23.28	12.73	673	1.425	132	-63 2	5.92
1455	5,75	250	1	11.27	6.64	414	.37	-64.9	6 32
1805	10 50	250		11.61	6.65	1446	143	63.4	6.88
1310	7.25	250		11.62	6.66	.453	132	-642	6.54
1315	8 00	250	1	11.62	4 05	.460	132	242	6.01
					-				
					-				
				1			1		1
								1-2	
					-			1.25	1000
		1							
the second second	eptance Crit		< 0.3 ft	3%	±0,1	3%	10%	±10mv	
2. acreen	volume = 0.	163 gai/n o	r 616 ml për foo		ple Colle	ction			
Time	Sam	ple ID	Contair			Bottles	Prese	vative	Ana
Bite	1.76/	N5 P21	00308 25	Dalties	6	1	Nat	16	Alk
1241	NAR	N51210	10308 500	me plustic		7	Non		Turb Cill
all	pupers	Madra is	× 2005	mp. pess	· · · · ·	1.			the sector
		N			-	-			
Commen	Winter	mater a	eud not fi	tat	toble	a. too	l water	level in	eling
	after sa	2	ere callecte	1	21	1000			11

Low Flow/Low Stress Groundwater Sampling Log

Location: Well ID:	5412-	23			Date: Sample PID Rea		N/A			
Start Time Well Cons	0905	End Time		-		-	eld Testin	a Feuin	mant	
Depth to v	CONTRACTOR OF STREET	27.14		4	Make	<u>Co</u>	Model	u courp	Serial #	8
Well Dept	Section 1	53 .		-	La.Mo	He	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Telin	1,4 2	
Water Col	- A - P		T.E.	· /	VSI		MDS		ZKA	
	ime Remon	and rits	37.5 L	- C			1.120	-0	12 mg	70/1
FOIM VOIC	Volume	ven (c)	21.2 6		Silo	nist	WLI		473	60
Ŧime	Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
0120	7.5	500	27.25	7,49	\$.70	0.041	15.69	1-	$\sim$	1
100 0	27.5	500	27.28	7.91	850	0.017	12.26	173	0.36	1
1005	30	500	27.28	8.06	7.22	0042	12.23	175	0.51	1
1010	32.5	SUD	27.27	8.07	6.48	0.041	12.19	180	0.34	1
10.15	35	500	27.28	8.05	6.04	0,241	12.16	183	0.54	1
1020	37.5	500	27.28	8.20	85,94	0041	1211	184	0.51	
	eptence Crit volume = 0.		< 0.3 ft r 616 ml per fool		±0.1		10%	±10mV		1
Time	Sam	ple ID	Contair			Boilles	Prese	vative		Analyse
1020	SHL-	23-100	608		3		1 1000	Tunte		Juniyou

Low Flow/Low Stress Groundwater Sampling Log

DU membrane + recal etter 1st reading Had to replaced well le ( LACAS 10 Signature Date

Low Flow/Low Stress Groundwater Sampling Log

1 1

SHL	10 million 100			1.1.1.0.1.0.1.0.1		MA		
struction:			2		Fie	10-11-11-17-1	q Equip	1 (C) (C) (C) (C)
th:		and the second se		- Lus		202		Serial #
CACAS	ied (L)		-			2019	0.5	02120
				5	inelou		41	475
Removed (litera)	Flow Rate (mi/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidily
145	500	44.96	7.97	5.93	0068	10.07	154	0.17
70	500	44.97	8.84	6.00	0.068	9.04	145	007
22.5	500	4497	9.69	6.02	0.066	5.76	126	0.78
25	500	44,97	9.63	6.02	0.066	8.8Z	127	061
27.5	500	44.97	9.78	6.02	0.066	5.78	127	3.91
						_		
	eria:	< 0.3 ft	3%	±0.1	3%	10%	±10mv	
	Ayer, MA SHL SHL Istruction: water: water: th: lume Removed (litera) Volume Removed (litera) ZZ.5 Z.5	$\frac{5 \text{HL} - 2.1}{Image set of the set of$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} A yer, MA \\ \hline SHL-2.1 \\ \hline \\ he: 1940 End Time: \\ \hline \\ here: 44.90 \\ \hline \\ here: 54.91 \\ \hline \\ here: 54.91 \\ \hline \\ hume Removed (L) \\ \hline \\ \hline \\ Volume \\ Removed Flow Rate Depth to Water Temp (litters) (ml/min) (R) (celsius) \\ \hline \\ \hline \\ Here: 5500 44.96 7.97 \\ \hline \\ 70 500 44.97 5.84 \\ \hline \\ 22.5 500 44.97 9.63 \\ \hline \\ \hline \\ 25 500 44.97 9.63 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Sample ID 5 FIL- 21- 1006 88 Time Container # of Bottles Preservative Analyse: 1/35

Signature

1.1

Date

Narl Time: Nell Constr Depth to wa Nell Depth: Nater Colum Total Volum Time F	SHP-01 OQSS ruction: ater:	End Time: 1* 94 1.77 12-7 5	0] 20.0	Temp (celsius) 17.27 17.40	Make YSF YST <u>YST</u> <u>GooRJA</u> pH (STD) <u>Guy b</u>	FI	O eld Testin Model ໂປປະເ ໂຣຍເຊ ໂຣຍຊ ໂຣຍຊ ໂຣຍຊ ໂຣຍຊ ໂຣຍຊ ໂຣຍຊ ໂຣຍຊ	ORP (mV)	Serial # <u>GITOIUS</u> OREOSZ [50-0joz MOGOZOZ Turbidity
Alari Time: Nell Constr Depth to wa Nell Depth: Nater Colum Total Volum Time F	0955 ruction: ater: mn: ne Remov Volume Removed (liters) 150	End Time: 1* 9-1 1.77 )2.77 )2.77 S. red (L) Flow Rate (ml/min) SOO 200	6 5196/ 20.0 Depth to Water (R) 7.77	(celsius)	Make YSF YST GOORIA PH (STD) GUID	File w.D sPC mS/cm	eld Testin Model ໄປປະເ ໂຣປເຊ ໂຣປເຊ ໂຣປເຊ ໂຣປເຊ ໂອບ ໂອບ (mg/L)	ORP (mV)	Serial # <u>GITOIUS</u> OREOSZ [50-0joz MOGOZOZ Turbidity
Veil Constr Depth to wa Vall Depth: Nater Colum Total Volum Time F [0],S [0],S	volume Removed (liters)	1* 945 1.77 )2.77 S red (L) Flow Rate (mi/min) SOO 200	6 5196/ 20.0 Depth to Water (R) 7.77	(celsius)	YSE YSE GOORNA (STD) GUIL	۲ میD sPC mS/cm	Model (JUXL LSUM LUID - DO (mg/L)	ORP (mV)	Serial # <u>GITOIUS</u> OREOSZ [50-0joz MOGOZOZ Turbidity
Depth to wa Well Depth: Nater Colum Total Volum Time F [0].5 [0].5	volume Removed (liters)	7.77 )2.7 S. red (L) Flow Rate (ml/min) SOO 200	0] 20,0 Depth to Water (代) フ:フフ	(celsius)	YSE YSE GOORNA (STD) GUIL	۲ میD sPC mS/cm	Model (JUXL LSUM LUID - DO (mg/L)	ORP (mV)	Serial # <u>GITOIUS</u> OREOSZ [50-0joz MOGOZOZ Turbidity
Vell Depth: Nater Colum Total Volum Time F [0],S [0],S	MIN: Ne Remov Volume Removed (liters)	7.77 )2.7 S. red (L) Flow Rate (ml/min) SOO 200	0] 20,0 Depth to Water (代) フ:フフ	(celsius)	YSE YSE GOORNA (STD) GUIL	SPC mS/cm	600xc 650m 2020 - DO (mg/L)	ORP (mV)	Oltolush Oltosz 150-ojoz Holorzozz Turbidity
Vater Colum Total Volum Time F [0].5 [0]30	volume Removed (liters)	Flow Rate (ml/min) 500	20,0 Depth to Water (ft) 7.77	(celsius)	YSE Kenot GooRA PH (STD) G.46	SPC mS/cm	bsom Luis - DO (mg/L)	ORP (mV)	OLEOSZ 150-0joz HOGOP3023 Turbidity
Vater Colum Total Volum Time F [0].5 [0]30	volume Removed (liters)	Flow Rate (ml/min) 500	20,0 Depth to Water (ft) 7.77	(celsius)	YSE Kenot GooRA PH (STD) G.46	SPC mS/cm	bsom Luis - DO (mg/L)	ORP (mV)	OLEOSZ 150-0joz HOGOP3023 Turbidity
Time F [0],5 [030	Volume Removed (liters)	Flow Rate (ml/min) 500	20,0 Depth to Water (ft) 7.77	(celsius)	PH (STD)	SPC mS/cm	DO (mg/L)	(mV)	HOLOG3023
Fime F [0],5 [030	Removed (liters)	(mi/min) 500	Depth to Water (R) フィフフ	(celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	(mV)	Turbidity
Fime F [0],5 [030	Removed (liters)	(mi/min) 500	(ft) 1.77	(celsius)	(STD)	mS/cm	(mg/L)	(mV)	
1030	BUS	200	the second se			-2.2.2	Do at	1	2.22
and the second se		1.00	7.77	17.40		1001	0.36	1-34.6	399
035		500	1		6.40	1219	0.21	-38.9	0.15
				17.37	6.37	1-219	0.16	-38.7	0.31
				1				1	
								1	1
					-				
	-								
				1	1				
				1	1			-	
				1	1		1		
" screen vol		163 gal/fL o	< 0.3 ft r 616 ml per fool		± 0.1	3%	10%	±10mv	
Time	Samp		Contain		# 07	Sottles		Vative	TURVITY, CI, N
1040	SHP- 01	36x -10060 36x -1006	NOL YO	L PULY	- 1	1	Ne	Ne	Allenia
1040 5	SHP- 01	311-100	1604 Ison	a Paly		i	M		Metal
						_			
Comments				p .	9.	L		n h	
Ť		d for will wa	30 Me	unter Les	to IJ a	tak	Unding.	reading	<u>p2</u>
97	in	2		2		10-6-	ad .		
12	96	hoture		-		the second secon	ate		

### Low Flow/Low Stress Groundwater Sampling Log

	SHEW	- pr		-	PID Rea	nding:	0		1	
100 C	0 19:0									
	struction:	1" PU				Fie	d Testin	q Equip		
Depth to		651			Make		Model		Serial #	AF
Vell Dep		10-99	11		YSF	_	GARTYL		0)103/13	
Nater Co	10696	4.			KI	-	Esamo	<u>e</u>	OF OF S	
fotal Vol	ume Remo	ved (L)	27.5		GeoRA			10	HOLOG	_
Time	Volume	Flow Rate	Depth to Water	Temp	[oma] pH	SPC	DO	ORP	1680-0	ALC .
	(liters)	(mi/min)	(ft)	(celsius)	(STD)	ms/cm	(mg/L)	(mV)		
0155	22.5	500	6.52	15.48	615	0.176	0.72	-67.5	0.8	
900	2.5	500		15.60	655	0175	0-15	-56	0-14	
005	25	Sou	-	15.51	6.51	.175	0012	-54.)	0.09	
1.1.1										
_	-					-			1	
1000						-				
-										
						1				
	-						1			
-							_			
i include										
Ace	eptance Cri	teria:	< 0.3 IL	3%	±0.1	3%	10%	±10mV		
" screen	volume = 0	.163 gal/ft o	r 616 mi per 1001							
-	1				ple Colle	ection	-			-
Time		ple ID	Contain	ier -	# lo #	Bottlies	Preser	vative	A	いわち
	SHP-1	1372 100	176 2501	IL Poly	-	1	PW	ode	NU	(a)
	SHP-0	1371-100	Lot say			1		dut	Turtini	1 0
1010						-				_

1.1.1.1.2.2.2

Well ID:	Shepley's Ayer, MA SHPC	HILF			Date: Sample PID Re		161	R	E	44,
Well Con	struction:	the second second second	0950 1C	-	: Defe	Eb	eld Testir	a Equip		
Depth to Well Dep	100 W. 1	9.16		-	Make VSI		Model LadyL		Serial #	DAF
Water Co		4.3		-	YSE		659mB		OLEOS	
0.000	ume Remo		225		Grofum	P			07330	
		server a			Lemon		ag.		110-	6140
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
0915	7.5	500	4.00	12.011	634	6416	0.22	1	0-45	
0720	3.5	500	-	13.92	6.34	-416	0.20	-58.2	10-17	
09125	2.5	300	-	12.94	633	-416	018	-58.6	0.16	
0930	2.5	500	-	12.94	632	0417	0.17	-514	0.09	
0935	2.5	Sao	-	12.46	1.32	-417	Orla	159.9	0.07	2
0940	2.5	500	~	18.28	631	=418	0.15	-10,3	6.06	
6945	3.5	Sou	-	12.96	6.30	.418	0.15	-60.9	0.04	
							1			

< 0.3 ft

2º screen volume = 0.163 gal/ll or 616 ml per foot

Acceptance Criteria:

Allalini
MENS
4 CL NO.

± 0,1

3%

10%

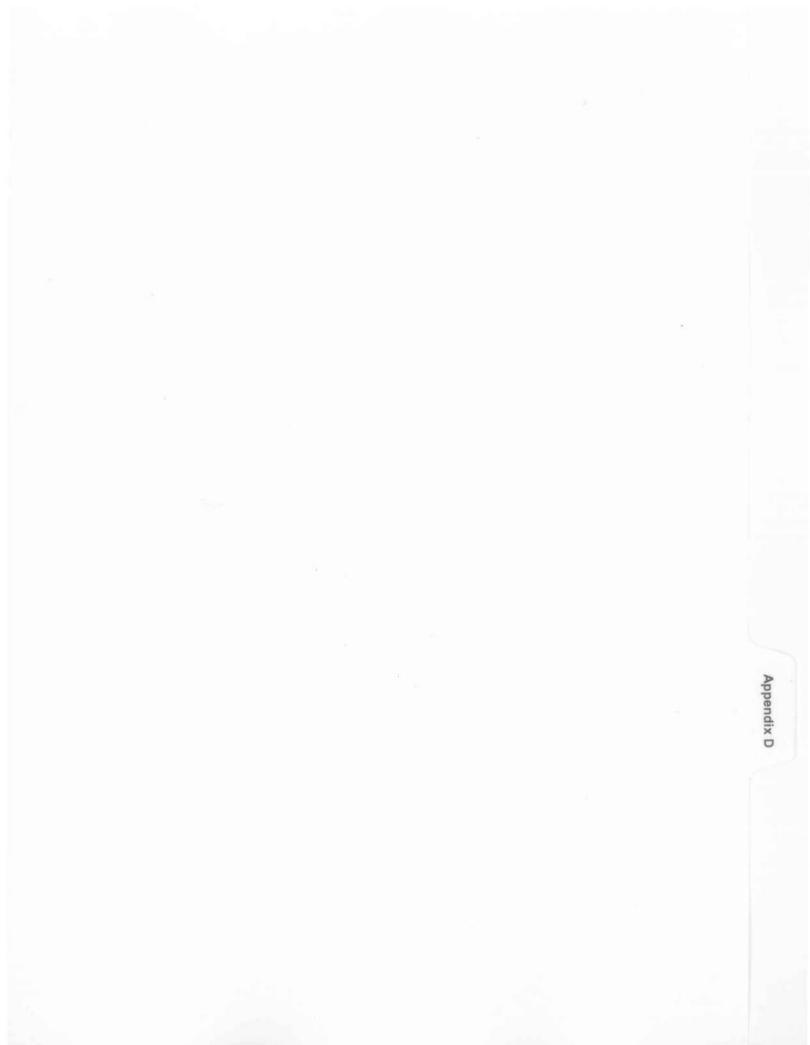
±10mv

Comments Fran Pie 10 For 169 WITL 12-11) rite docs Weto Fil 11111 Take 0-1-08 Signature / Date

3%

Q.

#### Low Flow/Low Stress Groundwater Sampling Log


Well ID:	3 2/ Y	1929×			Date: Sample PID Rei	10-6 r: 56 / ading:	IMR	-		
	e: 1130 struction;	End Time:				Fie	eld Testir	na Equip	ment	
Depth to Well Dep	and the second s	30.7		Make YSI			Model 600%		Serial # 61K0643AF	
Water Co	iumn:	6-2	.7		¥5F		SUM	26	02E 0534 A1	
Total Vol	ume Remov	red (L)	20.0		Beaty	NP			1400323	
					1. Mot		2	2020	1650 0700	
Time	Volume Removed (liters)	Flow Rate (ml/min)	Depth to Water (ft)	Temp (celsius)	pH (STD)	SPC mS/cm	DO (mg/L)	ORP (mV)	Turbidity	
1140	6.0	5-00	24.4b	1116	5.4-8	. 293	0.6	51	403	
1145	12.5	500	24.46	11.68	5.39	367	037	3.4	23.0	
1200	7.5	300	24.46	11.70	5.3	226	024	139	8-3.4	
1205	23	500	24.40	11.72	\$18	1931	1.2.0	145	6-8	
1210	2.5	540	24.46	11.83	5.30	2,2,5	16.0	14.3	4.1	
1215	2.5	કંચરો.	24,46	1.77	\$30	1979	0.19	14.6	4-4	
	eptance Crit volume = 0.		< 0.3 ft r 616 mi per foot		± 0.1 ple Colle	3%	3096	±10mv		
Time	Same	die ID	Contain			Bottles	Prese	rvative	Analyses	
	5HP-49	127×-1001 12×-1001	10603 500M	ML PULY ML POLY			NONI	L 1 2	AHONNY	

SHP-992012-1006058 250m, foly

Comments

Signature

10-6-08 Date



2008 Annual Report – Shepley's Hill Landfill and Treatment Plant Long-Term Monitoring and O&M Services Contract Number W91ZLK-05-D-0009 Task Order -0006 August 2009



Appendix D

**Analytical Data Validation Reports** 



Discolved Gases (Methane and Ethane) by Gas Chromatography

February 3, 2008 Region 1 Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

#### INTRODUCTION

This data validation report covers fourteen primary water samples, one field duplicate and two equipment blanks collected on January 8, January 9, and January 10, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The samples were dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on January 10, 2008 and assigned sample delivery group (SDG) number L0800400, upon receipt. Alpha analyzed the samples for dissolved gases (methane and ethane) by gas chromatography. The associated field sample identification (ID) and Alpha sample ID are presented in Table 2.

AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3. The level of data validation specified in Table 1 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

#### EXECUTIVE SUMMARY

All data is generally usable and of good quality. Any limitations on the data are listed below. Definitions of data qualifiers added during validation and summaries of specific qualifiers added to each affected sample as a result of the data validation findings are presented in Table 4 attached to this report.

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Tier II	Agueous	As required by method	One sample cooler was received on 01/10/08 at temperature of 2°C	Alpha Woods Hole Laboratory. 8 Walkup Drive, Westborough. MA 01581	L0800400

#### Table 1. Sample Status

#### Table 2. Field Sample List

Lah Sample Number	Field 1D	Comments
L0800400-01	SHM-96-5B-010808	
L0800400-02	SHM-96-22B-010908	
L0800400-03	SHM-05-41C-010908	
L0800400-04	SHM-05-41A-010908	
L0800400-05	SHM-05-41B-010908	M5/MSD
L0800400-06	SHM-05-39B-010908	
L0800400-07	SHM-05-42B-010908	
L0800400-08	SHM-05-39A-010908	
L0800400-08	EW-2-011008	
L0800400-09	DUP-010908	Field duplicate of SHM-05-41B-01090S



Dissolved Gases (Melhane and Ethane) by Gas Chromatography

#### February 3, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Lab Sample Number	Field 1D	Comments
L0800400-10	EW-1-011008	
L0800400-11	SHM-99-31A-011008	
L0800400-12	SHM-99-31B-011008	
L0500400-13	SHM-99-31C-011008	
1.0800400-14	SHM-99-32X-011008	
L0800400-15	EQP-011008	Equipment blank
1.0800400-16	EQG-011008	Equipment blank

#### DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

#### Table 4. Dissolved Gases (Methane and Ethane) by Gas Chromatography

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file.</li> <li>Sample data package including case narrative, QC data; and raw data.</li> <li>Shipping and receiving documents.</li> <li>Afl lab records of sample receipt: preparation and analysts.</li> </ol>	All required deliverables were present in the data package.		
coċ	<ol> <li>Sample custody documentation</li> <li>Temperature 4±2°C</li> <li>No sample preservation required.</li> <li>Sample delivery documentation.</li> </ol>	Coolers tomperature upon arrival at Alpha was 2°C. The laboratory sample receipt and log in checklist indicates that sample integrity was maintained during transport.		
Hahling Time	<ol> <li>Aqueous unpreserved sample 7 days and aqueous preserved 14 days.</li> <li>If analysis HT exceeded flag all detected results "J" and nondetected results "UJ"</li> <li>If HT growsly exceeded (≥ 3x IIT) flag all detected results "J" and nondetected results "R"</li> </ol>	Samples were analyzed within holding time.		
Initial Calibration	<ol> <li>Minimum of 5 standards.</li> <li>Compounds with RSDs ≤ 15% or "r" ≥ 0.99, values flag detected results "J" and nondetected results "U"</li> <li>BCV recovery 80% or 120%.</li> </ol>	Initial calibration met established criterat. Calibration was performed on 11/21/2007.		
Continuing Calibration Verification (CCV)	<ul> <li>1) No qualification if recovery between 80 – (20%)</li> <li>a) "rR &gt;120 or 130% (lag detected results "J" b) "rR &lt;80 or 70% flag detected results "J" and nonderected results "U"</li> </ul>	CCV recovery was within acceptance limits.		



Dissolved Gases (Methane and Ethane) by Gas Chromatography

#### February 3, 2008 I Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualification5	Bias
Blanks (Method: Trip, Field, Rimate, efc.)	<ol> <li>Every 20 samples prior to running samples and after calibration standards:</li> <li>Matrix and preservative specific:</li> <li>Target analytes must be &lt; RL</li> <li>Apply TB, FB, RB results to samples with same collection date.</li> </ol>	Methane was detected in the method blank WG308658-2 at a concentration of 0.16 ug/L Methane, at 0.66 ug/L, was detected in EQG-011008 and EQP-011008. respectively	Methane concentrations in all associated samples were more than 5 unres the method blank and/or equipment blanks concentrations. Data usability is not adversely afforded by the blanks detections	None
Laboratory Control Sample/ Laboratory Control Sample Duplicare (LCS/LCSD) Recoveries	<ol> <li>70-130% recovery; &lt;25% RPD         <ul> <li>(%R&lt;70% flag detected results "T" and nondetected results "U"</li> <li>(%R&lt;10% flag detected results "T"</li> <li>(%R&lt;10% flag detected results "T" and nondetected results "R"</li> <li>2) Qualify all associated samples.</li> </ul> </li> </ol>	LCS/LCSD recoveries and the RPD were within acceptance criteria		
Laboratory /Field Duplicate	1) RPD > 25%	Sample SHM-99-31A-011008 was analyzed to doplicate by the laboratory. Sample DUP-010908 was the collected as a field duplicate of sample SHM-05-41B- 010908. The RPDs were within acceptance criteria.		
M5/M8D	<ol> <li>No qualification required it recovery between 70-130%.</li> <li>If background concentration is greater than 4x the spike concentration qualification is not required</li> <li>RPD&gt;30% flag detected results "1"</li> </ol>	Sample SHM-05-41B-010908 was used as sample source for MS/MSD. The recoveries and RPD were within acceptance criteria.		



Dissolved Gases (Methane and Ethane) by Gas Chromaingraphy

#### February 3, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bías	
Compound Quantilation	<ol> <li>Qualify detected results with concentrations greater than the highest ICAL standard concentration "J"</li> <li>Positive results reported above the MIDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	Ethane from samples SHM-05-39A- 010908, SHM-05-41C-010908, and SHM-05-31B-011008 was detected and reported between the MDL and the RL. Samples SHM-05-42B-010908 and SHM-99-31C-011008 were analyzed at a 4-fold dilution and samples DUP-010908, EW-1-011008, EW-2-011008, SHM-05- 39A-010908, SHM-05-41B-010908, and SHM-99-31B-011008 were analyzed at a 10-fold dilution, in order to quantify the methane within the calibration range of the instrument. The laboratory reported both sets of results (initial and dilution) on the data tables.	AMEC J qualified the ethane results from the samples SHM-05-39A+ 010008, SHM-05- 41C-010908, and SHM-05-31B- 011008 on the data tables, with a TR (trace level) reason code. AMEC R qualified and rejected the initial methane resulta from the affected samples, with a Z (not applicable) reason code.	Estimation	
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold (imes.</li> </ol>	No anomalies.			

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely,

AMEC Earth & Environmental, Inc.

PREPARED BY:

interve he that

Melanie Roshu Environmental Chemist

REVIEWED BY:

Corner Adulante

Denise Ladebauche Environmental Chemist

#### TABLE 4 Data Validation Qualifiers Fort Devens, Shepley's Hill Landfill DVR_SDG_L0800400

Sample ID	Sample Date	EPA Analytical Method	Lab Sample (D	Analyte	Result	Units	Validation Qualifiers	Reason Code
EW-1-011008	1/10/2008		L0800400-11	METHANE	>1026	lug/l	R	Z
EW-2-011008	1/10/2008		L0800400-09	METHANE	>1026	ug/I	R	Z
SHM-05-39A-010908	1/9/2008		L0800400-08	METHANE	>1026	ug/l	R	Z
SHM-05-39A-010908	1/9/2008		L0800400-08	ETHANE	0.478	ug/I	3	TR
SHM-05-41B-010908	1/9/2008		L0800400-05	METHANE	>1026	lug/I	R	Z
SHM-05-41C-010908	1/9/2008		L0800400-03	ETHANE	0.339	ug/l	3	TR
SHM-05-42B-010908	1/9/2008		L0800400-07	METHANE	>1026		R	Z
SHM-99-31B-011008	1/10/2008		L0800400-13	METHANE	>1026		R	2
SHM-99-31B-011008	1/10/2008		L0800400-13	ETHANE	0.4	ug/l	1	TR
SHM-99-31C-011008	1/10/2008		L0800400-14	METHANE	>1026	-	R	Z
DUP-010908	1/9/2008		L0800400-10	METHANE	>1026		R	Z

#### Validation Qualifiers:

R

υ

114

1B

2

The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively datermine whether the analyte is present or absent in the sample

The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during data quality review are typically a result of detections of target analytes in field, trip, or laboratory blanks.

The J qualifier Indicates that the associated result is quanitatively incentain. J qualifiers added ouring validation may indicate a concentration between the method detection time (MDL) and the method reporting limit (MRL) or a data limitation related to a QC element that exceeds required acceptance limits.

The UJ qualifier indicates reporting limit is estimated. UJ qualifiers added during validation may indicate either a high or low bias related to a DC otherweit that exceeds required acceptance limits.

#### Reason Code:

Trace level detect Result not applicable. Alternate result into the data table

S.(Bata Validation/Fort Devens/DVRs/Groundwater Monitoring/Jan 08/Final Rot DVQ1_L0400400



Arsenie by USEPA Method 60204

January 28, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

#### INTRODUCTION

This data validation report covers one water sample collected on January 10, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The sample was dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on January 10, 2008 and assigned sample delivery group (SDG) number L0800407 upon receipt. Alpha analyzed the sample for total arsenic using USEPA Method 6020A. The associated field sample identification (ID) and Alpha sample ID is presented in Table 1.

The level of data validation specified in Table 2 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

#### EXECUTIVE SUMMARY

All data is generally usable and of good quality.

Arsenic was detected and reported at 3.0 µg/L concentration.

#### Table 1. Field Sample List

Lab Sample Number	Field 1D	Comments		
L0800407-01	EFP-011008			

#### Table 2. Sample Status

Data Validation Level	ition Matrix Preservation Temperature Laboratory		Laboratory	SDG Number	
They II	Ациетия	As required by method	One sample cooler was received on 01/10/2008 at a temperature of 2°C	ed on 01/10/2008 8 Walkup Drive, Westborough.	



#### January 28, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

#### Table 3. Arsenic by USEPA 6020A

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file.</li> <li>a Sample data package including case narrative, QC data and raw data.</li> <li>b Shupping and receiving documents.</li> <li>All lab records of sample receipt. preparation and analysis.</li> </ol>	All required deliverables were present in the data package:		
COC	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C for scols.</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 2°C. The sample was- transported to the laboratory, directly from the sampling site. Sample was preserved with HNO3 to pH<2. The Chain of Custody is inder The laboratory Sample Receipt and Log-in Checklist indicates that sample integrity was maintained during transport.		
Holding Time	<ol> <li>Aqueous sample 180 days if preserved to pH&lt;2</li> <li>Hg - 28 days to analysis</li> </ol>	The sample was analyzed within holding time.		
ICP-MS Tune	<ol> <li>Tuning solution analyzed of feasi four times. RSD ≤ 5% for each component.</li> <li>Mass calibration not within 0.1 AMU, qualify detected results "J" and nondetected results "UI"</li> </ol>	The tune standard met established priteña		
Initial Calibration	<ul> <li>b) Correct calibration standards. At least 3 standards points not forced through zero, are required for linear calibration, (≥0,995 (EPA Method 6010/6020/7470).</li> <li>c) r²≥0.995, quadratic calibration (at least 6 points, not forced through zero).</li> </ul>	Initial calibration met established coteria		
2 nd Source Initial Calibration Verification (ICV)	<ol> <li>Fallowing the calibration,</li> <li>90-110% nearwary (EPA 6010/6020)</li> <li>75-89% recovery 1 quality detects and 111 quality nondetects.</li> <li>1011-125% recovery, 1 quality detects.</li> <li>80-120% recovery (EPA 7470)</li> <li>RSD &lt;5% for the replicate</li> </ol>	ICV met acceptance criteria		



# January 28, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calibration Vertification (CCV)	<ol> <li>CCV using mid and high level standards, analyzed after every 10 samples and at the end. of batch.</li> <li>Concentrations 80-120% (EPA Method 7470) and 90-110% of expected value (EPA Method 5010/6020) a) CCV &gt;120% (EPA Method 7470) or 110% (EPA Method 6010/6020); ) qualify detects, no qualification is necessary for non-detects.</li> <li>CCV &lt;80% (EPA Method 7470) or 90% (EPA Method 6010/6020); ) qualify detects; b) CCV &lt;80% (EPA Method 7470) or 90% (EPA Method 6010/6020); ) qualify detects; UJ qualify non-detects</li> <li>CCV outside 65-(35%, reject data</li> </ol>	All CCV recoveries were within acceptance limits.		
Calibration Range/ Results	<ol> <li>Results &gt;Upper collibration range I qualify detects.</li> <li>Results <method limit,="" reporting="">method detection limit; I qualify detects (estimated).</method></li> </ol>	Arsenic was detected and reported within the calibration range.		
Blanks (Method, Field, Equipment, Rinsato, etc.)	<ol> <li>Evaluate down to the MDL.</li> <li>If sample result is &lt;5x contaminant concentration; flag "U"</li> <li>Sample result ≥5x contaminant concentration; no qualification required.</li> </ol>	Arsenic was not detected in the associated method blank		
Initial Calibration Blanks and Continuing Calibration Blanks (ICB/CCB)	<ol> <li>ICB and CCB after every ten samples or every batch whichever is greater.</li> <li>Evaluate absolute values down to the MDL.</li> <li>Sample results &lt; 5v blank sample. U qualify detects</li> <li>Sample results &gt;5v blank level, no action required.</li> </ol>	Arsenic was not detected in the CCBs at concentrations greater than the method-detection limit. Arsenic was detected in the ICB at 0.0001 mg/L	The detected sample concentration, at 0.0030 mg/L, was more than 5 times the concentration detected in the ICB. Data usability is not affected by the ICB detection.	None
Negative blanks	<ol> <li>If the blank has a negative result with an absolute value &gt;MDL_ quilify detected results &lt;5× the absolute value of the contaminant concentration as estimated "1" and qualify numbered results "Uf"</li> </ol>	No negative blank concentrations- were detected		
Interelement checks ICS-A/ICS- AB Instrument performance check.	<ul> <li>1) No qualification required if recovery between 80-120%.</li> <li>a)%R&lt; 80% flag detected results "J" and condetected results "UI"</li> <li>b) %R &gt;120% flag detected results "J"</li> <li>c) %R&lt;10% flag detected results "J" and mindetected results "R".</li> </ul>	ICS-A/ICS-AB recoveries were within acceptance limits		



# January 28, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
loternal Standards (IS)	<ol> <li>Intensity of IS must be 30-120% of intensity of IS in the initial calibration standard, a)%R&lt;30% flag detected results "I" and nondetected results "UI"</li> <li>b) %R &gt;120% flag detected results "I" and nondetected results "UI"</li> </ol>	IS recoveries were within the acceptance limits.		
Laboratory Control Sample/ Laboratory Control Sample Duplicate (LCS/LCSD) Recovery	<ol> <li>LCS acceptance limits 80-120%, method requirements (EPA Method 6010/6020/7470)</li> <li>a) %R&lt;80% flag detected results "J" and monderected results "UI"</li> <li>b) %R&gt;120% flag detected results "J"</li> <li>c) %R&lt;10% flag detected results "J" and nondetected results "R"</li> <li>Qualify all associated samples.</li> </ol>	The LCS/LCSD recoveries were within acceptance lumits at 99% and 102%.		
Laboratory Duplicate RPD	<ol> <li>RPD ≤ 20%</li> <li>a) If exceeds RPD limit, 1 qualify detects, UJ qualify non-detects.</li> <li>b) If one result &gt; MRL and other ND; 1-detections, UJ qualify non-detects</li> <li>2) ± MRL for results ≤ 5x the MRI.</li> </ol>	No laboratory duplicine was associated with this sample.		
Field Duplicate RPD	<ol> <li>RPD ≤ 30% (waters); ≤ 40% (soils)</li> <li>a) If exceeds RPD limit: J qualify detects. Ut qualify non-detects.</li> <li>b) If one result &gt; MRL, and other ND, J- detections, UJ qualify non-detects.</li> <li>2) ± MRL for results≤ 5v the MRL</li> </ol>	No field duplicate was associated with this SDG.		
MS/MSD Recovery	<ol> <li>MS/MSD acceptance limits are 75-125% (EPA Method 6000/7000).</li> <li>Qualify results in the batch or of similar type</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10%. J qualify detects, R qualify non detects</li> <li>Recoveries &lt;75% flag detected results "J" and nondetected results "J"</li> <li>Recoveries &gt;125% flag detected results "J"</li> </ol>	No MS/MSIJ was associated with this SDG.		



#### January 28, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Post D(gestion Spike (PDS)	<ol> <li>Acceptance limits are 75-150% (EPA Method 5000/7000).</li> <li>Qualify results in the batch or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10% J qualify detects. R qualify non detects.</li> <li>Recoveries &lt;75% flag detected results "J" and nondetected results "U" c) Recoveries &gt;125% flag detected results "T"</li> </ol>	PDS recovery was within acceptance limits at 104%		
Serial Dilation	<ol> <li>Once per digestion batch (EPA 6000 series)</li> <li>≤10% for intulytes with concentration &gt;50- times MDL.</li> <li>%D&gt;10% flag detected results "J"</li> </ol>	The %D for the SD performed on sample EFF-011008 rould not be evaluated due to sample concentration less than 50 times the MDL.		
Compound Quantitation	<ol> <li>Instrument level concentrations should be less than the linear dynamic range (LDR).</li> <li>Qualify detected results with concentrations greater than the LDR "I"</li> <li>The reported MRL should not be below the lowest ICAL standard conventration a) Positive results reported above the MDL but below the RL should be considered estimated and be flagged "I"</li> </ol>	Arsenic was reported as detected and the required reporting limit of 0.003 mg/L was mer.		
Överall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Bvaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalies.		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely,

AMEC Earth & Environmental, Inc.

PREPARED BY:

And Mar 190: 1

Melanie Roshu Environmental Chemist

AMEC Jub No. 575340005 003 0009 Laboratory SDG: 1/0800407 REVIEWED BY:

Com Stational

Denise Ladebauche Environmental Chemist



March 11, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

#### INTRODUCTION

This data validation report covers one water sample collected on February 13, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The sample was dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on February 14, 2008 and assigned sample delivery group (SDG) number L0802104 upon receipt. Alpha analyzed the sample for total arsenic using USEPA Method 6020A. The associated field sample identification (ID) and Alpha sample ID is presented in Table 1.

The level of data validation specified in Table 2 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

## EXECUTIVE SUMMARY

All data is generally usable and of good quality.

Arsenic was detected and reported at 3.0 µg/L concentration.

#### Table 1. Field Sample List

Lab Sample Number	Field ID	Comments	
£0802104-01	EFF-021308	3 ppb detection limit	

#### Table 2. Sample Status

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Tier II.	Аquepus	As required by method	One sample cooler was received on 02/14/2008 at a temperature of 2°C	Alpha Woods Hole Laboratory. 8 Walkup Drive, Westborough, MA 01581	L0802104



#### March 11, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

# Table 3. Arsenic by USEPA 6020A

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ul> <li>Description of the second se</li></ul>	All required deliverables were present in the data package:		
COC.	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C for soils.</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 2%C Sample was preserved with HNO3 to pH<2 The Chain of Custody is intact. The laboratory Sample Receipt and Log-to Checklist indicates that sample integrity was maintained during transport.		
Holding Time	<ol> <li>Aqueous sample 180 days if preserved to pH&lt;2</li> <li>Hg - 28 days to analysis</li> </ol>	The sample was analyzed within holding time:		
ICP-MS Tune	<ol> <li>Tuning solution analyzed at least four times. RSD \$ 5% for each component.</li> <li>Mass calibration not within 0.1 AMU, quality detected results "J" and nondetected results "JU"</li> </ol>	The tune standard met established effiería.		
Initial Calibration	<ol> <li>Correct calibration standards. At least 3 standards points not forced through zero, are required for linear calibration, r≥0.995 (EPA Method 6010/6020/7470).</li> <li>r²≥0.995, quadratic calibration (at least 6 points, not forced through zero).</li> </ol>	Initial calibratiun mei established criteria		
2 nd Source Initial Calibration Verification (ICV)	<ol> <li>Following the calibration</li> <li>905110% recovery (EPA 5010/6020)</li> <li>75589% recovery. J qualify detects and UJ qualify nondetects.</li> <li>111-125% recovery, J qualify detects.</li> <li>805120% recovery (EPA 7470)</li> <li>RSD &lt;5% for the replicate</li> </ol>	ICV met wereplande et fresta.		



# March 11, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calibration Vertification (CCV)	<ol> <li>CCV using mid and high level standards, analyzed after every 10 samples and at the end of balch.</li> <li>Concentrations 80-120% (EPA Method 7470) and 90-110% nf expected value (EPA Method 6010/6020);</li> <li>a) CCV &gt;120% (EPA Method 7470) or 110% (EPA Method 6010/6020); J qualify detects, my qualification is necessary for non-detects.</li> <li>b) CCV &lt;80% (EPA Method 7470) or 90% (EPA Method 6010/6020); J qualify detects; UI qualify non-detects.</li> <li>cCV notside 65-135%, reject data</li> </ol>	All CCV recoveries were within acceptance limits.		
Calibration Range/ Results	<ol> <li>Results &gt;Upper calibration range 4 qualify detects.</li> <li>Results <method limit,="" reporting="">method detection limit; 1 qualify detects (estimated).</method></li> </ol>	Acceme was detected and reported within the calibration range.		
Blanks (Method, Field, Equipment, Rinsate, etc.)	<ol> <li>Evaluate down to the MDL.</li> <li>If sample result is &lt;5x contaminant concentration: flag "U"</li> <li>Sample result ≥5x contaminant concentration: no qualification required.</li> </ol>	Arsenic was not detected in the associated method blank.		
Initial Calibration Blanks and Continuing Calibration Blanks (ICB/CCB)	<ol> <li>ICB and CCB after every ten samples or every batch whichever is greater.</li> <li>Evaluate absolute values down to the MDL.</li> <li>Sample results &lt; 5x blank sample. 1) quality detects</li> <li>Sample results &gt;5x blank level, no action required.</li> </ol>	Arsenic was not detected in the ICB or CCBs at concentrations greater than the method-detection limit.		
Negative blanks	1) If the blank has a negative result with an absolute value >MDL, qualify detected results ≤5× the absolute value of the contaminant concentration as estimated "J" and qualify nondetected results "UJ"	No negative blank concentrations were detected.		
Interelement checks ICS-AACS- AB Instrument performance check	1) No qualification required if recovery between 80-120% a)%R< 80% flag detected results "1" and nondetected results "UT" b) %R >120% flag detected results "1" c) %R<10% flag detected results "1" and nondetected results "R"	ICS-A/ICS-AB recoveries were within acceptance limits.		
louernal Standards (15)	1) Intensity of IS must be 30-120% of intensity of IS in the initial enliberation standard, a) $\%$ R<30% flag detected results "T" and monderected results "U!" b) % R >120% flag detected results "J" and nonderected results "U!"	IS recoveries were within the acceptance limits.		



### March 11, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Laboratory Control Sample/ Laboratory Control Somple Duplicare (LCS/LFSD) Recovery	1) LCS acceptance limits 80-120%, method requirements (EPA Method 10010/6020/7470) a) %R<80%. Bag detected results "J" and nondetected results "U" b) %R>120% flag detected results "J" c) %R<10% flag detected results "J" and nondetected results "R" Qualify all associated samples.	The LCS/LCSD recoveries were within acceptance fimits at 98% and 9697 respectively.		
Laboratury Duplicare RPD	<ol> <li>RPD = 20%</li> <li>a) If exceeds RPD limit: <i>I</i> qualify detects. UJ qualify num detects.</li> <li>b) If one result &gt; MR1, and other ND; J- detections. UJ qualify non detects.</li> <li>2) ± MR1, for results ≤ 5s the MR1.</li> </ol>	No laboratory duplicate was associated with this sample.		
Field Daplicare RPD	<ol> <li>RPD ≤ 30% (waters); ≤ 40% (soils)</li> <li>a) If exceeds RPD limit: J qualify detects, UJ qualify non-detects.</li> <li>b) If one result &gt; MRL and other ND; J-detections, UJ qualify non-detects</li> <li>2) ± MRL for results ≤ 5x the MRL.</li> </ol>	No field duplicate was associated with this SDG.		
MS/MSD Recovery	<ol> <li>MS/MSD acceptance limits are 75-125% (EPA Method 6000/7000).</li> <li>Qualify results in the balck or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10% J qualify detects, R qualify non detects</li> <li>Recoveries &lt;15% flag detected results "J" and nondetected results "J"</li> <li>Recoveries &gt;125% flag detected results "J"</li> </ol>	No MS/MSD was associated with this SDG		
Post Digestion Spile (PDS)	<ol> <li>Acceptance limits are 7.5.150% (EPA Method 6000/7000).</li> <li>Quality results in the batch or of similar type:</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10% J qualify detects. R qualify non detects</li> <li>Recoveries &lt;75% flag detected results "J" and nondetected results "UJ"</li> <li>Recoveries &gt;125% flag detected results "J"</li> </ol>	The PDS was performed on sample EFF-021308. The recovery was within acceptance limits at 102%.		
Serial Dilution	<ol> <li>Once per digestion batch (EPA 6000 series)</li> <li>≤10% for analytes with concentration &gt;50- times MD1</li> <li>5) % D&gt;10% flag detected results "I"</li> </ol>	The %D for the SD performed on sample EFF-021308 could not be evaluated due to sample concentration less than 50 times the MDL.		



### March 11, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Compound Quantitation	<ol> <li>Instrument level concentrations should be less than the linear dynamic range (LDR).</li> <li>a) Qualify detected results with concentrations greater than the LDR "J"</li> <li>2) The reported MRL should not be below the lowest ICAL standard concentration.</li> <li>a) Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	Arsenic was reported as detected and the required reporting limit of 0.003 mg/L was met.		
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalies.		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely,

AMEC Earth & Environmental, Inc.

PREPARED BY:

Kaday ARGIR.

Melanie Roshu Environmental Chemist

REVIEWED BY:

Cerus Indelanch -

Denise Ladebauche Environmental Chemist



Metals by USEPA Methods 6000/7000 Anions by USEPA Methods 600.0/353.2

March 26, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

#### INTRODUCTION

This data validation report covers three primary water samples collected on March 6, 2008 from the Shepley's Hill Landfill at the former Fort Davens, in Ayer, Massachusetts. The samples were dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on March 6, 2008 and assigned sample delivery group (SDG) number L0803144, upon receipt. Alpha analyzed the samples for total metals using USEPA 6000/7000 methods; chloride and sulfate using USEPA Method 300.0; and, nitrate using USEPA Method 353.2. The associated field sample identification (ID) and Alpha sample IDs are presented in Table 2.

AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3 and Table 4. The level of data validation specified in Table 1 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. For Tier II data review data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

#### EXECUTIVE SUMMARY

All data is generally usable and of good quality. Any limitations on the data are listed below.

#### Table 1. Sample Status

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Tier II	Aqueous	As required by method	One sample cooler was received on 03/06/08 at a temperature of 8°C	Alpha Woods Hole Laboratory, 8 Walking Drive, Westborough, MA/01581	L0803144

#### Table 2. Field Sample List

Lab Sample Number	Field ID	Comments
L0803144-01	EFF-030608	Metals, Anions
L0803144-02	EW01-030608	Analyzed only for As. Fe. Mu
L0803144-03	EW02-030608	Analyzed only for As. Fe. Mn



Metab by USEPA Methods 6000/7000 Anions by USEPA Methods 300.0/353.2

#### March 26, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

# Table 3. Metals by USEPA Methods 6010B, 6020A, and USEPA Method 7470A

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file.</li> <li>a. Sample data package including case narrative, QC data and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt preparation and analysis.</li> </ol>	All required deliverables were present in the data package		
cóc	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2 °C for soils.</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 3°C. Samples were preserved with HNO ₇ to pH<2. The Chain of Custody is intact. The laboratory sample receipt and log in checklist indicates that samples integrity was maintained during transport.	Samples were not affected by the temperature outside of acceptance limits, in consideration of the short time from sample collection to delivery to the laboratory.	None
Holding Time	<ol> <li>Aqueous sample 180 days if preserved to pH&lt;2</li> <li>Hg -28 days to analysis.</li> </ol>	Samples were analyzed within holding time:		
ICP-M5 Tune	<ol> <li>Tuning solution analyzed at least four times. RSD ≤ 5% for each component.</li> <li>Mass entibration not within 0.1 AMU quality detected results "T" and nondetected results "U".</li> </ol>	ICP-MS Tune met acceptance criteria.		
Innial Calibration	<ol> <li>Correct calibration standards. At least 3- standards points not forced through zero are required for linear calibration, r≥0.995 (EPA Method 6010/6020/7470).</li> <li>r² ≥0.995, quadratic calibration (at least 6 points, not forced through zero).</li> </ol>	Initial calibration met established criteria.		
2 nd Source Initial Calibration Verification (ICV)	<ol> <li>Following the calibration</li> <li>90-110% recovery (EPA 6010/6020)</li> <li>75-89% recovery (I qualify detects and U) qualify nondetects.</li> <li>1111-125% recovery J qualify detects.</li> <li>80-120% recovery (EPA 7470)</li> <li>RSD &lt;5% for the replicate</li> </ol>	ICVs unes acceptance criteria		



## March 26, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Metals by USEPA Methods 6000/7000 Anions by USEPA Methods 500.0/355.2

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calibration Verification (CCV)	<ol> <li>CCV using mid and high level standards; analyzed after every 10 samples and at the end of batch.</li> <li>Concentrations 80-120% (EPA Method 7470) and 90-110% of expected value (EPA Method 0010/6020).</li> <li>a) CCV &gt;(20% (EPA Method 7470) or 110% (EPA Method 6010/6020). J quality detects: no qualification is necessary for non-detects b) CCV &lt;80% (EPA Method 7470) or 90% (EPA Method 6010/6020). J quality detects: UJ quality ann detects.</li> <li>c) CCV outside 65-135%, reject data</li> </ol>	All CCV accoveries were within acceptance limits.		
Calibration Range/ Results	<ol> <li>Results &gt;Upper calibration range J quality detects.</li> <li>Results <method limit,="" reporting="">method detection limit; J qualify detects (estimated).</method></li> </ol>	Manganese (0.0008 mg/L) and mercury (0.00002 mg/L) from sample ETF-0.30608 were reported below (he method reporting limit.	These analytes were J qualified on the data tables, with a TR tirace level) reason code.	Estimation
Blanks (Method, Field, Equipment Rimate, etc.)	<ol> <li>Evaluate down to the MDL.</li> <li>If sample result is &lt;5x contaminant concentration; flag "U"</li> <li>Sample result ≥5x contaminant conventration no qualification required.</li> </ol>	No analytes were detected in the preparation blank associated with these samples		
initial Calibration Blanks and Continuing Calibration Blanks (ICB/CCB)	<ol> <li>ICB and CCF after every ten samples or every batch whichever is greater</li> <li>Evaluate absolute values down to the MDL.</li> <li>Sample results &lt; 5x blank sample. U qualify detects</li> <li>Sample results &gt;5x blank level, no action required.</li> </ol>	Silver was detected in the ICB (0.00078 mg/L) and CCB (0.00119 mg/L) associated with sample EFF- 030608.	Silver was not detected in sample EFF-030608; therefore data usability is not affected.	None:
Negative blanks	<ol> <li>If the blank has a negative result with an absolute value &gt;MDL, quality detected results &lt;5x the absolute value of the contaminant concentration as estimated "T" and qualify mondetected results "U."</li> </ol>	No negative blank concentrations were detected.		
Interelement checks ICS-AACS- AB Imagument performance Queck	<ol> <li>No qualification required if recovery between 80-120%.</li> <li>a)%R&lt; 80% flag detected results "I" and nondetected results "UI"</li> <li>b) %R &gt;120% flag detected results "I"</li> <li>c) %R&lt;10% flag detected results "J" and nondetected results "R"</li> </ol>	ICS-A/ICS-AB recoveries were within acceptance limits, except for calcium at 79% in the IC5-A	AMEC J qualified the detected calcium result from sample EFF- 030608, with an I (Instrument performance) reason code.	Low



# March 26, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Metals by USEPA Methods 6000/7000 Antons by USEPA Methods 300.0/353.2

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
laternal Standards (IS)	<ol> <li>Intensity of IS must be 30-120% of intensity, of IS in the mitial calibration standard, a)%R&lt;30% flag detected results "1" and mondetected results "U1"</li> <li>b) %R &gt;120% flag detected results "J" and nondetected results "U1"</li> </ol>	All internal standards %R were within acceptance limits.		
Laboratory Control Sample/ Laboratory Control Sample Duplicate (LCS/LCSD) Recovery	<ol> <li>LCS acceptance limits 80-120%, method requirements (EPA Method 6010/6020/7470)</li> <li>a) "R&lt;80% flag detected results "J" and nondetected results "U"</li> <li>b) %R&gt;120% flag detected results "J"</li> <li>c) "R&lt;10% flag detected results "J" and nondetected results "R"</li> <li>Qualify all associated samples.</li> </ol>	The LCS/LCSD recoveries were within acceptable limits.		
Laboratory Duplicate RPD	<ol> <li>RPD ≤ 20%</li> <li>a) If exceeds RPD limit: J qualify detects, UJ qualify non-detects.</li> <li>b) If one result &gt; MRL and other ND; J-detections, UJ qualify non-detects</li> <li>2) ± MRL for results ≤ 5x the MRL</li> </ol>	No laboratory duplicate was associated with this SDG.		
Field Duplicate RPD	<ol> <li>RPD &gt;20% waters (&gt;30% soils)</li> <li>For detected results more than 5 times their PQLs flag "J"</li> <li>Differences in concentrations &gt; the MRL for analytes with concentrations less than 5 times their PQLs, flag "J"</li> </ol>	No field doplicate was associated with this SDG		
MS/MSD Recovery	<ol> <li>MS/MSD acceptance timits are 75-125% (EPA Method 6000/7000).</li> <li>Quality results in the batch or of similar type.</li> <li>If background concentration is not required a) Recoveries &lt;10% J qualify detects. R qualify non-detects</li> <li>Recoveries &lt;75% flag detected results "J" and nondetected results "U" c) Recoveries &gt;125% flag detected results "J"</li> </ol>	No MS/MSD was associated with (ho, SDG.		




Anions by USEPA Methods 300.0/353.2

#### March 26, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Qualifications Bias Samples affected Acceptance Criteria Items AMEC I qualified 1) Acceptance limits are 75-150% (EPA) Sample EFF-030608 was used as Low source for the PDS. The recoveries the calcrom result Mathod 6000/7000). from sample EFF-2) Qualify results in the batch or of similar were within acceptance limits, except 030608, with a P for calcium at 70%. IVDC. (PDS recovery) 3) If background-concentration it paix spike Post reason code. concentration qualification is not required Digestion a) Recoveries <10% J qualify detects, R Spike (PDS) qualify non detects h) Recoveries <75% flag (letected results, "I" and numberented results "UI" c) Recoveries >125% Rag detected results "J" 1) Once per digestion batch (EPA 6000 series) The laboratory performed serial dilution analyses on sample EFF-2) <10% for analytes with concentration >50-Serial 030608. The 'Ds were less than 109umes MDL Dilution for sample concentrations more than 51 %D>10% flag detected results "F" 50 times the MDL. AMEC I qualified 1) Instrument level concentrations should be Manganese (0.001) mg/L) and Estimation the manganese and less than the linear dynamic range (LDR), mercury (0,00002 mg/L) were detected a) Qualify detected results with concentrations mercury results below the R1, of 0.01 mg/L and 0.0002 greater than the LDR "J" mg/L respectively in sample EFFwith a TR (trace Compound level) reason code. 2) The reported MRL should not be below the 030608. Quantitation lowest ICAL standard concentration. a) Positive results reported above the MDL had below the RL should be considered estimated. and be flagged "1" 11 Appropriate method, No anomalics, 2) Evaluate any analytical problems with Overall laboratory results. Evaluation of 3) Evaluate sampling errors - field Data contamination, sample hold times.

Table 4.	Nitrate by	<b>USEPA 353.2</b>	, and Chloride and	I Sulfate by	USEPA 300.00
----------	------------	--------------------	--------------------	--------------	--------------

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Daia Campleteness	<ol> <li>Complete SDG file.</li> <li>Sample data package including case narrative. QC data and raw data.</li> <li>Shipping and receiving documents.</li> <li>All lab records of sample receipt, preparation and analysis.</li> </ol>	All required deliverables were present in the data package.		
çoç	<ol> <li>Sample envirody documentation.</li> <li>Temperature 4±2°C</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 8°C The laboratory sample receipt and log to checklist indicates that sample integrity was maintained during transport.	The sample was not affected by the temperature outsule of acceptance limits, in consideration of the	None



Metals by USEPA Methods 6000/7000 Automs by USEPA Methods 300.0/353.2

# March 26, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
			short time from sample collection to delivery to the laboratory.	
Halding Times (HT)	<ol> <li>28 days, preservation not required (Chloride, Sulfate) (EPA Method 300.0)</li> <li>48 hours, preservation not required (Nitrate-N)(EPA Method 353.2)</li> </ol>	The sample was analyzed and preserved as per EPA Method requirements.		
Initial Calibration	<ol> <li>r≥ 0.99 for chloride, sulfate and nitrate, linear calibration</li> <li>Analytes with low r &lt;0.99 flag detected results "J" and nondetected results "U"</li> <li>Use professional judgment if not chough points were used for curves. Determine if system imprecision or bias</li> </ol>	Initial calibration criteria were met. Chloride and suffare calibration was performed on 01/16/2008, Nitrate calibration was performed on 03/06/2008.		
ICV/CCV	<ol> <li>No qualification if recovery between 90-110% (chloride, sulfare and nitrate) and 85- 115% (cyanide).</li> <li>a) %R ≥110% (chloride, sulfare and nitrate) and 115% (cyanide) flag detected results "1" h) %R &lt;90% (chloride, sulfare and nitrate) and 85% (cyanide) flag detected results "1" and nondetected results "U1"</li> </ol>	ICVs were within acceptance limits.		
Blonks (Method, Field, Equipment, Rinsaue, euc.)	<ul> <li>1) If sample result is &lt;5x contaminant concentration and between MDL and MRL. raise result in MRL and flag "U"</li> <li>2) If sample result is &lt;5x contaminant concentration and ≥ MRL flag "U"</li> <li>3) Sample result ≥5x contaminant concentration; no qualification required.</li> </ul>	No nitrate, chloride, or sulfate were detected in the associated method blank		
ICBs/CCBs	<ol> <li>Evaluate absolute values down to the MDL, Evaluate ICBs/CCBs that bracket samples.</li> </ol>	(CB/CCBs were analyzed every )() samples with no detections.		
LCS.	<ul> <li>1) No qualification (Freeovery between 80-120%)</li> <li>a) "cR&lt;80" (hag detected results "T" and nondetected results "U")</li> <li>b) % R &gt;120% (hag detected results "T")</li> <li>c) % R &lt;10% (hag detected results "T") and nondetected results "R")</li> </ul>	LCS recoveries were willin acceptance enterin		
Lab Duplicatz	<ol> <li>20% ≤RPD, RPD &gt;20% flag detected results "J" and nondetected results "U"</li> <li>± MRL for results ≤ 5x the MRL. Difference &gt;MRL, flag detected results "J" and nondetected results "U"</li> </ol>	Sample EFF-030608 was analyzed in duplicate for chibride sulfate, and nitrate. The RPDs were within acceptance criteria.		



#### March 26, 2008 Region J Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Metals by USEPA Methods 6000/7000 Anions by USEPA Methods 300.0/353.2

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Field Duplicates	1) RPD $\leq 20\%$ for aqueous samples ( $\leq 30\%$ soil samples) for analytes with concentrations more than 5 times their PQLs, and concentrations within one MRI, for analytes with concentrations less than 5 times their PQLs	No field duplicate was collected with this SDG.		
M5/MSD	<ol> <li>No qualification required If recovery between 75:125%</li> <li>If background concentration is greater than 4s the spike concentration qualification is non- required.</li> <li>R&lt; 75% flag detected results "1" and nondetected results "U".</li> <li>R&lt; 125% flag detected results "T".</li> <li>R&lt;10% flag detected results "T" and nondetected results "R".</li> <li>Qualify only results in the spiked sample. (Qualify results for samples collected at same location but differing deptile as well).</li> </ol>	Sample EFP-030608 was used as the source sample for MS/MSD for chloride and suffate. The recoveries were within acceptance criteria.		
Compound Quantitation	<ol> <li>1) Justimment level concentrations should be less than the linear range. Qualify detected results with concentrations greater than the LDR. "I"</li> <li>2) The reported RL should not be below the lowest ICAL standard concentration.</li> <li>3) Positive results reported above the MDL but below the RL should be considered estimated and be flagged "I"</li> </ol>	Sulface and nitrate were reported as detected above the method reporting limits. Chloride was reported at an elevated reporting limit, due to dilution needed to bring the concentration of the sample within the calibration range.	No qualification is required	None
Overali Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomatics.		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400. Sincerely,

AMEC Earth & Environmental, Inc.

PREPARED BY:

When the thoras

Melanie Roshu Environmental Chemist

AMEC Juli No. 575240005 003 0003 Laboratory SDG: 1:0803144 REVIEWED BY:

Conner Stillings

Denise Ladebauche Environmental Chemist



May 5, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

#### INTRODUCTION

This data validation report covers one water sample collected on April 10, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The sample was dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on April 10, 2008 and assigned sample delivery group (SDG) number L0805053 upon receipt. Alpha analyzed the sample for total arsenic using USEPA Method 6020A. The associated field sample identification (ID) and Alpha sample ID is presented in Table 1.

The level of data validation specified in Table 2 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

#### EXECUTIVE SUMMARY

All data is generally usable and of good quality.

Arsenic was detected and reported at 1.0 µg/L concentration

#### Table L. Field Sample List

Lab Sample Number	Field ID	Comments	
L0805053401	EFF-041008	5 ppb detection limit	

#### Table 2. Sample Status

Data Validation Level	Matris	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Tier II	Αцαερος	As required by method	One sample codler was received on 04/10/2008 at a temperature of 4°C.	Alpha Woods Hole Laboratory, 8 Walkup Drive, Wextborough, MA-01581	£0805053



# May 5, 2008 Region 1 Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

## Table 3. Arsenic by USEPA 6020A

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file.</li> <li>a. Sample data package meloding case narrative, QC data and now data</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt, preparation and analysis.</li> </ol>	All required deliverables were present in the data package:		
COC	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C for soils</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 4°C. Sample was preserved with HNO3 to pH<2. The Chain of Custody is totact. The laboratory Sample Receipt and Log-in Checklist indicates that sample micgrity was maintained during transport.		
Holding Time	<ol> <li>Aqueous sample 180 days if preserved to pH&lt;2</li> <li>Bg = 28 days to analysis</li> </ol>	The sample was analyzed within holding time.		
ICP-MS Tune	<ul> <li>D Tuning solution analyzed at least four times.</li> <li>RSD ≤ 5% for each component.</li> <li>2) Mass calibration not within 0.1 AMU, quality detected results "T" and nondetected results "U".</li> </ul>	The tune standard met established criteria.		
Initial Calibration	<ol> <li>Correct calibration standards. At least 3 standards points not forced through zero, are required for linear calibration, r≥0.995 (EPA Method 6010/6020/7470).</li> <li>r²≥0.995, guadratic calibration (at least 6 points, not forced through zero).</li> </ol>	Initial calibration met established criteria		
2 nd Source- Initial Calibration Verification (ICV)	<ol> <li>Following the calibration</li> <li>90-110% recovery (EPA 6010/6020)</li> <li>75-80% recovery. J qualify detects and UJ qualify nondetects.</li> <li>10.11-125% recovery. J qualify detects.</li> <li>80-120% recovery (EPA 7470)</li> <li>RSD &lt;5% for the replicate</li> </ol>	ICV met acceptance triteria.		



# May 5, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calification Verification (CCV)	<ol> <li>CCV using mid and high level standards: analyzed after every 10 samples and at the end of batch.</li> <li>Concentrations 80-120% (EPA Method 7470) and 90-110% of expected value (EPA Method 6010/6020).</li> <li>CCV &gt;120% (EPA Method 7470) or 110% (EPA Method 6010/6020). J qualify detects, no qualification is necessary for non-detects.</li> <li>CCV &lt;80% (EPA Method 7470) or 90%.</li> <li>(EPA Method 6010/6020). J qualify detects, UJ qualify non-detects.</li> <li>CCV valid 65-135%, reject data</li> </ol>	All CCV recoveries were within acceptance finits		
Calibration Range/ Results	<ol> <li>Results &gt;Upper calibration range 1 quality detects.</li> <li>Results <method limit,="" reporting="">method detection limit; 1 quality detects (estimated).</method></li> </ol>	Arsenic was detected and reported within the calibration range.		
Blanks. (Method, Field, Equipment, Rinsate, etc.)	<ol> <li>Evaluate down to the MDL.</li> <li>If sample result is &lt;5x contaminant concentration. (Lag "U"</li> <li>Sample result ≥5x contaminant concentration, no qualification required.</li> </ol>	Arsenic was not detected in the associated method blank.		
Initial Calibration Blanks and Continuing Calibration Blanks (ICB/CCB)	<ol> <li>ICB and CCB after every ten samples or every batch whichever is greater.</li> <li>Evaluate absolute values down to the MDL.</li> <li>Sample results &lt; 5x blank sample. U quality detects</li> <li>Sample results &gt;5x blank level, oo action required</li> </ol>	Arsenic was not detected in the CCBs at concentrations greater flum the method-detection limit. Acsenic was detected in the ICB at 0.1 µg/L.	The concentration detected in the sample was more than 5 times the ICB concentration; therefore; data usability is not adversely affected.	
Negative blanks	<ol> <li>If the blank has a negative result with an absolute value &gt;MDL, qualify detected results S5x the absolute value of the contaminant concentration as estimated "J" and qualify nondetected results "UT".</li> </ol>	No negative blank concentrations, were detected.		
Interelement checks ICS-A/ICS- AB Instrument performance check	<ol> <li>No qualification required if recovery between 80-120%</li> <li>a)%R&lt; 80% flag detected results "T" and nondetected results "DJ"</li> <li>b) %R &gt;120% flag detected results "T"</li> <li>c) %R&lt;10% flag detected results "T" and nondetected results "R"</li> </ol>	ICS-A/ICS-AB recoveries were within acceptance limits.		
Internal Standards (15)	1) Intensity of IS must be $30-120\%$ of intensity of IS in the initial calibration standard, u)%R<30% flag detected results "J" and nondetected results "UJ" b) $\%R>120\%$ flag detected results "J" and nondetected results "UJ"	IS recoveries were within the acceptance limits.		



# May 5, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Laboratory Control Sample/ Laboratory Control Sample Dupficate (LCS/LCSD) Recovery	<ul> <li>1) LCS acceptance limits 80-120%, method requirements (EPA Method 6010/6020/7470)</li> <li>a) %R&lt;80% flag detected results "I" and nondetected results "U"</li> <li>b) %R&gt;120% flag detected results "J"</li> <li>c) %R&lt;10% flag detected results "J" and nondetected results "R"</li> <li>Qualify all associated samples.</li> </ul>	The LCS/LCSD recoveries were within acceptance limits at 93% and 98%, respectively.		
Laboratory Duplicate RPD	<ol> <li>RPD ≤ 20%</li> <li>a) If exceeds RPD limit: J qualify detects. UJ qualify non-detects.</li> <li>b) If one result &gt; MRL and other ND; J-detections, UJ qualify non-detects.</li> <li>2) ± MRL for results ≤ 5x the MRL.</li> </ol>	No laboratory duplicate was associated with this sample.		
Field Duplicate RPD	<ol> <li>RPD ≤ 30% (wmers); = 40% (soils)</li> <li>a) If exceeds RPD limit; J qualify detects, UJ qualify non detects.</li> <li>b) If one result &gt; MRL and other ND; J-detections, UJ qualify non detects</li> <li>2) ± MRL for results ≤ 5x the MRL.</li> </ol>	No field diplicate was associated with this SDG.		
MS/MSD Recovery	<ol> <li>MS/MSD acceptance limits are 75-125%. (EPA Method 6000/7000).</li> <li>Qualify results in the batch or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required</li> <li>Recoveries &lt;10% J qualify detects. R qualify non detects</li> <li>Recoveries &lt;75% flag detected results "J" and nondetected results "U"</li> <li>Recoveries &gt;125% flag detected results "J"</li> </ol>	No MS/MSD was associated with this SDG.		
Post Digestion Spike (PDS)	<ol> <li>Acceptance limits are 75-150% (EPA Method 6000/7000)</li> <li>Qualify results in the baladi or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10%. I qualify detects. R qualify non-detects b) Recoveries &lt;75% flag detected results "J" and nondetected results "Uf" e) Recoveries &gt;125% flag detected results "J"</li> </ol>	The PDS was performed on sample EFF-041008. The recovery was within acceptance limits at 108%.		
Serral Dilanon	<ol> <li>Direc per digestion batch (EPA 6000 series)</li> <li>≤10% for analytes with concentration &gt;50- times MDL</li> <li>%D&gt;10% flag detected results "J"</li> </ol>	The %D for the SD performed on sample EFF-041008 could not be evaluated due to sample concentration less than 50 times the MDL.		



### May 5, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Compound Quantitation	<ol> <li>Instrument level concentrations should be less than the linear dynamic range (LDR).</li> <li>a) Qualify detected results with concentrations greater than the LDR "J"</li> <li>2) The reported MRL should not be below the lowest ICAL standard concentration.</li> <li>a) Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	Arsenic was reported as detected and the required reporting limit of 0.003 mg/L was met.		
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalies.		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely,

AMEC Earth & Environmental, Inc.

PREPARED BY:

Marcie ha . Bushu

Melanie Roshu Environmental Chemist

REVIEWED BY:

Cenese Indelante

Denise Ladebauche Environmental Chemist



Metals by USEPA Methods 6010/6020 Other Inorganies by USEPA 2130B/2320B/300.0/9251/4500NO3-F

May 12, 2008 Region I Data Review Worksheet Other 1 Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

#### INTRODUCTION

This data validation report covers sixteen primary water samples, one field duplicate, and two field QC (equipment blank) samples collected on April 17, April 18, and April 21, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The samples were dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on April 17, April 18, and April 21, 2008 and assigned sample delivery group (SDG) numbers L0805420, L0805511, and L0805609, upon receipt. Alpha analyzed the samples for total metals using USEPA 6010/6020 methods. Iurbidity using Standard Method 2130B, total alkalinity using Standard Method 2320B, chloride using USEPA Method 9251, sulfate using USEPA Method 300.0, and nitrate-nitrogen using Standard Method 4500NO3-F. The associated field sample identifications (IDs) and Alpha sample IDs are presented in Table 1.

AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA and Standard Methods outlined in Table 3. Table 4 and Table 5. The level of data validation specified in Table 2 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and USEPA Region I Tier II Guidance. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

#### EXECUTIVE SUMMARY

All data is generally usable and of good quality. Any limitations on the data are listed below. Definitions of data qualifiers and summaries of specific qualifiers added to each affected sample as a result of the data validation findings are presented in Table 6 attached to this report.

Lab Sample Number	Field ID	Comments
1.0805420-01	SHM-05-42B-041708	
1.0805420-02	SHM-05-42A-041708	
1.0805420-03	SHM-96-5B-041708	
1.0805420-04	SHM-96-5C-041708	
1.0805420-05	SHL-59-041708	
1.0805420-06	SHL-8D-041708	
1.0805420-07	SHL-8S-041708	and the second se
1.0805609-01	5HM-96-22B-042108	MS/MSD was analyzed by laboratory on this sample
1.0805609-02	5HL-22-042108	MS/MSD was indicated by the COC on this sample
1.0805609-03	SHM-96-22C-042108	
L0805609-04	SHL-9-042108	
L0805609-05	SHM-05-41B-042108	
L0805609-06	SHM-05-41A-042108	
L0805609-07	SHM-05-41C-042108	
L0805511-01	SHL-21-041808	

# Table 1, Field Sample List



# May 12, 2008 Region I Data Review Worksheet Other I Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

Metals by USEPA Methods 6010/6020 Other Inorganics by USEPA 2130B/2320B/300.0/9251/4500NO34F

Lab Sample Number	Field ID	Comments
L0805511-02	DHL-23-041808	
L0805511-03	EQBLANK-P-041808	Field QC
L0805511-04	EQBLANK-G-041808	Field QC
0805511-05 DUP-041808		Field Duplicate of SHL-21-041808

# Table 2. Sample Status

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Tier II	Aquéous	As required by method	Three sample coolers were received on 4/17/08, 4/18/08, and 4/21/08 at remperatures of 6, 9, and 6"C.	Alpha Woods Hole Laboratory, 8 Walkup Drive, Westborough, MA 01581	L0805420 L0805511 L0805609

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

# Table 3. Metals by USEPA 6010B/6020A

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Daia Completeness	<ol> <li>Complete SDG file,</li> <li>Sample data package including case narrative, QC data and raw data.</li> <li>Shipping and receiving documents</li> <li>All lab records of sample receipt. preparation and analysis.</li> </ol>	All required deliverables were present in the data package		
COC	<ol> <li>Sample custody documentation.</li> <li>Tamperature 4 ±2°C for soils.</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	nple enstody documentation. Coolers temperatures upon arrival at apparature 4 ±2°C for soils. Alpha were 6, 9, and 6°C. Samples neous sample preserved to pH<2. were reasived by the laboratory the		
Holding Time	1). Aqueous sample 180 days if preserved to pH<2 2) Hg + 28 days to analysis	Samples were analyzed within hilding time.		
ICP-MS Tune	<ol> <li>Tuning solution analyzed at least four times, RSD ≤ 5% for each component.</li> <li>Mass calibration not within 0.1 AMU, quality detected results "J" and nunderected results "UJ"</li> </ol>	ICP-MS tune solution met the required limit.		



#### May 12, 2008 Region I Data Review Worksheet Other Inorganics by USEPA 2130B/2320B/300.0/9251/4500NO.3-F Project: SHL, Fort Devens Review Criteria: Fort Devens OAPP and MADEP MCP **USEPA Region I Tier II Guidance**

Review Acceptance Criteria Samples affected Onalifications Bias Items 1) Correct calibration standards. Ar least 3 standards points not forced through zero are required for linear calibration, r≥0.995 (EPA Initial Initial calibration met established Method 6010/6020/7470). Calibration criteria 2) r ≥0.995, quadratic calibration (a) least 6 points, not forced (hrough zero). 1) Following the salibration. 2) 90-110% recovery (EPA 6010/6020) Ton Source 3) 75-89% recovery. J qualify detects and UJ Initial qualify nondetects Calibration ICVs met acceptance entena 4) 111-125% recovery. J qualify detects. Verification (ICV) 5) 80-120% recovery (EPA 7470). 6) RSD <5% for the replicate 1) CCV using mid and high level standards: analyzed after every 10 samples and at the end of batch. 2) Concentrations 80-120% (EPA Method 7470) and 90-140% of expected value (EPA Continung Meshad A010/6020). Calibration All CCV recoveries were within a) CCV >120% (BPA Meillord 7470) or 110% Verification acceptance firmis (EPA Method 6010/6020), 1 qualify detects, no (CCV) qualification is necessary for non-derects. b) CCV <80% (EPA Melliod 7470) or 90% (EPA Method 6010/6020); J qualify detects: UJ quality non derects c) CCV outside 65-135%, reject data Manganese, potassium, iron, sodium, calcium, and arsenic in some samples AMEC J qualified 1) Results >Upper calibration range ) quality. from these SDGs were detected at detections below detects Calibration concentrations below the method the reporting limit. 2) Results «Method reporting limit, >method Estimation Range/ Results reporting limit. Alpha I qualified the with a TR (Trape detection limit: I qualify detects (estimated). results less than the method reporting level detected). limit and AMEC concurs with these reason code qualifications. The calcium 1) Evaluate down to the MDL. Metals were not detected in the method concentrations 2) If sample result is <5x contaminant blank at concentrations greater than the detected in the concentration: flag "U" MDL. Hlinks associated samples 3) Sample result ≥5x contaminant (Method, Field. Calcium was detected at 0.044 mg/L were more than 5 concentration: no qualification Equipment. in the equipment blank EQBLANK Gtimes the required. Rinsuit, etc.) 041KOX. equipment blank concentration Sol qualification es warranted.

COLU:



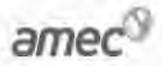
#### May 12, 2008 Region I Data Review Worksheet Other Inorganics by USEPA 2130B/2320B/300.0/9251/4500NO3-F Project: SHL, Fort Devens Review Criteria: Fort Devens OAPP and MADEP MCP **USEPA Region I Tier II Guidance**

Review Bias Acceptance Criteria Samples affected **Oualifications** Hems AMEC U qualified the detected arsenic result from sample SHL-8D-041708. the detected arsenic and uon results from sample SHL-() ICB and CCB after every ten samples or Initial 85-041708, and the Arsenic and iron were detected in every hatch whichever is greater. Calibration inultinle CCBs in the sequence irou results from 2) Evaluate absolute values down to the MIDL. Blanks and associated with SDGs L0805420 and samples SHL-21-3) Sample results < 5x blank sample, U quality Continuing 041808 and SHL-1.0805511 detects Calibration All other metals were not detected in 23-041808 with a 4) Sample results >5x blank level, no action Blanks the ICB/CCBs associated with these B (contaminant) required. (ICB/CCB) detected) reason samples. code, because the sample concentrations were less than 5 times the concentration detected in the CCBs. 1) If the blank has a negative result with an absolute value >MDL, qualify detected remitiv-Negative No negative blank concentrations were Sx the absolute value of the contamonant blanks detected enocentration as estimated "I" and qualifynondetected results "UI". 1) No qualification required if recovery AMEC' J qualified High between 80-120% the sodium result at%R< 80% flag detected results "J" and from sample SHL-ICS-A/ICS-AB recoveries were within nondetected results "LO" 23-041808, with a acceptance limits, except as described b) 77R >120% flag detected results "T" M reason code below c) %R<10% flag detected results "J" and (method OC Arsenic was detected at 0.00052 mg/L pundeneted results "R" criteria not met). Interelement in the ICS-A associated with SDG hecause of checks L0805420. Similar concentrations subenumal ICS-A/ICSwere observed in samples SHL-8Dinterelement AB Instrument 041708 and SHL-8S-041708. correction performance Sodium was detected at 0.0763 mg/L The arsenic results check. in the ICS-A associated with SDG. from these samples L0805511. A similar concentration were previously [] was observed in sample 5HL-23qualified; 041808. therefore, no more qualification is required.



#### May 12, 2008 Region I Data Review Worksheet Other Inorganics by USEPA 2130B/2320B/200.0/9251/4500NO3-F Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP **USEPA Region I Tier II Guidance**

Review Qualifications Bias Acceptance Criteria Samples affected Items 1) Intensity of IS must be 30-120% of intensity of 15 in the initial calibration standard. at%R<30% flag detected results "J" and Internal The IS 's Ris were within acceptable nondejected results "LIT" Standards (IS) limits. b) "«R >120% flag detected results "f" and nondetected results "UP 1) LCS acceptance limits 80-120%, method Laboratory requirements (EPA Method 6010/6020/7470) Control a) %-R<80% flag detected results "J" and Sample/ The LCS/LCSD recoveries wer: nondetected results "LJ" Laboratory within acceptable limits. b) % R>120% (Tag detected results "J" Control Sample c) %R<10% flag detected results "J" and Duplicate nondesected results "R" (LCS/LCSD) Qualify all associated samples. Recovery 1) RPD ~ 20% a) If exceeds RPD limit: J quality detects, UJ The laboratory duplicates were not Laboratory qualify non detects. associated with any sample from these Duplicate b) If one result > MRL and other ND; 1-SDGs RPD detections, UJ qualify non detects 2) ± MRL (or results ≤ 5x the MRL 1) RPD ≤ 30% (waters); ≤ 40% ((oils) a) If exceeds RPD hmir; J qualify detects, UJ Sample DUP-041805 was the field quality non detects. Field duplicate of sample SEI -21-041808 Duplicate KPD b) If one result > MRL and other ND, 1-All % RPDs were within acceptinge. detections; UJ quality non detects criteria 2)  $\pm$  MRL for results  $\leq$  5x the MRL 1) MS/MSD acceptance limits are 75-125% The orsenie and (EPA Method 6000/7000). iron background 1) Qualify results in the barch or of similar concentrations at IYDC: Sample SUM-96-22B-042108 was 1.731 mg/L and 73 MSIMSD 3) If background concentration is >4x spike used as the source for the MS/MSD. mg/L, respectively, RECEIVED concentration qualification is not required The recoveries were acceptable for all were more than 4. a) Recoveries <10% J qualify detects, R qualify aunivies, except assence (1865)/135%) times the spike non detects and iron (0%/0%), concentrations of b) Recoveries <75% flag detected results "1" 0.12 mg/L and 1 mg/L respectively. and nundetected results "UJ" c) Recoveries >125% flag detected results "J" No qualification is required, 1) Acceptance limits are 75-150% (EPA Method 6000/7000). 2) Qualify results in the batch or of similar type: Samples SHM-05-428-041708, SHL-3) If background concentration is >4x spike 21-041808 and SHM-96-22B-042108 Post Digestion concentration qualification is not required were used as the source for the PDSs. Spike (PDS) a) Recoveries <10% I qualify detects. R qualify The recoveries were acceptable for all non-detects analytes_ b) Recoveries <75% flag detected results "I" and nondetected results "U)" c) Recoveries >125% flag detected results "J




#### May 12, 2008 Region I Data Review Worksheet Other Inorganics by USEPA 2130B/2320B/300.0/9251/4500NO.J-F Project: SHL, Fort Devens. Review Criteria: Fort Devens OAPP and MADEP MCP **USEPA Region I Tier II Guidance**

Review Samples affected Qualifications Rias Acceptance Criteria Items Polassium. 1) Once per digestion bach (EPA 6000 series). The laboratory performed serial dilution analysis on samples SHM-05magnesium and 2) ≤10% for analytes with concentration >50-42B-041708, SHL-21-041808, and arsenic umes IDL SHM-96-22B-042108. The % Ds were concentrations 5) SD>10% flag delected results "J" Serial Dilution were <50 times the within acceptance limits, except for MDL, therefore no potassium (15%), magnesium (11%), qualification is atsenic (27%), and potassium (14%). required. 1) Instrument level concentrations should be less than the linear dynamic range (LDR). a) Qualify detected results with concentrations The laboratory J qualified detected AMEC J qualified preater than the LDR "T" results with concentrations between the Campound these results with a 2) The reported MRL should not be below the RL and MDL and AMEC concurs with E-timation Quantitation TR (trace level) lowest ICAL standard concentration. these qualifications. reason code. a) Positive results reported above the IDL but below the RL should be considered estimated and be flagged "J" 1) Appropriate method. The faboratory did not use sample 2) Evaluate any analytical problems with SHIL-22-042108 as the source sample Overall for the MS/MSD, as indicated by the No qualification laboratory results. Evaluation of COC. Instead, they used sample SHM-3) Evaluate sampling errors - field required. Data 95-22B-042108 as the source sample contamination, sample hold times. for the MS/MSD.

# Table 4. Turbidity by USEPA 2130B and Total Alkalinity by USEPA 2320B

Acceptance Criteria	Samples affected	Qualifications	Dias
<ol> <li>Complete SDG file:</li> <li>a. Sample data package including case narrative, QC data and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt. preparation and analysis</li> </ol>	All required deliverables were present in the data package,		
<ol> <li>Sample custody documentation</li> <li>Temperature ≤6"C</li> <li>Sample definery documentation</li> </ol>	Cooler teroperatures upon arrival at Alpha were 6, 9, and 6°C. Samples were received by the laboratory the same day they were collected. Not enough time had passed for the samples to reach the specified EPA temperature. The laboratory Sample Receipt and Log-in Checklist indicates that sample integrity was maintained during transport.	No qualification required.	
<ol> <li>1) 14 days, preservation not required (Alkalinity) (EPA Method 2320B)</li> <li>2) 4% hours, preservation not required (Turbulity)(EPA Method 2130B)</li> </ol>	Samples were unalyzed as per EPA Method requirements		
	<ul> <li>a. Sample data package including case narrative, QC data and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample teceipt. preparation and analysis</li> <li>1) Sample custody documentation.</li> <li>2) Temperative ≤6°C</li> <li>3) Sample delivery documentation.</li> <li>1) 14 days, preservation not required (Alkalinity) (EPA Method 2320B)</li> <li>2) 4% hours, preservation not required</li> </ul>	a. Sample data package including case narrative, QC data and raw data.       A0 required deliverables were present in the data package.         b. Shipping and recerving documents, c. All lab records of sample tecetipt, preparation and analysis       Cooler temperatures upon arrival at Alpha were 6, 9, and 6°C. Samples were received by the laboratory the same day they were collected Not enough time had passed for the same day they were collected Not enough time had passed for the sample to reach the specified EPA temperature, The laboratory Sample Receipt and Log-in Checklist indicates that sample integrity was maintained during transport.         1) 14 days, preservation not required (Alkalinity) (EPA Method 2320B) 2) 48 hours, preservation not required       Samples were malyzed as per EPA Method samples were malyzed as per EPA	a. Sample data package including case narrative, QC idat and raw data.       All required deliverables were present in the data package.         b. Shipping and receiving documents.       c. All lab records of sample teceript. preparation and analysis       All required deliverables were present in the data package.         1) Sample custody documentation.       Cooler temperatures upon arrival at Alpha were 6, 9, and 6°C. Samples were nereived by the laboratory the same day they were collocted Not enough time had passed for the same day they were collocted Not enough time had passed for the samples to reach the specified EPA temperature.       No qualification required.         1) N4 days, preservation not required (Alkalinity) (EPA Methad 2320B)       Samples were analyzed as per EPA Michael economication



#### May 12, 2008 Region I Data Review Worksheet Other Inorganics by USEPA 2130B/2320B/300.0/9251/4500NO3-F **Project: SHL, Fort Devens** Review Criteria: Fort Devens OAPP and MADEP MCP **USEPA Region I Tier II Guidance**

Review Qualifications Bias Acceptance Criteria Samples affected Hems 1)  $t \ge 0.99$  for alkabinity linear calibration Analytes with low r <0.99 flag detected Initial Initial calibration criteria were met. results "J" and nondetected results "UJ" Calibration 2) Use professional judgment if not enough points were used for curves. Determine if system imprecision or blas Ly No qualification it recovery between 90-(10% (alkalmity), ICV/CCV a) %R >)10% (alkalinity) flag detected results. ICVs were within acceptance limits. 1.11 by %R <90% (alkalimity) flag detected results "J and nondesected results "LU" SDG10805420 AMEC U qualified the detected Turbidity was detected in the method blank WG318570-7 of 0.16 NTU turbidity results. from samples SHL-Total alkalimity was detected in the 5-041708, SHL-9Dmethod blank WG318706-4 at 0.6 041708_5HL-8S mu/1_ The alkalinity concentrations 041708, DUPin the associated samples were more 041808, and SHLthan 5 times the MB concentration. 21-041808. therefore, no alkalinity results were EOBLANK-Pqualified. 041808. SDG LUNUSST1 EOBLANK-G-Turbidity was detected in the method 1) If sample result is <5x contaminant 041808; and the concentration and between MDL and MRL. blank WG318721-3 at 0.16 NTU, and Blanks. detected total mose result to MRL and flag "II" in the equipment blanks EQBLANK-(Method. alkahnity results P-041808 and EQBLANK-G-041808 2) If sample result is <5s contaminant Field. High from samples SHLat 0:09 NTU and 0.1 NTU concentration and ≥ MRL flag "U" Equipment. 23-041808. respectively. Rinsare, etc.) 3) Sample result 25x contaminant EQBLANK-P-Total alkalinity was detected in the concentration, no qualification required 041808. method blank WQ319084-4 at 0.6 EOBLANK-Gmg/L and in the equipment blanks. 041808 because the EOBLANK-P-041808 and sample EQBLANK-G-041808 at 1.1 mg/L concentrations were and 1.1 mg/L, respectively. less than 5x the MB SDG L0805609 and/or EB Turbidity was detected in the method concentrations. A B hlank WG318911-3 ni 0.16 NTU: teonlamination Total alkalimity was detected in the detected) reason method blank WG319603-4 at 0.7 code was applied. mg/L 1) Evaluate absolute values down to the MDL Evaluate ICBs/CCBs that bracket ICB/CCBs were smalgzed every 10 ICHs/CCBs samples with no detections. samples.



#### May 12, 2008 Region 1 Data Review Worksheet Other Inorganics by USEPA 2130B/2320B/300.0/9251/4500NO3-F Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP **USEPA Region I Tier II Guidance**

Review Samples affected Onalifications Bias Accentance Criteria Henis 1) No qualification if recovery between 80-120% a) % R<80% flag detected results "J" and LCS recoveries were wahen LCS nondetected results "UF" acceptance criteria. b) #R >120% flag detected results "J" c) 7 R <10% flag detected results "J" and numderected results "R" SDG L0805420 Sample SHL-5-041708 was analyzed in duplicate for turbidity and sample SHM-05-42A-041708 was analyzed in duplicate for total alkalinity. The RPDs were within the specified limit. 1) 20% <RPD, RPD >20% (lag detected SDG L0805511 results "J" and nondetected results "UJ" Sample DUP-041808 was analyzed in Lab Duplicate ± MRL for results ≤ 5x the MRL. duplicate for turbidity, and sample Difference >MRL, flag detected results "J" 5HL-23-041808 was analyzed in and nondetected results "UI" duplicate for total alkalimity. The RPDs were within the specified Imit. 5DG L0805609 Sample SHM-96-22B-042108 was analyzed in duplicate for turbidity and total alkalinity. The RPDs were within the specified limit. 1) RPD = 20% for aqueous samples (< 30% soil samples) for analytes with concentrations Sample DUP-041808 was the field Field more than 3 times their PQLs, and duplicate of sample SFIL-21-041808. Field duplicate RPDs were within Duplinares. concentrations within one MRL for analytes method specified criteria. with concentrations less than 5 times their POLs 1) No qualification required if recovery between 75-125%. 2) If background concentration is greater than 4x the spike concentration qualification is not required No MS/MSD was associated with %R< 75% flag detected results "I" and samples Imm 5DGs L0803420 nondetected results "UJ" M5/MSD L0805511, or L0805609 for these SiR < 125% flag detected results "I" methods %R<10% flag detected results "I" and nondetected results "R" Qualify only results in the spiked sample. (Qualify results for samples collected at same (ocation but differing depths as well)



May 12, 2008 Region 1 Data Review Worksheet Other Inorgan Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Metals by USEPA Methods 6010/6020 Other Inorganics by USEPA 2130B/2320B/300.0/9251/4500NO3-F

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Compound Quantitation	<ol> <li>Instrument level concentrations should be less than the linear range. Qualify detected results with concentrations greater than the LDR "T"</li> <li>The reported MRL should not be below the lowest ICAL standard concentration.</li> <li>Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	Turbidity and total alkalianty were detected in all associated samples at a concentration above the method reporting limits. Some RLs were elevated due to samples being analyzed at a 10-fold or 5-fold dilution to order to eliminate interferences.		
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evoluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalizy.		

# Table 5. Chloride by USEPA 9251, Nitrate by USEPA 4500NO3-F, and Sulfate by USEPA 300.0

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Dala Completeness	<ol> <li>Complete SDG file.</li> <li>a. Sample data package including case narrative, QC data and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt. preparation and analysis.</li> </ol>	All required deliverables were present in the data package.		
COC	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C</li> <li>Sample delivery documentation.</li> </ol>	Conter temperatures upon arrival at Alpha were 6, 9 and 6°C. Samples were received by the laboratory the same day that they were collected. Not enough time passed for samples to reach the specified EPA, temperature. The laboratory Sample Receipt and Log-in Checklist indicates that sample integrity was maintained during transport.	No qualification required.	
Holding Times (HT)	<ol> <li>14 days if the samples preserved to pH&gt;12 (EPA Method 9014)</li> <li>2) 28 days preservation not required (Chloride, Sulfate) (EPA Method 9251 and 300,0)</li> <li>3) 48 hours, preservation not required (Norate-N)(EPA Method 4500NO3-F)</li> </ol>	The samples were analyzed and preserved per EPA Method requirements.		
laitial Cafibration	1) $r \ge 0.995$ for Cyanide and $r \ge 0.99$ for chloride, sulfate and nitrate, linear calibration Analytes with law $r < 0.99$ flag detected results. "I" and nondetected results "UI" 2) Use professional judgment if not enough points were used for curves. Determine if system imprecision or bias	Initial calibration criteria were met.		



#### May 12, 2008 Region I Data Review Worksheet Other Inorganics by USEPA 2130B/2320B/300.0/9251/4500NO3-F Project: SHL. Fort Devens Review Criteria: Fort Devens OAPP and MADEP MCP **USEPA Region I Tier II Guidance**

Review Bias Samples affected Qualifications Acceptance Criteria llems 1) No qualification if recovery between 90-110% (chloride, sulfate and nitrate) and 85-115% (cyanide). ICV/CCV al %R >110% (chloride, sulfate and nitrate) and ICVs were within acceptance limits. 115% (ryamde) flag detected (esuits "J" b) %R <90% (chloride, sulfate and nitrate) and 85% (cyanide) flag detected results "J" and nundelected results "UI" 1) If sample result is Sx contaminant concentration and between MDL and MRL. Blanks No chloride, sulfate and/or nurate raise result to MRL and flag "U" (Method. were detected in the method and/or 2) If sample result is Sx contaminant Field. equipment blanks associated with the concentration and ≥ MRL flag "U" Equipment. samples from these SDGs. Rinsale, etc.) 3) Sample result ≥5x contaminant concentration; no qualification required. 1) Evaluate absolute values down to the MDL. ICB/CCBs were analyzed every 10 ICBs/CCBs Evaluate ICBs/CCBs that bracker samples samples with no detections. 1) No qualification if recovery between 80-120% a) 77 R<80% flag detected results "J" and LCS recoveries were within LCS nundetected results "UJ" neceptance criteria. b) %R >120% flag detected results "I" c) %R <10% flag detected results "J" and nondetected results "R" SDG L0805420 Sample SHL-8D-041708 was analyzed in duplicate for nitrate. The RPD was within the method specified limit SDG L0805511 1) 20% SRPD, RPD >20% flag delected results Sample DUP-041808 was analyzed in "I" and nonderected results "UI" duplicate for chloride and sulfate and Lab Duplicate 2) ± MRL for results ≤ 5x the MRL. Difference sample SHL-23-041808 was analyzed >MRL, flag dejected results "F" and in duplicate for nitrate. The RPDs nondelected results "UJ" were within the method specified limit SDG L0805609 Sample SHM-96-22B-042108 was analyzed in duplicate for intrate. The RPD was willin the method specified limit RPD < 20% (or aqueous samples (\$30% soil)</li> Sample DUP-041808 was the field samples) for analytes with concentrations mane Field duplicate of sample SHL-21-041808. than 5 times their PQLs, and concentrations Duplicates The RPDs were within method. within one MRL for analytes with specified limits. concentrations less than 5 times their PQLs



May 12, 2008 Region 1 Data Review Worksheet Other I Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Metals by USEPA Methods 6010/6020 Other Inorganics by USEPA 2130B/2320B/300.0/9251/4500NO3-F

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
M5/MSD	1) No qualification required if recovery between 75-125% 2) If background concentration is greater than 4x the spike concentration qualification is not required $\Re R < 75\%$ flag detected results "1" and nondetected results "UT" $\Re R < 125\%$ flag detected results "1" and nondetected results "R" $\Re R < 10\%$ flag detected results "1" and nondetected results "R" Qualify only results in the spiked sample. (Qualify only results for samples collected at some location but differing depths as well)	No MS/MSD was associated with samples from SDGs L0805420 and L0805511 for these methods. Sample SHM-9ft-22B+042108 was used as the source sample for the MS/MSD. The chloride recoveries at 25% were outside acceptance limits. The sample background concentration was more than 4 times the spike concentration.	No qualification required.	
Compound Quantitation	<ol> <li>Instrument level concentrations should be less than the linear range. Qualify detected results with concentrations greater than the LDR. "1"</li> <li>The reparted MRL should not be below the lowest ICAL standard conceptration.</li> <li>Positive results reported above the MDL but below the RL should be considered estimated and be flagged "3"</li> </ol>	Nitrate, chloride, and sulfate were detected at concentrations below and above the method reporting limits. Some RLs were elevated due to samples being analyzed at a 10-fold or S-fold dilution in order to eliminate interferences.		
Överall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors - field contamination, sample hold times.</li> </ol>	No anomalies.		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely.

AMEC Earth & Environmental, Inc.

PREPARED BY:

Malace to Bady

Melanie Roshu Environmental Chemist

REVIEWED BY:

Carnes Idelantis

Denise Ladebauche Environmental Chemist

D-will

#### TABLE 6 Data Validation Qualifiers Fort Devens, Shepley's Hill Landfill DVR_SDGs_L0605420_L0605511_L0805609

Sample ID	Sample Date	EPA Analytical Method	Lab Sample ID	Analyte	Result	Units	Validation Qualifiers	Reason Code
SHL-8D-041708	4/17/2008	SW6010	L0805420-06	MANGANESE	0.0019	mg/l	1	TB
SHL-8D-041708	4/17/2008	SW6010	10805420-06	POTASSIUM	0.84	mg/l	1	TR
SHL-8D-041708	4/17/2008	SW6020	L0605420-06	ARSENIC	0.00038	1 mg/l	U	B.M
SHL-8S-041708	4/17/2008	2130B	L0805420-07	TURBIDITY	0.34	NTU	U I	В
SHL-89-041708	4/17/2008	SW6010	L0805420-07	IRON	0.021	mg/i	U	В
SHL-8S-041708	4/17/2008	SW6010	L0805420-07	POTASSIUM	1.2	mg/i	J	TR
SHL-85-041708	4/17/2008	SW6020	L0805420-07	ARSENIC	0.00042	mg/l	U	B, M
SHM-05-42A-041708	4/17/2008	SW6010	L0805420-02	POTASSIUM	1.6	mg/l	J	TR
SHM-96-5C-041708	4/17/2008	E300	L0805420-04	SULFATE	0.62	mg/l	J	ĨŔ
SHL-5-041708	4/17/2008	2130B	L0605420-05	TURBIDITY	0.74	NTU	<u>u</u> –	B
SHL-5-041708	4/17/2008	E353.2	L0805420-05	NITRATE (AS N)	0.056	mg/l	4	TR
SHL-5-041708	4/17/2008	SW6010	L0805420-05	POTASSIUM	1.3	mg/l	d	TR
SHL-5-041708	4/17/2008	SW6010	L0805420-05	SODIUM	0.93	mg/l	J	TR
SHL-8D-041708	4/17/2008	2130B	L0805420-06	TURBIDITY	0.09	NTU	U U	В
DUP-041808	4/18/2008	2130B	L0805511-05	TURBIDITY	0.29	NTU	U	B
DUP-041808	4/18/2008	SW6010	L0805511-05	MANGANESE	0.0011	mg/l	J	TR
DUP-041808	4/18/2008	SW6010	L0805511-05	POTASSIUM	0.82	mg/	J	TR
DUP-041808	4/18/2008	SW6010	L0805511-05	SODIUM	1.6	mg/l	J	TR
EQBLANK-G-041808	4/18/2008	21308	L0805511-04	TURBIDITY	0.1	NTU	U U	В
EOBLANK-G-041808	4/18/2008	A2320	L0805511-04	ALKALINITY TOTAL	1.1	mg/L	U	B
EOBLANK-G-041808	4/18/2008	E300	L0805511-04	CHLORIDE	0.072	mg/l	J	TR
EOBLANK-G-041808	4/18/2008	SW601D	L0805511-04	CALCIUM METAL	0.044	mg/l	J	TR
EOBLANK-P-041808	4/18/2008	2130B	L0805511-03	TURBIDITY	0.09	NTU	U	Б
EOBLANK-P-041808	4/18/2008	A2320	L0805511-03	ALKALINITY, TOTAL	1.1	mg/L	U	Б
SHL-21-041808	4/18/2008	21308	L0805511-01	TURBIDITY	0.43	NTU	U	В
SHL-21-041808	4/18/2008	SW6010	L0805511-01	IRON	0.019	mg/l	U	B
BHL-21-041808	4/18/2008	SW6010	L0805511-01	MANGANESE	0.0013	mg/l	J	TR
SHL-21-041808	4/18/2008	SW6010	L0805511-01	POTASSIUM	0.82	mg/l	J	TR
SHL-21-041808	4/18/2008	SW6010	L0805511-01	SODIUM	1.3	mg/l	3	TR
SHL-23-041808	4/18/2008	A2320	L0805511-02	ALKALINITY, TOTAL	3,2	mg/L	U	В
SHL-23-041808	4/18/2008	SW6010	L0805511-02	IRON	0.023	mg/l	U	B
5HL 23-041808	4/18/2008	SW6010	L0805511-02	POTASSIUM	0.64	mg/l	L	TR
SHL-29-041808	4/18/2008	SW6010	L0805511-02	SODIUM	0.59	mg/l	J	TR, M

S"Date Validation Fort Devena DVRs/Groundwater Monitoring/April 08/Final Rpl DVO1_April_GW

#### TABLE 6 Data Validation Qualifiers Fort Devens, Shepley's Hill Landfill DVR_SDGs_L0805420_L0805511_L0805609

Sample ID	Sample Date	EPA Ansiytical Method	Lab Sample ID	Analyte	Result	Units	Validation Qualifiers	Reeson Code
SHL-23-041808	4/18/2008	SW6020	L0805511-02	ARSENIC	0.00019	mg/l	1	TR
SHL-22-042108	4/21/2008	E353.2	L0805609-02	NITRATE (AS N)	0.055	mg/l	J	TR
SHL-9-042108	4/21/2008	E353.2	L0805609-04	NITRATE (AS N)	0.057	mg/l	J	TR
SHL-9-042108	4/21/2008	SW6010	L0805609-04	POTASSIUM	1.8	mg/l	J. L	TR
SHM-05-41A-042108	4/21/2008	E353.2	L0805609-06	NITRATE (AS N)	0.061	mg/l	4	TR
SHM-05-41A-042108	4/21/2008	SW6010	L0805609-06	POTASSIUM	2,1	mg/l	3	TR
SHM-05-41B-04210B	4/21/2008	E353.2	L0805609-05	NITRATE (AS N)	0.25	mg/l	J	TR
SHM-05-41C-042108	4/21/2008	E353.2	L0805609-07	NITRATE (AS N)	0.094	mg/l	1	TB
SHM-96-22C-042108	4/21/2008	E353.2	L0805609-03	NITRATE (AS N)	0.078	mg/l	J	TR

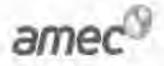
#### Validation Qualifiers:

R

U.

U.J.

The R qualifier indicates that a result has been relected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.


The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during data quality review are typically a result of detections of larget analytes in field, trip, or laboratory blanks.

The J qualifier indicates that the associated result is quantitatively uncertain: J qualifiers added during validation may indicate a concentration between the method detection limit (MDL) and the method reporting limit (MRL) or a data limitation related to a OC plemont that exceeds required acceptance limits.

The UJ qualifier indicates reporting limit is estimated. UJ qualifiers added during validation may indicate either a high or low bias related to a QC element that exceeds required acceptance limits.

Reason Code:	
13	Contammant detected in preparation (method) or calibration blank
TR	Trace level detect
-5.6	Method QC coterra not mot

5:Data Validation/Fort Devens/DVRs/Groundwater Monitoring/April D9/Final Rpt DVQ1_April_GW



June 9, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

#### INTRODUCTION

This data validation report covers one water sample collected on May 15, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The sample was dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on May 15, 2008 and assigned sample delivery group (SDG) number L0807096 upon receipt. Alpha analyzed the sample for total arsenic using USEPA Method 6020A. The associated field sample identification (ID) and Alpha sample ID is presented in Table 1.

The level of data validation specified in Table 2 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

#### EXECUTIVE SUMMARY

All data is generally usable and of good quality,

Arsenic was detected and reported at 1.0 µg/L concentration.

#### Table 1. Field Sample List

Lab Sample Number	Field ID	Comments	
L0807096-01	EFF-051508	3 ppb detection muit	

#### Table 2. Sample Status

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number	
Tier II	Aqueous	As required by method	by One sample cooler was received on 05/15/2008 at a temperature of 6 C. MA 01581		1.0807096	



## June 9, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

# Table 3. Arsenic by USEPA 6020A

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file.</li> <li>a. Sample data package including case narrative. QC data and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt. preparation and analysis.</li> </ol>	All required deliverables were present in the data package:		
COC	<ol> <li>Sample custody documentation.</li> <li>Tempetature 4±2°C for soils</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 6°C. Sample was preserved with HNO3 to pH<2. The Chain of Custody is intact. The laboratory Sample Receipt and Log-in Checklist indicates that sample integrity was maintained during transport.		
Holding Time	<ol> <li>Aqueous sample 180 days if preserved to pH&lt;2</li> <li>Hg = 28 days to analysis</li> </ol>	The sample was analyzed within holding time.		
(CP-MS Tune	<ol> <li>Tuning solution analyzed at least four times. RSD ≤ 5% for each component.</li> <li>Mass calibration not within 0.1 AMU, qualify detected results "J" and nondetected results "U?"</li> </ol>	The tune slamlard met established criteria.		
Initial Calibration	<ol> <li>Currect calibration standards At least 3 standards points not forced through zero, are required for linear calibration, r≥0.995 (EPA Method 6010/6020/7470).</li> <li>r² ≥0.995, quadratic calibration (at least 6 points, not forced through zero).</li> </ol>	Initial calibration met established criteria		
2 nd Source: Initial Calibration Verification (ICV)	<ol> <li>Following the calibration:</li> <li>90:110% recovery (EPA 6010/6020)</li> <li>75:89% recovery. J qualify detects and UI qualify nondetects.</li> <li>4(111-125% recovery. J qualify detects</li> <li>80:120% recovery (EPA 7470)</li> <li>6) RSD &lt;5% for the replicate</li> </ol>	ICV mer acceptance criteria.		



# June 9, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calibration Verification (CCV)	<ol> <li>CCV using mid and high level standards: analyzed after every 10 samples and a the end of batch;</li> <li>Concentrations 80-120% (EPA Method 7470) and 90-110% of expected value (EPA Method 6010/6020);</li> <li>CCV &gt;120% (EPA Method 7470) or 110%) (EPA Method 6010/6020); 1 qualify detects, mo qualification is necessary for non-detects.</li> <li>CCV &lt;80% (EPA Method 7470) or 90%. (EPA Method 6010/6020); 1 qualify detects.</li> <li>CCV &lt;80% (EPA Method 7470) or 90%. (EPA Method 6010/6020); 1 qualify detects.</li> <li>CCV &lt;80% (EPA Method 7470) or 90%.</li> <li>(EPA Method 6010/6020); 1 qualify detects.</li> <li>CCV outside 65-135%, reject data</li> </ol>	All CCV recoveries were within acceptance limits.		
Calibration Range/ Results	<ol> <li>Results &gt;Upper calibration range J qualify detects</li> <li>Results method detection limit; J qualify detects (estimated).</li> </ol>	Arsenic was detected and reported within the calibration range		
Blanks (Merhod, Field, Equipment, Rinsate, etc.)	<ol> <li>Evaluate down in the MDE.</li> <li>If sample result is &lt;5x contaminant concentration: flag "U"</li> <li>Sample result ≥5x contaminant concentration; no qualification required.</li> </ol>	Accente was not detected in the associated method blank.		
Initial Calibration Blanks and Continuing Calibration Blanks (ICB/CCB)	<ol> <li>ICB and CCB after every ten sumples or every batch whichever is greater.</li> <li>Evaluate absolute values down to the MDL.</li> <li>Sample results &lt; 5x blank sample. U qualify detects</li> <li>Sample results &gt;5x blank level, no action required.</li> </ol>	Assenic was not detected in the ICB or CCBs at concentrations greater than the method-detection firm).		
Negative blanks	<ol> <li>If the blank has a negative result with an absolute value &gt;MDL, qualify detected results \$\$% the absolute value of the contaminant concentration as estimated "J" and qualify bondetected results "UJ"</li> </ol>	No negative blank concentrations were detected		
Intercioment checks ICS-A/ICS- ÀB Instrument performance check	<ol> <li>Nor qualification required if recovery between 80-120%,</li> <li>a)%R&lt;80% flag detected results "J" and nondetected results "UJ"</li> <li>b) %R &gt;120% flag detected results "J" c) %R&lt;10% flag detected results "J" and nondetected results "R"</li> </ol>	ICS-A/ICS-AB recoveries were within acceptance limits.		
Internal Standards (IS)	1) Intensity of IS must be $30{+}120\%$ of intensity of IS in the initial calibration standard, a)%R< $30\%$ Hag, detected results "J" and nonderected results "UJ" b) %R >120% flag detected results "J" and nonderected results "UI"	19 recoveries were within the asseptance limits.		



# June 9, 2008 Region 1 Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Laboratory Control Sample/ Laboratory Control Sample Duplicate (LCS/LCSD) Recovery	1) LCS acceptance limits 80-120%, method requirements (EPA Method 5010/6020/7470) a) %R<80% flag detected results "J" and nonderected results "U" b) %R>120% flag detected results "J" c) %R<10% flag detected results "J" and nondetected results "R" Qualify all associated samples.	The LCS/LCSD recoveries were within acceptance limits at 97% and 101%, respectively.		
Laboratory Duplicate RPD	<ol> <li>RPD ≤ 200%</li> <li>a) If exceeds RPD limit: J qualify detects, UJ qualify non detects.</li> <li>b) If one result &gt; MRL and other ND; J-detections, UJ qualify non detects</li> <li>2) ± MRL (o) results ≤ 5x the MRL.</li> </ol>	No laboratory duplicate was associated with this sample.		
Field Dopticate RPD	<ol> <li>RPD ≤ 30% (waters): = 40% (soils) a) If exceeds RPD limit: J qualify detects, UJ qualify non detects.</li> <li>If one result &gt; MRL and other ND: 1- detections, UJ qualify non detects</li> <li>T MRL for results ≤ 5x the MRL.</li> </ol>	No field doplicare was associated with this SDG.		
MS/MSD Recovery	<ol> <li>MS/MSD acceptance limits are 75-125% (EPA Method 6000/7000).</li> <li>Qualify results in the batch or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10% J qualify detects. R qualify non detects</li> <li>Recoveries &lt;75% flag detected results "T" and nondetected results "U" c) Recoveries &gt;125% flag detected results "T"</li> </ol>	No MS/MSD was associated with this SDG.		
Post Digestion Spike (PDS)	<ol> <li>Acceptance limits are 75-150% (EPA Method 60007000).</li> <li>Qualify results in the batch or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10% J qualify denotes R qualify non-detects</li> <li>Recoveries &lt;75% flag detected results "I" and nondetected results "UI" c) Recoveries &gt;125% flag detected results "I"</li> </ol>	The PDS was performed in sample EFF-051508. The recovery was within acceptance limits at 110%.		
Serial Dilution	<ol> <li>Once per digestion batch (EPA 6000 series)</li> <li>\$10% for analytes with concentration \$50- times MDL</li> <li>\$10% flag detected results "T"</li> </ol>	The 'vEI for the SD performed on sample EPF-051508 was within acceptance limits at 5%		



# June 9, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Compound Quantitation	<ol> <li>Instrument level concentrations should be less than the linear dynamic range (LDR).</li> <li>a) Qualify detected results with concentrations greater than the LDR "J"</li> <li>2) The reported MRL should not be below the lowest ICAL standard concentration.</li> <li>a) Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	Arsenic was reported as detected and the required reporting limit of 0.003 mg/L was met.		
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalies.		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely,

AMEC Earth & Environmental, Inc.

PREPARED BY:

he beader Lalegie

Melanie Roshu Environmental Chemist

REVIEWED BY:

Cenus Indelanch a

Denise Ladebauche Environmental Chemist



Metais by 1/5FPA Methods 5000/7000 Anions by USEPA Methods 500.0/353.2

July 7, 2008 Region 1 Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

#### INTRODUCTION

This data validation report covers three primary water samples collected on June 17, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The samples were dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on June 17, 2008 and assigned sample delivery group (SDG) number L0808901, upon receipt. Alpha analyzed the samples for total metals using USEPA 6000/7000 methods; chloride and sulfate using USEPA Method 300.0; and, nitrate using USEPA Method 353.2. The associated field sample identification (ID) and Alpha sample IDs are presented in Table 2.

AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3 and Table 4. The level of data validation specified in Table 1 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

#### EXECUTIVE SUMMARY

All data is generally usable and of good quality. Any limitations on the data are listed below.

# Table 1. Sample Status

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Tier II	Aqueous	As required by method	One sample cooler was received on 06/17/08 at a temperature of 2°C	Alpha Woods Hole Laboratory, 8 Walkup Drive, Westborough, MA 01581	1.0808901

#### Table 2. Field Sample List

Lab Sample Number	Field ID	Comments
L0808901-01	EFF-061708	Metals, Annons
L0808901-02	EW01-061708	Analyzed only for As. Fe. Mn
L0808901-03	EW02-061708	Analyzed only for As, Fe, Mn



Metals by USLPA Methods 6000/7000 Autons by USEPA Methods 300.0/355.2

# July 7, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

# Table 3. Metals by USEPA Methods 6010B, 6020A, and USEPA Method 7470A

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file,</li> <li>Sample data package including case marrative, QC data and raw data.</li> <li>Shipping and receiving documents.</li> <li>All lab records of sample receipt, preparation and analysis.</li> </ol>	All required deliverables were present in the data package		
COC.	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C for soils.</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 2°C. Samples were preserved with HNO ₅ to pH<2. The Chain of Custody is intact. The laboratory sample receipt and log in checklist indicates that samples integrity was maintained during transport.		
Holding Tine	<ul> <li>t) Aqueous sample 180 days if preserved to pH&lt;2</li> <li>2) Hg - 28 days to analysis</li> </ul>	Samples were analyzed within holding time		
ICP-MS Tone	<ol> <li>Toming solution analyzed at least four times. RSD ≤ 5% for each component.</li> <li>Mass calibration not within 0.1 AMU, qualify detected results "J" and nondetected results "UJ"</li> </ol>	ICP-MS Tune met acceptance enterta.		
Initial Calibration	<ol> <li>Correct calibration standards. At least 3 standards points not forced through zero are required for linear calibration, r≥0.995 (EPA Method 6010/6020/7470).</li> <li>r² ≥0.995, quadratic calibration (at least 6 points, not forced through zero).</li> </ol>	Initial calibration met established criteria.		
2 nd Source Initial Calibration Verification (ICV)	<ol> <li>Following the calibration.</li> <li>90-110% recovery (EPA 6010/6020)</li> <li>75-89% recovery. J qualify detects and UJ qualify nondetects.</li> <li>111-125% recovery, J qualify (letect=5) 80-120% recovery (EPA 7470)</li> <li>RSD &lt;5% (or the replicate</li> </ol>	TCV s met acceptance criteria.		



Aictula by USEPA Methods 6000/7000 Anions by USEPA Methods 300.0/353.2

Review Jiems	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calibration Verification (CCV)	<ol> <li>CCV using mid and high level standards; midlyzed after every 10 samples and at the end of batch.</li> <li>Concentrations 80-120% (EPA Method 7470) and 90-110% of expected value (EPA Method 6010/6020).</li> <li>a) CCV &gt;120% (EPA Method 7470) or 110% (EPA Method 6010/6020); J qualify detects, no qualification is necessary for non detects.</li> <li>b) CCV &lt;80% (EPA Method 7470) or 90% (EPA Method 6010/6020); J qualify detects.</li> <li>b) CCV &lt;80% (EPA Method 7470) or 90% (EPA Method 6010/6020); J qualify detects.</li> <li>b) CCV &lt;80% (EPA Method 7470) or 90% (EPA Method 6010/6020); J qualify detects.</li> <li>c) CCV outside 65-135%, reject data</li> </ol>	All CCV recoveries were within acceptance limits.		
Blanks (Method, Field, Equipment, Rinsate, etc.)	<ol> <li>Evaluate down to the MDL</li> <li>If sample result is &lt;&gt;s contaminant concentration: Bag "U"</li> <li>Sample result ≥5x contaminant concentration: no qualification required.</li> </ol>	No analytes were detected in the preparation blank associated with these samples.		
Initial Calibration Blanks and Continuing Calibratium Blanks (ICB/CCB)	<ol> <li>ICB and CCB after every ten samples or every batch whichever is greater</li> <li>Evaluate absolute values down to the MDL</li> <li>Sample results &lt; 5x blank sample. U quality detects</li> <li>Sample results &gt;5x blank level, no action required</li> </ol>	Copper was detected in the ICB (0.00117 mg/L) and manganese (0.00059 mg/L) and silver (0.00115 mg/L) were detected in the CCB associated with sample EFF4061708.	Manganese and silver were not detected in sample EFF-061708: the concentration in the sample was more than 4 times the ICB concentration; therefore data mability is not affected.	None
Negatiya blanks	<ol> <li>If the blank has a negative result with an absolute value &gt;MDL, qualify detected results \$5\$ the absolute value of the contaminant concentration as estimated "J" and qualify nondetected results "UJ"</li> </ol>	No negative blank concentrations were detected.		
Interclement checks ICS-A/ICS- AB Instrument performance check	1) No qualification required if recovery between 80-120%. a)%R<80% flag detected results "J" and nondetected results "UT" fi) %R >120% flag detected results "J" c) %R<10% flag detected results "J" and nondetected results "R"	ICS-A/ICS-AB recoveries were within acceptance limits.		



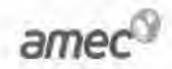
Metals by USEPA Methods 5000/7000 Anims by USEPA Methods 300.0/353.2

# July 7, 2008 Region 1 Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
loternol Standards (IS)	<ol> <li>Intensity of IS must be 30-120% of intensity of IS in the initial calibration standard.</li> <li>a)%R&lt;30% flag detected results "I" and nonderected results "UI"</li> <li>b) %R&gt;120% flag detected results "I" and nondetected results "U"</li> </ol>	All internal standard %Rs were within acceptance limits.		
Laboratory Connol Sample/ Laboratory Connol Sample Duplicate (LCS/LCSD) Recovery	<ol> <li>LCS acceptance limits 80-120%, method requirements (EPA Method 6010/6020/7470)</li> <li>a) %R&lt;80% flag detected results "T" and nondetected results "UP b) %R&gt;120% flag detected results "1"</li> <li>c) %R&lt;10% flag detected results "1" and nondetected results: "R" Qualify all associated samples.</li> </ol>	The LCS/LCSD recoveries were within acceptable limits.		
Laboratory Doplicate RPD	<ol> <li>RPD ≤ 20%</li> <li>J) If exceeds RPD limit, J qualify detects, UJ qualify non detects.</li> <li>B) If one result &gt; MRL and other ND; J-detections, UJ qualify non detects</li> <li>2) ± MRL for results ≤ 5x the MRL.</li> </ol>	No faboratory duplicate was associated with this SDG		
Field Duplicate RPD	<ol> <li>RPD &gt;20% waters (&gt;30% soils)</li> <li>For detected results more than 5 times their PQLs flag "J"</li> <li>Differences in concentrations &gt; the MRL for analytes with concentrations less than 5 times their PQLs. flag "J"</li> </ol>	No field duplicate was associated with this SDG.		
MS/M8D Recovery	<ul> <li>1) MS/MSD acceptance limits are 75-125% (EPA Method 6000/7000).</li> <li>2) Qualify results in the barch or of similar type.</li> <li>3) If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10% J qualify denets, R qualify ion detects</li> <li>b) Recoveries &lt;75% flag detected results "J" and nondetected results "U"</li> <li>c) Recoveries &lt;125% flag detected results "T"</li> </ul>	No MS/MSD was associated with this SDG;		
Post Digestion Spike (PDS)	<ol> <li>Acceptance limits are 75-150% (EPA Method 6000/7000).</li> <li>Qualify results in the batch or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10% J qualify detects. R qualify non detects</li> <li>Recoveries &lt;75% flag detected results "J" and nondetected results "U"</li> <li>Recoveries &gt;125% flag detected results "J"</li> </ol>	Sample EFF-061708 was used as the source for the PDS. The recoveries were within acceptance limits:		



Metals by USEPA Methods 5000/7000


Anions by USEPA Methods 300.0/353/2

# July 7, 2008 Region 1 Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

Review Qualifications Bias Acceptance Criteria Samples affected Liens 1) Once per digestion batch (EPA 6000 series) The laboratory performed serial dilution analyses on sample EFF-2) <10% for analytes with concentration >50-Serial 061708. The %Ds were less than 10% times MDL Dilution for sample concentrations greater than 31 % D>10% flag detected results "J" 30 times the MDL. 1) Insurances level concentrations should be AMEC I qualified tron (0.042 me/L), arsenic (0.00094 Estimation less than the linear dynamic runge (LDR). mg/L), and mercuiry (0.00005 mg/L) the iron, arvenic, a) Qualify detected results with concentrations frum sample EFF-061708 were and mercury results greater than the LDR "F" removed below the method reporting from sample EFF-Compound 061708 with a TR 2) The reported MRL should not be below the limit Quantitation (truce level) reason lowest ICAL standard concentration. unde a) Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J" 1) Appropriate method. No anomalies. 2) Evaluate any analytical problems with Overall laboratory results. Evaluation of 3) Evaluate sampling errors - field Data contamination, sample hold times.

# Table 4. Nitrate by USEPA 353.2, and Chloride and Sulfate by USEPA 300.00

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file.</li> <li>a. Sample data package including case nurrative, QC data and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>All lab records of sample receipt, preparation and analysis.</li> </ol>	All required deliverables were present in the data package.		
COC	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 2°C. The laboratory sample receipt and log to checklist indicates that sample integrity was maintained during transport.		
Holding Times (HT)	<ol> <li>28 days, preservation not required (Chloride: Sulfate) (EPA Method 300.0)</li> <li>2) 48 hours, preservation not required (Nitrate-N)(EPA Method 353,2)</li> </ol>	The sample was analyzed and preserved as per EPA Method requirements.		
Initial Calibration	<ol> <li>1) i ≥ 0.99 for chloride, suifate and nitrate linear calibration</li> <li>Analytes with low r &lt;0.99 flog detected results</li> <li>"I" and nondetected results "III"</li> <li>2) Use professional judgment II not enough puints were used for curves. Determine if system imprecision or bias</li> </ol>	Initial calification criteria were met. Chloride and suffate calification was performed on 05/09/2008. Nitrate calibration was performed on 06/17/2008.		



Metals by USEPA Methods 6600/7000 Anions by USEPA Methods 300.0/353.2

# July 7, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
ICY/CCV	<ol> <li>No qualification if recovery between</li> <li>10% (chloride; sulfate and nitrate) and 85- (15% (cyanide).</li> <li>a) % R &gt;1.0% (chloride; sulfate and nurate) and 115% (cyanide) flag detected results "J"</li> <li>b) % R &lt;90% (chloride; sulfate and nitrate) and 85% (cyanide) flag detected results "J" and aondetected results "U"</li> </ol>	ICVs and COvs were within acceptance limits.		
Blanks (Method, Field, Equipment, Rinsarc, etc.)	<ol> <li>If sample result is &lt;5x contaminant concentration and between MDE and MRL, pase result to MRL and flag "U"</li> <li>If sample result is &lt;5x contaminant concentration and ≥ MRL flag "U"</li> <li>Sample result 25x contaminant concentration; no qualification required.</li> </ol>	No mirate, chloride, or sulfate were detected in the associated method blanks		
ICBs/CCBs	1) Evaluate absolute values down to the MDL. Evaluate ICBs/CCBs that bracket samples.	ICB/CCHs were analyzed every 10 samples with no detections.		
LCS	<ul> <li>b) No qualification if recovery between 80- 1/20%</li> <li>a) %R&lt;80% flag detected results "1" and nondetected results "1"</li> <li>b) %R &gt;1/20% flag detected results "1"</li> <li>c) %R &lt;10% flag detected results "1" and nondetected results "1"</li> </ul>	LCS recoveries were within acceptance enteria.		
Lah Duplicaia	<ol> <li>20% ≤RPD_RPD&gt;20% flag detected results "I" and nondetected results "UI"</li> <li>2) ± MRL for results ≤ 5x the MRL. Difference &gt;MRL, flag detected results "I" and nondetected results "UI"</li> </ol>	Sample EFF-061708 was analyzed in duplicate for chloride, sulfate, and nitrate: The RPDs were within acceptance criteria.		
Field Duplicates	<ol> <li>RPD ≤ 20% for aqueous samples (≤ 30% soil samples) for analytes with concentrations more than 5 times their PQLs, and concentrations within one MRL for analytes with concentrations less than 5 times then PQLs</li> </ol>	No field duplicate was collected with this SDG.		
MS/MSD	<ol> <li>No qualification required if recovery between 75-(25%.</li> <li>If background concentration is greater lizan 4x the spike concentration qualification is non- required.</li> <li>R&lt; 75% flag detected results "J" and nondetected results "U" "AR &lt; 125% flag detected results "J" "RR&lt;10% flag detected results "J" "RR&lt;10% flag detected results "J" Quality only results in the spiked sample: (Quality results for samples collected a same location but differing deputs as well)</li> </ol>	Sample EFF-061708 was used as the source sample for MS/MSD for chloride and sulfate. The recoveries were within acceptance criteria.		



Metals by USEPA Methods 6000/7000 Anions by USEPA Methods 300.0/353.2

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Compound Quantitation	<ol> <li>Instrument level concentrations should be less than the linear range. Qualify detected results with concentrations greater than the LDR "J"</li> <li>The reported RL should not be below the lowest ICAL standard concentration.</li> <li>Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	Sulfate and nitrate were reported as detected above the method reporting limits. Chloride was reported at an elevated reporting limit, due to dilution needed to bring the concentration of the sample within the calibration range.	No qualification is required.	Noue
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalies,		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400. Sincerely,

# AMEC Earth & Environmental, Inc.

PREPARED BY:

Wenne Mr. Condu

Melanie Roshu Environmental Chemist

REVIEWED BY:

Cerris Todelauche

Denise Ladebauche Environmental Chemist



August 5, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

#### INTRODUCTION

This data validation report covers one water sample collected on July 8, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The sample was dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on July 8, 2008 and assigned sample delivery group (SDG) number L0810030 upon receipt. Alpha analyzed the sample for total arsenic using USEPA Method 6020A. The associated field sample identification (ID) and Alpha sample ID is presented in Table 1.

The level of data validation specified in Table 2 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

#### EXECUTIVE SUMMARY

All data is generally usable and of good quality.

Arsenic was detected and reported at a concentration of 1.25 µg/L.

#### Table 1. Field Sample List

Lab Sample Number	Field ID	Comments	
L0810030-01	EFF-070808	3 ppb detection limit	

#### Table 2. Sample Status

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Tier II	Aqueous	As required by method	One sample cooler was received on 07/08/2008. If a temperature of 10°C.	Alpha Woods Hole Laboratory, 8 Walkup Drive, Westborough, MA 01581	1.0810030



# August 5, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

#### Table 3. Arsenic by USEPA 6020A

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file.</li> <li>a. Sample data package including case narrative, OC data and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt, preparation and analysis.</li> </ol>	All required deliverables were present in the data package.		
coc	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C for soils.</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 10°C. The sample was received at the laboratory above the required temperature range. Sample was preserved with HNO ₁ to pH<2. The Chain of Custody is intact. The laboratory Sample Receipt and Log-in Checklist indicates that sample integrity was maintained during transport.	The sample was received at the laboratory directly from the site and did not have sufficient time to chill. The sample integrity was nul- affected by the elevated cooley temperature. No qualification warranted.	None
Hàlđing Time	<ol> <li>Aqueous tample 180 days if preserved to pH&lt;2</li> <li>Hg - 28 days to analysis</li> </ol>	The sample was analyzed within holding time		
ICP-MS Tune	<ol> <li>Tuning solution analyzed at least four times. RSD &lt; 5% (br each component)</li> <li>Mass calibration not within 0.1 AMU, qualify detected results "1" and nondetected results "UJ"</li> </ol>	The tune standard met established criteria		
Initial Calibration	1) Correct calibration standards. At least 3 standards points not forced through zero, are required for linear calibration, $r \ge 0.995$ (EPA Method 6010/6020/7470). 2) $r^2 \ge 0.995$ , quadratic calibration (a) least 6 points, not forced through zero),.	Initial calibration met established criteria.		
2 ^{mi} Source Initial Calibration Verification (ICV)	<ol> <li>Following the calibration.</li> <li>90-110% recovery (EPA 6010.6020)</li> <li>75-49% recovery (FPA 6010.6020)</li> <li>75-49% recovery (FPA 6010.6020)</li> <li>1014 (25% recovery (FPA 7470)</li> <li>80-120% recovery (EPA 7470)</li> <li>8SD -5% for the replicate</li> </ol>	ICV met neceptance criteria.		



# August 5, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calibration Verification (C(CV)	<ol> <li>CCV using mid and high level standards; analyzed after every 10 samples and at the end of batch.</li> <li>Concentrations 80-120% (EPA Method 7470) and 90-110% of expected value (EPA Method 6010/6020).</li> <li>CCV &gt;120% (EPA Method 7470) or 110% (EPA Method 6010/6020); J qualify detects, no qualification is necessary for non-detects.</li> <li>CCV &lt;80% (EPA Method 7470) or 90% (EPA Method 6010/6020); J qualify detects; UJ qualify non-detects</li> <li>CCV outside 65-135%, reject data</li> </ol>	All/CCV recoveries were within acceptance limits		
Calibration Range/ Results	<ol> <li>Results &gt;Upper calibration range I qualify detects.</li> <li>Results &lt; Method reporting limit. &gt;method detection himit. I qualify detects (estimated).</li> </ol>	Assenic was detected and reported in sample EFF-070808 at 0.00125 mg/L, below the reporting limit of 2 ug/L	AMEC concurs with the laboratory and J qualified the detected arsenic result with a TR (trace level detected) reason code:	Estimated
Blanks (Method, Field, Equipment, Rinsate, etc.)	<ol> <li>Evaluate down to the MDL.</li> <li>If sample result is &lt;5x contaminant concentration: flag "U"</li> <li>Sample result ≥5x contaminant concentration; no qualification required.</li> </ol>	Arsenic was not detected in the associated method blank		
hubal Calibration Blanks and Continuing Calibration Blanks (JCB/CCB)	<ol> <li>ICB and CCB after every ten samples or every batch whicher er is greater</li> <li>Evaluate absolute values down to the MDI</li> <li>Sample results = 5x blank sample, U quality detects</li> <li>Sample results = 5x blank level, no action required</li> </ol>	Arsenic was not detected in the ICB or CCBs at concentrations greater than the method-detection limit		
Negative blanks	<ol> <li>If the blank has a negative result with an absolute value ⇒MDL, quadity detected results ≤5% the absolute value of the contaminant concentration is estimated "J" and quadify nondetected results "UJ".</li> </ol>	No negative blank concentrations were detected.		
Interelement cliceks ICS-A/ICS- AB Instrument performance clicek	1) No qualification required if recovery hetween 80-120%. a)%R < 80% flag detected results "T" and nondetected results "UT" b) %R > 120% flag detected results "T" c) %R < 10% flag detected results "T" and nondetected results "R"	ICS-A/ICS-AB recoveries were within acceptance limits		



# August 5, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Internal Standards (IS)	<ol> <li>Intensity of IS must be 30-120% of intensity of IS in the initial calibration standard.</li> <li>a)%8R&lt;30% flag detected results "T" and nondetected results "UJ"</li> <li>b) %8R &gt;120% flag detected results "J" and nondetected results "UJ"</li> </ol>	IS recoveries were within the acceptance (mile.		
Laboratory Control Sample/ Laboratory Control Sample Duplicate (LCS/LCSD) Recovery	<ol> <li>LCS acceptance limits 80-120%, method requirements (EPA Method 6010/6020/7470)</li> <li>a) %R&lt;80% flag detected results "J" and nondetected results "U"</li> <li>b) %R = 120% flag detected results "J"</li> <li>c) %R&lt;10% flag detected results "J" and nondetected results "R"</li> <li>Qualify all associated samples</li> </ol>	The LCS/LCSD recoveries overc within acceptance limits at 93%, and 89%, respectively		
Laboratory Duplicate RPD	<ul> <li>f) RPD ≤ 20%.</li> <li>a) If exceeds RPD limit: J qualify detects. UJ qualify non detects.</li> <li>b) If one result &gt; MRL and other ND; J-detections, UJ qualify non detects.</li> <li>2) ± MRL for results ≤ 5x the MRL.</li> </ul>	No laboratory duplicant was associated with this sample,		
Field Duplicate RPD	<ol> <li>RPD ≤ 30% (waters); ≤ 40% (soils)</li> <li>if exceeds RPD limit; J qualify detects. UJ qualify non detects.</li> <li>if one result = MRL and other ND; J-detections, UJ qualify non detects</li> <li>± MRL for results ≤ 5x the MRL.</li> </ol>	No field duplicate was associated with this SDG.		
MS/MSD Recovery	<ol> <li>MS/MSD acceptance limits are 75-125%. (EPA Method 6000/7000).</li> <li>Qualify results in the batch or of similar type:</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10%. J qualify detects, R qualify non-detects</li> <li>Recoveries &lt;75% flag detected results "J" and nondetected results "U" c) Recoveries &gt;125% flag detected results "T"</li> </ol>	No MS/MSD was associated with this SDG		



# August 5, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Post Digestion Spike (PDS)	<ol> <li>Acceptance limits are 75-150% (EPA Method 6000/7000).</li> <li>Qualify results in the batch or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10%. J qualify denects, R qualify non detects</li> <li>Recoveries &lt;75% flag detected results "1" and nondetected results =0.7" c) Recoveries =125% flag detected results =1"</li> </ol>	The PDS was performed on sample EFF-070808. The recovery was within acceptance limits at 104%.		
Serial Dilution	<ol> <li>Once per digestion batch (FPA 6000 series)</li> <li>≥10% for analytes with concentration &gt;50- times MDL</li> <li>%D&gt;10% flag detected results "F</li> </ol>	The %D for the SD performed on sample EFF-070808 was within acceptance firmts.		
Compound Quantilation	<ol> <li>Instrument level concentrations should be less than the linear dynamic range (LDR).</li> <li>Qualify detected results with concentrations greater than the LDR "T"</li> <li>The reported MRL should not be below the lowest ICAL standard concentration.</li> <li>Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	Arsenic was reported as detected and the required reporting limit of 0.003 mg/L was met.		
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalies.		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely,

AMEC Earth & Environmental, Inc.

PREPARED BY:

Murra Mr. Cortas

Melanie Roshu Environmental Chemist

AMEC Job No. 575240005 003 0003 Laboratory SDG: 1.0810030 REVIEWED BY:

Some statile who

Denise Ladebauche Environmental Chemist



August 29, 2008 Region J Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

#### INTRODUCTION

This data validation report covers one water sample collected on August 6, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The sample was dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on August 6, 2008 and assigned sample delivery group (SDG) number L0811539 upon receipt. Alpha analyzed the sample for total arsenic using USEPA Method 6020A. The associated field sample identification (ID) and Alpha sample ID is presented in Table 1.

The level of data validation specified in Table 2 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

#### EXECUTIVE SUMMARY

All data is generally usable and of good quality.

Arsenic was detected and reported at a concentration of 1.0 µg/L.

#### Table 1. Field Sample List

Lah Sample Number	Field ID	Comments	
1.0811530-01	EFF-030608	3 ppb detection limit	

#### Table 2. Sample Status

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Tier II.	Aqueous	As required by method	One sample confer was received on 08/06/2008 at a temperature of 8°C.	Alpha Woods Hole Laboratory. 8 Walkup Drive, Westborough. MA 01581	L0811539



# August 29, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

#### Table 3. Arsenic by USEPA 6020A

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completences:	<ol> <li>Complete SDG file.</li> <li>a. Sample data package including case narrotive, QC data and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt, preparation and analysis.</li> </ol>	All required deliverables were present in the data package:		
coc	<ol> <li>Sample costody documentation.</li> <li>Temperature 4±2°C for soils.</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	or sorts. Alpha was 8°C. The sample was received at the laboratory above the		None
Holding Time	1) Aqueous sample 180 days if preserved to pH<2 2) Hg - 28 days to analysis	The sample was analyzed within holding time.		
ICP-MS Tune	<ol> <li>Tuning solution analyzed at least four times. RSD ≤ 5% for each component.</li> <li>Mass calibration not within 0.1 AMU, qualify detected results "I" and nondetected results "UI"</li> </ol>	The tune standard met established criteria.		
lautal Calibration	<ol> <li>Correct calibration standards. At least 3 standards points not forced through zero, are required for linear calibration (≥0.995 (EPA Method 6010/6020/7470).</li> <li>r²≥0.995 quadratic calibration (at least 6 points, not forced through zero).</li> </ol>	Initial calibration met established criteria		
2 ^{ad} Source Initial Calibration Verification (ICV)	<ol> <li>Following the calibration.</li> <li>90-110% recovery (EPA.6010/6020)</li> <li>75-89% recovery, 1 qualify detects and UT qualify nondetects.</li> <li>(1) 111-125% recovery. J qualify detects.</li> <li>80-120% recovery (EPA.7470)</li> <li>RSD &lt;5% for the replicate.</li> </ol>	ICV met acceptance criteria.		



# August 29, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calibration Verification (CCV)	<ol> <li>CCV using mid and high level standards; analyzed after every 10 samples and at the end of batch.</li> <li>Concentrations 80-120% (EPA Method. 7470) and 90-110% of expected value (EPA. Method 5010/6020).</li> <li>a) CCV &gt;120% (EPA Method.7470) or 110% (EPA Method 6010/6020): 1 qualify detects, no qualification is necessary for non-detects.</li> <li>b) CCV &lt;80% (EPA Method.7470) or 90% (EPA Method 6010/6020): 1 qualify detects: UI qualify non-detects.</li> <li>cCV valid 65:135%, reject data</li> </ol>	All QCV recoveries were within acceptance limits.		
Calibration Range/ Results	<ol> <li>Results &gt;Upper calibration range I qualify detects.</li> <li>Results <method limit,="" reporting="">method detection limit: I qualify detects (estimated).</method></li> </ol>	Atsenic was detected and reported in sample EFF-080608 at 0.0010 mg/L, above the reporting limit of 0.0005 mg/L.		
Blanks (Method., Field, Equipment, Rinsaie, etc.)	<ol> <li>Evaluate down in the MDL.</li> <li>If sample result is &lt;5x contaminant concentration; flag="fl"</li> <li>Sample result 25x contaminant concentration; no qualification required.</li> </ol>	Arsenic was not detected in the associated method blank.		
Initial Calibration Blanks and Continuing Calibration Blanks (ICB/CCB)	<ol> <li>ICB and CCB after every ten samples or every batch whichever is greater.</li> <li>Evaluate absolute values down to the MDL</li></ol>	Arsenic was not detected in the ICB or CCBs at concentrations greater than the method-detection limit		
Negative blanks	<ol> <li>If the blank has a negative result with an absolute value &gt;MIDL qualify detected results.</li> <li>stee absolute value of the contaminant concentration as estimated "I" and qualify nondetected results "UJ".</li> </ol>	No negative blank concentrations were detected		
Interclement checks ICS-A/ICS- AB Instrument performance check	<ol> <li>No qualification required (Frecovery between 80-120%).</li> <li>a)% R&lt; 80% flag detected results "J" and nondetected results "U1"</li> <li>b) % R&gt;120% flag detected results "J"</li> <li>c) % R&lt;10% flag detected results "T" and nondetected results "R"</li> </ol>	ICS-A/ICS-AB recoveries were within acceptance limits.		



# August 29, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
İnternal Standards (IS)	<ul> <li>1) Intensity of IS must be 30-120% of intensity of IS in the initial culturation standard a)%R&lt;30% flag detected results "J" and nondetected results "UI"</li> <li>b) %R &gt;120% flag detected results "J" and nondetected results "UI"</li> </ul>	IS recoveries were within the acceptance limits.		
Laboratory Control Sample/ Laboratory Control Sample Duplicare (LCS/LCSD) Recovery	<ol> <li>LCS acceptance limits 80:120%, method requirements (EPA Method 6010/6020/7470)</li> <li>a) %R&lt;80% flag detected results "J" and nondetected results "U"</li> <li>b) %R&gt;120% flag detected results "I"</li> <li>c) %R&lt;10% flag detected results "T" and nondetected results "R"</li> <li>Qualify all associated samples</li> </ol>	The LCS/LC8D recoveries were within acceptance fimits at 100%.		
Laboratory Duplicate RPD	<ol> <li>RPD ≤ 20%</li> <li>a) If exceeds RPD limit, J qualify detects. UJ qualify non-detects.</li> <li>b) If one result &gt; MRL and other ND: J-detections, UJ qualify non-detects</li> <li>2) ± MRL for results ≤ 58 the MRL.</li> </ol>	No laboratory duplicate was associated with this sample.		
Field Doplicate RPD	<ul> <li>1) RPD = 30% (waters); = 40% (soils)</li> <li>a) If exceeds RPD limit: I qualify detects. UI qualify non detects.</li> <li>b) If one result &gt; MRL and other ND: J-detections. UJ qualify non detects</li> <li>2) ± MRL for results &gt; 5x the MRL.</li> </ul>	No field duplicate was associated with this SDG.		
MS/MSD Recovery	<ol> <li>MS/MSD acceptance limits are 75-125% (EPA Method 6000/7000).</li> <li>Quality results in the batch or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recovertes &lt;10%. I qualify detects, R qualify non detects</li> <li>Recovertes &lt;75% flag detected results "J" and nondetected results "U"</li> <li>Recovertes &gt;125% flag detected results "J"</li> </ol>	No MS/MSD was associated with this SDG.		



# August 29, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Post Digestion Spoke (PDS)	<ol> <li>Acceptance limits are 75-150% (EPA Method 6000/7000).</li> <li>Qualify results in the batch or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10% J qualify detects. R qualify non detects</li> <li>Recoveries &lt;75% flag detected results "J" and nondetected results. UJ"</li> <li>Recoveries &gt;125% flag detected results "J"</li> </ol>	The PDS was performed on sample EFF-080608. The recovery was within acceptance limits at 95%.		
Serial Dilution	<ol> <li>Once pet digestion trach (EPA 6000 series)</li> <li>≤10% for analytes with concentration &gt;50- turnes MDL</li> <li>%D&gt;10% flag detected results "1"</li> </ol>	The *D for the SD performed on sample EFF-080608 was withm acceptance limits.		
Compound Quantitation	<ol> <li>Instrument level concentrations should be less than the linear dynamic range (LDR).</li> <li>a) Quality detected results with concentrations greater than the LDR "T"</li> <li>2) The reported MRL should not be below the lowest ICAL standard concentration.</li> <li>a) Positive results reported above the MDL but below the RL should be considered estimated and be flagged "T"</li> </ol>	Arsenic was reported as detected and the required reporting limit of 0:003 mg/L was met.		
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results</li> <li>Evaluate sampling errors - field contamination, sample hold times.</li> </ol>	No anomaltes.		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely,

AMEC Earth & Environmental, Inc.

PREPARED BY:

Whene he Bola

Melanie Roshu Environmental Chemist

AMEC Job No. 575240005 003 0003 Laboratory SDG: 1.0811539 REVIEWED BY:

and sable Re

Denise Ladebauche Environmental Chemist



**SDG Number** 

LON13388

October 26, 2008 **Region I Data Review Worksheet** Project: SHL, Fort Devens Review Criteria: Fort Devens OAPP and MADEP MCP **USEPA Region I Tier II Guidance** 

Metals by USEPA Methods 6000/7600 Semisolatile Organic Commonds by USEPA 625 Volatile Organic Compounds by USTPA Method 624. Total Peiroleum Hydrocarbons to USEPA Method 1664A Anions by USEPA Methods 300.00551.2

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) by EPA Method 608 Dissolved Gases (Mchane, and Ethane) by Gas Chromatography (RSK175)

8 Walkup Drive, Westborough, MA 01581

# INTRODUCTION

This data validation report covers three primary water samples collected on September 10, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Aver, Massachusetts. The samples were dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on September 10, 2008 and assigned. sample delivery group (SDG) number L0813388, upon receipt. Alpha analyzed the samples for total metals using USEPA 6000/7000 methods, dissolved methane and ethane using RSK175, semivolatile organic compounds using USEPA Method 625, volatile organic compounds using USEPA method 624, total petroleum hydrocarbons using USEPA method 1664A, chloride and sulfate using USEPA Method 300.0, nitrate using USEPA Method 353.2 and organochlorine pesticides and PCBs using EPA Method 608. The associated field sample identification (ID) and Alpha sample IDs are presented in Table 2.

AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8. The level of data validation specified in Table 1 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

# EXECUTIVE SUMMARY

All data is generally usable and of good quality. Any limitations on the data and detected results are listed. below.

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory
Tuetl	Annamie	As required by:	One sample cooler was received on 09/10/08 at	Alpha Woods Hole Laboratory: 8 Walkup Drive, Westborough,

method

#### Table 1. Sample Status

Tiet II

# Table 2, Field Sample List

Aqueous

Lab Sample Number	Field ID	Comments
L0813388-01	EWJ-091008	Analyzed only for As, Fe, Mn, dissolved methane and ethane
L0813388-02	EW2-091008	Analyzed only for As, Fe, Mn, dissolved methane and ethane
L0813388-03	EFF-091008	Metals, 624, 625, TPH, Anions, 608

a temperature of 4.1°C



Metals by USEPA Methods 5000/7000

Semivularile Organic Compounds by USEPA 625

Volatile Organic Compounds by USEPA Method 624

Total Petroleum Hydrocarlums by USEPA Method 1004A

Anions by USEPA Methods 300.0/353,2 Organuchlurine Pesticides and Polychlorinated Iliphenyls (PCBs) by EPA Method 608 Dissolved Gases (Methane, and Ethane) by Gas Chromatography (RSE175)

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

Table 3. Metals by USEPA Methods 6010B, 6020A, and USEPA Method 7470A

Review Hems	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file.</li> <li>a. Sample data package including case narrative. QC data and raw data</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt, preparation and analysis.</li> </ol>	All required deliverables were present in the data package.		
coc	<ol> <li>Sample custody documentation,</li> <li>Temperature 4±2°C for soils,</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation</li> </ol>	Cooler temperature upon orrival at Alpha was 6.1°C Samples were preserved with HNO 1 to pH<2. The Chain of Custody is intact. The laboratory sample (ceep) and log in checklist indicates that samples integrity was maintained during transport.		
Holding Time	<ol> <li>Aqueous sample 180 days if preserved to pH&lt;2</li> <li>Hg - 28 days to analysis</li> </ol>	Samples were analyzed within holding time.		
ICP-MS Tune	<ol> <li>Tuming solution analyzed at least four times. RSD ≤ 5% for each component.</li> <li>Mass calibration not within 0.1 AMU, qualify detected results "T" and nondetected results "UT"</li> </ol>	ICP-M5 Tune met acceptance criteria.		
Initial Calibration	<ol> <li>Correct calibration standards. At least 3 standards points not forced through zero, are required for linear calibration, r≥0.995 (EPA Method 6010/6020/7470).</li> <li>r² ≥0.995, quadratic calibration (at least 6 points, not forced through zero).</li> </ol>	Initial calibration met established criteria.		
2 nd Source Initial Calibration Verification (ICV)	<ol> <li>Following the calibration.</li> <li>90: )10% recovery (EPA n010/6020)</li> <li>75:89% recovery, J qualify detects and U) quality nondetects.</li> <li>(111-)25% recovery. I qualify detects.</li> <li>(111-)25% recovery (EPA 7470)</li> <li>(120% recovery (EPA 7470)</li> <li>(120% for the pepticale</li> </ol>	TCVs met acceptance criteria		



Metals by USEPA Methods 6000/7000

Semivotalile Organic Compounds by USEPA 625

Volutile Organic Compounds by USEPA Method 624

fotal Petroleum Hydrocarbons by USEPA Method 1664A

Anians by USEPA Methods 300.0/353.2

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) by EPA Method 808 Dissolved Gaser (Methane, and Ethane) by Gas Chromatography (RSK175)

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing: Calibration Verification (CCV)	<ol> <li>CCV using mid and high level standards: analyzed after every 10 samples and at the end of batch.</li> <li>Concentrations 80-120% (EPA Method 7470) and 90-110% of expected value (EPA Method 5010/6020)</li> <li>a) CCV &gt;120% (EPA Method 7470) or 110% (EPA Method 6010/6020); J qualify detects, no qualification is necessary to non-detects.</li> <li>b) CCV </li> <li>h) CCV </li> <li>h) detects; h) detects;</li> <li>h) detects; h) CCV omiside 65-135%, reject data</li> </ol>	All CCV recoveries were within acceptance limits.		
Calibration Range/ Results	<ol> <li>Results &gt; Upper calibration range J qualify detects.</li> <li>Results &lt; Method reporting limit; &gt;method detection limit: J qualify detects (cstimated)</li> </ol>	Manganese (0.0026 mg/L) and copper (0.0096 mg/L) from sample EFF- 091008 were reported below the method reporting limit.	These analytes were I qualified on the data rables, with a TII (trace level) reason code,	Estimation
Blanks (Method, Field, Equipment: Rinsate, etc.)	<ol> <li>Evaluate down to the MDL.</li> <li>If sample result is &lt;5x contaminant concentration: flag "1."</li> <li>Sample result &gt;5x contaminant concentration: no qualification required.</li> </ol>	Arsenic at 0.0001 mg/L was detected in method blank WG335948. The detected arsenic concentrations in the associated samples were more than 5 times the blank concentration. Data usability was not affected. No analytes were detected in the preparation blanks associated with these samples.		
Initial Calibration Blanks and Continuing Calibration Blanks (ICB/CCB)	<ol> <li>ICB and CCB after every ten samples or every batch whichever is greater.</li> <li>Evaluate absolute values down to the MDL- 3) Sample results &lt; 5x blank sample. U qualify detects</li> <li>Sample results = 5x blank level, no action required</li> </ol>	Arsenic at different concentrations was detected in the CCBs associated with all samples. The detected arsenic concentrations in all samples were more than 5 times the blank concentrations. Data usability was not affected. Barium (0.00133 mg/L), mauganese (0.00058 mg/L), and silver (0.00103 mg/L) were detected in the ICB associated with sample EFF-091008. The detected barium and manganese concentrations were more than 5 times the blank concentrations and silver was not reported as detect in sample EFF-091008. Data usability was not affected.		



Memb by USEPA Meiluals 6000/7000

Semivolatile Organic Compounds by USEPA 625

Valatile Organic Compounds by USEPA Method 024

Total Petroleum Hydrocarbons by USEPA Method 1064A

Anions by USEPA Methods 300.0/353.2

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) by EPA Method 608 Dissolved Gases (Methane, and Ethane) by Gas Chromatography (RSK175)

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Negative blanks	<ol> <li>If the blank has a negative result with an absolute value &gt;MDL, qualify detected results</li> <li>the absolute value of the contaminant concentration as estimated "1" and qualify nundetected results "UT"</li> </ol>	No negative blank concentrations were detected.		
Interelement checks ICS-A/ICS- AB Instrument performance check	<ol> <li>No qualification required if recovery between 80-120%.</li> <li>a)%R~ 80% flag detected results "J" and nondetected results "UJ"</li> <li>b) %R~120% flag detected results "T"</li> <li>c) %R~10% flag detected results "T" and nondetected results "R"</li> </ol>	ICS-A/ICS-AB recoveries were within seceptance limits.		
Internal Standards (IS)	<ul> <li>1) Intensity of IS must be 30-120% of intensity of IS in the initial calibration standard.</li> <li>a)%R&lt;30% flag detected results "J" and nondetected results "UF"</li> <li>b) %R&gt;120% flag detected results "U" and nondetected results "U".</li> </ul>	All internal standards %R were within acceptance limits.		
Laboratory Control Sample Laboratory Control Sample Duplicate (LCS/L(SD) Recovery	<ol> <li>LCS acceptance limits 80-120%, method requirements (EPA Method 6010/6(120/7470))</li> <li>a) %R&lt;80% flag detected results "J" and nondetected results "UJ"</li> <li>b) %R&gt;120% flag detected results "J"</li> <li>c) %R&lt;120% flag detected results "J" and nondetected results "R"</li> <li>Qualify all associated samples</li> </ol>	The LCS/LCSD recoveries were within acceptable limits		
Labiratory Doplicate RPD	<ul> <li>1) RPD ≤ 20%</li> <li>a) If exceeds RPD limit: J qualify detects, UJ qualify non detects.</li> <li>b) If one result = MRL and other ND: J-detections, UJ qualify non detects</li> <li>2) = MRL for results ≤ 55 the MRL</li> </ul>	No laboratory duplicate was associated with this SDG.		
Field Duplicate RPD	<ol> <li>RPD &gt;20% waters (&gt;30% soils)</li> <li>For iletected results more than 5 times their PQLs flag "J"</li> <li>Differences in concentrations – the MRJ, for malytes with concentrations less than 5 times their PQLs flag "J"</li> </ol>	No field duplicate was associated with this SDG.		



Metals by USEPA Methods 6000.7000

Semivolatile Organic Compounds by USEPA 625

Volatile Organic Compounds by DSEPA Method 624

Total Petroleum Hydrovarbons by USEPA Method 1664A.

Anions by USEPA Methods 300.0/353.2

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) by EPA Method 608 Dissolved Gases (Methane, and Ethane) by Gas Chromatography (RSK175)

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
MS/MSD Recovery	<ol> <li>MS/MSD acceptance limits are 75-125% (EPA Method 600077000)</li> <li>Qualify results in the batch or of similar type.</li> <li>If background concentration is ≥4x spike concentration qualification is not required a) Recoveries = 10% 1 qualify detects. R qualify non-detects</li> <li>Recoveries &lt;75% flag detected results "1" and nondetected results "U" t) Recoveries = 125% flag detected results "7".</li> </ol>	No MS/MSD was associated with this SDG,		
Posi Digestion Spike (PDS)	<ol> <li>Acceptance limits are 75-125% (FPA Method 6000/7000).</li> <li>Qualify results in the batch or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10% J qualify detects. R qualify non detects</li> <li>Recoveries &lt;75% flag detected results "J" and nondetected results "UT"</li> <li>Recoveries &gt;125% flag detected results "J"</li> </ol>	Sample FFF-091008 was used as the source for the PDS. The recoveries were within acceptance limits, except for total selenium at 126%.	AMEC UJ qualifief the total sclenium result from sample EFF-091008 with a P (PDS not within control fimits) reason code.	Estimation
Serial Dilation	<ol> <li>Once per digestion batch (EPA 6000 series)</li> <li>&gt;10% for analytes with concentration &gt;50- times IDL     %D&gt;10% flag detected results "F"     </li> </ol>	The laboratory performed serial dilution analyses on samples EFF- 091008 and EW1-091008. The "5Ds were less than 10"5.		
Compound Quantitation	<ol> <li>Instrument level concentrations should be less than the linear dynamic range (LDR).</li> <li>a) Qualify detected results with concentrations greater than the LDR "I"</li> <li>2) The reported MRL should not be below the lowest ICAL standard concentration.</li> <li>a) Positive results reported above the MDL but below the RL should be considered estimated and be flagged "T"</li> </ol>	Manganese (0.0026 mg L) and copper (0.0096 mg/L) were detected below the RL of 0.01 mg/L in sample EFE- 091008.	AMEC I qualified the manganese and copper results from sample EFF-091008 with a TR (trace level) reason code.	Estimation
Overail Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors - field contamination, sample hold times.</li> </ol>	No anomalies.		



Meinis by DSEPA Meihouts 6000/7000

Semivolatile Organic Compounds by USEPA 625

Volatile Organic Compounds by USEPA Method 624

Total Petroleum Hydrocarbons by USEPA Method 1664A

Anions by USEPA Methods 300.0/353.2

Organnehlurine Pestioides and Polychlorinated Biphenyls (PCBs) by RPA Method 608 Dissolved Gases (Methane, and Ethane) by Gas Chromatography (RSK173)

# Table 4. Semivolatile Organic Compounds by USEPA Method 625

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file.</li> <li>a: Sample data package metuding case narrative. QC data: and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt preparation and analysis.</li> </ol>	All required deliverables were present in the dara package.		
cot:	<ol> <li>Sample custody documentation.</li> <li>Temperature 4-2°C</li> <li>No sample preservation required.</li> <li>Sample delivery documentation.</li> </ol>	Codler temperature upon arrival at Alpha was 4.1°C. The laboratory sample receipt and log in checklist indicates that sample integrity was maintained during transport.		
Holding Time:	<ol> <li>Aspecius sample 7 days to extraction, soil 14 days to extraction. Extracts – analyzed within 40 days of extraction.</li> <li>If extraction or analysis HT exceeded flag all detected results "J" and nondetected results "UP"</li> <li>If HT grossly exceeded (&gt; 3x HT) flag all detected results "J" and nondetected results "R"</li> </ol>	Sample was extracted and analyzed within holding time.		
GC/MS instrument performance check (DFTPP)	<ol> <li>Samples analyzed beyond rune time flag all detected results "F" and nondetected results "Uf"</li> </ol>	DFTPP tune met acceptance eriteria.		
Inifial Calibration	<ul> <li>1) Compounds with RSDs ≤15% or r or r²≥ 0.99 values flag detected results "f" and nondetected results "U"</li> <li>2) Compounds with very low RRFs (&lt;0.01) flag detected results "J" and nondetected results "R</li> </ul>	Initial calibration met established criteria.		
Continuing Calibration Verification (CCV)	<ul> <li>1) No qualification if recovery between 80- 120%.</li> <li>a) %R = 120% flag detected results "J" b) %R &lt;80% flag detected results "J" and nondetected results "UJ"</li> </ul>	CCV recoveries were within acceptance limits.		



Metals by USEFA Methods 0000/7000

Sentivulatile Organic Compounds by USEPA 025

Volatile Organic Compounds by USEPA Melhod 024

Total Petroleum Hydrocarbons by USEPA Method 1664A

Anions by USEPA Methods 300.0/353.2

Organnehlurine Pesticides and Polychlurinated Biphenyls (PCBs) by EPA Method 608 Dissolved Gases (Methane, and Ethane) by Gas Chromatography (RSK175)-

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Blanks (Method: Fjeld, Equipment, Rinsate: etc.)	<ol> <li>Should be &lt; MRI. for the analyte         <ul> <li>a) If sample result is "5x contaminant concentration and between MDL and MRL, raise result to MRL and flag "U"</li> <li>b) If sample result is &lt;5x contaminant concentration and ≥ MRL flag, "U"</li> <li>c) Sample results ∞5x contaminant concentration no qualification required.</li> <li>d) If gross contamination exists flag detocted results "R"</li> <li>2) Apply FB, EB, RB results to samples with same collection date.</li> </ul> </li> </ol>	Analytes were not detected in the method black WG336096-1		
Surrogales	<ol> <li>30-130% recovery for base-neutral compounds and 15-110% recovery for acid compounds for samples.</li> <li>40-140% for method blanks, matrix spikes and LCS.</li> </ol>	Surrogate phenol-D6 was recovered at 19% in sample EFF-091008. The other two surrogate compounds from the same fraction met established criteria; therefore data usability is not affected.		
Laboratory Control Sample/ Laboratory Control Sample Duplicate (LES/LCSD) Recoveries	<ul> <li>1) 40-140% recovery for base-neutral compounds and 30-130% for acid compounds: ≤20%RPD</li> <li>a) %8&lt;40% or 30% flag detected results "J" and nondetected results "UJ"</li> <li>b) %8&gt;-140% for 130% flag detected results "J" and nondetected results "R"</li> <li>c) %8&lt;10% flag detected results "J" and nondetected results "R"</li> <li>Qualify all associated samples.</li> </ul>	Phenol (28%) was burside of the acceptance criteria, in the LCS associated with sample EFF-091008	AMEC UJ qualified the associated analyte from sample EFF-091008, with an L (LCS % recovery was not within control limits) reason code.	Low
MS/MSD	<ol> <li>No qualification required if recovery between 40-040% for base-neutral compounds and 30-150% for acid compounds.</li> <li>%R&lt;40% or 30% flag detected results "J" and nondetected results "UJ"</li> <li>%R&lt;410% flag detected results "J" and nondetected results "UJ"</li> <li>%R&lt;140% flag detected results "J" and nondetected results "B"</li> <li>1f background concentration is greater than 4x the spike concentration qualification is not required</li> <li>RPD&gt;20% waters (&gt;30% soils) flag detected results "F"</li> </ol>	No MS/MSD was associated with this SDG.		
Field Doplicates	1) RPD $\leq 20\%$ for aqueous samples ( $\leq 30\%$ soil samples) for analytes with concentrations more than 5 times their PQLs; and concentrations within one MRL for analytes with concentrations less than 5 times their PQLs	No field doplicate was collected with this SDG.		



Metals by USEPA Methods 6000/7000

Semivolaille Organic Compounds by USEPA 625

Volatile Organic Compounds by USEPA Method 624

Total Petroleum Hydrocarlions by USEPA Method 16645

Anions by USEPA Methods 300.0/353.2

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) by EPA Method 608 Dissolved Gases (Methane, and Ethone) by Gas Chromanography (RSK175)

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Internal Standards	<ol> <li>50%-200% of area counts in associated CCAL standard.</li> <li>=30 seconds of RT in associated CCAL standard.</li> </ol>	Internal standards were within acceptance criterta		
Compound Quantitation	<ol> <li>Qualify detected results with concentrations greater than the highest ICAL standard concentration "T"</li> <li>Positive results reported above the MDL but below the RL should be considered estimated and be flagged "T"</li> </ol>	SVOC compounds were reported as not detected at the method-detection limit for sample EFF-091008.		
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalies		

# Table 5. Volatile Organic Compounds by USEPA Method 624

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Daia Completeness	<ol> <li>Complete SDG file.</li> <li>a. Sample data package including case narrative, QC data, and raw data.</li> <li>b. Simpping and receiving documents.</li> <li>c. All lab records of sample receipt, preparation and analysis.</li> </ol>	All required deliverables were present in the data package.		
coc	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C</li> <li>No sample preservation required.</li> <li>Sample delivery documentation</li> </ol>	Cooler temperature upon arrival at Alpha was 4 1°C. The laboratory sample receipt and lng in checklist indicates that sample integrity was maintained during transport.		
116iding, Time	<ol> <li>Aqueous unpreserved sample 7 days and aqueous preserved 14 days.</li> <li>If analying HT exceeded flag all detected results "J" and nundetected results "UF"</li> <li>If HT grossily exceeded (≥ 3x HT) flag all detected results "J" and nundetected results "R"</li> </ol>	Sample was extracted and analyzed within holding time.		
GC/MS tunes with BFB	<ol> <li>Every 12 hours.</li> <li>Samples analyzed beyond tone time flag all decered results "1" and numderected results "11"</li> </ol>	BFB tune met acceptance criteria.		



Metals by USEPA Methods #000/7000

Semivalatile Organic Compounds by USEPA 625

Volatile Organic Compounds by USEPA Method 524

Total Petroleum Hydrocarbons by USEPA Method 1664A

Anions by USEPA Methods 300.0/353.2

Organocidorine Pesticides and Polychlorinated Biphenyls (PCBs) by EPA Method 608 Dissolved Gases (Methane, and Ethane) by Gas Chromatography (RSK175)

Review Dems	Acceptance Criteria	Samples affected	Qualifications	Blas
Inutal Calibration	<ol> <li>Minimum of 5 standards.</li> <li>Compounds with RSDs ≤ 15% or "r" ≥ 0.99, except CCCs which must be ≤ 30% aRSD or "r" ≥ 0.99, values flag detected results "J" and nondetected results "UJ"</li> <li>Compounds with very low RRFs (&lt;0.01) flag detected results "J" and nondetected results "R</li> </ol>	Initial calibration met established criteria.		
Continuing Calibration Verification (CCV)	<ol> <li>No qualification if recovery between 80 – 120% for CCCs and 70%-130% for other analytes:</li> <li>a) %R ≈120 or 130% flag detected results "J"</li> <li>b) %R &lt;80 or 70% flag detected results "J" and nondetected results "UT"</li> </ol>	CCV recovery was within acceptance limuts		
Blanks (Method, Trip, Field, Rinnate, efc,)	<ol> <li>Every 20 samples prior to tunning samples and after calibration standards.</li> <li>Matrix and preservative specific,</li> <li>Target analytes must be &lt; RL except for common laboratory contaminants (e.g. acetone, methylene chloride, MEK which must be &lt;5x the RL)</li> <li>Apply TB, FB, RB results to samples with some collection date.</li> </ol>	VOCs were not detected in the method. blank WG336340-8.		1
Surrogates	<ol> <li>70-130% recovery for samples.</li> <li>80-120% for method blanks, matrix spikes and LCS.</li> </ol>	All surrogate recoveries met established criteria		
Laboratory Control Sample Laboratory Control Sample Duplicate (LCS/LCSD) Recoveries	<ul> <li>1) 70-130% recovery: \$25%RPD</li> <li>a) "\$R&lt;70% flag detected results "J" and monderected results "UJ"</li> <li>b) %R=130% flag detected results "J"</li> <li>c) %R&lt;10% flag detected results "J" and nondetected results "R"</li> <li>2) Quality all associated samples.</li> </ul>	LCS/LCSD recoveries and RPD were within acceptance criteria.		
MS/MSD	<ol> <li>No qualification required if recovery between 70-130%.</li> <li>If background concentration is greater than 4x the spike concentration qualification is not required</li> <li>RPD&gt;50% flag detected results "T"</li> </ol>	No MS/MSD was associated with this SDU.		
Internal Standards (IS)	<ol> <li>50%-200% of area counts in associated CCAL standard.</li> <li>=30 seconds of RT m associated CCAL standard.</li> </ol>	Internal standards were within acceptance criteria.		



Myrals by USEPA Methods 6000/7000

Semivolatile Organic Compounds by USEPA 625

Voluille Organic Compounds by USEPA Method 624

Total Petroleum Hydrocarbons by USEPA Method 1664A

Anions by USEPA Methods 300.0/353.2

Organochlurine Pesticides and Polychlorinnted Biphenyls (PCBs) by EPA Method 608 Dissolved Gases (Methane, and Ethane) by Gay Chromatography (RSK175)

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Compound Quantitation	<ol> <li>Qualify detected results with concentrations greater than the highest ICAL standard concentration "J"</li> <li>Positive results reported above the MEN, but below the RL should be considered estimated and be flagged "J"</li> </ol>	1,4-Dichlorobenzene, 1,1-dichloroethane, chloroform, chlorobenzene, henzene, and chloroethane from sample EFE-091008 were detected and reported hetween the MDL and the RL.	AMEC J qualified these inalytes from the sample EFF- 09(008 on the data tables, with a TR (trace level) reason code.	Estimation
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors - field contamination, sample hold times.</li> </ol>	No anomalies.		

# Table 6. Total Petroleum Hydrocarbons by USEPA Method 1664A

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bins
Data Completenesa	<ol> <li>Complete SDG file.</li> <li>Sample data package including case narrative_OC data; and now data.</li> <li>Shipping and receiving documents:</li> <li>All lab records of sample receipt. preparation and analysis.</li> </ol>	All required deliverables were present in the data package.		
COC	<ol> <li>Sample custody documentation</li> <li>Temperature 4±2°C</li> <li>Aqueous samples preverved at the time of collection to pH&lt;2</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 4.1°C. The sample was preserved to pH <= at the laboratory. The laboratory sample receipt and log in checklist indicates that sample integrity was maintained during transport.	AMEC J qualified the TPH result from sample EFF- 091008, because the pH adjustment was, done more than 4 hours after time of collection. Therefore an M (Method QC criteria uni met) reason code was applied.	Estimation
Holding Time-	<ol> <li>Aqueous and solid samples must be analyzed within 28 days from sample collection.</li> <li>If extraction or analysis HT exceeded flag all detected results "1" and nondetected results "U3"</li> <li>IF HT grossily exceeded (= 3s HT) flag all detected results "1" and nondetected results "R"</li> </ol>	Sample was extracted and analyzed within holding time:		

10 of an



Mirtals by USEPA Mythinds 6000/7000

Semivulatile Organic Compounds by USEPA 625

Volatile Organic Compounds by USEPA Method 624

Total Petroleum Hydrocarlums by USEPA Mellord 1664A

Anions by USEPA Methods 300.0/353.2

Organochlurine Pesticides and Polychlorinated Biphenyls (PCBs) by EFA Method 608 Dissolved Gases (Methane, and Ethane) by Gas Chromatography (RSK175)

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Blanks (Method, Field, Equipment, Rinsate, etc.)	<ol> <li>Should be &lt; MRL for the analyte         <ul> <li>a) If sample result is ≤5% contaminant</li> <li>concentration and between MDL and MRL,</li> <li>raise result to MRL and flag "U"</li> <li>b) If sample result is &lt;5% contaminant</li> <li>concentration and ≥ MRL flag, "U"</li> <li>c) Sample results ≥5% contaminant</li> <li>concentration no qualification required.</li> <li>d) If gross contaminant exists flag detected</li> <li>results "R"</li> <li>2) Apply FB, EB, RB results to samples with same collection date.</li> </ul> </li> </ol>	TPH was not detected in the method blank.		
Laboratory Control Sample Recoveries	<ol> <li>64-132%, recovery:         <ul> <li>a) %6R&lt;64%, flag detected results "J" and nondetected results "U"</li> <li>b) %6R&gt;132% flag detected results "J"</li> <li>c) %6R&lt;10% flag detected results "J" and nondetected results "R"</li> <li>c) Quality all associated samples.</li> </ul> </li> </ol>	1 C5 recovery was within acceptance oriteria.		
M5/MSD	<ol> <li>No qualification required if recovery between 64-132%.</li> <li>a) %nR&lt;64% flag detected results "J" and nondetected results "UJ"</li> <li>b) %nR&lt;132% flag detected results "J"</li> <li>a) %nR&lt;10% flag detected results "T and nondetected results "R"</li> <li>c) %nR&lt;10% flag detected results "T and nondetected results "R"</li> <li>c) flackground concentration is greater than 4% the spike concentration qualification is not required</li> <li>c) RPD&gt;50 flag detected results "T</li> </ol>	An MS was performed on a sample from a different SDG and is not applicable to this sample.		
Compound Quantilation	<ol> <li>Qualify detected results with concentrations greater than the highest ICAL standard concentration "I"</li> <li>Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	TPH from sample EFF-091008 was detected and reported between the MDL and the RL.	AMEC J qualified the TPH from the sample EFF-091008 on the data tables, with a TR (trace level) reason code.	Estimation
Overali Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors field contamination, sample hold times.</li> </ol>	No anomalies.		

Laboratory 5DG: L0813388



Metals by USEFA Methods 0000/7000

Semicolatile Organic Compounds by USEPA 625

Vidaille Organic Compounds by USEPA Method 624

Total Petroleum Hydrocarhons by USEPA Method 1604A

Anions by USEPA Methods 300.0/353.2

Organochlorine Pesiticides and Polyehlorinated Biphenyls (PCBs) by EPA Method 608 Dissolved Gases (Methane, and Ethane) by Gas Chromatography (RSK175)

# Table 7. Nitrate by USEPA 353.2, and Chloride and Sulfate by USEPA 300.00

Review Items	Acceptance Criteria	Samples affected.	Qualifications	Bias
Dala Completeness	<ol> <li>Complete SDG file.</li> <li>Somple data package including case narrative: QC data and raw data.</li> <li>Shipping and receiving documents:</li> <li>All lab records of sample receipt, preparation and analysis.</li> </ol>	All required deliverables were present in the data parkage		
coc	<ol> <li>Sample costody documentation.</li> <li>Temperature 4±2°C</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 4.1°C. The laboratory sample receipt and log in checklist indicates that sample integrity was maintained durmg transport.		
Halding Times (HT)	<ol> <li>28 days: preservation not required (Chloride, Sulfate) (EPA Method 300.0)</li> <li>48 hours: preservation not required (Nitrate-N)(EPA Method 353.2)</li> </ol>	The sample was analyzed and preserved as per EPA Method requirements.		
Initial Calibration	<ol> <li>1) r ≥ 0.99 for chloride, sulfate and nitrate, linear calibration</li> <li>Analytes with low r &lt;0.99 (lag detected results "J" and numdetected results "UI"</li> <li>2) Use professional judgment if not enough points were used for curves. Determine if system imprecision or bias</li> </ol>	Initial calibration emeria were mer-		
ICV/CCV	<ol> <li>No qualification if recovery between 90-110% (chloride, sulface and nurale) and 85- 115% (cyanide).</li> <li>a) "aR &gt;110% (chloride, sulface and nitrate) and 115% (cyanide) flag detected results "J"</li> <li>b) %aR &lt;90% (chloride sulfate and nitrate) and 85% (cyanide) flag detected results "J"</li> <li>and "aR &lt;90% (chloride sulfate and nitrate) and 85% (cyanide) flag detected results "J" and nondetected results "UJ"</li> </ol>	ICVs were within acceptance limits.		
Manks (Method Field, Equipment, Rinsate, etc.)	<ul> <li>1) If sample result is ~5x contaminant concentration and between MDL and MRL raise result to MRL and flag "U"</li> <li>2) If sample result is &lt;5x contaminant concentration and ≥ MRL flag "U"</li> <li>3) Sample result ≥5x contaminant concentration; no qualification required.</li> </ul>	No nitrate, chloride, or sulfate was detected in the associated method blanks.		
ICBE(CCB)	<ol> <li>Evaluate absolute values down to the MDL. Evaluate (CBs/CCBs that bracket samples.</li> </ol>	ICB/CCBs were analyzed every 10 samples will no delections.		



Metals by USEPA Methods 0000/7000

Semivolatile Organic Compounds by USEPA 625

Volatile Organic Compounds by USEPA Method 624

Total Petroleum Hydrocarbons by USEPA Method 1664A

Anions by USEPA Methods 300.0/353.2

Organuchlurine Pestivides and Polychlurinated Biphenyls (PCBs) by EPA Method 608 Dissolved Gases (Methane, and Ethane) by Gas Chromotography (RSK175)

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
LCS	<ol> <li>No qualification if recovery between 80- 120%.</li> <li>a) %_nR&lt;80%_n flag detected results "J" and nondetected results "UJ"</li> <li>b) %_nR &gt;120%_n flag detected results "J" and nondetected results "J" and nondetected results "R"</li> </ol>	LCS recoveries were willin acceptance criteria		
Lab Duplicate	<ol> <li>20% <rpd, rpd="">20% flag detected results "J" and nondetected results "UJ"</rpd,></li> <li>21 ± MRI for results ≤ 5x the MRL. Difference</li> <li>&gt;MRL, flag detected results "J" and mondetected results "UT"</li> </ol>	Sample EFF-091008 was analyzed in duplicate for chloride, sulfate, and nitrate. The RPDs were within acceptance criteria.		
Field Duphcates	1) RPD $\leq 20\%$ for aqueous samples ( $\leq 30\%$ soil samples) for analytes with concentrations more than 5 times their PQLs, and concentrations within one MRL for analytes with concentrations less than 5 times their PQLs.	No field duplicate was collected with this SDG.		
MS/MSD	<ul> <li>11 No qualification required if recovery between 75-125%.</li> <li>2) If background concentration is greater than 4% the spike concentration qualification is not required.</li> <li>"%R&lt; 75% flag detected results "J" and nondetected results "U".</li> <li>%R&lt; 125% flag detected results "J" and nondetected results "J".</li> <li>%R&lt;10% flag detected results "J" and nondetected results "R".</li> <li>Qualify only results in the apiked sample. (Qualify results for samples collected at same location but differing depths as well).</li> </ul>	Sample EFF-091008 was used as the source sample for MS for chioride, sulfate and mirate. All recoveries were within acceptance criteria.		
Compound Quantitation	<ol> <li>Instrument level concentrations should be less than the lorear range. Qualify detected results with concentrations greater than the LDR "J"</li> <li>The reported RL should not be below the lowest ICAL standard concentration.</li> <li>Positive results reported above the MDL but below the RL should be considered estimated and be flagged "T"</li> </ol>	Chloride, solfate, and movie were reported as detected above the method reporting limits.		
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalies.		



Metals by USEPA Methods 6000/7000

Semivulatile Organic Compounds by USEPA 625

Volatile Organic Compounds by USEPA Method 624

Total Petroleum Hydracarbons by ESEPA Method 1064A

Anions by USEPA Methods 300.0/353.2

Organochlorine Postfeides and Pulychlorinatoil Illphonyls (PCBs) by EPA Method 608 Dissolved Gases (Methane, and Ethane) by Gas Chromatography (RSK175)

#### Table 8. Organochlorine Pesticides and Polychlorinated Biphenyls by USEPA Method 608

Review fiems	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file.</li> <li>a. Sample data package including case narrative, QC data, and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt preparation and analysis.</li> </ol>	All required deliverables were present in the data package.		
COC	<ol> <li>Sample custody documentation.</li> <li>Temperature ≤6°C</li> <li>No sample preservation required.</li> <li>Sample delivery documentation</li> </ol>	Cooler temperature upon arrival at Alpha was 4.1°C. The laboratory sample receipt and log in checklist indicates that sample integrity was maintained during transport.		
Hulding Time	<ol> <li>Aqueous sample 7 days to extraction; soil 14. days to extraction. Extracts – analyzed within 40 days of extraction.</li> <li>If extraction or analysis HT exceeded flag all detected results "Γ" and nondetected results "(J)".</li> <li>If HT grossily exceeded (≥ 3x HT) flag all detected results "Γ" and nondetected results "R".</li> </ol>	Sample was extracted and analyzed within holding time.		
Endrav/DDT Breakdown	<ol> <li>Before samples are analyzed.</li> <li>1) Breakdown must be ≤ 15 and must be evaluated using peak areas.</li> </ol>	Endrin and DDT breakdown met the acceptance criteria.		
Initial Calibration	<ol> <li>Compounds with RSDs &lt;20% or r or r²</li> <li>0.99 values: Rag detected results "1" and nondetected results use professional judgment.</li> <li>Curves must be verified by an independent ICV before analysis.</li> </ol>	Initial calibration me) established enterta.		
Continuing Calibration Verification (CCV)	<ul> <li>11 Prior to samples, every 12 hours or every 20 samples, whichever is more frequent, and at the end of the analytical sequence.</li> <li>2) No qualification if recovery between 85 – 115%.</li> <li>a) %R &gt;115% flag detected results "T"</li> <li>b) %R &lt;85% flag detected results "J" and nondetected results "UT"</li> </ul>	CCVs were analyzed as required and the recoveries met established criteria.		



Morals by USEPA Methods 6000/7000

Semivolatile Organic Compounds by USEPA 625

Volatile Organic Compounds by USEPA Method 624

Tetal Petroleum IIs drocarbons by USEPA Method 1664A

Anions by USEPA Methods 300.0/353.2

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) by EPA Method 608 Dissolved Gases (Methane, and Ethane) by Gas Chromatography (RSK175)

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Blanks (Method. Field. Equipment, Rmsaic_ele.)	<ol> <li>Should be &lt; MRL for the analyte         <ul> <li>a) If sample result is &lt;5x contaminant             concentration and between MDL and MRL,             raise result to MRL and flag "U"</li> <li>b) If sample result is &lt;5x contaminant             concentration and ≥ MRL flag, "U"             e) Sample result is &lt;5x contaminant             concentration and ≥ MRL flag, "U"             e) Sample results ≥5x contaminant             concentration no qualification required.             d) If gross contamination exists flag detected             results "R"             2) Apply FB, EB, RB results to samples with             same collection date.</li> </ul> </li> </ol>	Analytes were not detected in the method blank WG33h144-1.		
Surrogales	<ol> <li>Mummum of 2</li> <li>30-150% recovery for both surrogates on both columns</li> </ol>	Surrogale recoveries a ero within errahlished criteria.		
Laboratory Control Sample/ Laboratory Control Sample Duplicate (LCS/LCSD) Recoveries	<ol> <li>40-140% recovery: ≤20%RPD for waters and ≤30% for solids a) %AR&lt;40% flag detected results "J" and nondetected results "U!"</li> <li>b) %R≥140% flag detected results "J"</li> <li>c) %R≥140% flag detected results "J" and nondetected results "R"</li> <li>Qualify all associated samples.</li> </ol>	Delta-BHC (29%/33%), beta-BHC (38%), heptachlor (39%), and aldrm (32%/32%) were outside of the acceptance criteria, in the LCS and/or LCSD associated with sample EFF- 091008.	AMEC UI qualified the associated analytes from sample EFF- 091008, with an L (LCS % recovery was not within control lumits) reason code.	Low
MS/MSD	<ol> <li>No qualification required if recovery between 40-140% for PCBs and 30-150% for pesticides.</li> <li>a) %R&lt;40% in 30% flag detected results "J" and nondetected results "UT"</li> <li>b) %R&lt;140% for 150% flag detected results "J" c) %R&lt;10% flag detected results "J" and nondetected results "R"</li> <li>fl background concentration is greater than 4x the spike concentration qualification is nor required</li> <li>RPD=30% for congeners, single-component pesticides (&gt;50% aroclors, multi-component analytes) flag detected results "T"</li> </ol>	MS/MSD was not preformed on sample from this SDG.		
Interna) Standards (Cowgeners or0x)	<ol> <li>Minimum of L.</li> <li>50%-200% of area counts in associated CCAL standard.</li> <li>3) =30 seconds of RT in associated CCAL standard.</li> </ol>	Internal standards were within acceptance criteria.		

# USEPA Region I Tier II Guidance Review Acceptance Criteria



Minuls by USEPA Methods 6000/7000

Semivutatile Organic Compounds by USEPA 025

Volatile Organic Compounds by USEPA Method 024

Total Permicam Hydrocarbons by USEPA Method 1664A

Anions by USEPA Methods 300.0/353.2

Organochlorine Pesticities and Polychlorinated Biphenyls (PCBs) by EPA Method 608 Dissolved Clases (Methane, and Ethane) by Gas Chromotography (RSK175)

Review Items	Acceptance Criteria	Samples affected	Qualifications	Blas
Compound Identification and Quantitation	<ol> <li>1) Qualify detected results with concentrations greater than the highest ICAL standard concentration "J"</li> <li>2) Positive results reported above the MDE but below the RL should be considered estimated and be flagged "J"</li> <li>3) Secondary column analysis: RPD =40% for positive results, "J" qualify results that exceed 40%.</li> </ol>	Pesticide / PCB compounds were reported as not detected at the method- detection limit for sample ETF-091008.		
Overall Evaluation of Data	<ol> <li>D Appropriate method.</li> <li>Evoluate ony analytical problems with laboratory results.</li> <li>Evoluate sampling errors – field contamination, sample hold tunes.</li> </ol>	No anomalies.		

# Table 9. Dissolved Gases (Methane and Ethane) by Gas Chromatography (RSK175)

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file         <ul> <li>Sample data package including case narrative, QC data, and raw data.</li> <li>Shipping and receiving documents.</li> <li>All lab records of sample receipt, preparation and analysis.</li> </ul> </li> </ol>	All required deliverables were present in the data package.		
COC	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C</li> <li>Preservation with HC) or H₂SO₄ to pH &lt;2.</li> <li>Sample delivery documentation.</li> </ol>	Coolers temperature upon arrival at Alpha was 4.1°C. Samples were preserved with HC1 to pH<2. The laboratory sample recept and log in checklist indicates that sample integrity was maintained during transport.		
Holding Time	<ol> <li>Aqueous preserved 14 days.</li> <li>If annlysis HT exceeded thag all detected results "J" and nondetected results "UJ"</li> <li>If HT grossly exceeded (≥ 3x HT) flag all detected results "J" and nondetected results "R"</li> </ol>	Samples were analyzed within holding time		
initial Calibration	<ol> <li>Minimum of 4 standards.</li> <li>Compounds with RSDs ≤ 15% or "r" ≥ 0.99, values flag detected results "1" and nondetected results "U".</li> <li>ICV recovery 80% to 120%.</li> </ol>	Initial calibration met established criteria.		



Merals by USEPA Methods 6000/7000

Semivolatile Organic Compounds by USEPA 625

Volatile Organic Compronds by USEPA Method 524

Total Permican Hydrocarbons by USEPA Method 1664A

Anions by ESEPA Methods 300.0/353.2

Organnehlocine Pesticides and Polychlorinateal Biphonyls (PCBs) by EPA Mothod 608 Dissolved Gases (Methane, and Ethane) by Gas Chromatography (RSK175)

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calibration Verification (CCV)	<ol> <li>No qualification if recovery between 80- 120%.</li> <li>a) %R &gt; 120 or 130% (lag detected results "J" b) %R ×80 or 70% flag detected results "J" and nondetected results "UP"</li> </ol>	CCV recovery was within acceptance limits		
Blanks (Melhod, Trip, Field, Rinsaic, etc.)	<ol> <li>Every 20 samples prior to running samples and after calibration standards;</li> <li>Matrix and preservative specific;</li> <li>Target analytes must be &lt; RL</li> <li>Apply TB, FB, RB results to samples with same collection date.</li> </ol>	Methane and ethane were not detected in method blank WG336139-2		
Laboratory Control Sample/ Liboratory Control Sample Dupticate (LCS/LCSD) Recoveries	<ol> <li>70-130% recovery: ≤25%RPD</li> <li>a) %R&lt;70% flag detected results "J" and nondetected results "UT"</li> <li>b) %R&lt;10% flag detected results "J"</li> <li>c) %R&lt;10% flag detected results "J" and nondetected results "R"</li> <li>2) Qualify all associated samples.</li> </ol>	LCS/LCSD recoveries and the RPD were within acceptance enterta:		
Laboratory /Field Duplicate	1) RPD > 25%	Sample EW1-091008 was analyzed in duplicate by the laboratory. The RPDs, were within acceptance orderta.		
MS/MSD	<ol> <li>No qualification required (Frecovery between 70-(30%).</li> <li>If background concentration is greater than 4x the spike concentration qualification is not required</li> <li>RPD&gt;30% flag detected results "1"</li> </ol>	The MS/MSD source sample was not associated with sample from this SDG.		
Compound Quantitation	<ol> <li>Qualify detected results with concentrations greater than the highest ICAL standard concentration "P"</li> <li>Positive results reperied above the MDL but below the RL should be considered estimated and be Hagged "P"</li> </ol>	Ethane from samples EW2-091008 was detected and reported between the MDL and the RL Samples EW1-091008 and EW2-091008 were analyzed at a 40-fold dilution, in order to quantify the methane within the calibration range of the instrument. The laboratory reported both sets of results (initial and dilution) on the data tables.	AMEC 1 qualified the ethane results from the sample EW2-091008 on the data (ables, with a TR (trace leve)) reason code. AMEC R qualified and rejected the initial methane results from the affected samples, with a Z (no) applicable) reason code.	Estimation



Metals by USEPA Methods 6000/7000

Semivolatile Organic Compounds by USEPA 625

Volatile Organic Compounds by USEPA Method 624

Total Petroleum Hydrocarbons by USEPA Method 1664A

Anions by USEPA Methods 300.0/353.2

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) by EPA Method 608 Dissolved Gases (Methane, and Ethane) by Gas Chromatography (RSK175)

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors - field contamination, sample hold times.</li> </ol>	No anomalies.		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely,

AMEC Earth & Environmental, Inc.

PREPARED BY:

Mulance Mr. Costie

Melanie Roshu Environmental Chemist

**REVIEWED BY:** 

Cenise Adelanch

Denise Ladebauche Environmental Chemist



Metals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/300.0/353.2

### INTRODUCTION

This data validation report covers forty one primary water samples, two field duplicates and two equipment blanks collected between October 1, 2008 and October 5, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The samples were dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) between October 1, 2008 and October 6, 2008 and assigned sample delivery groups (SDGs) numbers L0814614, L0814662, L0814699, and L0814732 upon receipt. Alpha analyzed the samples for total or dissolved metals using USEPA 6020A/6010B methods, volatile organic compounds using USEPA method 8260B, turbidity using Standard method 2130B, total alkalinity using Standard Method 2320B, chloride and sulfate using USEPA Method 300.0, and nitrate using USEPA Method 853.2. The associated field sample identifications (IDs) and Alpha sample IDs are presented in Table 2.

AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3, Table 4, Table 5, and Table 6. The level of data validation specified in Table 1 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

## EXECUTIVE SUMMARY

All data is generally usable and of good quality. Any limitations on the data are listed below. Definitions of data qualifiers added during validation and summaries of specific qualifiers added to each affected sample as a result of the data validation findings are presented in Table 7 attached to this report.

### Table 1, Sample Status

Data Validation Level	Mairix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Tiet II	Aqueous	As required by method	Two sample coolers were received on 10/01/08 at temperatures of 2.6 and 3.2°C. Two sample coolers were received on 10/02/08 at temperature of 3.0°C. One sample cooler was received on 10/03/08 at temperature of 2.4°C. One sample cooler was received on 10/06/08 at temperature of 2.0°C.	Alpha Woods Hole Laboratory, 8 Walkup Drive, Westborough, MA 01581	L0814614 L0814662 L0814699 L0814732



Metals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/300.0/353.2

November 14, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

### Table 2. Field Sample List

Lab Sample Number	Field ID	Comments
L0814614-01	SHL-8D-10012008	Metals, Other inorganics-
L0814614-02	SHM-05-41B10012008	Metals, Other inorganics
L0814614-03	DUPOI	Field Duplicate of SHM-05-41B10012008
L0814614-04	SHL-13-10012008	Metals, Other inorganics
L0814614-05	SHL-8S-10012008	Metals, Other inorganics
L0814614-06	SHM-96-5B10012008	Metals, Other inorganics
L0814614-07	SHL-5-10012008	Metals, Other morganics
L0814614-08	SHM-96-5C10012008	Metals, Other inorganics
L0814614-09	SHM-93-22B10012008	Metals, Other morganics
L0814614-10	SHL-22-10012008	Metals, Other inorganics
L0814614-11	SHL-910012008	Metals, Other inorganics
L0814662-01	SHM9931B10022008	Metals, Other inorganics
L0814662-02	SHM9931C10022008	Metals, Other inorganics
10814662-03	SHM9932X10022008	Metals, Other inorganics
1.0814662-04	SHM9931A10022008	Metals. Other inorganics
L0814662-05	SHM0540X10022008	Metals. Other inorganics
L0814662-06	SHM0539A10022008	Metals. Other inorganics
L0814662-07	SHM0539B10022008	Metals, Other interganics
L0814662-08	SHM9322C10022008	Metals, Other morganics
L0814662-09	SEM0542A10022008	Metals, Other inorganics
L0814662-10	SHM0542B10022008	Metals, Other inorganics
L0814662-11	SHM0541A10022008	Metals, Other morganics
L0814662-12	SHM0541C10022008	Metals, Other inorganics
L0814662-13	EW01-100208	8260B
L0814662-14	EW02-100208	8260B
L0814669-01	SHL-11-100308	Metals, Other morganics
L0814699-02	SHP-93-10D100308	Metals. Other inorganics
1.0814699-03	SHM-93-10C100308	Metals, Other morganics
L0814699-04	SHL-10-100308	Metals. Other morganics
L0814699-05	SHL-15-100308	Metals, Other morganics
L0814699-06	SHL-19-100308	Metals, Other inorganics
L0814699-07	SHL-19-100308 F	Dissolved Metals
L0814699-08	SHL-20-100308	Metals, Other inorganics
L0814699-09	SHL-4-100308	Metals, Other inorganics
L0814699-10	N5P1-100308	Metals, Other inorganics
L0814699-11	N5P2-100308	Metals, Other inorganics
L0814732-01	DUP02100608	Potassium: Field duplicate of SHL21100603
1.0814732-03	SHP0137X100608	Nitraté only
1.0814732-04	SHP0136X100608	Nitrate & Sulfate
1.0814732-05	SHL21100608	Metals
1.0814732-06	SHL23100608	Potassium
L0814732-07	SHP0129X100608	Potassium
L0814732-08	EQD-100608	Metals, Other inorganics: Equipment Blank
L0814732-09	EQG-100608	Metals, Other inorganics: Equipment Blank



Metals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/300.0/353.2

## November 14, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

#### Table 3. Metals by USEPA Methods 6010B and 6020A

Review	Acceptance Criteria	Samples affected	Qualifications	Blas
Data Completeness	<ol> <li>Complete SDG file.</li> <li>a. Sample data package including case narrative, QC data and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab receives of sample receipt. preparation and analysis.</li> </ol>	All required deliverables were present in the data package.		
coc	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C for soils.</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperatures upon arrival at Alpha were within acceptance criterin. Samples were preserved with HNO ₃ to pH<2, except sample SHL-19-100308 that was received above the appropriate pH. The laboratory added the additional HNO3. The Chain of Custody is intact. The laboratory sample receipt and log in checklist indicates that sample totegrity was maintained during transport.	No qualification required, since the cooler temperature was within acceptance timits and pH adjusted within boars of collection.	
Holding Time	<ol> <li>Aqueous sample 180 days if preserved to pbl&lt;2</li> </ol>	Samples were analyzed within holding- time.		
ICP-MS Time	<ol> <li>Tuning solution analyzed at least four times. RSD ≤ 5% for each component.</li> <li>Mass calibration not within 0.1 AMU, qualify detected results "J" and nonderected results "U0"</li> </ol>	ICP-MS Tune met acceptance criteria.		
Initial Calibration	<ol> <li>Correct culibration standards At least 3 standards points not forced through zero, are required for linear calibration, r≥0.995 (EPA Method 6010/6020/7470)</li> <li>r² ≥0.995, quadratic calibration (at least 6 points, out forced through zero)</li> </ol>	Initial calibration met established criteria.		
2 nd Source Initial Calibration Vertilication (ICV)	<ol> <li>Following the estilization.</li> <li>90:110% recovery (EPA 6010/6020)</li> <li>75-89% recovery, J qualify detects and UJ qualify nondetects.</li> <li>111:125% recovery. J qualify detects.</li> <li>80:120% recovery (EPA 7470)</li> <li>n RSD &lt;5% for the replicate</li> </ol>	ICV's mei acceptance criteria.		



Metals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/300.0/353.2

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calification Varification (CCV)	<ol> <li>CCV using multand high level standards: analyzed after every 10 samples and at the end of batch.</li> <li>Concentrations \$0-120% (EPA Method 7470) and 90-110% of expected value (EPA. Method 6010/6020):</li> <li>a) CCV &gt;120% (EPA Method 7470) or 110% (EPA Method 6010/6020); J quality detects, no- qualification is necessary for non-detects;</li> <li>b) CCV &lt;80% (EPA Method 7470) or 90% (EPA Method 6010/6020); J quality detects; UJ quality nen-detects.</li> <li>c) CCV mulside 65-135%, reject data</li> </ol>	All CCV recoveries were within acceptance limits.		
BJanks (Method, Field, Equipment, Rinsac, etc.)	<ol> <li>Evaluate down to the MDL.</li> <li>If sample result is &lt;5x contaminant concentration; flag ^aU^a</li> <li>Sample result ≥5x contaminant concentration; no qualification required</li> </ol>	No analytes were detected in the preparation blanks associated with these samples, except for total associated with SDG L0814662; total and dissolved arsenic nt 0,00026 and 0,00061 mg/L, respectively, in MB associated with SDG L0814669; total ansenic at 0,000013 mg/L in MB associated with SDG L0814699; total arsenic at 0,000013 mg/L in MB associated with SDG L0814732. Total arsenic at 0,00013 mg/L in MB associated with SDG L0814732. Total arsenic at 0,00013 mg/L in MB associated with SDG L0814732. Total arsenic at 0,0021 mg/L and 0,00069 mg/L was detected in the equipment blanks EQD-100608 and EQG-100608, respectively. The samples affected by these detections are: DUP02100608, SHL21100608, SHM0542A10022008, and SHL-10-100308. Calcium at 0.058 mg/L was detected in equipment blank EQG-100608.	AMEC U qualified the detected arsenic results from the affected samples, because the samples concentrations were less than 5x the EB or MB concentration A B (contamination detected) reason code was applied, Calejum concentrations in the associated samples were more than 5 times the equipment blank concentration. No qualification is required.	High
Initial Calibration Blanks and Continuing Calibration Blanks (ICB/CCB)	<ol> <li>ICB and CCB after every ten samples or every batch whichever is greater.</li> <li>Evaluate absolute values down to the MDL.</li> <li>Sample results &lt; 5% blank sample, U qualify detects</li> <li>Sample results &gt;5% blank level, on action required.</li> </ol>	Arsenic was detected in the CCBs associated with SDGs L0814014, L0814662 and L0814732, Samples that were affected by firese detections are SHL-8D+10012008 and SHL-8S- 10012008, EOD-100608, and EQG- 100608	AMEC U qualified (he detected assenic results from the associated samples, because the sample concentrations were less than 58 the CCB concentrations, A B (contamination detected) reason code was applied.	High
Negative Blanks	1) If the blank hus a negative result with an ubsolute value >MDL, qualify detected results \$5% the absolute value of the contaminant concentration as estimated "3" and qualify monderected results "DJ".	No negative blank concentrations were detected.		



Metals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other loorganics by USEPA 2130B/2320B/500.0/353.2

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Interelement checks ICS-A/ICS- AB Instrument performance check	<ol> <li>No qualification required if recovery between 80-120%,</li> <li>a)%R&lt; 80% flag detected results "J" and nondetected results "UJ"</li> <li>b) %R &gt;120% flag detected results "J"</li> <li>c) %R&lt;10% flag detected results "J" and nondetected results. "R"</li> </ol>	ICS-A/ICS-AB recoveries were within acceptance limits.		
listernal Standards (IS)	<ol> <li>Intensity of IS must be 30-120% of intensity of IS in the initial calibration standard.</li> <li>a)%R&lt;30% flag detected results "J" and nondetected results "UJ"</li> <li>b) %R &gt;120% flag detected results "J" and nondetected results "UJ"</li> </ol>	All internal standard "Rs were within acceptance limits.		
Laboratory Control Sample/ Laboratory Control Sample- Doplicare (LCS/LCSD) Recovery	<ul> <li>1) LCS acceptance limits 80-120%, method, requirements (EPA Method 6010/6020/7470) at %R&lt;80% Bag detected results "J" and nondetected results "J"</li> <li>b) %R&gt;120% Bag detected results "J" of %R&lt;10% Bag detected results "J" and nondetected results "R" Qualify all associated samples.</li> </ul>	The LCS/LCSD recoveries were within acceptable limits.		
Laboratory Doplicate RPD	<ol> <li>RPD ≤ 20%</li> <li>a) If exceeds RPD limit, J quality detects. UJ qualify non-detects.</li> <li>b) If one result &gt; MRL and other ND: J-detections. UJ qualify non-detects.</li> <li>2) ± MRL for results ≤ 5s the MRL.</li> </ol>	Sample SHL-19-100308 F was analyzed in doplicate by the laboratory. The RPDs were within acceptance limits.		
Field Duplicau: RPD	<ol> <li>RPD &gt;20% waters (&gt;30% soils)</li> <li>For detected results more than 5 times their PQLs flag "J"</li> <li>Differences in concentrations &gt; the MRL for analytes with concentrations less than 5 times their PQLs, flag "J"</li> </ol>	Sample DUP01 was collected as a field duplicate for sample SHM-05- 41B10012008. The RPDs were within acceptance fimits. No field duplicate was associated with SDGs L0814662 or L0814699. Sample DUP02100608 was collected as a field duplicate for sample SHL21100608. The RPDs were within acceptance fimits, except for calcium at 91%.	AMEC J qualified the detected calcium results from samples DUP02100608 and SHL21100608, with av E (poor agreement) reason code.	High



Metals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/360.0/3553.2

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
MS/MSD Recovery	<ol> <li>MS/MSD acceptance limits are 75-125% (EPA Method 6000/7000).</li> <li>Quality results in the batch or of similar type.</li> <li>If hackground concentration is &gt;4x spike concentration qualification is on required al Recoveries &lt;10% J qualify detects, R qualify minidatects</li> <li>Recoveries &lt;10% J qualify detects, R qualify minidatects</li> <li>Recoveries &lt;15% flag detected results "J" and nondetected results "UJ" c) Recoveries &gt;125% flag detected results "J"</li> </ol>	Samples SHM0541A10022008, SHL- (1-19-000308 F, and SHP0138A100008 were used as the source sample (or MS/MSDs. The recoveries and RPDs were within acceptance limits, except for arsena. (13259) and iron (200%) in the MS associated with sample SHP0138A100608. The background concentrations for these analytes were more than 4 times the spike concentration.	No qualification required.	
Posi Digestion Spike (PDS)	<ul> <li>1) Acceptance limits are 75-150% (EPA Method 6000/7000).</li> <li>2) Quality results on the batch or of similar type</li> <li>3) If background concentration is &gt;4x spike concentration qualification is on required</li> <li>a) Recoveries &lt;10%. J quality detects: R qualify non-detects</li> <li>b) Recoveries &lt;75% flag detected results "J" and nondetected results "U"</li> <li>c) Recoveries &gt;125% flag detected results "T"</li> </ul>	Samples SHL-8D-10012008, SHM0541A10022008, SHL-11- 100308, and SHP0138A100608 were used as the source for the PDS. The recoveries were within acceptance throats		
Serial Dilunion	<ol> <li>Once per digestion batch (EPA 6000 series)</li> <li>≤10% for analytes with concentration &gt;50- times IDL</li> <li>%D&gt;10% flag detected results "J"</li> </ol>	The laboratory performed secial dilution analyses on samples SML-aD- 00012008, SHM0541A (00027008 SHL-11-100308, and SHP0138A (00608, The %Ds were within acceptance limits.		
Compound. Quantitation	<ol> <li>Instrument level concentrations should be less than the linear dynamic range (LDR).</li> <li>a) Qualify detected results with concentrations greater than the LDR "J"</li> <li>2) The reported MRL should not be below the inwest ICAL standard conventiation         <ul> <li>a) Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ul> </li> </ol>	Arsenic firm samples SHL-8D- 10012008, SHL-48-10012008, SHL- 10-100308, DUP02100608, EQG- 100608, and SHL23100608, EQG- 100608, and SHL23100608, manganese from samples SHM-05- 42A, polassium from samples SHM- 05-41A-SHL-83-10012008, SHM-05- 42A, SHL-4-100308, SHM-05- 42A, SHL-4-100308, and SHP0136X100608, and SHP0137X100608, sodiam from samples SHM-05-42A, SHL-85- 10012008, SHL-15-100308, SHL-4- 100308, DUP02100608, and SHL23100608, calcium mon sample EQG-100608 were reported below the method reporting limit.	These analytes were J qualified on the data tables, with a TR (trace level) reason code.	Estimation

AMEC Job No. 575240005/003/0005 6/0/14 Luboratory 8DG): 1.0814614, 1.0814662, 1.0814699, 1.0814732



Metals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/300.0/353.2

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalies.		

## Table 4. Volatile Organic Compounds by USEPA Method 8260B

Review Hems	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completencess	<ol> <li>Complete SDG file,</li> <li>a. Sample data package including case narrative, QC data, and rnw data</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt, preparation and analysis.</li> </ol>	All required deliverables were present in the data package.		
COC	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2"C</li> <li>Sample preserved with HC1</li> <li>Sample delivery documentation.</li> </ol>	Coolers temperatures upon arrival al Alpha were within acceptance criteria. The laboratory sample receipt and log in checklist indicates that sample integrity was maintained during transport.		
Holding Time	<ol> <li>Aqueous unpreserved sample 7 days and aqueous preserved 14 days.</li> <li>U analysis HT exceeded flag all detected results "J" and nondetected results "UJ"</li> <li>II HT grossly exceeded (≥ 3x H1) flag all detected results "J" and nondetected results "R"</li> </ol>	Samples were analyzed within holding time.		
GC/MS tunes with BFB	<ol> <li>Every 12 hours.</li> <li>Samples analyzed beyond tane time flag all detected results "J" and nondetected results "TJ"</li> </ol>	BFB tune mer acceptance criterta.		
Initial Calibration	<ol> <li>Minimum of 5 standards.</li> <li>Compounds with RSDs ≤ 15% or "c" ≥ 0.99, except CCCs which must be ≤ 30%RSD or "c" ≥ 0.99, values flag detected results "J" and nondetected results "OJ"</li> <li>Compounds with very low RRFs (&lt;0.01) flag detected results "J" and nondetected results "R</li> </ol>	Initial calibration met established criteria. Calibration was performed on 10/07/2008.		
Comunaing Calibration Verification (CEV)	<ol> <li>No qualification if recovery between 80 – 120% for CCCs and 70%-130% for other analytes</li> <li>%R &gt;120 or 130% flag detected results "I"</li> <li>%R &lt;80 or 70% flag detected results "I" and nondetected results "U)</li> </ol>	CCV recovery was within acceptance limits:		



Metals by USEPA Methods 6029A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/300.0/353.2

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Blanks (Method, Trip, Freid, Rinsate, etc.)	<ol> <li>Every 20 samples prior to running samples and after calibration standards;</li> <li>Matrix and preservative specific;</li> <li>Turget analytes must be &lt; RL except for common laboratory contaminants (e.g. acetone, methylene chloride, MEK which must be &lt;5x (he RL)</li> <li>Apply TB, FB, RB results to samples with same collection date:</li> </ol>	VOCs were not detected in the method blank WG339343-3.		
Surrogates	<ol> <li>70-130% recovery for samples.</li> <li>2) 80-120% for method blanks, matrix spikes and LCS.</li> </ol>	All surrogate recoveries met established criteria		
Laboratory Control Sample/ Laboratory Control Sample Duplicate (LCS/LCSD) Recoveries	<ol> <li>70-130% recovery ≤25% RPD</li> <li>a) %R&lt;70% flag detected results "T" and nondetected results "U"</li> <li>b) %R&gt;130% flag detected results "T"</li> <li>c) %R&lt;10% flag detected results "T" and nondetected results "R"</li> <li>2) Qualify all associated samples.</li> </ol>	LCS/LCSD (cooveries and RPD) were within acceptance criteria, except for accume which recovered at 147% and 133% (respectively.	Acetone was reported as not detected in associated samples, therefore no qualification is required.	High
MS/MSD	<ol> <li>No qualification required if recovery between 70-130%.</li> <li>If background concentration is greater than 4x the spike concentration qualification is not required.</li> <li>RPD&gt;30% (hig detected results ")"</li> </ol>	No MS/MSD was associated with this (50G).		
foternal Standards (18)	<ol> <li>50%-200% of area counts in associated CCAL standard.</li> <li>2) ±30 seconds of RT in associated CCAL standard.</li> </ol>	Internal standarös were within acceptance criteria.		
Compound Quantilation	<ol> <li>Quality detected results with concentrations greater than the highest ICAL standard concentration "I"</li> <li>Positive results reported above the MDL but below the RL should be considered estimated and be flagged "I"</li> </ol>	1,4-Dichlorobenzene, vinyl chloride, and 1,2-dichlorobenzene from sample EW01 100208 and 1,4-dichlorobenzene from sample EW02-100208 were detected and reported between the MDL and the RL	AMEC J qualified these analytes from the samples EW01- 100208 and EW02- 100208 on the data tables, with a TR (trace level) reason code.	Estimation
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors - field contamination, sample hold times.</li> </ol>	No anomatics:		



Metals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/300.0/353.2

### November 14, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

## Table 5. Turbidity by Standard Method 2130B and Total Alkalinity by Standard Method 2320B

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file.</li> <li>a. Sample data package including case warrative, QC data and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt. preparation and analysis.</li> </ol>	All required deliverables were present in the data package:		
COC	<ol> <li>Sample custody documentation.</li> <li>Temperature ≤6°C</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperatures upon arrival at Alpha were within acceptance criteria. The laboratory Sumple Receipt and Log-in Checklist indicates that sample integrity was manufated during transport.		
Holding Times (HT)	<ol> <li>14 days, preservation not required (Alkalinity) (EPA Method 2320B)</li> <li>2) 48 hours, preservation not required (Turbidity)(EPA Method 2130B)</li> </ol>	Somples were analyzed as per EPA Method requirements.		
lnitial Calibration	<ol> <li>r≥0.99 for alkalinity linear calibration Analytes with low r &lt;0.99 flag detected results "I" and nondetected results "UI"</li> <li>2) Use professional (adgment 0 no) enough points were used for curves. Determine if system imprecision or bias</li> </ol>	Initial calibration criteria were wer.		
ICV/CCV	<ol> <li>No qualification II recovery between 90-110% (alkalinity)</li> <li>a) %R&gt;110% (alkalinity) flag detected results "J"</li> <li>b) %R &lt;90% (alkalinity) flag detected results "J" and nondetected results "UJ"</li> </ol>	ICVs were within acceptance limits		



Metals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/300.0/353.2

Review Hems	Acceptance Criteria	Samples affected	Qualifications	Bias.
Blanks (Method, Field, Equipment, Rinsate, etc.)	<ol> <li>U sample result is &lt;5x contaminant concentration and between MDL and MRL, raise result to MRL and flag "U"</li> <li>U sample result is &lt;5x contaminant concentration and ≥ MRL flag "U"</li> <li>Sample result ≥5x contaminant concentration: no qualification required.</li> </ol>	Alkalinity was not detected in the associated method blanks. Turbidity was detected in the method blanks WG338547-2 and WG338717-2 at 0.12 NTU, WG338902-3 at 0.12 NTU, WG338902-3 at 0.12 NTU, WG338919-2 at 0.08 NTU, and the equipment blanks (EQG-100608 and EQD-100608) at 0.15 NTU and 0.14 NTU: respectively. The concentrations in the associated samples were more than 5 times the MB and EB concentrations, except for what was qualified by AMEC.	AMEC U qualified the detected turbidity result from samples SHL-13- 10012008, SHL-5- 10012008, SHL-5- 10012008, SHL- 8D-10012008, SHL-8S-10012008, SHP0136X100608, SHP0137X100608, SHL-4-100308, EQG-100608, and EQD-100608 because the sample concentrations were less than 5* the MB concentration. A B teontamination detected) reason code was applied.	High
(CBs/CCBs	<ol> <li>Evaluate absolute values down to the MDL. Evaluate ICBs/CCBs that bracket samples.</li> </ol>	ICB/CCBs were analyzed every 10 samples with no detections		
LCS	<ol> <li>No qualification if recovery between 80- 120%</li> <li>a) %R&lt;80% flag detected results "J" and nondetected results "UI"</li> <li>b) %R &gt;120% flag detected results "J" c) %R &lt;10% flag detected results "J" and nondetected results "R"</li> </ol>	LCSs recoveries were within acceptance criteria.		
Lan Duplicate	<ol> <li>20% SRPD, RPD &gt;20% flag detected results "J" and nondetected results "UJ"</li> <li>2) ± MRL for results &lt; 5% the MRL, Difference &gt;MRL, flag detected results "J" and nondetected results "UJ"</li> </ol>	Samples SHL-22-10012008, SHM0541A10022008, N5P1-100308, and SHP0138A100608 were analyzed in duplicate for turbidity and samples SHL-88-10042008, SHM0541A10022008 SHL-4- 100308, and SHP0138A100608 were onalyzed in duplicate for total alkalinity. The RPDs were walnot the specified limit.		



Metals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/300.0/353.2

Review	Acceptance Criteria	Samples affected	Qualifications	llias
Field Duplicates	<ol> <li>RPD ≤ 20% for aqueous samples (≤ 30% soil samples) for analytes with concentrations more than 5 times their PQLs, and concentrations within one MRL for analytes with concentrations less than 5 times (beir PQLs)</li> </ol>	Sample DUP01 was collected as a field duplicate for sample SHM-05- 41B1001200%. The RPDs were within acceptance limits. No field duplicate was associated with SDGs L0S14662 or L0814699. Sample DUP02100608 was collected as the field duplicate for sample SHL21100608. The RPDs for turbidity (50%) and alkalinity (138%) were high.	AMEC J qualified the detected urbidity and alkalinity results from sample SHL21100608 and n's duplicate with an E (poor agreement between duplicates) reason code	High
MS/MSD	<ol> <li>No qualification required if recovery between 75-125%</li> <li>If background concentration is greater than 4x the spike concentration qualification is not required.</li> <li>R&lt; 75% flag detected results "T" and nondetected results "U".</li> <li>R&lt; 125% flag detected results "T" and nondetected results "T" and nondetected results "T" and nondetected results "T" and nondetected results "R".</li> <li>Qualify only results in the spiked sample. (Qualify results for samples collected at same location bin differing depths as well).</li> </ol>	Sample SHP0138A100608 was used as the source sample for MS for alkalinity. The recovery was low at 64%.	AMEC J qualified the detected alkalianty result from the associated sample with Q (MS/MSD recovery) reason ende	f.øw
Compound Quantifation	<ol> <li>Instrument level concentrations should be less than the linear range. Qualify detected results with concentrations greater than the LDR "J"</li> <li>The reported MRL should not be below the lowest ICAL standard concentration.</li> <li>Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	Total alkalinity was detend in all associated samples at concentrations above or below the method reporting limit of 2.0 mg/L. Turbidity from samples EQD- 100608, EQG-100608, and SHL-8D- 10012008 was detected and reported between the MDL and the RL	AMEC J qualified the unfully results from these samples on the data tables, with a TR (trace level) reason code.	Estimation
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalies.		

## Table 6. Nitrate by USEPA 353.2, and Chloride and Sulfate by USEPA 300.00

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Data. Completences	<ol> <li>Complete SDG file,</li> <li>a. Sample data package including case narrative, QC data and raw data.</li> <li>b. Shipping and receiving documents.</li> <li>c. All lab records of sample receipt. preparation and analysis.</li> </ol>	All required deliverables were present in the data package		



Motals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/300.0/353.2

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
COC	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C</li> <li>Sample delivery documentation.</li> </ol>	Conter temperatures upon arrival at Alpha were within acceptance enterta. The laboratory sample receipt and log in checklist indicates that sample integrity was maintained during transport.		
Holding Tunes (HT)	<ol> <li>28 days, preservation not required (Chloride, Sulfate) (EPA Method 300.0)</li> <li>48 hours, preservation not required (Nitrate-N)(EPA Method 353.2)</li> </ol>	The samples were analyzed and preserved as per EPA Method requirements.		
laiñal Calibration	1) $r \ge 0.99$ for chloride, solfate and nitrate, finear calibration Analytes with low $r < 0.99$ flag detected results "F" and nondetected results "UF" 2) Use professional judgment if not enough points were used for curves. Determine if system imprecision or bias	Initial calibration criteria were met.		
ICV/CCV	<ol> <li>No qualification if recovery between 90-110% (chloride, sulfate and nitrate) and 85- 115% (cyanide).</li> <li>a) % R&gt;110% (chloride, sulfate and nitrate) and 115% (cyanide) flag detected results "J"</li> <li>b) % R &lt;90% (chloride, sulfate and nitrate) and 85% (cyanide) flag detected results "J" and nondetected results "UF"</li> </ol>	ICVs were within acceptance limits.		
Hlanks (Methral, Field, Equipment, Rimate, etc.)	<ol> <li>If sample result is &lt;5x contaminant concentration and between MDL and MRL, raise result to MRL and flag "U"</li> <li>If sample result is &lt;5x contaminant concentration and ≥ MRL flag "U"</li> <li>Sample result ≥5x contaminant ennecutration; no qualification required.</li> </ol>	No chloride or sulfate was detected in the associated method blanks Nitrate was detected in the method blank WG338521-2 at 0.051 ng/L, in MB WG338690-2 at 0.028 ng/L, and in MB WG338090-2 at 0.042 ng/L. The samples aftected by these blank detections are SHL-5-10012008. SHL-8S-10012008. SHM-95- 41B 00012008. SHM-93- 22B10012008. SHM-96- 5C10012008. SHM-96- 5C10012008. SHM-96- 5C10012008. SHM-96- 5C10012008. SHM-96- 5C10012008. SHM-96- 5C10012008. SHM-96- 5C10012008. SHM-96- 5C100100308. SHL-4- 100308. SHM-93-10C100308. SHP- 93-10D100308. EQD-100608. EQG- 100608. SHL21100608. SHP0129X100608. and SHP0129X100608.	AMEC U qualified the dotected nitrate results from the affected samples because the sample concentrations were less than 5x the MB concentration. A B (contamination detected) reason code was applied.	llīgh
ICBs/CCBs	<ol> <li>Evaluate absolute values down to the MDL. Evaluate (CBs/CCBs that bracket samples)</li> </ol>	ICB/CCBs were analyzed every 10 samples with nu detections		



Metals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/300.0/353.2

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
LCS:	<ol> <li>No qualification if recovery between 80- 120%</li> <li>a) %R&lt;80% flag detected results "1" and numdetected results "U1"</li> <li>b) %R &gt;120% flag detected results "1" c) %R &lt;10% flag detected results "1" and nondetected results "R"</li> </ol>	LCS recoveries were within acceptance criteria		
Lab Doplicate	<ul> <li>1) 20% ≤RPD_RPD &gt;20% flag detected results. "J" and nondetected results."UJ"</li> <li>2) ± MRL for results ≤ 5x the MRL. Difference &gt;MRL, flag detected results."J" and wondetected results."UJ"</li> </ul>	Sample SHL-8D-10012008. SHM0541A10022008, and SHP0138A100608 were analyzed in duplicate for chloride and sulfate. sample SHM-96-5B-101707 was analyzed in duplicate for sulfate and samples SHL-22-10012008, SHM0541A10022008, SHL-15- 100308, SHP0138A100608 were analyzed in duplicate for nitrate. The RPDs were within acceptance criteria.		
Field Duplicates	<ol> <li>RPD ≤ 20% for aqueous samples (≤ 30% soil samples) for analytes with concentrations more than 5 times their PQLs, and concentrations within one MRL for analytes with conventrations less than 5 times their PQLs</li> </ol>	Sample DUP01 was collected as a field duplicate for sample SHM-05- 41B10012008. The chloride and sulfate RPDs were within acceptance limits. The nitrate RPD was high at 125% No field duplicate was associated with SDGs L0814662 or L0814609. Sample DUP02100608 was collected as the field duplicate for sample SHL21100608. The chloride and sulfate RPDs were within acceptance limits. The nitrate RPD was high at 120%.	No qualification is required because the nitrate concentrations in the samples were less than 5 times their PQL	None
M8/MSD	<ol> <li>No qualification required if recovery between 75-125%.</li> <li>If background concentration is greater than its the spike concentration qualification is not required %R&lt;75% flag detected results "1" and nondetected results "11" %R&lt;125% flag detected results "1" and nondetected results "11" %R&lt;125% flag detected results "1" and nondetected results "1" and nondetected results "R" Qualify only results to the spiked sample. (Qualify results for samples collected at same location but differing depths as well)</li> </ol>	Sample SHP0138A100608 was used as the source sample for the MS for sulfate, chloride and nitrate. The recoveries were within acceptance criteria.		



Metals by USEPA Methods 6020A/6010B Volatile Organic Compounds by USEPA Method 8260B Other Inorganics by USEPA 2130B/2320B/300.0/353.2

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Compound Quantitation	<ol> <li>Instrument level concentrations should be less than the linear range. Qualify detected results with concentrations greater than the LDR "J"</li> <li>The reported RL should not be below the lowest ICAL standard concentration</li> <li>Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	Nitrate from samples DUP01, EQD- 100608, EQG-100608, N5P1-100308, N5P2-100308, SHL-11-100308, SHL-15-10012008, SHL-21100608, SHL-5-10012008, SHL-28S- 10012008, SHM0539A10022008, SHM0540X10022008, SHM-05- 41B10012008, SHM0541C10022008, SHM0542A10022008, SHM-93- 10C100308, SHM-93-22B10012008, SHM0542B10022008, SHM-93- 10C100308, SHM-93-22B10012008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM0931C10022008, SHM09312008, SHM09312008, SHM093120008, SHM093120008, SHM09312008, SHM0931200	AMEC J qualified the detected nitrate, chloride and salfate results from affected samples on the data tables, with a TR (trace level) reason code,	Estimation
Overail Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors - field contamination, sample hold times.</li> </ol>	No anomalies.		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely,

AMEC Earth & Environmental, Inc.

PREPARED BY:

Alabara ta bash

Melanie Roshu Environmental Chemist

REVIEWED BY:

cour Addition of

Denise Ladebauche Environmental Chemist

## TABLE 7 Data Validation Qualifiers Fort Devens, Shepley's Hill Landfill DVR_SDGs_L0814614_L0814662_L0814699_L0814732

Sample ID	Sample Date	EPA Analytical Method	Lab Sample ID	Analyte	Result	Units	Validation Qualifiers	Reason Code
DUP01	10/1/2008	E353.2	L0814614-03	NITRATE (AS N)	0.52	mg/l	J.	TR
DUP02100608	10/5/2008	SW6010	L0814732-01	DALCIUM METAL	2.6	mg/l	b.	E
DUP02100608	10/6/2008	A2320	L0814732-01	ALKALINITY TOTAL (AS GACO3)	3,5	mg/L	J	E
DUP02100608	10/6/2008	SW6020	L0814732-01	ARSENIC	0.0002	mg/l	L,L	TR; B
DUF02100608	10/8/2008	SW6010	L0814732-01	SODIUM	1.4	mg/l	J ]	TR
DUP02100608	10/6/2008	2130B	L0814732-01	TURBIDITY	1.5	NTU	الله	E
EQD-100608	10/6/2008	SW6020	L0814732-08	ARSENIC	0.0021	mg/l	u I	В
EQD-100608	10/6/2008	2130B	L0814732-08	TURBIDITY	0,14	NTU	IJJ	TR, B
EQD-100608	10/6/2008	E300	L0814732-08	SULFATE SULFATE	0,32	mg/l	1	TR
EQD-100608	10/8/2008	E353.2	L0814732-08	NITRATE (AS N)	0.05	mg/l	LJ.I	TR B
EQG-100608	10/6/2008	E300	L0814732-09	CHLORIDE	0.068	mg/l	ال	TR
EOG-100608	10/6/2008	E353.2	L0814732-09	NITRATE (AS N)	0.054	mg/l	01	TR.B.
EQG-100608	10/6/2008	SW6010	L0814732-09	CALCIUM METAL	0,058	mg/l	J.	TR
EOG-100608	10/8/2008	SW6020	L0814732-09	ARSENIC	0.00069	ma/t	U.J	TR, B
EQG-100608	10/6/2008	21308	L0814732-09	TUREIDITY	0.15	NTU	UJ.	TR. B
EW01-100208	10/2/2008	SW8260	L0814662-13	1.4-DICHLOROBENZENE	1 1 4	ug/l	J	TR
EW01-100208	10/2/2008	SW4260	L0814662-13	VINYL CHLORIDE	ĝ,d	Ug/L	J. J.	TH
EW01-100209	10/2/2008	SW8260	L0814662-13	1,2-DICHLOROBENZENE	0,2	ug/l	- x -	TR
EVV02-100209	10/2/2008	SW8260	L0814662-14	1.4-DICHLOROBENZENE	0,57	ug/l	1	TR
N5P2-100308	03-Oct 08	E353.2	L0814599-10	NITBATE (AS N)	0.12	mg/l	U.J.	TR
N5P1-100308	03-Oct-08	E353.2	L0814699-11	NITRATE (AS N)	0.055	mg/i	UJ.	TB
SHL-10-100308	10/3/2008	21308	L0814699-04	TURBIDITY	0.53	NTU	U.	8
SHL-10-100308	10/3/2008	SW6020	L0814599-04	ARSENIC	0.00091	mg/l	IJJ	TR B
SHL-11 100308	10/3/2008	E353.2	L0814699-01	NITRATE (AS N)	0.2	mg/l	-l	TR
SHL 11-100308	10/3/2008	E300	L0814699-01	SULFATE SULFATE	0.54	mg/t	J.	TH
SHL-13-10012008	10/1/2008	21308	L0814614-04	TURBIDITY	0.23	NTU	U I	в
SHL-15-100308	10/3/2009	SW6010	L0814699-05	SODIUM	1,6	mg/l	J.	TB
SHL-15-100308	10/3/2008	E353 2	L0814699-05	MIRATE (AS N)	0.019	mg/I	UJ .	TR
5/11.21100608	10/6/2008	SW6010	L0814732-05	CALCIUM METAL	6,9	mg/l	d.	Ε
SHL21100608	10/6/2008	E353.2	L0814732-05	NITRATE (AS N)	D 093	mg/l	UJ.	TR. 8
SHL21100608	10/6/2008	SW6020	L0814782-05	ARSENIC	0.0014	mg/l	U	8
SHL21100805	10/6/2008	2130B	L0514732-05	TUREIDITY	2.5	NTU	J	E

CoDocuments and Settings/melanie.roshu/Desktop/Validation/Fort Devens/Oct 05 GW/Final Rpl DVO

## TABLE 7 Data Validation Qualifiers Fort Devens, Shepley's Hill Landfill DVR_SDGs_L0814614_L0814662_L0814699_L0814732

Sample ID	Sample Date	EPA Analytical Method	Lab Sample ID	Analyte	Result	Units	Validation Qualifiers	Reason Code
SHU2110060N	10/6/2008	A2320	LOB14732-05	ALKALINITY TOTAL (AS CACOS)	19	mg/L	J	E
SHL23100608	10/6/2008	SW6010	10814732-06	SODIUM	1.4	mg/l	J	TR
SHL23100608	10/6/2008	SW6020	L0814732-06	ARSENIC	0.00056	mg/l	UJ L	TR.B
SHL-4-100308	10/3/2008	21306	L0814699-09	TURBIDITY	0.57	NTU	L)	E
SHL:4-100308	10/3/2008	E953.2	L0814699-09	NITRATE (AS N)	0.14	mg/f	U	В
SHL-4-100308	10/3/2006	SW6010	L0814699-09	POTASSIUM	1.9	mg/i	J	TR
SHL-4-100308	10/3/2008	SW6010	L0814699-09	SODIUM	1.3	mg/l	A	JR
SHL 5-10012008	10/1/2008	21308	L0314614-07	TURBIDITY	0.60	NTU	U	B
SHL-5-10012008	10/1/2008	SW6010	L0314614-07	POTASSIUM	1.6	mg/l	ji .	TR
SHL-5-10012008	10/1/2008	SW6010	L0514614-07	SODIUM	1.5	mg/l	L L	TR
SHL 5-10012008	10/1/2008	E350.2	L0814614-07	NITRATE (AS N)	0.067	mg/l	UJ	TH, B
SHL-8D-10012008	10/1/2008	E3522	LDE1461-01	NITRATE (AS N)	0.15	mg/l	,U	B
SHL-8D-10012008	10/1/2008	21508	10814614-01	TURBIDITY	0.09	NTU	u	8
SHL-8D-10012008	10/1/2008	SW6020	L0814614-01	ARSENIC	0.00024	mg/l	UJ.	TR E
SHL 85-10012008	10/1/2008	E353.2	L0814614-05	NITRATE (AS N)	0.098	mg/l	U)	TR.B
SHL-85-10012008	10/1/2008	21508	L0814614-05	TURBIDITY	0.23	NTU	U	Б
SHL-85-10012008	10/1/2008	SW6020	L0914614-05	ARSENIC	0,00073	mg/l	LU	TR.B
SHM0539A10022008	10/2/2008	E353.2	L0814662-05	NITEATE (AS N)	0.13	mg/l	J.	TR
SHM0540X10022008	10/2/2008	E353.2	L0814662-05	NITRATE (AS N)	0.048	mg/l	1	TR
SHM0541A10022008	10/2/2008	SW6010	L0814662-11	POTASSIUM	2.4	mg/l	L.	TR
SHM0541A10022008	10/2/2008	E353.2	L0814662-11	NITRATE (AS N)	0.065	mg/l	J.	TR
SHM-05-41B10012008	10/1/2008	E353.2	L0814614-02	NITRATE (AS N)	0,12	mg/l	UJ	TR. B
SHM0541C10022008	10/2/2008	E353,2	L0814662-12	NITRATE (AS N)	0.056	mg/l	.J	TR
SHM0541C10022008	10/2/2008	E300	L0814662-12	SULFATE SULFATE	0.39	mg/l	4	TR
SHM0542A1002200B	10/2/2008	SW6010	L0814662-09	POTASSIUM	1.8	mg/l	i)	TR
SHM0542A10022008	10/2/2008	SW6010	L0814662-09	SODIUM	1.3	mg/l	J	TR
SHM0542A10022008	10/2/2008	SW6010	L0814662-09	MANGANESE	0.0076	mg/f	J	TR
GHM0542A10022008	10/2/2008	E353,2	L0814662-09	NITRATE (AS N)	0.099	mg/l	a 1	TR
SHM0542A10022008	10/2/2008	SW6020	L0814662-09	ARSENIC-	0.0013	mg/l	IJ	В
SHM0542810022008	10/2/2008	E353.2	L0314662-10	NITRATE (AS N)	0.11	mp.i	4	TR
SHM 93 10C100308	10/3/2008	E353.2	L0814699-03	NITRATE (AS N)	0.056	mg/l	UJ I	TR
SHM 33-22810012008	10/1/2008	E353.2	LD814614-09	NITRATE (AS N)	0.15	(ma)	LUJ.	TH, B

C/Upscuments and Settings/melanie roshu/Desktop/Validation/Fort Devens/Oct 08 GW/Final Figs DVO

## TABLE 7 Data Validation Qualifiers Fort Devens, Shepley's Hill Landfill DVR_SDGs_L0814614_L0814562_L0814699_L0814732

Sample ID	Sample Date	EPA Analytical Method	Lab Sample ID	Analyte	Result	Units	Validation Qualifiers	Reason Code
SHM-96-5C10012008	10/1/2008	E353.2	L0814614-08	NITRATE (AS N)	0.053	mg/l	U.J	TR, B
SHM9931C10022008	10/2/2008	E353.2	L0814662-02	NITRATE (AS N)	0,04	mg/l	al.	TR
SHP0129X100608	10/6/2008	E353.2	L0814732-07	NITRATE (AS N)	0.15	mg/l	, LU	TR, B
SHP0136X100608	10/6/2008	2130B	L0814732-04	TURBIDITY	0.47	NTU	U I	8
SHP0136X100608	10/6/2008	SW6010	L0814732-04	POTASSIUM	1.8	mg/l	J	TR
SHP0137X100608	10/6/2008	SW6010	L0814732-03	POTASSIUM	13	mg/l	J.	TPI
SHP0137X100608	10/6/2008	21308	L0814732-03	TURBIDITY	0,36	NTU	U	В
SHP0138A100608	10/6/2008	E353.2	L0814732-02	NITRATE (AS N)	0.14	mg/l	UJ .	TR. B
SHP013BA100608	10/6/2008	A2320	L0814732-02	ALKALINITY TOTAL (AS CACOS)	140	mg/L	4	Q
SHP-93-16D100308	10/3/2008	E353 2	L0814699-02	NITHATE (AS N)	0.066	mg/l	U.I.	TR

#### Validation Qualifiers:

R	The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to delinitively determine whether the analyte is present or absent in the sample.
Ú.	The D qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. D qualifiers added during data guality review are typically a result of detections of larget analytes in field, trip, or faboratory blanks.
μ.	The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation may indicate a concentration between the method detection limit (MDL) and the method reporting limit (MRL) or a data limitation related to a QC element that exceeds required acceptance limits.
ш.	The UJ qualifier indicates reporting limit is estimated. UJ qualifiers added during validation may indicate either a high or low bias related to a QC plament that proceeds required acceptance limits.
Reason Code:	
B	Contaminant detected in preparation (method) or calibration blank
E	Duplicates (field or taboratory) showed poor agreement
TR	Trace level detect
0	M2/MS0 recovery or relative present difference was not within acceptance limits.

C:/Documents and Settings/melanio.roshu/Deektop/Validation/Fort Devens/Oct 08 GW/Final Rpt DVO



November 6, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

### INTRODUCTION

This data validation report covers one water sample collected on October 14, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The sample was dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on October 14, 2008 and assigned sample delivery group (SDG) number L0815140 upon receipt. Alpha analyzed the sample for total arsenic using USEPA Method 6020A. The associated field sample identification (ID) and Alpha sample ID is presented in Table 1.

The level of data validation specified in Table 2 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

### EXECUTIVE SUMMARY

All data is generally usable and of good quality.

Arsenic was detected and reported at a concentration of 1.1 µg/L.

### Table 1. Field Sample List

Lab Sample Number	Field ID	Comments	
L0815140-01	EFF-101408	3 ppb detection limit	

### Table 2. Sample Status

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Tier II	Aquenus	As required by method	One sumple cooler was received on 10/14/2008 at a temperature of 4°C	Alpha Woods Hole Laboratory, 8 Walkup Drive, Westborough, MA 01581	L0815140



## November 6, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

### Table 3. Arsenic by USEPA 6020A

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG file.</li> <li>Sample data package including case martalive, QC data and raw data.</li> <li>Shipping and receiving documents.</li> <li>All lab records of sample receipt. preparation and analysis.</li> </ol>	All required deliverables were present in the data package.		
coc	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C for soils.</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 4°C Sample was preserved with HNO, to pH<2. The Chain of Custorly is infact. The laboratory Sample Receipt and Log-in Checklist indicates that sample integrity was maintained during transport.		
Holding Time	<ol> <li>Aqueous sample 180 days if preserved to pH&lt;2</li> <li>Hg - 28 days to analysis</li> </ol>	The sample was analyzed within holding time.		
ICP-MS Tune	<ol> <li>Tuning solution analyzed at least four times. RSD ≤ 5% for each component.</li> <li>Mass calibration not within 0.1 AMU, qualify detected results "J" and nondetected results "UJ"</li> </ol>	The tune standard met established criteria.		
Initial Calibration	<ol> <li>Correct calibration standards. At least 3 standards points not forced through zero, are required for linear calibration, r≥0.995 (EPA Method 6010/6020/7470).</li> <li>r²≥0.995, quadratic calibration (at least 6 points, not forced (linough zero).</li> </ol>	Initial calibration met established criteria		
2 nd Source     1) Following the calibration.       2 nd Source     2) 90-110% recovery (EPA 6010/6020)       Initial     3) 75-89% recovery (I qualify detects and U)       Calibration     qualify nondetects.       Verification     4) 111-125% recovery. I qualify detects.       (ICV)     5) 80-120% recovery (EPA 7470)       6) RSD <5% for the replicate		ICV met acceptance criteria.		



## November 6, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier 11 Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calibration Verification (CCV)	<ol> <li>CCV using mid and high level standards: analyzed after every 10 samples and at the end of batch.</li> <li>Concentrations 80-120% (EPA Method 7470) and 90-110% of expected value (EPA Method 6010/6020).</li> <li>CCV &gt;120% (EPA Method 7470) or 110% (EPA Method 6010/6020); J qualify detects, no qualification is necessary for non-detects.</li> <li>CCV &lt;80% (EPA Method 7470) or 90% (EPA Method 6010/6020); J qualify detects; b) CCV &lt;80% (EPA Method 7470) or 90% (EPA Method 6010/6020); J qualify detects; UJ qualify non-detects, e) CCV outride 65-155%, reject data</li> </ol>	All CEV recoveries were within acceptance limits		
Calibration Range/ Result:	<ol> <li>Results &gt; Upper calibration range 1 quality detects.</li> <li>Results <method limit,="" reporting="">method detection limit; 1 qualify detects (estimated).</method></li> </ol>	Arsenic was detected and reported to sample EFF-101408 at 0.0011 mg/L, above the reporting limit of 0.0005 mg/L.		
Blanks (Method, Field, Equipment., Rinsate, etc.)	Method         2) If sample result is <5x contaminant         in the associate           icid.         concentration(flag_U)"         Sample concent           quipment.         3) Sample result 25x contaminant         times the MB c		No qualification required.	None
Initial Galibration Blanks and Continuing Calibration Blanks (ICB/CCB)	<ol> <li>ICB and CCB after every ten samples or every batch whichever is greater.</li> <li>Evaluate absolute values down to the MDL.</li> <li>Sample vesults &lt; 5x blank sample, U qualify detects.</li> <li>Sample results &gt;5x blank hevel, no action required.</li> </ol>	Arsenic was detected in the ICB (0.00018 mg/L) and CCBs (0.00014 mg/L and 0.00011 mg/L) at concentrations greater than the method-detection limit. The sample concentration was more than 5 times the concentration detected in ICB and CCBs	No qualification required:	None
Negalive blanks	<ol> <li>If the blank has a negative result with an absolute value &gt;MDL qualify detected results \$5* the absolute value of the contaminant concentration as estimated "I" and qualify nondetected results "UI".</li> </ol>	No negative blank concentrations were detexted.		
Interelement checks ICS-A/ICS- AB Instrument performance check	<ol> <li>No qualification required if recovery between 80-120%, a0%R&lt;80% flag detected results "F" and nonderected results "Uf- ho%R &gt;120% flag detected results "f" c) %R&lt;10% flag detected results "f" and nondetected results "R"</li> </ol>	ICS-A/ICS-AB recoveries were within acceptance limats.		



## November 6, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Internal Standards (IS)	<ul> <li>D Intensity of 1S must be 30-120% of miensity of 1S in the initial calibration standard,</li> <li>a)%R&lt;30% flag detected results "J" and nondetected results "UT"</li> <li>b) %R &gt;120% flag detected results "J" and nondetected results "UT"</li> </ul>	IS recoveries were within the acceptance limits.		
Laboratory Control Sample/ Laboratory Control Sample Duplicate (LCS/LCSD) Recovery	1) LCS acceptance limits 80-120%, method requirements (EPA Method 6010/6020/7470)) a) %R<80% flag detected results "J" and nondetected results "UJ" b) %R>120% flag detected results "J" c) %R<10% flag detected results "J" and nondetected results "R" Qualify all associated samples.	The LCS/LCSD recoveries were within acceptance limits at 97% and 93%, respectively		
Laboratory Duplicate RPD	<ul> <li>(1) RPD ≤ 20%</li> <li>a) If exceeds RPD limit: J qualify detects, UJ qualify non detects</li> <li>b) If one result &gt; MRL and other ND: J-detections, UJ qualify non detects</li> <li>2) ± MRL for results ≤ 5x the MRL</li> </ul>	No laboratory doplicate was associated with due sample		
Field Duplicate RPD	<ol> <li>RPD ≤ 30% (waters): ≤ 40% (suits)</li> <li>a) IF exceeds RPD limit: J qualify detects. UI qualify non detects.</li> <li>b) If one result &gt; MRL and other ND: J-detections, UJ qualify non detects.</li> <li>2) ± MRL hor results ≤ 5% the MRL.</li> </ol>	No field duplicate was associated with this SDG.		
M\$/MSD Recovery	<ol> <li>MS/MSD acceptance timuts are 75-125% (EPA Method 6000/7000).</li> <li>Qualify results in the batch or of similar type;</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10% J qualify detects. R qualify non detects</li> <li>Recoveries &lt;75% flag detected results "J" and nondetected results "UF c) Recoveries &gt;125% flag detected results "J"</li> </ol>	No MS/MSD was associated with this SDG		



### November 6, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Post Digestion Spike (PDS)	<ol> <li>Acceptance limits are 75-150% (EPA Method 6000/7006).</li> <li>Qualify results in the batch or of similar type.</li> <li>If background concentration is &gt;45 spike concentration qualification is not required a) Recoveries &lt;10% J qualify detects. R quality non detects</li> <li>Recoveries &lt;75% flag detected results "J" and nondetected results "U" c) Recoveries &gt;125% flag detected results "J"</li> </ol>	The PDS was performed on sample EFF-101408. The recovery was within acceptance limits at 108%.		
Serial Dilution	<ol> <li>Once per digestion batch (EPA 6000 series)</li> <li>≤10% for analytes with concentration &gt;50- times MDL</li> <li>3) %D&gt;10% flag detected results "J"</li> </ol>	The %D for the SD performation sample EFF-101408 was within acceptance limits.		
Compound Quantitation	<ol> <li>Instrument level concentrations should be fess than the linear dynamic range (LDR).</li> <li>a) Qualify detected results with concentrations greater than the LDR "J"</li> <li>The reported MRL should not be below the lowest ICAL standard concentration.</li> <li>a) Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	Arsenic was reported as deteated and the required reporting limit of 0.002 mg/L was met.		
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalies.		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely.

AMEC Earth & Environmental, Inc.

PREPARED BY:

Aleron Mr. Boly

Melanie Roshu Environmental Chemist

AMEC Job No. 575240005/003/0003 Laboratory SDG: L0815140 REVIEWED BY:

Ferry Idila 1

Denise Ladebauche Environmental Chemist



November 20, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region 1 Tier II Guidance

#### INTRODUCTION

This data validation report covers one water sample collected on November 4, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The sample was dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on November 4, 2008 and assigned sample delivery group (SDG) number L0816302 upon receipt. Alpha analyzed the sample for total arsenic using USEPA Method 6020A. The associated field sample identification (ID) and Alpha sample ID is presented in Table 1.

The level of data validation specified in Table 2 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

### EXECUTIVE SUMMARY

All data is generally usable and of good quality.

Arsenic was detected and reported at a concentration of 1.0 µg/L.

#### Table 1, Field Sample List

Lab Sample Number	Field ID	Comments	
1.0816302-01	EFF-110408	3 ppb detection limit	

#### Table 2. Sample Status

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Tier II	Aqueous	As required by method	One sample cooler was received on 11/04/2008 at a temperature of 3°C.	Alpha Woods Hole Laboratory, 8 Walkup Drive; Westborough, MA 01581	L0816302



## November 20, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

### Table 3. Arsenic by USEPA 6020A

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Cimpleteness	<ol> <li>Complete SDG file.</li> <li>Sample data package meltiding case narrative, QC data and raw data</li> <li>Shipping and receiving documents</li> <li>All lab records of sample receipt preparation and analysis.</li> </ol>	All required deliverables were present in the data package		
cóc	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C for soils.</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alphu was 3°C. Sample was preserved with HNO ₃ to pH<2. The Chain of Custody is intact. The laboratory Sample Receipt and Log-in Checklist indicates that sample integrity was maintained during trateport.		
Holding Time	<ol> <li>Aquenus sample 180 days if preserved in pH&lt;2</li> <li>Hg - 28 days to analysis</li> </ol>	The sample was analyzed within holding time		
ICP-MS Tune	<ol> <li>Tuning solution analyzed at least four times. RSD ≤ 5% for each component.</li> <li>Mass calibration not within 0.1 AMU, qualify detected results "T" and nondetected results "UT"</li> </ol>	The (une standard met established criteria.		
lmüal Calibration	<ol> <li>Correct calibration standards. At least 3 standards points not forced litrough zero, are required for linear calibration, r≥0.995 (EPA Method 6010/6020/7470).</li> <li>r² ≥0.995, quadratic calibration (nt least 6- points, not forced through zero).</li> </ol>	Initial calibration met established criteria.		
1) Following the calibration.       2 nd Source       2) 90-110% recovery (EPA 60)0/6020)       Initial       3) 75-80% recovery, J quality detects and UJ       Calibration       Verification       4) 111-(25% recovery, Lipsolify detects.       (ICV)       5) 80-120% recovery (EPA 7470)       6) RSD <5% for the replocue		ICV met acceptance criteria.		



## November 20, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calibration Verification (CCV)	<ol> <li>CCV using mid and high level standards; analyzed after every 10 samples and at the end of batch.</li> <li>Concentrations 80-120% (EPA Method 7470) and 90-110% of expected value (EPA Method 6010/6020);</li> <li>CCV &gt;120% (EPA Method 7470) or 110% (EPA Method 6010/6020); J qualify detects, no qualification is necessary for non detects.</li> <li>CCV &lt;80% (EPA Method 7470) or 90% (EPA Method 6010/6020); J qualify detects; UJ qualify non detects.</li> <li>CCV outside 65-135%, reject data</li> </ol>	All CCV recoveries were within acceptance limits.		
Calibration Range/ Results	<ol> <li>Results &gt;Upper calibration range 1 qualify detects.</li> <li>Results <method limit,="" reporting="">method detection limit; J qualify detects (estimated).</method></li> </ol>	Atsenic was detected and reported in sample f.FF-110408 at 0.0010 mg/L, above the reporting limit of 0.0005 mg/L.		
Blanks (Method, Field, Equipment, Rinsate, etc.)	<ol> <li>Evaluate down to the MDL.</li> <li>If sample result is &lt;5x contaminant concentration; flag "U"</li> <li>Sample result ≥5x contaminant concentration; no qualification required.</li> </ol>	Arsenic was not detected in the associated method blank.		
Initial Calibration Blanks and Continuing Calibration Blanks (ICB/CCB)	<ol> <li>ICB and CCB after every ten samples or every batch whichever is greater.</li> <li>Evaluate absolute values down to the MDL.</li> <li>Sample results &lt; 5x blank sample, U qualify detects</li> <li>Sample results = 5x blank level, no action required.</li> </ol>	Arsenic was not detected in the ICB and/or CCBs at concentrations greater than the method-detection limit.		
Negative bjanks	1) If the blank has a negative result with an absolute value >MDL, qualify detected results <pre>S5* the absolute value of the contaminant concentration as estimated "f" and qualify nondetected results "L"."</pre>	No negative blank concentrations were detected.		
Interelement checks ICS-A/ICS- AB Instrument performance check	11 No qualification required if recovery between 80-120%. a)%bR< 80% flag detected results "J" and nondetected results "JJJ" b)%R > 120% flag detected results "J" c)%R<10% flag detected results "J" and nondetected results "R"			



## November 20, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review	Acceptance Criteria	Samples affected	Qualifications	Bias
Internal Standards (IS)	<ol> <li>Intensity of IS must be 30-120% of intensity of IS in the initial calibration standard.</li> <li>a)%R&lt;50% flag detected results "J" and nondetected results "UF"</li> <li>b) %R &gt;120% flag detected results "J" and nondetected results "(J)"</li> </ol>	IS recoveries were within the acceptance limits,		
Laboratory Control Sample/ Laboratory Control Sample Duplicate (LCS/LCSD) Recovery	<ol> <li>LCS acceptance limits 80-120%, method requirements (EPA Method 6010/6020/7470)</li> <li>%R&lt;80% flag detected results "T" and nondetected results "UF"</li> <li>%R&lt;120% flag detected results "T"</li> <li>%R&lt;10% flag detected results "T" and nondetected results "R"</li> <li>Qualify all associated samples.</li> </ol>	The LCS/LCSD recoveries were within acceptance limits at 100% and 92%, respectively.		
Laboratory Doplicate RPD	<ol> <li>RPD ≤ 20%.</li> <li>a) If exceeds RPD limit; J qualify detects, UJ qualify non detects</li> <li>b) If one result &gt; MRL and other ND; 1-detections, UJ qualify non detects</li> <li>2) ± MRL for results ≤ Sx the MRL.</li> </ol>	No laboratory duplocate was associated with this sample.		
Field Duplicate RPD	<ol> <li>RPD ≤ 30% (waters); ≤ 40% (suits)</li> <li>a) If exceeds RPD limit: J qualify detects, UJ qualify non detects.</li> <li>b) If one result &gt; MRL and other ND; J-detections, UJ qualify non detects</li> <li>2) ± MRL for results ≤ 5x the MRL</li> </ol>	No field daplicate was resociated with this SDG.		
MS/MSD Recovery	<ol> <li>MS/MSD acceptance limits are 75-125% (EPA Method 6000/7000).</li> <li>Qualify results in the batch or of similar type.</li> <li>If hackground concentration is -48 spike concentration qualification is introquired a) Recoveries &lt;10% J qualify detects. R qualify non-detects</li> <li>Recoveries &lt;75% flag detected results "J" and pondetected results "U" of Recoveries =125% flag detected results "T".</li> </ol>	No MS/MSD was associated with the SDG.		



## November 20, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Posi Digestion Spike (PDS)	<ol> <li>Acceptance timits are 75-150% (EPA Method 6000/7000).</li> <li>Qualify results in the batch or of similar type.</li> <li>If Background concentration is not required a) Recoveries &lt;10% J qualify detects. R qualify non detects</li> <li>Recoveries &lt;75% flag detected results."J" and nondetected results."U."</li> <li>Recoveries &gt;125% flag detected results."J"</li> </ol>	The PDS was performed on sample EFE-110408. The recovery was within acceptance limits at 140%.		
Seral Dilmion	<ol> <li>Once per digestion batch (EPA 6000 series)</li> <li>≤10% for analytes with concentration &gt;≤0- times MDL</li> <li>%D&gt;10% flag detected results "T"</li> </ol>	The %D for the SD performed on sample EFF-110408 was within acceptance limits.		
Compound Quanfilation	<ol> <li>Instrument level concentrations should be less than the linear dynamic range (LDR).</li> <li>Qualify detected results with concentrations greater than the LDR. "J"</li> <li>The reported MRL should not be below the lowest ICAL standard concentration.</li> <li>Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	Arsenic was reported as detected and the required reporting limit of 0.003 mg/L was met.		
Overal) Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors - field contamination, sample hold mass.</li> </ol>	No anomalies.		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Sincerely,

AMEC Earth & Environmental, Inc.

PREPARED BY:

holmes the loples

Melanie Roshu Environmental Chemist

AMEC Job No. 575240005 003 0003 Laboratory SDG: 1.0816302 REVIEWED BY:

Service and total

Denise Ladebauche Environmental Chemist



Meials by USEPA Meikods 601.03, s020A, and 7470A Anims by USEPA Methods 300.0/333.2

December 29, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

### INTRODUCTION

This data validation report covers three primary water samples collected on December 2, 2008 from the Shepley's Hill Landfill at the former Fort Devens, in Ayer, Massachusetts. The samples were dropped off by ECC at Alpha Woods Hole Laboratory in Westborough, MA (Alpha) on December 2, 2008 and assigned sample delivery group (SDG) number L0817660, upon receipt. Alpha analyzed the samples for total metals using USEPA 6010B, 6020A, and 7470A methods, chloride and sulfates using USEPA Method 300.0, and nitrate using USEPA Method 353.2. The associated field sample identification (ID) and Alpha sample IDs are presented in Table 2.

AMEC reviewed the laboratory's analytical data package to assess for adherence to acceptable laboratory practices and the data validation requirements as specified in MADEP Massachusetts Contingency Plan Compendium of Analytical Methods and applicable USEPA Methods outlined in Table 3 and Table 4. The level of data validation specified in Table 1 was performed with reference to the Fort Devens Quality Assurance Project Plan (QAPP) and EPA Region I Tier II Guidance. For Tier II data review, data quality objectives are assessed by review of the CLP summary forms, with no review of the associated raw data.

### EXECUTIVE SUMMARY

All data is generally usable and of good quality. Any limitations on the data and detected results are listed below.

### Table 1. Sample Status

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Tier II	Aqueous	As required by method	One sample cooler was received on 12/2/08 at a temperature of 3°C	Alpha Woods Hole Laboratory 8 Walkup Drive_Westborough. MA 01581	L0817660

### Table 2. Field Sample List

Lab Sample Number	Field ID	Comments
L0817660-01	EFF-120208	Metals, Amons.
L0817660-02	EW01-120208	Analyzed only for As, Fe, Mn
L0817660-03	EW02-120208	Analyzed only for As, Fe. Mn



Merals by USEPA Methods 6010B, 6070A, and 7470A Anions by USEPA Methods 300.0/353,2

## December 29, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

# DATA QUALITY OBJECTIVES AND VALIDATION FINDINGS

## Table 3. Metals by USEPA Methods 6010B, 6020A, and USEPA Method 7470A

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completeness	<ol> <li>Complete SDG life.</li> <li>a. Sample data package including case narrative. QC data and raw data:</li> <li>b. Shipping and receiving documents:</li> <li>c. All lab records of sample receipt. preparation and analysis</li> </ol>	All required deliverables were present in the data package,		
COC	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C for soils.</li> <li>Aqueous sample preserved to pH&lt;2.</li> <li>Sample delivery documentation.</li> </ol>	Cooler temperature upon arrival at Alpha was 3°C Samples were preserved with HNO ₃ to pH<2. The Chain of Custody is initiat. The laboratory sample receipt and log in checkfist indicates that sample integrity was maintained during transport.		
Holding Time	<ol> <li>Aqueous sample 180 days if preserved to pH=2</li> <li>Hg - 28 days to analysis</li> </ol>	Samples were analyzed within holding time.		
ICP-MS Time	<ol> <li>Tuning solution analyzed at least four times. RSD ≤ 5% for each component.</li> <li>Mass calibration not within 0.4 AMU. qualify detected results "I" and nondetected results "UI".</li> </ol>	ICP-MS Tune met acceptance orneria.		
Initial Calibration	<ol> <li>Correct calibration standards. At least 3 standards points not forced through zero, are required for linear calibration. r≥0.995 (EPA Method 6010/6020/7470).</li> <li>r² ≥0.995, quadratic calibration (at least 6 points, not forced through zero).</li> </ol>	Initial calibration met established criterah.		
2 nd Source Initial Calibration Verification (ICV)	<ol> <li>Following the calibration.</li> <li>90-110% recovery (EPA 6010/6020)</li> <li>75-89% recovery, J qualify detects and UJ qualify nondetects.</li> <li>111-125% recovery, J qualify detects.</li> <li>80-120% recovery (EPA 7470)</li> <li>8SD &lt;5% for the replicate</li> </ol>	ICVs met acceptance criteria.		



Metals by USEPA Methods 6010B, 8070A, and 7470A Anions by DSEPA Methods 300.0/353.2

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Continuing Calibration Verification (CCV)	<ol> <li>CCV using mid and high level standards; analyzed after every 10 samples and at the end of batch.</li> <li>Concentrations 80-120% (EPA Method 7470) and 90-110% of expected value (EPA Method 6010/6020).</li> <li>CCV &gt;120% (EPA Method 7470) or 110% (EPA Method 6010/6020); J qualify detects, no qualification is necessary for non detects.</li> <li>CCV = 80% (EPA Method 7470) or 90% (EPA Method 6010/6020); J qualify detects; UJ qualify non detects.</li> <li>CCV = non detects.</li> <li>CCV outside 65-135%, reject data</li> </ol>	All CCV recoveries were within acceptance limits.		
Blanks (Merlind, Field, Equipment, Rinsate, etc.)	<ol> <li>Evaluate down to the MDL.</li> <li>If sample result is ~5x contaminant concentration; flag "U"</li> <li>Sample result ≥5x contaminant concentration: no qualification required.</li> </ol>	No analytes were delected in the preparation blanks associated with these samples.		
Initial Calibration Blanks and Continuing Calibration Blanks (ICB/CCB)	<ol> <li>ICB and CCB after every ten samples or every batch whichever is greater.</li> <li>Evaluate absolute values down to the MDL.</li> <li>Sample results &lt; 5x blank sample, U qualify detects</li> <li>Sample results &gt;5% blank level, no action required.</li> </ol>	No analytes were detected in the ICB/CCBs associated with these samples		
Negative blanks	<ol> <li>If the blank has a negative result with an absolute value &gt;MDL, quality detected results ≤5× the absolute value of the contaminant conventration as estimated "T" and quality nondetected results "U1".</li> </ol>	No negative blank concentrations were detected		



Metals by USEPA Methods 6010B, 6020A, and 7470A Anions by USEPA Methods 308.0/353.2

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Interelement checks ICS-A/ICS- AB Instrument performance check	1) No qualification required if recovery between 80-120%. a)%R< 80% hag detected results "F" and nondetected results "UF" b) %R >120% flag detected results "F" c) %R<10% flag detected results "F" and nondetected results "R"	ICS-A/ICS-AB recoveries were within acceptionee limits.		
läternal Standards (IS)	<ul> <li>1) Intensity of IS must be 30-120% of intensity of IS in the initial calibration standard.</li> <li>a)%R&lt;30% flag detected results "J" and nondetected results "UJ"</li> <li>b) %R &gt;130% flag detected results "J" and nondetected results "UJ"</li> </ul>	All internet standards "sR were within acceptance limits.		
Laboratory Control Sample: Laboratory Control Sample Duplicate (LCS/LCSD) Recovery	<ol> <li>LCN acceptance timus 80-120%, method, requirements (EPA Method 60).0/6020/7470)</li> <li>a) %R=80% flag detected results "J" and nondetected results "UJ"</li> <li>b) %R=120% flag detected results "J" c) %R=10% flag detected results "J" and nondetected results "R" Qualify all associated samples.</li> </ol>	The LCS/LCSD recoveries were within acceptable limits.		
Laboratory Duplicate RPD	<ol> <li>RPD ≤ 20%</li> <li>a) If exceeds RPD limit; I qualify detects. UI qualify non detects.</li> <li>b) If one result &gt; MRL and other ND: J-detections, UI qualify non detects</li> <li>2) ± MRL for results ≤ 5x the MRL</li> </ol>	No laboratory doplicate was associated with this SDG.		
Field Duplicate RPD	<ol> <li>1) RPD &gt;20% waters (&gt;30% soils)</li> <li>2) For detected results more than 5 times their PQLs flag "T"</li> <li>3) Differences in concentrations &gt; the MRL for analytics with concentrations less than 5 times (heir PQLs, flag "T")</li> </ol>	No field daplicate was associated with this SDG.		
MS/MSD Recovery	<ol> <li>MS/MSD acceptance limits are 75-125%, (EPA Method 6000/7000).</li> <li>Qoalify results in the batch or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10% I qualify detects. R qualify non detects</li> <li>B Recovertes &lt;75% flag detected results "I" and nondetected results "U" c) Recoveries &gt;125% flag detected results "T"</li> </ol>	No MS/MSD was associated with this.		



Metalr by USEPA Metalitis 6010B, 6020A, and 7470A Aniaza by USEPA Methods 300.0253.2

## December 29, 2008 Region I Data Review Worksheet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Post Digestion Spike (PDS)	<ol> <li>Acceptance limits are 75-125% (EPA Method 6000/7000).</li> <li>Qualify results in the batch or of similar type.</li> <li>If background concentration is &gt;4x spike concentration qualification is not required a) Recoveries &lt;10% 1 qualify detects, R qualify non detects</li> <li>Recoveries &lt;75% flag detected results "J" and modelected results "U"</li> <li>Recoveries &gt;125% flag detected results "J"</li> </ol>	Sample EFF-120208 was used as the source for the PDS. The recoveries were within acceptance limits		
Senal Dilanon	<ul> <li>11 Once per digestion batch (EPA 6000 series)</li> <li>2) ≤10% for analytes with concentration ≥50- times 1DL</li> <li>3) %D&gt;10% flag detected results "f"</li> </ul>	The laboratory performed serial dilution analyses on samples EFF - 120208 and EW1-120208. The %Ds were less than 10%.		
Compound Quantitătion	<ol> <li>Instrument level concentrations should be less than the linear dynamic range (LDR).</li> <li>a) Qualify detected results with concentrations greater than the LDR "T"</li> <li>2) The reported MRL should not be below the lowest ICAL standard concentration         <ul> <li>a) Positive results reported above the MDL but below the RL should be considered estimated and be flagged "f"</li> </ul> </li> </ol>	Arsenic (0.00087 mg/L) was detected below the RL of 0.001 mg/L in sample EFF-120208.	AMEC I qualified the arsenic result from sample EFF- 120208 with a TR (trace level) reason code	Estimation
Overail Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anamalies.		

## Table 4. Nitrate by USEPA 353.2, and Chloride and Sulfate by USEPA 300.00

Review Items	Acceptance Criteria	Samples affected	Qualifications	Bias
Data Completences	<ol> <li>Complete SDG file,</li> <li>a. Sample data package including case narrative, QC data and raw data.</li> <li>b. Shipping and receiving documents of All lab records of sample receipt, preparation and analysis.</li> </ol>	All required deliverables were present in the data package.		
COL	<ol> <li>Sample custody documentation.</li> <li>Temperature 4±2°C</li> <li>Sample delivery documentation.</li> </ol>	Cooler lemperature optimarrival at Alpine was PC The laboratory sample receipt and log in checklist indicates that sample micgrity was maintained during transport:		



Metats by USEPA Methods 6010B, 6020A, and 7070A Anions by USEPA Methods 300.0/353.2

## December 29, 2008 Region I Data Review Worksbeet Project: SHL, Fort Devens Review Criteria: Fort Devens QAPP and MADEP MCP USEPA Region I Tier II Guidance

Review Items	Acceptance Criteria	Samples affected	Qualifications	Blas
Holding Times (HT)	<ol> <li>28 days, preservation not required (Chtoride: Suffate) (EPA Method 300.0)</li> <li>2) 48 hours, preservation not required (Nitrate-N)(EPA Method 353.2)</li> </ol>	The sample was analyzed and preserved as per EPA Method requirements.		
loittal Calibration	<ol> <li>r≥0.99 for chloride, sulfate and nitrate, linear calibration</li> <li>Analytes with low t &lt;0.99 flag detected results "J⁺ and nondetected results "UT"</li> <li>Use professional judgment if hot coough points were used for curves. Determine if system imprecision or bias</li> </ol>	Inmal culibration criteria were met.		
ICV/CCV	<ol> <li>No qualification (Frecovery between 90-110% (chloride, sulfate and nitrate) and 85- 115% (cyanide).</li> <li>a) %R=110% (chloride, sulfate and nitrate) and (15% (cyanide) flag detected results "J"</li> <li>b) %R &lt;90% (chloride, sulfate and nitrate) and 85% (cyanide) flag detected results "J" and nundetected results "UJ"</li> </ol>	ICVs were within acceptance timus.		
Blanks (Method, Field, Equipment, Rinsate, etc.)	<ol> <li>If sample result is ~5x contaminant concentration and between MDL and MRL, raise result to MRL and flag "U"</li> <li>If sample result is ~5x contaminant concentration and ≥ MRL flag "U"</li> <li>Sample result ≥5x contaminant concentration: no qualification required.</li> </ol>	Sulfate (0.12 mg/L) and mitrate (0.053 mg/L) were detected in the method blanks associated with sample EFF+120208. The detected solfate and mitrute concentrations in sample EFF-120208 were more that 5 times the blank concentrations. Data usability is not affected. No chloride was detected in the associated method blank.		
ICBs/CCBs	<ol> <li>Evaluate absolute values down to the MDL. Evaluate ICBs/CCBs that bracket samples.</li> </ol>	ICB/CCBs were analyzed every 10 samples with no detections.		
LUS	<ol> <li>No qualification if recovery between 80- 120%</li> <li>a) %R&lt;80% flag detected results "T" and pondetected results "UT"</li> <li>b) %R &gt; 120% flag detected results "T"</li> <li>c) %R &lt;10% flag detected results "T" and nondetected results "R"</li> </ol>	LCS recoveries were within acceptance criteria		
Lab Duplicate	1) 20% sRPD, RPD >20% flag detected results "T" and nondetected results "U": 2) $\pm$ MRL for results $\leq$ 5x the MRL. Difference >MRL, flag detected results "T and nondetected results "UT"	Sample EFF-120208 was analyzed in duplicate for nitrate. The RPDs were within acceptance criteria.		



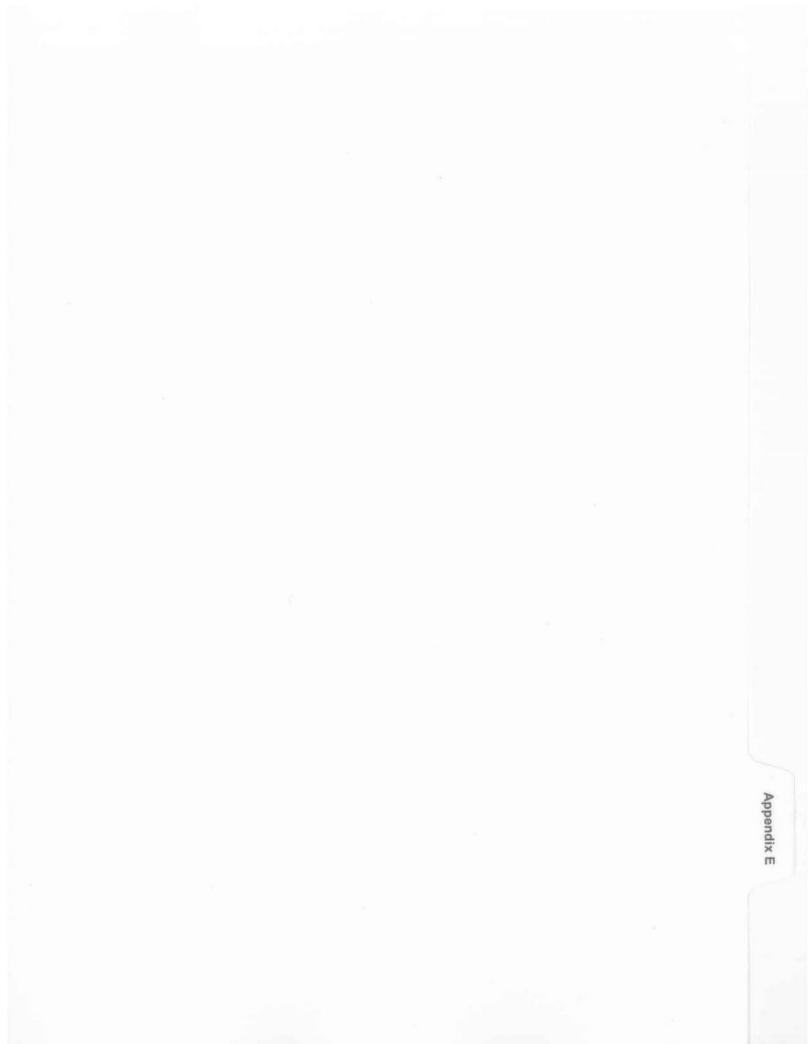
Mirrah by USEPA Methods 6010B, 8070A, and 7470A Anions by USEPA Methods 300,0/353.2

Review ttems	Acceptance Criteria	Samples affected	Qualifications	Bias
Field Duplicates	1) RPD $\leq 20\%$ for aqueous samples ( $\leq 30\%$ soil samples) for analytes with concentrations more than 5 times their PQLs, and concentrations within one MRL for analytes with concentrations less than 5 times their PQLs	No field duplicate was collected with this SDG.		
MS/MSD	<ol> <li>No qualification required if nerowery between 75-125%,</li> <li>If background concentration is greater than 4x the spike concentration qualification is not required</li> <li>R&lt; 75% flag detected results "1" and nondetected results "10" "R&lt; 125% flag detected results "1" "R&lt;10% flag detected results "1" "R&lt;10% flag detected results "1" and nondetected results "R" Qualify only results in the spiked sample. (Qualify results for samples collected at same location but differing depths as well)</li> </ol>	Sample EFF-120208 was used as the source sample for MS for nitrate The recoveries were within acceptance criteria.		
Compound Ortantilation	<ol> <li>Instrument level concentrations should be less than the linear range. Qualify detected results with concentrations greater than the LDR "J"</li> <li>The reported RL should not be below the lowest ICAL standard concentration</li> <li>Positive results reported above the MDL but below the RL should be considered estimated and be flagged "J"</li> </ol>	Chloride, sulfairs, and mirair were reported as detected above the method reporting limits		
Overall Evaluation of Data	<ol> <li>Appropriate method.</li> <li>Evaluate any analytical problems with laboratory results.</li> <li>Evaluate sampling errors – field contamination, sample hold times.</li> </ol>	No anomalies,		

If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400. Sincerely,

AMEC Earth & Environmental, Inc.

PREPARED BY:

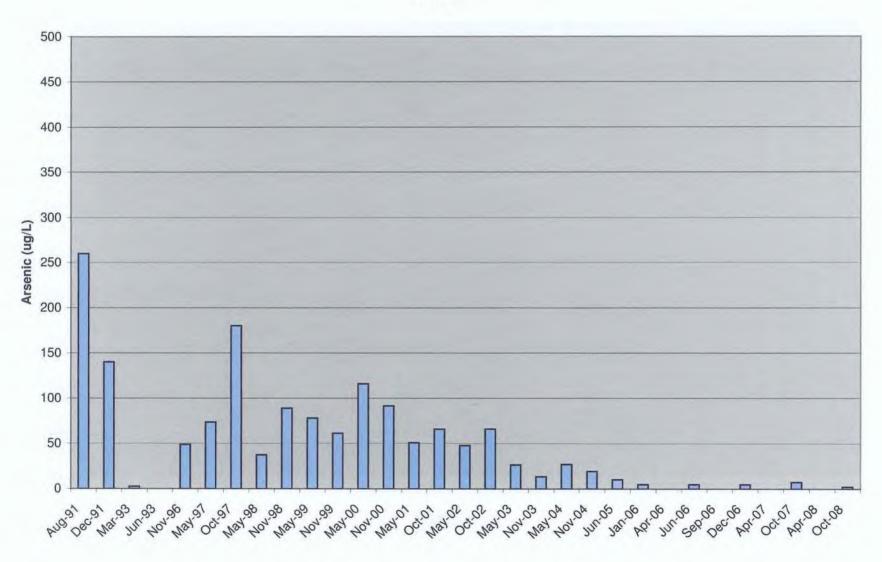

brun to Inghe

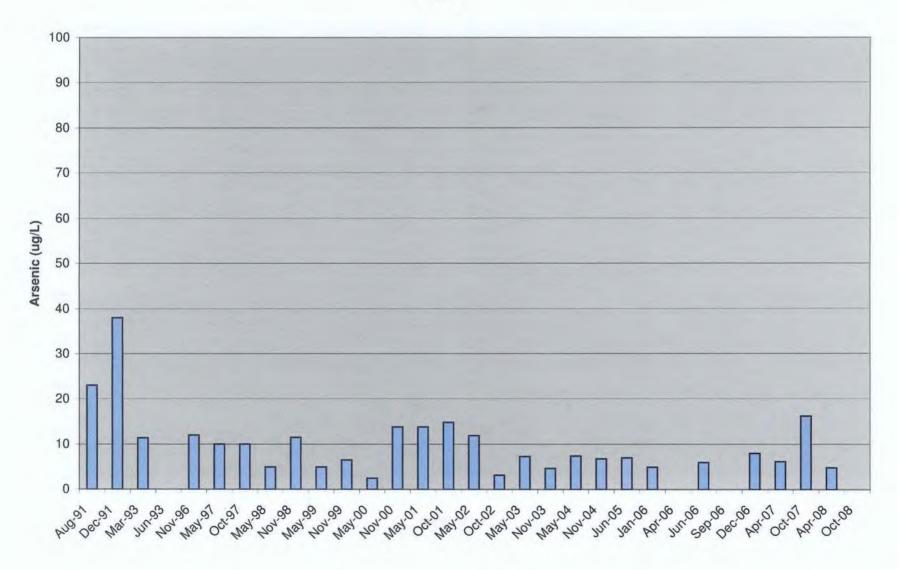
Melanie Roshu Environmental Chemist

REVIEWED BY:

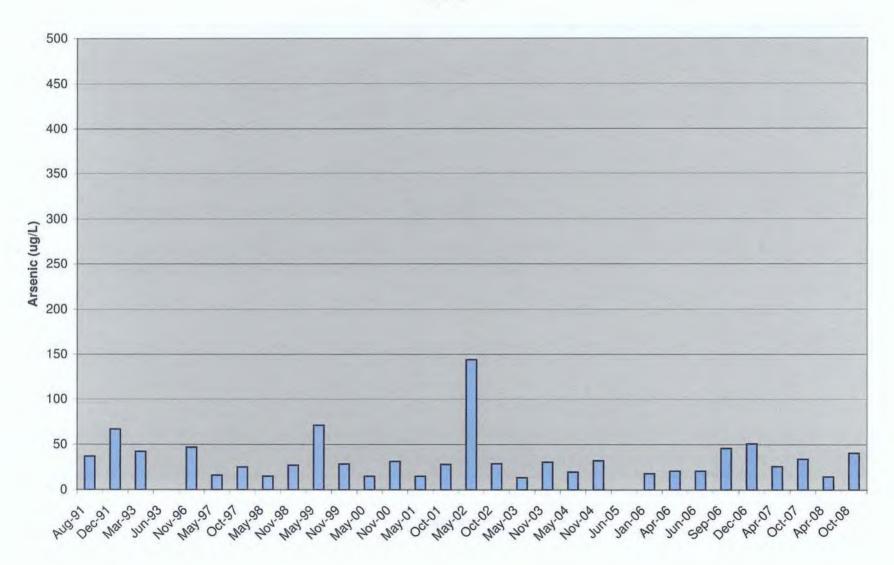
Cours - Phil

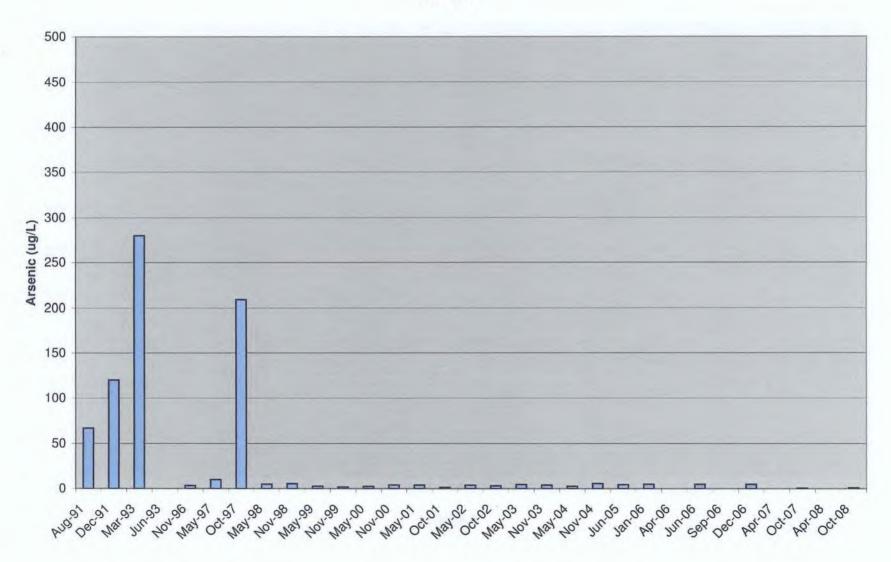
Denise Ladebauche Environmental Chemist

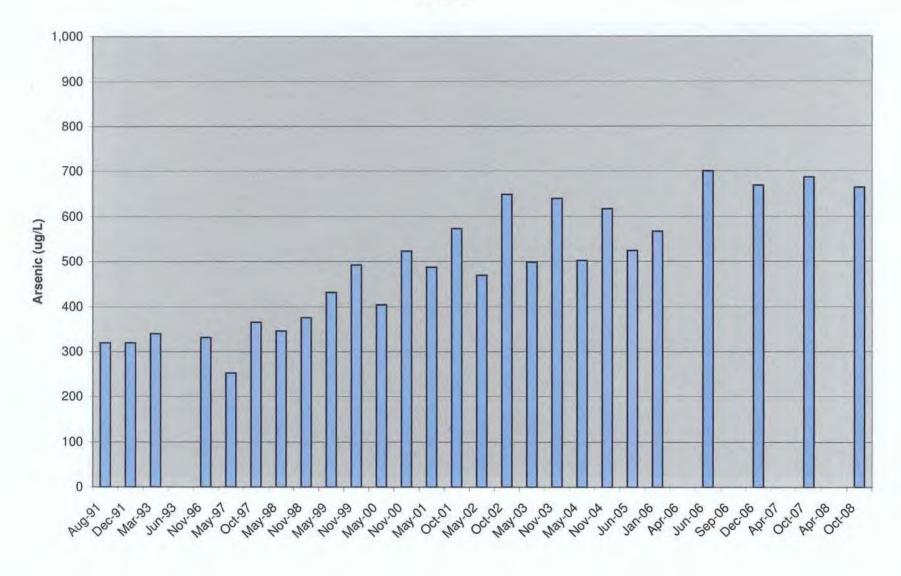


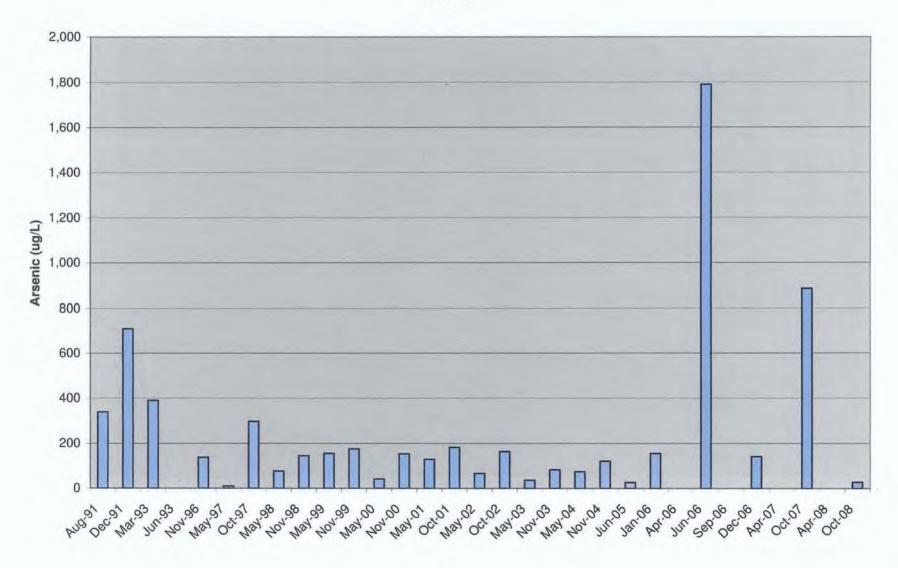


2008 Annual Report – Shepley's Hill Landfill and Treatment Plant Long-Term Monitoring and O&M Services Contract Number W91ZLK-05-D-0009 Task Order -0006 August 2009

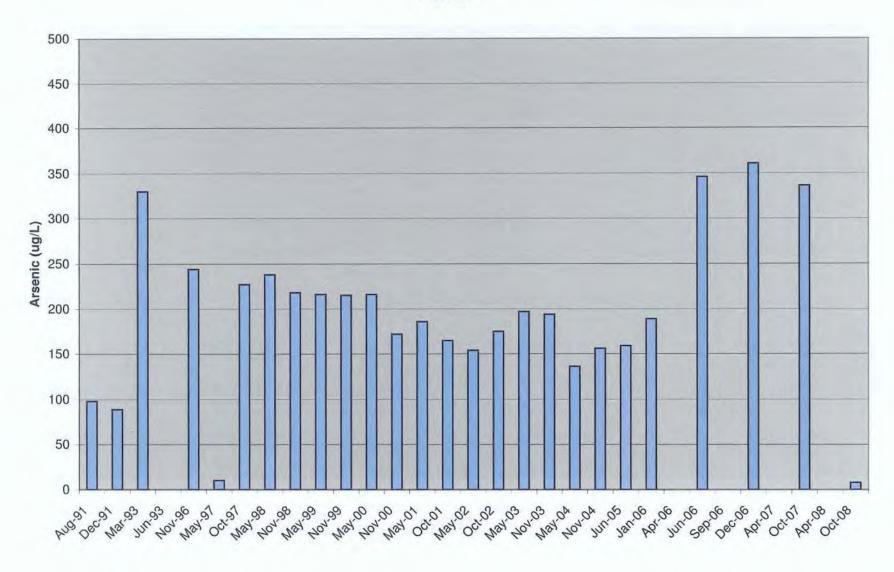


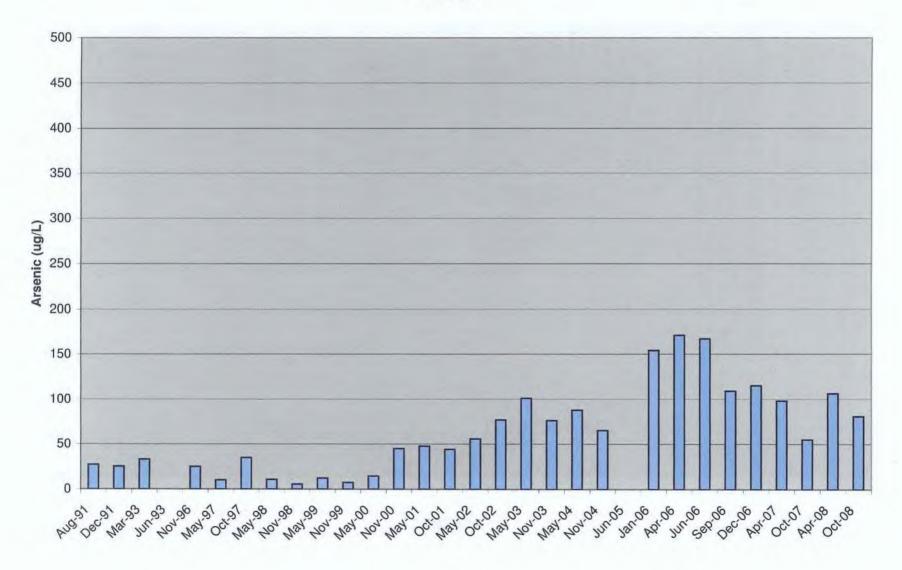

Appendix E


**Arsenic Trends** 



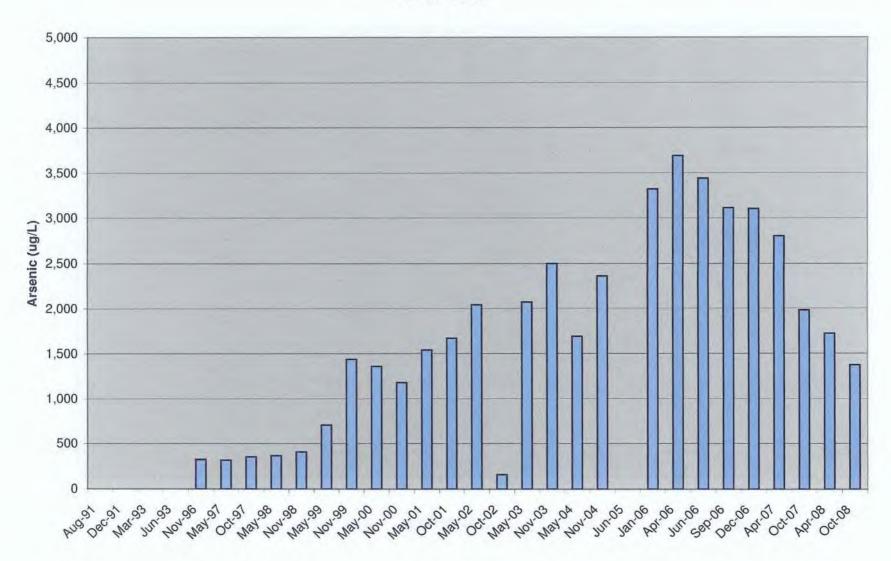





SHL-5





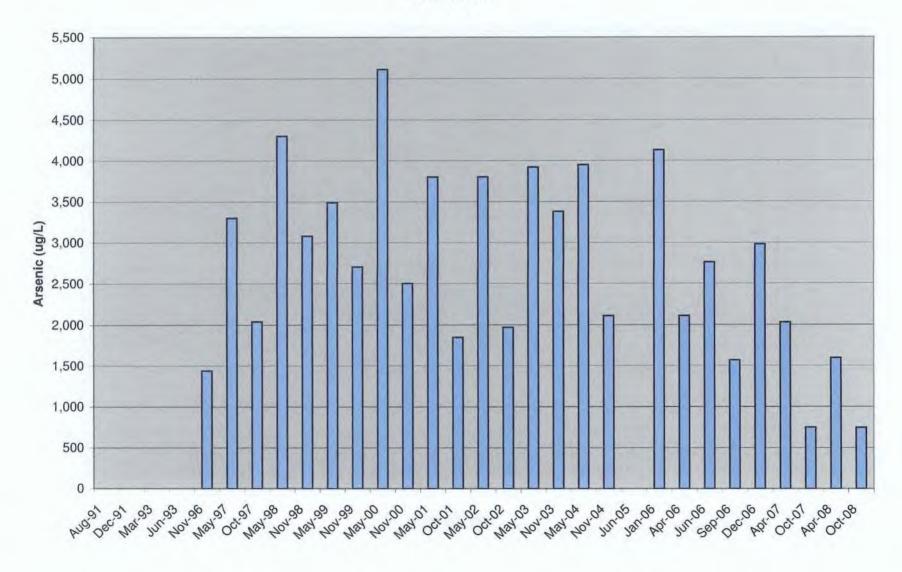


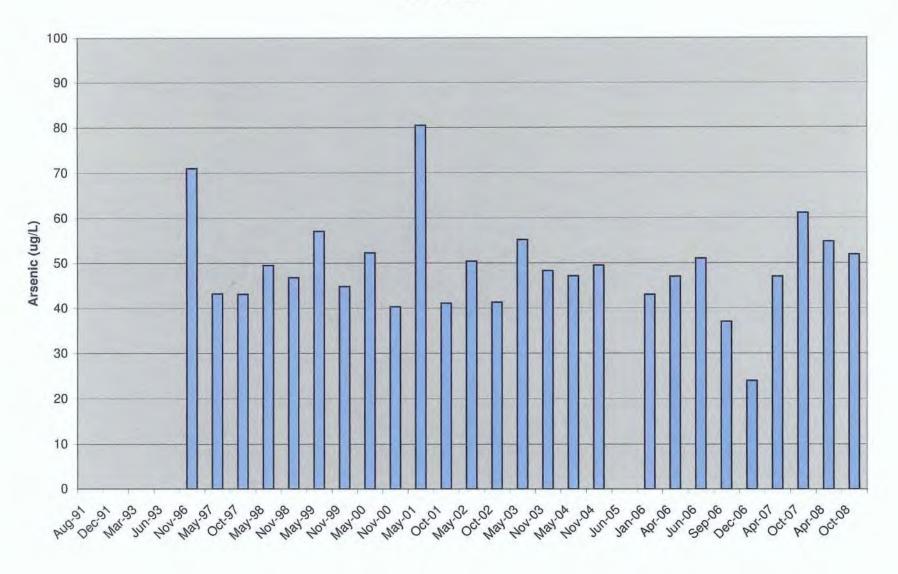




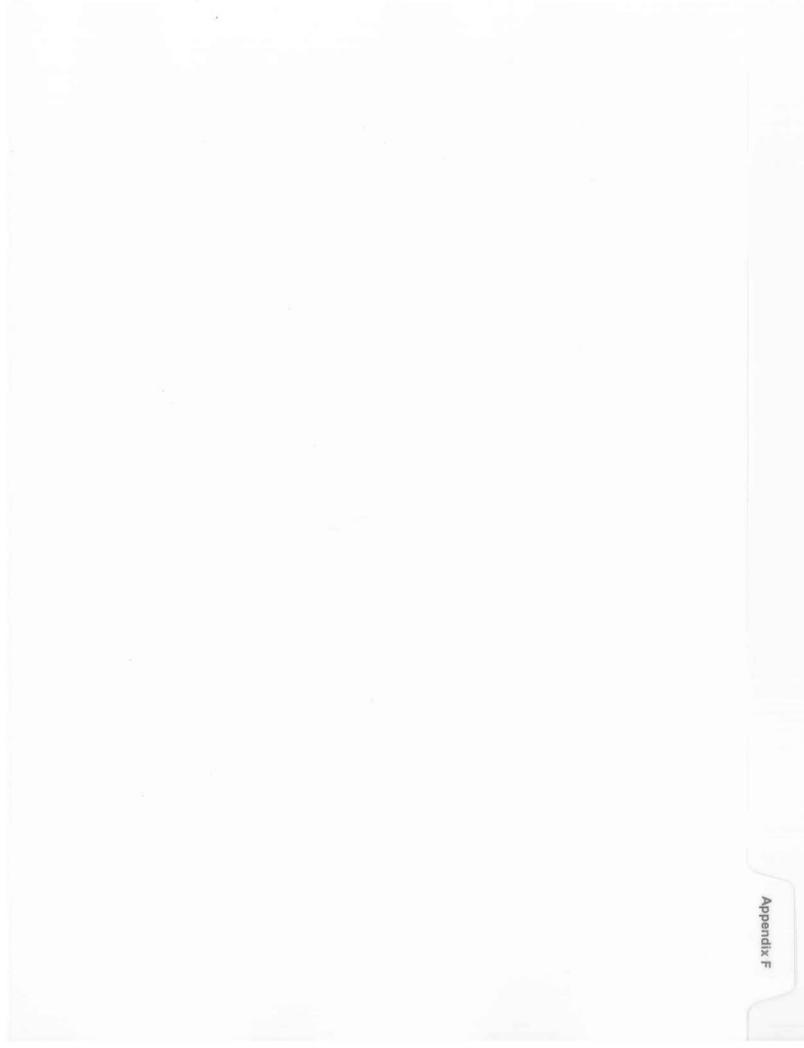

Arsenic (ug/L) 


SHM-93-10C




SHM-93-22B

Arsenic (ug/L) 


SHM-93-22C



SHM-96-5B



SHM-96-5C



2008 Annual Report – Shepley's Hill Landfill and Treatment Plant Long-Term Monitoring and O&M Services Contract Number W91ZLK-05-D-0009 Task Order -0006 August 2009



Appendix F

Agency Comments and Army Responses

#### Draft

Responses to EPA Comments on 2008 Annual Report Shepley's Hill Landfill and Treatment Plant Long Term Monitoring and O&M Services Former Fort Devens, Massachusetts August 2009

## General Comments:

The hydraulic capture zone analysis has been discussed at previous BCT meetings and in
other document comment-response exchanges. The discussion of the numerical model
results does not include any of the qualifications that were developed in revision of the
Supplemental Groundwater Investigation and Landfill Cap Assessment (AMEC, 2008),
Please expand Section 5.0 of the Annual Report to acknowledge the computational issues
encountered (i.e., convergence and water-balance problems), and the attendant uncertainties
in the model results. Please see related Specific Comments.

Response: Section 5 will be updated to document a revised version of the site groundwater flow model in which the computational issues identified in the SGILCA have been resolved. This model will be used to update all related figures and interpretations in the report.

2. Throughout the document, the statement is made that the Contingency Remedy is operating as designed. EPA does not concur that there is adequate support for this statement. Our concerns primarily relate to the uncertainties with the model, as noted above. As stated in EPA's comment letter on the Drafi 2007 Annual Report, the BCT must identify appropriate remedy evaluation criteria to assess the effectiveness of the groundwater treatment system and establish metrics so that the performance of the remedy under full operating conditions can be measured. EPA believes that a reliable model is critical to this evaluation. With the next Five-Year Review scheduled for 2010, it is important the BCT make this a priority.

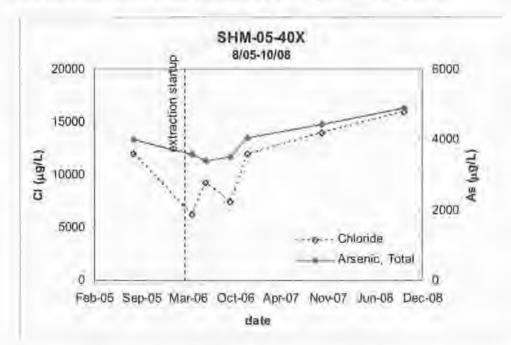
Response: Comment noted. The Army believes the revised model and assessment will address the subject component of the performance metrics. The Army suggests the most appropriate remedy evaluation criteria is capture of groundwater flowpaths interpreted to account for Arsenic detections within the landfill and north of the landfill toe, as suggested in Specific Comment No. 7.

3. EPA understands the desire to optimize resources supporting the long-term monitoring program by eliminating certain wells that do not contribute significantly to evaluating either arsenic plune behavior or the performance of the extraction system. Nevertheless, the wells that are identified in this report as candidates for elimination from the LTMMP may provide important insight into the long-term adjustment of the flow field to the extraction system, including changes in redox conditions that are not yet evident. EPA does not concur with the recommendation and suggests a BCT discussion on this issue.

Response: Please see response to Specific Comment No. 5.

# Specific Comments:

 Page 3-1, Sec. 3.1.1. System Description. This section provides a thorough description of the treatment plant operation; however, no mention is made of the fate of methane dissolved in the influent groundwater. Please explain where and how the influent is allowed to outgas.


**Response:** The treatment plant is not designed to treat for dissolved methane. Upgrades to the original plant design completed by CH2M Hill in February 2006 addressed the safety factors resulting from dissolved methane. Upgrades included scaling and venting process tanks to the outside of the treatment plant, installing methane and oxygen sensors near potential methane release areas, and upgrading electrical conduit/wiring in the extraction wells and effluent sump to explosion proof. It is assumed that any dissolved methane that is released into the headspace of treatment system tanks is vented to the outside of the building. Any methane that volatizes into the headspace of treatment tanks is off-gassed to the exterior of the plant. Any remaining methane that is not volatized within the treatment system remains dissolved in the plant effluent.

2. Page 3-6. Sec. 3.3.1, Influent Inorganic Sampling. It is apparent from the inorganic loading data that total concentrations (iron, manganese, and arsenic) have declined slightly since start-up of the extraction system. Because most of the total is accounted for by the iron concentrations, it is difficult to evaluate changes in arsenic levels from the plot of the inorganic data (Fig. 3-1), which shows only the total (Fe + As + Mn) and Fe. Please consider adding As and Mn to this plot in future reports. It is interesting to note that arsenic in EW-04 has decreased by approximately 1.4 mg/L since system start-up (from an initial maximum of ~5 mg/L to 3.6 mg/L in the Dec. 2008 sampling), but the most recent value is still about 50% higher than the levels seen in EW-01 (between 2.3 and 2.6 mg/L). The latter have remained relatively constant since system start-up.

**Response:** The intent of Figure 3-1 was to track the total inorganic loading on the plant to predict sludge generation and also to insure that influent iron concentrations are sufficient to maintain the necessary iron to arsenic ratio for complete arsenic removal. Initial bench-scale testing conducted by CH2M Hill determined that a minimum of 40 mg/l of iron in the influent was necessary for complete coagulation and removal of the influent arsenic. The plant design includes a ferric chloride injection system to enhance arsenic removal if influent concentrations of iron are not sufficient, however this has not been necessary due to consistently high influent iron concentrations. The influent As and Mn concentrations will be added to Figure 3-1 in future reports.

3. Page 4-2, Sec. 4.2.1.1, Arsenic Results. The first paragraph in this section notes that SHL-11, SHM-05-41C, and SHM-05-40X reported As concentrations in the 2008 sampling events that were greater than historical averages. Since SHM-05-41C and SHM-05-40X are outside the capture zone, this observation is interpreted as an indication that "... the leading edge of the plume is still advancing." If this scenario is accurate, why do locations intermediate between the toe of the landfill and SHM-05-40X – e.g., SHL-9 – not show increasing arsenic? Please elaborate. Response: SHL-9 is a shallow/watertable well and does not sample the impacted zone at the base of the overburden aquifer. While the screen interval for SHM-05-40X is at a similar elevation to SHL-9, bedrock is considerably shallower and, consequently, the elevation of the plume is shallower as it rides along this surface. Therefore, the plume is interpreted to be below the screen interval at SHL-9 and this well provides no information on the leading edge of the plume or trailing edge assuming it has been cut off from the source by the extraction system. Consequently, the statement is considered accurate.

4. Page 4-3, Sec. 4.2.1.1, Arsenic Results. The last paragraph in this section states that the highest arsenic concentration observed in the 2008 fall sampling event was found in SHM-05-40X, and that this concentration (4920 ug/L) was a historical maximum for this monitoring well but "...similar to prior levels." EPA notes that arsenic concentrations in this well have risen steadily, and increased by 1500 ug/L, since June 2006:



The apparent systematic increase in arsenic is accompanied by rising levels of chloride, which suggests a shift in the flow field: SHM-05-40X may now be on a different flow line due to the startup of the extraction system, and is intercepting groundwater of a different composition. It is premature to speculate on the cause of the increasing arsenic at this location at this time, but results from future sampling rounds may explain these observations.

Response: Comment noted. It is acknowledged that SHM-05-40X exhibits increases over the last four consecutive samples. However the individual increments of change are considered modest compared to the overall ppm level concentration. Given travel time relationships and distance from the extraction wells it is unlikely that a trend could manifest itself at this well so soon after startup. Continued assessment of this and other area wells will provide indication of water quality changes as a result of extraction stress.

Э.

5. Page 4-5, Sec. 4.3, Proposed Monitoring Program Optimization. The rationale for optimizing the monitoring program by reducing the number of wells in the LTMMP is understood. However, the criteria for selecting wells for omission from the monitoring program appear to focus on whether or not the wells provide information about high-arsenic. landfill-impacted groundwater. EPA believes that the selected wells nevertheless contribute valuable data for evaluating the continuing evolution of the flow field across and downgradient from the landfill. It is noted throughout the 2008 Annual Report that rapid changes in ORP, arsenic, and other indicators of geochemical conditions within the SHL groundwater system are not expected. The text states (p. 5-7) that "...the geochemical system is still in the process of equilibrating to the comparatively rapid changes in flow system dynamics that have resulted from operation of the extraction wells." In support of observing the geochemical equilibration of the system, as well as potentially providing ground-truth data for the hydraulic-capture modeling, EPA believes that these wells need to be retained for the following reasons:

Well ID	Location	Reason for Retaining
SHL-21, SHL-23	cast and west, respectively, of the toe of the landfill	These wells lie on flow lines that may shift, over time, with continued operation of the extraction system.
SHL-13	East of the toe of the landfill, adjacent to the Plow Shop Pond dam outlet	This well intercepts pond water as it recharges the overburden; there is a redox gradient between SHL-13 and the high-arsenic zone at SHM- 96-5B, so SHL-13 should be monitored at least annually as an end-member of this gradient.
SHP-01-36X and -37X	On western edge of Plow Shop Pond, north of Red Cove	These wells intercept pond water but provide information about the position of the hinge line and also serve as points of reference for any changes in direction of flow lines along the eastern edge of SHL
SHL-10, 10C	East of SHL, southeast of Red Cove	These wells are the closest to the Pond in this area and serve as monitoring points for changes to both overburden and bedrock water.

EPA has not found documentation of the screened interval for SHM-93-10D. Also, the high pH recorded historically for this well (>11 for the last three sampling events) may indicate well-construction problems. EPA would concur with dropping this well from the LTMMP, if the Army proposed this revision to the approved LTMMP.

Response: Based on the 2008 drawdown evaluation, the hydraulic stress exerted by the system is nearly instantaneous and it is extremely unlikely that there will be more then very minor fluctuations in the orientation of flow paths at/near the system. Further, analytical sampling of SHP-01-36X and -37X provides no information on the location of the hinge line nor is this information considered critical to evaluation of system performance. Consequently, with the exception of SHL-13, the Army contends the remaining 7 wells have historically exhibited very consistent analytical results, provide no useful information on either landfill conditions or system performance, and should be dropped from the LTMMP or, at a minimum, be sampled less frequently.

6. Page 5-4, Sec. 5.1.2, Capture Zone Width Calculation. Please note that the capture zone width calculated from the idealized, analytical model (given by the expression shown on p. 5-3) applies only far upgradient. Therefore, the comparison of the "width of the impacted portion of the aquifer at the extraction wells" to this calculated width is inappropriate. The same analytical solution for the capture zone due to a single, fully-penetrating well in a uniform aquifer of constant thickness shows that the capture zone width abreast of the well (i.e., roughly in the vicinity of the line cited from SHM-96-5B to SHL-23) is only half the far-field width. The appropriate comparison, then, is between the estimated impacted width of 444 fl and half the calculated far-field width (382 ft for the 50-ft thickness; 212 ft for the 90-ft thickness). Although this comparison is significantly less favorable, it is acknowledged that this calculation is inevitably very crude, given the more three-dimensional character of the system (i.e., variable saturated thickness, two extraction wells separated by a finite distance, extraction screens that do not cross the full saturated thickness, etc.).

Response: The calculation in question is a straightforward expression balancing interpreted groundwater velocity against the extraction rate. It assumes a homogenous, isotropic, uniformly thick aquifer and results in a cross-sectional area of capture which can be related to a capture width by assuming a saturated thickness. This value does apply some distance upgradient from the extraction site, beyond the area of converging flow to the well. At present it is unclear how far the ppm-concentration Arsenic plume detected at wells 22B and 5B extends to the cast and whether it is continuous with or separate from detections along the eastern perimeter. Until this can be resolved the Army suggests this calculated capture zone width is not a meaningful system performance metric and should be omitted from future performance assessments. Further, the Army recommends an appropriate metric for defining "successful capture" is capture of those flowpaths leading to downgradient detections as discussed further in response to Comment 7 below.

7. Page 5-5, Sec. 5.1.4. Comparison to Numerical Model Results. The text states that the model-predicted capture zone "… is still considered sufficient to fully contain impacted groundwater migrating northward from the toe of the landfill ……" This statement seems to be taking the position that the upgradient coverage of the landfill footprint is less critical than is the capture cross-section in the highest-arsenic zone at the north end of the landfill. This is a reasonable position with respect to arresting advective transport of arsenic to the north. A key monitoring location in defining the high-As zone is SHM-96-22B, which historically has exhibited some of the highest concentrations in the system. It is difficult to tell from the graphics supplied (e.g., Fig. 5-2 and Fig. 5-4) whether or not the model indicates that groundwater that passed through SHM-96-22B prior to initiation of the extraction is now captured. The same remarks apply to SHM-96-5B. Both of these wells lie well outside the predicted capture zone. For future presentations of the model results, it is suggested that the model he run for ambient conditions (i.e., no extraction), and that particle backtracks be

mapped from key, "hotspot" wells. Then one can overlay the computed capture zone under pumping conditions to see if that encompasses the flowlines previously leading to the "hotspot" wells. This may support the claim regarding "full[] contain[ment] [of] impacted groundwater."

**Response:** The recommended particle track exercise has been performed using the updated model discussed in General Comment 1 as shown in revised Figure 5-2 (attached). Reverse particle tracks were used to define the source areas for water arriving at downgradient detections under ambient conditions for comparison to the source areas for water captured by the extraction system. Results indicate the computed capture zone for both the design rate and the average operational rate achieved in 2008 are sufficient to capture those flowpaths leading to detections at SHM-96-22B and SHM-96-5B and, therefore, the conclusion the system is containing the highest arsenic zone is well supported.

 Page 5-5, Sec. 5.1.4, Comparison to Numerical Model Results. The discussion of the numerical model does not include any of the qualifications that were developed in revision of the Supplemental Groundwater Investigation and Landfill Cap Assessment (AMEC, 2008). Please expand this section of the Annual Report to acknowledge the computational issues encountered (i.e., convergence and water-balance problems), and the attendant uncertainties in the model results.

Response: See response to General Comment 1.

 Page 6-2, Sec. 6.2, Recommendations. Include a section reporting on the Recommendations from the 2007 Annual Report and detailing the steps taken to address those Recommendations and the status of that effort. If Recommendations included in this Draft 2008 Annual Report are items that were also noted last year, include a justification for why they were not addressed.

Response: The requested section will be added.

# Draft Responses to MassDEP Comments on 2008 Annual Report Shepley's Hill Landfill and Treatment Plant Long Term Monitoring and O&M Services Former Fort Devens, Massachusetts August 2009

## Comments:

 Section 2.3: MassDEP may agree that high levels of methane detection at the landfill gas probes are not perpetual, but periodic detection of methane with concentrations exceeding 25% of Lower Explosive Limit at the property boundary may warrant further assessment and corrective actions.

Response: Comment noted. In 2009, the Army enhanced the landfill perimeter gas monitoring network by installing 13 additional gas wells completed in the vadose zone in the southern and northern boundary areas. The frequency of the perimeter landfill gas monitoring has been increased to quarterly in 2009. Quarterly perimeter gas monitoring events are initiated during a low barometric pressure system and discontinued when a high barometric system arrives over the landfill in order to assess the relationship between gas concentrations and barometric pressure. Assessment of the perimeter landfill gas in the southern and northern boundary areas is ongoing.

2. Section 3.3.3: High concentrations of methane (14.5 ppm and 10.4 ppm) in the plant influents were not encountered during the earlier investigations and are of concern. MassDEP believes additional methane plume delineation beyond north toe of the landfill should be conducted and would recommend, at minimum, additional methane sampling at the P&T influents, together with monitoring wells SHM-05-41B and SHM-05-40X. These two wells are located down gradient of those pumping wells and have recorded

relatively high arsenic concentrations. In addition monitoring well SHM-05-40X was screened relatively shallow and located close enough to the neighborhood at Scully Road.

Response: The dissolved methane concentration of 14,500 ug/l detected in the influent to the treatment system from extraction well EW-01 in September 2008 was slightly higher than the previous maximum of 12,100 ug/l. Safety measures are in place at the treatment plant to address dissolved methane. Consequently, an increase in sampling frequency of treatment plant influent does not provide significant value. Previous sampling for methane in downgradient wells indicated methane is not present at the watertable and therefore there is no potential for off gassing to soil.

3. Section 4.2.1.1: Because of the higher than historical arsenic concentrations at monitoring wells SHM-05-41C and SHM-05-40X, downgradient of the pumping wells, it was concluded that "the leading edge of the plume is still advancing". This conclusion seems contradictory to the statement under Section 5.3 of Performance Assessment Summary, which concluded that "the Contingency Remedy...can be interpreted to contain the majority of arsenic mass being mobilized by landfill-induced reducing conditions...." It is MassDEP's understanding that the containment provided by the extraction system is centered on the north plume, and should significantly cut-off the plume. Please explain.

Response: The statement referring to the leading edge addresses the portion of the plume already well downgradient and outside the capture zone for the extraction wells. The text will be modified to read "..contain the majority of arsenic mass within the lendfill footprint being mobilized.".

 Section 4.2.1.1: The decreasing trend of arsenic concentrations at SHM-96-22B and SHM-96-5B seems encouraging, but the increasing trend of arsenic concentrations noted at SHL-11 and SHM-05-40X are puzzling. A detailed delineation of arsenic contamination is needed to monitor and evaluate the performance of the pump-and-treat system.

Response: The Army disagrees the increasing trend at SHL-11 is a cause for concern as the levels in this well have ranged from 300 to 600 ppb for over 18 years. However, as discussed in Section 4, the trend at SHM-05-40X indicates the leading edge of the plume downgradient from the capture zone is still advancing. The Army believes that adequate delineation of Arsenic contamination is achieved with the existing LTMMP monitoring well array. However, it is acknowledged that the continuity between the northern trending plume lobe and detection in the vicinity of Red Cove is a data gap with respect to performance assessment. Please see also response to Comment No. 8.

 Table 4-5, Summary of Historical Arsenic Concentrations, Section 4.2.1.1: Monitoring well SHP-99-29X at least was sampled around 1999 when it was first installed. Please add the results to the table.

Response: The subject results will be added to the table.

6. Section 4.3: The proposal to omit eight monitoring wells from the long-term sampling program is premature because it is based on unconfirmed assumptions and could result in the loss of significant data concerning the changing groundwater chemistry resulting from the operation of the extraction system. The primary assumption of concern is the extent of the contaminant plume. In particular, the assumption that arsenic in samples collected from wells SHP-01-36X, SHP-01-37X, SHL-10, SHM-93-10C, and SHM-93-10D is attributable to background conditions and not influenced by the landfill has not been established by a sound delineation of the contaminant plume. Further, available information indicates that samples from these fives wells are influenced by the landfill; the noted low concentrations of arsenic reported in samples collected from nearby wells SHL-13, SHL-21, and SHL-23 suggest that background concentrations are below those reported in the samples from the five wells. Consequently, a more robust and complete delineation of the contaminant plume should be developed before the scope of the sampling program is reduced. Recommendations to accomplish this follow in Comment 11.

Response: The Army maintains the requested wells, with the exception of SHL-13, should be dropped from the LTMMP, or at a minimum be sampled less frequently, on the basis that they provide no useful data on landfill conditions or system performance. Further, due to their relatively shallow screen positions, SHL-21 and SHL-23 likely sample recent recharge and therefore do not necessarily reflect background conditions. The Army disagrees with the statement that "a more robust and complete delineation" is needed. Please see also response to EPA Comment No. 5.

 Section 5.1.1: The performance evaluation should include an assessment of the vertical extent of capture. Consequently, in addition to analyzing horizontal gradients, the report should include an analysis of vertical gradients.

Response: Figure 5-3 (now remumbered to 5-6) provides a view of the vertical extent of capture. As has been discussed in response to previous comments on this topic, vertical gradients are negligible in the majority of nested wells across the site confirming that horizontal flow dominates in the overburden aquifer.

8. Section 5.1.2: As acknowledged here, there is substantial uncertainty in the capture zone width calculation due to the unrealistic simplifying assumptions. In addition, the equation used to calculate the capture zone width differs from that presented in the cited guidance (A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems) and the results from the calculation disagree significantly with the results from the revised numerical groundwater model (Section 5.1.4). Consequently, the capture zone width calculation does not appear to be a reliable measure of actual site conditions.

Response: The calculation in question is a straightforward expression balancing interpreted groundwater velocity against the extraction rate. It assumes a homogenous, isotropic, uniformly thick aquifer and results in a cross-sectional area of capture which can be related to a capture width by assuming a saturated thickness. This value does apply some distance upgradient from the extraction site, beyond the area of converging flow to the well. At present it is unclear how far the ppm-concentration Arsenic plume detected at wells 22B and 5B extends to the east and whether it is continuous with or separate from detections along the eastern perimeter. Until this can be resolved the Army suggests this calculated capture zone width is not a meaningful system performance metric and suggests the most appropriate remedy evaluation criteria is capture of groundwater flowpaths interpreted to account for Arsenic detections within the landfill and north of the landfill toe.

9. Section 5.1.4: As discussed recently in connection with the on-going review of the Supplemental Groundwater Investigation and Landfill Cap Assessment report, a significant mass-balance error has been identified in the revised groundwater model, casting doubt on the statement suggesting that the revised model is a reasonable representation of site conditions. Consequently, the numerical model analysis cannot be considered a reliable representation of actual site conditions until this uncertainty is addressed.

Response: The report will be modified to include documentation of a revised version of the groundwater model in which computational issues have been resolved.

10. Section 5.3: While there is significant uncertainty associated with each of the lines of evidence used to assess the performance of the extraction system, it is clear that the extraction system is not providing sufficient containment to achieve the ROD objectives. Consequently, additional action is required to enhance the performance of the extraction system or develop and implement a remedial alternative that will achieve the ROD objectives. Similar conclusions were presented in USEPA's May 14, 2009 letter concerning the draft Supplemental Groundwater Investigation and Landfill Cap Assessment report, along with a list of additional work items that were specified to implement a remedy that satisfies the ROD requirements. MassDEP endorses these work items as an appropriate path forward.

**Response:** The Army disagrees with this statement and suggests the system has not been operating long enough to draw such a conclusion. As discussed in Section 5.2.2, there is presently insufficient data on geochemical changes in the aquifer to conclude ROD objectives. cannot be achieved with continued operation. At this time the Army suggests the most appropriate remedy evaluation criteria is capture of groundwater flowpaths interpreted to account for Arsenic detections within the landfill and north of the landfill toe. Please see also response to EPA Comment No. 7.

11. For future reference, many of the uncertainties associated with the lines of evidence used to evaluate the extraction system appear to be attributable to an inadequate site conceptual model. In particular, the horizontal and vertical extents of contamination have not been delineated in sufficient detail to support a performance assessment. As described in the cited USEPA guidance (A Systematic Approach for Evaluation of Capture Zones at Pump and Treat Systems), adequate delineation of contamination is an essential part of the first step in the evaluation process, and a necessary input for the subsequent five steps. Further, as noted in the guidance, an adequate delineation of contamination is critical where the spatial distribution of contamination is complex, as is the case at the Shepley's Hill Landfill site, where an extended contaminant source region is present, multiple plume lobes impacting different portions of the overburden aquifer appear to have formed, and bedrock may influence both the flow and chemistry of the impacted groundwater. The lack of a defined target capture zone and lack of an interpreted actual capture zone in the report, and the absence of a spatial delineation of the various "lobes", "fronts", "leading edges", and "hinge lines" mentioned in the report are indicative of the underlying problem.

While additional monitoring wells may be needed to plug data gaps, it appears that much of the problem can be addressed with a more detailed evaluation of existing data, rather than a substantial field investigation. As a preliminary step, MassDEP recommends that the magnitude and distribution of pre-extraction contamination be delineated by plotting arsenic concentration contours and ORP measurement contours in: (1) map view at three or more depth intervals spanning the vertical extent of the impacted region, and (2) crosssection views (including geologic stratigraphy) constructed along the axes of the plume lobes and transverse to the plume axes at several locations, including a transect that includes the extraction wells. In addition, preparation of a map of bedrock topography is recommended to investigate the influence of bedrock on the distribution of contamination.

Response: Comment noted. Supplemental cross-sections as wells as a map of bedrock topography in the downgradient area as interpreted/simulated, were included in the Supplemental Assessment Report (AMEC, 2009). However, the Army disagrees that the Conceptual Site Model is inadequate and that available data is not sufficient to support performance assessment. Additional interpretive maps and sections will be considered for future Annual Reports.

## Draft

# Responses to PACE Comments on 2008 Annual Report Shepley's Hill Landfill and Treatment Plant Long Term Monitoring and O&M Services Former Fort Devens, Massachusetts August 2009

### Comments:

1. The report provides a revised capture zone for the groundwater extraction system that is smaller than previously estimated. ECR is concerned that the revised capture zone may still be significantly over-estimated because it assumes a steady-state extraction rate of 50 gallons per minute (gpm). The report states that the actual groundwater withdrawal rate when the system is pumping is 46 gpm due to recirculation of water skimmed from the rolloffs. More importantly, when system downtime is accounted for, the actual average flow rate of the system is approximately 34 gpm, which is nearly one-third lower than the 50 gpm utilized to estimate the extent of the capture zone. ECR recommends that the capture zone be recalculated using the average annual flow rate of 34 gpm, and that the discussion of the capture zone be revised as necessary.

Response: The report will be revised to depict the predicted capture zone at both the design rate and average operational rate for 2008, and also for 2009 to date, based on the most recent model variant.

Currently, the report concludes that "the capture zone width is considered sufficient to achieve full containment of the northward migrating plume lobe." This finding may need to be revised if the understanding of the capture zone changes significantly based on the above comments.

Response: As shown in revised Figure 5-2 (attached) the model predicted capture zone at the average operational extraction rate of 34 is sufficient to encompass the ambient flowpaths which lead to the highest detections immediately downgradient at SHM-96-22B and SHM-96-5B. As such this finding is supported. See also response to EPA Specific Comment No. 7.

3. The groundwater contours and backward particle tracks shown in Figure 5-2 appear to contradict the report's "full containment" conclusion by suggesting the existence of northerly-trending flowpaths to the east of the extraction wells. Please reconcile the report's conclusion with the data presented in Figure 5-2. The use of forward tracking of particles outside the delineated capture zone may be useful in accomplishing this objective.

#### Response: See response to Comment 2.

4. The report concludes that the pump-and-treat system is "operating as designed." ECR believes that this conclusion currently cannot be supported with the available data and the above-mentioned issues associated with the capture zone estimate.

#### Response: See response to Comment 2.

5. On page 4-2 of the report, the statement is made that "In general, arsenic concentrations in these wells have been relatively stable or decreasing, compared to historic levels." While it is true that arsenic results at many wells are stable and a few have decreased, this statement is considered misleading given the overall rise in arsenic concentrations since placement of the cap, and the fact that arsenic results at some wells continue to increase.

Response: The text will be modified to read "...in some wells ...".

6. A more thorough description of the landfill gas sampling method in the beginning of Section 2.3 would be helpful in evaluating the data collected. Were the samples collected from ambient air at the mouth of the probe or vent, or from within the probe or vent itself? What criteria was used for selecting the volume of gas to be purged?

**Response:** The following text will be added to the section: "The method used for landfill gas sampling is the procedure described in the MADEP Landfill Technical Guidance Manual. The equipment that is typically used consists of a LandTech Gem 2000+ for reading carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, methane and LEL; and a Mini-Rae PID for total volatile organic compounds. The sampling device is connected directly to the sampling port at the top of the probe/vent to read initial levels of gas concentrations. After the initial readings the probes are purged of two (2) well volumes as suggested in the MADEP Landfill Technical Guidance Manual. After the probe is purged the gas sampling equipment is connected directly to the sampling port and the gas concentrations are read again."

ECR suspects that the word "educator" on pages 3-5 and 3-7 should be replaced with "eductor."

Response: The text will be revised accordingly.

8. ECR agrees that LTMP wells that have always shown arsenic results below the Maximum Contaminant Level (MCL) should be deleted from the monitoring program, and agrees that ORP measurements should be reduced from quarterly to semi-annually. However, wells that have exhibited arsenic results above the MCL should, in our opinion, continue to be sampled at least annually to provide data on the status and progress of the cleanup.

Response: Comment noted. Specific reductions in the LTMMP will be discussed with the BCT and documented in an LTMMP amendment.

9. Figure 5-1 represents hydraulic gradient vectors using arrows of approximately equal length, providing information on the direction of the vector but not its magnitude. To provide a more complete picture of the flow field, the magnitude of the vectors should be indicated by a written value and/or by appropriately varying the length of the arrows.

Response: Gradient values will be added to the figure.

10. On page 5-7, an approximate time of 1,000 years is projected to meet the arsenic MCL. Because this estimate is likely to be quoted and may be utilized in future decision-making, complete documentation of how this estimate was arrived at should be provided as an appendix to the report.

**Response:** The estimate of ~1000 years is based on the USGS fact sheet cited which states several hundred (assume ~250) pore volumes would need to be flushed in order to lower concentrations by 2 orders of magnitude. Therefore, because it requires 4 years to flush one pore volume in the impacted zone between the landfill toe and Molumco Rd, it will potentially require 1000 years (250 pore volumes x 4 years per pore volume) in order to lower concentrations by 2 orders of magnitude (e.g. from 1000 to 10 ug/L).

11. Based on a comparison of results from filtered and unfiltered samples from well SHL-19, the report concludes that filtered results are more representative of dissolved concentrations, and that future samples should be filtered prior to analysis. ECR is concerned that filtering through a 0.45 micron filter may underestimate the true concentration of mobile arsenic. It is noted that the turbidity measured at SHL-19 in 2008 was not excessive relative to other wells, and that the well was purged at 500 millimeters per minute (ml/min) for 35 minutes while other wells were purged for longer periods at rates as low as 150 ml/min. ECR recommends that unfiltered samples be collected from SHL-19 using a lower flow rate and a longer purge time (e.g., up to one hour). If this approach yields an appreciable decrease in turbidity, then these results should be used for comparison to cleanup goals.

Response: The turbidity of SHL-19 was measured at 60 NTUs in Fall 2008, 3 times higher than the next highest value and an order of magnitude higher than the majority of monitoring wells. During the next sampling event a slower purge rate will be tested to see if turbidity can be reduced, however, filtered and non-filtered samples will continue to be collected.

12. The 2007 Annual Report recommended the construction of a fence around portions of the landfill where access was not restricted. It is our understanding that this recommendation was not implemented. The Draft 2008 report does not recommend that fencing be installed. PACE and ECR believe that it is important to control access to the landfill, and we encourage the Army to reconsider the recommendation to construct a fence.

Response: Although there is access for the public to enter the landfill property on foot in different areas of the site, all access roads to the landfill are secured with chains and padlocks. No vehicles have open access to the landfill. A security fence also surrounds the arsenic treatment system. The Army believes that: 1) due to the exposed bedrock conditions particularly at the north end of Shepley's Hill, it is infeasible to construct a secure fence encompassing such a large area around the landfill property, and 2) controlling pedestrian access is unnecessary as there is little risk of property damage (critical areas are secure) and Health risks do not exist for trespassers.