2006 Annual Report

Shepley's Hill Landfill Long Term Monitoring & Maintenance Devens, Massachusetts

Prepared for:

Department of the Army BRAC Environmental 30 Quebec Street, Box 100 Devens, Massachusetts 01432

November, 2007

Prepared By:

CH2MHILL

25 New Chardon Street Suite 300 Boston, MA 02114-4770

TABLE OF CONTENTS

Section	Tit	<u>Page</u>
EVEC	UTIVE	SUMMARYiv
EXEC	UIIVE	SUMMART
1.0		DDUCTION1
	1.1	Background
	1.2	Evaluating Effectiveness of Remedial Objectives
	1.3	Five-Year Site Reviews4
	1.4	2006 Annual Report Objectives
2.0	LAND	FILL CAP SYSTEM INSPECTION AND MAINTENANCE
2.0		/ITIES6
	2.1	Summary6
	2.2	Landfill Inspection
		Zanarini mapeetieni
3.0		FILL GAS MONITORING RESULTS9
	3.1	Summary9
	3.2	Gas Monitoring Results
		3.2.1 Perimeter Gas Monitoring Wells
		3.2.2 Landfill Gas Vent Results
		3.2.3 Soil Gas Survey Results12
4.0	GROU	INDWATER AND ARSENIC TREATMENT PLANT MONITORING13
	4.1	GROUNDWATER ELEVATIONS13
	4.2	GROUNDWATER SAMPLING METHODOLOGY13
		4.2.1 Preparation for Sampling14
		4.2.2 Groundwater Sampling and Equipment Decontamination14
		4.2.3 Laboratory Testing
	4.3	SUMMARY OF LABORATORY RESULTS17
		4.3.1 Arsenic Results - Long Term Monitoring Wells
		4.3.2 Arsenic Results Performance Monitoring Wells
		4.3.3 Other COC Results for LTM Wells
		4.3.4 Contingency Remedy and Other Groundwater Data
		Collected in 2006
5.0	WELL	FIELD AND ARSENIC TREATMENT PLANT OPERATIONS21
180 C 1800	5.1	Wellfield
	5.2	Arsenic Treatment Plant Operation

	5	.2.1	Filtered-Bottom Roll Off/Sludge Disposal	23
	5	.2.2	Microfiltration Clean-in-Place Optimization	24
	5	.2.3	Miscellaneous	25
6.0	Operatin	g Proper	ly and Successfully - Update	26
7.0	QUALIT	Y CON	TROL	29
8.0	CONCL	USIONS	AND RECOMMENDATIONS	30
	8.1 C	Conclusio	ons	30
	8.2 R	lecomme	endations	
9.0	REFERE	ENCES		

TABLE OF CONTENTS (Continued)

TABLES

Table ES-1	Compliance Point Wells Exceeding Arsenic Cleanup Level in 2006
	(see Executive Summary)
Table 1-1	Contaminants of Concern (COC) Cleanup Levels
Table 3-1	2006 Landfill Gas Monitoring Results
Table 4-1	Long Term Monitoring Well Specifications
Table 4-2	Performance Monitoring Well Specifications
Table 4-3	Site-wide Groundwater Elevations
Table 4-4	Groundwater Sample Analysis and Procedures
Table 4-5	Groundwater Analytical Results, LTMMP - June 2006
Table 4-6	Groundwater Analytical Results, LTMMP - December 2006
Table 4-7	Groundwater Analytical Results, PMP - April, June, September, and December 2006
Table 4-8	In-Situ Water Quality Monitoring Results, PMP - April, June, September, and
	December 2006
Table 4-9	Comparison of Historic Arsenic Concentrations
Table 4-10	Historical Iron, Manganese, and Sodium Concentrations
Table 4-11	Monitoring Well Chemical Cleanup Level Exceedances at
	Monitoring Wells Previously Attaining Cleanup Goals (Group 1)
Table 5-1	Influent and Effluent Arsenic Results – Process Start-up Testing, Extraction Test, Operations

FIGURES

Former Fort Devens Vicinity Map and Shepley's Hill Landfill
12/06 Groundwater Methane/Ethane Data and Temporary Gas Probe Locations
Contour Map of Groundwater Elevations on June 5, 2006
Contour Map of Groundwater Elevations on December 15, 2006
LTM Well Arsenic Concentrations, June and December 2006

APPENDICES

Landfill Inspection
Landfill Gas Monitoring and Tech Memo-Methane Controls
Groundwater Field Analysis Forms
Comparison of Arsenic Results
Data Quality Evaluation and Chemical Quality Analysis Reports
Response to Comments

EXECUTIVE SUMMARY

The report documents the results of long-term monitoring efforts conducted in 2006. In addition, the document includes groundwater and plant operational data collected during the early operation of the groundwater extraction and treatment Contingency Remedy. Annual reporting of landfill monitoring (groundwater and landfill gas) and inspections has been underway for many years at Shepley's Hill Landfill (SHL) at Former Fort Devens, Massachusetts. The 2005 and 2006 annual reports have expanded reporting of data collected in association with the new groundwater extraction and treatment system. The 2005 Annual Report contains data and assessments conducted during start-up of the system in August/September, 2005 and this report contains data related to regular operation of the system which was initiated in March, 2006 following plant upgrades related to methane monitoring and process venting.

The ROD (ABB-ES, Oct 1995) describes Alternative SHL-2, Limited Action, involving monitoring following landfill closure, and Alternative SHL-9, Groundwater Pump and Discharge to the Ayer Publicly-Owned Treatment Works (POTW). These alternatives became the primary and contingency elements of the selected remedy for the Shepley's Hill Landfill remedial action, respectively. The contingency element of the overall remedy was to be implemented should capping alone not prove to be effective at controlling site risk in accordance with ROD goals. Groundwater data collected over many years indicated that goals were not being met and decisions were made to implement the Contingency Remedy. The design process for the Contingency Remedy was initiated in the Fall of 2003. The remedy was modified by an Explanation of Significant Differences (CH2M HILL, June, 2005) to include treatment and discharge to the Devens POTW and construction of the wellfield and plant were completed in 2005.

CH2M HILL has prepared this report in accordance with the Record of Decision (ROD) for Areas of Contamination 4, 5, and 18 (ABB-ES, Oct 1995), and the approved *Long Term Monitoring and Maintenance Plan* (LTMMP), Stone and Webster Environmental Technology & Services (SWET), May 1996. The LTMMP provides the basis for semi-annual monitoring of groundwater, annual landfill gas sampling, and landfill inspections that have been conducted since the mid 1990's. In addition, to the typical reporting this document summarizes monitoring activities associated with the early operation of the arsenic groundwater extraction, treatment, and POTW discharge system (Contingency Remedy). The monitoring activities associated with start-up and initial operation of the Contingency Remedy are described in the *Contingency Remedy, Performance Monitoring Plan* (PMP), CH2M HILL, 2005 and the industrial discharge permit for the Deven's POTW (Devens/MassDevelopment June, 2006).

The PMP (CH2M HILL, 2005) was developed specifically for the start-up and first year of monitoring associated with the pump, treat, and discharge system. This system performance monitoring has been conducted in concert with the LTMMP (SWET, 1996) over the past year. The 2006 monitoring is considered to be a transition year, both programs were being conducted simultaneously as the early plant and wellfield operations were initiated. The Army prepared a draft Revised Long Term Monitoring and Maintenance Plan (CH2M HILL, 2006), available in December 2006, providing an updated and optimized, comprehensive monitoring strategy for Shepley's Hill Landfill. This plan was issued final in May, 2007 (CH2M HILL, 2007). It is inclusive of the

Contingency Remedy and recommends optimized monitoring based upon review of data collected since closure of the landfill and early operation of the Contingency Remedy. This new document replaces the LTMMP (SWET, 1996) and the PMP (CH2M HILL, 2005) and will be fully implemented in 2007. Adjustments or refinements to the Revised LTMMP in the future are anticipated to be made through recommendations of Annual Reports.

An annual landfill inspection was conducted in the Fall of 2006 and observations made regarding the vegetative cover, vegetation types, erosion, settlement, and general condition of the various features. The inspection checklist is included in Appendix A. Presently, the landfill is in fair condition. The cover surface contains some areas of sparse vegetation, establishment of potentially intrusive vegetation, and settlement. Intermittent standing water, erosion, overgrowth of vegetation, and encroachment of wetland plants within drainage swales were observed. Corrective action recommendations relating to the cap system and associated drainage were made during the 2005 annual reporting cycle and are included in the *Geotechnical Engineering Fall 2005 Annual Inspection Report* (USACE, 2006). Some recommendations from 2005, including repair of fences and gates, have been addressed. Recommendations for 2006 include the following: (1) Secure fence gates with padlocks and chains as required to control access to the site and (2) place topsoil and seed over the sandy area lacking vegetation on the east side along the perimeter of the cap. The landfill is in fair condition and appears to be functioning adequately. Section 3.0 provides further discussion of the inspection.

As part of the annual landfill gas monitoring program, field readings with a photoionization detector (PID), multigas meter, and an infrared spectrophotometer were collected from eighteen (18) gas vents on the landfill and thirteen (13) perimeter gas monitoring wells. Four (4) of the perimeter gas monitoring wells are located just north of the landfill and the other nine (9) are located to the south of the landfill. Those on the south were installed in November, 2005 and were monitored for the first time in February, 2006 and then again as part of the LTMMP in December, 2006.

Readings collected from gas vents in the fall of 2006 indicated that levels of carbon dioxide and hydrogen sulfide were similar to readings collected in the previous monitoring, while oxygen and carbon monoxide levels increased. Trace concentrations of volatile organic compounds (VOCs), less than 0.6 ppm, were detected in five gas vents (GV-5, 12, 13, 14, and 15) while VOCs were not detected in the previous monitoring. LEL and methane concentrations were similar to 2005 concentrations with the following exceptions: GV-1, 7, 11, and 14 showed increased LEL concentrations and GV-5, GV-12, GV-13, GV-16, and GV-17 showed decreased LEL and/or methane concentrations.

Readings collected from all perimeter gas monitoring wells in the December 2006, including those on the north and south, did not indicate the presence of methane. This has been the case in past events, as well. VOCs, oxygen, hydrogen sulfide, carbon dioxide, and LEL readings were similar to past events. These data do not indicate an issue with migrating landfill gas.

As part of October, 2006 gas monitoring, CH2M HILL collected ten (10) soil gas samples from temporary gas probes in the northern perimeter area of the landfill to confirm historical results from the permanent gas monitoring well locations and expand coverage in the area. This was done as part of the methane evaluation conducted with the discovery of dissolved methane detected in deep groundwater being pumped as part of the Contingency Remedy. This groundwater is under strongly

reducing (methanogenesis-dominated) conditions. In addition, in December, 2006, six (6) soil gas samples were collected from temporary soil gas probes located adjacent to off-site, downgradient monitoring wells SHM-99-31, SHM-99-32X, SHM-99-39, SHM-99-40X, SHM-99-41, and SHM-99-42, from which water samples were analyzed for dissolved methane and ethane. Methane was not detected in any of these samples, confirming that dissolved methane in water at depth was not resulting in detectable methane in soil gas.

Groundwater monitoring was performed at the site in April, June, September, and December 2006, as part of LTM and PMP events. Samples were collected in accordance with the EPA's Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells (EPA, 1996). Groundwater sampling performed as part of the PMP effort was completed in April, June, September, and December 2006. Groundwater sampling performed as part of the LTMMP effort was completed in June and December 2006. A total of 39 monitoring wells were sampled as part of the combined PMP and LTMMP events: nine (9) wells were sampled under the LTMMP alone, 25 wells were sampled under the PMP alone, and five (5) wells (SHL-5B, SHL-5C, SHL-19, SHL-22, and SHL-22C), are included in both the PMP and LTMMMP. PMP samples were analyzed for inorganics and general water quality parameters valuable for assessing inorganics transport and geochemistry. In addition to the established programs, samples were collected from monitoring wells SHM-99-31A, B, and C, SHM-99-32X, SHM-05-39A, SHM-05-40X, SHM-05-41A, B, and C, and SHM-05-42A in December 2006 as part of the evaluation of dissolved methane/ethane in groundwater. LTMMP samples were analyzed for volatile organic compounds (VOCs), inorganics, and general water quality parameters. Laboratory reports were reviewed for adherence to acceptable laboratory practices. Based on the data evaluation elements reviewed, most data were determined to be of acceptable quality for use with few qualifiers. The qualified data are noted in the validation reports and data tables.

LTM wells are monitored to evaluate the effectiveness of the landfill at reducing risk and achieving cleanup levels for contaminants of concern (COCs) in groundwater. The COCs are arsenic, chromium, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichloroethane, lead, manganese, nickel, sodium, aluminum, and iron. According to the LTMMP, only chemicals that present carcinogenic risk are considered trigger chemicals in the monitoring program. The trigger chemicals are arsenic, 1,2 dichlorobenzene, 1,4 dichlorobenzene and 1,2-dichloroethane. The objective of the PMP is to develop data to support evaluation of the long-term protectiveness of the cover system and groundwater extraction system and assess progress toward attainment of groundwater cleanup goals. Changes to the maximum concentration limit (MCL) for arsenic in association with changes of the EPA National Primary Drinking Water Regulations for arsenic and implementation on January 23, 2006, effectively reduce the clean-up level for arsenic from 50 to 10 μg/L.

Arsenic was the only trigger chemical detected above the cleanup level during the 2006 LTM (see Table ES-1). Most results indicated no significant change from previous arsenic levels. However, the highest historical concentration of arsenic detected at SHM-96-22B of 3,690 μg/L was recorded during the April 2006 PMP sampling event. The previous greatest concentration of 3,320 μg/L was detected during the January 2006 sampling. The concentration of arsenic detected at SHM-96-22B in April 2006 was also the highest reported concentration of arsenic detected in any of the wells sampled during 2006. Furthermore, SHM-96-22B was the LTM sample location with the highest recorded concentration of arsenic for each sampling round. The highest concentration observed historically at any compliance well has been 5,110 μg/L at well SHM-96-5B, in May 2000. Wells

SHM-96-5B and SHM-96-22B are located relatively close (less than 100 feet cross gradient) to each other and are screened at similar depths in sand/till deposits. The SHM-95-5B well has typically had higher concentrations than SHM-96-22B, likely due to its shorter screen. Both of these wells have continuously exhibited the highest arsenic levels measured at site compliance wells, one to two orders of magnitude above levels measured at the other compliance wells and are interpreted to be completed in the most reducing (impacted) zone moving north from the landfill. The Contingency Remedy extraction wells are completed in this zone upgradient adjacent to the landfill.

Monitoring well SHM-96-22B shows a trend of generally increasing arsenic concentrations in the past few years. Though arsenic concentrations at SHM-96-5B peaked during the January 2006 monitoring, concentrations detected in June and December 2006 were less than concentrations detected in previous years. These reductions are consistent with the operation of the extraction wells; however, it is too early in the operation of these wells to identify whether the trends are related to operation of the system.

Only four of the fourteen LTMMP monitoring wells sampled in June and December 2006 were below the new arsenic cleanup level of 10 μ g/L. The four wells with concentrations of arsenic less than the clean-up level include two Group 1 wells, SHL-3 and SHL-5 and two Group 2 wells SHL-4 and SHL-10.

TABLE ES-1 Compliance Point Wells Exceeding COC Level in 2006 (Arsenic = 10 μg/L)

Well	Orientation to Landfill	Geological Designation	Group#	Concentration (µg/L) June 2006	Concentration (µg/L) December 2006
SHM-96-5B	North	Base of Sand/Till	2	Arsenic = 2,760	Arsenic = 2,980
SHM-96-5C	North	Water Table	2	Arsenic = 51	Arsenic = 24
SHL-9	North	Water Table	1	Arsenic = 21	Arsenic = 51
SHM-93-10C	East	Bedrock	1	Arsenic = 12	Arsenic = 10
SHL-11	East	Water Table	2	Arsenic = 700	Arsenic = 668
SHL-19	East	Water Table	2	Arsenic = 1,790	Arsenic = 142
SHL-20	East	Till	2	Arsenic = 346	Arsenic = 361
SHL-22	North	Base of Till	1	Arsenic = 167	Arsenic = 115
SHM-93-22B	North	Sand/Till Interface	2	Arsenic = 3,440	Arsenic = 3,100
SHM-93-22C	North	Bedrock	1	Arsenic = 17	Arsenic = 73

Cleanup levels for the other three trigger chemicals were not exceeded. However, cleanup levels for the COCs iron, manganese and sodium were exceeded in the 2006 sampling events. In general, concentrations of iron, manganese, and sodium have remained stable or declined since 2002 with the following exceptions: iron concentrations at SHM-93-22C; manganese at SHL-5, SHM-96-5C, SHL-11, SHL-22, and SHM-93-22B; and, sodium at SHM-96-5C, SHL-9, and SHM-96-10C.

Arsenic concentrations greater than the new MCL standard of $10 \mu g/L$ were detected in 19 of the 25 monitoring wells sampled under the PMP. A number of monitoring wells down gradient and east of

the landfill have arsenic concentrations below 10 $\mu g/L$, including SHP-31A (downgradient-Molumco Road); SHM-42A (downgradient area – woods); SHL-23, SHL-8S, SHL-8D, and SHL-21 (nearfield), and SHL-13 (pond area). In September 2006, an arsenic concentration greater than 10 $\mu g/L$ was observed in a pond sample collected at PSP-01.

1.0 INTRODUCTION

This annual report has been prepared to document the monitoring and maintenance procedures conducted in 2006 at the Shepley's Hill Landfill in Devens, Massachusetts. These procedures were conducted in accordance with the *Record of Decision, Shepley's Hill Operable Unit, Areas of Contamination 4, 5, and 18* (ROD) (ABB-ES Oct 1995) for Shepley's Hill Landfill Areas of Contamination 4, 5, and 18, and the *Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill* (LTMMP) (SWET, May 1996). In addition, this report presents data collected in conjunction with the operation of the groundwater extraction, treatment, and discharge system (Contingency Remedy) during 2006. This work was conducted in accordance with the Contingency Remedy Performance Monitoring Plan (PMP) (CH2M HILL, 2005) and the industrial discharge permit issued by the Deven's POTW (Devens/MassDevelopment June, 2006).

Details of groundwater monitoring, treatment plant operation, landfill gas monitoring, and landfill cap inspection/maintenance are provided such that the long-term effectiveness of the cap (ROD Alternative SHL-2) and the Contingency Remedy (ROD Alternative SHL-9) may be evaluated per the remedial action objectives of the 1995 Record of Decision (ROD). The ROD selected Alternative SHL-2 as a source control action. Alternative SHL-2 consisted of completing closure of Shepley's Hill Landfill in accordance with applicable Massachusetts requirements of 310 CMR 19.000, and monitoring and evaluating the effectiveness of the landfill cover system to control groundwater contamination and site risk. The LTMMP (SWET, 1996) outlines the landfill closure monitoring and maintenance procedures required by the ROD. These procedures include an annual visual inspection and gas emission monitoring of the landfill cap, and a semi-annual groundwater sampling program to monitor contaminants of concern (COCs) and evaluate the effectiveness of the landfill cover system to control groundwater contamination and site risk. The COCs and their cleanup levels for Shepley's Hill Operable Unit are listed in Table 1-1. It should be noted that effective January 23, 2006, the maximum concentration limit MCL for arsenic in drinking water supplies, in accordance with EPA National Primary Drinking Water Regulations, became fully effective, reducing the standard from 50 ppb to 10 ppb.

A groundwater extraction, treatment, and discharge Contingency Remedy (ROD Alternative SHL-9) was selected at the time of the remedial decision for potential future implementation, in the event that in subsequent years the groundwater at compliance wells surrounding the landfill did not meet specified target cleanup goals. Many years of monitoring, two separate five year reviews, and the work of the Army and regulatory agencies established that the Contingency Remedy would need to be implemented. The Army procured resources to complete design and construction of the Contingency Remedy beginning in the Fall of 2003.

The original groundwater pump and discharge Contingency Remedy identified in the ROD was modified to include treatment prior to publicly-owned treatment works (POTW) discharge and the discharge location has changed from the Town of Ayer POTW to the Devens POTW. These changes to the remedy were made through *Explanation of Significant Differences* (CH2M HILL, June, 2005).

The 2006 monitoring year is a transition year involving the early operation of the Contingency Remedy, monitored in accordance with the PMP, along with normal LTMMP monitoring. The Army prepared a draft Revised Long Term Monitoring and Maintenance Plan (CH2M HILL, 2006), available in December 2006, providing an updated and optimized, comprehensive monitoring strategy for Shepley's Hill Landfill. This plan is inclusive of the Contingency Remedy and recommends optimized monitoring based upon review of data collected since closure of the landfill and early operation of the Contingency Remedy. This new document, finalized in May 2007, replaces the LTMMP (SWET, 1996) and the PMP (CH2M HILL, 2005) and will be fully implemented in 2007. Adjustments, refinements or optimization of the Revised LTMMP in the future are anticipated to be made through recommendations of Annual Reports.

1.1 Background

Shepley's Hill Landfill encompasses approximately 84 acres in the northeast corner of the main post of the former Fort Devens, Massachusetts (Figure 1-1). The landfill is bordered to the northeast by Plow Shop Pond, to the north by Nonacoicus Brook (which drains the pond), to the west by Shepley's Hill, to the south by recent commercial development, and to the east by the site of a former railroad roundhouse.

The landfill was reportedly operating by the early 1940s, and evidence from test pits within the landfill suggests earlier usage, possibly as early as the mid-nineteenth century. The landfill contains a variety of waste materials, including incinerator ash, demolition debris, asbestos, sanitary wastes, spent shell casings, glass, and other wastes. The maximum depth of the refuse occurs in the central portion of the landfill and is estimated to be about 40 feet. The volume of the landfill has been estimated at over 1.3×10^6 cubic yards (cy) (ABB-ES, 1995a).

The landfill was closed in five phases between 1987 and 1992-93 in accordance with Massachusetts regulations 310 CMR 19.00 (MADEP, 1985). The Massachusetts Department of Environmental Protection (MADEP) approved the closure plan in 1985. Closure consisted of installing a 30/40-mil polyvinyl chloride (PVC) membrane cap, covered with soil and vegetation and incorporating gas vents. Closure also included installation of wells to monitor groundwater quality around the landfill, and construction of a storm drainage system to control surface water runoff. MADEP issued a Landfill Capping Compliance Letter approving the closure in February 1996.

1.2 Evaluating Effectiveness of Remedial Objectives

In accordance with the LTMMP (SWET, 1996), fourteen compliance point wells are monitored to evaluate the effectiveness of the landfill at reducing risk and achieving cleanup levels. They are designated as Group 1 or Group 2 wells. The ultimate goal of Alternative SHL-2 is to maintain groundwater quality below cleanup levels at Group 1 wells, and to attain cleanup levels at Group 2 wells.

Five-year site reviews evaluate the effectiveness of Alternative SHL-2 at reducing the potential human health risk from exposure to groundwater and at preventing groundwater from contributing to Plow Shop Pond sediment contamination in excess of human health and ecological risk-based values. Evaluating effectiveness at Group 2 wells is based on reduction of risk rather than reduction

of concentration as a measure of progress toward attainment of cleanup levels, because this approach focuses on the cleanup of arsenic, which is the primary contributor to risk in the Group 2 wells.

According to the LTMMP (SWET, 1996), only chemicals that present carcinogenic risk are considered trigger chemicals in the monitoring program. The trigger chemicals are arsenic, 1,2 dichlorobenzene, 1,4 dichlorobenzene and 1,2-dichloroethane. Reduction of carcinogenic risk, rather than simply reduction of contamination, is the measure of progress toward attainment of cleanup. This risk-based approach keeps the focus on mitigation of the most significant contributors to risk.

The LTMMP states that Alternative SHL-2 will be considered effective with regard to Group 2 wells if five-year reviews show an ongoing reduction of potential human health risk (based on trigger chemicals) at Group 2 wells and the ultimate attainment of cleanup levels for all COCs by January 2008. Alternative SHL-2 will be considered effective with regard to Group 1 wells if five-year site reviews show that groundwater quality remains at or below cleanup levels for all COCs.

Chemical concentrations in Group 1 wells have historically attained cleanup goals, while those in Group 2 have not. Originally, all existing wells were designated as Group 2 wells per the LTMMP, including three newer wells installed in 1996 (SHM-96-5B, SHM-96-5C, and SHM-96-22B) based on the first round of sampling. During the first five-year site review (August 1998), six monitoring wells (SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. The remaining eight wells continue to be classified as Group 2 wells. The second Five Year Review (FYR) conducted in 2000 (HLA, 2000) and the third FYR (HLA 2005), did not reclassify any of the monitoring wells. The second review concluded that based on the data collected to date, the required incremental reduction in risk was not achieved and recommended that the ROD contingency remedy be reevaluated by the Army (HLA, 2000). Subsequent to the second FYR a decision was made to implement the Contingency Remedy (Alternative SHL-9, Groundwater Extraction and Discharge).

In conjunction with design of the Contingency Remedy, on-base and off-base investigation work was conducted and new monitoring locations were incorporated into a Performance Monitoring Plan (PMP) for the Contingency Remedy. Construction of a groundwater extraction and treatment system was completed during 2005. The system is located just north of the landfill cap, near the set of compliance point wells used to monitor groundwater down-gradient of the landfill (SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-22, SHM-96-22B and SHM-93-22C). The construction work included the wellfield and plant; an access road off of Scully Road, and a utility berm across the landfill cap making connection to the Devens sewer in Cook Street and the power grid. The treatment system was started up and operated for a month in August/September 2005 and became operational in March 2006.

1.3 Five-Year Site Reviews

Stone & Webster Environmental Technology & Services (SWET) conducted the first two years of landfill post-closure monitoring in 1996 and 1997. These first two years of monitoring were included in the first Five Year Review (FYR), Shepley's Hill Landfill, Long Term Monitoring (SWET, August 1998) and marking five years since the final capping of the landfill in 1993. The

USACE, New England District conducted the monitoring between 1998 and 2005. In 2000, a comprehensive review for all Devens sites was performed and included in the *Five Year Review Report for Devens Reserve Forces Training Area, Devens, MA* (HLA, 2000) which included monitoring conducted for Shepley's Hill Landfill Operable Unit in 1996 through 1999. A second comprehensive FYR was completed in 2005 (Nobis, 2005) and included monitoring conducted from 1999 through 2004.

1.4 2006 Annual Report Objectives

Because 2006 was a transition year this annual report covers long-term monitoring and maintenance activities conducted in 2006 in accordance with the LTMMP (SWET, 1996), the PMP (CH2M HILL, 2005), and work the Army conducted to further evaluate dissolved methane/ethane in groundwater. The activities may be summarized as follows:

LTMMP

- · Landfill cap inspection to identify areas requiring maintenance.
- Landfill gas measurements at 18 gas vents and 13 permanent landfill perimeter gas monitoring wells to establish long-term trends with regard to gas production and venting.
- Monitoring of fourteen compliance point wells for groundwater elevations and COC concentrations to compare to cleanup levels established in the ROD.

PMP and other

- Groundwater monitoring at 39 wells for As, Fe, Mn, and other cations in accordance with the intervals specified in the PMP (CH2M HILL, 2005). This also included collection of field parameters.
- Monitoring of an expanded hydraulic network in accordance with the intervals specified in the PMP (CH2M HILL, 2005).
- Methane/Ethane monitoring included both groundwater dissolved methane/ethane monitoring at five (5) locations involving eleven (11) wells screens downgradient and plant influent/effluent. Landfill gas measurements at ten (10) temporary soil gas probe locations along the north side of the landfill perimeter and five (5) temporary soil vapor samples adjacent to downgradient monitoring well clusters to monitor for potential gas migration within the vadose zone and from deep groundwater.

The findings documented in this annual report will support a third comprehensive FYR for monitoring conducted between 2005 through 2009.

2.0 LANDFILL CAP SYSTEM INSPECTION AND MAINTENANCE ACTIVITIES

2.1 Summary

The ROD for the Shepley's Hill Landfill requires maintenance of the landfill cap based on observations made during the annual inspections. Normally scheduled maintenance activities performed during 2006 included mowing of the landfill vegetative cover. An upcoming Supplemental Groundwater Investigation and Landfill Cap Assessment (AMEC, in progress) will assess the adequacy of the landfill cap and the overall remedy.

Based on the annual inspection, the following items should be addressed as a priority: (1) secure fence gates with padlocks and chains as required, controlling access to the site; and (2) improve vegetative cover through placement of loam and seed over the sandy area lacking vegetation on the eastern perimeter of the landfill cap. Along with the corrective actions listed above, it is recommended that repair and regrading around the catch basins on the south side of the landfill be conducted.

Other than the issues identified along with recommendations for repair or correction, the landfill cap is in fair condition and appears to be functioning properly. The 2006 landfill cap inspection is discussed further in the next section. In addition, an annotated figure, checklist, and photolog are provided in Appendix A.

2.2 Landfill Inspection

The Shepley's Hill Landfill at Devens, Massachusetts was inspected on October 31, 2006. Features of the landfill that were inspected included the cap, the drainage system, the gas vent system, access roads, and the security fence. Observations were made regarding the vegetative cover, vegetation types, erosion, settlement, and general conditions. A comprehensive evaluation of the landfill cap is currently being conducted to assess the effectiveness of the landfill cap (AMEC, in progress). Table A-1 and Figure A-1 of Appendix A present the Landfill Maintenance Checklist summarizing the findings of this inspection and a map depicting observations. A brief description of the findings and recommendations of the inspection are as follows:

- Catch Basin #3 near the Cook Street entrance to the site is not set at grade. Soil excavation in
 this area has left the rim of the catch basin six to eight inches higher than the surrounding
 grade. The rim of this catch basin should either be lowered to the existing grade or regrading
 of the area near the basin should be completed to facilitate drainage.
- The concrete headwall at the terminus of the catch basin and underground piping system on the south side of the landfill is overgrown with vegetation and is silting in. The grade of the southern swale bottom is uneven and standing water is present. Consideration should be given to clearing the entire southern swale of accumulated sediment and/or regraded, as necessary, to facilitate drainage. Reseeding and/or riprap placement, depending on water velocities, will help stabilize the channel.

- Areas of standing water are present at numerous locations across the landfill surface (refer to Appendix A, Figure A-1) where settlement has occurred. These areas have been recognized in previous inspections.
- In the eastern drainage swale, in the vicinity of GV-13 and continuing downstream to the riprapped section, the channel is overgrown with vegetation. It appears to be heavily silted in and has a large area of standing water. There is an earth and vegetation obstruction just upstream of the new rock section detaining and ponding water. The northern reaches of the eastern drainage swale have some minor vegetation growth and sand accumulation. The swale may require regrading and clearing of vegetation to promote drainage.
- The northern reaches of the eastern drainage swale and channel located north of the road connecting the treatment building to Scully Road have some minor vegetation growth and sand accumulation. The swale should be cleared of vegetation (refer to Appendix A, Photo 1).
- East of gas vents (GV) 8, 11 and 12, the perimeter of the cap has some areas of erosion and sparse vegetation. The soil in these areas is comprised predominantly of sand. The area should be graded, loam added to a depth of 6 inches, and seeded to promote revegetation. The grass should extend at least twenty feet past the limits of the cap.
- The access roads on the site are in good condition. A new dense-grade road surface was constructed from the Cook Street entrance to the middle of the landfill, in the vicinity of GV-11 (Appendix A, Photo 2). A new access ramp was built over the utility berm in the vicinity of GV-9 (Appendix A, Photos 3 and 4). Some small ruts and standing water were observed along the landfill road from about GV-11 (the terminus of the new dense grade road) to the entrance gate for the treatment plant on the north end of the landfill (Appendix A, Photos 5 and 6).
- Repairs have been made to the perimeter chain-link security fence, an issue identified in 2005. Fence sections and gates have been replaced; however, many of the gates do not have locks and chains, allowing unrestricted access. The gates should be secured with chains and padlocks to ensure unauthorized ATV access is not provided.
- The gas monitoring wells at the northwest edge of the landfill are in excellent condition and have locking protective casings. The gas vents appear to be in good condition. The older gas vents, painted yellow, are showing signs of age, with rusting/corrosion evident (See Appendix A Photo 7). They should be scraped, cleaned, and repainted in the near future.
- Several areas of the landfill have sustained damage by trespassing vehicles, as well as by
 mowing equipment (Appendix A, Figure A-1 and Photos 8 and 9). These rutted areas should
 be repaired as part of a project to address other settled areas.

An upcoming Supplemental Groundwater Investigation and Landfill Cap Assessment (AMEC, in progress), expected to be completed by the fall of 2007, will assess the adequacy of the landfill

cap/overall remedy and will comprehensively evaluate and identify any remedial repairs required. Implementation of the recommendations of this effort are expected to address a number of the issues identified in this and previous landfill inspections, improving the drainage and function of the landfill cap system. With the exception of the repairs mentioned above the landfill is in fair condition and appears to be functioning adequately.

3.0 LANDFILL GAS MONITORING RESULTS

3.1 Summary

The purpose of the landfill gas monitoring program is to establish long-term trends with regard to gas production and venting. During closure construction, passive gas vents and associated headers were installed in gas collection layers as an integral component of the landfill cover system. Many of these vents have now been in place for close to twenty years and they appear to be functioning well, continuing to vent landfill gases in areas of the landfill that are still actively producing gas.

In November 2001, four landfill perimeter gas monitoring wells were installed to further evaluate potential landfill gas migration from Shepley's Hill Landfill towards the north, in the direction of Scully Road. Nine (9) additional landfill gas monitoring wells were installed along the commercial property at the south side of the landfill in November 2005. These newly installed gas wells were first sampled in February 2006 as part of a supplemental landfill gas survey and then again in December, 2006 as part of the regular annual monitoring event.

Annual gas monitoring in the early years has involved the vents only. Post 2001, the four (4) permanent gas monitoring wells installed at the north end of the landfill were added and in 2006 the nine (9) newly installed permanent gas monitoring wells on the south were added. In 2006, the Army also conducted monitoring at 15 temporary soil gas probes installed at the north end of the landfill to further evaluate landfill gas migration. This was done as part of a methane evaluation conducted with detection of dissolved methane in deep groundwater being pumped as part of the Contingency Remedy. Data from this effort are provided in Table 3-1 and also in Appendix B in the response to comments associated with the *Technical Memo-Methane Controls* (CH2M HILL, 2006b).

In total, the annual gas survey event was performed on the 18 passive gas vents, 13 perimeter gas monitoring wells and 15 temporary soil gas probes to evaluate methane (percent), hydrogen sulfide (ppm), volatile organic compounds (ppm), oxygen (percent), carbon monoxide (ppm), carbon dioxide (percent), and percent lower explosive limit (LEL) in the subsurface beneath capped and adjacent perimeter areas (refer to Figure 3-1, Figure A-1, Figure 4-3). Key questions that are addressed as part of this type of survey are: 1) Is the methane generation in the landfill trending down as expected by comparison with historic data? and 2) Are there indications that explosive landfill gases are migrating away from the landfill in the subsurface presenting a hazard for surrounding neighbors?

In general, landfill gas production is low, typical of landfills that have been closed for many years. Landfill gas monitoring has been conducted since the 1998 Annual Report (USAEC, 1999). Review of these data and other data collected annually since 1998 indicate variability in production between vents from year to year. This is likely associated with changing soil moisture and atmospheric pressures from monitoring event to event and non-uniform response across the landfill to these changes. However, in a general sense, the data indicate that production is greatest, to the south in the Phase III and IV areas that were the last active areas, being capped and closed between 1989 and 1992. By comparison, many wells to the north have had low methane readings throughout the nine years of monitoring. Gas production for the landfill, as a whole, is low by comparison to active or recently closed municipal landfills. For active or recently closed landfills, high landfill gas flux rates result in measurable high concentrations of landfill gas near vent pipe openings under ambient conditions, prior to capping and purging. This is not the case with Shepleys Hill where ambient readings were non-detect in 2006 following capping and prior to full purging, indicative of generally low flux rates. The historic data from the perimeter gas monitoring wells on the north indicate no history of detectable methane which further suggests gas production is low by comparison with recently closed or active municipal landfills.

During the 2006 sampling event, it was evident that the vents required two or greater well volumes to be purged with the SKC224-PCXRE pump before representative, stabilized readings could be produced. Ambient readings in the vent pipes prior to capping and purging of two vent volumes indicated very little detected landfill gas, indicative of low gas flux rates.

The gas readings are within the parameters of a mature landfill and the vents appear to be functioning properly. If the gas vents are functioning properly and are adequately spaced, off-site migration of landfill gases is controlled. Due to the high LEL readings at some vents and the proximity of residential housing and commercial development, gas monitoring wells have been installed near the landfill property line. Gas monitoring wells installed along the northern end of the landfill near Scully Road, have been monitored since 2001 and no methane (with IR spectrophotometry) or LEL readings have been detected. While gas monitoring conducted in February and December 2006 detected low percent LEL readings at three permanent gas monitoring well locations on the south, no methane or hydrogen sulfide were detected. Neither percent LEL nor methane was detected in the soil gas samples collected next to the downgradient monitoring wells situated between the landfill and Molumco Road in December 2006. Neither methane, hydrogen sulfide, or percent LEL were detected at any of the 15 temporary soil gas probes installed near the north end of the landfill in October 2006. The following sections discuss the monitoring and results in more detail.

3.2 Gas Monitoring Results

Landfill gas sampling was performed in three phases in 2006:

 October 31, 2006 soil gas survey event was conducted adjacent to northern portion of the landfill to supplement routine annual gas monitoring well sampling and confirm that historic conditions in these wells are representative;

- December 11, 2006 a soil gas survey adjacent to groundwater monitoring wells located downgradient of the landfill that were sampled for dissolved methane/ethane and monitoring of permanent gas monitoring well sampling were conducted; and
- December 14, 2006 Sampling of gas vents of the landfill was conducted.

Gas samples were field analyzed with a photoionization detector (PID) instrument, a multigas instrument (whetstone bridge sensor), and an infrared spectrophotometer. The instruments included a Thermo Environmental 580B PID, Industrial Scientific TMX 412 multigas meter, and a Landtec Gem 2000 and 500 infrared spectrophotometers. These instruments were calibrated as indicated in Table 3-1.

The weather for the three days of gas sampling was reported as:

- October 31, 2006 partly cloudy, with temperatures from 40 to 65 degrees Fahrenheit (°F), and an initial barometric pressure of 29.99 inches of mercury and an ending barometric pressure of 29.79 inches of mercury.
- December 11, 2006 clear, with the temperature in the 30's (°F), and an initial barometric
 pressure of 30.33 inches of mercury and an ending barometric pressure of 30.37 inches of
 mercury.
- December 14, 2006 clear, with the temperature in the 50's (°F), and an initial barometric pressure of 30.01 inches of mercury and an ending barometric pressure of 29.94 inches of mercury.

Figure 3-1 and Figure A-1 depict the location of the vents, permanent soil gas monitoring wells, and temporary soil gas probes that were sampled during these events. Landfill gas vent samples were collected by attaching an end cap, including a barbed fitting/sampling port, to the vent pipe with a pipe joining clamp. Tubing was run from the barbed fitting to a SKC224-PCXRE air pump. The air pump was operated to purge two vent pipe volumes and to ensure that the gases collected were representative of the gas collection layer. A clean tedlar bag was then attached to the pump to collect a sample. The gas monitoring equipment was then attached to the tedlar bag and the readings were recorded after they had stabilized.

The permanent gas monitoring wells were sampled using the same method as the gas vent samples with the following exception: the gas monitoring wells are constructed with an end cap, barbed fitting, and tubing, allowing the sample pump to attach directly to the gas monitoring well.

Samples from the temporary gas probes were collected by attaching tubing to a barbed fitting connected to a slotted shield point. The shield point and tubing were advanced using direct push methods to a depth of three feet below grade. The hollow drive shaft rod was removed and the void space backfilled. A pump was attached to the tubing, the tubing was purged, and a clean tedlar bag was then attached to the pump to collect a sample. The gas monitoring equipment was then attached

to the tedlar bag and readings were recorded after they had stabilized. A soil gas sample was not collected at SHM-99-42 due to standing water in the area.

Details of the landfill gas vents and permanent perimeter gas monitoring wells are provided in Appendix B for reference. The location of the landfill gas vents and the perimeter gas monitoring wells are presented in Figures 3-1 and A-1.

3.2.1 Perimeter Gas Monitoring Wells

The perimeter landfill gas monitoring wells (LGP-01-01X through LGP-05-14X) did not detect hydrogen sulfide or methane. Low levels of VOCs were detected in seven of the gas monitoring wells, ranging from 0.1 ppm to 1.5 ppm. Low percent LEL readings were detected in three of the southern gas monitoring wells, ranging from one to two percent. Eight gas monitoring wells had detectable concentrations of carbon monoxide, ranging from one to four ppm. Carbon dioxide was detected in all but one gas monitoring well, LGP-01-01X, ranging from 0.5 % to 15% (LGP-11). Oxygen levels ranged from 6.9 % at LGP-05-11X to 20.9% at LGP-01-01X. These readings are consistent with previous data and are not indicative of landfill gas migration. The generally high oxygen levels as most locations are consistent with saturation of the vadose zone with ambient air, indicative that the ambient air has not been displaced by migrating gas.

3.2.2 Landfill Gas Vent Results

VOCs were detected in five of the gas vents, GV-5, GV-12, GV-13, GV-14, and GV-15. Of these five vents, all but GV-5 is located in the southeast area of the landfill. The oxygen levels ranged from 1.1% (GV-7) to 21.0% (GV-12, GV-15, and GV-18) using the GEM 500/2000. Percent LEL readings ranged from 0% at GV-12, GV-13, GV-14, and GV-18 to over 100% LEL in eight of the vents. Carbon monoxide was detected in twelve of the gas vents, the greatest concentration was eight ppm. Carbon dioxide was detected in all of the gas vents and ranged from 0.1 % (GV-12) to 23.6 % at GV-9. Methane ranged from 0 % (GV-12, GV-13, GV-14 and GV-18) to 32.0 % at GV-9. No hydrogen sulfide was detected in any of the gas vents.

Readings collected in the fall of 2006 indicated that levels of carbon dioxide and hydrogen sulfide were similar to readings collected in the previous monitoring, while oxygen and carbon monoxide levels increased. VOCs were not detected in the previous monitoring. LEL and methane concentrations were similar to 2005 concentrations for most of the vents with the following exceptions: GV-1, 7, 11, and 14 showed increased percent LEL and GV-5, GV-12, GV-13, GV-16, and GV-17 showed decreased percent LEL.

3.2.3 Soil Gas Survey Results

Hydrogen sulfide, methane, percent LEL were not detected in soil gas samples. VOCs were detected in only three soil vapor samples, GHP-99-32X-GP, SHP-05-40X-GP, and SHP-05-41-GP, at concentrations ranging from 0.1 to 4.6 ppm. Oxygen concentrations ranged from 17.8% at DP-7 to 21.1% at DP-3. These levels are indicative of saturation of soil gas with ambient air and not migration of landfill gas. Carbon monoxide was detected in two samples, SHP-05-39-GP and SHP-

05-41-GP, at concentrations of 3.0 and 2.0 ppm, respectively. Carbon dioxide was detected in all of the samples, ranging from 0.3 % at DP-8 and DP-9 to 2.2 % at DP-7.

4.0 GROUNDWATER AND ARSENIC TREATMENT PLANT MONITORING

4.1 GROUNDWATER ELEVATIONS

Groundwater measurements of Shepley's Hill Landfill wells were collected in conjunction with the LTMMP and PMP monitoring on April 10, June 5, September 18, and December 5, 2006. Table 4-1 and 4-2 provide lists of these wells including key characteristics such as the geological unit(s) screened, screen depths or elevations, and relative locations. Water table elevations for each sampling round are listed in Table 4-3. Groundwater elevations measured in June were the highest of the year followed by December, April, and September. Groundwater contour maps of water levels collected on June 5 and December 5 are provided as Figures 4-1 and 4-2, respectively. The contoured water surface is similar to that observed in previous years and that reported with start-up of the extraction system in 2005 discussed in the Extraction Test *Final Technical Memorandum Start-Up Extraction Test — Shepley's Hill Groundwater Extraction, Treatment, and Discharge System* (CH2M HILL, 2006). Water-level monitoring conducted in accordance with the Revised LTMMP (CH2M HILL, 2007) as the system operational flow rate is increased to 50 gpm will be useful in evaluating system performance at the doubled flow rate and agreement with modeled hydraulic containment at higher flows.

4.2 GROUNDWATER SAMPLING METHODOLOGY

The LTMMP identifies 14 monitoring wells to be sampled. Of these fourteen long-term monitoring wells, the seven at the north end of the landfill (SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-22, SHM-96-22B and SHM-93-22C) are located in the area predicted to experience the greatest impact from groundwater flowing from beneath the landfill. The remaining seven are located along the eastern edge of the landfill, between the landfill and Plow Shop Pond.

In accordance with the ROD and LTMMP, compliance point wells are designated as Group 1 or Group 2 wells. Chemical concentrations in Group 1 wells have historically attained cleanup goals, while those in Group 2 have not. Originally, all compliance wells were designated as Group 2 wells. During the first five-year site review (August 1998), six monitoring wells (SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. The remaining eight wells have continued to be classified as Group 2 wells. The second comprehensive FYR (Nobis, 2005) did not recommend changes to the well group designations.

The Contingency Remedy Performance Monitoring Plan (PMP) identified a total of 30 monitoring wells to be sampled, five of which, SHM-96-5B, SHM-965C, SHL-9, SHL-22, and SHM-95-22B, are also identified in the LTMMP. The PMP wells are situated from north to south or generally downgradient to upgradient areas as follows:

Relative Location	Number of Wells	Monitoring Well Identification	
Downgradient- Molumco Road	7	SHM-05-40X; SHM-05-39A, 39B; SHP-99-31A, 31B, 31C; and SHP-99-32X	
Downgradient-Woods	5	SHM-05-41A, 41B, 41C; and SHM-05-42A, 42B	
Nearfield	9	SHL-23; SHL-9; SHL-22, 22B ; SHM-96-5B, 5C; SHL-8S, 8D; SHL-21	
Pond Area	5	PSP-01, SHL-13, SHP-36X, SHP-37X, and SHP-01-38A	
Upgradient (Landfill and Perimeter)	4	SHL-15; N5-P1, P2; and SHM-93-10D	

PMP groundwater samples were collected from the 30 wells in April, June, September, and December 2006. However, SHL-21, a background well was not sampled during the September event. A total of 39 monitoring wells were sampled during the combined PMP and LTMMP monitoring events in June and December since five wells overlap both programs.

4.2.1 Preparation for Sampling

Sampling activities were coordinated with the Devens BRAC Environmental Office and the contract laboratory prior to commencement of sampling. Bottles were checked to insure they met the requirements of the sampling program. Sampling equipment, including water quality meters, portable generators and tubing, was rented or purchased in the case of supplies from local vendors. All equipment was inventoried, tested, and field calibrated to ensure it was operational and functioning properly. Well construction logs and sampling histories for each of the wells to be sampled were reviewed by the field team prior to the scheduled event to determine any well specific sampling requirements. This information is maintained at the treatment plant on site.

4.2.2 Groundwater Sampling and Equipment Decontamination

Monitoring wells were purged and sampled in accordance with EPA's guidance for low stress purging and sampling (U.S. EPA, 1996 & 2002). Monitoring wells SHM-93-10D and SHM-05-39B were sampled after the wells were purged dry and recovered, due to poor recharge. This has been observed in previous sampling rounds for these wells.

Before sampling activities commenced, groundwater elevations were measured at each well location to be sampled. Water quality meters were calibrated at the beginning of each day of use and a calibration check was conducted at the end of each day. During sampling, when a generator needed to power the pumps was used, it was located in a downwind area at least 30 feet away from the well being sampled, to minimize potential contamination from the exhaust.

Upon initial opening of each well, water-level measurements were collected. The pump intake or tubing was lowered to approximately the middle of the screen for each well to be sampled. When the water level was below the top of the screen, the pump or tubing was positioned at a depth approximately midway between the top of the water level and the bottom of the screen. When necessary tubing was weighted to ensure the opening was deployed at the appropriate depth.

Water quality parameters, including temperature, specific conductance, pH, oxidation-reduction potential (ORP), and dissolved oxygen (DO), water-level measurements, and pump flow rates, were collected every 3 to 5 minutes to ensure proper purging before each well was sampled. The results are listed on Groundwater Field Analysis Forms located in Appendix C. Water quality parameters, were monitored using a flow-through cell and a YSI (YSI 600XL) or Hydra Lab (Quanta) quality meter. Sampling was conducted when water quality parameters stabilized for three consecutive readings. The tubing was disconnected from the flow-through cell and samples were collected directly from the discharge tubing. Observations made during sampling activities include:

- To ensure precision of water-level measurements, well casings that had faded marks or no marks were remarked.
- At several wells during each event, the water level was lower than the top of the screen, pumps or tubing were lowered to approximately midway between the water level and the bottom of the screen.
- Monitoring wells SHM-93-10D and SHM-05-39B were sampled after they were purged dry. Poor recharge has been documented in previous sampling rounds for these wells.
- Parameters would not stabilize at SHM-93-22C during the June 2006 sampling. The well
 was sampled after one hour of purging.

All non-disposable sampling and testing equipment that came in contact with the sampling medium was decontaminated to prevent cross contamination.

For most locations, a peristaltic pump was utilized; however, when the submersible pump was used it was decontaminated using the following procedure:

- Upon removal of the pump from the well following sample collection, the pump was submersed in potable water and detergent (Alconox) solution. At least 1 to 2 gallons of the detergent solution was pumped through (starting the pump at a low flow rate, as in sampling, and increased to a higher speed).
- The pump was removed and sprayed with potable water.
- The pump was then submersed in potable water and at least 1 to 2 gallons were pumped through.
- The pump was then submersed in deionized water and at least 1 to 2 gallons were pumped through.
- The submersible pump was sprayed with isopropyl alcohol (reagent grade) using a handheld spray bottle, over a tub. The pump was then submersed in a final deionized water rinse and at least 1 to 2 gallons were pumped through.
- The pump was air dried and wrapped in clean aluminum foil.

Samples were collected in containers compatible with the intended analysis and properly preserved prior to shipment to the laboratory. Each sealed container was placed in a leak-proof plastic bag and

placed in a thermal ice chest filled with bubble wrap packing material, or equivalent, to ensure sample integrity during shipment. Ice was added to cool samples to 4 degrees Celsius (°C) or slightly below. Chains of custody were used to identify and track samples from the field through laboratory log-in and analysis. Sample custody was initiated by the sampling team upon collection of samples and chain-of-custody forms were placed in waterproof plastic bags and taped to the inside lid of the sample coolers. Sample coolers were sealed with chain-of-custody seals. Sample coolers were delivered to the analytical laboratory, Alpha Woods Hole Analytical Lab, Westborough, MA, each day by courier or CH2M HILL personnel.

4.2.3 Laboratory Testing

LTMMP and PMP samples were analyzed for volatile organic compounds, inorganics, and general water quality parameters. Select samples in the December 2006 sampling were also analyzed for methane/ethane by UL Laboratories under subcontract to Alpha Woods Hole.

Contaminants of concern (COCs) for compliance point wells include arsenic, chromium, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichloroethane, lead, manganese, nickel, sodium, aluminum, and iron. Cleanup levels for these COCs are listed on Table 1-1. Water analyses were conducted according to SW846 Method 8260B for volatile organic compounds (VOCs), and 6010B for target analyte list (TAL) metals (7470A for mercury). The LTMMP and PMP methods for general chemistry are slightly different for some analyses; however, comparable detection limits were generally achieved. The PMP method for sulfate was changed from Standard Method 9038B to EPA Method 300.0 to achieve lower detection limits. The following is a summary of laboratory methods used for general chemistry and exceptions identified in data review:

Parameter	Method			
Chemical Oxygen Demand (COD)	EPA Method 410.4 (note: SM5220D was referenced for report # L0607909 – June 2006)			
Biochemical Oxygen Demand (BOD)	EPA Method 405.1 (note: SM5210B was referenced for report # L0607909 – June 2006)			
Hardness	Standard Method 2340B			
Alkalinity	Standard Method 2320B			
Cyanide	EPA Method 335.2 (note: SM9017 was referenced for report # L0607909 – June 2006),			
Chloride	Standard Method 9251			
Nitrate	Standard Method 4500-NO3-F			
Sulfate Standard Method 9038B (April and June 2006) and EPA Method 300.0 and December 2006). The PMP method was changed to improve detect following the June sampling round.				
Total Organic Carbon (TOC)	SW846 Method 9060			
Total Dissolved Solids (TDS)	EPA Method 160.1 (note: SM2540C was referenced for report # L0607909 – June 2006)			
Total Suspended Solids EPA Method 160.2 (note: SM2540D was referenced for report # L0607909 (TSS) 2006)				
Dissolved Gases (Methane & Ethane) Analysis of Dissolved Methane, Ethane & Ethylene in Groundwater by a Chromatographic Technique, Kampbell & Vandegrift, EPA-OK, Journa Vol 36, May 1998 & Technical Guidance for the Natural Attenuation Indi NE, July 2001.				

As reported in previous annual reports, starting with the fall event of 2001, the method used to determine hardness was changed to Standard Method 2340B in order to eliminate the interference to from other heavy metal ions typically present in some of the wells at the site. Table 4-4 summarizes the analysis procedures used in each event.

4.3 SUMMARY OF LABORATORY RESULTS

The primary objective of the annual report is to compare the COC concentrations with ROD cleanup levels (refer to Table 1-1). According to the LTMMP, only chemicals that present carcinogenic risk are considered trigger chemicals in the monitoring program. The trigger chemicals are arsenic, 1,2 dichlorobenzene, 1,4 dichlorobenzene and 1,2-dichloroethane. Reduction of carcinogenic risk, rather than simply reduction of contamination, is the measure of progress toward attainment of cleanup.

When the LTMMP was developed, all of the compliance monitoring wells were considered to be Group 2 wells. However the first FYR, (SWET, 1998) recommended the following reclassification:

- Group 1: SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C;
- Group 2: SHL-4, SHM-96-5B, SHM-96-5C, SHL-10, SHL-11, SHI-19, SHL-20, and SHM-96-22B.

The second FYR (Harding Lawson Associates, 2000) did not reclassify any of the monitoring wells. However, the review concluded that based on the data collected to date, the required incremental reduction in risk was not achieved and the Army and regulatory agencies decided to implement Alternative SHL-9, Groundwater Extraction, Treatment, and Discharge. The treatment system went on-line in March 2006.

Tables 4-1 and 4-2 list the LTMMP and PMP wells, respectively. Figure 4-3 depicts LTMMP wells with arsenic results and shows locations of the PMP wells used to support start-up and early operational monitoring. A draft of the Revised LTMMP (CH2M HILL, 2006) was developed in 2006 integrating and optimizing the two programs for the future. This document has been reviewed by the BCT, was finalized in May, 2007, and will govern sampling to be conducted for the Shepley's Hill Landfill remedy in the future.

Analytical results for groundwater analyses of samples collected at the LTMMP wells in June and December, respectively, are presented in Tables 4-5 and 4-6. Analytical results for groundwater samples collected at the PMP wells are presented in Table 4-7 and in-situ geochemical water quality measurements collected in conjunction with the PMP sampling are presented in Table 4-8. A summary of historical arsenic results at LTM wells are presented as Table 4-9. Historical iron, manganese, and sodium concentrations at LTM wells are presented as Table 4-10. The analytical results for the five monitoring wells, SHM-96-5B, SHM-965C, SHL-9, SHL-22, and SHM-95-22B, which were sampled under both the LTMMP and PMP, are included in both the LTMMP and the PMP summary tables. Table 4-11 provides a listing of the compliance wells that exceeded cleanup levels for trigger chemicals since achieving Group 1 status in 1998.

4.3.1 Arsenic Results - Long Term Monitoring Wells

Arsenic was the only trigger chemical detected above its cleanup level at the site during the 2006 spring and fall sampling events. This has been the case for a number of years. Year 2006 and historic arsenic data for the fourteen (14) compliance point monitoring wells are provided in Table 4-9 and the 2006 data for these wells are also depicted in Figure 4-3. The compliance point monitoring well data are plotted to provide a graphical comparison of historical arsenic concentrations (refer to Appendix D). An anomalously high concentration of arsenic (1,790 μ g/L) was reported in the sample collected from SHL-19 in the June 2006. This concentration was an order of magnitude greater than the concentrations reported at SHL-19 since 2002. This is believed be a non-representative result from anomalously high total suspended solids and associated iron in the sample. High TSS and iron results are noted for this sample and the field sample log indicates that iron was observable in groundwater throughout purging. The subsequent December result of 142 μ g/L is representative of what has been observed in this well historically.

Of six Group 1 wells sampled in 2006, only the samples collected from SHL-3 and SHL-5 had arsenic concentrations lower than the cleanup level. Of the Group 2 wells, SHL-4 and SHL-10 did not exceed cleanup levels for arsenic during the 2006 sampling. The large number of Group 2 wells exceeding the arsenic standard is a reflection of the reduction of the standard from 50 μ g/L to 10 μ g/L.

With the exception of arsenic concentrations at SHM-96-22B and SHL-96-5B, arsenic concentrations at the Group 2 wells were similar to or less than concentrations detected in previous sampling events. These two northern wells have continuously exhibited the highest arsenic levels, one to two orders of magnitude above arsenic measured in the other LTM compliance wells.

The arsenic concentration at SHM-96-22B has generally increased in the past year when compared to previous years while SHL-96-5B has generally decreased since having an all-time high result of 5,110 µg/L in May, 2000. However, in January 2006, SHL-96-5B appears to have trended up briefly to 4130 ug/L before returning to lower levels, typical of recent years, later in 2006 (refer to Table 4-9). This general pattern may be associated with early adjustments in the flow field and small-scale changes in redox chemistry related to the operation of the extraction wells nearby; however, observations over a longer period will be necessary to better define trends.

The highest historic level of arsenic at SHM-96-22B, 3,690 μ g/L, was recorded during the April, 2006 PMP event. The previous high had been 3,320 μ g/L from the January 2006 event (reported in the 2005 Annual Report). Values from years before, back to November 1999, have roughly been 1000 μ g/L less on average. SHM-96-22B was the location with the highest recorded concentration of arsenic for all compliance (LTMMP) wells for both the June and December 2006 compliance sampling rounds. SHM-96-22B also had the highest arsenic concentration among compliance wells for an individual LTMMP event in November 2004.

SHM-96-5B has had the highest concentration of arsenic for compliance wells for an individual LTMMP event during most events historically. Wells SHM-96-5B and SHM-96-22B are located relatively close to each other and are screened at similar depths in mostly sand/till; however, SHM-96-5B has a 10 foot screen vs. the 30 foot screen of SHM-96-22B. In addition, SHM-96-5B is

completed partially (a few feet) into bedrock near the eastern edge of an interpreted bedrock valley, expected to be a controlling factor for flow north of the landfill.

Historic concentrations measured in the eastern compliance wells near Plow Shop Pond indicate arsenic concentrations are similar to or decreasing in all wells but SHL-11 and SHL-20. SHL-11 is screened at the water table and SHL-20 is screened at the base of till, while the other eastern wells include four more screened at the water table and one at bedrock.

It is notable that concentrations in the northern wells screened at the water table do not generally change over the years monitored. This includes Group 1 well SHL-5 with arsenic concentrations that usually measure well below the cleanup level.

In general, similar arsenic concentrations were detected in 12 of the 14 wells that were sampled in both the June and December sampling rounds. The only exceptions were observed at SHL-19 and SHM-93-22C. The June 2006 result of 1,790 μ g/L at SHL-19 was significantly greater than the December 2006 result of 142 μ g/L. The June result is believed to be attributed to anomalous conditions present in the well at the time of sampling, identified above. For SHM-93-22C, the December 2006 result of 73 μ g/L was greater than the June 2006 result of 17 μ g/L.

Historically, arsenic concentrations are usually higher in the fall than spring in wells SHL-11, SHL-19 and SHM-96-22B, though for the 2006 sampling, arsenic concentrations in samples collected in late spring (June) were greater than the concentrations detected in late fall (December). Monitoring well SHM-96-5B has historically seen higher arsenic concentrations in the spring but this was not observed in the 2006 sampling. The remaining LTM wells don't appear to have a notable seasonal trend for arsenic.

4.3.2 Arsenic Results Performance Monitoring Wells

Arsenic was detected at a concentration greater than $10~\mu g/L$ in all samples collected at 23 of the 30 PMP wells. Arsenic was also detected in the pond sample (PSP-01) in the September 2006 sample. In general, arsenic concentrations in the PMP wells have been relative stable since baseline sampling of these locations in August 2005, prior to system start-up testing. A significantly lower arsenic concentration was reported at N5-P1 in the December 2006 sampling.

4.3.3 Other COC Results for LTM Wells

Detectable levels of the VOC trigger chemicals 1,2-dichloroethane, 1,2-dichlorobenzene, and 1,4-dichlorobenzene were not observed in the 14 monitoring well sampled in June 2006. The other COCs not designated as trigger chemicals detected at concentrations above cleanup levels were metals iron, manganese, and sodium.

Other metals identified as chemicals of concern in the ROD, including aluminum, chromium, lead and nickel, were not found to exceed cleanup levels at any of the wells. Iron was detected above its cleanup level of 9,100 μ g/L at the Group 2 compliance point wells including SHM-96-5B, SHM-96-5C, SHL-11, SHL-19, and SHM-93-22B only. This is expected due to the close association between dissolved iron (Fe²⁺) and dissolved arsenic. Iron was not detected above the cleanup level at wells that have achieved Group 1 status.

The Group 1 well SHL-22, and Group 2 wells, including, SHM-96-5B, SHM-96-5C, SHL-11, SHL-19, SHL-20, and SHM-93-22B, had concentrations of manganese above the cleanup level of 1715 μ g/L. The maximum value detected for manganese was 9,460 μ g/L at SHM-96-5B. Sodium was detected at levels above its cleanup level of 20,000 μ g/L at Group 2 wells SHM-96-5B, SHM-96-5C, SHL-11, SHL-20, and SHM-93-22B. Sodium was also detected above the cleanup level at the Group 1 well SHL-22 and SHM-93-22C.

4.3.4 Contingency Remedy and Other Groundwater Data Collected in 2006

Tables 4-7 and 4-8 provide summaries of laboratory analytical and field parameter data collected in 2006 as part of the Performance Monitoring Program. The laboratory analytes include arsenic (summarized above), iron, manganese, and a set of cations including calcium, magnesium, potassium, and sodium. In addition, other general chemistry parameters include turbidity, alkalinity, chloride, nitrogen (as nitrate), and sulfate. In-situ field parameters measurements, include pH, conductivity, dissolved oxygen, temperature, and oxidation reduction potential (ORP).

These data are being used to evaluate geochemical conditions, as they change with operation of the Contingency Remedy, primarily downgradient of the wellfield; however, data were collected in other areas to provide a baseline for conditions upstream. A noteable observation during initial operation of the system is the general stability of the parameters. It is likely still too early to note trends related to changing redox conditions downgradient of the extraction wellfield; however, these will prove to be important parameters for future monitoring of both system performance and arsenic clean-up.

In December 2006, eleven (11) downgradient monitoring well screens and the influent from EW-04 were sampled for dissolved methane and ethane. Methane and ethane in the treatment plant influent from EW-04 was 1660 μ g/L and 2.5 μ g/L, respectively. Wells downgradient were selected to evaluate dissolved methane/ethane downgradient. These wells included SHP-05-41A, B,C; SHP-05-42A, B; SHP-05-40X; SHP-05-39; SHM-99-31A,B,C; and SHP-99-32X.

Concentrations of methane/ethane in these wells ranged from 0.813 to 7,910 µg/L depending on depth and distance from the landfill. The dissolved methane/ethane is strongly associated with methanogenesis dominated redox conditions, that are also related to iron and manganese dissolution and associated arsenic release and transport. Appendix B provides a response to comments on the *Technical Memo-Methane Controls* (CH2M HILL, 2006) and the data from the associated dissolved methane/ethane sampling that has been conducted. Vadose zone methane gas monitoring data collected at each of these well locations during water sampling, in addition to other landfill gas monitoring data collected historically, discussed in Section 3, do not suggest that dissolved methane/ethane generated and transported at depth under strongly reducing conditions near the landfill results in detectable methane in the vadose zone above.

5.0 WELLFIELD AND ARSENIC TREATMENT PLANT OPERATIONS

The rationale for implementing the Contingency Remedy for Shepley's Hill groundwater along with detailed plans and specifications for the wellfield and treatment plant is provided in the documents entitled, Remedial Design and Remedial Action Workplan, Final Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill. (CH2M HILL, May, 2005) and the Explanation of Significant Differences (CH2M HILL, 2005).

Groundwater modeling work conducted by the Army over a number of years indicated that a wellfield would effectively provide hydraulic containment of the groundwater moving beneath Shepley's Hill Landfill and to the north if operated at 50 gallons per minute (gpm). Subsequent field investigation and design work conducted in conjunction with the Contingency Remedy design process supported this conclusion. The BRAC Cleanup Team (BCT) decided during the completion of the final design effort to conduct initial operation of the system at 25 gpm and use initial operational data to assess whether or not pumping rates could be increased in the future. Particularly important in the early operation of the system, according to EPA concerns, would be to monitor key geochemical parameters near the landfill, particularly downstream to evaluate if the Contingency Remedy is having adverse geochemical effects resulting in increased arsenic transport. In addition, hydraulic impacts downstream were determined to be important to monitor during start-up and early operation of the system.

5.1 Wellfield

Construction of the wellfield, involving two 6-inch extraction wells, and step-testing was completed in February 2005 and the remainder of system construction and connections with the treatment plant were completed in the Spring and Summer 2005. The wellfield was tested with start-up in August 2005 and well performance was demonstrated to be in agreement with modeled performance at a pumping rate of 25 gpm (CH2M HILL, 2006).

Concurrent with final design and construction work, surface water and groundwater disposal were also evaluated as options for future release of treated water from the Arsenic Treatment Plant (CH2M HILL, 2005). This work involved hydraulic modeling to evaluate the impacts of surface water and groundwater discharge at a number of locations east and southeast of the wellfield. In brief, the evaluation identified locations east of the treatment plant that could be viable for groundwater or surface water discharge.

Wellfield extraction testing, plant process testing, and early system operation were conducted in late August and September 2005. During the start-up period, process testing and adjustments were made over a period of several days to evaluate the appropriate dosage of coagulant needed to achieve treatment to the operational goal of $10~\mu g/L$ for arsenic in plant effluent. Influent and effluent sampling was conducted to document arsenic, iron, and manganese concentrations throughout the testing period. This was necessary for evaluation of coagulant dosage, as well as to document influent/effluent characteristic under full operational pumping at 25 gpm. The testing demonstrated

that the treatment process successfully treats a complex matrix (influent groundwater) and meets the goal of $10 \mu g/L$ arsenic. These data are presented in the 2005 Annual Report.

In addition, to start-up process testing, geochemical and water-level monitoring were conducted during the start-up period and subsequently during routine operations in accordance with the *Performance Monitoring Plan* (CH2M HILL, 2005c). This data collection confirmed that hydraulic triggers were not exceeded, in addition to demonstrating that groundwater arsenic levels and other geochemical parameters have remained relatively stable in the vicinity of the extraction wellfield and elsewhere during the early operation of the system.

5.2 Arsenic Treatment Plant Operation

Plant process was tested and proved during August/September 2005 during a month of start-up operations. The work conducted during this time is summarized in the *Startup Testing Report Groundwater Treatment System, Shepley's Hill Landfill, Devens, MA* (CH2M HILL, 2005). This report was discussed and provided as an attachment to the 2005 Annual Report. Table 5-1 provides a summary of influent and effluent results for arsenic, iron, and manganese during plant process testing in August, 2005. In addition, it provides arsenic results during the extraction testing conducted in late August, 2005 and through-out operation in September, 2005 and March, 2006 through January, 2007. The table identifies the extraction well, either EW-01 or EW-04 (also referred to as EW-02), that was operating at the time the sample was collected.

During process testing, EW-04 was pumped and average influent concentrations were 5795 μg/L. EW-01 was pumped during the extraction test and average influent concentrations were 3067 μg/L. During initial system testing and during ongoing operations the average flow from the wellfield was 25 gpm, including dead-heading of wells during backwash cycles in the plant. However, in December, 2006, tests were run from the December 5th through 7th with the flow split between both extraction wells at cumulative pumping rates of 50, 40, and 25 gpm. The system was set at 50 gpm (EW-01/04 @ 25 gpm each) on December 5th and operated overnight for approximately 16 hours then sampled the next morning on December 6th; the pumping rate was then changed to 40 gpm and the system operated for approximately 8 hours and sampled later in the afternoon of December 6th; pumping rate was then changed to 25 gpm and the system operated overnight for approximately 16 hours and then sampled the next morning on December 7th. It is notable that the average concentrations during the increased flow rate testing did not differ greatly from operations at lower flow rates. This may be due to the effects of arsenic sorption chemistry in the vicinity of the screened zone on water contributing to flow from the well. It is expected that influent concentrations at changed flow rates may take several days to stabilize. If all available sampling data are utilized, the average influent concentrations from EW-04 and EW-01 throughout start-up and operations are 5504 µg/L and 2873 µg/L, respectively.

Table 5-1 also identifies the POTW permit special condition of 30 $\mu g/L$ which requires weekly sampling if effluent exceeds this value. With the exception of start-up process testing, when chlorine dioxide dosing was being set, effluent has been well below the POTW special condition and the 10 $\mu g/L$ Army goal for the design. Weekly sampling was conducted during late December and early January following a result of 34 $\mu g/L$ on December 26, 2006.

During the first month of start-up operations in 2005, plant monitoring resulted in 35% LEL being detected in the influent tank of the microfilter, 7% LEL in the effluent sump, and 2% LEL in the effluent manhole. Further monitoring indicated that methane/ethane gas was generated from dissolved methane in influent as groundwater it is brought to the surface and equilibrates at atmospheric pressure. The methane/ethane levels in groundwater proved to be fairly typical for groundwater having high TOC levels and that is undergoing active methanogenesis. The plant was shutdown to upgrade systems to ensure that hazardous atmospheres would not develop in headspaces in the plant or process and monitoring/alarms would be in place to shutdown the system during operations, if necessary.

The Army implemented measures to control and monitor methane gas which was detected in the influent in the Fall of 2005. These safety measures focused on protecting personnel at the facility, and included upgrading affected electrical components to explosion-proof, sealing and venting process units, installing methane/O2 detectors at key process units, and re-programming the control system to shut down the system if methane is detected and/or an oxygen-deficient atmosphere exists. Please refer to *Technical Memo-Methane Controls* (CH2M HILL, 2006b) and the associated response to comments provided in Appendix B for more information. Following installation of these safety measures, the system was re-started on Tuesday, March 7, 2006.

5.2.1 Filtered-Bottom Roll Off/Sludge Disposal

Operation of the Arsenic Treatment Plant (ATP) produces process filter sludge that is accumulated in the filtered-bottom roll-off. The plant treats approximately 1.1 millions gallons of groundwater before the roll-off is pumped out by a disposal contractor. The following table provides a brief summary of filter bottom pump-out events in 2006 and groundwater treated:

Number	Date Emptied	Total Volume Treated	Volume Treated per Roll-Off
1	3/29/06	850,000	850,000
2	5/5/06	1,817,000	967,000
3	6/8/06	2,860,400	1,043,400
4	7/21/06	3,987,800	1,127,400
5	10/23/06	5,326,400	1,338,600
6	12/5/06	6,321,500	995,100

The first pump out event was performed on March 29, 2006. Shortly after, on April 5, 2006, the polymer blending system was activated. This system mixes and conditions the sludge with a dilute polymer emulsion solution which enhances the sludge dewatering process. Although using the polymer does not reduce the amount of sludge generated, it significantly enhances the dewatering rate. The enhanced dewatering reduced the pump out frequencies by providing additional capacity for solids in the roll-off box. On April 27, 2006, a motor-operated-valve (MOV) was installed on the sludge line to the roll-off box. The valve automatically alternates flow to each side of the roll-off at programmed intervals and eliminates the need for an operator to manually alternate discharge into the box.

5.2.2 Microfiltration Clean-in-Place Optimization

The microfilter (MF) periodically requires a clean-in-place procedure (CIP) in order to maintain peak performance and low transmembrane pressure (TMP). The CIP is an operator assisted process during which the MF is alternately cleaned with an acid and a caustic/chlorine solution, rinsed, and placed back in service. On April 18 & 19, 2006, the initial (test) Clean-In-Place (CIP) on the microfilter was conducted. The initial CIP was conducted earlier than necessary (before the MF had been fouled to the point of requiring a CIP) in order to understand the process and insure the program worked properly. This initial CIP worked sufficiently and was believed to be the proper CIP process for long-term operations.

On June 21, 2006, the MF required another CIP. This CIP was performed using the same process as the initial CIP, however the recovery after this CIP was considerably less than the initial CIP. Over the next several months, several different CIP methods were utilized to identify the most effective approach. The approaches involved utilizing different acids and caustics, varying temperatures, and extended soak times. These methods produced varying results, but none resulted in acceptable recovery to the initial TMP of the system.

On August 29, 2006, representatives from Pall Corporation were on-site to evaluate and assist with the CIP procedure. The CIP was repeated with a modified concentration of hydrochloric acid and citric acid. In addition, the water used for the CIP solution was heated using a portable propane heater. Initial results of this CIP were promising as the TMP was restored to near original conditions. However, the TMP continued to increase over time at an increased rate than originally experienced, necessitating more frequent CIPs than previously expected. The rapid increase of the TMP indicated that only partial cleaning of the MF modules had been accomplished and was an indication that module/fiber plugging may be occurring.

In January 2007, modifications were made to the MF skid which allowed direct air injection into each module during the CIP process. In addition, a CIP solution consisting of both sulfuric and citric acid was used for the cleaning process. Air injection combined with the sulfuric/citric solution resulted in full recovery of the system TMP. In addition, subsequent operation of the ATP has indicated that the rate of increase in TMPs is similar to that observed when the ATP was initially started.

It is believed that insufficient oxidation of the influent inorganics (iron, arsenic, and manganese) resulted in small concentrations of inorganics remaining in the MF effluent. The MF effluent supplies the backwash water for regular MF backwashes that occur automatically as the plant is operating. Although the concentrations of un-precipitated inorganics were relatively low (below discharge requirements), the backwash solution was being dosed with additional sodium hypochlorite, resulting in the remaining inorganics oxidizing and forming a precipitate while in the backwash holding tank. Repeated backwashes with this "precipitated" solution resulted in the module fibers plugging. This problem has been corrected by maintaining a sufficient chlorine dioxide residual in the MF influent to ensure inorganics are more fully oxidized prior to discharge into the backwash holding tank.

5.2.3 Miscellaneous

On April 18, 2006, piping modifications to Effluent Pump P-1 were completed. Previously, the lift pipe from the sump to the pump was not allowing the pump to prime properly. The piping was replaced and check valve was relocated from the pump discharge pipe to the bottom of the lift pipe. The pump was place back in service and has run without incident.

On May 5, 2006, a Severn Trent NXT3000 vacuum regulator was installed onto the back-up chlorine gas cylinder. Each cylinder is now equipped with a regulator and cascaded into the chlorine dioxide generator. This configuration allows the system to automatically switch to the back-up cylinder when the primary empties. When the back-up becomes the primary, a replacement cylinder can be ordered and placed into service as the back-up with out any system downtime.

6.0 Operating Properly and Successfully - Update

In accordance with CERCLA Section 120(h)(3), federal agencies are required to demonstrate that remedies are "operating properly and successfully" (OPS) prior to deed transfer of federally-owned property (EPA, 1996). CERCLA Section 120(h)(3) provides for transfer of property upon which remedial actions have taken place through the issuance of the CERCLA covenant to the property deed that warrants that (I) all remedial action necessary to protect human health and the environment with respect to any such substance remaining on the property has been taken before the date of such transfer and (II) any additional remedial action found to be necessary after the date of such transfer shall be conducted by the United States (CERCLA 120(h)(3)(A)(ii)).

Section 120(h)(3)(B), Covenant Requirements, of CERCLA go on to state:

for the purposes of subparagraph (A)(ii)(I) and (C)(iii), all remedial action described in such subparagraph has been taken if the construction and installation of an approved remedial design has been completed, and the remedy has been demonstrated to the Administrator to be operating properly and successfully. The carrying out of long-term pumping and treating, or operation and maintenance, after the remedy has been demonstrated to the Administrator to be operating properly and successfully does not preclude the transfer of the property.

A remedial action or system is considered to be operating "properly" if it is operating as designed. A remedial system is operating successfully if "its operation will achieve the cleanup levels or performance goals delineated in the decision document (U.S. EPA, 1996)." As described in the Record of Decision for Shepley's Hill landfill (USAEC, 1995), the remedial response objectives are to:

- Protect potential residential receptors from exposure to contaminated groundwater migrating from the landfill having chemicals in excess of MCLs.
- Prevent contaminated groundwater from contributing to the contamination of Plow Shop Pond sediments in excess of human health and ecological risk-based concentrations.

The landfill cap and the groundwater extraction and treatment system at Shepley's Hill have been designed and constructed as approved remedies. The last phase of the landfill cap (ROD alternative SHL-2) was completed in 1993. The cap and drainage system effectively minimize infiltration into the landfill and manage run-off. However, ROD interim goals for clean-up largely relating to incremental risk-reduction for arsenic in groundwater have not been met. Consequently, design for the ROD Contingency Remedy (SHL-9) for groundwater was initiated in September, 2003. In addition, a Supplemental Groundwater Investigation and Landfill Cap Assessment (AMEC, in progress) has been undertaken to assess the adequacy of the landfill cap and the overall remedy.

The groundwater pump with discharge to Ayer POTW remedy envisioned in the ROD was modified by an *Explanation of Significant Differences* (CH2M HILL, 2005) to include treatment

and discharge to the Devens POTW. On-base and off-base investigations were conducted during the design process for the Contingency Remedy and the design was completed, approved, and construction initiated in 2005.

The Remedial Design and Remedial Action Workplan, Final One Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy (CH2M HILL, May 2005) provides details of the design, initial operational requirements (e.g. pumping rate), and treatment goals. The wellfield design was based on previous pump testing (SWET, 1998) and groundwater modeling (Harding ESE, 2003) indicating that hydraulic containment may be achieved at a pumping rate of 50 gallons per minute.

This pumping rate was used as the basis of design for the wellfield and treatment plant. However, although the system was designed to operate at 50 gpm, it was approved for operation was 25 gpm during initial start-up and the first year of operation. Well step-testing, extraction testing, and subsequent operations at 25 gpm indicate that each of the two extraction wells are operating properly both individually and as a wellfield. Extraction test hydraulic data agree with modeled predictions. In addition, influent data indicate that the wellfield is performing efficiently to hydraulically contain water of the arsenic plume at depth. Average concentrations in the influent for each of these wells are 2873 µg/L (EW-01) and 5504 µg/L (EW-04), which are comparable to the highest concentrations observed during pilot-hole sampling near these two locations conducted prior to extraction well installation (CH2M HILL, 2004). Short-term testing of each extraction well and the plant at 50 gpm in December, 2006 indicate that the remedy operates properly at the design pumping rate. Further evaluation of the wellfield hydraulics may be conducted by the Army during ongoing operations to develop hydraulics data at the doubled pumping rate of 50 gpm to compare with modeled predictions. Assessments of whether the remedy is operating "successfully" in terms of remedial goals may involve evaluation of geochemical data collected downgradient of the system over time and long-term wellfield hydraulics.

The system began operation in August, 2005 and operated for one month. The system was shut down due to concerns that dissolved methane/ethane in groundwater may accumulate as an explosive gas in the building or process equipment. Although monitoring work conducted during the initial operations did not indicate that explosive conditions were developing during operations at 25 gpm, the plant was upgraded to ensure that at higher pumping rates if methane/ethane mass transfer is greater, the plant would have systems in place to monitor and passively vent methane where it might accumulate. Following plant upgrades, long-term operations began in March, 2006.

Appendix B provides a memo summarizing monitoring conducted during start-up to evaluate this issue. In addition, it provides a summary in responses to comments of other activities undertaken by the Army to evaluate both dissolved methane in groundwater and within the plant. The evaluation of the treatment plant and upgrades implemented in the winter of 2005/2006 may be summarized as follows:

The release points in the process that were identified during the evaluation (microfilter influent tank, microfilter backwash tank, effluent sump) are sealed and vented to the building exterior. The two other process components are the lamella clarifier and the filterbottom roll-off. The lamella clarifier receives water/solids generated during the microfilter

backwash cycle. The compressed air used during the backwash cycle appears to remove the methane and the backwash tank is vented to the building exterior. The filter-bottom roll-off then receives water/solids from the lamella clarifier. Methane was not initially, nor subsequently, measured in the lamella clarifier and filter-bottom roll-off. In addition, methane monitors were installed over the lamella clarifier (approx. 11 feet above the floor) and the filter bottom roll-off (approx. 6 feet above the floor), as well as in the area near the microfilter. The methane monitor over the lamella clarifier provides monitoring close to the ceiling. The methane monitors are connected to the system control logic, which is established to sound an alarm if 10% of the LEL is detected and shut the system down if 20% of the LEL is detected. (Response to Comments, Methane Memo (3/3/2006), EPA General Comment #3 (3/27/2006))

The treatment system is operating properly and successfully and has achieved the Army treatment process design goal of $10~\mu\text{g/L}$ for arsenic. This treatment goal has been met throughout operations, to date. The goal is significantly below the established POTW discharge limitation of $150~\mu\text{g/L}$ and maximum daily loading of .07 pounds/day. The *Start-Up Testing Report* (CH2M HILL, 2005), BCT updates, and operational reports submitted to the POTW summarize operational data. All other discharge limitations provided in the POTW permit have been met, as well.

It is expected that upon completion of the *Supplemental Groundwater Investigation and Landfill Cap Assessment* (AMEC, in progress) and as the Contingency Remedy operates at the design pumping rate of 50 gpm over the next year, that a formal OPS demonstration will be made. The demonstration is expected to show that the system, operating at the design flow rate, is providing hydraulic containment consistent with remedial response objectives.

2006 ANNUAL REPORT SHEPLEY'S HILL LANDFILL LONG TERM MONITORING & MAINTENANCE DEVENS, MASSACHUSETTS

7.0 QUALITY CONTROL

Quality assurance/quality control (QA/QC) samples were collected to monitor the sample collection, transportation, and analysis procedures. QA/QC samples included field duplicate samples, matrix spike/matrix spike duplicate samples, and equipment blanks. The results of the QA/QC sampling as well as an assessment of the data quality of analytical results for water samples collected during the 2006 Annual Shepley's Hill sampling events are provided in Appendix E. Based on the data evaluation elements reviewed, most data was determined to be of acceptable quality for use. However, it appears that the total metal sample bottles for SHM-05-42A and SHM-05-42B in the December 2006 sampling were switched. The December 2006 laboratory report for sample SHM-05-42A corresponds to the historical concentrations at SHM-05-42B while the December 2006 laboratory report for SHM-05-42B corresponds to the historical concentrations reported at SHM-05-42A. This report has assumed this labeling mistake occurred and that the laboratory report identifying SHM-05-42A is actually the results for 42B and vice-versa.

2006 ANNUAL REPORT SHEPLEY'S HILL LANDFILL LONG TERM MONITORING & MAINTENANCE DEVENS, MASSACHUSETTS

8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

- The Contingency Remedy groundwater extraction and treatment system began longterm operation in March 2006.
- The Group 1 and 2 well designations are no longer relevant for the combined capped landfill and Contingency Remedy. A Revised Long-Term Monitoring and Maintenance Plan (CH2M HILL, 2006) was developed by the Army in 2006 to update and focus the LTMMP while incorporating monitoring to assess performance of the complete remedy for Shepley's Hill, inclusive of the groundwater extraction, treatment, and POTW discharge system. This plan was finalized with BCT input in May, 2007 and will guide monitoring for 2007 and future years.
- Site-wide groundwater measurements were collected in April, June, September, and December 2006 under the LTMMP and PMP. Groundwater elevations measured in June were the highest and September the lowest. Groundwater contour maps developed from water-level data collected in June and December suggest that the operation of the groundwater extraction system is enhancing the northerly flow of water from beneath the capped landfill, similar to observations from the start-up extraction test (CH2M HILL, 2006a) conducted at 25 gpm. This enhanced flow is also suggested by modeling work conducted historically for the Supplemental Groundwater Investigation (Harding ESE, 2003), the wellfield design work (CH2M HILL, 2005a) and subsequent modeling work conducted to evaluate on-site discharge options and locations (CH2M HILL, 2005e).
- Shepley's Hill Landfill Cap appears to be in fair condition.
- Recommendations from the Draft Cap Drainage Report, January 2003 will be further
 evaluated in the Supplemental Groundwater Investigation and Landfill Cap Assessment
 (AMEC, in progress), which will assess the adequacy of the landfill cap and overall
 remedy. Following this work, remedial repairs required will be identified and
 implemented.
- Implementation of repairs (if required) should improve the drainage and function of the landfill cap. The completion of the Supplemental Groundwater Investigation and Landfill Cap Assessment (AMEC, in progress) is scheduled for Fall 2007.

8.2 Recommendations

 In 2006, the Army undertook an effort to review historic monitoring data from the longterm monitoring and maintenance program (LTMMP) along with the Contingency Remedy performance monitoring program (PMP). This work was conducted with the objective of optimizing the LTMMP and integrating the Contingency Remedy into the program. A draft of the Revised LTMMP was submitted to the regulatory agencies in December, 2006 (CH2M HILL, 2006), BCT comments have been received and addressed, and the document finalized in May, 2007. This new plan provides an optimized approach to monitoring the Shepley's Hill remedy, taking into account recommendations of the 2005 FYR and historic data available through LTMMP and PMP activities. In addition, the plan eliminates the Group 1 and 2 well designation concept from the monitoring plan since the Contingency Remedy has been successfully implemented and the concept is now not applicable. This revised monitoring program should be fully implemented in 2007.

- Data collected during start-up and subsequently indicate that the wellfield is operating
 properly. Water levels associated with 25 gallon per minute operations indicate that the
 groundwater pumping system zone of influence is consistent with modeled predictions
 (CH2M HILL, 2006). The pumping system does not exceed hydraulic triggers identified
 in the Performance Monitoring Plan (CH2M HILL, 2005). Geochemical data collected
 during the first year of operation indicate that the geochemistry downgradient is stable
 and, to date, has not displayed significant changes in chemistry related to the operation of
 the system.
- Increased pumping conducted in December, 2006 indicates that each of the wells of the two-well system operate properly at 50 gpm or 25 gpm, supporting a cumulative flow from the wellfield of 50 gpm. The wells were designed with variable frequency drives (VFDs) such that these variable flows could be accommodated. This allows one well to pick-up the total wellfield flow of 50 gpm when the other is offline for maintenance. The operational wellfield flow rate should be increased from 25 gpm to 50 gpm to evaluate long-term wellfield and plant operation at the model-predicted hydraulic containment rate. Hydraulic monitoring may be conducted with increased pumping to further confirm that hydraulic triggers established by the PMP are not exceeded and to support further evaluation of containment. Data collected to date and modeled predictions indicate that the wellfield will provide hydraulic containment at 50 gpm, thus operating "properly". Longer-term aquifer geochemical data will be necessary at the higher pumping rate to demonstrate that hydraulic containment provides needed reductions in dissolved arsenic downstream, meeting the remedial response objectives of the ROD. The pumping rate for the wellfield should be increased to 50 gpm.
- Arsenic, Iron, and Manganese concentrations for treatment plant influent when compared with pre-wellfield aquifer data (vertical profiling) indicate that the extraction wells are situated very well within the most reducing water moving north from the landfill. Dissolved methane/ethane data indicate that this water is under dominantly methanogenic redox conditions. Effluent data for the treatment plant indicate that the treatment process is operating properly and successfully reducing all constituents identified in the POTW discharge permit (Devens/MassDevelopment, 2006) to below treatment goals. Notably, the treatment process has been successful treating arsenic below the Army goal of 10 μg/L. Short-term tests conducted in December indicate that the plant operates well at 50 gpm and provides needed treatment.

- The landfill inspection recommends to: (1) Secure fence gates with padlocks and chains
 as required to control access to the site and (2) place topsoil and seed over the sandy area
 lacking vegetation on the east side along the perimeter of the cap.
- The Draft Cap Drainage Report, January 2003 resulted in many recommendations to improve the drainage and function of the cap. Recommendations that should be implemented soon or as specified in the Supplemental Groundwater Investigation and Landfill Cap Assessment (AMEC, in progress) are: (1) removal wetland vegetation from drainage swales and (2) clearing of the entire southern swale of accumulated sediment and/or regraded, as necessary, to facilitate drainage. Reseeding and/or riprap placement, depending on water velocities, will help stabilize the channel.
- Other recommendations made in this annual report that are not currently scheduled but should be addressed in the future include, (1) Repair and regrading around the catch basins on the south side of the landfill; and (2) Repair the hasps on the casings of groundwater monitoring wells SHL-4 and SHL-9.

2006 ANNUAL REPORT SHEPLEY'S HILL LANDFILL LONG TERM MONITORING & MAINTENANCE DEVENS, MASSACHUSETTS

9.0 REFERENCES

ABB Environmental Services, Inc. (ABB-ES), 1993. Final Remedial Investigation Addendum Report, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. December.

ABB Environmental Services, Inc. (ABB-ES), 1995a. Final Feasibility Study, Shepley's Hill Landfill Operable Unit, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. September.

ABB Environmental Services, Inc. (ABB-ES), 1995b. *Record of Decision, Shepley's Hill Landfill Operable Unit*, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. September.

CH2M HILL, 2003. Remedial Design and Remedial Action Workplan, Draft Final Sixty Percent (60%)/Draft One-Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill, Prepared for Base Realignment and Closure (BRAC), Atlanta Field Office. December.

CH2M HILL, 2004. Shepley's Hill Landfill Groundwater Extraction, Treatment, and Discharge System, Wellfield Final Design – Field Data & Recommendations. October.

CH2M HILL, 2005a. Remedial Design and Remedial Action Workplan, Final Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill. May.

CH2M HILL, 2005b Explanation of Significant Differences, Groundwater Extraction, Treatment, and Discharge Contingency Remedy, Shepley's Hill Landfill, Fort Devens, MA., June.

CH2M HILL, 2005c. Shepley's Hill Landfill, Performance Monitoring Plan, Groundwater Extraction, Treatment, and Discharge Contingency Remedy. August.

CH2M HILL, 2005d. Startup Testing Report Groundwater Treatment System Shepley's Hill Landfill, Devens, MA, October.

CH2M HILL, 2005e. Final Technical Memorandum, On-Site Discharge Evaluation—Shepley's Hill Groundwater Extraction, Treatment, and Discharge System. December.

CH2M HILL, 2006a. Final Technical Memorandum Start-Up Extraction Test – Shepley's Hill Groundwater Extraction, Treatment, and Discharge System. February.

CH2M HILL, 2006b Technical Memorandum, Methane Controls – Shepley's Hill Landfill Groundwater Treatment Plant, March.

CH2M HILL, 2006c. *Draft 2005 Annual Report*, Shepley's Hill Landfill, Long Term Monitoring and Maintenance, Devens, Massachusetts. December

CH2M HILL 2006d. Revised Long Term Monitoring and Maintenance Plan for Shepley's Hill Landfill, Devens, Massachusetts, December (draft).

CH2M HILL 2007. Revised Long Term Monitoring and Maintenance Plan for Shepley's Hill Landfill, Devens, Massachusetts, May (final).

Devens/MassDevelopment, 2006, Landfill Discharge Permit – Renewal (POTW pretreatment permit). June 26

Harding Lawson Associates, 1999. Final Work Plan – Supplemental Groundwater Investigation at Shepley's Hill Landfill, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. February.

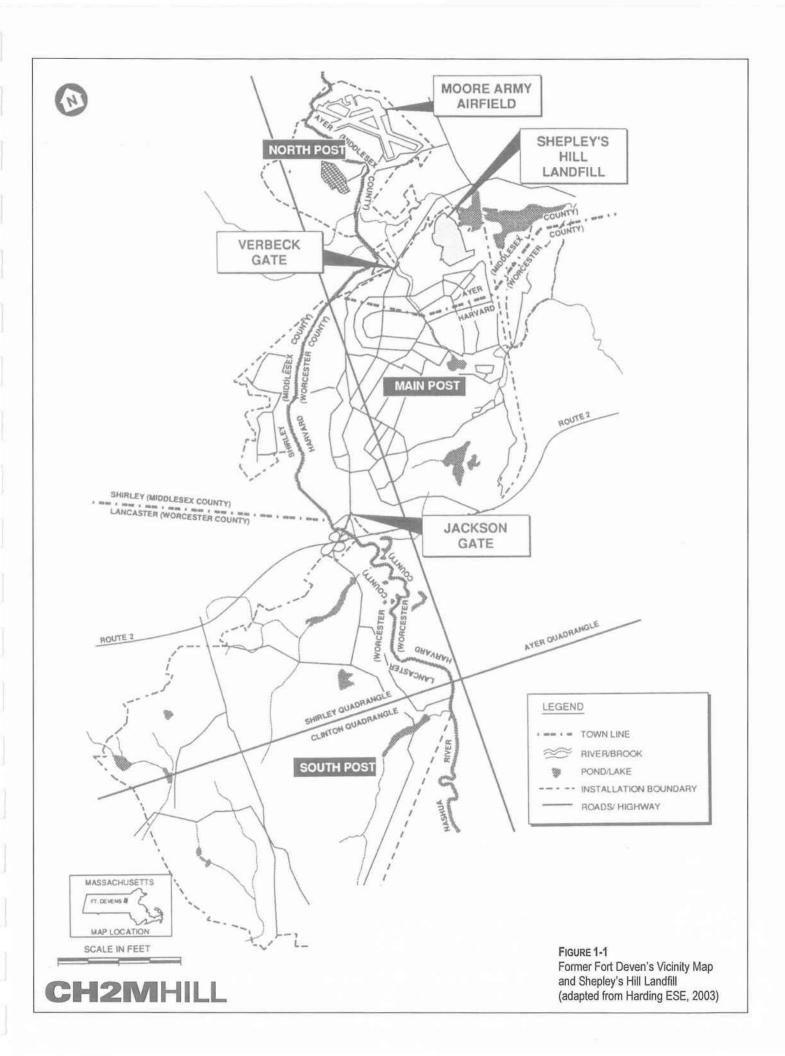
Harding Lawson Associates, 2000. Final First Five-Year Review Report for Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the US Army Corps of Engineers, New England District. September.

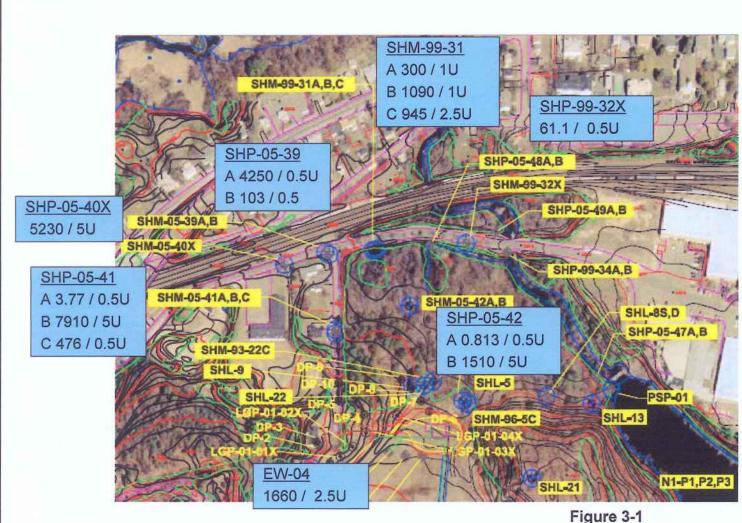
Harding ESE, A MACTEC Company, 2003. Revised Draft Shepley's Hill Landfill Supplemental Groundwater Investigation, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. May.

Nobis Engineering, 2005, 2005 Five-Year Review Report, Former Fort Devens, Devens, Massachusetts. Prepared for the US Army Corps of Engineers, New England District, September.

Stone & Webster Environmental Technology & Services, 1996. Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill, Fort Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England Division. March.

Stone & Webster Environmental Technology & Services, 1997. *Shepley's Hill Landfill, Annual Report 1996*, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England Division. April.

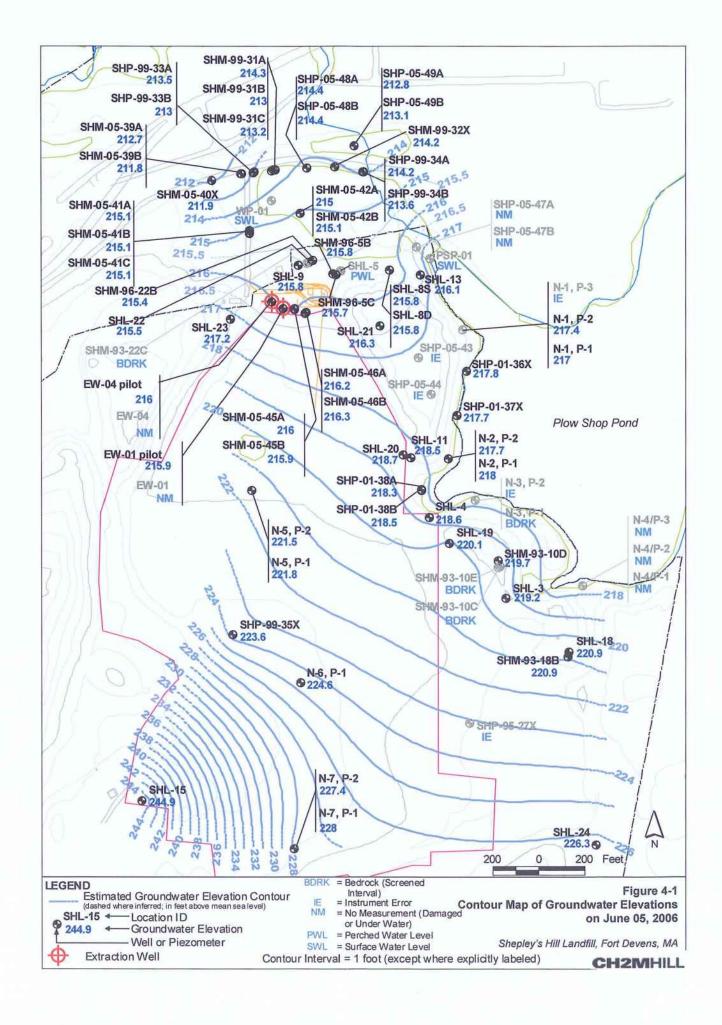

Stone & Webster Environmental Technology & Services, 1998. Final Five Year Review, Shepley's Hill Landfill, Long Term Monitoring, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. August.

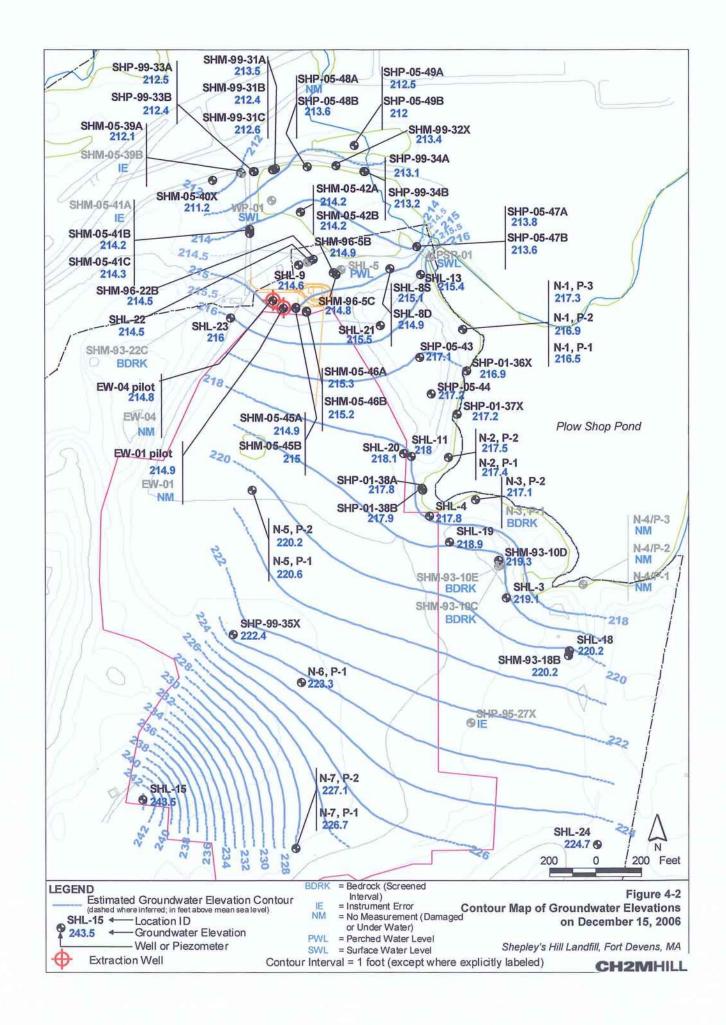

Stone and Webster Environmental Technology & Services, 1998. Groundwater Pumping Test Report, Shepley's Hill Landfill, Devens, MA. January.

US Army Corps of Engineers, New England District, 1997. 60% Design Extraction/Discharge System, Shepley's Hill Landfill, Devens, MA. November.

- U.S. Army Corps of Engineers, New England District (CENAE), 2003. *Draft Cap Drainage Report*, Shepley's Hill Landfill, Devens RFTA, Ayer, Massachusetts. January.
- U.S. Army Corps of Engineers, New England District (CENAE), 2004. 2003 Annual Report, Shepley's Hill Landfill, Long Term Monitoring and Maintenance, Devens, Massachusetts. March.
- U.S. Army Corps of Engineers, New England District (CENAE), 2005. 2005 Five-Year Review, Shepley's Hill Landfill. September.
- U.S. Army Corps of Engineers, New England District (CENAE), 2006. *Geotechnical Engineering Fall 2005 Annual Inspection Report, Shepley's Hill Landfill*. March.
- US Army Environmental Center (USAEC), 1995. Record of Decision, Shepley's Hill Landfill Operable Unit, Fort Devens, Massachusetts. September.
- U.S. Environmental Protection Agency (USEPA) Region 1, 1996. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples From Monitoring Wells, SOP #: GW 0001, Revision 2. July 30.
- U.S. Environmental Protection Agency, 1996, Guidance for Evaluation of Federal Agency Demonstrations that Remedial Action are Operating Properly and Successfully Under CERCLA Section 120(h)(3). Office of Solid Waste and Emergency Response, Federal Facilities Restoration and Reuse Office. Interim August 1996.
- U.S. EPA, 2002 Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers Ground Water Forum Issue Paper, Attachment 3. Example Standard Operating Procedure: Standard Operating Procedure for Low-Stress (Low Flow)/Minimal Drawdown Ground-Water Sample Collection. Douglas Yeskis and Bernard Zavala. Office of Solid Waste and Emergency Response, EPA 542-S-02-001, May 2002

Figures





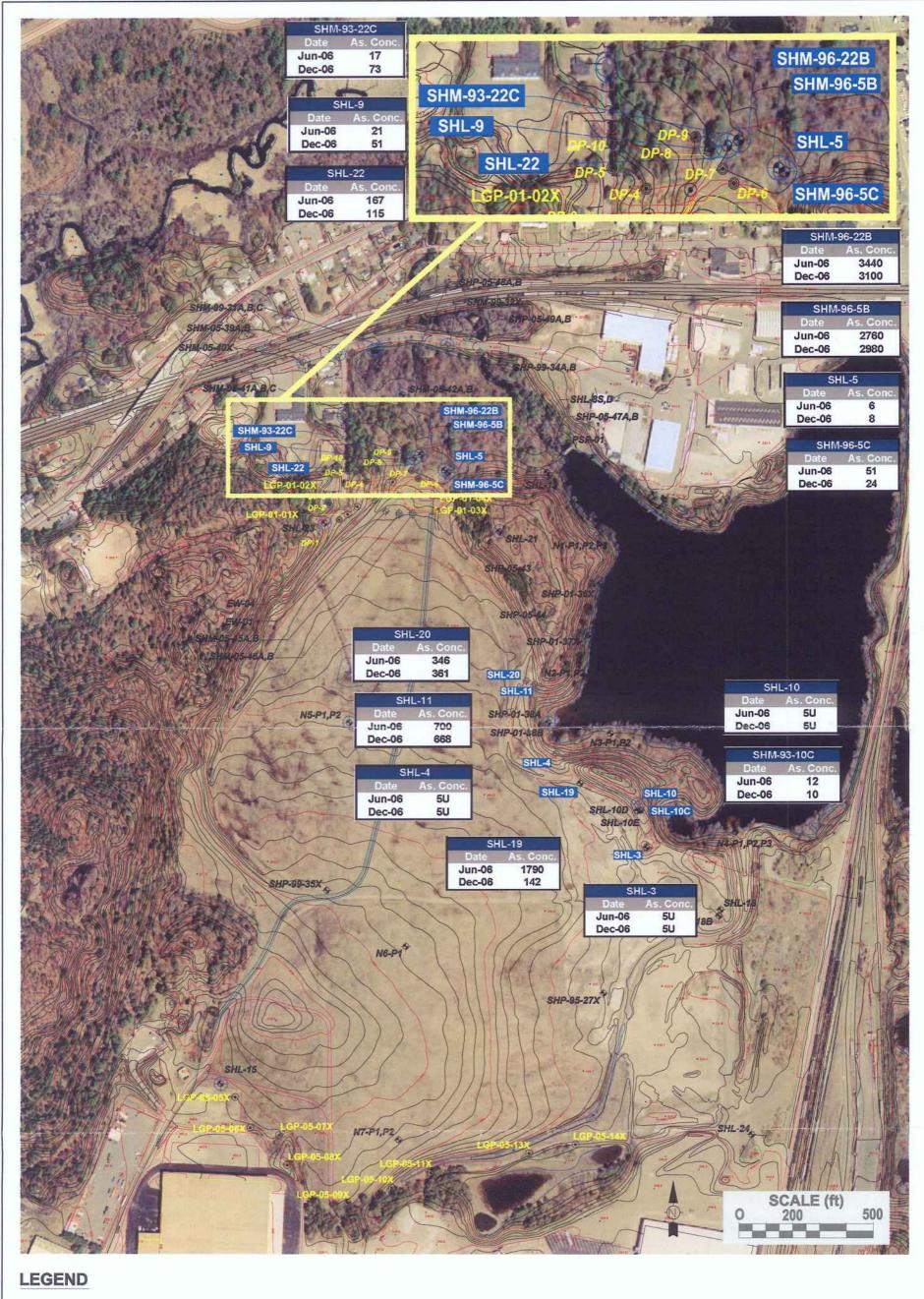

Note: Dissolved methane / ethane in ug/L. Groundwater monitoring wells, permanent gas probes (LGP-01-01X through LGP-01-04X), and temporary gas probes (DP-1 through DP-10) are identified.

Figure 3-1 12/06 Groundwater Methane/Ethane Data and Temporary Gas Probe Locations Shepley's Hill Landfill

CH2MHILL

- ◆ Long Term Monitoring Network (SHL-9)
- Temporary Gas Probe (10-31-06) (OP-1)

Note: Contingency Remedy performance monitoring network included for reference. Includes Hydraulic $\mbox{\em \cite{phase}}$ and Geochemistry monitoring $\mbox{\em \cite{phase}}$.

FIGURE 7-1 Long Term Monitoring Network Tables

S	Table 1-1 of Concern (COC hepley's Hill Land evens, Massachus	ifill
COC	Cleanup Level ug/L	Selection Basis
Arsenic	10	MCL
Chromium	100	MCL
1,2-Dichlorobenzene	600	MCL
1,4-Dichlorobenzene	5	MCL
1,2-Dichloroethane	5	MCL
Lead	15	Action Level
Manganese	1715	Background (1)
Nickel	100	MCL
Sodium	20000	Health Advisory
Aluminum	6870	Background
Iron	9100	Background

Table 3-1 2006 Landfill Gas Monitoring Results Shepley's Hill Landfill Devens, Ma

Bakey/ Reault Inspectors: Barometer at Start: Time Started: End: Weather End: 1400 Partly Cloudy 40 -65° F Clear, 30's Date: 10/31/2006 29.99" 29.79" 0710 12/11/2006 30.33" 30.37" 0830 1430 12/14/2006 30.01" 29.94" 0730 1400 Clear, 50's

ID#	VOCs ppm PID	02 % IR	H2S ppm CGI	% LEL CGI	CO ppm CGI	CO2 % IR	Methane % IR	Remarks
V-1	0.0	6.5	0.0	95.0	4.0	10.9	1.9	12/14/2006 survey
V-2	0.0	5.2	0.0	>100	6.0	15.6	11.5	
V-3	0.0	6.5	0.0	>100	6.0	18.9	10.9	
V-4	0.0	10.0	0.0	52.0	2.0	8.8	1.2	
V-5	0.6	17.9	0.0	2.0	2.0	6.3	2.0	11
V-6	0.0	1.3	0.0	>100	8.0	21.2	14.4	U
V-7	0.0	1.1	0.0	>100	8.0	17.1	6.0	
V-8	0.0	16.3	0.0	23.0	3.0	11.6	1.2	W.
V-9	0.0	6.5	0.0	>100	6.0	23.6	32.0	Ř
V-10	0.0	8.5	0.0	>100	7.0	17.9	9.6	n.
V-11	0.0	10.7	0.0	>100	6.0	7.2	3.3	
V-12	0.2	21.0	0.0	0.0	0.0	0.1	0.0	н
V-13	0.2	20.1	0.0	0.0	0.0	0.2	0.0	"
V-14	0,1	21.0	0.0	13.0	0.0	0.4	0.1	ii .
V-15	0.2	21.0	0.0	4.0	0.0	0.4	0.1	н
V-16	0.0	20.1	0.0	1.0	0.0	1.1	0.2	
V-17	0.0	9.2	0.0	>100	5.0	16.5	17.4	
V-18	0.0	21.0	0.0	0.0	0.0	0.2	0.0	n.
LGP-01-01X	0.0	20.9	0.0	0.0	0.0	0.0	0.0	12/11/2006 survey
LGP-01-02X	0.0	20.4	0.0	0.0	1.0	1.2	0.0	W.
LGP-01-03X	0.0	20.6	0.0	0.0	0.0	1.7	0.0	
LGP-01-04X	1.5	20,6	0.0	0.0	0.0	0.5	0.0	
LGP-05-05X	0.0	20.3	0.0	0.0	0.0	1.5	0.0	и
LGP-05-06X	0.0	18.2	0.0	0.0	1.0	2.8	0.0	*
LGP-05-07X	0.3	17.3	0.0	0.0	1.0	4.1	0.0	M.
LGP-05-08X	0.0	10.4	0.0	0.0	4.0	12.3	0.0	w
LGP-05-09X	0.1	11.0	0.0	1.0	4.0	8.8	0.0	"
LGP-05-10X	0.3	12.6	0.0	2.0	4.0	10.4	0.0	"
LGP-05-11X	2.2	6.9	0.0	2.0	3.0	15.0	0.0	0
LGP-05-12X	-	-		-	_		120	not installed
LGP-05-13X	0.2	18.5	0.0	0.0	0.0	3.2	0.0	12/11/2006 survey
LGP-05-14X	0.4	8.9	0.0	0.0	3.0	5.1	0.0	**
DP-1	0.0	20.3	0.0	0.0	0.0	0.4	0.0	10/31/2006 temporary soil gas survey
DP-2	0.0	20.7	0.0	0.0	0.0	0.6	0.0	"
DP-3	0.0	21,1	0.0	0.0	0.0	0.6	0.0	n
DP-4	0.0	20,5	0.0	0.0	0.0	0.7	0.0	**
DP-5	0.0	20.9	0.0	0.0	0.0	0.7	0.0	**
DP-6	0.0	19.7	0.0	0.0	0.0	0.5	0.0	n
DP-7	0.0	17,8	0.0	0.0	0.0	2.2	0.0	
DP-8	0.0	21.1	0.0	0.0	0.0	0.3	0.0	
DP-9	0.0	21.0	0.0	0.0	0.0	0.3	0.0	"
DP-10	0.0	20.7	0.0	0.0	0.0	0.5	0.0	, u
SHM-99-31-GP	0.0	20.6	0.0	0.0	0.0	0.4	0.0	12/11/2006 temporary soil gas survey
SHP-99-32X-GP	0.3	20.6	0.0	0.0	0.0	0.5	0.0	"
SHP-05-39-GP	0.0	20.0	0.0	0.0	3.0	1.2	0.0	M
SHP-05-40X-GP	0,1	20,2	0.0	0.0	0.0	1.2	0.0	,,
SHP-05-41GP	4.6	20.6	0.0	0.0	2.0	0.4	0.0	11.
SHP-05-42-GP								Not sampled due to standing water

Equipment and Calibration Information

Instrument:

Thermo Environmental 580B PID 10.6 (Pine ID#6416); Calibrated by Pine Env. 10/31/06 w/ 100 ppm isobutylene (Lot #100 Iso 88410).

Instrument:

Thermo Environmental 580B PID 10.2 (S.N. 242); Calibrated by T. Bakey 12/11/06 and D. Reault 12/14/2006 w/ 100 ppm isobutylene (Lot #90295). Industrial Scientific TMX 412 (Pine ID# 6416); Calib'd by T. Bakey 10/31/06 w/ Cal Gas (Lot# 84993A) 50 ppm CO, 50% LEL, 20.9% O2, 25 ppm H2S Industrial Scientific TMX 412 (S.N. 9809009-444); Calib'd by T. Bakey 12/11/06 and D. Reault 12/14/2006 w/ US Env. Cal Gas (Lot# 004266) 50 ppm

CO, 50% LEL, 20.9% O2, 25 ppm H2S.

Instrument:

GEM 2000 (S.N. GM07991105); Calib'd by Pine Env. on 10/27/06 with 35 ppm CO2, 50ppm CH4, and 20.9 % O2 (Lot #1).

GEM 500 (S.N. E0985); Calibrated by US Env. on 12/11/06 with 35 ppm CO2, 50ppm CH4, and 20.9 % O2; Calibrated by D. Reault on 12/14/06 with 35 ppm CO2, 50ppm CH4, and 20.9 % O2.

NOTES:

V= Landfill gas vent

LGP= Landfill gas well point
DP = Direct push soil gas survey point

GP= Temporary gas point at select downgradient monitoring well locations

Barometric pressures were obtained from http://www.widespread.com for Ayer, MA
Unless otherwise indicated, LEL readings from the GEM 2000 and TMX 412 were the same. If two readings given, the first reading represents the GEM 2000 and the second reading represents the TMX 412 reading.

Revision: 2/12/07

Table 4-1 Long Term Monitoring Well Specifications Shepley's Hill Landfill Devens, Massachusetts

Well ID	Description	Orientation to Landfill ¹	Ground Surface Elevation ² (ft msl)	Reference Elevation ^{3,4} (ft msl)	Total Depth (feet)	Screen Length (feet)
SHL-3	Water Table	East	247.4	248.6	34.0	10
SHL-4	Water Table	East	226.4	228.1	13.0	10
SHL-5	Water Table	North	216.4	218.6	13.0	10
SHM-96-5B	Base of Sand/Till	North	218.5	220.0	90.0	10
SHM-96-5C	Water Table	North	218.7	219.4	60	10
SHL-9	Water Table	North	222.9	223.0	25.0	10
SHL-10	Water Table	East	249.1	248.8	39.0	15
SHM-93-10C	Bedrock	East	247.1	248.6	54.0	10
SHL-11	Water Table	East	235.0	236.5	27.0	15
SHL-19	Water Table	East	239.5	241.5	30.0	15
SHL-20	Base of Till	East	235.4	237.0	49.0	10
SHL-22	Base of Till	North	219.6	220.6	115.0	10
SHM-96-22B	Sand/Till Interface	North	219.9	220.4	92.3	30
SHM-93-22C	Bedrock	North	217.9	221.7	134.3	10

Notes:

- North wells are located in the direction of groundwater flow away from the landfill.

 East wells are located between landfill and Pond.
- 2. Includes ground surface from published well completion log . If not available, ground surface elevation from Meridian Associates Inc. survey July/Aug 2005 used.
- 3. All reference elevations based on field survey performed by Meridian Associates, Inc. between
 July and August 2005 except SHL-10, which is based on groundwater monitoring well completion log by Con-Test Inc.
- 4. Elevations based upon project system, reported to be National Geodetic Vertical Datum of 1929 (NGVD29).

	Performance M	Table 4-2 onitoring Well S	Specifications	
		pley's Hill Land		
	Deve	ma, massachus	Screened	
	Ground	Screened	Elevation	Geologic
Well Location	Surface(1)	Interval(2)	(feet bgs)	Designation(3)
DOWNGRADIENT (MOLUMCO				
Groundwater Chemistry/Wate SHM-05-40X	224.6	32.0 - 34.0	192.6 - 190.6	Mid-Depth Overburden/Till
SHM-05-39A	222.9	37.0 - 39.0	185.9 - 183.9	Mid-Depth Overburden
SHM-05-39B	222.9	66.0 - 68.0	156.9 - 154.9	Deep Overburden
SHP-99-31A	213.8	4.0 - 14.0	209.8 - 199.8	Shallow Overburden/WT
SHP-99-31B	213.5	50.0 - 60.0	163.5 - 153.5	Mid-Depth Overburden
SHP-99-31C SHX-99-32X	213.5 220.1	68.0 - 78.0 72.0 - 82.0	145.5 - 135.5 148.1 - 138.1	Deep Overburden Deep Overburden
Other Water Level Synoptic	220.1	12.00 G2.0	140.7	TUSTER OF THE
SHP-05-48A,B	Shallow Piezometer			Water Table
SHP-05-49A,B	Shallow Piezometer			Water Table
SHP-99-34 A	223.6	12.5 17.5	211.1 206.1	Shallow Overburden/WT
SHP-99-34 B	223.6	74.5 79.5	149.1 144.1	Deep 0verburden
DOWNGRADIENT (WOODS) Groundwater Chemistry/Water	ar Levels			
SHM-05-41A	223.8	42.0 - 44.0	181.8 - 179.8	Shallow Overburden
SHM-05-41B	223.6	62.0 - 64.0	161.6 - 159.6	Mid-Depth Overburden
SHM-05-41C	224.0	88.0 - 93.0	136.0 - 131.0	Deep Overburden/Till
SHM-05-42A	214.5	40.0 - 42.0	174.5 - 172.5	Shallow Overburden
SHM-05-42B	214.5	70.0 - 72.0	144.5 - 142.5	Mid-Depth Overburden
NEARFIELD AREA Groundwater Chemistry/Water	or Layels			III Cara Green
SHL-23	240.4	23.0 - 33.0	217.4 - 207.4	Shallow Overburden/WT
SHL-9	222.9	15.0 - 25.0	207.9 - 197.9	Shallow Overburden/WT
SHL-22	219.6	105.0 - 115.0	114.6 - 104.6	Deep Overburden
SHM-96-22B	219.9	82.0 - 92.0	137.9 - 127.9	Mid-Depth Overburden
SHM-93-22C	217.9	124.3 - 134.3	93.6 - 83.6	Bedrock
SHL-5 SHM-96-5B	216.4 218.5	3.0 - 13.0 80.0 - 90.0	213.4 - 203.4 138.5 - 128.5	Shallow Overburden/WT Base of Sand/Till
SHM-96-5C	218.7	50.0 - 60.0	168.7 - 158.7	Mid-Depth Overburden
SHL-8S	220.1	52.0 - 54.0	168.1 - 166.1	Mid-Depth Overburden
SHL-8D*	220.1	68.0 - 70.0	152.1 - 150.1	Deep Overburden
SHL-21	257.9	42.0 - 52.0	215.9 - 205.9	Shallow Overburden/WT
Other Water Level Synoptic	1	Special December	Property Supple	Line
SHP-05-45A SHP-05-45B	227.3 227.7	20.0 - 25.0 65.0 - 75.0	207.3 - 202.3 162.7 152.7	Shallow Overburden Mid-Depth Overburden
SHP-05-46A	227.3	20.0 - 25.0	207.3 - 202.3	Shallow Overburden
SHP-05-46B	227.1	65,0 - 75,0	162.1 152.1	Mid-Depth Overburden
SHP-05-43	259.4	50.5 - 60.5	208.9 - 198.9	Shallow Overburden
SHP-05-44	256.4	51.0 - 61.0	205.4 - 195.4	Mid-Depth Overburden
POND AREA				
Groundwater Chemistry/Wate SHL-13	er Leveis 220.1	5.0 - 20.0	215.1 - 200.1	Shallow Overburden/WT
SHP-36X	221.1	3,0 8.0	218.1 213.1	Shallow Overburden/WT
SHP-37X	219.5	1.0 6.0	218.5 213.5	Shallow Overburden/WT
SHP-01-38A	219.8	1.5 6.5	218.3 213.3	Shallow Overburden/WT
Other Water Level Synoptic	ingeroempeatal natur		T	经过上步已经回
PSP-01 (pond sample) SHP-05-47A,B	Pond Stage			N/A
N1-P1	Shallow Piezometer 228.8			Water Table Deep Overburden
N1-P2	228.8	_		Mid-Depth Overburden
N1-P3	228.8			Shallow Overburden/WT
N2-P1	221.6			Deep Overburden
N2-P2	221.6	40.0 00.0		Shallow Overburden/WT
SHP-01-38B N3-P1*	219.9 219.8	18.0 23.0 33.0 - 35.0	201.9 - 196.9	Deep Overburden
N3-P2*	219.8	4.0 - 9.0	186.8 - 184.8 215.8 - 210.8	Bedrock Water Table
UPGRADIENT AREA		27 (V. E-VA)(V. E-S-E)		
Groundwater Chemistry/Water	T			
SHL-15	260.1			Shallow Overburden/WT
N5-P1*	241.7	144.0 - 149.0	97.7 - 92.7	Bedrock
N5-P2* SHL-20	241.7 235.6	20.0 - 25.0 39.0 - 49.0	221.7 - 216.7 196.6 - 186.6	Shallow Overburden/WT Deep Overburden/Till
SHL-11	235.0	12.0 - 27.0	223.0 - 208.0	Shallow Overburden/WT
SHL-4	226.0	3.0 - 13.0	223.0 - 213.0	Shallow Overburden/WT
SHL-19	239.5	20.0 - 30.0	219.5 - 209.5	Shallow Overburden/WT
SHL-10	249.1	24.0 - 39.0	225.1 - 210.1	Shallow Overburden/WT
SHL-10C SHL-10D	247.1	44.0 - 54.0	203.1 - 193.1	Bedrock
SHL-3	246.5 247.4	24.0 - 34.0	223.4 - 213.4	Bedrock Shallow Overburden/WT
Other Water Level Synoptic		24.0 - 04.0	14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Onanow Oyerburden/yv1
SHP-99-35X	257.8	30.2 - 40.2	227.6 - 217.6	Shallow Overburden/WT
SHL-18	236.8		ļ	Shallow Overburden/WT
SHM-93-18B	236.2	78.5 - 88.5	157.7 - 147.7	Deep Overburden/Till
SHP-95-27X N6-P1*	236.3	040 000	470.4	Shallow Overburden/WT
N7-P1*	257.1 254.4	84.0 - 88.0 65.0 - 69.0	173.1 - 169.1 189.4 - 185.4	Bedrock
N7-P2*	254.4	29.0 - 35.0	225.4 - 219.4	Bedrock Shallow Overburden/WT
SHL-24*	237.8	110.0 - 120.0	127.8 - 117.8	Deep Overburden
* Includes estimated former dayland (C		EOE 0000	

* Includes estimated figures derived from Supplemental Groundwater Investigation (Harding ESE, 2003).

(1) Includes ground surface from published well completion log. If not available, ground surface elevation from Meridian Associates Inc. survey July/Aug 2005 used.

(2) Well completion depths derived from original logs to the extent available. SGI (Harding ESE, 2003) Section 2.6 table and x-section depictions used to derive screen depths if original logs not available.

(3) Information consistent with Table 2-5 designations in Supplemental Groundwater Investigation (Harding ESE, 2003)

Table 4-3
Site-Wide Groundwater Elevations
Shonlov's Hill Landfill

		4/10	0/2006	6/5	/2006	9/18	3/2006	12/15/2006			
Well ID	Reference Elevation ^{1,2} (ft msl)	DTW (TOC) (ft)	Elevation (ft msl)								
SHM-05-39A	222.6	11.23	211.4	9.88	212.7	11.47	211.1	10.52	212.1		
SHM-05-39B	222.6	12.05	210.6	10.76	211.8	12.24	210.4	15.61	207.0		
SHM-05-40X	224.4	13.99	210.4	12.52	211.9	14.14	210.3	13.16	211.2		
SHM-05-41A	223.5	10.08	213.4	8.44	215.1	10.49	213.0	2.30	221.2		
SHM-05-41B	223.3	9.91	213.4	8.23	215.1	10.32	213.0	9.15	214.2		
SHM-05-41C	223.6	10.15	213.5	8.46	215,1	10.54	213.1	9.35	214.3		
SHM-05-42A	217.8	4.29	213.5	2.80	215.0	4.79	213.0	3,65	214.2		
SHM-05-42B	217.8	4.28	213.5	2.70	215.1	4.75	213.1	3.63	214.2		
SHM-99-31A	215.4	2.51	212.9	1.07	214.3	3.72	211.7	1.91	213.5		
SHM-99-31B	215.4	3.60	211.8	2.41	213.0	3.91	211.5	3.00	212.4		
SHM-99-31C	215.8	3.87	211.9	2.61	213.2	4.22	211.6	3.25	212.6		
SHM-99-32X	222.3	9.58	212.7	8.14	214.2	9.81	212.5	8.89	213.4		
SHP-05-47A	218.5	5.36	213.1			5.68	212.8	4,68	213.8		
SHP-05-47B	216.3	3.21	213.1	-		3.63	212.7	2.74	213.6		
SHP-05-48A	217.0	3.54	213.5	2.61	214.4	4.21	212.8	Couldn't A	ccess		
SHP-05-48B	218.4	5.01	213.4	4.02	214.4	5.55	212.9	4.83	213.6		
SHP-05-49A	217.8	4.42	213.4	5.00	212.8	5.81	212.0	5.27	212.5		
SHP-05-49B	216.2	Dry	Dry	3.13	213.1	4.69	211.5	4.22	212.0		
SHP-99-33A	224.1	12.12	212.0	10.64	213.5	12.66	211.4	11.56	212.5		
SHP-99-33B	223.7	11.92	211.8	10.69	213.0	12.16	211.5	11.32	212.4		
SHP-99-34A	225.7	Dry	Dry	11.54	214.2	Dry	Dry	12.60	213.1		
SHP-99-34B	225.6	13.26	212.3	12.02	213.6	12.92	212.7	12.38	213.2		
WP-01	213.4	Dry	Dry	1.25	214.7	Dry	Dry	1.28	214.7		
EW-01 pilot	228.0	13.82	214.2	12.11	215.9	14.04	214.0	13.10	214.9		
EW-04 pilot	228.1	14.10	214.0	12.14	216.0	14.43	213.7	13,28	214.8		
SHL-13	221.8	6.90	214.9	5.68	216.1	7.29	214.5	6.39	215.4		
SHL-21	260.0	45.04	215.0	43.69	216.3	45.71	214.3	44,55	215.5		
SHL-22	220.6	6.82	213.8	5.13	215.5	7.14	213.5	6.08	214.5		
SHL-23	242.3	27.29	215.0	25.15	217.2	28.18	214.1	26.26	216.0		
SHL-5	218.6	3.12	215.5	1.91	216.7	4.93	213.7	2.81	215.8		
SHL-8D	221.8	7.36	214.4	5.97	215.8	7.93	213.9	6.89	214.9		
SHL-8S	222.0	7.52	214.5	6.22	215.8	7.73	214.3	6.95	215.1		
SHL-9	223.0	9.06	213.9	7.18	215.8	9.57	213.4	8.38	214.6		
SHM-05-45A	229.5	15.20	214.3	13,55	216.0	15.51	214.0	14,56	214.9		
SHM-05-45B	230.1	15.81	214.3	14.19	215.9	16.12	214.0	15.12	215.0		
SHM-05-46A	229.3	14.75	214.6	13.08	216.2	15.12	214.2	13.97	215.3		
SHM-05-46B	228.7	14.06	214.6	12.39	216.3	14.41	214.3	13.48	215.2		
SHM-93-22C	221.7	7.86	213.8	6.21	215.5	8.26	213.4	7.15	214.6		

		4/10)/2006	6/5	/2006	9/18	3/2006	12/15/2006		
Well ID	Reference Elevation ^{1,2} (ft msl)	DTW (TOC) (ft)	Elevation (ft msl)							
SHM-96-22B	220.4	6.68	213.7	4.98	215.4	6.98	213.4	5.93	214.5	
SHM-96-5B	220.0	5.80	214.2	4.25	215.8	6.26	213.7	5.12	214.9	
SHM-96-5C	219.4	5.25	214.2	3.70	215.7	5.71	213.7	4.62	214.8	
SHP-05-43	261.7	44.86	216.8	41.24	220.5	45.31	216.4	44.61	217.1	
SHP-05-44	259.1	42.07	217.0	51.82	207.3	42.27	216.8	41.87	217.2	
N-1, P-1	231.0	14.72	216.3	14.02	217.0	14.74	216.3	14.52	216.5	
N-1, P-2	231.0	14.51	216.5	13.60	217.4	14.62	216.4	14.13	216.9	
N-1, P-3	231.2	14.28	216.9	15.24	216.0	14.34	216.9	13.94	217.3	
N-2, P-1	223.1	5.68	217.4	5.11	218.0	5.98	217.1	5.75	217.4	
N-2, P-2	223.0	5.91	217.1	5.35	217.7	5.76	217.2	5.51	217.5	
PSP-01	216.1	1.05	217.2	1.53	217.6	0.90	217.0	0.48	216.6	
SHL-11	236.5	18.57	217.9	17.98	218.5	18.81	217.7	18.54	218.0	
SHL-20	237.0	18.93	218.1	18.31	218.7	19.21	217.8	18.90	218.1	
SHL-4	228.1	10.45	217.7	9.49	218.6	10.66	217.4	10.29	217.8	
SHP-01-36X	225.1		ion @ 6.8'	7.29	217.8	obstruct	ion @ 6.8'	8.23	216.9	
SHP-01-37X	223.7	6.72	217.0	6.05	217.7	6.74	217.0	6.49	217.2	
SHP-01-38A	221.8	4.07	217.7	3.50	218.3	4.21	217.6	4.00	217.8	
SHP-01-38B	222.0	4.11	217.9	3.49	218.5	4.28	217.7	4.06	217.9	
N-3, P-1	221.8	5.05	216.8	4.80	217.0	4.74	217.1	4.95	216.9	
N-3, P-2	221.5	4.56	216.9	7.86	213.6	4.69	216.8	4.43	217.1	
N-4, P-1 ³	219.2	**		**			-		***	
N-4, P-2 ³	219.2		240						**	
N-4, P-3 ³	219.2	**			**			**	**	
N-5, P-1	243.7	22.52	221.2	22.21	221.5	23.31	220.4	23.54	220.2	
N-6. P-1	259.9	29.39	227.2	28.60	228.0	30.24	229.7	29.93	226.7	
N-7, P-1	256.6	29.44	227.7	29.70	227.4	29.91	226.7	30	227.1	
N-7, P-2	257.1	18.14	242.8	16.03	244.9	29.95	227.2	17.42	243.5	
SHL-15	260.9	19.41	219.2	17.75	220.9	19.36	241.5	18.41	220.2	
SHL-18	238.6	22.91	218.6	21.42	220.1	19.51	219,1	22.59	218.9	
SHL-19	241.5	29.80	218.8	29.45	219.2	23.32	218.2	29.53	219.1	
SHL-3	248.6	29.70	218.9	28.40	220.2	30.67	217.9	28.87	219.7	
SHM-93-10C	248.6	30.32	218.6	29.22	219.7	29.80	218.8	29.65	219.3	
SHM-93-10D	248.9	29.55	219.0	28.15	220.4	30.54	218.4	28.68	219.8	
SHM-93-10E	248.5	19.07	219.2	17.41	220.9	29.61	218.9	18.06	220.2	
SHM-93-18B	238.3	136597	210,2	13.50	226.3	19.20	219.1	15,15	224.7	
SHL-24	239.8	15.15	223.4	33.05	205.5	15.29	224.5	13.60	224.9	
SHP-95-27X	238.5	35.78	223.4	35.59	223.6	15.96	222.5	36.77	222.4	
SHP-99-35X	259.2	35.78	177.6	35,59	223.6	36.29	222.9	36.77	222.4	

NA=Not Available (survey data not available)

Notes:

1. All ground surface and reference elevations based on field survey performed by Meridian Associates, Inc. between

July and August 2005 except SHL-10, which is based on groundwater monitoring well completion log by Con-Test Inc. 2. Elevations based upon project system, reported to be National Geodetic Vertical Datum of 1929 (NGVD29).

		Groundwate	Table 4 or Sample Anal	ysis and Proc	edures			
			Shepley's Hill Devens, Massa					
Parameters	April 2006 Method	June 2006 Method	September 2006 Method	December 2006 Method	Sample Container	Minimum Volume	Preservative	Holding Time
Volatile Organic Compounds	NS	SW846 8260B	NS	SW846 8260B	2 x 40 mL Vials with Teflon septa screw caps	40 mL	HCI to pH <2 No Headspace 4o +/- 2o C	
Arsenic Calcium Iron Manganese Magnesium Potasium Sodium Aluminum, Barium, Cadmium Chromium, Copper, Lead Nickel, Selenium, Silver, Zinc	SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B NS NS	SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B	SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B SW846 6010B NS NS NS	SW846 6010B SW846 6010B	1 Liter HDPE	300 mL	HNO3 to pH <2	180 Days except 28 Days Hg
Mercury Hardness	NS NS	SW846 7470A SM 2340B SM 9014 / EPA	NS NS	SW846 7470A SM 2340B EPA Method			NaOH to pH >12	
Cyanide	NS	Method 335.2	NS	335.2	500 ml HDPE	500 mL	40 +/- 20 C	14 Days
Total Dissolved Solids Chloride Nitrate as N Sulfate Alkalinity Turbidity	NS SM 9251 SM 4500NO3-F SM 9038B SM 2320B SM 2130B	SM 2540C / EPA 160.1 SM 9251 SM 4500NO3-F SM 9038B SM 2320B SM 2130B	NS SM 9251 SM 4500NO3-F EPA 300.0 SM 2320B SM 2130B	EPA 160.1 SM 9251 SM 4500NO3-F EPA 300.0 SM 2320B SM 2130B	500 mL HDPE	100 mL	4° +/- 2° C	48 Hours 28 Days 48 Hours 28 Days 14 Days None
Biochemical Oxidation Demand - 5 Day	NS	SM 5210B / EPA 405.1		EPA 405.1	1 Liter HDPE	1 Liter	4° +/- 2° C	48 Hours
Total Suspended Solids	NS	SM 2540D / EPA 160.2	NS	EPA 160.2	1 Liter HDPE	1 Liter	4° +/- 2° C	7 Days
Chemical Oxidation Demand	NS	SM 5220D / EPA 410.4	NS	EPA 410.4	250 mL HDPE	250 mL	H2SO4 to pH <2	28 Days
Total Organic Carbon	NS	SW 9060	NS	SW 9060	2 x 40 mL Vials with Teflon septa screw caps	40 mL	H2SO4 to pH <2 4o +/- 2o C	28 Days
Methane/ Ethane	NS	NS	NS		2 x 40 mL Vials with Teflon septa screw caps	40 mL	HCI to pH <2 No Headspace 4o +/- 2o C	
General Field Parameters				YSI 600 XL \				
рН	YSI 600 XL	YSI 600 XL	YSI 600 XL	Hydra Lab Quanta YSI 600 XL \	N/A	N/A	N/A	N/A
	maan ana o	0.000	5020 222000	Hydra Lab			20307	
Temperature	YSI 600 XL	YSI 600 XL	YSI 600 XL	Quanta YSI 600 XL \ Hydra Lab	N/A	N/A	N/A	N/A
Specific Conductivity	YSI 600 XL	YSI 600 XL	YSI 600 XL	Quanta YSI 600 XL \ Hydra Lab	N/A	N/A	N/A	N/A
Dissolved Oxygen	YSI 600 XL	YSI 600 XL	YSI 600 XL	Quanta YSI 600 XL \	N/A	N/A	N/A	N/A
Oxygen Reduction Potential	YSI 600 XL	YSI 600 XL	YSI 600 XL	Hydra Lab Quanta	N/A	N/A	N/A	N/A

Notes: NS = Not Sampled NA=Not Applicable

Notes: For the June 2006 sampling two methods were used

Table 4-5 Groundwater Analytical Results LTMMP - June, 2006 Sampling Event Shepley's Hill Landfill Devens, Massachusetts

Analaytical	Units	MCL or ROD									\$	Samp	ple ID										.)
Parameter	17-11	Standard	SHL-03	SHL-	4	SHL-5	SHM96-5B	SHM96-5C	SH	L-9	SHL-10	0	SHM96-10C	SH	L-11	SHL-	19	SHL-20		SHL-22	SHM96	-22B	8HM93-22
	mg																				1	/	
Alkalinity, Total	CaCO3/L		7	43		35	310	370	62		10		180	190		68		250	_	380	290		72
Solids, Total Dissolved	ug/L		35,000	63,000		28,000	370,000	440,000	89,00		36,000		280,000	270,00		120,000		310,000	_	450,000	300,000		140,000
Solids, Total Suspended	ug/L		37,000	5,000	U	5,000 U	35,000	120,000	5,000		25,000	200	6,900	59,00		160,000		5,800		5,000 U			28,000
Cyanide, Total	ug/L	30	5 U		U	5 U	5 U	5 t		U		U	5 U		U	5	U	10		5 (U	5
Chloride	ug/L		1,000 U			1,600	21,000	43,000	5,000		1,000	U	20,000	22,(X)	0	1,200		23,000		29,000	22,000		13,000
Nitrogen, Nitrate	ug/L		110	100	U	100 U	100 U	110	100	U			100 U	180		140		100	U	100 U		U	180
Sulfate	ug/L		10,000 U	10,000	U	20,000	10,000 U	10,000 t	10,00	0 U	10,000	U	22,000	10,00) U	14,000		10,000	U	10,000 U		U	10,000
Chemical Oxygen Demand	ug/L		20,000 U	20,000	U	20,000 U	31,0(X)	95,000	22,00)	20,000	U	20,000 U	36,00	7	20,000	U	20,000	Ü	20,000 U			20,000
BOD, 5 day	ug/L		2,000 U	2,000	U	2,000 U	2,000 U	5,000	2,000	U	2,000	U	2,000 U	3,500		2,000	U	2,000	U	2,000 U	4,100		2,000
Total Organic Carbon	ug/L		500 U	1,300		6,600	4,000	8,600	7,200	0	500	U	740	3,800		1,400		3,000		3,700	4,900		4,400
Hardness	ug/L		9.700	34,000		40,000	240,000	260,000	66,00	3	12,000		200,000	130,00	0	66,000		190,000		32,000	200,000		120,000
				111				transition and	1000	Tota	al Metals by	MC	P 6000/7000 s	eries									
Aluminum, Total	ug/L	6,870	490	100	U	190	100 U	100 L	100		100	U	100 U	100	U	100	U	100	U	100 U	100	U	120
Arsenic, Total	ug/L	10	5 U	5	U	6	2,760	51	21	100	5	U	12	700		1,790		346		167	3,440		17
Barium, Total	ug/L	200	10 U	20		10 U	40	60	10		10	U	10 U	70		30		100		10	70		120
Cadmium, Total	ug/L	5	5 U	-5	U	5 U	5 U	5 U	1 5	U	5	U	5 U	- 5	U	5	U	5	U	5 U	5	U	5 1
Chromium, Total	un/L	100	10 U	10	U	10 U	10 U	10 L		Ü	10	U	10 U	10	U	10	U		U	10 U		U	10 1
Copper, Total	ug/L	10.000	10 U	10	U	10 U	10 U	10 L		U	10	U	10 U	10	U	10	U		U	10 U		Ü	10 t
Iron, Total	ug/L	9,100	540	210	-	2.900	27,000	89.000	7.500		50	U	50 U	61.00		100,000		6,900	-	670	67,000		650
Lead, Total	ug/L	15	10 U		U	10 U	10 U	10 U		U		Ü	10 U	10	U	10	U		U	10 U		U	10 L
Manganese, Total	ug/L	1715	20	400	-	490	8,500	4,900	380		10	U	40	2,200	Rell	2,400	17	6,700		2,900	2,100	-	110
Mercury, Total	utt/L	2	0.2 U	0.2	U	0.2 U	0.2 U	0.2 U		U	0.2	U	0.2 U	0.2	Ü	0.2	U		U	0.2 U		U	0.2 L
Nickel, Total	ug/L	100	25 U		U	25 U	25 U	25 U		U	25	U	25 U	25	U	25	U		Ü	25 U		U	25 t
Scienium, Total	ug/L	50	10 U		U	10 U	10 U	10 U		U	10	U	10 U	10	U	10	U		U	10 U		U	10 1
Silver, Total	ug/L	7	7 U	7	Ü	7 11	7 U	7 0		Ü	7	U	7 U	7	U	7	U		U	7 U		U	7 1
Sodium, Total	ug/L	20,000	2,000 U	4,600		2.900	28.000	38,000	2,900		2,000	11	9,000	24,000		2,800	-	30,000	-	39,000	29,000		10,000
Zinc. Total	ug/L	900	50 1	50	U	50 U	50 U	50 U		U	50	11	50 U	50	U	100	_		U	50 U		U	50 1
The second secon				1 22	-		-		1 200			anics	s by MCP 8260			1100	_	- 20	0 1	200 0	1 20		20 0
1.1-Dichloroethane	uo/L	70	0.75 U	0.75	U	0.75 U		0.92	0.0003		0.75	U	0.75 U	0.75	U	0.75	U	0.75	U	1.2	1.2	-	0.75 L
Benzene	ug/L	5	0.5 U		Ü	0.5 U	0.78	1.4	0.5	U	0.5	U	0.5 U	1.5		0.5	U	0.74	-	0.5 U		_	1.5
Chlorobenzene	ug/L	100	0.5 U		U	0.5 U	0.98	2	0.5	U	0.5	U	0,5 U	0.57		0.5	U	100000000000000000000000000000000000000	U	0.56	0.98	_	0.5 L
Chloroethane	ug/L	1	1 U		U	1 0	1.9	i u	919.	U	1	U	I U	1	U	1	U		Ü	1.8	1.8		1 1
cis-1.2-Dichloroethene	ug/L	70	0.5 U	0.5	U	0.5 U	2.4	2.5	0.5	Ü	0.5	U	0.5 U	1.7	- 0	0.5	U	0.81	-	2	2.5		0.5 L
Ethyl ether	ug/L	1000	2.5 U	2.5	U	2.5 U	16	17	2.5	U	2.5	U	3.8	16	_	2.5	U	0.011	\rightarrow	18	16	_	2.5 L
Tetrahydrofuran	un/L	5000	10 U	10	U	10 U	10 U	150	10	U	10	U	3,8 10 U	10	U	10	U		U	11	10	U	190
Toluene	ug/L	1000	10 U	0.75	U	0.75 U	0.75 U	0.75 U	0.75	II	10	U	10 U	0.75	U	0.75	U		U	0.75 U		U	>100
Field Readings			SHL-03	SHL-4		SHL-5	SHM96-5B	SHM96-5C	SHI	36	SHL-10		SHM96-IOC	SHI		SHL-1		SHL-20	100	SHL-22	SHM96		SHM93-22C
pH		n/a	6,6	6.4		5.8	6.57	6.55	6.46		6.8		7.0	6.4	P.1.1	6.2	(2)	6.5	-	6.5		220	7.5
Specific Conductivity	(nS/cm)	n/a	0.02	0.07		0.09	0.52	0.77	0.12	-	0.03	-	0.36	0.39		0.14	_	0.39	-	0.57	0.56		
Dissolved Oxygen	(mg/L)	n/a	11.01	0.14		0.19	0.17	0.15		_		\rightarrow	- topological	-	_	-	_		-				0.51
Oxidation Reduction Potentia	(mV)	n/a	133.1	61.0		36.0	-75.7	-104.8	-37.6	-	10,95	-	0.63	0.48	_	0,97	_	0.25	-	0.13	0.12		0.13
NOTES:		ible did not stabilize	110000	193,17		30,0	-75.7	-1174.8	-3/.0		156.9		155,7	-51,7		23.4		-30.2		-52.9	-111.7		-138,4

Table 4-6 Groundwater Analytical Results LTMMP - December, 2006 Sampling Event Shepley's Hill Landfill Devens, Massachusetts

Analaytical	Units	MCL or ROD											**************************************			ple ID		megames a secondario	ilip or the in-						_	
Parameter		Standard	SHL-	3	SHL-4		SHL-	5	SHM965-E	SI	IM96-5C	SHL-	9	SHL-1	0	SHM93-1	OC	SHL-11	SHL-	19	SHL-20	1	SHL-22	SHM96-22	B.	SHM93-22
Alkalinity, Total	mg CaCO3/I	14441044	11		62		29		330		70	84		16		190		240	89		250		390	310		330
Solids, Total Dissolved	ug/l		25,00	00	85,000		81,000		380,000	411	,000	160,000		20,000		280,000		290,000	130,000		320,000		470,000	350,000		450,000
Solids, Total Suspended	ug/l		5,900	0	5,000	U	5,000	U	19,000	19	000	5,000	U		U	9,300		32,000	22,000		8,700		5,000 U	63,000		20,000
									M200000							Chromatogr	aphy									
Chloride	ug/l		500	U	5,400		1,000		19,000	39	000	6,000		500	U	22,000	17 11-	24,000	1,300		25,000		26,000	22,000		42,000
Nitrogen, Nitrate	ug/l		210		410		50	U	230	1 2	00	100	U	760		100	U	120	110		100	U	100 U	250		50
Sulfate	ug/I		2,600		4,000	701	5,000		4,700	2,	700	8,600		2,400		21,000		1,500	15,000		15,000		5,600	3,500		20,000
Cyanide, Total	ug/l	200	5	U	5	U	5	U	5 1	J	5 U	5	U	-5	U	5	U	120	5	U	9		5 U		U	5
Chemical Oxygen Demand	ug/l		20,000	U	20,000	U	20,000	U	29,000	31	,000	24,000		20,000	U	20,000	U	24,000	20,000	U	20,000		22,000	31,000		20,000
BOD, 5 day	ng/l		2,000	U	2,000	U	2,000	R	2,000	R 3,	200 I	2,000	R	2,000	R	2,000	U	6,900	2,000	U	2,000	U	2,000 R	4140,000	R	2,000
Total Organic Carbon	ug/L		500	U	1,400		6,300		3,700	6,	300	7,700		500	U	690		3,800	980		2,400		3,400	4,700		2,300
Hardness	ug/l		12,000		55,000		31,000		240,000	26	,000	79,000		18,000		190,000		130,000	74,000		190,000	-	320,000	200,000		330,000
													Tot	al Metals by	MC	P 6000/70	00 se	eries	resconduction at the							
Aluminum, Total	ng/l	6,870	100	U	100	U	190		100	1 1	00 U	100	U	100	U	160		100 U	100	U	100	U	100 U	4.07	U	100
Arsenic, Total	ug/l	10	5	U	.5	U	8	- 5	2,980	150	24	51	3	5	U	10		668	142	1	361		115	3,100		73
Barium, Total	ug/l	200	10	U	30		10	U	50	_ V	54	16		10	U	10	U	79	21		109		12	76		93
Cadmium, Total	ug/l	5	4	U	-4	U	4	U	4 1	1	4 U	-4	U	4	U	4	U	4 U	4	U	4	U	4 U	4	U	4
Chromium, Total	ug/l	100	10	U	10	U	10	U	10 1	J	10 U	10	U	10	U	10	U	10 U	10	U	10	U	10 U	10	U	10
Copper, Total	ug/l	10,000	10	U	10	U	10	U	10 1	1	10 U	10	U	10	U	10	U	10 U	10	U	10	U	10 U	10	U	10
Iron, Total	ug/l	9,100	50	U	160	-	2.200		31,000	28	000	11,000		50	U	210		58,000	13,000	11.0	7,200		540	74,000		2,700
Lead, Total	ug/l	15	10	U	10	U	10	U	10 1		0 U	10	U	10	U	10	U	10 U	10	U	10	U	10 U	10	U	10
Manganese	ng/l	1715	10	U	198		372		9.460	5.	420	580		10	U	70		2.620	1.320		6,370		3,520	2,070		702
Mercury, Total	ug/l	2	0.2	U	0.2	U	0.2	U	0.2	J	.2 U	0.2	U	0.2	U	0.2	U	0.2 U	0.2	U	0.2	U	0.2 U	0.2	U	0.2
Nickel, Total	ug/l	100	25	U	25	U	25	U	25 1)	25 U	25	U	25	U	25	U	25 U	25	U	2.5	U	25 U	25	U	25
Selenium, Total	ug/l	50	10	U	10	U	10	U	10 1	1	0 U	10	U	10	U	10	U	10 U	10	U	10	U	10 U	10	U	10
Silver, Total	ug/i	7	7	U	7	U	7	U	7 1	3	7 U	7	U	7	U	7	U	7 U	7	U	7	U	7 U	7	U	7
Sodium, Total	ug/l	20,000	2,000	U	4,300		2,000	U	28,000	36	000	3,700		2,000	U	8,900	- 7	25,000	2,000	U	29,000		39,000	30,000		24,000
Zinc, Total	ug/l	900	50	U	50)	U	50	U	50 1	J	60 U	50	U	50	U	50	U	50 U	50	U	50	U	50 U	50	U	50
501931(00)//								-				41 441	1	Volatile Org	anics	by MCP 8	3260E	3							-201101	
1,1-Dichloroethane	ug/l	70	0.75	U	0.75	U	0.75	U	0.88	- 0	92	0.75	U	0.75	U	0.75	U	0,75 U	0.75	U	0.75	U	1.1	1.2		1,5
Benzene	ug/l	5	0.5	U	0.5	U	0.5	U	0.63	1 6	5 U	0.5	U	0.5	U	0.5	U	1.5	0.5	U	0.5	U	0.5 U	1.1		0.5
Chlorobenzene	ug/l	100	0.5	U	0.5	U	0.5	U	0,8	3	.7.	0,5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U	0.5 U	0.9		0.5
cis-1.2-Dichloroethene	ug/l	70	0.5	U	0.5	U	0.5	U	2.1	1 2	2	0.5	U	0.5	U	0.5	U	1.4	0.5	U	0.68		2	2,3		1.5
Ethyl ether	ug/l		2.5	U	2.7		2.5	U	2.5	1 2	5 U	2.5	U	2.5	U	6.1		14	2.5	U	9.7		18	17		20
Methyl tert butyl ether	ug/l	70	1	U	1	U	- 1	U	1 1	1	I U	1	U	1	U	1	U	I U	1	U	1	·U	I U	1	U	1.1
Tetrahydrofuran	ug/l		10	U	10	U	10	U	10 T	1	10	10	U	10	U	10	U	10 U	10	U	10	U	37	10	U	10
Field Readings			SHL-0	13	SHL-4		SHL-5		SHM96-5B	SI	M96-5C	SHL-	9	SHL-1	2	SHM96-1	oc.	SHL-11	SHL-	19	SHL-20)	SHL-22	SHM96-22B		SHM93-220
pH			6.8		5.6	_	6.3		7.0	-	6.9	6.8		6.5		7.5		6.4	6.3		6.5		6.9	6.9		7.5
Specific Conductivity	(uS/cm)		0.02	1	0.20	\neg	0.11		0.75		0.96	0.23		0.04		0.43		0.59	0.25		0.53		0.76	0.76	-	0.75
Dissolved Oxygen	(mg/L)		9.53		**	-	1.83	_	1.56	-	1.74	0.68		9.93	_	0.43		3.30	0.25		0.28		0.70	0.10	-	2.50
Oxidation Reduction Potential	(mV)		121.0		74.0	_	-136.8		-77.4	-	-81.6	-18.2	-	175.0	-	28.0	-	-74.0	2.0		-38.0		-47.6	-22.6		-162.0

Groundwater (Laboratory) Analytical Results
PMP - April, June, September, and December Sampling Events
Shepley's Hill Landfill
Devens, Massachusetts DOWNGRADIENT - MOLUMCO ROAD 1.10 1.70 3.50 0.56 | 120 | 350 | 270 | 120 APR-06 T 08-P01-06 T 20-SEP-06 T 08-DEC-06 T 09-DEC-06 Turbidity Turisidity

Alkalinity, Twtal

Chlaride

Nitragen, Nitrate

Sulfate

Tutal Metals by MCP 6000/7000 series

Avsenie, Total

Io

Calcium, Total

Iran, Tutal

Magnesium, Total

Manganee, Tutal

Potassium, Total

Manganee, Tutal

Sodium, Total

Calcium, Total

Sodium, Total

Sodium, Total

Sodium, Total

Calcium, 300 15,000 320 10,000 170 6,300 150 10,000 450 51,000 100 10,000 3,420 3,510 26,000 28,000 42,000 44,000 3,900 4,200 940 1,000 5,500 5,500 12,000 11,000 270 45,000 71,008 6,000 2,000 11,000 12,000 634 129,000 100,000 38,000 8,800 25,009 48,000 72 29,000 16,000 3,200 1,210 5,100 8,700 3,610 30,000 48,000 4,400 1,100 6,400 11,000 4,070 53,000 66,000 8,600 1,430 7,300 19,000 289 48,000 86,000 6,200 2,000 14,000 248 48,000 77,000 6,700 2,170 12,000 15,000 415 120,000 36,000 26,000 7,600 15,000 412 100,000 26,000 18,000 6,420 10,000 56 16,000 7,500 840 543 2,500 9,400 9,100 U 6.5 U 4,250 1.00 U 300 1.00 U 1,090 SHX-99-32X SHP-99-31C NITO INTO INTO INTO INTO INTO INTO INTO 11-APE-04 (98-879-06) (20-20-06) MCL or ROD Std. Turbidity Alkalinity, Total
Chloride
Nitrogen, Nitrate
Sulfate
Total Metals by MCP 6000/7000 series
Assenic, Total
Culcium, Total
Icon, Total
Magnessium, Total
Manganess, Total
Potassium, Total
Sofium, Total
Sofium, Total
20,000 370 360 45,000 43,000 210 100 U 10,000 U 10,000 U 420 40,000 140 2,400 470 39,000 100 1,600 44,000 47,000 330 100 10,000 U 10,000 168 90,000 56,000 14,000 4,700 14,000 273 81,000 46,000 13,000 3,700 17,000 305 95,000 54,000 16,000 4,000 17,000 301 100,000 57,000 17,000 4,680 17,000 186 90,000 67,000 14,000 4,100 14,000 202 88,000 74,000 14,000 4,000 176 82,000 59,000 12,000 3,150 13,000 Notes: 1. Water table did not stabilize 9,100 2.5 U 945 DOWNGRADIENT - WOODS 11-APR-ON TO OK-BUNCHO TO 20-JBB-ON TO 00-DBC-ON TO 00-DB 18-00-18-00 3 18-00-18-0 3 25-00-18-0 3 18-0 14.APR-06 g 09-JUN-08 g 11-SEP-08 g 07-DE17-08 g 0005298-12 d 10006076-07 d 106135-6-22 d 10617726-03 d NIU mg CaCXIM ug1 ug1 100 330 270 Eurbidity 150 270 220 190 170 2.1 0.63 180 370 28,000 290 10,000 Alkalinity, Total
Chloride
Nitrogen, Nitrate
Sulfate
Total Metals by MCP 6000/7000 series 350 13,000 160 10,000 310 12,000 100 U 10,000 340 11,000 100 1,000 330 11,000 U 160 1,000 U 350 42,000 100 10,000 340 40,000 100 10,000 350 36,000 120 1,000 18 16 1,000 U 1,300 100 U 100 10,000 U 10,000 614 88,000 18,000 12,000 2,900 4,200 2,280 54,000 94,000 6,600 1,880 14,000 2,420 49,000 100,000 7,100 1,600 14,000 2,720 2,730 47,000 56,000 100,000 100,000 6,800 7,300 1,600 1,900 14,000 14,000 16,000 16,000 Total Metals by MCP 6 Arsenic, Total Calcium, Total Iron, Total Magnessium, Total Manganese, Total Potassium, Total Sodium, Total Dissolved Gases by GC Ethane 266 58,000 73,000 9,700 1,600 20,000 36 11,000 5,600 2,200 663 2,500 3,700 626 93,000 18,000 13,000 3,000 4,400 37,000 666 97,000 19,000 13,000 3,080 4,300 5 U 6,100 320 1,200 50 2,500 U 2,000 U 241 50,000 63,000 8,400 1,400 18,000 276 57,000 71,000 9,600 1,500 18,000 296 67,000 82,000 11,000 1,560 20,000 U 5 5,400 220 1,200 20 U 2,500 U 2,000 fgn fgn fgn fgn fgn fgn 9,160 1715 0.5 0.813 NEARFIELD AREA SHL-22B 14-AFR-06 12-JUN-06 2 15-307-00 12-308-10 0 000298-13 0 10008216-06 0 10613730-13 0 10617995-11 0 1 0-4.01-05 3 21.6EP-00 0 000076-02 0 1.0013556-17 0 1.0013556-17 0 1.0013 30076-63 \$\frac{21-SEP-08}{8}\$ \$\frac{1}{8}\$ \$190 \$\frac{1}{8}\$ \$29 \$\frac{1}{8}\$ \$190 \$\frac{1}{8}\$ \$29 \$\frac{1}{8}\$ \$190 \$\frac{1}{8}\$ \$290 \$\frac{1}{8}\$ \$190 \$\frac{1}{8}\$ \$00 \$\frac{1}{1}\$ \$190 \$\frac{1}{1}\$ \$00 \$\frac{1}{1}\$ \$00 \$\frac{1}{1}\$ \$00 \$\frac{1}{8}\$ \$00 \$\frac{1}{8 MCL or ROO Stat 5
NTU CASSAU

021

021

021

1021

7000 series 5066-12 B L06 Turbidity
Alkalinity, Total
Chloride
Nitrogen, Nitrate
Sulfate
Total Metals by MCP 6000/7000 series
Arsenic, Total 2.5 0.43 4.3 3 1,200 1,100 240 139 10,000 U 10,000 U 2.6 75 10,000 100 10,000 3.1 400 30,000 100 10,000 1.2 380 29,000 100 U 10,000 U 5.3 J 5.3 J 3.3 2,000 J 290 6,300 430 310 21,000 160 10,000 U 200 310 22,000 250 3,500 0.42 3.6 2,800 210 5,000 6.1 62 5,000 100 10,000 1.2 82 6,500 100 5,000 1.6 390 26,000 100 5,600 \$1 29,600 11,000 1,900 580 2,500 3,700 167 100,000 670 14,000 2,900 5,800 39,000 3,690 61,000 66,000 11,000 2,200 15,000 30,000 3,110 64,000 64,000 11,000 2,600 14,000 Arsenic, Total
Calcium, Total
Iron, Total
Magnesium, Total
Manganese, Total
Perassium, Total
Sadium, Total
 ng1
 5
 U
 5
 U

 ng1
 2,700
 1,800
 1,92
 1

 ng4
 120
 70
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 5 2,500 50 200 15 2,500 2,000 21 25,000 8,000 1,700 410 2,500 3,800 21 22,000 7,500 1,500 380 2,500 2,900 171 110,000 710 14,000 2,800 6,400 109 100,000 680 14,000 3,100 5,700 3,100 67,000 74,000 12,000 2,070 16,000 2,760 68,000 27,000 11,000 8,500 11,000 1,570 79,000 15,000 13,000 10,000 9,800 2,980 78,000 31,000 13,000 9,460 10,000 5 2,800 340 280 30 2,500 2,000 2,110 9,160 1715 Ü | SHM-96-5 SHL-8S SHL-8D SHL-21 | 100 Eurlidity Turnidity
Alkalinity, Total
Chloride
Nitrugen, Nitrate
Sulfate
Total Metals by MCP 6000/7000 series CoCO3 ug t ug l 420 5,600 5 U 20,000 J 80 2,500 889 2,500 7,600 ug/I 47 \$1 37
79,000 77,000 80,000
94,000 89,000 62,000
11,000 11,000 11,000
4,600 4,900 4,900
18,000 16,000 16,000 5 U 5 U
3,100 3,800
60 70
660 680
380 150
2,500 U 2,500 U
5,600 5,700 Arsenic, Total
Arsenic, Total
Calcium, Total
Iron, Total
Magnesium, Total
Mangauese, Total
Potassium, Total
Sodium, Total 24 88,000 28,000 12,000 5,420 17,000 5 U 5 U
19,000 18,000
50 U 50
2,300 2,500
30 2
2,500 U 2,500 U
4,900 6,100 5 U 17,000 50 U 2,500 207 2,500 U 8,000 5 U 3,900 50 U 670 61 2,500 U 5 U 9,400 60 820 U 10 2,500 U 3,200 U 9,100 U 1715 POND AREA SHL-13 SHP-37X SHP-01-38A 15-478-00 \$\frac{1}{2}\$ (\$\text{DECOSTATO}\$ \$\text{DECOSTATO}\$ \$\text{DECOSTATO}\$ \$\text{DECOSTATO}\$ \$\text{ MCL or ROD Std. Furbidity Alkalinity, Total Chloride Nitrogen, Nitrate Sulfate Total Metals by MCP 6000/7900 series 34 43,000 100 7,200 31 25 56,000 56,000 150 100 U 10,000 U 10,000 U 26 24 40,000 53,000 100 U 100 U 6,500 8,300 U 25 21 45,000 15,000 100 U 100 U 10,000 U 10,000 U
 160
 96
 140

 22,000
 15,000
 22,000

 120
 110
 130

 10,000
 U
 10,000
 U
 12,000
 98 18,000 100 12,000 U U 22 4,400 2,700 840 120 2,500 15,000 Total Metals by M Arsenic, Total Calcium, Total Iron, Total Mugnesium, Total Munginese, Total Potassium, Total 10 13,000 1,600 2,300 570 U 2,500 25,000 24 12,900 6,900 2,400 240 2,500 16,000 30 9,900 9,400 1,800 210 U 2,500 25,000 U 5 U 5 10,000 8,200 U 50 U 50 2,000 1,500 50 650 U 2,500 U 2,500 36,000 26,000 \$1 3,890 5,200 700 310 2,500 2,200 550 22,000 26,000 4,300 830 9,100 16,000 496 16,000 24,000 2,600 650 8,600 12,000 623 18,000 24,000 3,200 616 5 9,800 50 1,800 700 3 2,500 33,000 19 9,700 5,300 1,900 155 2,500 21,000 46 4,300 6,100 680 340 2,500 3,200 8,100 12,000 1,400 638 2,500 18,000 9,100 U 1715 odium, Tetal 20,000 UPGRADIENT AREA (Landfill and Perimeter SHL-15 MCL or ROD Std. mg Caccost ng/1 ng/1 54 7,600 190 18,000 43 6,700 430 12,000 60 120 7,100 J 2,400 440 100 U 17,000 1,300 390 350 17,000 J 22,000 100 U 100 U 8,400 8,600 160 25,000 100 U 28,000 69 51 85 23,000 21,000 J 24,000 100 U 2,700 350 30,000 26,000 23,000 Nitrogen, Nitrate Sulfate ug 5 18
ug 5 29,000
ug 1 280
ug 1 2,800
ug 1 60
ug 1 4,700
ug 3 5,000 16 18,000 898 2,200 130 3,800 4,400 44 20,000 1,300 2,800 140 4,900 5,900 93 31,000 18,000 2,800 1,880 3,800 2,000 1 1,930 96,000 9,100 13,000 6,690 4,900 22 130,000 65,000 14,000 370 20,000 4,940 72,000 30,000 10,000 6,100 5,900 48,000 5,800 1,400 70 6,300 0.100

Last Rev. 8/28/2007

Table 4-8 In-Situ Water Quality Results PMP - April, June, September, and December Sampling Events Shepley's Hill Landfill Performance Monitoring Plan Wells Devens, Massachusetts DOWNGRADIENT (MOLUMCO ROAD) pH 6.54 6.69 6.73 6.90 6.85 6.81 7.01 6.62 7.00 6.89 Cond 0.886 0.847 1.009 0.992 1.046 0.894 0.773 0.589 0.772 0.935 0.812 0.73 1.34 0.09 0.18 0.00 0.25 0.57 0.07 0.93 0.14 2.2% Temp 10.18 15.63 10.10 10.05 10.17 10.17 13.88 10.16 13.80 13.99 13.47 Time 1203 1229 1004 1435 1549 1628 1130 1306 1012 1227 1410 EN/ORP -22.9 -65.9 -92.0 -91.7 -91.0 -71.8 -130.0 -113.3 -164.6 -7.7 DO 0.39 0.56 0.11 0.26 0.04 0.20 0.64 0.10 0.20 NR 0.35 8/4/2005 8/4/2005 9/6/2005 9/21/2005 3/17/2006 3/24/2006 4/11/2006 6/13/2006 9/25/2006 12/12/2006 Time 1161 1235 951 1452 1610 1619 1330 1337 843 853 1363 Time 1318 1403 1020 1502 1534 1454 1157 1306 1215 1434 Cond 0.506 0.589 0.672 0.604 0.483 0.563 0.337 0.306 0.398 0.625 pH 6.66 5.39 6.44 6.34 7.04 6.69 6.35 6.48 6.68 pH 6.14 5.57 6.63 6.52 6.64 6.27 6.65 6.76 6.79 6.93 0.64 0.46 0.15 0.27 0.00 0.78 0.52 0.13 NR 0.68 7emp 9.64 12.2 9.68 9.63 10.65 10.56 12.70 11.27 13.04 9.38 0.765 0.850 0.922 0.895 0.955 1.011 0.589 0.499 0.599 0.638 0.637 9.92 11.87 9.84 9.82 10.59 10.50 11.59 10.05 11.48 12.30 9.99 8/4/2005 8/4/2005 9/6/2005 9/21/2005 3/17/2006 3/24/2006 4/11/2006 6/12/2006 6/12/2006 12/6/2006 -54.6 -57.8 -91.3 -72.9 -110.0 -130.0 -98.7 -92.9 -123.3 -105.0 -42.5 -37.1 -84.8 -89.8 -38.0 8.0 -110.0 -99.1 -81.8 -132.2 -26.4 Profile
Profile
Profile
Profile
Profile
Profile
Purge
Profile
Purge
Purge
Purge Profile
Profile
Profile
Profile
Profile
Profile
Purge
Purge
Purge
Purge 8/4/2005 8/4/2005 9/6/2005 9/21/2005 3/17/2006 3/24/2006 4/11/2006 9/20/2006 12/6/2006 Purge Profile Profile Profile Purge Purge Purge Purge SHP-99-31E SHP-99-31 SHP-99-3 ENORP 100.9 4.5 -140.6 -81.3 -101.0 -33.0 -52.0 Temp 9.82 11.85 9.75 9.7 9.88 9.92 10.58 Eh/ORP 47.8 -60.6 -89.2 -106.6 -97.0 -85.0 -107.0 pH Cond 6.22 0.298 6.19 0.410 6.32 0.430 6.24 0.380 6.82 0.227 6.08 0.377 6.35 0.173 Time 1142 1240 850 1359 1442 1545 1318 Cond 1.036 1.031 1.050 1.025 1.100 1.092 0.671 pH 6.55 6.53 6.57 6.55 6.63 6.29 6.56 DO 0.43 1.03 0.10 0.13 0.00 0.30 0.57 0.45 0.59 0.05 0.10 0.00 0.08 0.40 pH Cond 5.58 0.231 8/3/2005 8/3/2005 9/6/2005 9/6/2005 3/17/2006 3/24/2006 4/11/2006 5/16/2006 6/12/2006 9/20/2006 11/7/2006 Time 1126 1157 910 1419 1459 1517 1412 Temp 9.69 10.86 9.62 9.50 9.77 9.81 9.98 8/3/2005 8/3/2005 9/6/2005 9/21/2005 3/17/2006 3/24/2006 4/11/2006 5/16/2006 6/12/2006 9/20/2006 (1) Could not Profile
Purge
Profile
Profile
Profile
Profile
Purge
Profile(1)
Purge
Purge
Purge 1/3/2005 9/6/2005 9/6/2005 9/21/2005 3/17/2006 3/24/2006 4/11/2006 5/16/2006 6/12/2006 9/20/2006 12/7/2006 Purge Profile Profile Profile Purge Purge Purge Purge Purge 6.26 6.10 5.97 0.240 0.384 0.107 6.01 0.118 6.06 0.175 5.79 0.161 y 41 below top of co 1208 1146 1455 -85.2 -80.5 -18.0 -98.0 -123.4 -65.2 6.54 6.68 6.59 0.17 NR 0.41 1130 1135 1424 0.12 NR 0.19 11.40 11.22 9.79 0.661 0.731 1.932 6.35 6.36 5.92 0.224 0.363 0.362 SHX-99-32X Eh/ORP -64.9 -69.9 -113.0 -129.4 -115.0 -99.0 -104.0 -77.70 -131.50 -74 Time 1305 1344 759 1329 1414 1457 1225 1246 1334 925 1256 pH 6.51 5.58 6.65 6.61 6.75 6.48 6.55 6.66 6.45 6.59 6.31 Cond 0.959 0.942 1.026 0.979 1.006 1.074 0.718 0.677 0.757 0.749 1.006 0.85 0.71 0.21 0.19 0.00 0.65 0.09 0.16 NR 0.24 7emp 9.82 12.06 9.76 9.72 9.80 9.90 10.74 9.85 10.05 10.90 10.02 Profile Purge Profile Profile Profile Purge Purge Purge Purge Purge 8/5/2005 8/5/2005 9/6/2005 9/21/2005 3/17/2006 3/24/2006 4/11/2006 5/16/2006 6/8/2006 9/20/2006 12/7/2006 DOWNGRADIENT (WOODS SHM-05-41A SHM-05-41B SHM-05-41C Eh/ORP
-24.6
14.0
38.7
-8.1
28.0
72.0
-13.6
75.5
-8.0
-57.8
91.3 Eh/ORP -84.3 -62.0 -156.1 -169.7 -178.0 -143.0 -147.0 -148.6 -141.6 -173.6 -44.5 DO 0.42 0.53 0.05 0.10 0.02 0.20 0.57 0.06 0.15 NR 0.06 Time 954 1105 1109 1227 1407 1327 953 1403 1155 1319 1456 pH 6.36 6.28 6.37 6.30 6.48 6.22 6.32 6.49 6.27 6.40 6.61 DO 0.47 0.86 0.10 0.30 0.42 0.36 0.07 0.20 NR 1.09 Eh/ORP -27.5 -58.2 -86.6 -83.9 -97.0 -91.0 -89.4 -88.7 -78.8 -127.6 19.9 Time 853 1039 1159 1306 1518 1409 1402 1437 1114 1401 1540 Cond 0.786 0.791 0.861 0.822 0.848 0.916 0.595 0.508 0.572 0.764 0.773 Time 911 955 1122 1239 1439 1141 1032 1422 1140 1343 1510 Temp 9.86 12.21 9.73 9.72 10.03 10.06 8.73 9.87 10.39 11.91 9.76 Cond 0.764 0.768 0.870 0.858 0.938 0.584 0.525 0.589 0.790 0.751 Temp 10.15 12.00 10.08 10.06 10.28 10.32 9.61 10.19 10.58 12.66 9.61 pH 6 92 6 70 7 16 7 10 7 20 6 93 6 99 7 21 7 01 7 11 7 20 Temp 10.3 11.84 10.22 10.19 10.35 10.40 11.49 10.35 10.65 11.73 9.75 pH 6 43 6 06 6 46 6 52 6 20 5 73 6 32 6 30 6 30 6 37 6 58 Cond 0.126 0.125 0.271 0.230 0.181 0.261 0.090 0.081 0.116 0.129 0.146 2.26 0.56 0.32 0.21 2.78 2.71 0.40 4.48 0.13 NR 0.21 8/4/2005 8/4/2005 9/6/2005 9/21/2005 3/15/2006 3/24/2006 4/11/2006 6/8/2006 9/20/2006 12/6/2006 Profile Profile Profile Profile Profile Purge Purge Purge Purge Purge Profile Profile Profile Profile Profile Purge Purge Purge Purge Purge Profile Purge Profile Profile Profile Purge Purge Purge Purge Purge 8/4/2005 8/4/2005 9/6/2005 9/21/2005 3/15/2006 3/24/2006 4/11/2006 5/17/2006 6/8/2006 9/20/2006 8/4/2005 8/4/2005 9/6/2005 9/21/2005 3/15/2006 3/24/2006 4/13/2006 5/16/2006 6/8/2006 9/20/2006 SHM-05-42B SHM-05-42A DO Temp Eh/ORP 6.11 11.18 164.0 8/4/2005 9/6/2005 9/22/2005 3/17/2006 3/17/2006 4/14/2006 6/9/2006 9/21/2006 12/7/2006 (1) Not sampled (2) Wetland area pH Cond 5.84 1.026 DO Temp 0.48 11.58* 70.1 Time pH Cond 1443 5.82 0.067 8/4/2005 9/6/2005 9/22/2005 3/17/2006 3/24/2006 4/14/2006 5/16/2006 9/21/2006 9/21/2006 (1) Not sam Purge Purge Purge Purge Purge (2) Purge Purge Purge Purge (1) Purge Purge Purge (2) Purge Purge 6.29 6.66 6.45 6.56 0.575 0.984 1.022 0.620 0.22 0.00 0.51 0.59 -90.2 -92.0 -90.8 -95.0 5.84 6.35 6.31 6.02 0.160 0.115 0.232 0.047 209.5 136.0 78.3 120.0 1425 1345 1420 946 10.86 7.91 8.70 10.27 1412 1329 1409 919 5.39 0.05 3.81 5.26 10.90 7.96 8.56 9.46 10.41 10.35 9.10 1349 1305 1221 1230 1245 1230 5.86 0.042 6.09 0.050 6.38 0.134 5.07 4.90 4.62 0.557 0.778 1.021 0.12 0.16 0.43 Not sampled
 Wetland area flooder SHL-23 SHL-9 Temp Eh/ORP 8.51 67.6 10.49 -18.0 8.47 217.1 9.65 167.0 9.03 137.2 13.22 199.4 9.23 193.0 11.51 231.4 12.70 238.1 EN/ORP -187.8 24.8 -11.1 -94.6 -160.0 -73.0 -61.0 -73.9 -52.9 -22.0 -47.6 Eh/ORP -297.5 -232.5 -40.5 -36.6 30.0 -38.0 -45.0 -30.9 -37.6 -73.3 -18.2 pH 6.66 6.55 6.69 6.65 6.93 6.61 6.74 6.83 6.50 6.78 6.92 Cond 0.826 0.786 0.836 0.858 0.878 0.924 0.553 0.592 0.571 0.738 0.756 pH 4.92 3.91 5.38 5.61 5.39 5.40 5.76 5.74 5.56 6.63 DO 14.80 12.01 8.09 10.88 11.05 9.63 11.02 9.20 11.40 11.54 8/2/2005 8/2/2005 9/21/2005 9/21/2005 3/15/2006 3/23/2006 4/10/2006 5/17/2006 6/9/2006 9/21/2006 12/6/2006 0.49 0.14 0.22 0.52 0.14 0.49 2.20 0.23 0.15 0.68 8/2/2005 8/2/2005 9/7/2005 9/21/2005 3/15/2006 3/24/2006 4/10/2006 5/17/2006 6/9/2006 12/6/2006 Time 836 927 1100 1605 1123 1005 1014 1246 1030 1031 958 0.47 6.05 0.10 0.14 0.89 0.42 0.65 0.06 0.13 0.22 0.70 Temp 10.35 11.2 10.23 10.23 10.38 10.45 9.36 10.39 10.71 10.97 9.29 Time 1115 1159 1012 1523 1325 1022 1037 1400 1539 1036 935 Cond 0 032 0 033 0 175 0 129 0 042 0 245 0 026 0 025 0 021 0 033 Time 855 935 1026 1539 1312 1015 947 1245 1120 1107 1010 pH 6.46 6.16 6.34 6.40 6.68 6.32 6.59 6.62 6.72 6.76 8.42 9.69 9.14 9.50 8.29 7.33 7.37 6.92 9.16 10.69 9.68 0.159 0.155 0.322 0.300 0.170 0.350 0.135 0.102 0.122 0.208 0.231 Profile Purge Profile Profile Profile Purge Purge Purge Purge Purge Profile Profile Profile Profile Profile Purge Purge Purge Purge Purge Profile Purge Profile Profile Profile Purge Profile Purge Purge Purge Purge 4/14/2006 5/17/2006 6/12/2006 2/12/200 SHM-96-22B SHM-96-5 EWORP -104.8 -78.9 -57.2 -61.9 -62.0 -58.0 -58.0 -93.5 -75.7 -160.5 -77.4 Temp Eh/ORP 10.15 -89.7 11.3 -84.3 10.08 -137.6 10.07 -129.6 10.25 -117.0 10.30 -118.0 8.58 -107.0 10.23 -129.8 10.08 -111.7 10.63 -129.3 9.46 -22.6 DO 0.88 0.06 0.15 NR 1.74% Temp 9.6 9.98 10.2 11.42 9.20 ENORP -86.0 -197.5 -104.8 -186.9 -81.5 Cond 0.734 0.844 0.769 0.910 0.963 DO 0.38 0.36 0.07 0.09 0.84 0.45 0.66 0.05 0.12 0.20 0.10 0.44 0.41 0.15 0.11 0.11 0.45 0.70 0.09 0.17 NR pH 6.60 6.77 6.55 6.49 6.89 Time 1321 1411 1153 1253 1602 829 1159 1115 1445 1502 1540 Time 1121 1146 1417 1524 1515 pH 6.64 6.24 6.75 6.67 6.69 6.79 6.53 6.77 6.91 8/2/2005 8/2/2005 9/7/2005 9/7/2005 9/22/2005 3/14/2006 3/24/2006 4/10/2006 5/17/2006 6/8/2006 9/20/2006 12/5/2006 pH 6.41 5.31 6.55 6.51 6.60 6.57 6.63 6.57 6.53 6.97 Cond 0.723 0.726 0.758 0.793 0.641 0.851 0.495 0.522 0.522 0.680 0.749 Temp 9 95 12 58 9 89 9 88 10 03 10 16 10 58 10 12 10 49 12 09 8 28 Time 1452 1529 1129 1630 1217 931 812 1322 1057 1048 1050 Cond 0.816 0.812 0.855 0.852 0.861 0.906 0.511 0.590 0.561 0.724 0.761 8/2/2005 8/2/2005 9/7/2005 9/21/2005 3/15/2006 3/24/2006 4/10/2006 5/17/2006 4/10/2006 5/17/2006 6/8/2006 9/20/2006 12/5/2006 Purge Profile Purge Purge Purge Profile Purge Profile Profile Profile Purge Purge Purge Purge Purge Profile Purge Profile Profile Profile Purge Purge Purge Purge Purge 6/9/2006 9/21/2006 SHL-8D SHL-85 SHL-21
 DO
 Temp
 Eh/ORP

 0.56
 9.58
 -9.0

 0.71
 10.64
 141.2

 0.07
 9.46
 153.5

 0.11
 9.48
 174.2

 0.00
 9.81
 108.4

 0.60
 9.61
 108.4

 2.29
 10.13
 152.0

 2.40
 9.57
 142.0

 1.25
 9.62
 206.2

 N
 9.95-182.9(1)
 1.5

 1.5
 9.42
 140
 Temp Eh/ORP 9.84 -62.7 10.93 -55.4 9.72 107.4 9.73 108.0 9.84 105.0 9.85 123.7 9.04 189.0 9.82 100.3 10.09 145.2 10.14 -266.8(1) 8.65 139.9 8/2/2005 8/2/2005 9/7/2005 9/2/2005 3/17/2006 3/23/2006 4/11/2006 5/16/2006 9/21/2006 12/12/2006 (1) ORP pro-2.05 1.90 1.44 1.15 0.00 1.89 1.39 0.69 0.82 NR 90 % Eh/ORP 153.5 217.0 160.2 168.0 90.0 139.5 153.8 148.0 207.6 pH 6.14 6.03 6.17 6.20 7.83 6.75 6.25 6.47 6.24 6.21 6.58 Cond 0.057 0.056 0.199 0.153 0.118 0.071 0.059 0.038 0.047 0.062 0.089 8/3/2005 8/3/2005 9/7/2005 9/22/2005 3/17/2006 3/24/2006 4/14/2006 5/17/2006 9/25/2006 12/12/2006 DO 4.09 8.70 1.29 3.17 0.00 3.88 8.61 0.28 7.19 Time 1157 1225 749 1148 1240 1522 1328 1533 951 848 1045 Time 1148 1230 808 1208 1229 1509 901 1015 914 1015 pH 6.06 5.67 6.26 6.12 7.34 6.53 6.07 6.32 6.07 6.05 6.46 Cond 0.183 0.188 0.278 0.295 0.175 0.113 0.103 0.096 0.116 0.160 0.189 Time 1011 842 834 1133 1210 1234 1145 1036 1137 1110 pH 5.40 5.54 5.78 5.68 6.85 5.42 5.89 5.86 5.97 6.73 Cond 0.081 0.077 0.238 0.191 0.088 0.253 0.054 0.065 0.077 9.64 10.85 9.4 9.41 9.41 9.42 14.87 9.45 13.67 13.31 Profile Purge Profile Profile Profile Purge Purge Purge Purge Purge Profile Purge Profile Profile Profile Purge Purge Purge Purge Profile Profile Profile Profile Profile Purge Purge Purge Purge Purge 8/2/2005 8/2/2005 9/7/2005 9/22/2005 3/17/2006 3/23/2006 4/10/2006 5/16/2006 6/8/2006 9/21/2006 12/12/2006 POND AREA PSP-01 (pond sample) Eh/ORP -153.4 -167.8 -22.8 59.0 110.0 144.6 103.1 142.0 130.8 6.1(1) Cond DO
0.245 0.69
0.244 0.42
0.370 0.13
0.335 0.17
0.05
0.223 0.16
0.180 0.40
0.900 4.95
0.172 0.14
0.211 NR
0.271 2.62% Temp Eh/ORP
11.3 -153.4
13.02 -167.8
11.10 22.8
11.09 59.0
11.15 110.0
10.73 144.6
11.73 103.1
9.56 142.0
11.84 130.8
11.63 -326 1(1)
10.20 121.1 Eh/ORP 77.9 112.7 163.9 100.5 59.3 84.3 184.6(1) 82.8 751 1041 1041 pH 6.45 6.49 7.63 7.19 6.91 7.08 6.95 DO 1.15 1.73 4.88 10.84 9.19 6.52 NR 1.53 Temp 20.01 19.4 5.61 12.64 10.36 18.79 18.63 8/2/2005 8/2/2005 9/7/2005 9/22/2005 3/14/2006 3/14/2006 4/10/2006 5/16/2006 9/21/2006 12/5/2006 (1) ORP probe; SHP-01-38/ pH 6.32 6.83 6.59 6.51 6.74 6.55 6.61 6.64 Cond 0.245 0.381 0.168 0.303 0.156 0.162 0.092 0.224 0.194 pH 6.18 5.81 6.33 6.37 7.07 6.67 6.31 6.35 6.49 6.66 Time 858 1119 1027 1220 1209 1022 921 1351 1120 0.32 0.77 0.01 0.84 1.58 1.02 0.81 0.20 2.3% 7100 710 710 1222 1250 1219 1300 1646 1531 821 1145 oblum 0.404 0.349 0.197 0.204 0.097 0.147 0.230 0.375 8/3/2005 9/22/2005 3/17/2006 3/24/2006 4/13/2006 5/17/2006 6/9/2006 9/21/2006 12/13/2006 16.02 19.02 7.90 7.68 9.65 11.25 11.90 17.28 10.82 12.2 -13.7 -61.0 -41.3 -48.0 -38.0 -64.1 -47.0 Purge Purge Purge Purge Purge Purge Purge Purge Grab Grab Grab Grab Grab Grab Grab Grab Profile Profile Profile Profile Profile Purge Profile Purge 9/21/2005 3/23/2006 4/10/2006 5/16/2006 SHP-37 Eh/ORP 114.8 -28.4 -101.0 -56.6 -93.0 -75.2 -106.8 -84.0 -61.0 pH Cond 6.21 0.366 6.12 0.486 6.26 0.409 6.04 0.564 6.22 0.290 6.88 0.325 6.20 0.225 6.51 0.381 6.81 0.308 EN/ORP

238.4 Purge

447.7 Purge

-53.0 Purge (1)

-27.6 Purge

53.0 Purge

-90.6 Purge

-90.6 Purge

-66.0 Purge

-72.0 Purge pH Cond 6.31 0.077 6.17 0.344 7.08 0.085 6.67 0.265 6.83 0.047 7.16 0.044 6.68 0.053 6.82 0.069 6.75 0.202 Time 950 1039 941 1150 1116 948 840 1426 1040 Temp 12.84 13.29 8.42 8.87 10.16 10.59 11.36 12.90 9.99 0.43 0.18 0.000 0.18 0.29 0.16 0.09 0.13 2.3% Temp 14.57 17.41 7.10 7.68 9.53 10.67 11.11 15.29 10.18 0.47 0.26 0.00 0.38 0.56 0.24 0.14 0.17 2.9% 8/1/2005 9/21/2005 3/17/2006 3/24/2006 4/13/2006 5/17/2006 6/9/2006 9/21/2006 (1) DO result 7ime 922 1057 1003 1206 1148 1006 903 1408 1100 8/3/2005 9/21/2005 3/17/2006 3/24/2006 4/13/2006 5/17/2006 6/9/2006 9/21/2006 12/13/2006 Purge Purge Purge Purge Purge Purge Purge Purge (1) DO result UPGRADIENT AREA SHL-15 N5-P1 N5-P2 Eh/ORP 75.8 -30.0 -94.0 -81.6 -96.0 -101.2 -78.2 -103.5 -66.0 pH Cond 543 0.176 4.89 0.171 5.98 0.308 6.06 0.297 6.34 0.178 5.62 0.330 5.74 0.128 5.74 0.118 6.00 0.099 6.00 0.187 6.24 0.482 DO 1.28 0.62 0.40 0.17 0.00 0.76 0.58 0.28 0.67 0.40 0.99 Temp 10.04 11.86 10.88 10.76 10.77 10.67 10.14 10.63 13.00 13.14 Cond 0.741 1.404 0.780 0.877 0.539 0.504 0.454 0.68 Temp 17.65 12.32 9.20 10.69 11.33 11.38 12.53 12.63 9.9 Temp 13.78 12.86 9.83 11.26 11.31 11.59 13.12 13.41 11.2 Time 1017 953 905 1128 1022 837 1327 1440 1455 pH 6.41 5.99 6.56 6.53 6.65 6.62 6.61 6.7 0.78 0.30 0.00 0.54 0.72 0.25 0.19 0.23 4.7% Cond 1.348 0.801 1.355 1.483 1.009 1.006 0.936 1.359 1.33 0.89 0.37 0.00 1.09 1.06 0.71 0.23 0.33 2.6% Time 1017 1009 846 1104 1000 818 1306 1420 1510 pH 3.82 6.30 6.38 6.11 6.16 6.31 6.33 6.28 1322 1357 1521 1342 747 1050 916 858 1013 1319 1035 -523.8 -473.9 14.6 39.1 99.0 112.0 40.0 -11.5 -30.9 30.1 91.8 8/1/2005 8/1/2005 8/30/2005 9/22/2005 3/17/2006 3/24/2006 4/13/2006 5/17/2006 6/6/2006 9/25/2006 12/12/2006 Profile Profile Profile Profile Profile Purge Purge Purge Purge -45.4 -48.3 -86.0 -70.4 -107.8 -97.2 -95.2 -121.6 -71.0 Purge 8/5/2005 9/22/2005 3/17/2006 3/24/2006 4/13/2006 5/17/2006 6/6/2006 9/25/2006 12/12/2006 8/5/2005 9/22/2005 3/17/2006 3/24/2006 4/13/2006 5/17/2006 6/6/2006 9/25/2006 12/12/2006 SHM-93-10D DO Temp Eh/ORP
1.96 9.14 -312.9
1.61 14.88 -269.2
1.62 9.44 -2.0
0.00 10.59 -152.0
0.08 10.24 -193.0
0.76 12.20 -5.0
0.42 10.34 -40.0
7.24 13.83 60.5
0.1 13.7 -33 pH Cond 11.02 0.429 9.79 0.422 10.92 0.47 10.43 0.418 7.98 0.482 7.33 0.675 10.80 0.272 9.22 0.189 8.51 0.093 10.98 0.337 11.44 0.464 Note
NR – DO probe mailfunction, no reading. Time 1029 1100 1321 1327 805 1653 1308 923 1105 1219 955 Profile 8/1/2005 8/1/2005 9/6/2005 9/6/2005 9/22/2005 3/17/2006 3/24/2006 4/14/2006 5/17/2006 6/13/2006 9/25/2006 12/13/2006 Purge Profile Profile Profile Purge Purge Purge Purge Purge

Table 4-9 Comparison of Historic Arsenic Concentrations (ug/L) Shepley's Hill Landfill Compliance Point Wells

Devens, Massachusetts

	400 Table 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		evens, mass	aciiusetts			
Sample			Monitoring	Well ID (group of	designation)		
Date	SHL-3 (1)	SHL-4 (2)	SHL-5 (1)	SHM-96-5B (2)	SHM-96-5C (2)	SHL-9 (1)	SHL-10 (2)
Aug-91	35.0	260	23.0	NS	NS	37.0	67.0
Dec-91	120	140	38.0	NS	NS	67.0	120
Mar-93	6.5	2.54	11.4	NS	NS	42.4	280
Jun-93	NS	NS	NS	NS	NS	NS	NS
Nov-96	NS	48.8	12.0	1,440	71	46.9	3.4 B
May-97	<10	73.6 J	<10	3,300 J	43.2	16.1 J	<10
Oct-97	<10	180	<10	2,040	43.1	25.2	209
May-98	<5	37.4	<5	4,300	49.5	15.0	<5
Nov-98	<5.4	89.1	11.5	3,080	46.8	27.2	<5.4
May-99	2.7 B	78.2	5.0 B	3,490	57	71.3	2.7
Nov-99	<1.9	61.3	6.5	2,700	44.8	28.5	<1.9
May-00	<2.5	116	<2.5	5,110	52.2	15.0	<2.5
Nov-00	17.4	91.5	13.8	2,500	40.3	31.4	<4.2
May-01	<4.1	50.8	13.8	3,800	80.5	15.1	<4.1
Oct-01	<1.5	66.0	14.8	1,850	41.1	28.1	<1.5
May-02	2.8 B	47.8 B	11.9 B	3,800	50.4 B	144	4.0
Oct-02	<3.2	66.1	<3.2	1,970	41.3	29	<3.2
May-03	<4.7	26.6	7.3	3,920	55.1	13.4	<4.7
Nov-03	<4.1	13.4	4.7 B	3,380	48.3	30.6	<4.1
May-04	<2.6	27.2	7.4 B	3,950	47.1	19.8	<2.6
Nov-04	<5.8	19.5	6.8 B	2,110	49.5	32.2	<5.8
Jun-05	<4.5	10.1	7.0 B	NS	NS NS	NS NS	<4.5
Jan-06	NS NS	<5	<5	4,130	43	18.0	<5
Jun-06	<5	<5	6	2,760	51	21	<5
Dec-06	<5	<5	8	2,980	24	51	<5
	***			10		*	
Sample				Well ID (group of		·	-
Date	SHM-93-10C (1)	SHL-11 (2)	SHL-19 (2)	SHL-20 (2)	SHL-22 (1)	SHM-93-22B (2	
Aug-91	NS	320	340	98	27	NS	NS
Dec-91	NS	320	710	89	25	NS	NS
Mar-93	21.3	340	390	330	32.9	NS	68.9
Jun-93	18.1	NS	NS	NS	NS	NS	49.8
Nov-96	12.4	332	138	244	24.8	324	44.6
May-97	<10	252 J	<10	<10	<10	318 J	40.4
Oct-97	10.5	366	298	227	34.8	352	<10
May-98	7.5	346	77.5	238	10.6	365	31.6
Nov-98	10.2	376	145	218	<5.4	406	51.1
May-99	10.8 B	431	156	216	12.2 B	707	42.8
Nov-99	8.7	492	176	215	7.3	1,440	33.2
May-00	5.9 J	404	41.4	216	14.6	1,360	34.4
Nov-00	8.8	523	154	172	45	1,180	47.8
May-01	6.9	487	129	186	47.6	1,540	19.7
Oct-01	10.1	573	183	165	44.2	1,670	31.6
May-02	11.0 B	469	66.9	154	55.9 B	2,040	30.5
Oct-02	7.1	648	164	175	77.1	159	30.1
May-03	9.8	498	36.1	197	101	2,070	21.0
Nov-03	<5.2	639	83.6	194	76.4	2,500	29.8
May-04	7.2 B	502	75	136	88.1	1,690	27.8
Nov-04	10.6 B	617	121	156	65.4	2,360	34.9
Jun-05	8.1 B	524	26.3	159	NS	NS NS	15.8
Jan-06	11.0	567	156	189	154	3,320	23.0
Jun-06	12	700	1,790	346	167	3,440	17
Juli-00	14	700	1,100	340	107	3,440	11

Notes:

Dec-06

142 Bold Number indicates cleanup level exceedances (MCL cleanup level is 10 ug/L)

B = Value within five times of the greater amount detected in the equipment or preparation blank

115

3,100

73

LTMP = Long term monitoring plan (sampled semi-annual only)

668

NS = Not Sampled <5 = Concentration less than the indicated method detection limit

	4-10

Comparison of Historic Iron, Manganese, and Sodium Concentrations (ug/L) Shepley's Hill Landfill Compliance Point Wells

Devens, Massachusetts

		HI HETTING	9100000		Historical (Concentrations	for Iron (ROD)	Cleanup Leve	el is	9,100)	# SEA	19 - (1 94)			P PETER OF
Sample															
Date	SHL-3 (1)	SHL-4 (2)	SHL-5 (1)	SHM-96-5B (2) SHM-96-5C (2)	SHL-9 (1)	SHL-10 (2)	SHM-93-100	C (1)	SHL-11 (2)	SHL-19 (2)	SHL-20 (2)	SHL-22 (1)	SHM-93-22B (2	SHM-93-22C (1
May-02	30	1,520	1,110	40,100	49,200	19,300	<17.0	71		55,400	13,900	7,010	606	92,000	916
Oct-02	<22.6	4,380	1,120	18,700	44,800	8,430	<22.6	53		64,500	27,600	9,100	707	446	778
May-03	56	2,790	1,140	37,400	78,900	3,280	47	41		62,200	6,740	7,720	626	88,600	885
Nov-03	540	1,840	1,720	32,000	63,200	7,820	<45.0	<45.5		68,700	15,400	8,190	444	87,000	904
May-04	30 B	4,330	1,900	29,000	71,100	5,680	<19.2	32	В	60,500	13,400	5,640	541	59,500	1,010
Nov-04	<35.5	6,690	2,740	21,600	55,400	8,580	39 B	48	В	63,000	20,000	6,630	469	82,900	1,340
Jun-05	<37.9	1,220	2,930	NS	NS	NS	<37.9	<37.9		59,400	6,680	5,980	NS	NS	572
Jan-06	NS	280	2,600	39,000	100,000	4,400	<50	490		57,000	13,000	5,500	650	70,000	740
Jun-06	640	210	2,900	27,000	89,000	7,500	<50	<50		61,000	100,000	6900	670	67,000	650
Dec-06	<50	160	2,200	31,000	28,000	11,000	<50	210		58,000	13,000	7,200	540	74,000	2,700

					Historical Con-	centrations for	r Manganese (R	OD Cleanup Leve	el is 1715)			10 TO		
Sample					-x	M	onitoring Well I	D (group designa	tion)					
Date	SHL-3 (1)	SHL-4 (2)	SHL-5 (1)	SHM-96-5B (2	2) SHM-96-5C (2)	SHL-9 (1)	SHL-10 (2)	SHM-93-10C (1)	SHL-11 (2)	SHL-19 (2)	SHL-20 (2)	SHL-22 (1)	SHM-93-22B (2)	SHM-93-22C (1)
May-02	14 B	573	289	11,000	4,110	446	1 B	45 B	2,010	2,280	5,950	1,370	1,680	425
Oct-02	<2.5	436	259	13,000	4,110	484	<2.5	47	1,990	3,400	7,200	1,760	12	407
May-03	2	843	273	9,500	4,230	364	1	37	2,180	1,200	7,260	1,860	1,340	324
Nov-03	20	324	340	10,600	4,260	412	<1.6	46	3,030	2,100	7,760	2,110	1,950	425
May-04	<1.9	856	332	8,910	3,960	336	<1.9	30	2,340	1,510	6,560	1,960	798	368
Nov-04	1 B	1,240	439	10,800	3,970	373	1 B	48	2,570	2,950	5,630	2,460	1,590	385
Jun-05	2 B	361	476	NS	NS	NS	2 B	28	2,380	1,090	6,270	NS	NS	218
Jan-06	NS	200	500	7,500	4,600	310	<10	60	2,400	980	5,500	2,600	1,700	250
Jun-06	20	400	490	8,500	4,900	380	<10	40	2,200	2,400	6,700	2,900	2,100	110
Dec-06	<10	198	372	9,460	5,420	580	<10	70	2,620	1,320	6,370	3,520	2,070	702

			- EE		Historical Co	ncentrations	for	Sodium (F	ROD	Cleanup Level is	s 20,000)						
Sample		Monitoring Well ID (group designation)															
Date	SHL-3 (1)	SHL-4 (2)	SHL-5 (1)	SHM-96-5B (2)	SHM-96-5C (2)	SHL-9 (1)		SHL-10 ((2)	SHM-93-10C (1)	SHL-11 (2)	SHL-19 (2)	SHL-20 (2)	SHL-22 (1)	SHM-93-22B (2) SHM-93-22C (1)
May-02	1,340 B	6,370	2,340 B	38,600	34,000	2,380	В	1,380	В	8,620	27,600	2,570	В	34,000	43,700	35,900	18,800
Oct-02	1,570	2,840	2,180	36,200	35,400	2,560		1,520		8,180	29,800	4,240		35,600	45,500	114,000	19,500
May-03	1,220	2,380	2,340	32,600	32,000	2,080		950		8,990	31,100	1,600		36,800	43,400	37,300	14,200
Nov-03	1,360 B	13,400	2,030 B	33,500	34,800	2,310	В	1,280	В	8,370	27,000	2,670		35,800	42,700	36,300	17,400
May-04	1,060 B	5,390	2,040 B	31,000	30,000	1,620	В	1,020	В	8,650	22,500	2,300	В	33,300	40,900	56,900	15,100
Nov-04	684 B	4,060	1,870 B	32,200	32,200	1,550	В	845	В	8,190	22,800	2,280	В	31,900	41,900	34,300	16,100
Jun-05	696	7,190	3,240 B	NS	NS	NS		841	В	7,840	21,600	1,470	В	32,000	NS	NS	9,910
Jan-06	NS	<2,000	2,500	28,000	40,000	2,000		<2,000		9,500	24,000	<2,000		29,000	40,000	31,000	13,000
Jun-06	<2,000	4,600	2,900	28,000	38,000	2,900		<2,000		9,000	24,000	2,800		30,000	39,000	29,000	10,000
Dec-06	<2,000	4,300	<2,000	28,000	36,000	3,700		<2,000		8,900	25,000	<2,000		29,000	39,000	30,000	24,000

Notes:

Bold Number indicates cleanup level exceedances

B = Value within five times of the greater amount detected in the equipment or preparation blank

<5 = Concentration less than the indicated method detection limit LTMP = Long term montitoring plan well (sampled semi-annually) NS = Not Sampled

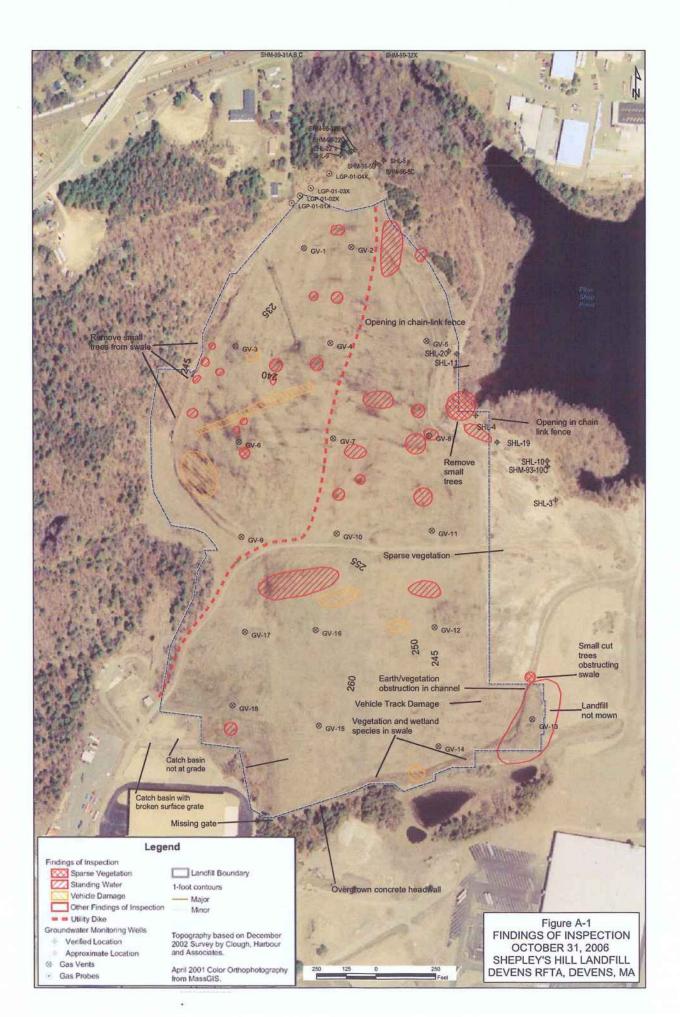
Table 4-11

Monitoring Well Chemical Cleanup Level Exceedances At Monitoring Wells Previously Attaining Cleanup Goals (Group 1)
Shepley's Hill Landfill
Devens, Massachusetts

Monitoring Well	Well Designation (Based on First Five-Year Review, SWEC, 8/98)	Exceedances of Cleanup Levels for Triggering Chemicals, Since Achieving Group 1 Status
SHL-3	Group 1	None
SHL-4	Group 2	Not Applicable
SHL-5	Group 1	None
SHL-9	Group 1	71.3 ug/L As (Spring 1999) 144 ug/L As (Spring 2002) 21 ug/L As (April 2006) 21 ug/L As (June 2006) 46 ug/L As (September 2006) 51 ug/L As (December 2006)
SHL-10	Group 2	Not Applicable
SHM-93-10C	Group 1	12 ug/L As (June 2006) 10 ug/L As (December 2006)
SHL-11	Group 2	Not Applicable
SHL-19	Group 2	Not Applicable
SHL-20	Group 2	Not Applicable
SHL-22	Group 1	55.9 B ug/L As (Spring 2002) 77.1 ug/L As (Fall 2002) 101 ug/L As (Fall 2003) 76.4 ug/L As (Fall 2003) 88.1 ug/L As (Spring 2004) 65.4 ug/L As (Fall 2004) 154 ug/L As (Winter 2005) 171 ug/L As (April 2006) 167 ug/L As (June 2006) 109 ug/L As (September 2006) 115 ug/L As (December 2006)
SHM-93-22C	Group 1	51.1 ug/L (Fall 1998) 17 ug/L As (June 2006) 73 ug/L As (December 2006)
SHM-96-5B	Group 2	Not Applicable
SHM-96-5C	Group 2	Not Applicable
SHM-96-22B	Group 2	Not Applicable

Notes:

Exceedances only reflect an exceedance of the existing MCL. The MCL for arsenic was changed from 50 ug/L to 10 ug/L in January 2006.


As = Arsenic

B = Value was within five times of the greater amount detected in the equipment or preparation blank samples

TABLE 5-1
Influent and Effluent Arsenic Results -- Start-up and Routine Operations
Shepley's Hill Landfill
Devens, Massachusetts

												i de la companya del companya de la companya del companya de la co	Maria de la companione de	SECONDA		N			The last		17					
	INFLUENT			12 T. 12 T	(Interpretation									THE OLD												
	EFFLUENT		EW-04	EFF	EW-04	EFF	EFF	EFF	EW-04	EFF	EW-04	EFF	EFF	EW-04	EFF	EFF	EFF	EFF	EFF	EFF	EW-04	EW-04	EFF	EFF	EFF	EFF
OCATION	EFFLUENT		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
AMPLING DATE			18-AUG-05		18-AUG-05		18-AUG-05	18-AUG-05	18-AUG-05	18-AUG-05	18-AUG-05	18-AUG-05	18-AUG-05	18-AUG-05	18-AUG-05		18-AUG-05	18-AUG-05	18-AUG-05	18-AUG-05	18-AUG-05	19-AUG-05	19-AUG-05	19-AUG-05	19-AUG-05	19-AUG-0
LAB SAMPLE ID			L0509565-01	L0509565-02	L0509565-03	L0509565-04	L0509565-05	L0509565-06	L0509565-07	L0509565-08	L0509565-09	L0509565-10	L0509565-11	L0509565-12	L0509565-13	3 L0509565-14	L0509565-15	L0509565-16	L0509565-17	L0509565-18	L0509565-19	L0509565-20	L0509565-21	L0509565-22	L0509565-23	L0509565-2
	POTW(1)	Units																								
Arsenic, Total	30	ug/l	5857	5,8	5785	6.1	3.3	4	5873	20.6	5910	554	1109	5801	15.1	62.7	316.7	703.5	1157	1321	5791	5737	8.7	1.9	1.7	9.2
Iron, Total	50	ug/l	82300	158	78400	151	119	118	76900	973	75300	26200	37100	75800	144	5730	17900	28300	35900	39100	75900	74700	248	116	122	435
Manganese, Total		ug/l	1508	5.9	1541	8.7	409.8	1215	1538	1599	1520	1833	1627	1523	1183	1539	1541	1602	1566	1574	1587	1619	1184	4.9	8.2	65.1
	INFLUENT																	EW-04	EW-04	EW-04			EW-1		EW-1	
	EFFLUENT		EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF	-11-04			EFF	EFF				EFF
LOCATION			25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	IN0825050900	EF082505090	IN0825051500	EF08250515
SAMPLING DATE			19-AUG-05			19-AUG-05				19-AUG-05						19-AUG-05					19-AUG-05			25-AUG-05		25-AUG-05
LAB SAMPLE ID			1.0509565-25	L0509565-26	L0509565-27	L0509565-28	L0509565-29	L0509565-30	L0509565-31	L0509565-32	L0509565-33	L0509565-34	L0509565-35	L0509565-36	L0509565-3	7 L0509565-38	L0509565-39	L0509565-40	L0509565-41	L0509565-42	L0509565-43	L0509565-44	L0509870-01	L0509870-02	L0509870-03	L0509870-0
Arsenic, Total	30	ug/l	2.1	2.2	2.6	3.2	31.7	311.3	631.2	613.7	796.1	1190	506.5	471.3	162.5	15.7	7.7	5606	5742	5844	6.2	4.6	3152	7.9	3045	5.6
Iron, Total		ug/l	122	116	114	114	2680	17200	26900	24200	27000	35900	21600	19400	7580	139	118	72400	72300	75800	115	108	College 2	30000	THIS ASSAULT	
Manganese, Total		ug/l	314.7	1106	1180	680.2	2214	1786	1690	1698	1515	1732	1816	1663	1593	1378	1183	1572	1676	1640	1195	799,3				
	INFLUENT	_	EW-1		EW-1									EW-01		_		EW-01			-	-	EW-01			
	INFLOENT		C.44-1		Liver									211.01							EW-04					
	EFFLUENT			EFF		EFF	EFF	EFF	EFF	EFF	EFF	EFF	EFF		EFF	EFF	EFF		EFF	EFF		EFF		EFF		EFF
LOCATION																9FFLUENT-03							The last of the la			EFF-052206-2
SAMPLING DATE LAB SAMPLE ID			25-AUG-05	25-AUG-05	26-AUG-05	26-AUG-05	29-AUG-05	1 0510043 02	31-AUG-05	01-SEP-05	02-SEP-05	1 0510395 01	08-SEP-05			15-MAR-06 1 L0603668-01										22-MAY-06 L0607210-01
LAB SAMPLE ID			L0309870-03	L0303070-00	1.0309870-0	1.0309870-00	L0510045-01	1.0310043-02	E0310043-02	1.0510210-01	L0510210-02	Losiosys	10010055-02	10010075-00	100010470-0	1 1.0005000-01	1.000410.5-01	1.0004105-02	1.0004500-01	1.0004057-01	L0004077-02	1.0002540-01	1 10003540-02	150003331-01	L0003737-01	1,000/210-01
Arsenic, Total	30	ug/l	3025	2.9	3044	4	1.5	1.2	17.1	1	1	1	0.9	3035	3	2	1	2781	2	2	5090	1.3	2850	9	2	2
	INFLUENT							EW-01		EW-01			- 17	EW-01			EW-01	EW-01			_					
	INI LOLINI			EW-04				211.01		And the second				HIME!	EW-04	EW-04	-10.00		EW-04							
	EFFLUENT		EFF		EFF	EFF	EFF		EFF		EFF	EFF	EFF							EFF	EFF	EFF	EFF	EFF		EFF
LOCATION																FW24012060										EFF-013007
SAMPLING DATE			22-MAY-06	22-MAY-06	22-MAY-06	27-JUN-06	12-JUL-06	12-JUL-06		28-SEP-06						06-DEC-06 2 L0617631-03		07-DEC-06						16-JAN-07	23-JAN-07	30-JAN-07 L0701450-0
LAB SAMPLE ID			1,060/210-02	LU60/210-03	L000/210-0-	1 1.0009001-0	1 1.0009 /43-01	1.0009/43-02	1.0012409-01	1.0013801-01	1.0013001-02	1.0014022-01	L0010413-01	1.001/031-0	1.001/031-0	2 1.001/031-03	1.001/031-04	1.0017/37-01	1.0017737-02	1.0018709-01	1 1.0018/09-02	L0018709-02	L0700239-01	L0/00/43-01	1.0701000-01	L0/01450-01
Arsenic, Total	30	ug/l	3	4360	3	1	2	2700	13	2670	28	4	2	2760	5240	5000	2770	2640	4930	34	1	1	19	1.6	4	1.2
														25 gpm	25 anm	20 ann	20 gpm	12.5 gpm	12.5 gpm							
														25 gpm	125 gpm ug/L	20 gpm	20 gpm ug/L	12.5 gpm	ug/L			1				
	*POTW Permi	it: Special	conditions s	pecify weekly	sampling w	hen over 30	ug/L and core	rective action	over 50 ug/	L.				Avg As	4000	Avg As	9,000	Avg As	3785							
7,000		20																								
	uent EW-1 (sinc			3 ug/L																						
Avg Infli	uent EW-4 (sinc	e start):	5504	4 ug/L																		,				

Appendix A Landfill Inspection

Landfill Maintenance Checklist Shepley's Hill Landfill Devens, Massachusetts

Date: October 31, 2006

Inpsector: Tim Bakey/ Dave Reault

LANDFILL ATTRIBUTE	OBSERVATIONS	RECOMMENDATIONS	SAT/ UNSAT
Cover Surface	Vegetative cover is generally satisfactory except as noted in the comments that follow. Various species	See specific comments under the sections that follow.	SAT
	growing; mowed to about four inches height (See Photo 5).	A Comprehensive Site Assessment (CSA) is being conducted to address	SAT
	There are several areas where settlement has occurred.	this condition. 3. Monitor for tree growth in future.	SAT
	3. Trees were removed in the fall of 2002 and 2004 in the vicinity of GV-13, the southern perimeter, and the eastern perimeter, and have not reestablished.	 Observe effects on drainage patterns in the vicinity of the utility berm during future inspections. This may be 	NA
	 A utility berm was constructed through the middle of the landfill in 2004. It provides utility service to the 	investigated as part of the ongoing CSA.	
	pumping station at the northeastern corner of the landfill. An access path was built over the utility berm in the fall of 2006 in the middle of the landfill, near GV-9.	 Damaged areas should be repaired as soon as possible. 	UNSAT
	Several areas on the landfill have sustained damage by trespassing vehicles and lawn mowing equipment.		

	Landfill Maintenance Checkl	list - Page 2	
LANDFILL ATTRIBUTE	OBSERVATIONS	RECOMMENDATIONS	SAT/ UNSAT
Vegetative Growth	1. In the vicinity of gas vents 8, 11, and 12, the perimeter of the cap has some areas of sparse/eroded vegetation. The soil in the bare areas is mostly sand and is eroded in some areas. The areas should be graded to fill in the eroded areas and topsoil should be placed to a depth of six inches over the sand to allow grass to grow. The grass cover should extend at least twenty feet beyond the limits of the cap.	1. These areas should be reseeded, with hay or straw placed on the surface, to prevent further erosion. These areas should be addressed as part of the CSA.	UNSAT
Landfill Gas Vent Wells	1. The gas vents are in good condition. All screens and pipes are in functional condition. All of the non-galvanized vents are showing signs of rusting and corrosion. These include all gas vents except for GV-12 through GV-15.	1. All of the non-galvanized vents should be scraped, cleaned and painted.	SAT
Drainage Swales	 Most of the drainage swale on the south side is being invaded by vegetation/wetland species. There are also intermittent zones of standing water, indicating a lack of proper channel slope and drainage. In the south-east side drainage swale, in the vicinity 	The swale should be cleared of vegetation, accumulated sediment, and debris. The swale should then be regraded to promote adequate drainage.	UNSAT
	of GV-13 and continuing downstream to the rip rap lined channel, the drainage swale is overgrown with vegetation and wetlands species. It appears to be heavily silted in and has a large area of standing water. There is an earth and vegetation obstruction	 The swale should be cleared of vegetation, accumulated sediment, and debris. The swale should then be regraded to promote adequate drainage. 	UNSAT
	just upstream of the new rock section preventing the drainage of water and turning the cannel into a pond 3. Vegetation growing in rip rap lined channel located in the northern side (under Sculley Road access road).	The swale should be cleared of vegetation.	UNSAT

	Landfill Maintenance Check	list - Page 3	
LANDFILL ATTRIBUTE	OBSERVATIONS	RECOMMENDATIONS	SAT/ UNSAT
Culverts	1. The concrete drainage structure at the terminus of the catch basin and underground conduit system on the southwest side is overgrown with vegetation and is silting in. Standing water is present and wetland species are becoming established as well.	1. The structure and channel immediately downstream should be cleaned out and the channel regraded as required to properly drain.	UNSAT
Catch Basins	 Catch Basin #2 near the entrance to the site has a broken surface grate. Catch Basin #3 near the entrance to the site is not set at grade. The rim of the basin is about six to eight inches higher than the surrounding ground. 	 The surface grate should be replaced. The rim of this catch basin should be lowered to meet the surrounding grade. 	UNSAT
Settlement	1. It appears that many areas of the landfill may be settling. The extent and its effect on the function of the landfill is unknown.	A CSA is underway to address this condition.	SAT
Erosion	1. No substantial erosion observed.		SAT
Access Roads	 The access roads on the landfill road are generally in good condition. A new dense grade surface was applied to the landfill road starting from the Cook Street entrance and terminating in the middle of the landfill in the vicinity of GV-11. Some small ruts and standing water was observed along the landfill road from about GV-11 to the entrance of the pumping station. Moderate erosion of the landfill road has occurred at the entrance of the pumping station. 	1. None 2.	SAT UNSAT

	Landfill Maintenance Check	list - Page 4	
LANDFILL ATTRIBUTE	OBSERVATIONS	RECOMMENDATIONS	SAT/ UNSAT
Security/ Fencing	1. Repairs have been made to the perimeter fencing. Fence sections and gates have been replaced; however, many of the gates remain unlocked, allowing unrestricted access.	1. Secure gates with chains and padlocks.	UNSAT
Wetland Encroachment	1. Wetland encroachment is taking place at several locations, but is not happening on a wide scale. Overall, the areas of encroachment are small. Theses locations have been noted in above comments.	1. Wetland encroachment should be eliminated by simple mowing in some areas, and by regarding channels in other areas. The above comments address the action to take at specific locations. A CSA is underway to address this concern at the landfill.	UNSAT

Immediate Action Required: The following problem areas, from among those mentioned in the comments above, are the most critical and should be addressed before the next inspection:

- 1. Secure gates with locks to control access to the site.
- 2. Repair damage to cover surface caused by trespassers and lawn moving equipment.

NOTES:

SAT = satisfactory

UNSAT = unsatisfactory

NA = not applicable

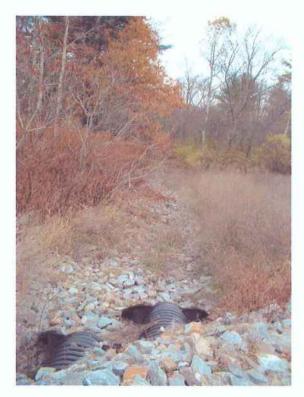


Photo 1 - Vegetation enchroachment - northern swale.

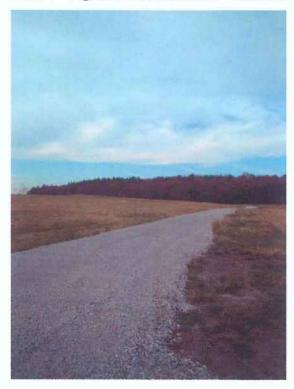


Photo 2 - New dense-grade road across landfill.

Photo 3 - View northwest across access ramp constructed over utility berm.

Photo 4 - View southeast across access ramp constructed over utility berm.

Photo 5 - Standing water on access road on northeast side of landfill.

Photo 6- View south of erosion/deposition of gravel from access road near northeast corner of landfill near gate for treatment plant.

Photo 7 - Older vent with limited corrosion.

Photo 8-Ruts in surface soils on south side of landfill from trespassing vehicles or mowing equipment.

Photo 9 - Ruts in surface soils on south side of landfill from trespassing vehicles or mowing equipment.

Appendix B
Landfill Gas Monitoring and Tech. Memo - Methane Controls

Methane Controls - Shepley's Hill Landfill Groundwater Treatment Plant

PREPARED FOR:

Bob Simeone/Devens BEC

PREPARED BY:

CH2M HILL

DATE:

March 3, 2006

PROJECT NUMBER:

284350.OM.02

Summary

This Technical Memorandum (TM) summarizes the steps CH2M HILL has designed and will be implementing to control and monitor methane gas which was detected in the influent to the new groundwater treatment system adjacent to the Shepley Hills landfill. These safety measures are focused on protecting personnel at the facility, and include upgrading affected electrical components to explosion-proof, sealing and venting process units where methane is released from the influent, installing methane/O2 detectors at key process units, and reprogramming the control system to shut down the system if methane is detected and/or an oxygen-deficient atmosphere exists.

Following installation of these safety measures, the system will be re-started, and methane levels in the influent will be monitored. If these data indicate that methane concentrations have decreased or disappeared, the treatment system can be operated with no further modifications. If these data indicate that methane is present in significant concentrations over a sustained period such that health and safety conditions continue to impact plant operations, then the next phase of this approach would be to design and build a permanent methane removal system to supplement the current treatment train.

Methane Gas Control Measures

During the initial startup period in September, 2005, measurable levels of methane gas were detected in the influent tank (35% LEL), effluent sump (7% LEL) and the effluent manhole (2% LEL). Subsequent laboratory analysis of groundwater samples obtained from the plant influent indicated dissolved phase methane concentrations ranging from 4,100 to 12,000 ug/L.

Due to the presence of methane gas dissolved in the influent groundwater to the treatment system, it is necessary to provide control measures in the treatment building to address code and safety issues.

CH2M HILL has reviewed this issue as it relates to health and safety, groundwater chemistry, electrical and fire code, permitting, and the existing treatment process. The goal of this review has been to identify the most cost-effective measures to control and/or mitigate the methane so that operator safety is maintained, and the effectiveness of the existing treatment system is not compromised.

1

Our review indicates the following:

- Air stripping is likely the most effective technology to remove methane from the influent water.
- Existing data need to be supplemented with more detailed and comprehensive sampling
 to characterize the methane concentrations and to test for the potential presence of other
 landfill-related gases that may be present in the influent water.
- Additional methane monitoring during operation of the system will indicate whether
 the methane is consistently present in concentrations that will warrant the expense of a
 permanent removal system.
- Additional data are needed to more fully characterize the groundwater chemistry as it relates to air stripping and its potential effects on the existing treatment system.
- Air permits will not be required, as the methane emissions are well below the threshold emissions rate of 5 tons/yr.
- Installing an air stripper at the front end of the existing treatment train will alter the
 groundwater chemistry, which will require, at a minimum, additional treatment prior to
 the water flowing to the existing treatment train.

Because of the requirement for additional data, the likely adverse effects that installation of an air stripper would have on the existing treatment system, and the significant cost to add an air stripper and associated equipment, CH2M HILL recommends a phased approach to the methane issue. The first phase includes:

- Upgrading electrical service within the two extraction wells to be explosion-proof.
- Sealing and venting the three areas (influent tank, backwash tank, effluent sump) in the treatment building where methane was detected, and is likely to re-occur.
- Upgrading the electrical and instrumentation in the one area (effluent sump) that contains instrumentation.
- Installing new methane/oxygen detectors at key process units.
- Re-programming the PLC to send and autodialer alarm if either methane is detected at 10% of the LEL or an oxygen-deficient atmosphere exists, and to call for a system shutdown if methane is detected at 20% of the LEL.

The second phase includes restarting the system, and sampling/analysis of the influent water over time. These influent samples will be analyzed for methane and other gases potentially present in landfill groundwater, as well as for the additional groundwater chemistry (pH, alkalinity and CO_2) identified above. These data will be analyzed to monitor methane concentration over time. If these data indicate that methane concentrations have decreased or disappeared, the treatment system can be operated with no further modifications. If these data indicate that methane is present in significant concentrations over a sustained period such that health and safety conditions continue to impact plant operations, then the next phase of this approach would be to design and build a permanent methane removal system to supplement the current treatment train.

To implement the first phase of this approach, the following work will be completed:

- The electrical service to the extraction wells will be upgraded to explosion-proof.
- The microfilter influent tank, backwash vent and effluent sump will be sealed and vented directly to the building exterior.
- Effluent sump instrumentation will be upgraded as follows:
- Install intrinsically safe relays for each of the four float switches.
- Replace existing solenoid valve with NEMA Type 7/9 XP valve.
- Move the existing pH probe from the sump to the effluent piping within the building.
- New methane/oxygen detector units will be installed at the microfilter, lamella clarifier, effluent sump and filter bottom dumpster. New conduit and control wiring will be run from each detector to the PLC cabinet.

The PLC will be re-programmed to send an autodialer alarm if either methane is detected at 10% of the LEL or an oxygen-deficient atmosphere exists, and will call for a system shutdown (and autodialer call out) if methane is detected at 20% of the LEL.

CH2M HILL believes this phased approach to be the most prudent course of action. If additional data analysis indicates that an active methane-stripping system is required, the measures identified in this memorandum would still be required.

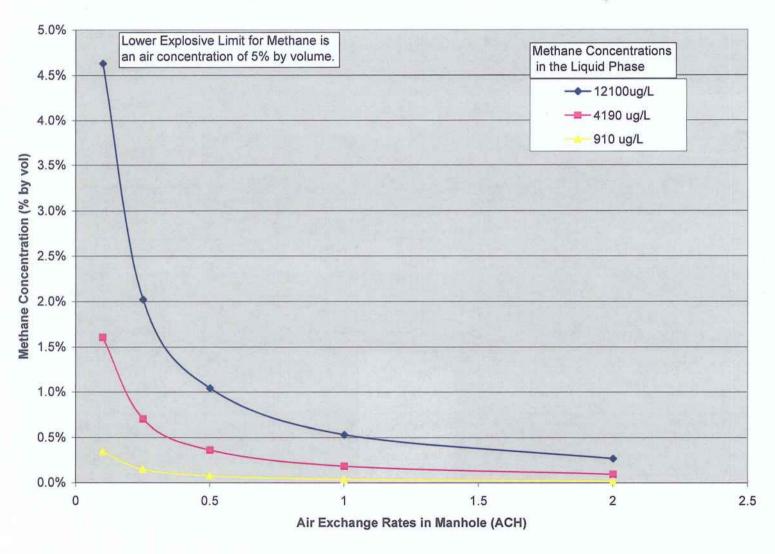
Modeling for Receiving Manhole

CH2M HILL performed modeling to predict the methane concentration that could be present in the discharge manhole. The modeling was run at the design flow rate of 50 gpm. The attached spreadsheet summarizes the range of potential methane concentrations that could be present in the manhole headspace. The predicted concentrations, expressed as percent by volume, were less than lower explosive limit (LEL) of 5% by volume for all cases. At the current flow rate of 25 gpm, the predicted concentration will be about 50 percent lower than the concentrations shown in the spreadsheet. The highest predicted concentration occurred with the methane concentrations in the liquid phase was the highest and the air flow rate through the manhole was at a minimum.

The concentration of methane can also be expressed as the mass of methane per unit volume of air (ug/m3). To predict the mass release rate, the Bay Area Sewage Treatment Emissions (BASTE) model was used. The observed methane concentrations in the liquid phase were used to estimate methane emissions from the treated ground water effluent as if falls into the manhole. The air flow rate through the manhole is likely to vary widely. A range of air flow rates, expressed as air exchange rates per hour (ACH), was evaluated.

Mass Emission Rate

The falling treated ground water effluent from the 4 inch effluent line into the manhole was treated as a free-falling weir drop. The observed methane concentrations in the liquid phase of 12,100, 4,190, and 910 ug/L were evaluated. Physical constants for methane were used to predict the mass transfer rate from liquid phase to the gas phase. About 6% of the methane in the liquid phase was released into the gas phase. This release rate was largely dependent on the methane concentration in the liquid phase and independent of the assumptions related to the gas flow rate across the manhole headspace (liquid phase limited).


Air Flow Rate

Air flow across the manhole headspace can be driven by many factors: changes in atmosphere pressure, changes in air temperature across the collections system and air displacement or aerodynamic drag associated with the movement of wastewater through the collection system. The factors are difficult to predict and can vary widely over time. To predict the range of possible air flow rates, the volume of the manhole was crudely estimated and air flow rates were calculated based on a range of air exchange rates per hour from 0.1 to 20 ACH. The changes in air flow rates had no effect on the methane mass emission rate at air exchange rates greater than 1 ACH. Methane concentration above 1 ACH are lower because of the increased air flow rate. Air exchange rates less than 1 ACH did result in slightly lower mass emission rates as methane concentrations in the gas phase increased.

Monitoring

During re-startup of the system, CH2M HILL will perform monitoring at the discharge manhole using a VRAE four-gas meter. The LEL readings will be compared to influent methane concentrations collected at the same time to verify the model's predicted concentrations. Additional influent samples for methane will be collected during system operations to establish a data set of methane concentrations in the influent water. If influent sampling shows an increase in methane concentrations, the model will be updated accordingly and additional monitoring will be performed at the manhole.

Methane Concentrations in the Manhole Headspace

Ft. Devens, Shepley's Hill Landfill Groundwater Treatment Plant Methane Emissions

Influent Loading			Run 6	Run 7	Run 8	Run 1	Run 2	Run 3	Run 4	Run 5
Methane Conc. in GW (ug/L)	Influent Flow Rate (gpm)	Methane Mass Loading (Kg/day)	Methane Emission @ 0.1 ACH (Kg/day)	Methane Emission @ 0.25 ACH (Kg/day)	Methane Emission @ 0.5 ACH (Kg/day)	Methane Emission @ 1 ACH (Kg/day)	Methane Emission @ 2 ACH (Kg/day)	Methane Emission @ 5 ACH (Kg/day)	Methane Emission @ 10 ACH (Kg/day)	Methane Emission @ 20 ACH (Kg/day)
12100	50	3.30	0.181	0.198	0.204	0.208	0.211	0.211	0.211	0.211
4190	50	1.14	0.0628	0.0685	0.0708	0.0718	0.073	0.073	0.073	0.073
910	50	0.248	0.0136	0.0149	0.0154	0.0156	0.0159	0.0159	0.0159	0.0159
Air Flow through	Manhole (m3/s	s)	0.0000692	0.000173	0.000347	0.000692	0.00138	0.00346	0.00692	0.0138
			Concentratio	n of Methane	in Manhole He	eadspace (mo	g/m3)			
12100			30,334	13,237	6,819	3,479	1,770	706	353	177
4190			10,504	4,584	2,361	1,201	612	244	122	61.2
910			2,281	995	513	261	133	53.2	26.6	13.3
			Concentratio	n of Methane	in Manhole He	eadspace (pp	m)			
12100			46,276	20,193	10,403	5,307	2,700	1,077	538	270
4190			16,025	6,993	3,602	1,832	934	373	186	93.4
910			3,480	1,519	782	398	203	81.1	40.6	20.3
			Concentratio	n of Methane	in Manhole He	eadspace (%	by vol)			
12100ug/L			4.628%	2.019%	1.040%	0.531%	0.270%	0.108%	0.054%	0.027%
4190 ug/L			1.602%	0.699%	0.360%	0.183%	0.093%	0.037%	0.019%	0.009%
910 ug/L			0.348%	0.152%	0.078%	0.040%	0.020%	0.008%	0.004%	0.002%
			0.1	0.25	0.5	1	2			

EPA Comments on the
Methane Controls Technical Memorandum
Groundwater Extraction, Treatment, and Discharge Contingency Remedy
Shepley's Hill Landfill
Fort Devens, MA
Dated March 3, 2006

GENERAL COMMENTS:

1. The general lack of understanding concerning the methane issue from an overall conceptual site model (CSM) perspective suggests that it would be a good idea to consider analyzing routine groundwater samples, pump and treat performance monitoring samples, and other "new" exploration samples for dissolved methane. Although methane migrated readily in groundwater, this should help the BCT develop a better understanding of the areas within the landfill where methane originates.

Army Response: Geochemical data collected at Shepley's Hill Landfill over many years, including but not limited to ORP and dissolved oxygen, indicate active biodegradation is occurring near the Shepley's Hill landfill. It has been occurring since solid waste materials (carbon sources) were implaced and may continue for many years. Redox conditions currently in the immediate vicinity of the landfill are such that terminal electron acceptors (TEAs) including dissolved oxygen; nitrate; Mn(IV) and Fe(III) coatings on aquifer materials; and sulfate are depleted and carbon dioxide has become the dominant electron acceptor. Methanogenic bacteria reduce dissolved carbon dioxide producing dissolved methane as a bioproduct. Microorganisms couple the oxidation of electron donors, materials containing organic carbon, with the reduction of the aforementioned electron acceptors.

Microorganisms as a group prefer the most energetically efficient electron acceptor (oxygen). Once sufficiently used up, nitrate (NO3) will be preferentially used over Mn(IV), then Fe(III), then sulfate (SO4), and then CO2. Once CO2 reduction becomes dominant, methane production fully develops. Although methanogenesis at Shepley's Hill is occurring, as it does beneath most, if not all landfills, the production of methane is very likely on the decline due to the age of the landfill and the time that has lapsed since solid waste emplacement and capping.

Step-wise or preferential redox reactions result in redox zonation in groundwater aquifer systems. This is apparent at Shepley's Hill. Redox zonation has been well documented in the literature, since the pioneering work of Baedecker and Back (1979). This literature includes work related to landfills, natural attenuation studies relating to fuel and solvent releases, and geochemical studies of natural systems, including wetlands and peat bogs.

Dissolved methane is not unexpected in groundwater near landfills. At Shepley's Hill the concentrations of methane in groundwater decrease with distance away from the landfill. Redox conditions in the shallow aquifer downgradient from the landfill are oxic and would not support

methanogenesis. However, deeper in the aquifer where dissolved organic carbon is available, methanogenesis may be occurring for some distance. It is important to note that data from perimeter gas wells LGP-01-01X through LGP-01-04X, installed between the landfill and the Scully Road neighborhood indicate that from 2001 through 2005 methane has not been detected. These wells were completed in the vadose zone in accordance with state and federal landfill gas perimeter monitoring guidance. In addition, landfill gas data from vents at the landfill indicate that the greatest methane concentrations from landfill vents is generally at the south end of the landfill in the areas that were capped and closed last (Phase III, IVA, and IVB). It is apparent that although dissolved methane is present in the aquifer due to methanogenic redox conditions, the concentrations have not been high enough to result in flux through the water column vertically and into the vadose zone at concentrations that would be detectable in the perimeter gas wells. Monitoring of basements along Scully Road, in August by DEP (see email dated August 18 from DEP to the BCT), indicates that detectable concentrations of methane were not present.

Operation of the extraction system at Shepley's Hill landfill resulted in the extraction of deep groundwater having dissolved methane from methanogenesis occurring at depth. Data collected at the plant indicated a range of 4,100 to 12,000 ug/L for influent samples, as indicated in the technical memo. Subsequent influent samples have been in this range (e.g. 6060 ug/l collected 6/13). Based on these data, the changes identified in the memo were made to the plant. Review of literature indicates that dissolved methane resulting from methanogenesis results in comparable levels at other landfills. Information provided by the IRP program at Massachusetts Military Reservation (MMR) for the LF-1 landfill (similar size, age, origin, and capping history) indicates groundwater methane levels as high as 8400 ug/L near the landfill and 5400 ug/L roughly 1000 ft down gradient in the glacial sand aquifer have been observed. This methane is most likely generated in situ as organic carbon from the landfill is degraded. Although dissolved methane may be present in groundwater, it does not present a hazard unless it is of sufficient concentration and is in contact with a potential headspace. Consequently, landfill gas monitoring guidance focuses methane monitoring on vadose zone gas rather than groundwater. Methane monitoring and mitigation experience from coal bed areas such as in the Applachian Plateau provides good empirical information relating to groundwater dissolved methane and expected concentrations in either vadose zone or basements settings.

The United States Department of Interior Office of Surface Mining Reclamation and Enforcement, Appalachian Regional Coordinating Center Pittsburgh, PA has produced a document entitled, *The Investigation And Mitigation Of Fugitive Methane Hazards In Areas Of Coal Mining*, (September 2001) which deals specifically with methane hazards and contains a great deal of information that may be applied to landfill situations. The document provides action levels for groundwater methane, see Table 9 below. Table 9 indicates that groundwater methane <10 mg/L, requires "no immediate action" and for levels between 10 and 28 mg/L "warning, investigation" is warranted but not immediate action. These action levels assume groundwater is in close proximity to basements or structures where a headspace could develop. The dissolved methane in groundwater near Shepley's Hill is located at depth with a fairly substantial thickness of groundwater and vadose zone above that apparently attenuates methane that may be diffusing or "off-gassing" from depth, resulting in no detections in the perimeter methane gas monitoring wells near Scully Road.

Table 9.	Recommended	Action	Levels for	r Methane

Action Level	Atmospheric (Per	cent Volume)	Dissolved in			
	Occupiable Spaces (homes)	Un- Occupiable Spaces	Water (mg/liter)	(Percent Volume)		
Immediate Action	>1.0%	>3.0%	>28 mg/L	>5.0%		
Warning, Investigate	>0.5% but <1.0%	>1.0% but <3.0%	>10 mg/L but <28 mg/L	>3.0% but <5.0%		
Monitor to Determine Concentration Trends	>0.25% but <0.5%			<3.0% but >1.0%		
No Immediate Action	<0.25%	<1.0%	<10 mg/L			

How long will the evaluation period last? When will we know that we have monitored for a sufficiently long period? EPA suggests monitoring for a least one year in order to capture a complete hydrologic cycle.

Army Response: We will continue to monitor on a quarterly basis (influent and effluent).

3. Methane is lighter than air so releases of methane will accumulate at high points in the release areas. Monitoring needs to account for this. If methane is allowed to be released in the building [if all release points (from groundwater to the building air) are not sealed], it will likely accumulate at the ceiling. Is it presumed that the building ventilation system will properly manage methane releases from processes that will not have methane controls?

Army Response: The release points in the process that were identified during the evaluation (microfilter influent tank, microfilter backwash tank, effluent sump) are sealed and vented to the building exterior. The two other process components are the lamella clarifier and the filter-bottom roll-off. The lamella clarifier receives water/solids generated during the microfilter backwash cycle. The compressed air used during the backwash cycle appears to remove the methane and the backwash tank is vented to the building exterior. The filter-bottom roll-off then receives water/solids from the lamella clarifier. Methane was not initially, nor subsequently, measured in the lamella clarifier and filter-bottom roll-off. In addition, methane monitors were installed over the lamella clarifier (approx. 11 feet above the floor) and the filter bottom roll-off (approx. 6 feet above the floor), as well as in the area near the microfilter. The methane monitor over the lamella clarifier provides monitoring close to the ceiling. The methane monitors are connected to the system control logic, which is established to sound an alarm if 10% of the LEL is detected and shut the system down if 20% of the LEL is detected.

4. There appear to be additional areas of concern for methane accumulation or methane release to the building including the recycle sump, the thickener, the floor sink for the thickener, the drain sump, and the floor drains. Will the modified treatment system design rely on the building ventilation system to manage methane releases from these areas?

Army Response: The process areas identified in this comment all receive water/solids after the backwash cycle. As stated above, the two process components are continuously monitored and methane has not been detected. The recycle sump, by design, is isolated from the effluent sump and all floor drains are connected to the recycle sump. Water received in the recycle sump is generated from the monitored lamella clarifier and filter-bottom roll-off.

5. Additional equipment to be considered for upgrading to address the presence of methane should include the drain sump pump and level controls and level controls in the thickener.

Army Response: As stated above, methane monitors have been installed in areas receiving water/flows from the backwash cycle and the system logic is established to provide an alarm at 10% LEL and system shutdown at 20% LEL. It should be noted that methane has not been measured by either monitor.

Follow-up comment (11/7/2006 email): Are these separate alarms for 10% and 20% LEL or does the system rely on a single component to signal both alarms. EPA recommends redundancy of methane monitors to avoid dangerous conditions if one of the monitors fails so that the 10% and 20% alarms cannot activate. If the existing monitoring equipment does not effectively provide the necessary redundancy, the monitoring equipment should be supplemented to do so.

Army Follow-up Response: There are three separate alarms within the facility, which provide redundancy. The two methane monitors (one above the lamella clarifier and one above the filter-bottom roll-off) are programmed to sound an audio alarm at 10% LEL and shut the system down at 20% LEL. In addition, an oxygen monitor is installed at the microfilter and is programmed to shut the system down if an oxygen-deficient atmosphere is detected.

6. Modifying the air release valve to discharge outside the building should be considered.

Army Response: The volume of air/gases from air release valve on the influent piping is minimal and releases are infrequent. The release valve only operates when the system is shut down as the piping drains down.

7. Does the methane concentration in the groundwater have a significant impact on the chlorine dioxide concentration required to treat the arsenic? Please explain if this was evaluated.

Army Response: During initial startup, chlorine dioxide concentrations were varied and effluent samples were collected to correspond with each chlorine dioxide concentration. The chlorine dioxide concentration and effluent results were plotted to determine the chlorine dioxide concentration required to meet effluent discharge limits. The system has been operated using the minimum chlorine dioxide concentration to meet the discharge limits (which have been consistently met throughout operations), while limiting any excess chlorine residual. As the methane was, and is, present in the influent water, the impact of its presence on chlorine dioxide concentration cannot be isolated, however the system has been successful meeting its treatment goals.

8. Is the air release valve suitable for service in a potentially explosive environment?

Army Response: The air release valve is a small mechanical brass valve and does not have any electrical components.

SPECIFIC COMMENTS:

9. Page 2, 2nd and 3rd Bullets: See general comment 1, above. It would be useful to perform additional monitoring/analysis (e.g., for the presence of other landfill-related gases), at individual monitoring wells in addition to the "blended" results in the treatment plant. What are the other landfill-related gases of interest?

Army Response: Hydrogen sulfide is another gas that often may be of interest in settings where sulfate reduction is significant. However, sulfate reduction in the vicinity of the landfill is not believed to be significant. Review of the past 5 years of data from monitoring of landfill vents indicates that hydrogen sulfide has not been detected. Hydrogen sulfide has a very distinct and apparent rotten egg odor; however it has not been noted at the plant during any of the operation. The human odor threshold for H2S is extremely low (.0047 ppm in air). The OSHA PEL is 10 ppm (ceiling)/50 ppm (peak). Work of the USGS, Water Resources Division indicates that levels as low as .25 ug/L H2S dissolved in groundwater are detectable, by human olfactory senses, through off-gassing of water from wells or taps. The fact that H2S has not been detected at landfill vents or the characteristic rotten egg order has not been observed at any time during start-up or operation of the plant, suggests that methanogenesis dominates in the aquifer beneath the landfill and immediately downstream where groundwater is being extracted and sulfate reduction is limited. Any H2S that is present in the influent stream that enters the plant would be oxidized by free chlorine in the treatment process producing sulfate which is sequestered. H2S will be monitored in air-spaces in the plant and at the receiving manhole in the future with the plant multigas monitor; however, H2S is not expected to register. Groundwater sulfate monitoring is being conducted to evaluate groundwater geochemistry and sulfate reduction. Hach or Chemet colormetric kits will be used to further characterize sulfide in groundwater influent and treated effluent. Dissolved VOCs in groundwater have been demonstrated historically to be very low. Monitoring of other dissolved gases at monitoring wells is not warranted.

10. Page 2, 5th bullet: Please clarify why it is thought that the allowable methane discharge rate is 5 tons per year. 310 CMR 40.0000 limits untreated air emissions to one ton per year and requires an LSP opinion for any untreated emissions. Please provide the yearly emission rates for the methane concentrations in groundwater evaluated for the subject memorandum and indicate if the one ton per year threshold is exceeded.

Army Response: 310 CMR 40.0049, Remedial Air Emissions, does not limit remedial air emissions on a tonnage basis but does require that emissions do not pose a risk to health, safety, public welfare, and the environment. Municipal solid waste landfill New Source Performance Standards (NSPS) and emission guidelines determine whether or not landfills are required to undergo active landfill gas treatment. Concentration data presented in the Tech Memo for influent at 8200 ug/L and effluent at 3200 ug/L and dissolved to vapor phase modeling indicate that at 50 gpm the projected net loss of methane at the plant would be .556 tons per year. If this is assumed to be the average concentration of influent, the loss is well below the 1 ton limit. In

addition, this is with the plant operating at 50 gpm rather than the current operating rate of 25gpm.

Follow-up Comment (11/7/2006 email): The original comment was mistaken in citing the MCP, the correct citation is Massachusetts Policy WSC#94-150, which references 310 CMR 7.0000 and DEP/Bureau of Waste Prevention (BWP) under MGL c.111, section 142 A-K. The arsenic treatment system is a remedial system. As long as the air emissions are less than one ton per year, regulations do not apply. However, the regulations are based on potential emissions and, in the case of the SHL treatment system, the potential would be calculated using the influent concentration and the higher flow rate. Using those values (8,270 µg/l and 50 gpm) the emissions could be 0.92 tons per year, which borders on the threshold (one ton per year) for a limited plan approval. If the system flow is increased to 50 gpm or more in the future or if methane concentrations increase significantly, which is not expected, a comprehensive sampling of air emission should be performed to get a handle on the air emissions from the system.

Army Follow-up Response: Comment noted.

11. Page 3, Modeling: The modeling results indicate that in six of the scenarios evaluated, the methane concentration could exceed 10% of LEL, which should be considered the action level. Although the methane concentration will not exceed the LEL (5% methane by volume) based on the modeling calculations, the LEL should not be the actionable threshold. Please revise the discussion to acknowledge this. The design should not allow for a methane concentration of 100% of the LEL since there are inherent errors in measuring devices and measurement techniques. On this basis, the methane concentration in air should not be allowed to exceed 0.5% by volume methane in air.

Army Response: The modeling was performed to evaluate the conditions in the receiving manhole at the end of the discharge pipeline. The scenarios were developed due to the lack of air flow data in the manhole and were intended to show that the LEL would not be exceeded in the manhole. Since the system was restarted, monitoring has been performed at the manhole on a regular basis. The LEL readings in the manhole average less than 4.6% of LEL over several readings. The most recent reading collected on September 29, 2006 was 3% of LEL.

Follow-up Comment (11/7/2006 email): What is the frequency of the monitoring program for the manhole? Also, to put the data presented in context, how many samples are included in the average cited?

Army Follow-up Response: The frequency of manhole monitoring averaged approximately one sample/week. The average previously presented included 27 readings collected between March 7, 2006 and September 29, 2006. Since that time an additional 12 readings have been recorded for a total of 39 readings through January 23, 2007 and an average is 4.5% of LEL.

Response to DEP Comments (DEP letter dated August 16, 2006)

[DEP Letter to Mr. Robert Simeone, dated August 16, 2006]

RE: Technical Memorandum "Methane Controls – Shepley's Hill Landfill Groundwater Treatment Plant", March 3, 2006

Dear Mr. Simeone:

The Massachusetts Department of Environmental Protection (MassDEP) has reviewed the Technical Memorandum "Methane Controls" (Tech Memo) submitted by CH2M Hill, contractors for the Army's Shepley's Hill Landfill Contingency Remedy, per the DSMOA for Devens. The Tech Memo documents the additional work needed at the treatment plant to address explosive conditions in the treatment building, caused by methane off-gassing from the influent groundwater. MassDEP agreed conceptually with the actions the Army and its contractors took to retro-fit the building in making it explosion proof but have the following issues/concerns with the monitoring proposal going forward in the future.

The Tech Memo proposed a staged approach to address methane issues encountered during the initial startup of the groundwater treatment system in Shepley's Hill Landfill. The first phase included necessary safety measures to upgrade the system, while the second phase proposes to more fully characterize the influent water after the system restarted. The data collected in the second phase will aid in characterizing methane concentration, groundwater chemistry and to test for other potential landfill-related gases in order to determine if a permanent methane removal system will be needed.

The Tech Memo has several recommendations for data collection, in the instances outlined below; please provide additional clarification and detail for the collection process:

1. Following installation of these safety measures, the system will be re-started, and methane levels in the influent will be monitored. Please provide any recently sampled data.

Army Response: Data have been provided to the BCT through the "ftp" site and BCT tech meetings. The Army will continue to provide monitoring data on a regular basis as they are collected through email notifications and ftp postings.

2. Existing data need to be supplemented with more detailed and comprehensive sampling to characterize the methane concentrations and to test for the potential presence of other landfill-related gases that may be present in the influent water. What kind of data will be sampled? Please provide the update.

Army Response: Please refer to responses to EPA Comments 1 and 9.

3. Additional methane monitoring during operation of the system will indicate whether the methane is consistently present in concentrations that will warrant the expense of a permanent removal system. What is the threshold for the evaluation?

Army Response: The methane monitoring includes readings within the building and sampling of groundwater to monitor methane levels in the influent. A threshold for determining to add treatment would be excessive alarm/shutoff conditions (based on 10% of LEL and 20% of LEL, respectively) within the building. The influent sampling would be related to influent

Response to DEP Comments (DEP letter dated August 16, 2006)

concentrations associated with any alarms/shutoffs. To date, there have not been any alarms and the influent concentrations have been lower than initially observed in the fall of 2005 (09/29/2005: 4,190 ug/L) and at restart in the Spring 2006 (3/10/2006: 8,270 ug/L).

4. Additional data are needed to more fully characterize the groundwater chemistry as it relates to air stripping and its potential effects on the existing treatment system. What kind of parameters will be collected, and when will these updates be made available, as they do not appear at the FTP site?

Army Response: The data collected to date do not suggest that air stripping will be necessary to manage dissolved methane in influent water.

5. Additional influent samples for methane will be collected during system operations to establish a data set of methane concentrations in the influent water. Please indicate in the Process Schematic Figure where the discharge manhole and/or receiving manhole are. Several scenarios modeled for the manhole exceeded 10% of the LEL threshold. Please explain what the impact the high methane concentration may have on the POTW, check whether the Industrial Wastewater Discharge Permit needs to be modified, and provide monitoring data to verify the model.

Army Response: The modeling was performed to evaluate the conditions in the receiving manhole at the end of the discharge pipeline. The scenarios were developed due to the lack of air flow data in the manhole and were intended to show that the LEL would not be exceeded in the manhole. Since the system was restarted, monitoring has been performed at the manhole on a regular basis. The LEL readings in the manhole average less than 4.6% of LEL over several readings. The most recent reading collected on September 29, 2006 was 3% or LEL.

[Comment:] It seems that the threshold to take action at the methane/oxygen detector in the groundwater treatment system building should be 10% of the Lower Explosive Limit (LEL). MassDEP Solid Waste regulation 310 CMR 19.117 (2) of General Design Standard, requires air quality protection systems be designed to control the concentration of explosive gases to no greater than 25% of the LEL at the property boundary at any time, excluding gas control or recovery system components, any leachate collection components, or 10% of the LEL in any building, structure, or underground utility conduit.

Army Response: At 10% of the LEL an alarm is triggered and at 20% of the LEL the plant shuts down and the operator is notified by the SCADA system. The building is unoccupied most of the time, except for a few hours a week during visits and maintenance. When the system shuts down, the potential source of methane (process influent) is eliminated. There have been no methane monitoring triggered alarms (10% LEL) or shutdowns (20% LEL) related to plant monitoring. If 10% LEL alarms occur, the Army will take action to evaluate and address these conditions.

[Comment:] The Army must address offsite potential risk around northern house area. Preliminary methane gas testing at the basement in each building should be initiated as soon as possible. Furthermore, the high methane concentrations in the groundwater and at several gas

Response to DEP Comments (DEP letter dated August 16, 2006)

vents warrant a comprehensive assessment of methane distribution at the Landfill and off the property, and the possibility of an active gas collection system to protect human health and safety. The methane delineation should be more thoroughly covered, either as part of the Contingency Remedy or the CSA but must be addressed as soon as feasible.

Army Response: Comprehensive gas characterization has been undertaken through the closure process of the landfill and gas monitoring has been conducted annually by the Army at vents and perimeter monitoring wells installed over the years. The four (4) gas wells installed between the landfill and the Scully Road neighborhood have not detected methane over the past 5 years. DEP sampled methane in basements along Scully Road in August and reported non-detects. Please refer to response to EPA Comment 1 presenting the site conceptual model for methane geochemistry and actions levels for methane in groundwater developed by US Department of Interior. Methane generation is well understood and appropriate monitoring has been conducted at Shepley's Hill over the years to evaluate it with respect to human health and safety.

[Comment:] Additionally, MassDEP had requested that methane gas be added to the field parameters when performing both the PMP and the LTMP.

Army Response: Methane gas monitoring is not warranted at monitoring wells during groundwater sampling events; however, field teams may use combustible gas indicators that enable monitoring % LEL.

Response to DEP Follow-up Comments (DEP Letter dated November 20, 2006)

[DEP Letter to Mr. Robert Simeone dated November 20, 2006]

RE: Response to Comments dated August 16, 2006 about the Technical Memorandum "Methane Controls – Shepley's Hill Landfill Groundwater Treatment Plant", October 5, 2006 through email

Dear Mr. Simeone:

The Massachusetts Department of Environmental Protection (MassDEP) has reviewed the responses from contractor, CH2M Hill to comments by both MassDEP and USEPA for the March 2006 Shepley's Hill Landfill Contingency Remedy Methane Tech Memo per the DSMOA for Devens. Several of the issues were discussed at the November 9, 2006 BCT meeting. CH2M Hill, Army contractors for the Shepley's Hill Landfill Contingency Remedy, electronically submitted their comments on October 5, 2006.

[Comment:] Three issues are still of a concern to MassDEP: 1) undetected methane may be migrating in sufficient concentrations to impact downstream houses or conduits, 2) the gas venting system on the landfill may not be adequately controlling landfill gas, and 3) the direct venting of landfill gas at the influent of the pump and treat facility may have potential impact to nearby houses.

Army Response: As discussed with the BCT, the Army committed to conducting additional methane monitoring/sampling following the release of the "Methane Memo", dated March 3, 2006, to further evaluate potential methane migration.

This monitoring included dissolved methane sampling of plant influent (EW-01)/effluent in March; dissolved methane sampling of plant influent (EW-01) and downstream wells 41B and 39B in June; installation and monitoring of temporary soil gas probes at the north end of the landfill in October; and sampling of dissolved methane in plant influent and 12 downstream well screens in December, 2006. In addition, the 2006 annual LTM gas vent and permanent gas probe monitoring was conducted this past December. Data and results of this work have been presented to the BCT in summaries transmitted through emails, discussed at BCT meetings (November and January, 2006), and discussed on conference calls.

These data are summarized in attachments to this document. Table 1 (attached) provides a summary of all the influent/effluent and groundwater data collected, to date, for dissolved methane/ethane. Table 2 provides a summary of landfill gas data collected during the December 2006 annual LTM sampling event and gas monitoring conducted at temporary gas probe locations during October and December. Figure 1 provides a graphical summary of the December, 2006 dissolved groundwater analytical data adjacent to wells where samples were collected. In addition, Figure 1 depicts the location of permanent and temporary gas monitoring points at the north end of the landfill. Note that temporary gas probes were also installed adjacent to each of the wellheads for the monitoring wells that were sampled for dissolved methane/ethane in December (refer to Figure 1). This was done to evaluate and compare dissolved methane/ethane detected in groundwater sampled from depth to the levels of methane gas in the shallow vadose zone. The results of all gas monitoring conducted in 2006 are summarized in Table 2. Table 3 provides a summary of well screen depths/elevations, geologic designation, and average arsenic concentration for wells sampled for dissolved methane/ethane in December, 2006.

Response to DEP Follow-up Comments (DEP Letter dated November 20, 2006)

In response to Issue 1 raised by DEP, it should be noted that methane gas has never been detected in the vadose zone north of the landfill at permanent or temporary gas probes. The permanent soil gas probes, LGP-01-01X through LGP-01-04X, have been monitored annually since installation in November 2001 and methane has not been detected during any of these events. Temporary gas probes DP-1 through DP-10 were installed and monitored at the north end of the landfill in October, 2006 (please refer to Table 2 and Figure 1) to provide additional coverage: methane was not detected in any of these vadose zone monitoring probes. Methane gas was also not detected at temporary soil gas probes installed in December adjacent to each of the well heads downstream (please refer to Table 2). Passive vents installed through the landfill cap and connected to gas collection headers beneath the cap indicates that methane production in the landfill is generally low and consistent with that of an aging landfill - one that has not received waste over most of its area for two decades and anywhere within its footprint for 15 years. Both recent and historical data do not suggest that methane is migrating toward households in the vadose zone at detectable concentrations. Aver Fire Department monitoring of basements along Scully Road, as requested by DEP in August, did not detect methane (Email from DEP to Army August 18, 2006).

In response to Issues 2 and 3, the passive vent system appears to operating as designed and the venting system at the plant releases methane to a passive collection system at points in the process including the microfilter influent tank, microfilter backwash tank, effluent sump. These units were sealed and vented to the building exterior. Headspace data indicate that the concentrations that previously built up in these process components, prior to venting, were well below the LEL (less than 35% LEL in microfilter tank and 7% LEL in effluent sump) and considerably less than many of the landfill vents. Passive venting above the plant provides an effective dispersive control comparable to the landfill vent system.

[Comment:] Based on the November BCT discussions the Army has agreed to, as a snapshot, field screen the monitoring wells for methane during the next groundwater monitoring event. MassDEP believes that obtaining actual data from the monitoring wells will be useful step in developing a better understanding of methane migration adjacent to and downgradient of SHL. Please provide a copy of the sampling protocol to be used when measuring methane gas concentration at the groundwater wells.

Army Response: As discussed above, the Army decided to conduct dissolved methane sampling at a number of well screens in combination with vadose zone gas sampling. This approach provided a good assessment of the three dimensional dissolved methane/ethane concentrations downgradient coupled with an assessment of whether this dissolved methane is "off-gassing" at concentrations into adose zone gas that are detectable or present hazard. No methane has been detected in the vadose zone and a number of sampling points.

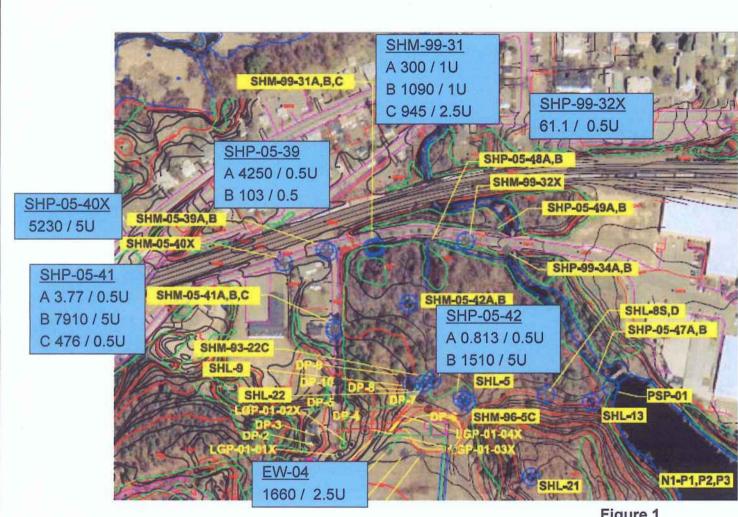
[Comment:] Because the extraction wells effluent has concentrations of methane as high as 12,000 ppb that was unanticipated and the variation of landfill gas measurement results, it may be necessary to measure methane concentrations in the groundwater in addition to the well head survey. But MassDEP hopes that this screening effort will facilitate resolution on the issues outlined above. As an example, in the 2004 Shepley's Hill Landfill Annual Report (Report), the landfill gas monitoring data at vents V-2, V-3, V-9, and V-10, at northern and oldest portion of the landfill recorded more than 5 % methane concentration, and vent V-9 has methane concentration as high as 23.9 %. On the other hand vent V-18 at southern and youngest portion

Response to DEP Follow-up Comments (DEP Letter dated November 20, 2006)

of the landfill, which recorded nothing but oxygen concentration of 21.2 %, which is not consistent with previous sampling results. MassDEP requests that the Army consider installing several additional gas probes at the northern perimeter of the landfill since elevated methane concentrations from groundwater wells are present with pump and treat system.

Army Response: Please refer to the responses to the previous comments. Considerable work was conducted this past fall to further characterize groundwater dissolved methane and vadose zone methane. Vadose zone methane gas was not detected at new temporary gas probes located downgradient of the landfill (please refer to Table 2).

[Comment:] As you know, the Solid Waste Program requirements prohibit methane migration and requires gas monitoring on and surrounding a landfill. These requirements are based on landfill siting and construction per statutory requirement of a four-foot separation between the seasonal high groundwater elevation and the bottom of waste. Given that this condition does not exist at SHL and groundwater elevations did not decrease after the installation of the cap, the specific requirement for gas migration monitoring at SHL should be tailored to the site-specific circumstances, which MassDEP has requested be evaluated in the CSA.


Army Response: Army monitoring of landfill gas has been occurring annually at fixed gas probes and the landfill vents. The monitoring is consistent with DEP requirements for gas monitoring provided in the *Landfill Technical Guidance Manual*, MA DEP, Division of Solid Waste Management (Revised May, 1997) and other EPA guidance. In addition, gas probes were installed this past fall at the north end of the landfill and did not detect methane in the vadose zone near the edge of the landfill cap or at a distance toward Scully Road and to the north.

[Comment:] The methane monitoring that the Army has agreed to perform will help in developing a reasonable CSM for methane and help focus any additional gas monitoring locations. It would be prudent to develop a preliminary methane gas distribution investigation in conjunction with the gas monitoring probes at the southern perimeter of the landfill along the commercial properties and the northern perimeter of the landfill.

Army Response: Additional monitoring work related to evaluating the presence or absence of vadose zone methane gas has been conducted north of the landfill. In addition dissolved methane in groundwater data were collected in December. The permanent gas monitoring probes installed along the southern perimeter of the landfill were all 0 % methane when sampled in December, 2006. These probes were installed in late 2005.

If you have any questions or require further clarification please contact Ms. Hui Liang at the letterhead address or call (508) 767-2762.

Attachment Data Summaries

Note: Dissolved methane / ethane in ug/L. Groundwater monitoring wells, permanent gas probes (LGP-01-01X through LGP-01-04X), and temporary gas probes (DP-1 through DP-10) are identified.

Figure 1 Shepley's Hill Landfill 12/2006 Groundwater Dissolved Methane/Ethane Data

CH2MHILL

Table 1 Dissolved Methane/Ethane in Groundwater

	Influent/Effluent	Monitoring					1000	151			10.00	
LOCATION/SAMPLE ID SAMPLING DATE LAB SAMPLE ID SAMPLE LOCATION Pumping Rate	INFLUENT 0909 09-SEP-05 L0510469-01 Influent 25 gpm	INFLUENT-0929 29-SEP-05 L0511503-02 Influent 25 gpm		EFFLUENT-0929 29-SEP-05 L0511503-01 Effluent 25 gpm		FLUENT EW1 -0310 10-MAR-06 L0603376-02 Influent 25 gpm	EFFLUENT -031 10-MAR-06 L0603376-01 Effluent 25 gpm		061306INF 13-JUN-06 L0608216-09 Influent 25 gpm		EW225120706 07-DEC-06 L0617737-02 Influent 50 gpm	
Unit	s (Qual	Qual		Qual	Qua	1	Qual		Qual		_
Dissolved Gases by GC Methane ug/ Ethane ug/		4190 0.5	U	910 0.5	U	8270 0.9	3200 0.5	U	6060 0.628		1660 2.5	

	Downgradient Tran	sect (S to N)
LOCATION/SAMPLE ID SAMPLING DATE LAB SAMPLE ID SAMPLE LOCATION	B4SHM0541BW 08-JUN-06 L0608066-05 SHM-05-41B	B4SHM0539BW 13-JUN-06 L0608216-07 SHM-05-39B
Units	Qu	A CONTRACTOR OF THE CONTRACTOR
Dissolved Gases by GC Methane ug/l Ethane ug/l	7920 0.5 U	232 0.594

		Downgradient -	- Wood	ds (W to E)	100							Downgradient	- Molu	ımco Road (W t	o E)									770	
LOCATION/SAMPLE I SAMPLING DATE LAB SAMPLE ID	ID	B6SHM0541AW 06-DEC-06 L0617627-04	,	B6SHM0541BW 06-DEC-06 L0617627-05		B6SHM0541CW 06-DEC-06 L0617627-06		B6SHM0542AW 07-DEC-06 L0617726-05		B6SHM0542BW 07-DEC-06 L0617726-03	7	B6SHM0540XW 06-DEC-06 L0617627-08	7	B6SHM0539AV 06-DEC-06 L0617627-07	V	B6SHM0539BW 12-DEC-06 L0617995-03		B6SHM9931AW 07-DEC-06 L0617726-08	V	B6SHM9931BW 07-DEC-06 L0617726-07	V	B6SHM9931CW 07-DEC-06 L0617726-06	1	B6SHM9932XV 07-DEC-06 L0617726-09	
SAMPLE LOCATION	Units	SHM-05-41A	Qual	SHM-05-41B	Qual	SHM-05-41C	Qual	SHM-05-42A	Qual	SHM-05-42B	Qual	SHM-05-40X	Qua	SHM-05-39A	Qual	SHM-05-39B	Qual	SHM-05-31A	Qual	SHM-05-31B	Qual	SHM-05-31C	Qual	SHM-05-32X	Qua
Dissolved Gases by GC Methane Ethane	ug/l ug/l	3.77 0.5	U	7910 5	U	476 0.5	U	0.813 0.5	U	1510 5	Ū	5230 5	U	4250 0.5	U	103 0.5	U	300 1	U	1090 1	U	945 2.5	U	61.1 0.5	U

Table 2

Date:

Revision: 2/12/07

2006 LANDFILL GAS MONITORING SHEPLEY'S HILL LANDFILL DEVENS, MA

Inspectors: Bakey/ Reault

10/31/2006 12/11/2006

12/14/2006

Barometer at Start: 29.99" 30.33"

30.01"

End: 29.79" 30.37" 29.94" Time Started: End: 0710 1400 1430 0830 0730 1400 Weather Partly Cloudy 40 -65° F Clear, 30's Clear, 50's

ID#	VOCs ppm PID	02 % IR	H2S ppm CGI	% LEL CGI	CO ppm CGI	CO2 %	Methane % IR	Remarks
V-1	0.0	6.5	0.0	95.0	4.0	10.9	1.9	12/14/2006 survey
V-2	0.0	5.2	0.0	>100	6.0	15.6	11.5	11
V-3	0.0	6.5	0.0	>100	6.0	18.9	10.9	n
V-4	0.0	10.0	0.0	52.0	2.0	8.8	1.2	н
V-5	0.6	17.9	0.0	2.0	2.0	6.3	2.0	ж
V-6	0.0	1.3	0.0	>100	8.0	21.2	14.4	
V-7	0.0	1.1	0.0	>100	8.0	17.1	6.0	
V-8	0.0	16.3	0.0	23.0	3.0	11.6	1.2	,,
V-9	0.0	6.5	0.0	>100	6.0	23.6	32.0	"
V-10	0.0	8.5	0.0	>100	7.0	17.9	9.6	
V-11	0.0	10.7	0.0	>100	6.0	7.2	3.3	*
V-12	0.2	21.0	0.0	0.0	0.0	0.1	0.0	
V-13	0.2	20.1	0.0	0.0	0.0	0.2	0.0	н
V-14	0,1	21.0	0.0	13.0	0.0	0.4	0.1	u
V-15	0.2	21.0	0.0	4.0	0.0	0.4	0.1	"
V-16	0.0	20.1	0.0	1.0	0.0	1.1	0.2	
V-17	0.0	9.2	0.0	>100	5.0	16.5	17.4	*
V-18	0.0	21.0	0.0	0.0	0.0	0.2	0.0	**
LGP-01-01X	0.0	20.9	0.0	0.0	0.0	0.0	0.0	12/11/2006 survey
LGP-01-02X	0.0	20.4	0.0	0.0	1.0	1.2	0.0	127112500 501109
LGP-01-03X	0.0	20.6	0.0	0.0	0.0	1.7	0.0	,
LGP-01-04X	1.5	20.6	0.0	0.0	0.0	0.5	0.0	n n
LGP-05-05X	0.0	20.3	0.0	0.0	0.0	1.5	0.0	n n
LGP-05-06X	0.0	18.2	0.0	0.0	1.0	2.8	0.0	TH.
LGP-05-07X	0.3	17.3	0.0	0.0	1.0	4.1	0.0	
LGP-05-08X	0.0	10.4	0.0	0.0	4.0	12.3	0.0	
LGP-05-09X	0.1	11.0	0.0	1.0	4.0	8.8	0.0	,,
LGP-05-10X	0.3	12.6	0.0	2.0	4.0	10.4	0.0	и
LGP-05-11X	2.2	6.9	0.0	2.0	3.0	15.0	0.0	
LGP-05-12X					5.0	10.0		not installed
LGP-05-13X	0.2	18.5	0.0	0.0	0.0	3.2	0.0	12/11/2006 survey
LGP-05-14X	0.4	8.9	0.0	0.0	3.0	5.1	0.0	12/11/2000 Survey
DP-1	0.0	20.3	0.0	0.0	0.0	0.4	0.0	10/31/2006 temporary soil gas sur
DP-2	0.0	20.7	0.0	0.0	0.0	0.6	0.0	"
DP-3	0.0	21.1	0.0	0.0	0.0	0.6	0.0	n
DP-4	0.0	20.5	0.0	0.0	0.0	0.7	0.0	п
DP-5	0.0	20.9	0.0	0.0	0.0	0.7	0.0	n
DP-6	0.0	19.7	0.0	0.0	0.0	0.7	0.0	"
DP-7	0.0	17.8	0.0	0.0	0.0	2.2	0.0	m
DP-8	0.0	21.1	0.0	0.0	0.0	0.3	0.0	n.
DP-9	0.0	21.0	0.0	0.0	0.0	0.3	0.0	H.
DP-10	0.0	20.7	0.0	0.0	0.0	0.5	0.0	
SHM-99-31-GP	0.0	20.6	0.0	0.0	0.0	0.4		
SHP-99-32X-GP	0.3	20.6	0.0	0.0	100000	741/	0.0	12/11/2006 temporary soil gas surv
SHP-05-39-GP	0.0	20.0	0.0	Control of	0.0	0.5	0.0	u
SHP-05-40X-GP	0.1	20.0	0.0	0.0	3.0	1.2	0.0	**
SHP-05-41GP	4.6				0.0	1.2	0.0	n
SHP-05-42-GP	4.6	20.6	0.0	0.0	2.0	0.4	0.0	Not sampled due to standing water

Equipment and Calibration Information

Instrument:

Thermo Environmental 580B PID 10.6 (Pine ID#6416); Calibrated by Pine Env. 10/31/06 w/ 100 ppm isobutylene (Lot #100 Iso 88410).

Instrument:

Thermo Environmental 580B PID 10.2 (S.N. 242); Calibrated by T. Bakey 12/11/06 and D. Reault 12/14/2006 w/ 100 ppm isobutylene (Lot #90295). Industrial Scientific TMX 412 (Pine ID# 6416); Calib'd by T. Bakey 10/31/06 w/ Cal Gas (Lot# 84993A) 50 ppm CO, 50% LEL, 20.9% O2, 25 ppm H2S Industrial Scientific TMX 412 (S.N. 9809009-444); Calib'd by T. Bakey 12/11/06 and D. Reault 12/14/2006 w/ US Env. Cal Gas (Lot# 004266) 50 ppm

CO, 50% LEL, 20.9% O2, 25 ppm H2S.

Instrument:

GEM 2000 (S.N. GM07991105); Calib'd by Pine Env. on 10/27/06 with 35 ppm CO2, 50ppm CH4, and 20.9 % O2 (Lot #1).

GEM 500 (S.N. E0985); Calibrated by US Env. on 12/11/06 with 35 ppm CO2, 50ppm CH4, and 20.9 % O2; Calibrated by D. Reault on 12/14/06 with 35 ppm CO2, 50ppm CH4, and 20.9 % O2.

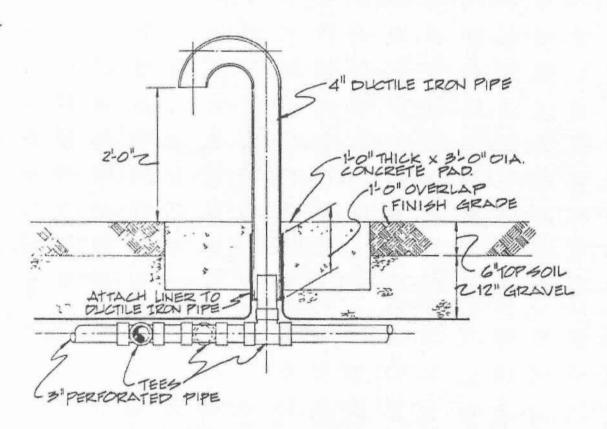
NOTES:

V= Landfill gas vent LGP= Landfill gas well point

DP = Direct push soil gas survey point

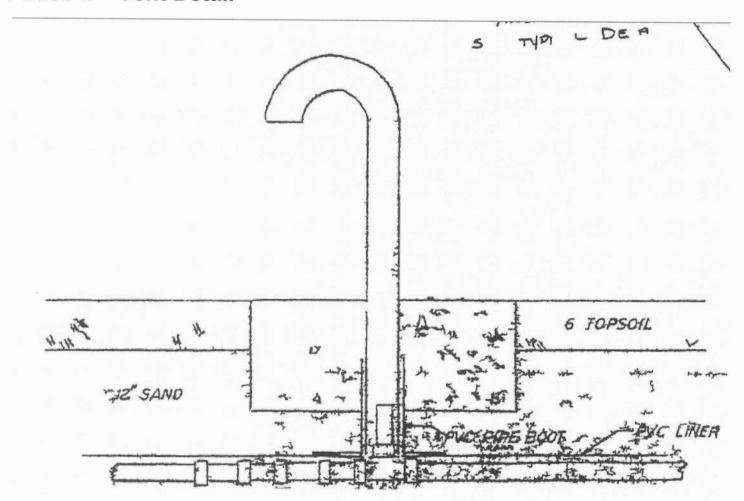
GP= Temporary gas point at select downgradient monitoring well locations

Barometric pressures were obtained from http://www.widespread.com for Ayer, MA Unless otherwise indicated, LEL readings from the GEM 2000 and TMX 412 were the same. If two readings given, the first reading represents the GEM 2000 and the second reading represents the TMX 412 reading.

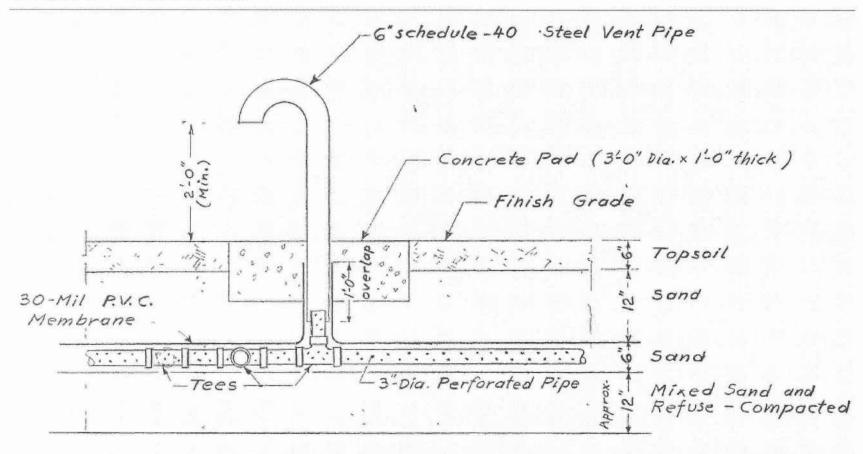

Table 3 Well Construction Summary -- Downgradient Wells Sampled for Methane/Ethane (December, 2006)

	Ground Surface(1)	Screened Interval	Screened Elevation	Geologic Designation	Average Arsenic (2) ug/L
DOWNGRADIENT (MOLUMCO ROA	AD)				
SHM-05-40X	224.6	32.0 - 34.0	192.6 - 190.6	Mid-Depth Overburden/Till	3638
SHM-05-39A	222.9	37.0 - 39.0	185.9 - 183.9	Mid-Depth Overburden	283
SHM-05-39B	222.9	66.0 - 68.0	156.9 - 154.9	Deep Overburden	485
SHP-99-31A	213.8	4.0 - 14.0	209.8 - 199.8	Shallow Overburden/WT	17
SHP-99-31B	213.5	50.0 - 60.0	163.5 - 153.5	Mid-Depth Overburden	67
SHP-99-31C	213.5	68.0 - 78.0	145.5 - 135.5	Deep Overburden	294
SHX-99-32X	220.1	72.0 - 82.0	148.1 - 138.1	Deep Overburden	183
DOWNGRADIENT (WOODS)					
SHM-05-41A	223.8	42.0 - 44.0	181.8 - 179.8	Shallow Overburden	51
SHM-05-41B	223.6	62.0 - 64.0	161.6 - 159.6	Mid-Depth Overburden	2445
SHM-05-41C	224.0	88.0 - 93.0	136.0 - 131.0	Deep Overburden/Till	613
SHM-05-42A	214.5	40.0 - 42.0	174.5 - 172.5	Shallow Overburden	5 U
SHM-05-42B	214.5	70.0 - 72.0	144.5 - 142.5	Mid-Depth Overburden	254
EXTRACTION WELLS					
EW-04	228.5	70.0 - 95.0	158.5 133.5	Mid to Deep Overburden	4793
EW-01	228.2	60.0 - 85.0	168.2 143.2	Mid to Deep Overburden	2757

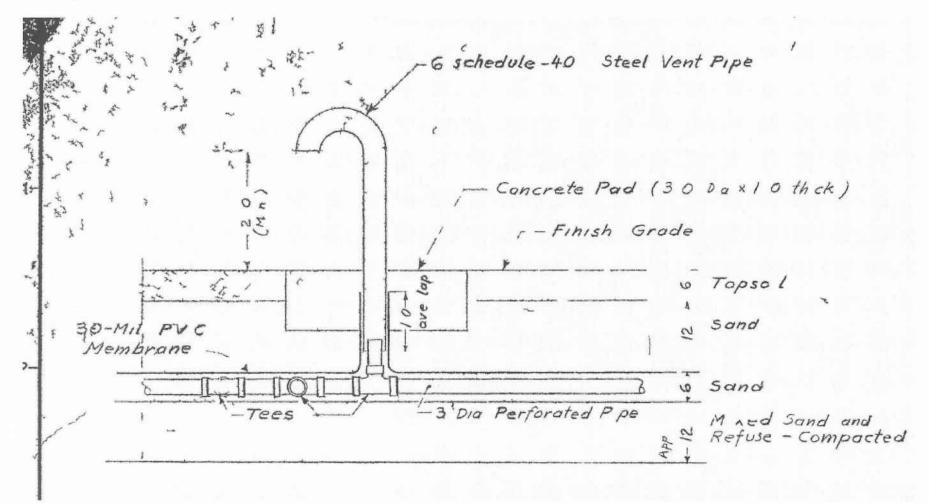
⁽¹⁾ Includes ground surface from published well completion log. If not available, ground surface elevation from Meridian Associates Inc. survey July/Aug 2005 used. (2) Average for PMP wells 4 events 8/05-9/06; EW-01 and EW-04 arsenic levels based on 3 events with either well operating at 25 gpm alone.


SECTION B-B

PRAP SRAVEL



CAS VENT DETAIL


Phase II - Vent Detail

Phase III - Vent Detail

Phase IV - Vent Detail

Harding ESE, Inc.
511 Congress Street
P.O. Box 7050
Portland, ME 04112-7050
Telephone: 207/775-5401
Fax: 207/772-4762

Home Page: www.mactec.com

January 11, 2002

Mr. David Margolis U.S. Army Corps of Engineers 696 Virginia Road Concord, Massachusetts 01742-2751

Subject:

Installation of Landfill Gas Monitoring Probes

Shepleys Hill Landfill

Devens RFTA, Devens, MA

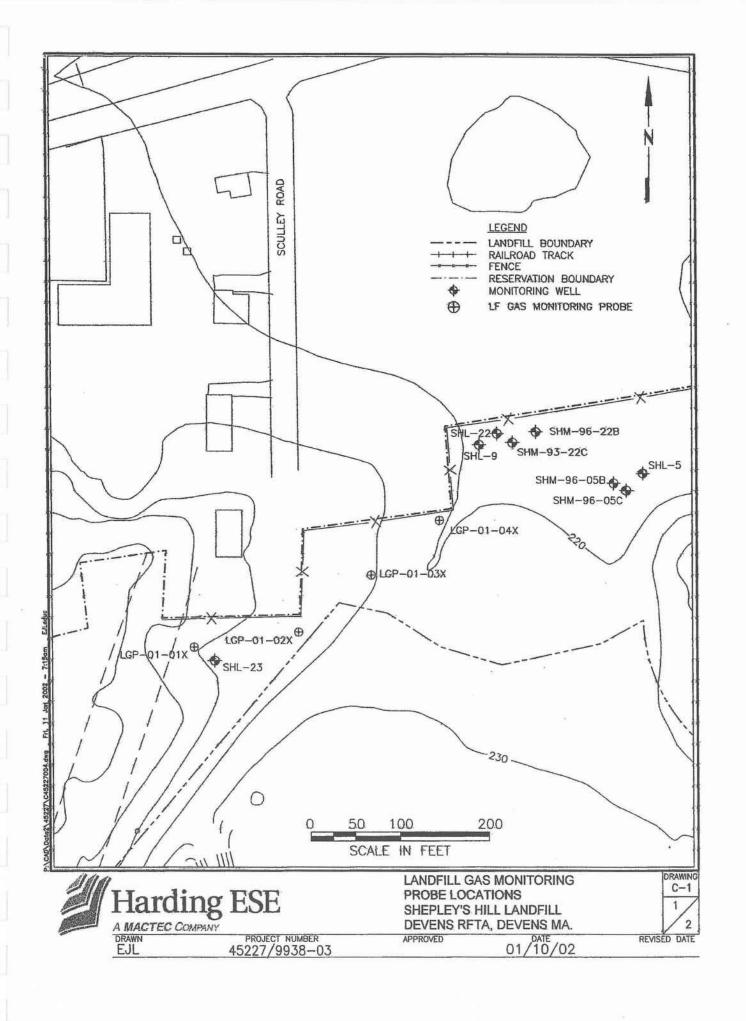
Dear Mr. Margolis:

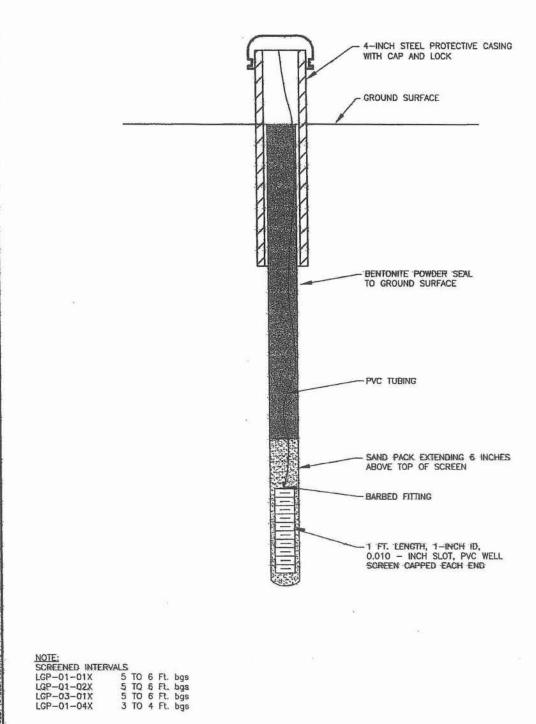
On November 7, 2001, Harding ESE and its subcontractor, Environmental Drilling, Inc., installed four landfill gas monitoring probes at the northwest edge of Shepley's Hill Landfill as directed by USACE. These probes were located to monitor landfill gas migration from Shepley's Hill Landfill towards Sculley Road in Ayer. The probes were installed by Geoprobe at depths and at a horizontal spacing consistent with the Massachusetts Landfill Technical Guidance Manual, revised May 1997.

Enclosed is a figure showing the surveyed locations of the probes and a second figure showing typical construction details. The location and elevation coordinates of the points are listed below.

Description		North	East	Ground Elevation
LGP-01-01X		567264.5354	573388.7461	241.80
LGP-01-02X		567281.4696	573505.5082	235.01
LGP-01-03X	*	567344.7430	573587.1202	231.30
LGP-01-04X		567405.3548	573663.4810	222.69

- 1. Survey by Martinage Engineering Associates, Inc. Reading, Massachusetts, January 2002.
- Coordinates based on survey points established by Golden Land Survey and noted as Massachusetts Coordinate System. Elevations are NGVD Datum.


Please contact me if you have any questions concerning the landfill gas monitoring points, this leter, or the enclosed figures.


Sincerely,

Harding ESE, Inc. A MACTEC Company

Stanley W. Reed, P.E. Project Manager

enc.

NOT TO SCALE

Harding ESE

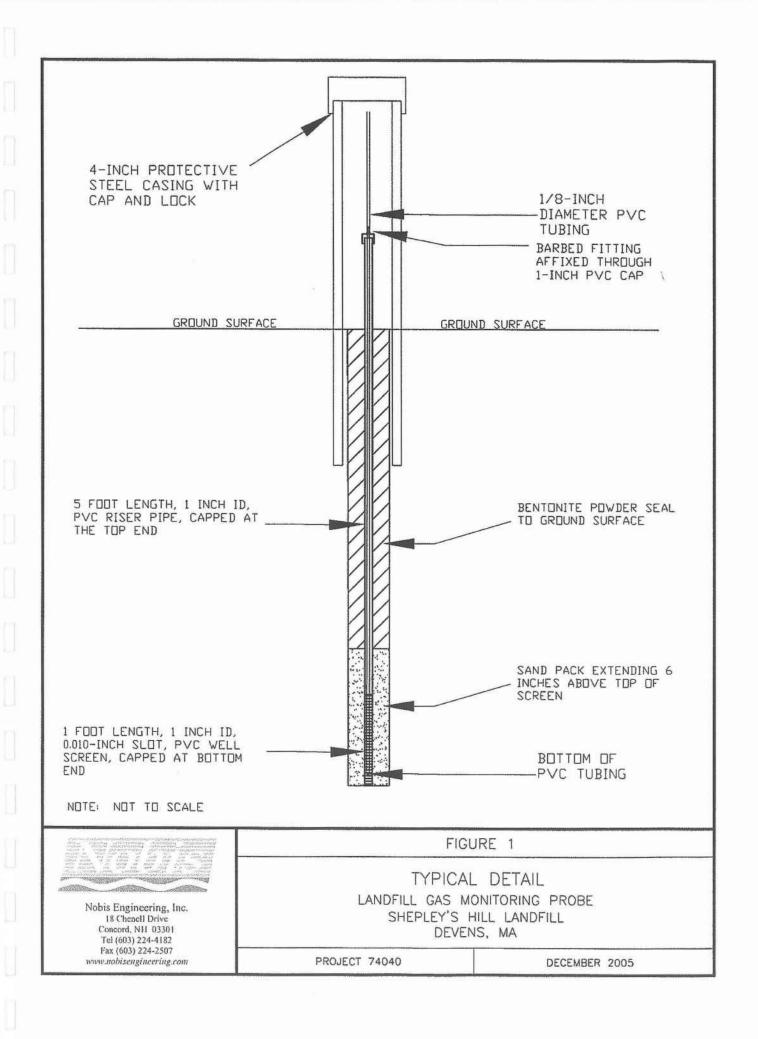
A MACTEC COMPANY

DRAWN

PROJECT NUMBER 45227/9938-03

TYPICAL DETAIL LANDFILL GAS MONITORING PROBE SHEPLEY'S HILL LANDFILL

DEVENS RFTA, DEVENS MA. APPROVED


01/11/02

C-2 2 2

DRAWING

REVISED DATE

	TRANSMITTAL OF SHOP DRAWINGS, EQUIPM		DATE			TRANSMITTAL NO:					
	MANUFACTURER'S CERTIFICA (Read instructions on reverse side prior		CE	L	December 9,	2005	05	-007			
	SECTION I - REQUEST	FOR APPROVAL OF	THE FOLLOWING ITEMS (TH	nis section	will be initiated	by the Contra	actor)				
50 l Bui	Army Corps of Engineers MacArthur Avenue ding 689, Section A ens, MA 01434	FROM: Nobis Engineerin 439 South Union Building 2, Suite Lawrence, MA 01	Street 207		ACT NO: CA33-03-	D-0005	CHECK ONE: X THIS IS A NEW TRANSMITTAL THIS IS A RESUBMITTAL OF TRANSMITTAL -				
	ICATION SECTION NO: (Cover only one section with each transmittal)	PROJECT TITLE AND			Sheple	Shepley's	fill Cap Maintenance Hill Landfill assachusetts				
ITEM	DESCRIPTION OF ITEM SUBMITT	ED	MFG. OR CONTR. CAT. CURVE DRAWING OR BROCHURE NO.	NO. OF COPIES	DOCU SPEC. PARA.	DRAWING	FOR CONTRACTOR USE CODE	VARIATION (See instruction	FORCE USE CODE		
NO.	(Type, size, model number, etc.) b.		(See instruction No. 8) c.	d.	NO. c.	SHEET NO.		No. 6) h.	i.		
a. 1	Cut Sheet-Typical Detail, Landfill Gas Monitoring Probe			Ī		***	8-				
REMA	RKS				in detail and cor	rect and in stric	d items have been reviewed to conformance with the tions except as otherwise st	ated.	-		
		SECTI	ON II - APPROVAL ACTION				· ·				
ENCL	OSURES RETURNED (List by Item No.)	NAME, TITLE AN	ND SIGNATURE OF APPRO	OVING A	UTHORITY		DATE				
ENG F	ORM 4025, MAY 91	(ER 415-1-10)	EDITION OF AUG 89 IS O	BSOLETE			*	(Proponent CEMP-CE)			

Appendix C
Groundwater Field Analysis Forms
(See Enclosed CD)

Appendix C Groundwater Field Analysis Forms

SHM-05-40X

		F	ield Data S	heets for I	Low Flow	Ground W	ater Sa	mpling		
Well ID:5	e: Shepley Hill I	YOXY (F(ppm) C	Massachusetts Date: s ondition		Time:_//2.5	er: 284350.om.(02			
Well Depth	33,98 Level 1.41.2	53 ^(FT.)		Stabilization TO PUCC 2" Cow Fig.	•	-istalt	ند	Time Purging begin Water Level at time Time Purging ends Water Level at time	T _{o:} <u> </u>	<u>3</u>
Time ·	Volume Removed	pH +/-0.1	Conductivity (mS/cm) + / - 3%	TEMP.(C) +/-0.2 or 3%	Redox (mV) +/-10 mV	Water level (Ft)	D.O. (mg/L) + / - 10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate - (Lpm) 0.3 to 0.5LPM	Appearance
1143	5L	6.74	345	12.68	-128.Z	14.06	.55	Z4. Z	٥.38	
1148	74	6.70	.340	12.73	-129.8	14.06	-53	13.0		
//53	96	8.66	. 339	12.84	-129	14.06	.53	李牙、丁	.38	
//57	111	€,65	.337	12.70	-130	14.06	,5a	C.38		
<u> </u>	AFTER SAMPLING			SAMPLING						
Date: <u>/</u> Time:	/ <u>6</u> 6	•	Total As, Fe, Mn, Mg, (Alkalinity via SW-846/2			Diameter (inch)	Gallon / Foot 0.040	* delta w.L. (ft)	= ٧0	lume lost (gallons)
Field Filterin	ig:		and Turbidity via SW-8		, FT 0-4020	1.5	0.091			
	ethodology:					2	0.163			
Laboratory: Remarks:	Alpha Metho	od of Shipme		BRR	SHW	054	>×(J '	10	allon = 3 78 liters
LowFlowDataS	heet xistemplate-	ow flow			.,			,-,-		

SHM - 99 - 39A

Down gredent.

·	*	F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling		
Well ID: 51 Weather Con-		39A C	Massachusetts Date:	96 90	Project Numb Time: 1 5	er: 284350.om.(02			
Well Depth _ Static Water I Water Columi	39.47 Level 24.4	(k.4) FT	Well Datum		_	shultic		Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e T _{o:} 10 s: (T ₁)1	1050 11.75 39
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) +/-3%	TEMP.(C)	Redox (mV) +/-10 mV	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
1110	2.56	C.75	.583	11.81	-95 -106	11.39	2.10	1.33	0.5	Clear
1122		C.75	.573	11.53	-109	11,39	.ය ය	1,56	0.5	clear
1130		6,45	,589	//. 5 3 //. 5 9	-110	11,39	, C Y	0.63	0.5	clear
					-					
	AFTER SAMPLING			SAMPLING						
Date:/_ Time: Field Filterin			Total As, Fe, Mn, Mg, C Alkalinity via SW-846/2 and Turbidity via SW-84	320 8 , Chloride via S		Diameter (inch) 1 1,5	Gallon / Foot 0 040 0,091	* delta w.t. (ft)	= Vi	olume lost (gallons)
Sampling Me Laboratory: / Remarks:		ow Flow Sam I of Shipme	ent: Courier	HMC	539 4	مرك	0163		10	jallon = 3.78 liters

SHM-99-38B

Deungraciant.

		F	Field Data S	heets for	Low Flow	Ground W	ater Sa	mpling		
	e: Shepley Hill Li		s, Massachusetts Date:		Project Numb	er: 284350.om.	02			
Weather Con	ditions								-	ĺ
חום		(nnm) (Condition		<u> </u>					
Sample Team	1									
Well Depth _	···-	(FT.)	Datum		_	-	•	Time Purging begin	ns (T _o): / Z	145
			٠ , Diameter :					Water Level at time	e T _o . ////	<i>!</i>
Water Colum	n(FT _:) P	urge Method:		<u>.</u>			Time Purging ends	: (T ₁)	<u> </u>
		<u>-</u>						Water Level at time	e T _{1:}	
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	Purge rate (Lpm)	Appearance
		+7-0.1	+/-3%	+ / - 0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
101		C.83	.687	1646	-74	20,02		_	0.4	ckay
1108		684	. 463	11.59	-81.8	22.60	0.90	7.15	-31	cleck
		<u> </u>				-			- + -	
	•	Was	er 1000	1 900	000	K/DW	-9 2	ر رو	20 F	n't
				Na	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		11:0			
· · · · · · · · · · · · · · · · · · ·			Zer.	A IC	m /	8 1 7 10	1 1 1 7			
					·					
				(ጽዩ ድር _ቅ ሮዊ ተመንግ አ	1 12 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1				(Marie Control	A STATE OF S
	AFTER SAMPLING			SAMPLING	जिल्हा इ.स.च्या					
Date:/	/	Analysis:	Total As, Fe, Mn, Mg, C		6/ 6010B	Diameter (Inch)	Gallon / Foot	* delta w.t. (ft)	= V(ulume lost (gallons)
Time:			Alkalinity via SW-846/2			1	0.040			
Field Filterin	g:		and Turbidity via SW-84			1.5	0.091			
	thodology:	Low Flow Sam				2	0.163			
	Alpha Metho				'				1(pallon = 3.78 liters
Remarks:	,							·		

ID = B35H9939BW

						Ground W		p9			
oject Name	e: Shepley Hill La	ndfill, Devens	, Massachusetts	Υ	Project Numb	oer: 284350.om. 249	02				
eather Con	ditions <u>د اود</u>	NC 100	<u>• (= </u>	<u> </u>	<u> </u>						
<u></u>		(ppm)	condition	00 - NO	79cK						
nple Team	TBLO	<u> </u>	- Wall	Stabilization	Data	***************************************					-
ell Depth	<u>68.02</u>	- (FT.) I	Datum 819		Dala			Time Purging beg	ins (T _o):	20	
tic Water I	Level 12,90) /ET \	Diameter:	ブリ				Water Level at tin	ne T _{o:} 12. -	<u> </u>	
ter Colum		-T.) Pi	urge Method:	<u>ed: - f1</u> t	<u>~11- (~</u>	our flor	کہ	Time Purging end			
					Ţ			Water Level at tin	ne T _{1:}	5,61	
T	Volume	_tı	Conductivity	TEMP (C)	Destau (=)()	Weter torrel (Et)	D.O. //1	Tanahistika (AITH)	Purge rate	Арреагапсе	
Time	Removed	pH ,	(mS/cm)	TEMP.(C)	Redox (mV)	Water fevel (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred		Appearance	
		+/-0.1	+/-3%	+/-0.2 or 3%	+ / - 10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM		
		+7-0.1	+ / - 376	+1-0.201376	+/-101114	₹0.511	+7-10%	NIO		0.	- 0A ((.
				_				<u> </u>	0.5	Cloudy	_ e 9 3 .4 ★
	1	Pama	ping dou	ار س	L .						
••••				ID UQ	_	2001		>0.00	۸	()	e124
21	≈ 3.5gol	6.72	· +65	13.77	-101	28.91		7999	0.5	Cloudy	6127
330	₹5.3G	6.8(. 773	13.88	-103	30.49	0.57	7999			
340		- '			_	35.61					
> ~	· <u>-</u> ·					† ` -	- 1		 		
		ادرا	atex le	vel.	ملاسوس	14 54ch	ilize	Daved	<u> </u>	17 2	
			4,		,	1		Y P		1 1	
			- Jana	las		-		 –			\dashv . \prime
				·							
	AFTER SAMPLING							77.00			£.
/1 /		114		SAMPLING	an Chapter - Line Contractor Act						
te: <u> </u>	2,300	-	Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	delta w.t. (ft)	-	volume lost (gallons)	_
ne:[] Id Filterin	2.] .		Alkalinity via SW-846/3 and Turbidity via SW-8		SW-846/9251	1.5	0.040		 		-
	_			& Same	de	2	0.163		-		_
-	Alpha Method	of Shipme	ent: Courier							fgallon = 3 78 liters	_
marks:				4130	وطاكم	cted Me	: (MSY	7			

LowFlowDataSheet.xlstemplate-low flow

5HM-99-31A

		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling		
Well ID: 51 Weather Cond		-31A Lear	Date: 4/11(b •	Project Numb Time: 13	er: 284350.om.i	Ď2			
PID Sample Team		(ppm) C	ondition	ంచ						
Weil Depth _	(5.72 evel_3	FT.) [Well Datum	Stabilization		ristalt	ز	Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e τ _{ο.} 3 ε: (Τ ₁) 4	15 2.68 13 2.68
Time	Volume Removed	pH +/⋅0.1	Conductivity (mS/cm) +/-3%	TEMP.(C) + / - 0.2 or 3%	Redox (mV)	Water level (Ft)	D.O. (mg/L) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
1324	14 L	6.22	.159	6.59	-1.9	2.90	0.49	1.14	0.4	
:327		6.00	.112	430	12.1	2.95	0.39	0.76	•	
335	194	5.99	406	0.27	14,5	2,90	.39	.76	0.4	
1341	214	5.77	.107	6.3)	14.3	Z.90	. 39	13.78		
									•	
		*	read:	5 0,	3C 0	ng/C	12) C	PSI 5	5 1	1.5ity
	· · · · · · · · · · · · · · · · · · ·					01			Pr	6he_
			37% 2.7% *2%,77.7% %	ran e para .	, v. v. 3				****	
	AFTER SAMPLING			SAMPLING					ZIPS IN THE	
Date: 4 / 11 Time: Field Filtering	1355	-	Total As, Fe, Mn, Mg, C Alkalinity via SW-846/2	Ca, Na, K via SW-84 320B, Chloride via S		Diameter (inch)	Gallon / Foot 0.040	* delta w.t. (ft)	= VĆ	olume lost (gallens)
Sampling Me	g: thodology: <u>l</u> Alpha Method	ow Flow Sam		+0/213UB		1.5	0.091		to	allon ± 3.78 liters
Remarks:		7		354	M 99	31A1	N		<u>'</u>	Amerikan — A, Los menteta

SHM -99-31B

			ield Data S					mpling	 •	25
Project Name Well ID: 5	e: Shepley Hill La	ndfill, Devens,	Massachusetts		Project Numb	per; 284350.om.(02			
Weather Conc	ditions Cle	.Q.C	<u>60° ₹</u>							
PID AF		(ppm) C	ondition <u>&</u>	<i>BO</i>						
Sample Team	<u> 79. jar</u>		Wall	Stabilization	Data					
Well Depth	61.41	_ (FT.) [Datum	BC PU	ر کے			Time Purging begi	ins (T _o):	358
Static Water L	_evel3	(FT.)	Diameter :	7 4				Water Level at tim	е Т _{в.} 5	35
Water Çolumi			irge Method: <u>t</u>	<u> </u>	al per	~i 5tw) fic	_	Time Purging end:		6 1412
					•			Water Level at tim	e T ₁ . 📥 🧵	3,68
T 1	Volume		Conductivity	#### (A)) Martin 1 (50)	D 0 (E)	Total Maria	Purge rate	
Time	Removed	pH	(m\$/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	(Lpm)	Appearance
	, .							and + / - 10% > 1	0.3 to	
		+/-0.1	+/-3%	+ / - 0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM	
1400	146	630	16Z	9,98	-51	3,68	.37			
1404	166	6.34	.169	10.02	-5 <u>2</u>	3,68	138	्पा	.45	clear
1408	186	0.37	,178	/0.1a	- S 2	3.68	OF.	,44	,45	6186
1412	266	C.31	,173	9.98	-52	3.68	סצי,	.42	,45	ciea
	,									
l				· <u></u>						
										<u> </u>
					A SA AND AND AND AND AND AND AND AND AND AN					
	AFTER SAMPLING	The said will be	a La la mille mille	SAMPLING			L		34 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	
Date:/_[DY	Analysis:	Total As, Fe, Mn, Mg, C		6/ 60108	Diameter (inch)	Gallon / Foot	delta w.t. (fi)	= v	olume lost (gallons)
	421		Alkalinity via SW-846/2		W-846/9251	1	0.040		ļ 	
Field Flitering	- —		and Turbidity via SW-84	46/2130B		1.5	0.091			
Sampling Me Laboratory: /		<u>ow Flow Sam</u> I of Shipme				2	0.169		11	gallon = 3.78 liters
Remarks:	Sprice Hestilet	, or omprire	<u>Godilei</u>						L	Secretary — Ann or serving
				<u></u>	<u>. </u>	1				

ID 2 B35H9931BW

		F	ield Data S	heets for I	ow Flow	Ground W	ater Sa	mpling		
		indfill, Devens,	Massachusetts Date: 4/11 Condition	j 100	Project Numb Time: 12	er: 284350.om.		. 0		
Well Depth Static Water I Water Columi	- 86.3 0 Level <u>3.93</u>	(FT.)	Well Stock Diameter: 2	"	-	ristalt		Time Purging begi Water Level at time Time Purging ends Water Level at time	т. А́д кп. 131	55 3.93 € 3.93
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) +/-3%	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L) + / - 10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
305	2L	6.56	667	10,37	-105	4,05	,75	32.9	- I	cloudy
1309 1312	10L	6.55	.666 ,667	0.47	-106 -10h	4,05	ای،	18.4	0.35 135	J
1315	110	6.57	.670	10.53	-106	4.05	. 957	17.1	.35	1
1318	اعد	طک,ک	.6+1	10.58	- /0+	4.05	.57		.35	
								-		
	AFTER SAMPLING			SAMPLING.						
Date: 4/ / / / / / / / / / / / / / / / / / /	200 200		Total As, Fe, Mn, Mg, 0 Alkalinity via SW-846/2 and Turbidity via SW-8	320B, Chloride via S		Diameter (Inch) 1 1.5	Gallon / Foot 0,040 0.091	* delta w.t. (ff)	= V0	lume fost (gallons)
Sampling Me Laboratory: / Remarks:	thodology: L Alpha Method	ow Flow Same	olina			2	0 163		19	allon = 3,78 liters

ID= B35H99 31CW

		F	ield Data S	heets for l	ow Flow	Ground W	ater Sa	mpling		
Well ID: 5 Weather Cond PID 1	ditions	<u>-</u> 32×1	Date: 4	9 - vo	Time: 12. [er: 284350.om.(02			
Sample Team Well Depth Static Water I Water Columi	85.4° evel_9,5	(FT.)		Stabilization	- 	ristult:	ic	Time Purging beging Water Level at time Time Purging ends Water Level at time	эт _о . 9,5 с(т.) 12.2	4 2) 4 9
Time	Volume Removed	pH +/-01	Conductivity (mS/cm) +/-3%	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	· Арреагапсе
+812	27.56	6,56	,720	10,7Z	~101	9,59	.85	15.3	.35	clear
1217	1047.25	6.56	177.0	10,81	-163	9,59	,69	14,3	1	
1221	il.SL	6,57	,718	1	-104	9.59	.68	14,7		clear
1225	130	C.55	118	10,74	-104	9,59	,6 5	14,6	(-	
	AFTER SAMPLING			SAMPLING						
Dațe: Time:	17.45	-	Total As, Fe, Mn, Mg, (Alkalinity via SW-846/2			Diameter (inch)	Gation / Foot 0.040	* delta w.t. (ft)	≖ VI	olume lost (gallons)
Field Filterin	g:thodology: _	i	and Turbidity via SW-8	•		1.5	0.091			
Laboratory: / Remarks:	Alpha Method	of Shipme	ent: <u>Courier</u>	ID =	133	5 5HI	M G	932	$\times \omega$	galfon = 3,78 liters

54M-05-41A

·			ield Data S		Low Flow	Ground W	ater Sa	mpling	· <u> </u>	
Weather Con PID	e: Shepley Hill La	(ppm) C	Massachusetts Date: 1/1/C		Project Numb	per: 284350.om.	02			
Well Depth _	44,65 Level 9,4	(FT.) ((FT.)	Well Datum Diameter ; urge Method:	フヘ		Perisha	.Itic	Time Purging beging Water Level at time Time Purging ends Water Level at time	э Т _о . %. 9 s: (Та) <u>/03</u>	3
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) + / - 3%	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
lott	126	6.46	.127	9.61	-228		0.91	95.0	0.33	<i>احد</i>
1016	146	637	.106	9.63	-9./	10.09	046	41.6		1
1022	16 L	6.35	0.094	9-69	-11.7	_	0.42	24.1	. 34	
1027	176	6.33	0.093	9.67	-127	10.09	0.42	11.6	<u> </u>	
1032	196	6.32	0.090	9. 73	-13.6	10.07	0.40	662	.34	J
	AFTER SAMPLING			SAMPLING						
Date:T_/	706	Analysis:	Total As, Fe, Mn, Mg, (16/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= vc	lume lost (galfons)
Time: <u>/ 6</u> Field Filterin			Alkalinity via SW-846/2	•	SW-846/9251	1	0.040			
	thodology:		and Turbidity via SW-8 pling	40/21306		1.5	0.091			
Laboratory:		of Shipme		<u>سد</u>		*	10.100	\	1g	allon = 3.78 liters
Remarks:			ID = B	35HM	0541	AW				

		F	ield Data S	Sheets for	Low Flow	Ground W	ater Sa	mpling		
لـ Well ID:		1B	Massachusetts Date: 4-11-0 condition 1-9-1	6 ec/c	Project Numb	per: 284350.om.	02			
Well Dept	ter Level 1010	40' (FT.):)Z_ (FT.)	Datum SHA	ዲ"				Time Purging beging Water Level at time Time Purging ends	e T _{oc.} 9.9 s: (T ₁) 9: \$	2
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) +/-3%	TEMP.(C)	Redox (mV) +/-10 mV	Water level (Ft)	D.O. (mg/L) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
937	4 L	6.32	.578	9.52	-જુવ,ત્ત	9.92	.71	73.4	0.38	
942	· L	6.32	.580	9.55	-87.3	9.93	.69	16.8		
947	7.5	6.32	.582	9.56	- 88.3	9.93	.68	9.50	0.34	
953	10 L	6.32	.584	9-61	-89.4	9,93	.66	5.61		
	AFTER SAMPLING	, , , , ,		SAMPLING						· · · · · · · · · · · · · · · · · · ·
Field Filt	1003 ering: NO	-	Total As, Fe, Mn, Mg, Alkalinity via SW-846/ and Turbidity via SW-	, Ca, Na, K via SW-8 /2320B, Chloride via 8		Diameter (inch)	Galion / Foot 0 040 0.091	* delta w.t. (ft)	= W	okume lost (gallons)
	y Methodology: ry: Alpha Metho :					2	0.163		10	pation = 3.78 liters

SHM-05-41C

		F	ield Data S	heets for l	ow Flow	Ground W	ater Sa	mpling		
Project Name Well ID: Weather Cond PID Sample Team	ditions	_ (ppm) C	, Massachusetts	52 20 B	Time: 135	er: 284350.om.(02			
Well Depth _ Static Water I Water Columi	• 93,47 Level _16-1	(FT.)	Datum BTC Diameter:	Stabilization PJCC 2"	- . , ,	المائء	-ic	Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e T _{o:}	10
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) + / - 3%	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
1264	706	6.99	598	146	-146-	10.25	က	2.07	.45	
1358	72 L	८२४	.595	11,37	-146	10.25	.56	1.99	.45	Clear
1402	246	C.99	1595	11.49	-147	10.25	0.57	1,91	.45	
			· ,	-	•			:		
				•	-					
	AFTER SAMPLING		The second secon	SAMPLING	1 (1.0) 1 (1.0) 8 (1					
Date: 1/1	3/00	Analysis:	Total As, Fe, Mn, Mg, C			Diameter (inch)	Gallon / Foot	delta w.t. (ft)	= v	olume lost (galions)
Time:/\$ Field Filterin	(//)		Alkalinity via SW-846/2 and Turbidity via SW-84		SW-846/9251	1.5	0.040		 	
	ethodology: <u>L</u>	ow Flow Sam		+Di51300		2	0.081			
Laboratory: /			ent: Courier	3			* · · · · · · · · · · · · · · · · · · ·	•	1.	gallon = 3.78 liters
Remarks:	1	- O	· B3	SHM	N 05	2 Al C				

·		F	ield Data S	Sheets for	Low Flow	Ground W	ater Sa	mpling		
Weather Cond	ditions <u> </u>	(ppm) C	, Massachusetts Date: 0		Project Numb	oer: 284350.om.	02			
Well Depth	<u> </u>	(FT.) (FT.)	Wel Datum	17	-	- تاسال		Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e T _{o:} 4:45 s: (T ₁) 7 2.4	8
Tîme	Volume Removed	pH +/-0.1	Conductivity (mS/cm) + / - 3%	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and +/- 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
905	6.5L	605	.049	9.06	1229	4.55	5.09	7.03	.35	
912	94	L03	. 048	9.33	117.2	4.55	5.15	11.3	.34	
919	114	L02	-047	9.46	120.0	4.55	5.26	3.82	34	
	AFTER SAMPLING			SAMPLING						
Date: // Time:	470	-	Total As, Fe, Mn, Mg, Alkalinity via SW-846/			Diameter (inch)	Gallon / Foot 0.040	* delta w.t. (ft)	= \nabla q	ume lost (gallons)
Field Filtering	g: 136		and Turbidity via SW-	•		1.5	0 091			
Sampling Me Laboratory: / Remarks:		ow Flow Sam I of Shipme	ent: Courier	SA	MPIR	」。 幻 (回	<u>0.163</u>	0	1ga	illon = 3.78 liters

		. F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling		ĺ
Well ID:	e: Shepley Hill La ditions	5-428	Date:	% 600 F 5 COCI	Project Numb	er: 284350.om.	02			·
Well Depth _ Static Water Water Colum	Level <u>4.1</u>	(FT.)	Well Datum Diameter ; urge Method:	9 11	Data	erichal	tic	Time Purging beging Water Level at time Time Purging ends Water Level at time	e T _{o:} _ 4, 4 e T _{1:} 4,	46
Time	Volume Removed	pH - +/-0.1	Conductivity (mS/cm) + / - 3%	TEMP.(C) +/-0.2 or 3%	Redox (mV) +/-10 mV	Water level (Ft)	D.O. (mg/L) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
931	5L	6.54	.610	p.11	-98	4.49	551	I#118	.35	
938	7.5 L	6.57	618	10.Z1	-73.7	4.49	0.61	6.01	.35	
0941	8.56	6.54	618	10.25	-92	4.49	0000	4.72	.35	Clean
0946	9.56	6.56	.620	10.27	-95	4.49	159	4.26	:35	
4,	AFTER SAMPLING			SAMPLING				** · · · · · · · · · · · · · · · · · ·		- ;*
Date: 1 / 1 Time: 6	4 / UO C<2	Analysis:	Total As, Fe, Mn, Mg, (Diameter (inch)	Gallon / Foot	della w.t. (ft)	= 70	fume lost (gallons)
Field Filterin		\	Alkalinity via SW-846/2 and Turbidity via SW-9	-	ovv-840/9251	1.5	0.040	<u></u>		
Sampling Me	ethodology: <u>I</u>		eling			2	0.163			
Laboratory:	Alpha Method	of Shipme	ent: Courter	-		_ <		1	19	allon ≃ 3.78 liters
Remarks:		TO	-B5+	MOS	7421	3W_				

5HL-23

			TOTA DATA			Ground W	u.o. oa	p.ii.ig		
oject Name	: Shepley Hitt La			06	Project Numb	er: 284350.om.	02			
eather Con			Date:	45	Time: 101	<u> </u>				
		(ppm) C		200						•
mple Team	TB/E	<u> </u>	<u> </u>							
٠.	25	•	Wel	I Stabilization	Data				1 44	-7
Depth	35.5			ro Puc				Time Purging begi	ns (T _o):	==
tic Water L	evel 31	2 (FT.)	Diameter :	<u>4"</u>	- 11	C \		Water Level at time		
ter Columi)(FT.) Po	irge Method:	invac	2 1 1000	-+10m		Time Purging ends	•	_
	No.		_		1 		•	Water Level at time		<u> 44 + </u>
Time	Volume Removed	pH	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	Purge rate ((Lpm)	Appearance
		'	, ,	''				<5 NTU preferred	, , ,	
		+/-0.1	_ + / - 3%	+ / - 0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / • 10% > 1 NTU	0.3 to 0.5LPM	
7/7	44	564	.027	12.07	1526	27.47	10.93		, 43	
22	6 L	5.53	.027	12.98	170.9	27.47	10.99	11-1	.40	
77	7.52	5.47	.027	13.08	183	27.47	11.02	6.87	.40	
32	94	5.43	.025	13.08	193.5	2247	11.00	4.75		
037	11.8	5.40	.026	13.22	199.4	27.47	11.02	4.03	.40	
				500	MGT		· - (1 A			
				JAY	PLRI) (w) /(7:40			
			,		·					
	AFTER SAMPLING			SAMPLING					-	
e:	<u> </u>	Analysis:	Total As, Fe, Mn, Mg,		6/50108	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= ٧0	lume lost (gallons)
	40		Alkalinity via SW-846/	2320B, Chloride via S	W-846/9251	1	0.040			
a Filterini Salina Ma	: 		and Turbidity via SW-	846/2130B		1,5	0.091			
oratory: /		ow Flow Sam J of Shipme			•	2	0.163		4	alban = 2 79 libor
iarks:	p	- s. sinpine	OGOID!	-				i	19	alion = 3.78 liters

SHL-9.

·	• .	. F	ield Data Sl	heets for l	ow Flow	Ground W	ater Sa	mpling					
Weather Cond	ample Team TOC-TC												
Well Depth Static Water L	Static Water Level 9.06 (FT.) Diameter: Water Column (FT.) Purge Method: Water Column (FT.) Purge Method: Water Level at time To: 9.06 Water Level at time To: 9.06												
Time		pH .	- Conductivity (mS/cm) + / - 3%	TEMP.(C) + / - 0.2 or 3%	Redox (mV)	Water level (Ft)	D.O. (mg/L) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	(Lpm) 0.3 to 0.5LPM	Арреагалсе			
0 8 28	156+ 3=26	6.61	0.134	1,79 1,39	2 7	9,26 9.26	0,60	1.12	.3Z	clear			
0843	211	6.2	.135	7,36	-45	9.26	0.46	1, ZZ	,3Z	clear			
63 4-1	726	6.59	0.135	7,37	-45	9,26	0.49	1,2]	\$2,	Clear			
	AFTER SAMPLING			SAMPLING									
Date: 7/10 Time: Field Filtering Sampling Me		·	Total As, Fe, Mn, Mg, C Alkalinity via SW-846/20 and Turbidity via SW-84	320B, Chloride via S		Diameter (inch) 1 1.5	0.040 0.091 0.163	* delta w L (ft)	= V	olume lost (galions)			
	boratory: Alpha Method of Shipment: Courier 1gallon = 3.78 liters												

4.

ID: B30005HL9W

SHL-22

· · · · · · · · · · · · · · · · · · ·		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling		
Weather Con PID PA Sample Tean	TBIC	(ppm) C	ondition Well	Stabilization		er: 284350.om.				77/ 8804
Well Depth _ Static Water I Water Colum	n((FT.)	Datum	1"	<u> </u>	intic		Time Purging beging Water Level at time Time Purging ends Water Level at time	To: 6.1 : (T ₁) [6.1 : T _{1:} 7	
Time	Volume Removed	pH +/-01	Conductivity (mS/cm) + / - 3%	TEMP.(C) +7 - 0.2 or 3%	Redox (mV) +/-10 mV	Water level (Ft) • < 0.3 ft	D.O. (mg/L) + / - 10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Арреагапсе
0957	13th	6.74	0.527	9.15	-71		.96		.45	
1005	171	C,73	,530	9,32	-63	7,31	.67		,45	
1010	19 L	6.74	,532	9,37	-61	7, 31	B.	8.	4.	clear
1014	るい	6.74	,533	9.36	٦٤)	1.71	0.65	.57	.45	clear
• 9 •	AFTER SAMPLING		4	SAMPLING	And The second of the second					
Date.	22)	-	Fotal As, Fe, Mn, Mg, C	a, Na, K via SW-84		Diameter (Inch)	Gallon / Foot	* delta w.L (fl)	= V4	olume lost (gallons)
Field Filterin			Alkalinity via SW-846/2: and Turbidity via SW-84		999-040/8/201	1 1 5	0 040			
	thodology: 1	ow Flow Same	oling			2	0.163			
Laboratory: . Remarks:	Alpha Method	d of Shipme	nt: Courier						1ç	pallon = 3.76 liters
		=								

IO = B3005HL22W

Not whold.

SHM-96-22B

		F	Field Data S	heets for	Low Flow	Ground W	ater Sa	mpling		
Project Name	e: _Shepley Hill La	ndfill, Devens	s, Massachusetts		Project Numb	er: 284350.om.	02			
Well ID; S	HL- 221	<u>5</u> _	Date: 410	100	Time: 67			-		
	ditions		400 E							
PID		<u>(po</u> m)., 0	Condition	9000						
Sample Team	151		11/-0	Ot - 1-11						
Well Depth _	168	K _{ET} \	VV eji Datum	Stabilization	Data	•		Time Purging begi	عو (۲.) م	246) 24
	evel 12.4	ZE' (FT.)		<u>u"</u>				Water Level at time		र
Water Colum		, ,		ous- \$10	<u> </u>	ristal h	C	Time Purging ends		
	···	, .	argo montou		- / p-s.			Water Level at time		_
	Volume .	<u></u>	Conductivity		 		Γ		Purge rate	
Timé	Removed	pH 🦠	(mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	(Lpm)	Appearance
								<5 NTU preferred and + / + 10% > 1	0.3 to	
1		+/-0.1	+/-3%	+ / - 0.2 or 3%	+/- 10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM	
0747		c.79	۵.498	7.52	5.114	(.55	0.76	" <u>\$</u>	0.3	
· , &		COTI	0.110		 /	4	CATIO	0100		· · · · · · · · · · · · · · · · · · ·
S80.3	43 Gal	6,79	0.511	8.55	-106	6.60	0.67	98.0	೨. ३ ५	Clea C
F060	_	C.78	0.511	8.54	-106	6.60	0.67	0.99	1.35	clear
0812	1	10	2511	8.58	-107	. 15	0,66	^ 4 ⊃		
UUIO	-440	0.47	0.511	0.00	-107	ک بولیک	000	0.83	0.35	· <u>- ·</u>
	,]							
		 	 			····				
	li.				}					
			· · · · · · ·			 				
	į t.	STO WILLIAM COMMUNICATION	SUCLIC PITTLE	ቸያ፣ ፕላሽ እስስ የምም ሴላም ተማ	The state of the s					
	AFTER SAMPLING)			
		The Country of the Co	The state of the s	SAMPLING	ra i ri di Miliata di		l :	The same is trained and will write	Turki in in a said and the said	
Date: 4/_/	6 00	Analysis:	Total As, Fe, Mn, Mg,	Ca, Na, K via SW-84	6/ 6010B	Diameter (inch)	Gallen / Foot	* delta w.t. (ft)	± V(olume lost (gallons)
Time:	715.~		Alkalinity via SW-846/2	2320B, Chloride via S	SW-846/9251	1	0.040			
Field Filterin	9: <u>N</u> O		and Turbidity via SW-8	346/2130B		1.5_	0.091			
	thodology: L					2	0.163			
Laboratory: / Remarks:	Aipha Metho d	of Shipm	ent: Courier						10	gallon = 3 78 liters
nemarks.										

ID = B35HL9622BW

53

5HM-96-5B

· · · · · · · · · · · · · · · · · · ·		. F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mplina		
Project Nam	ie: Shepley Hill La	ndfill, Devens				per: _284350.om.		- _[
	nditions <u>Cle</u>	ar 4	condition No			<i>5</i>	• .			
Well Depth Static Water Water Colum	Level 5.8	<u>ට</u> (FT.)		Stabilization	_	istaltic		Time Purging begi Water Level at tim Time Purging ends Water Level at tim	ет <u>. 5.8</u> :(т.) 115	9_
?ime	Volume Removed	pH	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1	Purge rate (Lpm) 0.3 to	Appearance
1(34	144	+/-0.1	+/-3% , 493	1/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10% - 0 -82	2.57	0.5LPM	
<i>1143</i>		6,57	-501	11.15	-53	6.00	.7a		0.33	
1153		6.51	,497	10.74	-50	6.01	.31	1.79	.33	Clear
1156	1947	6.55	.448	10.77	-52	6.01	.30	1,93	.33	
1159	€	6.53	,495	10,58	-54		OF,	1.33		
		,								
_	AFTER SAMPLING		ate in the second water	SAMPLING						
Time: 1.7			Total As, Fe, Mn, Mg, Alkalinity via SW-848/2	Ca, Na, K via SW-84 2320B, Chloride via S		Diameter (inch)	Gallon / Foot 0.040	* delta w.t (ft)	= V	otume lost (gallons)
Field Fillerii Sampling M	ng: <u>NO</u> ethodology: <u>L</u>		and Turbidity via SW-8 <u>pling</u>	346/2130B		1.5 2	0.091			
Laboratory: Remarks:	Alpha Metho c	l of Shipme	ent: <u>Courier</u>	ID> f	33 SH	m5B	ኪጌራ	HMAL	 5ねい	gallon = 3 78 liters
, s	F H25 1	ور م ا	ust b/c	1st 1st	Herv	ata	-⊌⊃ ∵) <u>F)(· · · (w</u>	<u>حورار</u>	

LowFlowDataSheet.xistemplate-low flow 1 Him so time showers? To place to battery distributions in: time purge

50

SHM-96-5C

	·	? F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling		
Well ID:		6-56 (ppm) C	Massachusetts Date: 4 10 10	6 lock	Project Numb	per: 284350.om.	02			
Well Depth _ Static Water	79.62 Level 5.3	(FT.) I		Stabilization PVCC W	- · ·	istaltic		Time Purging begi Water Level at tim Time Purging end Water Level at tim	е Т _{ю.} Э s. (Т ₁) /// Z	4.5 L
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) +/-3%	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L) + / - 10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
1100	41	667	.751	9.33	-90	5.28	0.81	1.94	04*	Clear
1110	7.5L	6.61	736	9,50	-88	5,28	.91	1.89	0.4	
1117	10L	6,60	,732	9,54	-85	5,38	.91	1,91	.4	<u> </u>
1121	11,56	6,60	,734	9.60	-760	5/28	•88	1.	٠,٩	
	<u> </u>			:						
	AFTER SAMPLING			SAMPLING		Č				
Date:/_	<u>مورم</u>	-	Total As, Fe, Mn, Mg, (Ca, Na, K via SW-84		Diameter (inch)	Gallon / Foot	* delta w.L. (ft)	= ٧٥	olume lost (gallons)
Time: <u> 11 </u>			Alkalinity via SW-846/2 and Turbidity via SW-8	-	SW-846/9251	1.5	0.040		<u> </u>	
Sampling M	ethodology: 1	Low Flow Sam	pling			2	0.163			
Laboratory: Remarks: 1	Alpha Metho	d of Shipme	ent: <u>Courier</u>	,					1g	pallon = 3.78 liters
remarks.	Battery	Sed Gail	w ina init	ial ours	ع					
	- 1				,					
		$T \cap \cdot$, KZC1	INA 🍲 🕾	_	_				

10 = 83 SHM \$50

B35HM965CW

LowFlowDataSheet.xlstemplate-low flow

<u> </u>		F	ield Data S	heets for	ow Flow	Ground W	ater Sa	mpling		
Well ID: Weather Con-	ditions	(ppm) Co	Massachusetts Date: 4110/	29 - cm 00=	Time: 12	per: 284350.om.		. '	٠	
Well Depth _ Static Water I Water Columi	26.25 Level 1.1	.* (FT.) D Z _(FT.)	Oatum Well Diameter: 2 rge Method: 10	Stabilization		staltic		Time Purging begi Water Level at tim Time Purging ends Water Level at tim	е Т _{о:} - Т ЧТ э: (Т.) - 1.32 е Т.: - - Ц С	35
∜ime	Volume Removed	рН +/-0.1	Conductivity (mS/cm) +/-3%	TEMP.(C) + / - 0.2 or 3%	Redox (mV) +7 - 10 mV	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
1258	114	6.36	.041	9.71	149	9.45	4.60	1.31	-46	clear
1309		6.31	140,	9,75	154	9.45	3.02	1.79	<u>ل</u> ئار	clear
1317	200	C.27	.059	10.04	150	9.45	749	1.22	¥	1:
1324	230	6.25	.059	10,12	149	9.45	a.za	1,29	j.	
1728	24,56	G.ZS	ر 255	10:13	15Z	2,45	Z.29	1.19	J	\downarrow
					3. W. W.					
	AFTER SAMPLING			SAMPLING	elle en	8	<u> </u>		1 A	
Date: <u> </u>	3100	-	Fotal As, Fe, Mn, Mg, (Alkalinitu via SW-846/2			Diameter (inch)	Gation / Foot 0.040	delta w t (ft)	= 40	lume lost (gallons)
Fleid Filterin	leld Filtering: and Turbidity via SW-846/2130B 1.5 0.091									
Sampling Me Laboratory:	ethodology; <u>L</u> Alpha Metho d	ow Flow Same of Shipme				2	0 163		19:	allon ≃ 3.78 liters
Remarks:		-	olkcted	ms	MSD	\$ W	OP 1			

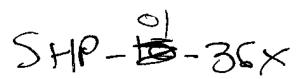
ID = B30054L85W

LowFlowDataSheet.xistemplate-low flow

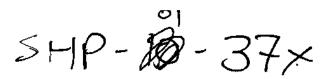
SHL-80

				•						
ĺ		F	ield Data Sl	neets for l	ow Flow	Ground W	ater Sa	mpling		
Project Name	3:_Shepley Hill Lar	ndfill. Devens.	Massachusetts		Project Numb	er: _284350.om.0	02			
Well ID:	SHLX		Date: 4] [] 0		Time: 8		-			
Weather Cond	ditions	- O.C	-, -,		ı		_	_		
PID NA		(ppm) C	ondition	1100	Con'	+ Secu	15 Ca	D		
Sample Team	100		<u> </u>	· · · · · · · · · · · · · · · · · · ·	•					
	4C7 1 D		_ Well	Stabilization	Data				シシ	<u> </u>
Well Depth _	37,4U	_ (FT.)	Datum KJ	عرو حوز	سام.		•	Time Purging begi	ns (Ta)	<u></u>
Static Water L	.evel 🔼 🦞	(FT.)	Diameter :	<u> </u>	<u>•</u>			Water Level at tim	е То:	1
Water Column	٦(F	T.) Pu	ırge Method: 📘 🗨	<u> </u>	w lock	istalt. c		Time Purging ends	s (т.) 😂 🕻 🖰	元
					7;	• • • •		Water Level at tim	e T _{1:} - 7. (<u>.</u> 9
`	Volume		Conductivity						Purge rate	_
Time	Removed	pH	(mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	(Lpm)	Appearance
							·	<5 NTU preferred rand + / - 10% > 1	0.3 to	
		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM	
0-22		6.17	انصدا	8.87	191	769	2.62	100	0.4	Clear
4 - 3 3	<u> </u>	~	, 25 /	Ø 0-	101 		7 0	1.01	T	
0831	<u> </u>	<u>ای ایا</u>	,076	8,89	165	7,67	1.76	1.3	0.4	Clear
0843	111	6-11	1098	895	になり	7.69	1.76	0,46	0.4	
0348	131.	60.0	101.	6,00	176	7.69	1.55	0.34	0.4	
NOWI	1.00	5 -		0 - 0	. 3.0				· ·	
O 824	(8L)	6103	<u></u>	7,03	135	1169	1,44		٧.٧	
। ० ४ ५४।	16.5	6,59	.103	40.9	187	7.69	1.42	0.31	1	
NGL !	18.0L	$C \sim 2$	1.7	9 ~!	-80	210	1 70	1.2	1	
0961	10.00	7.04	.(02	9.04	101	4.b	1137	0,178	9	
										:
	AFTER SAMPLING						<u> </u>			
Date: 4/(1	706	Amelonic-	Total An Ec 34- 14- 0	SAMPLING	61 60102	P4	0-11- 17- 1	•	ſ	
Time:		-	Total As, Fe, Mn, Mg, C			Diameter (Inch)	Gallon / Foot	* delta w.t. (ft)	= V(olume lost (gallons)
	· · · · · · · · · · · · · · · · · · ·									
, ,	handan Abda Matta da Oldananta									
Remarks:	wprice intestituti	or ompile	ores <u>Counci</u>						15	gallon = 3.78 liters
. williams,										

ID= 133005HLD8D


Ator Brold

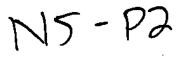
SHC-21


•		, F	ield Data S	heets for l	ow Flow	Ground W	ater Sa	mpling		
Project Name Well ID: Weather Con PID NA Sample Team			Date:	2)	Project Numb Time:	er: 284350.om.()2			
Well Depth _ Static Water I Water Colum	Level((FT.)	Datum Diameter : irge Method:	Stabilization	<u>:</u>	ie.Grund	105	Time Purging beging Water Level at time Time Purging ends Water Level at time	τ _{ο:} 45 : (τ ₁) 114 • τ _{1:} 4	17
Тітте	Volume Removed	p H + / - 0.1	Conductivity (mS/cm) +/-3%	TEMP.(C) +/-0.2 or 3%	Redox (mV) +/-10 mV	Water level (Ft)	D.O. (mg/L) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
1128	54	5.94	.053	13-76	1142	45.22	9.10	7.40	.43	
1135	7.8 L	5.93	.054	14.54	135.7	45.22	9.09	3.80	.38	
1140	10L	5.92	.054	1464	145.9	45.22	8.92	3.24	.38	
1145	126	5.87	.054	14.87	153.8	45.22	8.61	3.49	.38	•
			·				·			
							·			
	AFTER SAMPLING	. V		. 20.2				·		
Date: 4/	4.06	Anabasia.		SAMPLING	0/00/00					
Time:	55	-	Fotal As, Fa, Mn, Mg, (Alkalinity via SW-846/2	· •		Diameter (Inch)	Gallon / Foot 0.040	* della w.t. (ft)	. = YO	lume lost (gallons)
Field Filterin	on no		and Turbidity via SW-8		y roy wast!	1.5	0.091			
Sampling Me	thodology: L	ow Flow Same	olina			2	0.163			
	Alpha Methoc	of Shipme	nt: Courier						1gs	añon ⇒ 3.78 liters
Remarks:	10=	· 133	2000	5HL2	1.6					

SHL-13

	<u> </u>	F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling					
Well ID: Weather Con-	eather Conditions D												
Well Depth _ Static Water I Water Columi	21,95 Level 6,8	5 (FT.)	Weil Datum Diameter : urge Method:	3 " 1895C	-	iotaltic	-	Time Purging begi Water Level at time Time Purging ends Water Level at time	ет <u>«Сос."</u> «(т.). .1.73 ч	115 85 80 .18			
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) +/-3%	TEMP.(C)	Redox (mV) +/-10 mV	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and +/- 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance			
1476	<u>ا</u>	6.32	.181	11.82	104	6.94	,72	0.5	0,5	clear			
1440	127	4.3 Z	181	11,76	100	6,99	,56	0.51		clear			
1445	15L	6.30	180	11.55	98	6.99	. 47	0.30	0.5	Llear			
1449	17.5L	6.33	.180	11,47	15	6.99	, 4入	o.49	1				
1454	19.5	6.32	.180	11.56	103	6.98	.3.8	0.49	1/				
1300	19.50	(-31	.180	11.73	103.1	698	.40	0.48	4	clear			
						* (ec)							
						७] ५	ह्य ह	5= .49	3 mg)	L			
	AFTER SAMPLING			SAMPLING									
Date:	de	Analysis:	Total As, Fe, Mn, Mg, C		6/ 6010B	Diameter (inch)	Gallon / Foot	* della w.t. (ft)	= v	olume lost (gallons)			
Time:	3\ ~		Alkalinity via SW-846/2	·	SW-846/9251	1	0.040	_					
Field Filtering Sampling Me		ow Flow Sam	and Turbidity via SW-8. oling	46/2130B		1.5 2	0.091						
	Alpha Method					2	0.165	<u></u>	11	gallon = 3.78 liters			
Remarks:								•					

		F	Field Data S	Sheets for I	Low Flow	Ground W	ater Sa	mpling		
Project Nam-	e: Shepley Hill La	ndfill, Devens	Date: 4/17		Project Numb	oer: 284350.om.(02			
Weather Con		(ppm) C	Condition		_	, •				•·····································
Sample Team	101	<u> </u>	347	Otabilination	Data				<u> </u>	· -
Well D e pth _	12.84		vveii Datum 1310	Stabilization	Data -			Time Purging begin		142
Static Water	Level	, ,		su Stock	•			Water Level at time		
Water Colum	n(l	FT.) Pi	urge Method: \	<u></u>	J			Time Purging ends		
	•							Water Level at time	е Т _{і:}	15
	Volume		Conductivity						Purge rate	
Tinte	Removed	pН	(mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	(Lpm)	Appearance
								<5 NTU preferred and + / - 10% > 1	0.3 to	
<u>. </u>		+/-0.1	+/-3%	+/-0.2 or 3%	+ / - 10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM	<u>.</u>
1156	SL	C.52	.155	9,51	-47	785	1,70		0.4	Clear
1204		6.5Z	.156	9.60	-48.3	7.75	1.47	1,30	0.4	
1209	86	6.51	.156	9.65	-48.0	794	1.58	.73	0,4	
			•							
ı										
•		-								
								.,		
							ļ			
	AFTER SAMPLING									
Date: 4/ /	3,00			SAMPLING		1				<u> </u>
Date:7/_ <i>[</i> Time:	773	Analysis:	Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w t. (ft)	= V	olume lost (gallons)
Field Filterin	9: _ \\\\\		Alkalinity via SW-846/2 and Turbidity via SW-8		944-046/925 I	1.5	0.040			
Sampling Me		ow Flow Sam	-	74WZ 1 0UU		2	0.091			
Laboratory:			nt: Courier			4		·	1:	gallon = 3.78 liters
Remarks:	•	1		e O.	スノラン	```				
l			= 153	SHP	012F	XW				


		Fi	eld Data S	heets for	Low Flow	Ground W	ater Sa	mpling						
Project Nam Well ID:	e: Shepley Hill La	37 X [Date: 🖰 🕻 🌂	olOb	Project Numb	er: 284350.om,(02							
Weather Con PID Sample Tean	ditions CLE		ondition S	209										
 Well Depth _ Static Water	Well Stabilization Data Vell Depth													
	Volume	Г	Conductivity	<u> </u>	Ī			Water Level at tim	e T _{i:}	ro				
Time	Removed	рН	(mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1	(Lpm) 0.3 to	Appearance				
1127	60	6.55	+/-3% .549 ·	+/-0.2 or 3%	+/-10 mV	6.78	+/-10%	1.05	0.5LPM	·				
1131		C.87	.047	9.37	-86	6,78	0.45	2.18	2.4					
1136	94	C.32	,647	9,52	-93	6.78	,37	1.20	0.4					
141	111_	C.84	F70,	9.49	~89	6.39	130	18.	[
1144	124	0.83	A47	9,53	-34	6.18	.35	63						
1148	146	C.33	-047	9,53	-93	6,48	,29	.61	V					
. <u>-</u>					<u> </u>	•								
	AFTER SAMPLING		200 y y y y y y y y y y y y y y y y y y											
Date:/_t	चेठ र्ह	Analysis: T	otal As, Fe, Mn, Mg,	SAMPLING Ca, Na, K via SW-84	6/ 6010B	Diameter (inch)	Gallon / Foot	delta w t. (ft)	= VO	iume lost (gallons)				
Time: Field Filterin	(57-No		lkalinity via SW-846/2		SW-846/9251	1.5	0.040							
Sampling Me	ethodology: L	ow Flow Samp		muz 1000		2	0.163							
Laboratory: . Remarks:	Alpha Metho c	f of Shipmer				~			1 ga	allon ± 3 78 liters				
neniai ks.		10:	= B3	SHP	013	7×6	ں							

		F	ield Data S	heets for l	ow Flow	Ground W	ater Sa	mpling 3						
Well ID:	re: Shepley Hill La	- 3 KM	Date: 4113			er: 284350,om.	02							
	tatic Water Level 4 time Ta 4, 24 /ater Column (FT.) Purge Method: 1000 - Fto Water Level at time Ta; 4; 26 Volume Conductivity Purge rate													
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance				
1104	54	C. 23	. 290	1003	-46	4,26	.61	,73	0.5	Ckar				
1108	7,5L	(o.Z3	.791	10.17	-50	4.26	.58	31	,5	1				
1112	9.00	6.23	291	10.16	-52	4,26	.57	, 48	.5					
1116	10,5L	6.27	,290	10.16	·53	4.26	.56	0.78	,5	9				
	AFTER SAMPLING			The Transfer of										
Date: Time: Field Fliterin Sampling Me	ethodology: Լ	ow Flow Samp	Total As, Fe, Mn, Mg, C Alkalinity via SW-846/2 and Turbidity via SW-8 bling	3208, Chloride via S	i	Dlameter (inch) 1 1.5	Gallon / Foot 0.040 - 0.091 0.163	* della w.t. (ft)	= v q	iurne lost (gallons)				
Laboratory: Remarks:	Alpha Method	t of Shipme	•	IO =	B3:	SHP O	1 35	BAW	. 1ga	allon = 3 78 liters				

Field Data Sheets for Low Flow Ground Water Sampling														
Well ID: < Weather Con-	Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.om.02 Vell ID:SHL15 Date: Time: Veather Conditions (ppm) Condition													
PID Namplé Team		_(ppm) C	ondition	.										
•			Well	Stäbilization	Data	-				2.4-				
Well Depth _	26.44	_ (FT.)	Datum 67 C	(PVC)		•		Time Purging begir	ıs (T _o):	<u> </u>				
Static Water I	.	2 (FT.)	Diameter :	<u>>< 4′′</u>		11*-		Water Level at time	: T _o . <u>L %</u> .	.70				
Water Column(FT.) Purge Method:														
			0-1-2-2-1	•	_	_		Water Level at time		28				
Time	Volume Removed	pН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1	Purge rate (Lpm)	Appearance				
		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM					
857	46	5.75	.128	10.52	86	18.28	1.64	1.60	.38	-				
0902		5.73	.128	10.53	54.6	18.28	"里.5	1.91	.35	•				
8090		5.73	128	(e).52	44,9	,565->	> 18.29	.77	.35	clear				
0912	91	5.73	128	10,54	44	18.28	.58	88	,35	1				
0116	10.56	5.24	.128	10.56	40	18.28	58	.74	.35	7				
	7.7	1	· v											
	,													
	AFTER SAMPLING			SAMPLING	1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
Date: 1/	5 66	Analysis:	Total As, Fe, Mn, Mg, t		6/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (It)	≠ V	plume lost (gaßons)				
Time:	0971		Alkalinity via SW-846/2		W-846/9251	1	0.040							
Field Filtering Sampling Me	g:	ow Flow Sam	and Turbidity via SW-8	46/2130B		1.5	0.091							
	alpha Method					2	0.163		1,	gallon = 3.78 liters				
Remarks:		•						•						

		F	ield Data S	Sheets for	Low Flow	Ground W	ater Sa	mpling		
Project Name Well ID: Weather Cond PID Sample Team	ditions _ cac		Massachusetts	106 - NO (Time: oqu	er: 284350.om.	02			
Well Depth Static Water L Water Column	evel 22.	39 (FI.)	Datum	Stabilization PUCC I" Peci >te	=	م-4، <i>ور</i>		Time Purging beg Water Level at tim Time Purging end Water Level at tim	s: (T ₁)1©	22.01
Time	Volume Removed	рН +/-01	Conductivity (mS/cm) +/-3%	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU		Appearance
1005	64	6.43	-65-1	11.19.	-104.2	22.96	1.16	.49	.35	Clean
1011	76	688	.535	11-24	-108.6	T. T T	0.79	.37	.30	1
1017		6.56	.542	11-36	-108.5	22.98	0.72	.24	<i>.</i> 30	
1022	الم	6.53	. 539	11.33	-107.8	22.98	0.72	,39	. 30	ψ
	AFTER SAMPLING			SAMPLING						
Date: // Time:) (O=	-	Total As, Fe, Mn, Mg,	Ca, Na, K via SW-84		Diameter (inch)	Gallon / Foot	* delta w.i. (ft)	= VI	olume lost (gallons)
Field Filtering			Alkalinity via SW-846/3 and Turbidity via SW-8		5VV-846/9251	1.5	0.040			
Sampling Me		Low Flow Samp	pnilo	- · · · - · · · · · · ·		2	0.163			
Laboratory: A Remarks:	Alpha Metho	d of Shipme	nt: Courier			-			10	allon = 3.78 liters
nemarks,										

	Field Data Sheets for Low Flow Ground Water Sampling												
Well ID:	ditions	pudy (ppm) C	Date: 4 -13	ه دودار	Project Numb	er: 284350.om.	02						
Well Stabilization Data Well Depth 32. 13 (FT.) Datum 6TOPYCC Static Water Level 72.21 (FT.) Diameter: Water Column (FT.) Purge Method: 100 Fto 100													
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) + / - 3%,	TEMP.(C) +/-0.2 or 3%	Redox (mV) +/- 10 mV	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance			
0950	35L	616	1.007	11.28	-93	22.35	1.16	1.21	,34	Clear			
955	5.0	6.16	1.008	11.30	-95	22.35	1.09	-89	34-				
1000	6.56	6.[6	1.009	11.31	-96	22.35	1.06	.79	. 34	cicas			
					- ,								
	AFTER SAMPLING												
Time: _ <i> O </i> Field Filtering	g: NO	·	Total As, Fe, Mn, Mg, 4 Alkalinity via SW-848/2 and Turbidity via SW-8	320B, Chloride via S		Diameter (inch)	Gallon / Foot 0.040 0.091	* delta w t. (ff)	≓ V	rolume lost (gattons)			
Sampling Me Laboratory: / Remarks:	stnodology: <u>L</u> Alpha Methoc	ow Flow Sam I of Shipme				2	0.163	·	11	gallon = 3.78 liters			

SHL - 93 - 10D

		F	ield Data S	heets for l	ow Flow	Ground W	ater Sa	mpling			
Well ID: Weather Con-	ditions	الموات	Date: 4/15	1106	Project Numb Time: /2	oer: 284350.OM	1.02				
PiD		$\nabla \Omega_{-}^{(ppm)}$	Condition								
Well Depth _ Static Water I Water Colum	Co Level 31.	15 (FT.)		Stabilization	_	wort-c		Time Purging beging Water Level at time Time Purging ends Water Level at time	e T _{o:}		
Time	Volume Removed	pH	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)		<5 NTU preferred and + / - 10% > 1	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance	
1237	4.5L	+1-0.1	1302	+1.0.2 or 3%	+/-10 mV	32.65	+/-10%	25, Z	.38	Slight orange	e 125.6
1243	5,04	10,79	1295	14.72	-37	33,33	:47	37.2	.35	,	@138.3
1308	-	10.30	,272	12,20	-6	39	,76	29.6	.45		
1311	•	T			* u)	Q. 410	uldart	Stah	lize	Dunk?	Dry = Sound
1316						56.0		,			/ / J-wap
											<u>.</u> :
	<u> </u>	<u> </u>		SAMPLING	<u> </u>		Ļ				j
Date: 1	47.00°		Total As, Fe, Mn, Mg,			Dlameter (Inch)	Gatten / Foot	* delta w.t. (lt)	- 1	rolume lost (gallons)	
Time:	7 22 1		Alkalinity by 2320B, C	-	•	1	0.040				1
	ethodology:		9038, Nitrate by 4500, xol ing	, and lumoway by 21	1300	1.5	0.091				1
	Alpha Metho					L	41190			gation = 3.78 fiters]
Remarks:		-									
Sample ID =				-							J

(Divider Page)

SHM-05 -40x

		F	ield Data S	heets for I	Low Flow	Ground W	ater Sa	mpling			
Well ID:S Weather Con- PID	e: Shepley Hill La	(ppm) C	Date: 6 / 8/10	Ó	Time: 12		1.02				
Well Depth _ Static Water I		_(FT.) 1 5.2 . (FT.)	Datum	ラ"	_			Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e Τ _α _ s: (Τ ₁) 13 ©	12,52* <u>6</u>	6/6/06~. &
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) +/-3%	TEMP.(C)	Redox (mV)	Water level (Pt)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance	
1241		6.72	, 302	11,40		12,49	,47	69.0	#5U	im cles	Sightly cloudy
1251		6.77	.302	11.22	-84,2	1249	016	<i>3</i> 8.0			
1256	0	6.75	.306	11.32	-110.9	12-49	0.14	16.5	*5 LPP	•	r
1301	121	676	.306	11.29	-118.1		0.13	8.23			
1306	7	6.76	,306	11.27	-113.3	1249	0.13	10.08	\$LPM	1	
										<u> </u>	
								<u> </u>			1
Date: Co.	4 / 60			SAMPLING		I			1		
	1217	=	Total As, Fe, Mn, Mg,	=		Diameter (Inch)	Gallon / Foot	* delta w.t. (fl)	= V0	olume lost (pallons)	1
Time: Field Filterin			Alkalinity by 2320B, Cl			1	0.040	 			1
	ethodology: <u></u>		9038, Nitrate by 4500, noting	, and Turbiony by 21	1305	1.5	0.091				1
	Alpha Metho						0.163	·	10	allon = 3.78 liters	1
Remarks:	· _	•	 -5 40x\	.5							1
Sample ID =	10 10	1 IA/O	ショウハン]

SHM-05-39A

		F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling						
	e: Shepley Hill La	-398		2/06 2/06	Project Numb	er: 284350.OM	.02							
Sample Team	TO DR	(PP/ -	J							•				
Well Depth _ Static Water I Water Colum	tatic Water Level 9,33 (FT.) Diameter: 2" /ater Column(FT.) Purge Method:													
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1	(Lpm)	Appearance				
		+ / - 0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM					
6953	4	6.39	,590	10.97	-77 ,Z	9,49	50,62	7.4	0,5	year / Fan	> Flootica			
⁷ 0.00	テレ	6.36	,595	11,21	-88.6	9.49	0.20	5,7	0.5	clear (
1064	90	6.35	,597	11.36	-81,Z	9,49	0,19			Llea/				
1008	110	6.35	597	11.36	-77,2	9,49	6118	4.7	0.5	11	_			
10/2	136	6,35	<u>, 579</u>	11,48	-8118	9.49	0.20	4,6	0.5	1/	•			
					1									
<u> </u>				SAMPLING			<u> </u>							
Date: C/	7 106	Analysis:	Total As, Fe, Mn, Mg,		46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= v	rolume lost (gallons)				
Time:	1040	_	Alkalinity by 2320B, Ci	_		1	0.040							
Field Filterin			9038, Nitrate by 4500,	and Turbidity by 21	1308	1.5	0.091							
Sampling Me		Low Flow Sarr				2	0.163	<u> </u>						
Remarks: Sample ID =	Alpha Metho R 4 5		539AU						1	gallon = 3.78 liters				

5HM-05-39B

PMP Perungicionent

		F	ield Data S	heets for l	Low Flow	Ground W	/ater Sa	mpling		 -] /
Well ID:5} Weather Con	Shepley Hill Lar つついっとてら ditions <u>SHM い</u>	20°170	Date: 6/13/	106	Project Numb	oer: 284350.OM 220	1.02				
PIDNA	- 10 Jan	(ppm) (Condition <u>No</u>	Lacit	_						
Sample Team	113/10/5	_	187-11	Stabilization	D-+-						4
Weil Depth_	68.02	/FT\		Stabilization 7094とと	Dala			Time Purging begi	ns (T): O S	325	
	evel 11.35				_			Water Level at tim	e T. // L	3 C	
Water Colum	_		urge Method: 15		← ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	e \$ sample	<u>-</u>	Time Purging ends			
			g	Carun	_ , ,	- , ,		Water Level at tim	,		
Time	Volume Removed	рΗ	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	<5 NTU preferred		Appearance	
		+/-0.1	+/-3%	+ / - 0.2 or 3%	+/- 10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM]
Pu	iniped)	20	y [Hi v	icll w	ater le	ucl will	4011	Stabiliz	و		
0833	,	6.47	.734	/Z.00	<i>O</i> ,0%⁻		HE	7100		Cloudy of	ive gray
6843	1	662	.772	13.80	- 92.9		0,83			11	
		,									
·	* Cauld	only	F:11e2	Finus	cell	tempo	ravil	·~ <i>j</i>			1
						, ,		,			1
			-								1
							 				1
7 -	_			SAMPLING		<u> </u>					1
Date: P/_/		Analysis:	Total As, Fe, Mn, Mg,		46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w t (ft)	= V	olume lost (gallons)]
Time: <u>∂ ≥</u>			Alkalinity by 2320B, Cl	hloride by 9251, Sul	fate by	1	0.040				1
Field Filtering			9038, Nitrate by 4500,	and Turbidity by 21	130B	1.5	0.091				1
Sampling Me	thodology: <u>L</u> Alpha Method	ow Flow San				2	0.163	<u> </u>	<u> </u>		-
Remarks:	•	-	539B6	\					1 15	gallon = 3.78 liters	1
Sample ID =	<u> </u>	י ויין ו	1216 A	<u> </u>							J

5HM-9999-31A

Downigationt

	Field Data Sheets for Low Flow Ground Water Sampling													
Well ID: <u>3⊬</u>	Vealther Conditions													
PID *	unions	(nnm) (Condition &											
Sample Team	13 10R	_ (PPiii) (
Campio Tean	1215/1-		Mall	Stabilization	Data .									
Well Depth _	15,72	— ·	Datum <u>3で</u>	<u>می</u>				Time Purging begin	ns (T _o):	<u>∕~</u>				
	Level <u>8,97</u>	(FT.)	Diameter :	<u> </u>	 ,			Water Level at time						
Water Colum	n(FT.) P	urge Method:	<u> </u>	<u>- / loui ^ +</u>	46V)		Time Purging ends Water Level at time		15				
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance				
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5 LPM														
1153	1153 234 603 0.118 12.00 -39.6 1.15 0.16 1.9 0.5 CIENS													
1128														
125%	28 L	601	0.118	12.00	-40.5	1.15	Q16	1,2	0,5					
	-													
		-	_											
					<u>.</u>	·- ·- ·								
				0.000001.001.0										
ا راها Date: الم	2100	Amalum'	T-1-1 & - F- 14- 14-	SAMPLING	40/ 00400		0							
	77.		Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* detta w.t. (ft)	= VC	lume lost (galtons)				
Fleid Filterin			Alkalinity by 2320B, C	-	-	1	0.040							
	_	_ow Flow San	9038, Nitrate by 4500.	ano Turbiony by 21	305	1.5 2	0.091 0.163							
Laboratory: Alpha Method of Shipment: Courier 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
Remarks: Sample ID =	B45H1	-						l	ıg	unor - 0.70 Resid				

54M-99 31B

					<u>, </u>						_	
		F	ield Data S	heets for l	_ow Flow	Ground W	ater Sa	mpling				
Project Nam Well ID: Weather Con PID Sample Tean	ditions	<u>マー</u> 36 (ppm) (, Massachusetts	o60 	Project Numb Time: 10°	er: <u>28</u> 4350.OM	.02					
Well Depth _	61.41 Level 2.4/	(FT.) [6/6] (FT.)	Well Datum BT Diameter: urge Method:	Stabilization OPVCC ユリ ーユ・テロロン	<u>-</u>	.14c		Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e T _{o:}	1 (* 6/6 Vaiv 30	e)	1.9000
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) + / 3%	TEMP.(C) +/-0.2 or 3%	Redox (mV)	Water level (Ft)	D.O. (mg/L) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance		
1048	م			.,, .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1,90			کہ			
1/04	161	6,70	-164	11.19	-)07.1	1,90	0,16	2.7	.5	Cleur		
1111	196	6.52	.158	11.23	-849	1,90	0.11	114	.5	clear		
11.15	216	6.46	176	11,24	-86.2	1,90	0.11	1.6	0,5	clea-		
1/19	23L	C.47	.138	11,16	<u>−₹.,0</u>	1,90	2/12	1,6	0,5	CICU		
1124	256	6,39	147	11.16	<i>-85</i> 0	1.90	0.11	1.6	0.5	c1e-4/2		
1127	26L	6.36	,214	11.32	-84.9	1,90	0.12	1.5	<i>⊘</i> , ≤	(1847		
1130	27,56	6.35	1224	SAMPLING	-85,2	190	0.12	1.4	0.5	$\Box \mathcal{J}$		
Date: Col 1	7 15	Supplement :	Table 5. 14. 11.		(0/ 00/00	-1		4 4 9 > 20			i	
Date: 🞾 /	33		Total As, Fe, Mn, Mg,			Diameter (inch)	Gation / Foot	* delta w.t. (ft)		clume lost (gallons)	•	
I · ·····• · — — — — — — — — — — — — — —			Alkalinity by 2320B, Cl	-	-	1	0.040				1	
Field Filterin			9038, Nitrate by 4500,	and Turbidity by 21	30B	15	0 091				ł	
	ethodology: <u>1</u>					2	0.163				ł	
	Alpha Method	or Snipmi	enic Courier	f					19	gallon = 3.78 liters	ł	
Remarks: Sample ID =	1342	HM	47 316	W								

* Lond did Not Stabilize

Courquent

		F	ield Data S	heets for I	_ow Flow	Ground W	ater Sa	mpling			
Well ID: <u>う</u> Weather Con PID 心冷	ditions	<u>-31</u> C	Date: 6 72/0	6 3 002	Project Numb	oer: 284350.OM 1	.02				
	80.3 [°] † Level ∄3 °Z, n(27 (FT.)	Datum <u>🛮 🤣 </u>	Z''	<u>-</u>	Ntic_		Time Purging beging Water Level at time Time Purging ends Water Level at time	: (Т ₁) <u>10,5</u> - Т _а	8	
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) + / - 3%	TEMP.(C)	Redox (mV) + / - 10 mV	Water level (Ft)	D.O. (mg/L) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance	
1045		6,53	, 665	10,82	_ 94,5	2,28	.19	65	<i>,</i> 5	Slightly C	امسکارا
1050	8 L	6,54	666	10.81	-97.8		.19	34	,5	5134414 C 313444 C 3134414 Clo	10020
اکام	j	6.54	.666	10,86	-97.5	2.28	,17	N V	\ S	31/4htly 410	بی
1058	124	6.54	1661	10.68	-48.0	2.28	,17	13			, ,
								r			
					1						
Date: 🕡 🧘	2 / 06	Analysis:	Total As, Fe, Mn, Mg,	SAMPLING Ca, Na, K by SW-84	46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w t (ft)	= v	olume lost (gallons)	
	1112		Alkalinity by 2320B, Cf			1	0.040				1
Field Filterin	•		9038, Nitrate by 4500,	and Turbidity by 21	30B	15	0.091	 -			
Sampling Me	etnogology:] Alpha Metho d	Low Flow Sam				_ 2	0.163			valles 2.70 News	
Remarks:	_	-							1. 16	gallon = 3.78 liters	
Sample ID =	174 5	SHIM	99 31 C	. \^)							1

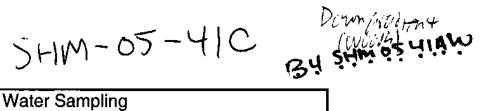
PMP

SHM-99-32X

		F	ield Data S	heets for I	Low Flow	Ground W	ater Sa	mpling		-	•
Well ID:	e: Shepley Hill La HM - 99 - ditions _ Sho NG 1 TB/100	32× wers	Massachusetts Date: 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	Time:/ <u>Z</u> *	_	.02				
Well Depth _ Static Water I Water Colum	Level <u>イパン</u>	(FT.)	Datum P Diameter :	Stabilization BTOPJC 2" PCCS-talt	<u>_</u>			Time Purging begi Water Level at tim Time Purging ends Water Level at tim	е Т ₀ %, . ° s: (Т ₁) <u>13.3</u> °	14 7 (6/6)	7,93 m 6/12
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) +/-3%	TEMP.(C) +/-0.2 or 3%	Redox (mV)	Water level (Ft)	D.O. (mg/L) + / - 10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance	
1319	160	6.37	,752	10.30	-72.	7,95	1.76	3.48	146	Clear	
1323	180	6.41	,755	10,00	-71.8	7.95	0.43	3.39	,46	clear	
1328	10156	6.43	757	ص ال	-67.8	7.95	017	3.38	.46)	
1331	226	6.45	.757	0.09	~7G.2	7,95	0	2.31	,46	(
1334	246	८,५१	,757	(0,05	-77.7	4.95	0 ار		.46	J	
				SAMPLING							
Date: <u>/ </u>		-	Total As, Fe, Mn, Mg, Alkalinity by 2320B, Cl	=		Diameter (inch)	Gallon / Foot 0.040	* delta w.t. (ft)	= v	olume lost (gallons)	
Field Filterin	ig: <u>ND</u>		9038, Nitrate by 4500,	•	_	1.5	0.091				
Sampling Me Laboratory: . Remarks: Sample ID =	Alpha Method	•		`		2	0 163		10	jallon = 3.78 liters	

SHM-05-41A Derunquationt

ı		F	ield Data S	neets for l	_ow Flow	Ground W	ater Sa	mpling							
Well ID:	oject Name: Shepley Hill Landfill, Devens, MassachusettsProject Number: 284350.OM.02 eather Conditions Shows 5 600 F D(ppm) Condition GOODNo Lock														
Sample Team		(ppm)C	condition _30	000 -											
Well Depth Static Water L Water Column	44,65 evel_	(FT.)	Well Datum		<u>•</u>	Sti C		Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e 1 _{0:} s: (T ₁)	افنافا					
Time	Time Removed pH Conductivity (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance (Lpm) +/-0.1 +/-3% +/-0.2 or 3% +/-10 mV < 0.3 ft +/-10% NTU 0.5 LPM														
1/20	1/20 46 (.77 ,117 10.36 41,2 8,18 ,15 ,62 ,5 CICEN														
1128	1128 196 6,40 .116 10.31-12.8 8,18 ,22 ,32 ,5														
1132															
1136	246	6.32	116		-9,0	7.13	117	,18	<i>,</i> 5	<u></u>					
1140	260	6.30	,116	.4.3	-73	3,18	113		<i>`\</i>						
				SAMPLING						<u>, , , , , , , , , , , , , , , , , , , </u>					
Date: 6 4 Time:	5 / <i>00</i> 150		Total As, Fe, Mn, Mg, Alkalinity by 2320B, Cl			Diameter (inch)	Gallon / Foot 0.040	* delta w.t. (ft)	= V	olume lost (gallons)					
Field Filtering Sampling Me	thodology: <u>L</u>	ow Flow Sam	9038, Nitrate by 4500, pling	•		1.5	0.091 0.163								
Laboratory: / Remarks: Sample ID =	Sample ID = 139 371405 11AW														
	B4 5	HWO	541 R	ン											

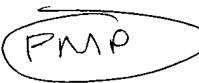


SHM-05-41B

During it itent

·		F	ield Data S	Sheets for	Low Flow	Ground W	ater Sa	mpling			1
Well ID:	iditions <u>S</u> t	<u>√ö</u> m∈ι RΩH	Date: 618/0		Time:	oer: 284350.OM 	1.02				
Sample Tean	n T3/0	<u>r </u>									
	270 Level((FT.)	Datum <u> </u>	Stabilization SPUCC 2"		taltic		Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e T _{o:}		
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) +/-3%	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L) + / - 10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance	
1140	325al					7.9/2			,5		ĺ
1146	396	6.17	,587	16.58	-65,0	7.96	,22	9,50	.5		*Tupe
1151	101	6.25	, < 99	10,59	- 75,3	7.95	0.19	7.31	.5	clear	oFBUCKC
1155	120	4.27	.599	10,59	-788	7,90	,20	5.18	,5	clear	
<u>.</u>				SAMPLING							
Date: 🙆	8 / 62		Total As, Fe, Mn, Mg,			Diameter (Inch)	Gallon / Foot	* delta w.t. (ft)	= v	clume tost (gallons)]
Time:/ Fleid Filterin	<u>スセラ</u> ig: んご		Alkalinity by 2320B, C 9038, Nitrate by 4500	•	=	1	0.040				1
Sampling Me	ethodology: <u>l</u>	ow Flow Sam	pling	, and runding by 2	1500	2	0.091 0.163				1
Laboratory: Remarks: Sample ID =	Alpha Method	d of Shipme	ent: <u>Courier</u> ひがりろ	M					19	gallon = 3.76 liters	

	•	F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling			1
Well ID: 51	e: Shepley Hill La	K	s, Massachusetts Date:)	Project Numb	per: 284350.OM	1.02				
	ditions 516	(ppm) (Condition 900	Ø1 ~ Ø	تصداد			.*			
Well Depth _ Static Water I Water Colum		FL (ET)	Datum	Stabilization PUCC 211 Seristalt		o-Fron	۷	Time Purging begi Water Level at tim Time Purging ends Water Level at tim	е Т _{ю.} <u>- 8, 1</u> » (Т₁) 1 \ 	1662 * No	, ed 6/6 data)
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) +/+3%	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance	
1051	4L	6.88	1567	10:6	-1373	8,29	3.43?	11.1	-41	Clear]
<i>J</i> 058	7,51	6.89	1566	10,66	-123.8	8,79	1.80	7,22	.40	clear	* Pulled probe \$ cleaned Figure
1102	8.5L	6.95	1569	10.61	-134.9	8,29	0,32		. 40	Clear	، جنوبرا حودرا
1100		 	<i>5</i> 3°	10.66	-139.8	_	0.17	3.00	,40		_
1110	120	7,00		10.64	-141,9	8,29	0.16	2.13	.40		_
1114	146	7.01	,572	10,65	-141.6	8,29	01/5	1,59	,40		-
		ļ		<u>. </u>			<u></u>				1
Date: 🖒	9,66			SAMPLING	<u> </u>	<u> </u>	1	<u> </u>			1
Time:	1123	Analysis:	Total As, Fe, Mn, Mg, Alkalinity by 2320B, Cl			Diameter (inch)	Gallon / Foot 0.040	" delta w.t. (ft)	= Y	olume lost (gallons)	4
Field Filterin			9038, Nitrate by 4500,	•	-	1.5	0.091]
Sampling Methodology: Low Flow Sampling 2 0.163											
Laboratory: Alpha Method of Shipment: Courier Remarks: Sample ID =											-
<i>i</i>	UCHN	107		$\overline{}$							4


SHM-05-42 (Shallow) A

DOWN WORTH (week)

	Field Data Sheets for Low Flow Ground Water Sampling														
Wefl ID:				X											
Weather Con	ditions 🔾			=											
	46		Condition 📿 🙉	2 ~ √0	Local	•									
Sample Team	TBIDE		J			_									
Well Depth _	atic Water Level 2,50 (FT.) Diameter: Water Level at time To:														
Static Water I	tatic Water Level 2,50 (FT.) Diameter: Water Level at time T _o 2,50														
Water Colum	/ater Column(FT.) Purge Method: low-flow/peristalti(Time Purging ends: (T ₁) 1228														
	Water Level at time T _{1:} 2,52														
	Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (FI) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance <5 NTU preferred														
Time	Volume Conductivity Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance														
:	Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance														
1															
3	+/- 0.1 +/- 3% +/- 0.2 or 3% +/- 10 mV < 0.3 ft +/- 10% NTU 0.5 LPM														
1259	1259 4L 6.02 -043 10.35 1/6.0 2.52 4.65 11,7 0.5 Clear														
1303	1303 5.96,043 10.34 122.3 2.52 4.72														
1306															
1310	91	5,9)	,642	10,30	132.0	2.52	4,93	1,60	<u>-5</u>						
1316	13.51	5,88	,o4Z	10,26	137.1		5,00	1,04	1						
	14.L	5,87	,647_	10.35	140.2	<u>-1 -2</u>	<u> </u>	,	10						
/320	17.6				170,2		5,63		\rightarrow						
124	164	5,87	1042	10.39	142.0	252	<u>5</u> ,ගර	1,22	Ų						
1220	20L	5/8(, , 042	14.01	142,9	2,52	5,07			~ ~					
- 6	9/1/2			SAMPLING	· · ·				··-						
Date: <u>©</u>	1 / CO		Total As, Fe, Mn, Mg, t			Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= 20	lume lost (gallons)					
Time:	2 7 3		Alkalinity by 2320B, Ch	•	· · · · · ·	1	0.040								
Field Filtering			9038, Nitrate by 4500,	and Turbidity by 21:	308	1.5	0.091								
	Sampling Methodology: Low Flow Sampling 2 0.163 aboratory: Alpha Method of Shipment: Courier 1 100 100 100 100 100 100 100 100 100														
Remarks:	_	-						i	19	alion = 3.78 liters					
Sample ID =	R	421	1M05	42A \	\sim										

SHM-05-42 deep

Devergicevent (windig)

	Field Data Sheets for Low Flow Ground Water Sampling												
Well ID: <u>分</u> Weather Con PID <u></u> んみ	Sample Team												
Well Depth _	~72 ¹ Level <u>7</u> , 39 n((FT.) <u>} (FT.)</u>	Datum Diameter : urge Method:(«	1"	<u>. </u>	-تصیدا+ان		Time Purging begit Water Level at time Time Purging ends Water Level at time	e Т _{о:} <u>2, 3</u> :: (Т ₁) <u>13`</u> e Т _{1:} 2. °	<u> </u>			
Volume Removed PM													
+/-0.1													
1308 2.92 0.5													
1334													
1341	22	G.38	358	10,53	-92.6	2.42	0.13	7.81	0,5	cieco			
1345	24	1.0	.558	10,50	-95.0	2.42	0,12	7,84	0.5)			
1349	26	1,43	,557	10,47	-96.3	2.42	0:12	7.76	015	Ų.			
							,						
D-1- (C C	7 (-6			SAMPLING	75.		I						
Date: <u>(夕</u> / Time:	1400		Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V(olume lost (galions)			
			Alkalinity by 2320B, Ch		-	1	0.040						
Field Filtering: 9038, Nitrate by 4500, and Turbidity by 21308 1.5 0.091 Sampling Methodology: Low Flow Sampling 2 0.163													
Sampling Methodology: Low Flow Sampling 2 0.163 Laboratory: Alpha Method of Shipment: Courier 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
Remarks:	7	االمجال مع		\sim					19	euichi = 3.70 illeiş			
Sample ID =	100	\supset \vdash \vdash \vdash \vdash \vdash	~105H	a て く	つ								

SHL-23

Mirkel.

		F	ield Data S	Sheets for	Low Flow	Ground W	ater Sa	mpling		at]		
Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.0M.02 Well ID: 5 L 2 Date: 6 12 06 Weather Conditions (ppm) Condition 6000													
PID Sample Tear		(ppm) (Condition	<i>990)</i>									
Well Depth _ Static Water Water Colum	Level 24,	39 (FT.)	Datum	Stabilization BTBPJC 4" Grun	Data — W los / lo	w-F10w7	,	Time Purging beg Water Level at tim Time Purging end	e To: <u>29,</u> s: (T ₁) <u>15¹</u>	15			
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	<5 NTU preferred	Purge rate (Lpm)	Appearance			
and + / - 10% > 1													
1505 4L 7.09.022 11.64 198,3 24.48 11.41 -38 CIENT Elle													
1509 6- 6.58 1021 1/100 215/3 24/58 11.58 .45 F Ells													
15/45	96	6,26	021	H.91	22/,4	74155	11,48		5	/	e111.0		
1519	11-	6.13	1021	11.25	223,7	24,55	11,46		.5		ت ۱۱۱ی		
1524	13L	6.00	,071	11.37	224,8	24,55	11,48		.5		emo		
1578	151-	5,91	,621	11,43	226.8	24,55	11,47						
1531	16.56	5.87	1021	11,55	2287		1145		> 5)			
1539	20.56	5,74	,021	11,5)	Z31.4.	24,55	11,40]		
Date: 💋 📗	too		Total As, Fe, Mn, Mg Alkalinity by 2320B, G			Diameter (inch)	Gallon / Foot	delta w.t. (ft)	= v	olume lost (gallons)]		
Field Filterin	ig: <u>NO</u>		9038, Nitrate by 4500		*	1.5	0.040			<u> </u>			
Sampling Mo Laboratory:	Alpha Metho	Low Flow San đ of Shipm		ĺ		2	0.163		15	gallon = 3.78 liters	1		
Remarks: & Sample ID =	10002HC33M	١		,	•	1		í	1				
1542		5,31	1671	11,43	7364	24155	11.45		<u> </u>		1		
LowFlowDa	taSheet.xistempla		,071	11,43	7 33,7		11,44	39	1				
	Į	+	[<u> </u>		1		1					

	Field Data Sheets for Low Flow Ground Water Sampling													
Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID: Hill Date: 65 106 Time: 050 Weather Conditions 000 Condition 5500														
Weather Co.	nditions <u> </u>	5. (Cer2)	:	^										
. ,		(ppm) (Condition <u>५</u> ५	50d										
Sample Teal	<u>س عکرہ۔ [بر</u>	<u>v</u>												
Well Stabilization Data Well Depth 27.75 (FT.) Datum 3709000 Time Purging begins (T _o): 105.72 Static Water Level 7.75 (FT.) Diameter: 7.75 (FT.) Water Level at time T. 7.75														
Static Water	Static Water Level 7:73 (FT.) Diameter: 77													
Water Column (FT.) Purge Method: (2015 to 100 Time Purging ends: (T ₁) 1179 Water Level at time T _{1:} 1,778														
Time	Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance													
<pre></pre>														
	+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5LPM													
(105	105 GL (.75 0.117 9.40 -47.9 7.77 0.26 10.12 .43 LAN clear													
1110														
1115	100	649	0.119	9.19	37.0	7.78	0.26	3.51						
1120	3.5 Gellin	6.46	0.122	916	-37.6	7.78	0.23	3.27	,43					
	13.51					_		<u> </u>						
	<u> </u>							<u></u>						
Date: 6/_	9 100	Angles-t-	T-4-1 4- F- 12- 11	SAMPLING	10/ 20105	<u> </u>								
Time:	700	Analysis:	Total As, Fe, Mn, Mg,	-		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= AÖ	lume lost (gallons)				
Field Filterii	na: NO		Akalinity by 2320B, C	=	•	1	0.040	 		·				
Field Filtering: 9038, Nitrate by 4500, and Turbidity by 2130B 1.5 0.091 Sampling Methodology: Low Flow Sampling 2 0.163														
Laboratory:			ient: Courier			٤	0.100	 	tos	allon = 3.78 liters				
Remarks:	\bigcirc U \triangle	\2X	511/01	. 1						THE STATE OF THE S				
Sample ID =	こうりつ		コローコ	$\vee \vee$										

SHC-ZZ

we Apply

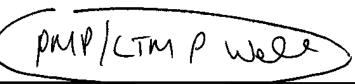
		F	Field Data S	heets for l	Low Flow	Ground W	ater Sa	mpling							
Well ID:	Veather Conditions OVERCAST 750F ID NA (ppm) Condition ample Team Well Stabilization Data														
	tatic Water Level 5.55 (FT.) Diameter: 4". Vater Column (FT.) Purge Method: 1000-F1000 / 0-2-15-15 (Time Purging ends: (T ₁) 10-30 (Water Level at time T ₁ . 5, 30 Water Level at time T ₁ . 5, 30 Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance														
Time	Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance -5 NTU preferred and + / - 10% > 1 0.3 to														
1315 54 644 0.574 10.77 -39.1 5.30 2.1 0.99 5															
1020 7.5 6.47 0.574 10.77 -46.7 5.30 0.15 0.31 .5															
1025															
1030	/2.5	650	0.571	 	-52.9		0.(3	0.50	,5						
	100	Analveie	Total As, Fe, Mn, Mg,	SAMPLING Ca Na K by SW-8	46/ 6010P	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)		ime lost (gallons)					
Time:	1030	mini jaia.	Alkalinity by 2320B, C	-		Diameter (inch)	0.040	gena w.c. (it)	= 4010	me rost (garions)					
Field Filterin			9038, Nitrate by 4500	, ,	•	1.5	0.091								
Sampling Me		Low Flow Sar				2	0.163								
Laboratory: /	Alpha Metho	d of Shipm	ent: Courier		1				igali	lon = 3.78 liters					
Remarks: Sample ID =	<u> 13</u> 1	<u> 100</u>	<u> </u>	<u> </u>	<u>_ لر</u>										

SHM-22B

Acertall.

	Field Data Sheets for Low Flow Ground Water Sampling													
	Field Data Sheets for Low Flow Ground Water Sampling pject Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02													
Well ID:S Weather Con PIDN:	HM-94- ditions OUC A	22B 15a5-	Date: 956/9/	66	Project Numb		.02							
Sample Team	n TB/D	<u> </u>	392-11	Otoleit atta	D . 1 .									
	92.42		Datum 13 170 P	Stabilization	Data 			Time Purging begi	ns (T _o):	≥ 20€				
	Level 4.50	7	Diameter:	4"			N \	Water Level at tim		a production of the second				
Water Colum	.n(f	FT.) P)	peri	stalti	۱-۱۵ما/	F1007	Time Purging ends	s: (T ₁) <u>105</u>	<u> </u>				
				•		r		Water Level at tim						
Time Removed pH Conductivity (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance (Lpm) Appearance and + / - 10% > 1 0.3 to														
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5 LPM														
1044 186 6,49 ,565 10.17 -110,2 4,57 0.13 3,23 0.5 CIEDT														
1049 20,56 6.51,564 10,17 -111,5 4,58 Co12 7,91 0.5 creat														
1053	231	6,52	1562	10.17	-111.5	4,59	012	1,70	0.5	clear				
1057	262	6.53	,561	10,08	-111.7	4,57	0.12	1,75	0.5	cient				
					,	•								
	-													
	1 6			SAMPLING										
Date: 🔽	1200	-	Total As, Fe, Mn, Mg,	•		Diameter (inch)	Gallon / Foot	* delta w t. (ft)	= ٧0	olume lost (gallons)				
Time:	10. NO		Alkalinity by 2320B, Ch	•	· ·	1	0.040		<u> </u>					
Field Filterin Sampling Me	·		9038, Nitrate by 4500,	and Turbidity by 21	.30B	1.5	0.091		<u> </u>					
	etnodology: <u>D</u> Alpha Method	<u>.ow Flow Sam</u> Lof Shipma			l	2	0.163		10	0.70 P-m				
Remarks:	Tiplia Metriod	, or omprin ヘイス ご		DV 16	ēa				10	pallon = 3.78 liters				
Sample ID =	134 C	ار درار	TCOO!	2 AA G	رق									

5HM-96-5B



Mushel

304

- · -		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling						
Project Name Well ID: 5 H	Shepley Hill La	ndfill, Devens	s, Massachusetts Date: <u>ょ/ ろ</u> ん	2 5	Project Numb	oer: 284350.OM	1.02							
Weather Cond	ditions <u></u>		Showers	604,	<u> </u>									
PID NA		(ppm) (حىCondition	<u> </u>	<u>_ce_</u>									
Sample Team	TBIK	717												
Well Depth _			Datum	Stabilization				Time Purging begi	ns (T _o): <u>139</u>	<u>- </u>				
Static Water L	evel	∑=== (FT.)	Diameter:	4				Water Level at tim	e T _{o:} 42	54 616/06				
Water Column	1(I	FT.) P	urge Method:	~ 1 1 1 1 1 1 1 1 1 1 	/perist	altic		Time Purging end:	s: (T ₁) _ 4 _	اِگر				
					′ '			Water Level at tim	е Т _{1:} -Ч .5	25				
Volume Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance Volume Conductivity TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance														
+/- 0.1 +/- 3% +/- 10 mV< 0.3 ft +/- 10% NTU 0.5 LPM														
M24 14 6.63 .527 10.53 -84,4 4,25 1.32 .90 0.40 LAM														
1430														
1435	190	८,≾ [%]	.522	10,47	-76.6	4,25	,25		7					
1440	211	6,53	,523	10,54	-76.3	4.25	114		_{	1				
1442	23,5	4,53	.527	10,45	-75,7	4,25	.17							
				SAMPLING										
Date: /	70/00	Analysis:	Total As, Fe, Mn, Mg,		46/ 60108	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	- 10	olume lost (gallons)				
Time:	(5)3	-	Alkalinity by 2320B, Ct			1	0.040	Cona me (it)	 -					
Field Filtering: 9038, Nitrate by 4500, and Turbidity by 2130B 15 0.091														
Sampling Methodology: Low Flow Sampling 2 0.163														
Laboratory: /	Alpha Metho o	d of Shipm	ent: Courier						10	pallon = 3.78 liters				
Remarks: Sample ID =	B	15H1	MGWSF	3W .										

5HM-96-5C

Mi Apl

	Field Data Sheets for Low Flow Ground Water Sampling													
Well ID: 55 Weather Con- PID														
Sample Team	TBIPL													
Static Water I	Well Stabilization Data Well Stabilization Data Well Stabilization Data Time Purging begins (T _o): /3 1 + Water Level at time T _o : 3 + 6 * (6 (6 (6 (6 (6 (6 (6 (6 (6													
Time	Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance <5 NTU preferred and +/- 10% > 1 0.3 to 4/- 0.1 +/- 3% +/- 0.2 or 3% +/- 10 mV < 0.3 ft +/- 10% NTU 0.5LPM													
135 6.59 ,305 10,49 -105/2 3,34 ,86 10.45 ,4 Clear														
1900	1400 \$L 6.56 .784 10.72 -162.7 3.34 .32 3.80 .4 clear													
1404	6.56	6.55	.779	10.19	7102.6	3.34	.19	1,9/	4	clear				
1408	8.0C	6,55	.776	10,15	-102,5	3.34F	+16		,4	Clear				
1413	101	4,55	,777	10,22	-10415	3.34	.15	1,72	ا ۲					
1417	11.50	6.55	.૨હવ	10,20	-1048	3,34	15	197	4	J.				
•									'					
									<u> </u>					
Date: /a/ 5	7 / 00			SAMPLING		Г	ı		r					
Date: 6/		-	Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V	olume fost (gallons)				
Time:/ 4 4 5 Alkalinity by 2320B, Chloride by 9251, Sulfate by 1 0.040 Field Filtering:														
Sampling Mo		ow Flow San		and recolute by 2	1300	2	0.163							
							0.100		10	gallon = 3.78 liters				
Remarks: Sample ID =														

•	SHI		82	ı	77 5	ecure ver			PV)
		F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling	<u>. </u>		ĺ
Project Name Well ID:	ditions		Date: 6 3/6		Project Numb	er: 284350.OM	.02				
Well Depth _ Static Water I Water Colum	ر بالك Level	ア 学 (FT)		Stabilization PUC C 2 " PCFTStall		F10W		Time Purging begi Water Level at tim Time Purging end: Water Level at tim	е Т _{о:}	រ្មី	7,95
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance	
		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM		
0930	7,5L	6.52	,046	9,30	209.6	7,99	7.36	2.45	1.45		
b935	9,5L	6.41	.047	9.82	209,3	8,09?	1,70	1:43	,45	clear	
0439	124	6.32	,04.7	9,83	207,9	7,99	1.38	1.06	.04		1
0947	14 5 L	6.27	,047-	9,86	2071	7,99	1.23	1,16	0,4	داوح	
0951		6,24	1047	7,92	206,7	7,99	1.26	•	0,4	c/ear	
, <u>, </u>	16.0L										
Date: 6/5	106	Analysis	Total As Es Ma Ma	SAMPLING	46/ 6010P	Diametey (iz-b)	Calles (E	t delta in t ffer		rahuna kaas (wallana)	1
Time:	1000	_	Total As, Fe, Mn, Mg, Alkalinity by 2320B, Cl	•		Diameter (inch)	Gallon / Foot 0.040	* delta w t (ft)	= V	rolume lost (gallions)]
Field Filterin		!	9038, Nitrate by 4500,			1.5	0.091	- 10]
Sampling Me Laboratory: /		ow Flow Sarr	ipling ent: <u>Courier</u>			2	0.163	• 10		3 (76-1 gallon = 3.78 liters	
Remarks: Sample ID =	Bes	134 (_	1851	\mathcal{N}				''	Banner - Arth IIIA10	-7

4 4

1304 Ob Liters

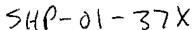
SHL-8D

Decentreld

		F	ield Data St	neets for L	ow Flow	Ground W	ater Sa	mpling					
Well ID:5 Weather Con	ditions <u>S</u>	S D	Massachusetts Date: 6 8/0 Condition	X 6	Project Numb	er: 284350.OM)02						
Well Depth _ Static Water Water Colum	> 5 9 7 Level 53. 7	(FT.)	Datum <u>370</u> Diameter : urge Method: <u></u>	Stabilization PVC 2"	_	مالا دریم، به معاددمم دسهر		Time Purging beging Water Level at time Time Purging ends Water Level at time		17			
Static Water Level S 3													
0958 7 GD 6,06 116 10,02 16318 5,77 35 0.5 CIENT													
1724 Hotel 6.00 1110 10.05 144 5.49 1937 365 5 CHELL 1015-116 10.09 145 5.49 1822 39 15 2100-													
1015	44.00	40,2	116	10.09	1452	5,41	.32	, 39	.5	<u> دادم-</u>			
					_								
-													
							<u> </u>						
Date: 🕡 / 🔻	8 100	. Anglusia:	Total As, Fe, Mn, Mg, C	SAMPLING	se/ en 10P	Diameter finals	Quillon / Fa-+	= dolta t /4t\		Numa (ast (astlane)			
Time:	1025	-	rotar As, Fe, Will, Wig, C Alkalinity by 2320B, Ch	-		Diameter (inch)	Gallon / Foot 0.040	" delta w t. (ft)	■ V (olume lost (gallons)			
Field Filterin			9038, Nitrate by 4500,		•	1.5	0.091						
	Sampling Methodology: Low Flow Sampling 2 0 183												
	aboratory: Alpha Method of Shipment; Courier												
Remarks: Sample ID =	134	∞	<u>5468</u>	$\overline{\mathcal{D}}$	J								

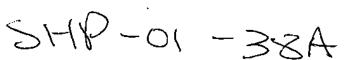
LowFlowDataSheet.xIstemplate-low flow thing Cell out of bucker for undischarged time

SHL-13


		F	ield Data S	heets for I	Low Flow	Ground W	ater Sa	mpling						
Well iD: <u>ら</u> り Weather Con PID <u>いみ</u>			s, Massachusetts Date: <u>6/6/0</u> Ooc Condition <u>5</u>	6	Project Numb Time: / 4	er:_284350.OM	.02							
Sample Team	<u>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </u>		347-11	0	<u>-</u>					1/5/1				
Well Depth _ Static Water I	21,95 Level <u>5,7</u> 9	<mark>8`</mark> (FT.)	Datum					Time Purging beging Water Level at time	e T _{o.}	1782				
Water Colum	n(l	FT.) P	urge Method: <u></u>	501 + - 500	<u>~~</u>			Time Purging ends		- <u>L</u>				
								Water Level at time	e T _{t:} 5 _/	83				
Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance <5 NTU preferred and + / - 10% > 1 0.3 to														
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5 LPM														
15137 L 6,53,175 12.34 118,1 5.81 0,42 2,34 5 Clear														
1517	1517 9.0L 6.44 .172 11.99 126,2 5.83 0.18 1.14 .5													
1522	12.0L	6.39	1172	11.90	130,0	583	018	0.40	,5					
1527	1456	6.37	.171	11,82	1316	5183	0.14	•	0,5					
1531	16,5L	6.35	,172	11,84	130.8	5/83	0.14		٥١٥	V				
_ ,				,		_		_						
Data: (- ((1.06			SAMPLING					<u> </u>					
Date: <u> </u>	=45=	=	Total As, Fe, Mn, Mg,	-	ı	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V6	olume lost (gallons)				
Field Filterin	Amenimy by 2020, Orbitol by Coll, Soliab by													
	eld Filtering: V 9038, Nitrate by 4500, and Turbidity by 2130B 15 0 091 ampfing Methodology: Low Flow Sampling 2 0,163													
Laboratory:			ent: Courier		'	٤	0.100		10	palion = 3.78 liters				
Remarks:	10.00	Ma ~	1101	1				'	''					
Sample ID =	() (1)	WI	コレトラ / ^	J										

Lots of Jead ants in well &

549-01-362



		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling						
Manthan Can	Shepley Hill Label 19 -0.05 additions -0.05 -0.0	بليد بر ج	Condition 500	e od	Time: <u>085</u>	er: 284350.OM	1.02							
			Well Datum <u>3 T C</u> Diameter :_ Purge Method:@	Stabilization	Data			Time Purging beging Water Level at time Time Purging ends Water Level at time	е Т _{о:} <u>(, , 9)</u> s: (Т ₁) 09 2	<u> </u>				
Time	C5 NTU preferred C5 NTU preferred C7 NTU													
0961														
0911 5.5 6.58 0.091 11.94 -72.0 6.95 0.79 0.20 0.5 clear 0916 8 657 0.091 11.94 -67.5 6.95 0.80 4.73 0.5														
0921	10.5	6.55	0.092	11.90	-64.1	695	0.81	4.13						
	_													
					-		<u> </u>							
		<u> </u>		CAMPI INC										
Date: 6/	100	Analysis	Total As, Fe, Mn, Mg,	SAMPLING Calla K by SW-8	46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	_ 1.0	Nume lost (asligns)				
Time:	953	_	_	=		1	0 040	cienta w.n. (it)	= V0	ulume lost (gallons)				
	Alkalinity by 2320B, Chloride by 9251, Sulfate by 1 0 040 9038, Nitrate by 4500, and Turbidity by 2130B 1.5 0.091													
Sampling Me	ampling Methodology: Low Flow Sampling 2 0 163													
Laboratory:	Alpha Metho	d of Shipm	ent: Courier	, a	'				19	allon = 3.78 liters				
Remarks: Sample ID =	BH	SHE	20136x	لی										

		<u> </u>	()	.											
		F	Field Data S	heets for	Low Flow	Ground W	ater Sa	mpling							
Well ID: <u>S</u> Weather Con PID <u>心し</u>		<u>۲۲</u> ودديخ	Date: 6-9-0	_	Project Numb Time:	er: 284350.OM	.02								
Sample Tean	n -13(D	<u> </u>			<u>-</u>										
Well Depth _ Static Water Water Colum		(FT.) (FT.) FT.) F	Purge Method:_P	Stabilization Stabilization	Data			Time Purging beging Water Level at time Time Purging ends	ет <u>а 5,°</u> к (т₁) _09 ¢ ет₁ <u>- 5,°</u>	76 23					
Time	Volume Removed PH Conductivity (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance S NTU preferred and +/- 10% > 1 0.3 to 0.5LPM O.5LPM O.5L														
	+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV < 0.3 ft +/-10% NTU 0.5LPM														
853	853 11L 6.71 0.054 11.15 -1029 5.96 0.11 1.56 0.5 Clear														
४८४	13.5	6.69	0.053	16.14	-105.9		0.10		5,5						
0703	164	6.68	0.053	11.11	-106.8	5.96	0.09	2.92	0.5						
			-												
		ļ <u>.</u>		ļ						- ···					
t .		_													
				SARIEL IV.											
Date: 💪 /	7,06	Anaheie	Total An En Mar 14-	SAMPLING	46 / 804 8B		0 11 /5 /								
Time:O	925	Analysis:	Total As, Fe, Mn, Mg, Alkalinity by 2320B, C			Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= VC	olume lost (gallons)					
Field Filterin				•	-	1.5	0.040	-							
	eld Filtering: 9038, Nitrate by 4500, and Turbidity by 2130B 1.5 0.091 ampling Methodology: Low Flow Sampling 2 0.163														
	aboratory: Alpha Method of Shipment: Courier														
Remarks: Sample ID =	134	SH	P0137	$\times \setminus$				·							

	Field Data Sheets for Low Flow Ground Water Sampling														
	Field Data Sheets for Low Flow Ground Water Sampling roject Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02														
Well ID: 5	<u> ピア 101 -</u> ditions <u> </u>	38A CT CO _ (ppm) (s, Massachusetts Date: 6 9 10 SX Condition		Project Numb		.02								
	Static Water Level 3.50 (FT.) Diameter: 3.50 1" Water Column (FT.) Purge Method: 2.50 1" Water Level at time To 3.50 6/6 Water Level at time To 3.50 6/6														
Time	Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance <5 NTU preferred and +/- 10% > 1 0.3 to														
0828	0828 7.5L 6.20 ,225 11.41 -74.0 3,50 0.16 4.13 .5 clear														
0832															
0836	126	6,20	,225	11,38	-77,0	3,50	0114	0.43	,5						
b840	140	6.20	1225	11.36	- 76.8	3,50	0.14	-61	\	clear					
									•						
		!													
	, _/ _			SAMPLING											
Date: 6	1 / <i>D</i> =	Analysis:	Total As, Fe, Mn, Mg,	Ca, Na, K by SW-8	48/ 6 010B	Diameter (Inch)	Gallon / Foot	* delta w.t. (ft)	= V	okume lost (gallons)					
Time:			Alkalinity by 2320B, Ch	lloride by 9251, Suf	fate by	1	0.040								
Field Filtering: 100 9038, Nitrate by 4500, and Turbidity by 21308 1.5 0.091															
Sampling Methodology: Low Flow Sampling 2 0.163															
Laboratory: Alpha Method of Shipment: Courier 19alion = 3.78 liters															
Remarks: Sample 1D =	134	SHP	0138	SAW											

upgradient.

	<u> </u>	F	ield Data S	heets for	ow Flow	Ground W	ater Sa	mpling			٦	
Well ID: Weather Con PID	ditions <u>< 1</u>	(ppm) (Date: () = Condition	66 60	Project Numb Time: S	per: 284350.OM 1 20	1.02					
Sample Team Well Depth _ Static Water I Water Colum	26.44 Level 16,6	2 5 (FT.)	Datum <u>で</u> る	Stabilization PVC 4" Peristalt				Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e T <u>。 _ </u>	403 3= 7005		
Time	Volume Removed	рH	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance		
		+/-0.1	+/-3%	+ / - 0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM			
0934	52	6.07	.104	10,70	191.8	16.16	0,38	1.85	0.48	Clear		
0939	7,5L	5,97	,103	10.51	194,5	16,19	0.34		84,0	e le cr	Dropped	Flor
0945	<u> </u>	5,95	,/03	10,7/	196.5	16.16	0,34		0,45		7 "	
0948	112	5,95	,103	10.62	195.1	16.16	0.35		8.45	clear		
0951		5,91	/07	10.69	194,2	الهذاك	0,40		0.45	\]* ORP	J50PP
0956	140	5,98	101	10,51	8,41	16-16	0.61	01.10	0,45)		- '',
1001	162	5.99	್ಷ /ပပ်	10,65	-12.0	16.16	0.64	4.15	0.45	(7	_
1005	18,5L	€.∞	100	10,61	-98.7	16.16	0.63		0.45	-)	Caver)
Date: (0/ (4	06	Analysis:	Total As, Fe, Mn, Mg,	SAMPLING Ca Na K by SW-8	16/ 6010B	Diameter (inch)	Gallon / Foot	delta w.t. (ft)	- 14	olume lost (gallons)	⊣ ~	
Time: _ () C	555		Alkalinity by 2320B, CI			1	0.040	arter with (14)		Service look (galloria)		
Field Filterin			9038, Nitrate by 4500,	and Turbidity by 21	308	1.5	0.091				_	
Sampling Me	ethodology: <u>L</u> Alpha Me thod	ow Flow Sam				2	0.163	<u> </u>	-		-	
Remarks: Sample ID =	B40	SHL	15W							gallon = 3.78 liters		
6	1)P. t.	A 4	Chuelle V	no=1.	1. 1	1 1 4 1		~<			_	

1016 but label says 6955 LowFlowDataSheet.xlstemplate-low flow

	<u></u> .											
		F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling			1	
Project Name Well ID: 1	e: Shepley Hill La	ndfill, Devens	s, Massachusetts Date: 6 6 0	5	Project Numb	per:_284350.OM	1.02					
Weather Con		12620	700F=	-	1111011.2]						
PIDh	AIV.		و ہے _ Condition	00 Kg	<u> </u>						ľ	
Sample Team	TB 100		0.	· '	-							
Well Depth _	100,65		Datum TDP	Stabilization V	Data —			Time Purging begi	ns (T _o): 17	49	İ	
Static Water I		,49 (FT.)		1				Water Level at tim				
Water Colum	n(l	FT.) P	urge Method:	2515+2	Hic			Time Purging ends		_		
			<u>'</u>					Water Level at tim		<u>&1</u>		
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance		
		+/-0.1	+/-3%	+/-0.2 or 3%	+ / - 10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	•	10	
1314	5,50	G.CZ	.496	12,96	-78.1	22.89	0,19	1.51	0.4	Clear	14em	air bubble
1318	7.06	6.63	1473	13.01	-92.3	22.89	0,19		0.4			
1321	8,56	6.63	,464	12.56	-92.7	22.39	009	0.	0.4	clear		
1324	9.5	6.63	,457	12.54	-94.4	22.89	0,19	0,72	0.4	Clear		
1327	11.00	6.62	.454	12.53	-95,2	22.89	0.19	0,70	0,4	ciew		
			'									
			:									
- 1				SAMPLING	.						1	
	9_100		Total As, Fe, Mn, Mg,	-		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V	olume fost (gallons)	4	
Time:	1325 0 NO		Alkalinity by 2320B, Cl	•		1	0.040				-	
Sampling Me		ow Flow Saп	9038, Nitrate by 4500, noling	, апо тигоюту бу 21	1306	1.5 2	0.091				-{	
						<u>-</u>	1 0,100	<u> </u>	16	pallon = 3.78 liters	1	
Laboratory: Alpha Method of Shipment: Courier Remarks: Sample ID = B 4 00 00 00 5 P W												

Time on label = 1325 but actual Sample time is 1330

N5.PZ PMP

		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling				
Well ID:	e: Shepley Hill La	- 26 27	Massachusetts	00	Time: <u>{ Z ^c</u>	oer: 284350.OM	1.02					
Well Stabilization Data Well Depth 32,43 (FT.) Datum 70 PVC C. Static Water Level 72,48 (FT.) Diameter: Water Level at time To: 172,48 (Water Column (FT.) Purge Method: 92 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance												
1754 1L 6.65 .004 14.93 -67.0 68 27.32 (.56 80.703 CIERTY Cloudy A												ېر
1300	3.56	G. 35	.935	13,12	-77./	22.32	0,29		0.32	.)		
1303	4,5	6.34	.941	13.93	-77.8	22.32		<u> </u>	0.32	[[
1306	5,5	6,33	, 936	13.12	-782	72.32		8/12	0,32	<u>\</u>		
SAMPLING												
Date: 0/ 0/ Analysis: Total As, Fe, Mn, Mg, Ca, Na, K by SW-846/6010B Diemeter (inch) Gallon / Foot delta w.t. (ft) = volume lost (gallons) Time: 100												
Time: Fìeld Filterin			Alkalinity by 2320B, Cl	•	•	1	0.040					
rieiu rikerii Sampling Me		ow Flow Sam.	9038, Nitrate by 4500, Indina	and Turbidity by 21	308	1.5 2	0.091		· · · · · ·			
				_		l	0.163	l .	10	uellon = 3 78 liters		
Laboratory: Alpha Method of Shipment: Courier Remarks: Sample ID = 3.78 liters												

SHM-93-10D

v. fgruduent.

		F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling		ļ			
Well ID: <u>う</u>	e: Shepley Hill La HM-93. ditions <u>crea</u>	<u>- 1</u> 012	Date:(0)) う / ひ		Project Numb	er: 284350.OM	.02						
PID		(ppm) (Condition <u>ಕ್ಷವಾರ</u>	ಎ									
Sample Tean	TO JOR												
Well Depth _	360	_(FT.)	Datum	Stabilization	Data 			Time Purging begi		25			
	Level <u>53.0</u>			## //: 		c . /		Water Level at time	e T <u>₀</u> 5	_5<			
Water Colum	n(I	FT.) P	rurge Method:	303-10	Grund	Fos/purge	3 Sample	Time Purging ends Water Level at time	и: (Т ₁) e Т _{1:} /////	pe			
Time	Volume Conductivity Removed pH Conductivity TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) Conductivity Conductivity Turbidity (NTU) Conductivity Conductivity Turbidity (NTU) Conductivity Cond												
	and + / - 10% > 1 0.3 to												
105	1/05 8,51 .093 13.33 60,5 J.N 55 81/043 Y												
* well immediasety went ory chois is what													
historically happens													
- Washing the beautiful to the second the beautiful to the second to the beautiful to the second to													
									•				
						,			-				
				.,									
	49 11 1			SAMPLING									
Date:/	21 100	Analysis:	Total As, Fe, Mn, Mg,	Ca, Na, K by SW-8-	46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V	olume lost (gallons)			
Time:	1100		Alkalinity by 23208, Cl	•	•	1	0.040						
Fleld Filtering: NO 9038, Nitrate by 4500, and Turbidity by 2130B 1.5 0.091													
	aboratory: Alpha Method of Shipment: Courier 2 0.163												
Laboratory: / Remarks:	mipria Method	OT SNIPM	ent: Courier						1g	allon = 3.78 liters			
Sample ID =	- [3년 9	シート	7 93K	$\mathcal N$ (10]								

SHL-3

LTMP well

		F	ield Data S	heets for l	_ow Flow	Ground W	ater Sa	mpling			
Project Nam Well ID;S	e: Shepley Hill La		, Massachusetts Date:		Project Numb	oer: 284350.OM	.02				i
	ditions 🔨 🙇 🧸										i
PID	. The la	(ppm)	Condition <u>No 1</u>	ره در الد							
Sample Tean	<u>, 169 11</u>	20	387.0	A. 1							1
Well Depth _	32,2°		Datum <u>13 Fo</u>	Stabilization	Data 			Time Purging begi	ns (T _o):	15	
Static Water		(FT.) <u>کڑے</u>	Diameter :	<u> </u>	<u> </u>	_		Water Lever at tim	e 1 ₀	<u>-1</u> , >	
Water Colum	n(l	FT.) P	urge Method:	Stallie	11000 Eva	ω		Time Purging ends		_	
			G.	rundfasi				Water Level at tim	ет <u>: 29</u>	<u>.67</u>	
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred		Appearance	
		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.51.PM		
0970	4,5L	7.37	,032	13.24	52.8	29.72	10,7		0,5	clear	
0726	8.00	7.14	.026	13.46	83,7	29,81	10.91		0,5		
Pu	wp of	ppez	100	かろう	70	2934	,		0.7) e	125.7
4538	144	6.78	,625	14.24	124,4	2000	7 19	۹/	0.5	/ e	1237
2742	16	6.72	,027	14.44	127.3	29,69	11.00	_	06		_
0946	18.5L	6.67	<u>,0</u> 24	14,53	129,5	29,69	11.01		0.6		
09,50	20 L	6.64	,024	14,43	/3z.3	29,69	11,03		0.6		
6°15 %	12,5	6.6	,024	14.54	133,1	29.69	11.01	1,60	0,6	U	
Date: 4//	3 / 06 -	Analysis:	Total As, Fe, Mn, Mg,		16/ 8010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)		piume lost (gallons)	ł
Time: 67			Alkalinity by 23208, Cl	-		Diameter (incir)	0.040	uera w.r. (it)	= ¥(dume lost (galions)	1
Field Filterin	(9038, Nitrate by 4500,	-	-	1,5	0.091				1
Sampling Me	thodology: L	ow Flow Sam	pling			2	0.163			· · ·	1
	Alpha Method	f of Shipme	ent: <u>Courier</u>	A 11				11.	10	pallon = 3.78 liters]
Remarks: Sample ID =	061306	544	13	Colle	<u>cteò</u>	DUPO	4 e	.thi5	well		

SHL- 4

TMP

	Field Data Sheets for Low Flow Ground Water Sampling roject Name: Shepley Hill Landfill, Devens, Massachysetts Project Number: 284350.OM.02												
Well ID: 5	<u>HL-9</u>		<u> کا ما اما</u> کا Date:		Project Numb	er: 284350.OM	.02						
	ditions <u>Dor</u>	/ppm) (Condition Q	377.6	<u>L</u> ock								
Sample Team		(PPIII)	Soudinon 38	1 / 100		`							
Campio Toan		_	Well	Stabilization	Data								
 Well Depth _	14,65	(FT.)		OPUCC				Time Purging begi	ns (T _a): JO	5a 1			
_	Level 8.94	(FT.)		2"				Water Level at time	e Т. 189	<u>, </u>			
Water Colum			urge Method:\	aux Elaux /	perista	1tie		Time Purging ends		,			
	··,	,		, 	p	•		Water Level at time	* * -	,			
Volume Removed PH Conductivity TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance 4.5 NTU preferred and + / - 10% > 1 0.3 to + / - 0.1 + / - 3% + / - 0.2 or 3% + / - 10 mV < 0.3 ft + / - 10% NTU 0.5LPM													
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5LPM													
1124 3136 6.43 -067 9,29 64.0 0.42 0.5 clear													
1128 34 L 6,40,067 9,22 64,7 9,75 0,16 1,46 6,5 clean													
1/32	1/32 38L 6.39.067 9,23 63,4 9,75 0,15 0,5 KIENE												
1136	426	6.38	.067	9,24	640	9,75	0.14	1,07	0,5	clear			
					-								
21/21/6	. (ala			SAMPLING									
Date: <u>설 / 亿</u> Time: _ / / 닉		_	Total As, Fe, Mn, Mg,	_		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V	plume lost (gallons)			
Field Filterin			Alkalinity by 2320B, Cl	-	-	1	0.040						
Field Filtering: 9038, Nitrate by 4500, and Turbidity by 2130B 1.5 0.091 Sampling Methodology: Low Flow Sampling 2 0.163													
Laboratory:		of Shipme					VIW		16	allon = 3.78 liters			
Remarks: Sample ID =	D6060	2651	14					,	•				

SHC-5 &TMP

Well Lasing Full OF ANTS

	Field Data Sheets for Low Flow Ground Water Sampling												
Project Name	Shepley Hill La	pdfill, Deven	s, Massachusetts Date: _		Project Numb	er: 284350.OM	.02						
Weather Con	ditions 6	(ppm)	Condition	<u> </u>		-							
Sample Team	TBID	<u> </u>	- 9 -										
Well Depth _ Static Water I	Static Water Level 1.80 (FT.) Diameter: 2 Water Level at time To. 1914-6/6 Water Column(FT.) Purge Method: 1000 - Froc 1 peris 5 to 1 to 2 Water Level at time To. 1914-6/6 Water Level at time To. 1914												
Volume Purge rate Purge r													
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV < 0.3 ft +/-10% NTU 0.5LPM													
145 7L 6.03,087 12.00 40.3 1.81 .14 ,26 ,5 CIEN													
1500	1500 13 - 5.82,089 12.03 38.8 1.81 14 .25 .5												
1510													
1514	171	5,77	1089	11.96	37.7	1.81	.18	.79	15	Clear			
1519	19	¥ 74	, 088	11.97	36.3	1,8)	.19	.2)	. 5				
[372	2050	5.75		11,95	36,0	1.80	19	.18	. ≲				
			_										
		<u> </u>	L	SAMPLING						l			
Date: 6/9	100	Analysis:	Total As, Fe, Mn, Mg,		46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)		rolume lost (gallons)			
Time: 15	37	3	Alkalinity by 2320B, Cl	-		1	0.040	CONG. W.C. (11)		demond (genera)			
Field Filtering: 9038, Nitrate by 4500, and Turbidity by 2130B 1.5 0.091													
Sampling Methodology: Low Flow Sampling 2 0.163													
Laboratory: /			ent: Courier						1	gallon = 3.78 liters			
Remarks: Sample ID =	0600	7065	HL5										

1 SHL-10

		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling						
Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID: 542-10 Date: 433/06 Time: 433.5														
			701=	rice		 								
PID N	,		Condition 5	500										
Sample Tean		مراک <u> </u>	J											
Well Depth 2	-01-			Stabilization				Time Purging begi	ne/T \rangle i Ta	 .45				
	Level 27.4			7	<u> </u>	_		Water Level at tim	. T 7 C	u ř.				
		(FT.)	Diameter:	7444		FIOD		water Level at till		11				
Water Colum	ın(ı	FT.) P	urge Method:	4 CALCORD	2 1 1003 -	. 1000		Time Purging ends Water Level at time						
Time Removed pH Conductivity Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance 5 NTU preferred and + / - 10% > 1 0.3 to														
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5LPM														
139 40 7.31 .026 13,20 110,5 29,56 10,65 .55 Clew														
1356 96 6.97 .027 13.52 139.7 29.56 10.76 55														
1900														
1404	12.5L	6,86	,028	13.48	153.5	29,56	10,87							
1408	14.5	(%)	,028	13.33	126.0	29,56	10,93		.55	clear				
1411	16,00	6.31	1028	13,44	15619	79.56	10,95	1.36		Clear				
					·									
				SAMPLING										
Date: 🗲 /	400	Analysis:	Total As, Fe, Mn, Mg,		46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V	olume lost (gallons)				
Time:	7430	-	Alkalinity by 2320B, Cl			1	0.040	V-4		ω,γ				
Fleld Filtering: Nitrate by 4500, and Turbidity by 2130B 1.5 0.091														
Sampling Methodology: Low Flow Sampling 2 0.183														
Laboratory: Alpha Method of Shipment: Courier 1gallon = 3.78 liters														
Remarks:	~/ -	`~	~ ,	`				'	·					
Sample ID =	06130	ン(9 こ	ントリレーレ	,										

e125

	<u>.</u>	F	ield Data S	heets for l	ow Flow	Ground W	ater Sa	mpling			1
Well ID: <u>5</u> ⊵ Weather Cond PID	_	<u></u>	1306 13106		Time: 12.	per: 284350.OM 3 5	1.02				
Sample Team Well Depth Static Water L Water Column	56.31 evel 21	(FI.) 73 (FI.)		Stabilization	_	undfos		Time Purging beging Water Level at time Time Purging ends Water Level at time	e T _{o:} スコ s: (T ₁) <u>13</u>	3	
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm)	TEMP.(C) +/- 0.2 or 3%	Redox (mV)	Water level (Ft)	D.O. (mg/L) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance	
1249	5L 7L	7,19 7,20	. 345 :356	12,36	134.4	Z \$ -,8≥	1.71		.55 .42.	Clear	C120
1253	815L	7.11	,355 ,355	12.85	138.4	29.22 23.34	0.96		,42_		e119,5
1303	12.5	7.08	. 355	13.02	1219	29,45	.78				, in c
1307	15 L	7.07 7.06	35b	13,13	1545	29.55 29.55	.68 .65		,42		e 19.5
13 3 Date: 6/17		Analysis:	- ろゞ8 Total As, Fe, Mn, Mg.	3,2 SAMPLING Ca, Na, K by SW-84	1.5577 46/ 6010B	29, 6/ Diameter (inch)	,63	3 - 3	= V0	olume lost (gallions)	12,56
Fleid Filtering Sampling Me	thodology: L	.ow Flow Sam	Alkalinity by 2320B, Ch 9038, Nitrate by 4500, <u>poling</u>	nloride by 9251, Sull	fate by	1 1.5 2	0.040 0.091 0.163			alion = 378 liters	
Sample ID =	0613	<u> </u>	<u>PMHC</u>	<u> </u>	<u></u>]

1712 12.56 in + 12 = .87 cf + 7.48

SHL-1)/LTMD

	·-	F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling					
Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID:													
Water Column(FT.) Purge Method: peristaltic/(au-t) Time Purging ends: (T ₁) 1426 Water Level at time T ₁ 1802													
Volume Conductivity Removed pH Conductivity TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) Cpm Appearance C5 NTU preferred and + / - 10% > 1 0.3 to 0.5 LPM O.5 LPM C7 C7 C7 C8 C8 C8 C8 C8													
14/4 4L 6.39 .360 11.71 -38.6 18.02 0.38 139 0.45 51/5/17 (1010)													
1418 G L 6.35 , 368 11,64 -42.6 18,02 0.51 90.4 0.45 V													
1422	18 /	6,22	1582	11.67	-44,0	18,02	0,49	59.8	0.45				
1426	9,5L	6.36	.388	11.28	-51.7	18.02	0,48	45.7	0,45	<u> </u>			
Date: 6/	100	Analysis	Total As, Fe, Mn, Mg,	SAMPLING	46/ 6010B	Diameter (inch)	Callon / Foot	* dalla ust /ft)		olumn lost (pollons)			
Time:/	<u>505</u>	_	Alkalinity by 2320B, Ch	•		Diameter (inch)	Gallon / Foot 0.040	* delta w.t. (ft)	= ν	olume lost (gallons)			
Field Filtering:													
Sampling Methodology: Low Flow Sampling 2 0 163													
Sampling Methodology: Low Flow Sampling 2 0 163 Laboratory: Alpha Method of Shipment: Courier Remarks: Sample ID = OGOGOGOGOSSINICAL													

SHL-19 /LTMP Well

Field Data Sheets for Low Flow Ground Water Sampling													
Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350,OM.02 Well ID: 5 - 1 - 1 - 1 - 1 - 1 - 3 - 1 - 1 - 1 - 1													
				06									
Weather Con		202	3001=	-									
PID	NA		Condition <u>এ</u> ৎ	WEG	DIOCK								
Sample Team	7 TB	<u> </u>											
Well Depth _	32.37	<u>L</u> (FT.)	Well Datum <u>て</u> らや	Stabilization				Time Puraina heai	ne (T.): [(<u>^</u>	ZS-1035			
	Level 21, 4			, ,	<u></u>			Water Level at tim					
Water Colum			Purge Method:	7/00-5	- N N	cristalf	-7 c-	Time Purging ends					
Train Colum	Water Level at time T _{1:} 2(, 59												
	Volume Conductivity												
Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance													
	<5 NTU preferred												
and + / - 10% > 1 0.3 to													
. 41.	+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5 LPM												
1040	3,0L 627 /67 /d.13 -31,55 067 0.59 =ron pot												
1051													
1054		6,22	0,155	1/430	-6.1	21,59	0,53	79999	0.5				
<i> </i>		0.22	0.152	11.06	ري. ق	21.59	1.56	79999	\$. \$				
1/03		Sal	0,142	71,09	9.0	21.59	0.83	79999	0.5	J.			
1106	11.5	6.19	141.0	11.16	18,3	21.59	0.94	1100	0.4	J.			
11.0	10 5	<u> </u>	- 111-	11 1-7		21.70	- 0	-7 <u>-</u>	u	1			
1/07	1912	6.19	0.140	1111	21.4	01.57	0.95	+68	0.4	با			
1119	14.01	6.19	0,139	11.23	23.4	21.59	0.97	702	•				
Date C	. / 6 %		•	SAMPLING	· - · ·		1						
Date: / C Time: / I		Analysis:	Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V (olume tost (gallons)			
Field Filterin			Alkalinity by 2320B, Ci 9038, Nitrate by 4500,	-	-	1.5	0.040						
Sampling Me	•	Low Flow San		and full-litty by 21	305	1.5	0.163						
	Alpha Metho						0.100		19	gallon = 3.78 liters			
Remarks:	•							ı					
Sample ID =	360600	・フリレ	1 7										

SHL-20 /LTMP

		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling						
Well ID:	/eather Conditions Cloudy 75°F ID WA (ppm) Condition 5000/NO COCK ample Team TB DR													
Well Depth _ Static Water I Water Columi		(FT.)	Datum	Stabilization		nistaltö		Time Purging beging Water Level at time Time Purging ends Water Level at time	e T _o 1 *8. s: (T ₁) 	記_ 31				
Volume Removed Conductivity (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) Purge rate (Lpm) Appearance +/-0.1 +/-0.1 +/-3% +/-0.2 or 3% +/-10 mV < 0.3 ft														
1348 4 4 6.55 .374 12.18 -23.5 18.35 0.57														
135 5														
1400	8 4	6.55	.383	12.51	-28.9		0.23	4.23	0.48					
1405	104	654	.386	12.46	-30.2		0.25	3.02	J. 48					
						I								
Data Offi	06			SAMPLING		· ···	1							
<u>م) (D</u> ate: Time:	130	=	Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= 40	ume lost (galions)				
	 		Alkalinity by 2320B, Cl	•	•	1	0.040							
	Field Filtering:													
Laboratory: /			ent: <u>Courier</u>				0.163		100	allon = 3.76 liters				
Remarks: Sample ID =	_		54L40					·	ı yı					

SHM-93-22C

** W.t. wouldn't Stubilize

LTMP

			Sala Book of	l 1 ·		<u> </u>					1
		F	ield Data S	neets for I	Low Flow	Ground W	ater Sā	mpling			
Well ID: 5 Weather Con PID N	e: Shepley Hill La HM 93 aditions 6/12 A 73/08	<u>-2</u> 20 -/06/	s, Massachusetts	, S	Project Numb	per: 284350.OM	1.02				
Well Depth _ Static Water		3 (FT.)	Datum <u> </u>	ч"	_			Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e Τ _{o:}	230	
Time	Volume Removed	pH	Conductivity (mS/cm) + / - 3%	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1	0,3 to	Appearance	·
1252	Ø*	. +7-0.1	+1-3%	+/-0,2 or 3%	+/- 10 mV	31,52	+/-10%	NTU	0.5LPM		0138,05
1312	3160	7.52	,511	11,79	-13814	37,00	0/13	1	;38	કાંત્રમાં ૧	e 180.05
1320)					61,19 1	_			Pumpe	Sours to
1371						6.3	وساد		,35	1.31	e 180.05
1330					رند	39,33			,47		e 2 2 2 14
				_		<u> </u>	,				e
1340						111.3*1	1		. 4 %		
Date: 0/	7- 1000	Anglygie	Total As, Fe, Mn, Mg,	SAMPLING	66/6010B	Size de Gallo	Gellon / Foot	A 11-11-1 (10)			
Time: Field Filterin			Alkalinity by 2320B, Cl 9038, Nitrate by 4500,	nloride by 9251, Sul	fate by	Diameter (Inch) 1 1.5	0.040 0.091	* delta w.t. (ft)	= VO	urne lost (gallons)	
	ethodology: <u>L</u> Alpha Method	of Shipmo	ent: Courier		SHM	1932QC	0.163	<u> </u>	1ga	dlon = 3.78 liters	
			10000 10000					obs 240	ibi liz Somp	ing,	

														
	Field Data Sheets for Low Flow Ground Water Sampling													
Project Nam	Veroject Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Vell ID: P4P-01 Date: (a/b/D) Time: 1510													
							.02							
	ditions <u>clea</u>		Date. La flore	O	1 me: 1,3 A	<u> </u>								
PID			Condition	AN GO										
Sample Tean	TAID			<u> </u>	_									
cample real	<u>, </u>	_	Mall	Stabilization	- Data			-						
Well Depth _	616	(FT.)	Datum ~ 12	Stabilization	Daia			Time Bussine heat	/T \. •					
Static Water		. ,		JA.	_			Time Purging begin	•					
		(FT.)		NIA.			ے ت	Water Level at time) 1A				
Water Colum	u <u>kotz</u> (FT.) F	urge Method:	· · · · · · · ·	k CAD MILE	peristeut	. –	Time Purging ends	· · · · /					
				_				Water Level at time	e T ₁	_				
Volume Conductivity Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance														
Time	<5 NTU preferred													
and + / - 10% > 1 0.3 to														
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5LPM														
1570 - 6,91,147 18,79 84,3 - 6,52 1,44 - Clear														
13/0 - 6,711.177 18,71 84,5 6,52 1,44 - Clear														
	-													
Date:	- Dia	A = alveda	T-1-14. P. 14. 14	SAMPLING	404 0D 40D	l			_					
Time: 15			Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w t (ft)	= VC	olume lost (gallons)				
Field Filterin			Alkalinity by 2320B, Cl		*	1.	0.040							
	10-15-16-16-16-16-16-16-16-16-16-16-16-16-16-													
Laboratory	Alpha Metho c	of Shipm	ent: Courier			2	0.163		1 &	nikon 2 79 litom				
Remarks:	الملم أ (ا)	\ A \ \	l	T				ı	19	allon = 3.78 liters				
Sample ID =	K400L	ノドクレ	$1 \mathcal{W}$											

LowFlowDataSheet.xlstemplate-low flow

Also Collected MS/MSD &

-DUP 1

(Divider Page)

		F	ield Data S	heets for I	Low Flow	Ground W	ater Sa	mpling	, . 				
Well ID: Weather Con	ditions Par	Fly C	s, Massachusetts Date: Condit ion	0°E	Project Numb	er: 284350.OM	.02						
Well Depth _ Static Water Water Colum	Level 24,	(FT.) 5 <u>2</u> (FT.) FT.) F	Datum BTO	111	Data			Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e T _{o:} s: (T ₁) e T ₁	1A			
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) +/-3%	TEMP.(C) +/-0.2 or 3%	Redox (mV)	Water level (Ft)	D.O. (mg/L) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance			
1425	1425 6.0 6.60 ,777 12.60 -116.7 2 1.26 - 125 Cicar												
1430	8.06	6.65	,712	12.58	-120.4	4	0.22	_	25				
1435	9.06	6.67	.693	12,73	-1208	*	24	-	,25				
1440	10.56	6.61	,680	12.63	+121.6	*	,23		. 25	1			
	li.					·							
					·								
	-			-			-						
				SAMPLING									
Date: 0 / 2		Analysis:	Total As, Fe, Mn, Mg,	•		Diameter (Inch)	Gallon / Foot	delta w.t. (ft)	= V0	olume lost (gallons)			
Time:L			Alkalinity by 2320B, Cl	•	•	1	0 040						
	tures mail at the second												
	Alpha Metho c			\sim			0163_		// =1c	pallon = 3.78 liters			
Remarks:	B	500	20 NS	$O(10^{\circ})$,					

-	12		
		7	4.5

Field Data Sheets for Low Flow Ground Water Sampling													
Project Name: Shepley Hill Landfill, Devens, M. ac husels Project Number: 284350.OM.02 Well ID:													
Well Stabilization Data Vell Depth													
Volume Removed pH Conductivity TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) C.D.O. (mg/L) Turbidity (NTU) Turbidity (NTU) C.D.O. (mg/L) Turbidity (NTU) C.D.O. (mg/L) Turbidity (NTU) C.D.O. (mg/L) Turbidity (NTU) C.D.O. (
1356 1,5 6.29 1.331 17.91 -98.0 0.39 0.25 CICAL													
14.00													
1400	5.0L	-29	1.36 3	13.73	102.7		0-33		0,25				
1413	6L	6.29	1.358	13,60	1029		0.33		0.25				
1417	7.06	6.28	1,358	13.48	-103.3		0.32		0.25				
1420	8,00	6.28	1,359	13.41	-1035	4	0.33		0,25	(7)			
							_			<i>w</i>			
-			40	anit	F:+ (D.O. Pr	-010c	2002	we				
- C / T				SAMPLING									
Date: 7/7	5/00 17/0	Analysis:	Total As, Fe, Mn, Mg,	•		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= y 0	lume lost (gallons)			
Field Filtering			Alkalinity by 2320B, Cl 9038, Nitrate by 4500.			1.5	0.040						
Sampling Me	thodology:	Low Flow Sar	npling	and colored by a		2	0.163						
Laboratory: Alpha Method of Shipment: Courier 1gellon = 3.78 liters													
Sample ID = Dulling in air bubbles ble & w.t. Jeoth, due to													
- water land and	Sample ID = pulling in air bubbles b/L & w.t. Lepth, due to depth can only pull c. 25 LPM, can't fill water probe in												

5HL-109

<u>-</u> · -		F	ield Data S	heets for	Low Flow	Ground W	/ater Sa	mpling		
			s, Massachusetts		Project Numb	oer: 284350.OM	1.02		-	
Well ID:	5HL10		Date: 10/25/C	E A	Time:					*
	litions			-						Sir
PID			Condition.	رجون	- 100	1963	_	ν.,		
Sample Team	IP. I	000	1 4 4 4	50		<u></u>				100
			Well	Stabilization	Data				176	i deng
/ell Depth			Datum <u> お下</u> む	100 C	_			Time Purging begi	ns (T _o)	2)
tatic Water L	evel <u>2018</u>			4.7		ETA		Water Level at tim		
Vater Columr	1(FT.) F	urge Method: 1	ுபு சிம	Pu	rue & Bu	il stor	Time Purging ends Water Level at tim	1 3 1	A
	Volume	1	- Conductivity	1	100	, 7 - 7 (4)	1	<u> </u>	Purge rate	
Time	Removed	pΗ	(mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1	(Lpm)	Appearance
		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM	
1219		10.98	.337	12.83	-38/	45.80	0.36			C 150.70
1220				,		46,02				
		 							<u> </u>	
			V.							
		-								
					_					
				SAMPLING						
Date: (0/ 25	100	Analysis:	Total As, Fe, Mn, Mg,		46/ 60109	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)		rolume lost (gallons)
lime:		Andry 5151	Alkalinity by 2320B, C	•		Diameter (inch)	0.040	CORD W.E. (18)	= v	Ordine lost (gallons)
	O'U :		9038, Nitrate by 4500		*	1.5	0.040		-	
	thodology:			, and responding by E		2	0.091			
	Alpha Metho				~		U.193		1,	gallon = 3.78 kilers
Remarks: Sample ID =	135	000	SHL 1	1000	7					-
4.,	Jn 2	-s< 3:	SPC -5 C	•35	10m	pun ce	S der	y ilet	rech	orde of low

SHL-13

Field Data Sheets for Low Flow Ground Water Sampling												
Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02												
Well ID:	1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	<u> </u>	Date: 0 71/		Time:							
	ditions C LC		20E 1 = 1	~								
PID Sample Tean	100	ラ (ppm)	Condition	C 63								
Sample Team	15.1421		Well	Stabilization	- Data							
Well Depth _		(FT.)	Datum BTO		_			Time Purging begi	ns (۲ <u>۵):</u> آر	40		
Static Water	Level 7.24	(FT.)		2"				Water Level at tim				
Water Colum	n(l	FT.) F	ourge Method:	<u> ۱۹۰۰ - ۲۱۵</u>	<u></u>			Time Purging ends	s: (T ₁) _08	4		
			^				e Referent	Water Level at tim	eT ₁ . 7.	23		
Volume Conductivity Purge rate Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance												
111116	Heliloved	pii	(marcin)	TEMP.(O)	nedox (III)	Water level (Ft)	D.O. (mg/L)	<5 NTU preferred		Appearance		
}			(and + / - 10% > 1	0.3 to			
20.0		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM	-		
0448	50	7.54	1212	430	76730	7,28	7,12		145	clear		
0758	36	(.82	1212	34 35	-2013	7,28	*		,45	clear		
5080	10.56	6.68	1212	11,50	-7659	7,28	*	and the second	145	clear		
1180	14,00	6.65	1212	11,57	-302.7	7,28	44		45			
0815	15.5	6.52	212	11.61	-316-6	7,28	¥		\			
6818	17,00	6,50	,212	11,62	-3224	7.28	×					
0824	18,56	6.49	212	11.63	-326-1	7.28	De .		3			
								-				
		l	<u> </u>	SAMPLING		···						
Date: / O	7/06	Analysis:	Total As, Fe, Mn, Mg,		46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V0	olume lost (gallons)		
Time:			Alkalinity by 2320B, Cl	nloride by 9251, Sulf	fate by	ð	0.040			(34444)		
Field Filterin			9038, Nitrate by 4500,	and Turbidity by 21	308	1,5	0.091					
	ethodology: L			,	<u>.</u> [2	0.163					
Remarks:	aboratory: Alpha Method of Shipment: Courier emarks: 1gallon = 3,78 liters											
Sample ID = 135000 SHC 300												
	X	D 0	Droke	Stoops	WIT GE	4						

		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling						
Well ID: 51 Weather Con PID	Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID: 5HC-22 Dat e: 10/21/06 Time: Weather Conditions C. 12 (ppm) Condition 3000 Sample Team 73 108													
Well Depth _	Well Stabilization Data Well Depth													
Time	Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance													
B58	958 7.06.71 ,752 10.95 -36.2 7.90 & 0.4 clear													
1015														
1020	16L	6.19	,739	11.05	-284	7.86	23Í		0.4					
1024	17.5	1,18	739	10,99	28.0	7.86	126		0.4					
1028	19.0L	6.78	,738	10.97	-27.5	7.86	125		0,4					
1031	20.50	6.78	.738	10.97	-270	7.86	122		0.4	<u> </u>				
Date: 10/ 7		Analysis:	Total As, Fe, Mn, Mg,	SAMPLING Ca, Na, K by SW-8	46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= VC	olume lost (galions)				
Time:			Alkalinity by 2320B, Ch		•	1.5	0.040							
Sampling Methodology: Low Flow Sampling 2 0.163														
Laboratory: Alpha Method of Shipment: Courier Igallon = 3.78 liters														
Sample ID =	130	<u>00</u>	OSHU	<u>:2₩</u>										

Also collected DUP(2)

LowFlowDataSheet.xistemplate-low flow

A Changed out / New ISI Probe

SHM-05-39A


		F	Field Data S	heets for l	Low Flow	Ground W	ater Sa	mpling						
Well ID:		48 <u>6.</u>	s, Massachusetts Date: ペノン		Project Numb		.02							
	1 TB DQ	(ppm)	Condition	(Le										
Sample Team	J 138 100		3.9											
			Well	Stabilization	Data				5 - v 11 s	~~				
		_ (F1.)	Datum	SP V CE	_			Time Purging begin						
	Level . 4	<u>1</u> (F1.)	Diameter:	2	-			Water Level at time						
Water Colum	n(FT.) F	rurge Method:	The profitting	(ـــ			Time Purging ends						
		_	=-	_				Water Level at time		7				
Time	<5 NTU preferred and + / - 10% > 1 0.3 to													
	+/- 0.1 +/- 3% +/- 0.2 or 3% +/- 10 mV < 0.3 ft +/- 10% NTU 0.5LPM													
1220	1220 10 6.49, 628 12.41 -1321 1.63 445 Clean													
1223	11 _	6.48	635	12.31	-132.0	11.63	**	-	,45	#/				
1227	13-	6.48	.638	12.30	-132.7	1463	*		,45	//				
									·					
					4:	Broker								
					3 725 73									
			i.											
				SAMPLING			<u> </u>	·						
Date: //		Analysis	Total As, Fe, Mn, Mg,	Ca, Na, K by SW-8	46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w t (It)	= γ	olume last (gallons)				
	27		Alkalinity by 2320B, Cl			1	0.040							
	Field Filtering: 9038, Nitrate by 4500, and Turbidity by 2130B 15 0.091 Sampling Methodology: Low Flow Sampling 2 0.163													
						2	0.163			relien – 2.79 litere				
Remarks:	aboratory: Alpha Method of Shipment: Courier Igailon = 3.78 liters													
Sample iD =														

SHM-99-311A

		F	Field Data S	heets for	Low Flow	Ground W	ater Sa	mpling						
Weather Cor		/car	7001-	-	Project Numb	oer: 284350.OM	1.02							
PID Sample Tear	<u> </u>	(ppm) (Condition	<u> </u>					_					
Well Depth _ Static Water	Level 3.25	(FT.)	Datum	2"				Time Purging begi Water Level at tim Time Purging ende	e Т <u>。 3, 2</u> s: (Т₁) <u>/ 1 Ч</u>	25				
Time	Volume Removed	рН	Conductivity	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Water Level at tim Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance				
	+/-01 +/-3% +/-0.2 or 3% +/-10 mV < 0.3 ft +/-10% NTU 0.5LPM													
1126	+/-01 +/-3% +/-0.2 or 3% +/-10 mV <0.3 π +/-10% N10 0.5LPM													
1128						3.45				4.				
1138	700	614	0.13	14,36	-64.1	3.45	*		0.5	V				
1142	22	6.07	0,176	14,42	-68.7	3 45			015	Clear				
1140	フナ	6.06	0.175	14.46	-72.9	3,45			05	Clear				
	}				母=	Brokun								
				SAMPLING										
Date: 1 / Z		Analysis:	Total As, Fe, Mn, Mg,	Ca, Na, K by SW-8	46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V	olume lost (gallons)				
Time:			Alkalinity by 2320B, C		*	1	0.040	7—						
	ield Filtering: 9038, Nitrate by 4500, and Turbidity by 21308 1 6 0.091 ampling Methodology: Low Flow Sampling 2 0.163													
						2	0.163		1.					
Remarks	aboratory: Alpha Method of Shipment: Courier													
Sample ID =	B5	う用的	v 99311	ナしし										

5HM-99-31B

Ė		F	ield Data S	heets for I	Low Flow	Ground W	ater Sa	mpling						
Weather Cor	ne: Shepley Hill Li MAP-3 (Inditions Clean	つ <u></u> (maa)	s, Massachusetts Date: 9 20 00 S	^	Project Numb	er: 284350.OM	.02							
Well Depth _ Static Water	Level <u>3.5</u> 0	(FT.)	Datum _ 「ろて」	Ζ.				Time Purging beging Water Level at time Time Purging ends Water Level at time	e T _{o:} 3 .51 i: (T ₁) <u> 1 3</u>	<u> </u>				
Time														
13026	1120 36 L (170 0.383 11.99 -87.5 3.94 + = 0.45 ciech													
1125 38L 639 0.360 11.22 -80.6 3.94 1 0.45 11														
30 41 637 0.362 11.15 80.6 394 = 0.45 CIECUS														
V35	43	6.36	0.363	11.22	-80.5	3.94	*		0.45					
				X	=Br	icen			Sec. 121					
	<u> </u>			SAMPLING			<u> </u>		_					
	130_	Low Flow Sar		, Ca, Na, K by SW-8 Chloride by 9251, Su	lfate by	Diameter (inch) 1 1.5	Gallon / Foot 0.040 0.091 0.163	* delta w.t. (ft)		olume (ost (galions)				
Remarks: Sample ID =	B55	HM9°	131802						ı ş	allon ± 3 76 liters				
	LowFlowDataSheet.xistemplate-low flow 3.25 = 1 3.25 = 3 3.25 = 3 3.25 = 1													

	-	F	ield Data S	heets for I	Low Flow	Ground W	ater Sa	mpling						
Well ID: SH	Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID: SHM ~99 - 31 - Date: 9 120 0 Time: Weather Conditions													
Weather Con PID	ditions <u> </u>		Condition											
Sample Team	1 <u>1810</u>	<u> (ppin) </u>	Solidition:											
			Well	Stabilization	Data				. 0	-7				
		(FT.)	Datum <u>ाउँ।</u>	Vici	_			Time Purging beging	ns (T _o): <u>() /</u>	10				
Static Water I	_evel <u>+ 61</u>	(FT.)	Diameter :	2	1			Water Level at time	e T。 🚣 🤗	_				
Water Colum	n(FT.) P	urge Method:	00-4-10c	4			Time Purging ends	s: (T ₁)					
								Water Level at time	e T ₁	_=				
Time	Volume Conductivity Purge rate													
	and + / - 10% > 1 0.3 to													
	+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5LPM													
0941														
0946		6.67	733	11.07	-119.5	4.34	0.00	<1	0,4					
0950	14.56	େ ଓଟ	731	11.11	-123 4	4.34	D. OJ*	< 1	0.4	clear				
İ							·							
	·													
	· · · · · · · · · · · · · · · · · · ·													
										y.				
				SAMPLING			L							
Date: 9/2	10 1 Ob	Analysis:	Total As, Fe, Mn, Mg,		46/ 6010B	Diameter (inch)	Gallon Foot	- defia w i (i)	= 0.	olume lost (gallons)				
	005		Alkalinity by 2320B, C			1	0 040			Alleman (d)				
Field Filterin	g:		9038, Nitrate by 4500	•	•	1.5	0.091							
	ethodology:	Low Flow San	npling	. •		2	0 163							
	Alpha Metho	d of Shipm	ent: Couner						tç	gallon = 3.78 liters				
Remarks: Sample ID =	B5SH	1WGG	31CW											

D. D. probe reading regative, pulked probe of checked LowFlowDataSheet.xistemplate-low flow & 100%. Suffurated i probe only reading 2.68 mg/L will reconsistion

SHM-99 -32×

		F	Field Data S	Sheets for	Low Flow	Ground W	ater Sa	mpling					
Project Nam Well ID:	e: Shepley Hill L	andfill, Deven	s, Massachusetts Date: <u>9 - 2 ^{6 -}0</u>	<u>(</u>	Project Numb	per: 284350.OM	1.02						
	ditionsC\	201,70	3										
PID	n DR	(ppm)	Condition	> Of									
Sample Tear	n 1512	470	141-41	01-1-11	-		<u></u>	<u> </u>					
		(CT.)	VVeil	Stabilization	Data			Time Purging begi		50			
Well Depth _	Level 9,8	(FT.)	Datum	3 "				Time Purging begi	ns (1 ₀): C	2			
		<u>) </u>	Diameter:_	0 - 1.11				Water Level at tim		25			
Water Colum	Vater Column(FT.) Purge Method: Peristaltia Time Purging ends: (T ₁) O 2 S Water Level at time T ₁ : 9, 88												
Time	Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance <5 NTU preferred and + / - 10% > 1 0.3 to												
	+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV < 0.3 ft +/-10% NTU 0.5LPM												
0900 3.5 L 6.49 0.758 11.11 -120.1 9.88 4.73 0.35 Clear													
0905		653	0.755	10.98	4.451-	9.38	3.53			24			
6170	7.0 L	654	0.754	1095	-126,0	9.88	3.37	41	J	97			
0915		6.56	0.748	0.90	-129.0	9.88	3.06		0.35	clear			
0920	14.06	57	0.747	10.91	-130.3	9.88	2.87	<	.35	11			
0925	16,00	659	0.749	10.90	-131.5	9.88	0.0	41	,35	Clear			
				<u> </u>									
Date: 1/Z	0.786			SAMPLING			r						
Time:	09 35	Analysis:	Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w.t l (ft)	= V	olume lost (gallons)			
Field Filterin			Alkalinity by 2320B, C	•		1 5	0.040						
	_	Low Flow Sai	9038, Nitrate by 4500	, ана тигоющу бу 2	1308	- 1 or	0.091						
	Alpha Metho					2	1 0.163		10	pallon = 3.78 litors			
Remarks:		=				0 - 1-	_			Janott - 9 70 (4015)			
Sample ID =	1005F	1Myc	132XC	5	AMPLI	RD AT	09	35					

SHM-05-39B

		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling					
Well ID:S Weather Con PID	Project Name: Shepley Hill Landfill, Devens, Massachusetts												
Sample Team	I A COC		144.0	0.12.									
Well Depth _		_ ' '	DatumBT					Time Purging begi					
	Level 5.							Water Level at time					
Water Colum	n(l	FT.) P	urge Method:	m- F101	-			Time Purging ends Water Level at time					
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance			
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV < 0.3 ft +/-10% NTU 0.5 LPM													
0815													
	water	1e0	el wot	Stabiliz	المح المحالية	wood to	2430	69 TOPUC	<u>L</u>				
0840		6.98	,928	13,98	-117.7	48,25	0.17		7	けらいけらい			
0846		7,00	,931	14.02	-123.1	47.71	0,44		340				
085t		700	,934	14.01	-)Z3.Z	47,71	0.15	=	J				
8853		7.00	1934	13.99	-123.3	47.71	0.14	, V	, 4_				
li .	_					J	•	1					
- 7	2 11	•		SAMPLING	<u> </u>				_				
Date: 4 / L	20 25	Analysis:	Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w t (ft)	= V	olume lost (gallons)			
Time:	ig:NG		Alkalinity by 2320B, C	•	•	1	0.040						
Field Filtering: 9038, Nitrate by 4500, and Turbidity by 21308 1.5 0.091 Sampling Methodology: Low Flow Sampling 2 0.163													
	Laboratory: Alpha Method of Shipment: Courier												
Remarks:	_								,				
Sample ID =	1000	4 CX 14	539180	ناو									

SHM-05-40X

		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling					
Well ID:_SH	roject Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Tell ID: SHM -05 -40 Date: 9/70/05 Time: 1145												
PID	ultions		Condition <u>Q</u> 📿	52)									
Sample Team	TOO (De												
Well Depth _		(FT.)		Stabilization	Data —			Time Purging begi	ns (T _o)://	50			
	evell=\		Diameter :	211				Water Level at tim	e T _{o:} <u>1</u> 4 · 18	<u> </u>			
Water Colum	n	(FT.) F	urge Method:t	200 - Fr 30	w			Time Purging ends	s: (T ₁) <u> 12/</u> 5	5			
								Water Level at tim	eΤ ₁ 14,2	. Z			
Time	Volume Removed	рH	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1	Purge rate (Lpm)	Appearance			
		+/-0.1	+/-3%	+ / - 0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM				
1200	41_	676	0.392	13.09	-170.6	14,22	4	-	0.40	Clear			
1205	72												
140	86	6.78	0.398	13.05	-167.5	14,22		in the second	0,40				
1215	106	6.79	0.398	13.04	-164.6	14.22			0.40	<u>(</u> .			
				1.000		1	1-2 / 5						
	- ·· · · · · · · · · · · · · · · · · ·		_ > /	177/11	hl	AT	1215	•					
		<u> </u>		SAMPLING		7.	<u></u>						
Date: 1/2		Analysis	Total As, Fe, Mn, Mg,	Ca, Na, K by SW-8	346/ 6010B	Diameter (inch)	Gallon / Foot	odelta v.*1 (ft)	≡v	oluma lost (gallions)			
	1215		Alkalinity by 2320B, C	hloride by 9251, Su	ifate by	1	0.040						
Field Filterin	- ,		9038, Nitrate by 4500,	and Turbidity by 2	130B	15	0.091		_				
Sampling Mo		Low Flow Sa				_2	0.163			1000			
Laboratory:		_	nent: Courier	•					75	gallon = 3 78 liters			
Remarks: Sample ID =													

	Field Data Sheets for Low Flow Ground Water Sampling												
Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID: >Hm os His Date: 9/20/06 Time: Weather Conditions Clear 7005=													
PID			Condition	×1									
	TB/DO	_ (PPIII)	J	~									
Well Stabilization Data													
Well Depth(FT.) Datum Broove Time Purging begins (T _o): 123 9													
	Static Water Level 10 6 (FT.) Diameter: Z" Water Level at time T _c 10.61												
	Water Column(FT.) Purge Method: 1000 Time Purging ends: (T ₁) 1343												
Water Level at time T _{1:} 10:65													
Volume Conductivity Purge rate													
Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance													
1	<5 NTU preferred												
	+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5 LPMf												
1323 15 - 0,6 ,163 11,99 -82,7 10,65 + - 375 Clear													
1330													
1338	20.5	6.37	0.130	11.66	-67.7	10.65	*	-	. 375				
1343	22,5	637	0.129	11.91	-67.8	10,65	4		.375				
			D.	D. pro.	be not	wortin	4						
				,			7						
				5AM	PLRD	AT I	345	S					
Date: 9 / 2	100			SAMPLING			Γ .		1 _				
Time:	315		Total As, Fe, Mn, Mg,	•		Diameter (inch)	Gallon / Foot	* delta w.t (ft)	v	oluma lost (gallons)			
Field Filterin			Alkalinity by 2320B, Cl 9038, Nitrate by 4500,		-	1.5	0.040						
	ethodology:			, and refolding by 21		2	0.163		-				
				_		<u>-</u>	1 0.100		. 1	gallon = 3 72 liters			
Remarks: Sample ID =	Remarks: RESHAGE 41A												

Also collected MS (MSD)

LowFlowDataSheet.xistemplate-low flow

58.8 8.78mg/21,78°C

		F	ield Data S	heets for I	Low Flow	Ground W	ater Sa	mpling					
Project Name: Shepley Hill Landfull, Devens, Massachusetts Project Number 284350.OM.02 Well ID: 5H M 35 41 5 Date: 1235 Weather Conditions Open Condition Grown Sample Team OP 1 5 Open Condition Date: 1235													
Well Stabilization Data Well Stabilization Data Well Stabilization Data Time Purging begins (T _o): / 739 Water Level at time T _o : / 0.4/2 Water Column													
Time	Volume Removed	pH	Conductivity (mS/cm)	TEMP.(C) +/-0.2 or 3%	Redox (mV) + / - 10 mV	Water level (Ft)	D.O. (mg/L) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	(Lpm)	Appearance			
1258	7.5L	6.40	,797	12.98	-114.5	10,48	0.76		0.40	silty/light			
1302	1302 9,5 6,38 ,793 12.50 -120,0 10,48 0,29375 "												
1307	10,0L	639	1792	12.60	-123,9	10.48	0.21		375	(1			
/3/0	11,5L	6.39	.791	12,50	-125.4	10.48	0.16		,375	//			
1315	13.0L	6.41	.791	12.5	-127,3	1048	0,07	سسہ	,375	1			
1319	15.00	C.40	1790	12.66	-127.6	10,48	*		. 375	10			
- 1													
				SAMPLING									
Date://	Will	Analysis:	Total As, Fe, Mn, Mg,		46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= Ve	blume lost (gallons)			
Time:	划 1333	>	Alkalinity by 2320B, Ch			1	0.040	, ,		30			
	G/4 : : : : : : : : : : : : : : : : : : :		9038, Nitrate by 4500,	and Turbidity by 21	30B	1,5	0.091	•					
Sampling Methodology: Low Flow Sampling 2 0.169													
	Aboratory: Alpha Method of Shipment: Courier 1galfon = 3.78 liters												
Sample ID = 355HM05413													
15	DO probe crapped out again trading neg.												

LowFlowDataSheet.xlstemplate-low flow

5HM-05-41C_

		F	Field Data S	heets for	Low Flow	Ground W	ater Sa	mpling					
Project Name	Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID: Shm-05-915 Date: 9/20/06 Time:												
			Date: 9/20/	06	•					İ			
Weather Con													
PID		(ppm)	Condition <u>90</u>	වුල									
Sample Tean	1 T3/D	[2			-								
	_		Well	Stabilization	Data				. 2 3	East.			
Well Depth _		(FT.)						Time Purging begin					
Static Water	Level <u>10-6</u>	<u>> 8 (</u> FT.)) Diameter : Purge Method: <u>Lo</u>	2"				Water Level at time		_			
Water Colum	n(FT.) F	Purge Method: <u>ເ</u> ລ	Floc	2			Time Purging ends	። (ፑ _ና) <u>ኒ ዓ</u> ረ	<u>at</u>			
								Water Level at time	e T ₁ 10.	-81			
U.	Volume		Conductivity		1				Purge rate	-			
Time	Removed	pН	(mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	(Lpm)	Appearance			
li .]			<5 NTU preferred and + / - 10% > 1	0.3 to				
		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM				
1349	71	699	756	11.82	-173.3	10.31	*		375	CIERS			
1353	8,5L	7.04	.76)	11.72	-174.3	10.81	*		40	olean			
1358	10.56	7.10	763	11.73	-1736	1881	*		.375	V			
1401	1656	7,11	7/24		1		*	*	,375				
				11,19	-172.4	10,81			.37				
j													
				*	D. O.	probe	W	work	6 4				
ji						Q0, Q0.			7				
- 9 -		75		SAMPLING			_	•					
	401	Analysis:	: Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V	olume lost (gallons)			
			Alkalinity by 23208, C			11	0.040						
	ield Filtering: 9038, Nitrate by 4500, and Turbidity by 2130B												
	ampling Methodology: Low Flow Sampling 2 0.163 2 aboratory: Alpha Method of Shipment: Courier 2 1 gallon = 3 78 liters												
	Alpha Wiethou	na y nginan	Territ Conner		1				16	gallon = 3.78 liters			
Sample ID =	emarks: RECHINATION												

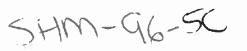
SHM-05-42/A

	Field Data Sheets for Low Flow Ground Water Sampling Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02												
Project Name	a' Shanlay Hill I a	ndfill Deven	A Magagachusotta		Project Numb	or: 284350 OM	02						
	e. Shepley fill La 1m -U5 -	:ndilli, Devels ・リスト	Date 9/21/06	<u> </u>	Time:		.02						
Weather Con	ditions 21	ear.	J-10 42		11110								
PID NA		(ppm) (Condition 500	2									
Sample Team	TB/100	2			_								
	7			Stabilization	Data				, -				
Well Depth _	48	(FT.)	Datum _ 63TC					Time Purging begin	ns (T _o):	10			
Static Water I	Level 4	(FT.)			_			Water Level at time					
Water Colum	n(i	FT.) F	urge Method:	loca -Fill	× 2			Time Purging ends					
Water Level at time T _{1:} 4,99													
Volume Conductivity Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance													
Time Removed pH J (ms/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance													
<5 NTU preferred and + / - 10% > 1 0.3 to													
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5LPM													
1223 GL 6.17 050 10.53 106.1 4.99 4.99475 Clear													
1227	94	6.13	050	10.44	130.6	4.99	4.96	To the same of the	.约35	1			
1232	124	6.10	,050	10.41	152.8	4.99	4,94	-	475				
1236	13.51	6,10	050	10.34	162,4	4,99	4.93		.475				
1239	15.0L	609	0KD	10.31	1707	4.99	491	-	.475				
1242	16.5	6.09	050	10.34	175.3	4.99	4.91	-	.475				
1245	17.50	6.09	,U5D	10.35	1203	4,99	4,90		1475	(
1	, ,,,,		-		1								
			l	SAMPLING			<u></u>						
Date: 7	100	Analvsis:	Total As, Fe, Mn, Mg,		46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	T 1/1	olume lost (gallons)			
Time: 12.	50		Alkalinity by 2320B, CI			1	0.040	The first		180000)			
Field Filtering: 9038, Nitrate by 4500, and Turbidity by 2130B 1.5 0.091													
	Sampling Methodology: Low Flow Sampling 2 0.163												
	Alpha Metho o	d of Shipm	ent: Courier						19	gallon = 3.78 liters			
Remarks:	RSCI	MH	05421	[11]									
Sample ID -		1 10 " 7	/ _ 1/_X F	- VV									

5HM05-4ZB

		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling				
Well ID:	Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID: SHO -05-42B Date: Time: Weather Conditions Clear - 30-5 Time:											
Weather Con	and the state of t		Condition <u>40</u>	2								
	1 73 1100	(PPIII)										
			Well	Stabilization	Data							
Well Depth _		(FT.)	Datum _ 13 TC	ypucc .				Time Purging begin				
Static Water	Level 🛂 🔏	(FT.)	Diameter :	1"				Water Level at time	e Т _{ос} _ Ч.Ѕ	<u> </u>		
Water Colum	n(i	FT.) P	urge Method:	low-Fie				Time Purging ends	: (Tı) <u>130</u>	<u>5</u>		
					-			Water Level at time	e T _{1:} 4.9	3		
Volume Conductivity Purge rate Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance												
Time	Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance											
	<5 NTU preferred and + / - 10% > 1 0.3 to											
	+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV < 0.3 ft +/-10% NTU 0.5 LPM											
1238	1238 8,0c 4,93 - ,43 cient											
1250	13,04	662	0.773	10.79	-46	4,93	0.22		,43			
1255	15.56	671	0.777	10.83	-105.0	4.93	0.(8		0.43			
1300	17,56	6.73	0.777	10.82	-128.4	4,93	0.17		,43			
1305	206	6.74	5.778	11.03	-110-2	4.93	0.16	-	43			
WII												
9.7	116		V.	SAMPLING		ī	ı	1				
Date: 7	205		Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w t. (ft)	= V(olume lost (gallens)		
Field Filterin	ig: NO		Alkalinity by 2320B, Ci		•	1 5	0.040					
	eld Filtering: 9038, Nitrate by 4500, and Turbldity by 2130B 1.5 0.091 1.5 0.163											
	Alpha Metho				2	<u> </u>	V-100		10	allon = 3.78 liters		
Remarks:	1	766	11000	5 117 G	2. \							
Sample ID =	(\cap	$\mathcal{M}(\mathcal{N}) \cap$	J 721	ノしょ)							

5HL-9


		F	Field Data S	heets for l	Low Flow	Ground W	ater Sa	mpling					
Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID:													
		223	70°E	~									
PID		(ppm)	Condition 500	201									
Sample Team	T13/10	2											
		\		Stabilization	Data					472			
	. 1.0.35		Datum		_			Time Purging begin					
1 4 75	_evel <u>10/2</u>							Water Level at time					
Water Columi	n(FT.) I	Purge Method:	(3000)				Time Purging ends					
								Water Level at time	e T ₁	<u>.</u> 50			
	Volume Conductivity Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance												
Time	Removed	pН	(mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)		(Lpm)	Appearance			
	<5 NTU preferred and + / - 10% > 1 0.3 to												
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5LPM													
1													
1024	105+7-6,50,211 10,71-824 10,50 0,17 0,5												
1101	9.06	874	.209	10,70	-75,3	10.50	0.16		23				
1104	10,5	7,73	,208	10,70	-73.8	10.50	0.16)	0.5				
I'T	116	(6,77	1208	10,69	-722	10,50	0,15		0/2				
1/0 1	_11,7	G.72	1200	10,01	12,5		91 3		00				
1 1													
		-											
		벌			1		<u></u>						
<u> </u>	10			SAMPLING		1	1		EU .				
Date:/	1100	Analysis	: Total As, Fe, Mn, Mg,	-		Diameter (inch)	Gallon / Fool	" deita w t (ft)	= V(olume lost (gallons)			
	Time: Alkalinity by 2320B, Chloride by 9251, Sulfate by 1 0.040												
	ield Filtéring: NO 9038, Nitrate by 4500, and Turbidity by 2130B 1.5 0.091												
	ampling Methodology: Low Flow Sampling 2 0.163 - 1gallon = 3.78 liters												
	Alpha ivietno	u or Snipn	nent: Courier						= 10	gallon = 3.78 liters			
Remarks:		135	10000 5	H191.)								
Sample ID =		1 2. 3			/								

51M-96-22B

		F	Field Data S	heets for l	Low Flow	Ground W	ater Sa	mpling					
Well ID: _S		<u>228</u>	Date: 9/≥i/0x		Project Numb	oer: 284350.OM 	1.02						
Well Depth _		(FT.)		Stabilization	- Data			Time Purging begi	ns (T): \ \	06			
Static Water		9 (FT.)		a u				Water Level at tim					
Water Colum			Purge Method:	الم- حين				Time Purging ends					
TValor Goldin			unge memoureu					Water Level at time	-76				
Time	Volume Removed	pН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1	Purge rate (Lpm)	Appearance			
		+/-0.1	+/-,3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5 to 0.5LPM				
1035	56	4.71	128	15.01	-103.9	8,4\$	0.25		D'.7	Cicar			
1040													
1044	8,56	c.77	0.724	10/63	-129,2	8.45	0.20		0,4				
1048	IOL	6.27	0.724	10.63	-129.3	8.45	0,70		0.4				
									_				
			SAM	er LAO	AT	1050	<u> </u>						
Date://	100			SAMPLING	-	4	ı						
	59		Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	⊕ να	olume lost (gallons)			
Field Filterin			Alkalinity by 2320B, Ct 9038, Nitrate by 4500,	•	•	1	0.040						
Sampling Me		ow Flow San		and Turbidity by 2	1306	1.5	0.091						
	ampling Methodology: Low Flow Sampling 2 0 163 2 1940 2 2 2 2 2 2 2 2 2												
Remarks:	0			· ~						diff(1 = 3.10 lite(8			
Sample ID =	(ク)	DH	M962	1/B()	()								

SHM-96-58

t		F	ield Data S	heets for l	ow Flow	Ground W	ater Sa	mpling					
Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID: 355179656 Date: 9172009 Time-													
			Date: 9170		Time:		.02						
	ditionsC \.		7001	. 5									
PID NE			Condition 400	Y)									
Sample Team	1 TBIDE												
			Well	Stabilization	Data				<i>اب</i> ا	7 9			
Well Depth _		ግ ^(FT.)		200CC	_			Time Purging begin		2-4			
	Level <u> </u>							Water Level at time		2+			
Water Colum	n(FT.) F	Purge Method: <u></u>	M - FIO				Time Purging ends	s:(Т.): Д. Э.	09			
								Water Level at tim	е Т _{1:}	<u>0</u> 78			
Volume Conductivity Purge rate													
Time	Removed	pН	Di (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)		(Lpm)	Appearance			
	+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV < 0.3 ft +/-10% NTU 0.5LPM												
1440 3L C.59 .678 12,22 -135.1 6,67 - 0.4 CIERS													
1448	77	C.54	.678	12.48	-145.8	6.68			0.4	Ť			
1455	91	6.54	679	12.18	-1564	6,68			0.7				
1458	101_	4,54	,679	12.16	-157.0	6.68		10	1014				
1567	121-	6.53	.680	12.09	-160,5	663			2.0				
									,				
				→ D, 8	D. 05	ohe	Not	DOFK					
				SAMPLING									
Date://	200	Analysis:	Total As, Fe, Mn, Mg,	Ca, Na, K by SW-8	46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	± V	oluma lost (gallons)			
1	<u> 204</u>		Alkalinity by 2320B, CI	•	•	11	0.040						
	Field Filtering: QC 9038, Nitrate by 4500, and Turbidity by 21308 1.5 0.091												
	Sampling Methodology: Low Flow Sampling 2 0.163 Laboratory: Alpha Method of Shipment: Courier 2 0.163												
Laboratory: Remarks:	Alpha Metho	a or Snipn	Tent: Courier						19	gallon = 3.78 liters			
Sample ID =	1355	MM,	165142	>									

F:		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling					
Project Nam	Field Data Sheets for Low Flow Ground Water Sampling Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Vell ID: Shw -96-5 Date: 917000000000000000000000000000000000000												
Well ID:	9P- MHG	3-5C	Date: 9170/0	6									
Weather Con	ditions L	- Ac	000										
PID			Condition										
Sample Tean			<u> </u>		_					. 12			
			Well	Stabilization	Data				14	35			
Well Depth _		(FT.)		000cc				Time Purging begin	ns (T _o):	0			
Static Water	E' ()	3 (FT.)	Diameter :_4	-i (1	_			Water Level at time		83			
I .	n(FT.) P	urge Method:	ous - & (0	~ <u>~</u>			Time Purging ends					
	Water Level at time T ₁												
Volume Conductivity Purge rate													
Time	Removed	Hq	(mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	(Lpm)	Appearance			
11110	<5 NTU preferred												
		+/-0.1	+/-3%	+/-0.2 or 3%	+ / - 10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM				
144+					-1	5.85							
1508	124	6.47	907	11.78	-1783	5,85			.325	clear			
15/3	13L	C.48	.404	11.67	-183.3	5,85			1325	Clear			
1517	154	G,48	,909	11,48	-134.9	5,85			.325	Clear			
1521	174	6.49	.910	11.44	-18/2D	5,85		<u> </u>	,325				
1524	181	6,49	910	11.42	1769	5195			, 325				
, , ,													
			A 1	20,	Prob	e Not	120	والأزره	4				
	A. 178.		7	SAMPLING		,							
Date: 1/_/		-	Total As, Fe, Mn, Mg,	-		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V	olume lost (gallons)			
	541		Alkalinity by 2320B, C	hloride by 9251, Sul	ifate by	11	0 040						
	ield Filtering:												
	Campling Methodology: Low Flow Sampling . 2 0.163 Laboratory: Alpha Method of Shipment: Courier . 1gailon = 3.78 liters												
	Aipna Metno i	a of Snipm	ent: Courier						10	gallon = 3.78 liters			
Remarks:													
Sample ID =													

			Field Data S	heets for	Low Flow	Ground W	ater Sa	mpling		
Project Name Well ID:	HL - 8	andfill, Deve	ens, Massachusetts Date: 412.110	%	Project Numb	er: 284350.OM 	.02			
PIDSample Team	N.	(ppm)	Condition 50	ممدا						
2000/200 1 0000	 		Well	Stabilization	Data				9. 4.	7 ()
Well Depth _		(FT.)	Datum		_			Time Purging begin	ns (T _o):	<u>511</u>
1	Level <u>39</u> 1							Water Level at time		
Water Colum	n(FT.)	Purge Method: 1	Je 7 - 11	X-7-			Time Purging ends	_	and the second s
								Water Level at time		95
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)		Appearance
		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
0837	10.5L	6,27	,062	9.94	-186.18	9.95	4		,4	Clear
0844	1354	6,72	1062	9,99	-1823	9,95	*	_	24	
0848	15.0L	G.21	,062	995	-182,9	9.95	长		,4	
				,	, i					
		3								
	(C) (1)	r.		* P	D. pro	oe Not	ننې	ring		
				·	ı ı					
Data G	71,130			SAMPLING		1			[
Date: 1/2 Time: 5		Analysi	s: Total As, Fe, Mn, Mg,			Diameter (inch)	Gation / Foot	* delta w.t (ft)	= v	rolume lost (gallons)
Field Filterin			Alkalinity by 2320B, C 9038, Nitrate by 4500	•	•	1.5	0.040			
1	ethodology:	Low Flow Sa		, and I dibruity by 2	1000	2	0.163			
	boratory: Alpha Method of Shipment: Couner 1galon = 3.78 liters									
Remarks: Sample ID =	narks: DENGASSHISS()									

SHL-8-D

		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling					
Project Name	roject Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 /ell ID: 51-12-8D Date: 4721/05 Time:												
					Time:								
			600F	_									
PID		(ppm) (Condition	<u> ೧</u> ೦									
Sample Team	-T2 DC		<u> </u>	0. 1	5 .			_					
l				Stabilization	Data				O	221			
Well Depth _		(FT.)	Datum BT	34000	_			Time Purging begin	ns (1 ₀): <u> </u>	<u>- 21</u>			
Static Water		※ (FT.)	Diameter :	2"				Water Level at time					
Water Colum	n(l	FT.) P	urge Method:	007-416	303			Time Purging ends	:: (T ₁)				
								Water Level at time	e T ₁	_			
Time	Volume Removed	pH	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance			
		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM				
0906	146	6,06	161	10.12	-272.7	8.05	*	·	2.7	Clear			
0910	15,54	(a. 06	ollal	10,13	-2711	8.05	*		-,4	clear			
0514	17.06	6.05	160	10.14	-246.8	805	*		٦٠	Ilean			
										<u> </u>			
		(<u>_</u> _	10	ba	DR	be n	402	World	2				
			3	Vi	\								
0	4 6 6			SAMPLING									
Date:		Analysis:	Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V	olume lost (gallons)			
Time: CC													
Field Filterin	the Mathedale and Co. Co. S.												
		Low Flow San				2	0.163	===					
Laboratory:	Alpha Method	u or snipm	ent: Courier	`					1	gallon = 3 78 liters			
Sample ID =	B56	$J(N) \subset$	YHL XL	(,)									

5146-23

		H	ield Data S	heets for l	ow Flow	Ground W	ater Sa	mpling		
Well ID: <	e: Shepley Hill La		Date: 6125/6		Project Numb	er: 284350.OM 	.02			
PID	Min	_ (ppm) (Condition	<u> ق</u> نــــــــــــــــــــــــــــــــــــ						
Sample Team	1) 	1M/all	Stabilization	- Data					<u> </u>
Well Depth _		_ (FT.)		POOCE				Time Purging begin	ns (T.): (19)	28
Static Water I	evel > x	スペ/ET \	Diameter : 5	<u>{</u> }}				Water Level at time		
Water Colum	-	FT.) P	urge Method:	000-F1	صربت س	1 (50 m) I	SC.	Time Purging ends		
		,				, 0.010 2		Water Level at tim	_	
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance
		+/-0.1	+/-3%	+ / - 0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
0937	51	5.54	.043	11,80	101.3	H. 28,46	11.67		0.35	Clear
1490	DL	10.2	.036	12.10	167.4	28,48	1167			
0945	9,5	5.32	.035	12.48	18517	28.48	1).61	ن، د		<u>J</u>
0950	11.5	5,73	-034	12.60	200.2	25,48	11.60			clear
0957	15.06	5.64	,033	17.75	720.1	25,48	11.55		-	
1002	17,CL	5,59	,033	12.82	228,5	28:18	11.55			
1005	19.0L	5,50	.033	12.69	234.2	1848	11.56			7
1008	19,06	5,56	, 633	12.70	238.3	28.43	11.54		1350	119 Htz
Date: 9 /2.5	5 106	Analysis	Total As, Fe, Mn, Mg,	SAMPLING	48/ 8010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)		stores land teathers)
Time:	1000010	المسيد يس	Alkalinity by 2320B, Cl			1	0.040	OBIRA W.F (II)	<u></u>	olume lost (galions)
Field Filterin		₹	9038, Nitrate by 4500,			1.5	0.091			
	thodology: L					2	0.163			
	Alpha Metho c	of Shipm	ent: Courier						10	allon = 3.78 liters
Remarks: Sample ID =	135	45 to t	& SHL	23W	ja ja					

Sampl

SHL-24

		F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling			7
	e: Shepley Hill La				-	er: 284350.OM	.02				
	1-11-21		Date: 4/25/6	6	Time:						
PID	nditions VA	Inm\	Ondition SO	. A A.							
Sample Tear		Cal	Condition Sca	02							
Campio Tour			Well	Stabilization	Data						7
Well Depth _		(FT.)		TOPULL				Time Purging begi	ns (T _o):/ 🤇	<u>37</u>	
Static Water	Level 47	- 2/ / x	D:	i . It				Water Level at tim		\& (
Water Colum		(FT.) F	Purge Method:	low Flor	J 68	und toc		Time Purging ends	s: (T ₁) 11.3	<u> </u>	
		, ,	· ·		1			Water Level at tim			
Time	Volume Removed	pH .	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	Purge rate (Lpm)	Appearance	
		Ì			<u> </u>			<5 NTU preferred and + / - 10% > 1	0.3 to		
l .		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5 to 0.5LPM		
1042	*31-	5,75	1080	11.49	208,4	45.85	2,73	-	1388.4	Clear	@ 150,60
1049	5L	5.89	.079	12.84	205,9	45.85	500		0/3-1	Clear	e 150.60
1653	FL	5.91	,079	13.04	209.3	45,85	5148		.4		_
ļ .	ian b	et c	F 905	Dutyle	p bac	on e	1115		,4		
1127		5,99	.077	128130	200,9	4538	7,71		. 35/, 3	75/,4	6127.4/1:
1130	1117	5.99	,07 %	13,60	2019	45.198	7.48		14		215414
11 34		5,98	,077	13.78	205.4	45,48	7,21		14		
113	.140	5197	. 077	13.67	707.6	4548	7:17		.4		4
Date: / 4	15100	Analysis:	Total As, Fe, Mn, Mg,	Ca Na K by SW-8	M6/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)		olume lost (gallons)	\dashv
Time:	144	Analysis.	Alkalinity by 2320B, C	•		Diameter (inch)	0.040	GOIG W.L. (III)	= v	oromo rose (gariorio)	-
Field Filterin	 ng:		9038, Nitrate by 4500	•	•	1.5	0.091				7
		Low Flow Sar	npling			2	0.163	<u> </u>			
27	Alpha Metho	d of Shipm	ent: Courier						19	gallon = 3,78 liters	
Remarks: Sample ID =	B5	000	SHL	عالي							

A Builtet not on level surface

PSP-1

			Field Data S	heets for I	Low Flow	Ground W	ater Sa	mpling		
Well ID: Weather Con	ditions Cle	<u> </u>	Date: S	%	Project Numb	oer: 284350.OM 	1.02			
Sample Tean	TBIDE				_					
Well Depth _ Static Water	Level III ((FT.) (FT.	Well Datum	Stabilization	e —			Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e T _{o:}	A
Time	Volume Removed	рH	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)		Turbidity (NTU) <5 NTU preferred and + / - 10% > 1	0.3 to	Appearance
07 .1		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM	S lightly
0751		7.08	, 236	18.63	184.6	1.16	1.92*			CB- LIDUN
		n!		*	D.D. P	robe 1	94 (Dockin	Ċ	
								Cor	Tec+	4
)
	-									
L	r	I.V.								
- O(:	1111			SAMPLING			· · · · · · · · · · · · · · · · · · ·			
Date: <u></u> Time: <u>()`</u>	9 (()	Analysis	: Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w t. (ft)	= V	olume lost (gallons)
Field Filterin			Alkalinity by 2320B, C 9038, Nitrate by 4500			1 5	0.040			
	ethodology:	Low Flow Sa		, and ruibiuity by 2	1300	15	0.091 0.163			
	Alpha Metho			_		·	, 4		10	jailon = 3 78 liters
Remarks:	R	501	100 PSD	(\cdot, \cdot)						

SHP-01-36X

		F	Field Data S	heets for	Low Flow	Ground W	later Sa	mpling		
Well ID:	HP-01-3 ditions <u>CIE</u>	<u>></u> (ppm)	ns, Massachusetts Date: 9/2/0 Condition	X 5	Project Numb	oer: 284350.OM	l- 02			
Well Depth _ Static Water I	Level((FT.)	Datum To 5000) Diameter: Purge Method:	1 */				Time Purging beging Water Level at time Time Purging ends Water Level at time	e T _{o:} s: (T ₁) e T ₁	30
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	<5 NTU preferred and + / - 10% > 1	0.3 to	Appearance
1339	2335L	6.75	+/-3% .2Z4	17.28	+/-10 mV	Prose	+/-10%	NTU	0.5LPM	250 6
1343	<u> 55</u>	6,66	1224	17.28	42.3	Fit	,24 ,21		45	Clear
1347	8.0L	6.63	,224	17.29	-41.6	well	.20		.45	cleas
1351	10.DL	6.6	.224	17.23	-41.7		20	-	,45	Clear
					==					
					<u></u>					
				SAMPLING	<u> </u>					
Date: 1/Z	1100	Analysis:	Total As, Fe, Mn, Mg,		248/ 8010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)		aliana lant (mallana)
	355		Alkalinity by 2320B, Cl			Diameter (inch)	0.040	- deta w.i. (ii)		olume lost (gallons)
Field Filterin			9038, Nitrate by 4500,		•	15	0.040			
	ethodology: 1			, and 1 dibidity by 21	1300	2	0.091			
	Alpha Metho						0.163		1,	- 1 79 (in
Remarks:	•	-	 -					ı	10	galion = 3.78 liters
Sample ID =	1355	MPC	1360	7						

SHP-01-37X

		F	Field Data S	heets for l	Low Flow	Ground W	ater Sa	mpling		
Well ID: 5	: Shepley Hill La	-37×	Date: 9/21/0	1 %0	Project Numb Time:	er: 284350.OM	.02			,
weather Cond	iluons <u>Totes</u>		7 7 7 7	<u>a</u>						
Sample Team		⊃ (hbun)	Condition							1
Sample Team			1A/all	Ctobilition	Data					
 Well Depth		_ (FT.)	Datum 31	Stabilization	Data —			Time Purging begin	ns (T _o): 13	40
Static Water L	evel	(FT.)) Diameter :	<u> </u>				Water Level at time	e T _{o:}	7.
Water Column	n(l	=T.) F	Purge Method:\	su-Fice	-			Time Purging ends Water Level at time		
Time	Volume Removed	рН	conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance
		+/-0.1	+ / - 3%	+/-0.2 or 3%	+ / - 10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
1357	6.00	6.79	1069	15.35	-70,7	Cant Fit	0.14		.35	Clear
140.1	7.50	6.80	1069	15.33	-77.2	RUDE	0.13	-	.35	Cleat
1464	9.06	6,81	,069	15,31	-81.0	المثلا	0,13		.35	clear
1408	10.00	6.82	1069	15,29	-84,0		0.13		.35	clear
	_									
								_		
								-		
- 5				SAMPLING			<u>:</u>			
Date: 3/7	106	Analysis:	Total As, Fe, Mn, Mg,	Ca, Na, K by SW-8	46/ 6010B	Diameter (inch)	Gallon / Foot	* delta.w.t. (ft)	= 94	olume lost (gallons)
	31		Alkalinity by 2320B, C	hloride by 9251, Sul	lfate by	:	0.040			
Field Filterin			9038, Nitrate by 4500,	and Turbidity by 21	130B	1.5	0.091			
	thodology: L					2	0.163	L		
	Alpha Method	of Shipn	nent: Courier						1{	gallon = 3.78 liters
Remarks: Sample ID =	KS	SH	PO 13	けんしし						

SHP-01-38A

		F	Field Data S	heets for l	Low Flow	Ground W	ater Sa	mpling		
Well ID: Weather Con	e: Shepley Hill La	(ppm)	s, Massachusetts	6	Project Numb Time:	oer: 284350.OM 	.02			
Sample Team	TO DE	— (FF/	9		_					
Well Depth _	Level <u> </u>	(FT.) -{\	Datum <u>870</u>) Diameter:Purge Method:	1"	_	,		Time Purging beging Water Level at time Time Purging ends Water Level at time	т _{к.} <u>Ч.2</u> :(г.) <u>ГЧ2</u> :т _{1:} Ч.2	<u>24</u> 6
Time	Volume Removed	pН	Conductivity	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	<5 NTU preferred	Purge rate (Lpm)	Appearance
		+/-0.1	+ / - 3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
コンド	456					7.74			5	Clear
1417	7,00	6.49	.382	1793	-63.4	4,24	アノス		,5	1100
1421	9.0L	650	.382	12.91	-64,4	4,24	0.17		.5	
1426	11.04	6.5]	.381	1290	-66,0	4.24	0.17	-	.5	6
	,									
							_			
C	1.06			SAMPLING			,			
	1100	Analysis:	Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	± v	oluma lost (galions)
	777		Alkalinity by 2320B, Ch		· .	1	0.040			
Field Filterin	_	ou Flour Car	9038, Nitrate by 4500,	and Turbidity by 21	30B	1.5	0.091			
	eth odology: L Alpha Me th o c				\	2	0.163	J		rallon 2.79 lto-
Remarks:	Alpha inethot	a or ompri		~ 0 0				l	- 10	gallon = 3 78 liters
Sample ID =	_ 0	5 5	HP 01	38A1						

5HL - 15

	-		Field Data S	heets for	Low Flow	Ground W	ater Sa	mpling		
Project Name	B: Shepley Hill La	andfill, Deve	ns, Massachusetts		•	per: 284350.OM	.02			
Well ID:	ditions DAT)	<u> </u>	?@	Time:					
PIDN	ullions <u>par</u>	(orim)	Condition	00						
Sample Team		(P P*···/	(4)							
			Well	Stabilization	Data					-
Well Depth _		(FT.)	Datum 13TO	pucc				Time Purging begi	ns (T _o).	55
Static Water	evel 19,5	7 (FT		- T				Water Level at tim	eT. 19.3	57
	n(FT.)	Purge Method:	nus - Ele	Day.			Time Purging ends		
	·			n.e				Water Level at time		
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	Purge rate ((Lpm)	Appearance
		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
130-1	41_	6.16	193	12.76	21.0	19.69	0,27		0.325	clear
1308	5,5	6,0	7 192	13.02	24.5	19.69	0,29		0,325	
13/1	494	6,04	,190	13.22	25,0	19.69	036	-	. 325	
1315	7.5	(0)	.189	13.13	27.2	19.69	0.39	-	. 325	
1319	8.5	6.0	1.187	13.10	30.1	19,69	040		325	clear
İ										
	ļ									
-)) <u> </u> <u> </u>	<u></u>							
Date: _ /_ Z	<100	A 51 -2		SAMPLING		1	1 .	<u> </u>		
Time:	1330	Analysis	s: Total As, Fe, Mn, Mg,			Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V(olume lost (gallons)
Field Filterin			Alkalinity by 2320B, C 9038, Nitrate by 4500,	•	•	1.5	0.040			
Sampling Me		Low Flow Sa		and resolutey by 21	300	1.5	0.091 0.163			
	Alpha Metho			2			0.100		18	alon 78 Hers
Remarks:	RC	800		- Per \						7.10.0
Sample ID =			ロンエトー	$\supset \bigcup_{i \in I} \bigcap_{i \in I} \bigcap_{j \in I} \bigcap_{j \in I} \bigcap_{i \in I} \bigcap_{j \in I} \bigcap_{j \in I} \bigcap_{j \in I} \bigcap_{i \in I} \bigcap_{j \in I} \bigcap_$						

(Divider Page)

CTMP

			ield Data S					····F·····3		
		ndfill, Devens,	Massachusetts Date:_ <u>12-<i>8-06</i></u>			er: 284350.OM	.02			
Vell ID: 5/	12 7	l	Date: <u> 2-<i>8-06</i> </u>	•	Time: <u> </u>	<u></u>				
eather Cond) کے ا	litions	(nnm) C	codition							
ample Team	CRIDO	_(ppm) C	ondition	٧٠٠						
ampic ream			\/\ell	Stabilization	Data		·			
/ell Denth		(FT) [Data			Time Purging begin	15 (T.): 0836	9
atic Water I	_evel_30.0	3 (FT)	Diameter :		_			Water Level at time		
later Column)(T) P	urge Method:	201 2 E 101	V I a cox	~lfoc		Time Purging ends	(T)	903
ater Colonii	,	1.,	arge meatou.		- 1-2/-2 /	. 0 . 5		Water Level at time	т 282	0.7
	Volume	-··- 1	Conductivity	,	· · · · · · · · · · · · · · · · · · ·	1		TTAGE LOTES AL BITA	Purge rate	<u> </u>
Time	Removed	рН	(mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	(Lpm)	Appearance
		+ / - 0.1	+/-3%	+ / - 0.2 or 3%	+ / - 10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	orto
0879	<u>-</u>	7,3	.018	11.14	119.7	30.03	12			(99.7
0840		7.32	059	3.15	199.9		-1.13			191.9
9845		7.31	,039	7.14						
0850		7.08	.053	25.68	166.9		12.76			
0557		7-09	049	1 9.55	158.8		14.39			
7903		7.08	.052	15.33	153.9	30-1	10.81			
12/13/10	1205 in	6.77	24.5	13.05	121	30.	84.9	9.53		
			.0247							
ate: 17 / S	65.1	Amabasha	W-4-4-4- P- 88- 88- 4	SAMPLING	C/ 00/00		Gation / Foot	0 No		Name to the tenton
ate: <u> /_</u> /ime:(2905	-	Total As, Fe, Mn, Mg, 4 Alkalinity by 2320B, Cl	-		Diameter (inch)	0.040	* delta w.t. (ft)	= 70	dume lost (gallons)
leid Filterin			9038, Nitrate by 4500,			1,5	0.091			
	thodology: <u> </u>					2	0.183			
aboratory: / emarks:	Alpha Metho	of Shipme	ent: Courier						1 _g	pallon = 3.78 liters

LTMP

		F	ield Data S	sheets for I	Low Flow	Ground W	/ater Sa	mpling		
			Massachusetts		Project Numb	per: 284350.OM	1.02			
Weather Cor	nditions 30%	Goldy - P.C	Condition				,	C1 2		
PID	m C/R	(ppm) C	condition	30cl				SL/m		
Sample Tear	<u>n CC</u>	/ <u>////</u>	/	O	<u> </u>		 	· · · · · · · · · · · · · · · · · · · ·		
	<u> </u>		Datum <i>1</i> 977	Stabilization	Data —			Time Purging begi		
Static Water	Level	(FT.)	Diameter :_		10			Water Level at time		
Water Colum	nn	<u>(</u> FT.) Pt	urge Method:	100-+10-	<u>trundto</u>	\$		Time Purging ends Water Level at time		
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance
1105	ļ <u>-</u>	+/-0.1	+ 1 - 3%	+ / - 0.2 or 3%	+ / - 10 mV	< 0.3 ft	+ /- 10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
1105	<u> </u>	6.49	.167	10,12	118.1	10.17	gn4			
1110		6.49	.165	10.12	114.4	10.17	<u></u>			
1119	ļ <u>-</u>	6.49	165	10.04	1/3.1	10.17	~	<u> </u>		
1120	1.6-	6.48	.164	10.02	//2.3	10.17				
(45)	10/230	9.62	.203	11.50	74	10-17		.40		<u> </u>
			<u></u> .			. <u>. </u>				
										···
				SAMPLING			1		· <u>-</u>	
Date: <u> </u>	<u>4 1 00</u>	-	Total As, Fe, Mn, Mg,	•		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	<u> </u>	dume lost (gallons)
Time:			Alkalinity by 2320B, G	•	-	1	0.040	<u>-</u>		· · ·
		Low Flow Sam	9038, Nitrate by 4500,	,and furbidity by ∠13	306	1.5	0.091			
	Alpha Meth o						1 0.100		10	jalion = 3.78 liters
Remarks:	·		<u> </u>					'		

SHL-5

Field Data Sheets for Low Flow Ground Water Sampling Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID: 5 1
Well ID: 5HU-5 Date: 12-5-06 Time: 1400
Well ID: 5HU-5 Date: 12-5-06 Time: 1400
(
PID (ppm) Condition (ppm)
Sample Team
Well Stabilization Data Well Depth(FT.) Datum(FT.) Datum
Static Water Level 3.25 (FT.) Diameter: 2" Water Level at time T _{o:} 3.25
Water Column(FT.) Purge Method: (CAL) - FICAL DEC. Time Purging ends: (T ₁) 1445
Water Level at time T ₁ . 3. 3.
Volume Conductivity Purge rate
Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (negL) Turbidity (NTU) (Lpm) Appearance
S NTU preferred and + / - 10% > 1 0.3 to
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV < 0.3 ft +/-10% NTU 0.5LPM
1415 4,5 6,57 ,115 6.63 -25,5 3.30 29.85 - 3
1420 6,0 6,41 .113 6.60 - 71.0 3.30 5.73 -
1425 75 6.33 .110 6.83 -122.5 3.30 3.583
1430 90 6.31 ,108 6.57 -135.0 3.30 3.15 - 1.3
1435 10,5 6.30 .108 7,18 -137. 3.30 2.063
1440 12.0 6.30 ,108 7.24 -134.6 3.30 2.02 -
1445 13.5 6.29 .108 7.31 -136.8 3.30 1.733
SAMPLING Date: 2.
The state of the s
O-matter Hardward Community
A should be a second of the se
Laboratory: Alpha Method of Shipment: Courier Remarks: Sample ID = Government Courier

TMP

Project Name N ell ID: <u>∫∰</u> Neather Con): Shepley Hill L L. 10 ditions				Project Number: 284350.OM.02 Time: 1855							
PID	(.K./	(ppm)	Condition	acil								
Well Depth		(FT.)	Wel	l Stabilization	Data			Time Purging begin	ns (T _o): / 3	55 15=30.7		
Nater Colum	.evel 1	(FT.) F	rurge Method:	10w-flow-	grund for	ુ		Time Purging ends	: (Т.) <u>1510</u>	<u> </u>		
		.,			<u> </u>	<u> </u>		Water Level at time				
Tittle	Volume Removed	p₩	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1	Purge rate (Lpm)	Appearance		
		+ / - 0.1	+ / - 3%	+ / - 0.2 or 3%	+ / - 10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM			
1450		(44	140.0	11-80	ILZ	3393	11,057		0.5			
455	304	(,50	750	11.52	167	3573	11-31*			·		
			J 37	13.70	130		15.21					
1510	-	646	5. 35	14.45	75	70 13	9.73		25			
				7	> >					_		
	•			1								
							-	-				
127. 2		<u> </u>		SAMPLING			·					
Date: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-	Total As, Fe, Mn, Mg,	•		Diameter (inch)	Gallon / Foot	' delta w.t. (ft)	#Aôv =	ne lost (galions)		
lime: <u>15</u>			Alkelinity by 2320B, C 9038, Nitrate by 4500	•	*	1.5	0.040 0.091					
	thodology:			, and the body by 21.	300	1.5	0.163	-		•		
	upha Metho				'				1ge#	on = 3.78 (iters		

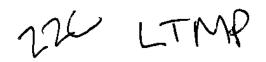
17411-13-100

		F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling	•	
Project Nam Well ID:	e: Shepley Hill La	ndfill, Deven	s, Massachusetts	حلق	Time: 16	oer: 284350.OM	1.02			
Weather Con	iditions?)	5 . 5 .	3 M Eller . S	1200	Carles					
PID	/	(ppjm)	Condition /							
Sample Tean	n/	<u> </u>	€/							
	·			Stabilization	Data				ıń	ζ< Ι
			Datum <u><i>B 70</i></u>	,				Time Purging begi		
	Level				, ,			Water Level at time		
Water Colum	n(FT.) F	ourge Method:	10w - 5/cm	- Orumori			Time Purging ends	ь (т <u>.) <i>II 4</i></u>	<u>5</u>
								Water Level at time	а Т₁: <u>16 /8</u>	<u></u>
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.Q. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance
		+ / - 0.1	+ / - 3%	+ / - 0.2 or 3%	+ / - 10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
125		7.53	0.433	11.37	43.7	31.74		. <u> </u>) 5	
1130		7 (4	0 439	1157	35.7	31.74				
1135	全乙ル	764	0,443	11.70	26.5	31.74				
145	. 	7.66	0,445	11.90	20.2	31.76				
145		766	244d	12.05	16.8	31.76				
	12/13/06									
1200		7.45	2433	9.86	28		0.43			
]			
			·	SAMPLING		<u> </u>	.			
Date: /2_/_		Analysis:	Total As, Fe, Mn, Mg, C	Ca, Na, K by SW-84	6/ 6010B	Diameter (Inch)	Galion / Foot	* delta w.t. (ft)	= vo	lume lost (gallons)
Time:			Alkalinity by 2320B, Ch	•	-	1	0.040			
Fleid Filterin			9038, Nitrate by 4500,	and Turbidity by 21:	30B	1.5	0.091			
Sampling Me	etnodology: [ow Flow San				2	0.163			
Laboratory: /	Alpha Metho	or Snipm	ent: <u>Couner</u>					l	1gv	alion = 3.78 liters
Remarka: Sample ID ≃										
Sauthhie ID +										

LTMP

		F	Field Data S	Sheets for	Low Flow	Ground W	/ater Sa	mpling		
Project Nam Well ID:	1 e : Shepley Hill L	andfill, Deven	s, Massachusetts	<u>8L</u>	Project Numb	per: 284350.ON	1.02			
N/Acathar Cor	ditione									
PID		(ppm)	Condition &	2 0 cl	<u> </u>					
Sample Tear	1 DP+T	7 3	Condition							
			Weil	Stabilization	Data					
Well Depth_		(FT.)	Datum <u>F70 t</u>	PVC C				Time Purging begin	ns (T _e):	<u> 27</u>
	Level	(FT.)	Diameter :	2 "				Water Level at time		
Water Colum	n n	(FT.) F	Diameter :_ Purge Method:	low - Flow	- DEci			Time Purging ends		
		Q. 1-7 .			- 			Water Level at time		
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	Purge rate (Lpm)	Appearance
		+/-0.1	+ / - 3%	+ / - 0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
		-		T		 	· ·		0.027 100	
1408	<u> </u>	6.32	605.5	10.07	-72	16.65	D3.5			
1413		6.32	592.4	9.88	-7 <i>3</i>	K.65	3,4			
1418		6.36	589.6	9.45	-74	16.65	3.3			
· · · · · · · · · · · · · · · · · · ·				<u></u>	•		 			
		1								
				<u> </u>			<u> </u>			
		<u> </u>								
]								
	,			SAMPLING						
Date: 12/ «		Analysis:	Total As, Fe, Mn, Mg,	Ca, Na, K by SW-64	6/ 6010B	Diameter (inch)	Galton / Foot	* delta w.t. (ft)	≖ võlu	me löst (galtons)
Time: <i>/</i>			Alkalinity by 2320B, C	hloride by 9251, Sulf	ate by	1	0.040			
Fleid Filterin			9038, Nitrate by 4500	, and Turbidity by 213	30B	1.5	0.091	<u> </u>		
	ethodology:					2	0.163			
	Alpha Meth o	ed of Shipm	ent: <u>Courier</u>					Į	1ga#	lon = 3.78 liters
Remarks:			ATT	2-						
Sample ID =				スリ						

9/1/2



		F	Field Data S	heets for	Low Flow	Ground W	/ater Sa	mpling		
Project Name	e; Shepley Hill La	ındfill, Devens	s, Massachusetts	 	Project Numi	ber: 284350.OM	1.02			
Well ID:	1004 T 17		Date:/	-) (Time: <u>8#</u>	0				
Weather Con	ditions									
PID	-3.0 / 6.5	(ppm) (Condition@@	cc						
Sample Team	DR/CR		<i>V</i>							
			Well	Stabilization	Data				CAB	`
Well Depth	7	(FT.)	Datum	O PIRCC	_			Time Purging begin		
Static Water I	Level							Water Level at time	в Т _{о:} <u>"С"</u>	Z İ
	n(FT.) P	Purge Method:	10w Flow	Peri			Time Purging ends	:(T₁) <u> 1û 5</u>	<u>'O'</u>
\$		•						Water Level at time		
 	Volume		Conductivity	,			·		Purge rate	<u>-</u>
Time	Removed	рH	(mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	(Lpm)	Appearance
		+/-0.1	+/-3%	+/-0.2 or 3%	+ / - 10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	· · · · · · · · · · · · · · · · · · ·
950		4.413	5.224	9.43	3 <u>5</u> , 7_	7.2 73				
755		6.43	3.225	1,941	35.2	77.73				
25.5		(- € 1.2	J 12 2	1.45	375 7	3.2.73	,			
121306	insip. 1220	6.31	246.7	10-91	2		0.29			· · · · · · · · · · · · · · · · · · ·
			.246							
					- · ·· -				1	· · · •
· · · · · · · · · · · · · · · · · · ·										<u> </u>
	<u>-</u>									
			<u> </u>	SAMPLING	L	<u> </u>	L			
Date: 12/ 8	1060	Analysis:	Total As, Fe, Mn, Mg,		8/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)		ume lost (gallons)
Time: 1		-	Alkalinity by 2320B, Cl	•		1	0.040	CORRECTION (NO.	- 10	Carried Company
Fleid Filterin			9038, Nitrate by 4500,			1,5	0.091			
	thodology: <u>L</u>			C.D I Ground of E1		2	0.163	·		
	Alpha Meth od						0.00		100	illion = 3,78 ilters
Remarks:								,		
Sample ID =										

41.20

LTMP

		ı	-ield Data S	Sheets for I	Low Flow	Ground W	ater Sa	mpling		
Well ID: Weather Cor PID	ne: Shepley Hill L	(ppm)	s, Massachusetts Date: 12/7/04 Condition		Project Numt Time: 1 3	per: 284350.OM	.02			
Well Depth _ Static Water	Level <u>(</u> (<u>°</u> (<u>°</u> . <u>0</u>)	(FT.) 5 (FT.)	Datum(ろて	Stabilization PUCC 2" ID-2 - Fie				Time Purging beging Water Level at time Time Purging ends Water Level at time	эт <u>а ј</u> 9.а «Па] !Ч 2	્ર ^{ુક} <u>35</u>
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) + / - 3%	TEMP,(C) + / - 0.2 or 3%	Redox (mV)	Water level (Ft)	D.O. (mg/L) + / - 10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
1425	256	6.50	. 534.2	9.57	-39	19.00	0.28		0.4	Clear
1433	274	650	.53)	7.52	-39	19.00	2.29		0.4	1
1435	296	6.50	.528	376	- 38	19.30	0,28		0.4	J
				14	13)	. <u>.</u>				
Date: 12ム	7106	Analysis	Total As, Fe, Mn, Mg,	SAMPLING Ca. Na. K by SW-84	6/ 6010B	Diameter (inch)	Galon / Foot	* delte w.t. (ft)	± 1/1	Diume lost (gallons)
Time:	1440	70miy 200	Atkalinity by 2320B, Cl			1	0.040	Some w.r. (ic)	- 40	elarito test (ganorio)
Field Filterin		Low Flow Sar	9038, Nitrate by 4500,	•	-	1.5	0.091 0.163		· · · · · · ·	
	Alpha Metho								15	pallon = 3.78 liters

		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling		
Project Name	Shepley Hill L	andfill, Devens	, Massachusetts		Project Numb	ег: 284350.ОМ	.02			
Well ID:	23-2700 SH	lm-93-22C	Date: <u> 2- 2-06</u>		Time: 0750					
	ditions <u>C</u>	looply 40		~ 0						
PID	CR/97K	(ppm) (Condition <u>94</u>							
Oampie ream		<u>-</u>	\A/ell	Stabilization	Data	.				
 Well Depth	/	(FT.)	Datum <u> <i>B</i> 70</u>	PVCC	Data			Time Purging begin	ns (T.): 470	5 0755
Static Water L				411	_			Water Level at time		
Water Column			urge Method:	10w-F18-	Peri			Time Purging ends	i: (T,) 0830	2
					•			Water Level at time		
Time	Volume Removed	рН	Conductivity _(m8/cm) MS/CM	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance
			,				- N	and + / - 10% > 1	0.3 to	
		+/-0.1	+ / - 3%	+/-0.2 or 3%	+ / - 10 mV	< 0.3 ft	+ / - 10%	NŢU	0.5LPM	
9907		7.53	752.1	0.50	-142	7.90	3.6			
0812		7,51	750.1	9.87	-153	7.90	2.7			
0817		7.50	750.0	9.88	-157	7.92	2.1		· !	_
9822		7.50	751.0	9.86	-160	7.98	2.4			1
0827		7.50	750-0	9.65	-162	7.98	2.5	<u>-</u>		
	_				:					
										<u></u>
	•		·		:	· · · · · · · · · · · · · · · · · · ·				
				SAMPLING						
Date: 12/_4		_	Total As, Fe, Mn, Mg, (Diameter (Inch)	Galon / Foot	* deta w.t. (我)	= volu	me lost (gallons)
Time:			Alkelinity by 2320B, Ch		-	1	0.040	<u>-</u>	·	· · · · · ·
Sampling Me		Low Flow Sam	9038, Nitrate by 4500, Inline	and Lundon by 233	906	1.5	0.091			····-
Laboratory: A					l		0.103		1gell	on = 3.78 liters
Remarks:	•	•		w 0222	- 1717 ~ 1	,		'		·
Sample ID =			~111	n 9322 (- 1212-06					

DMP + CH4

Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID: 5H 1965 31 Project Number: 284350.OM.02 Time: 142			
Weather Conditions Cloudy 4001			
PID NA (ppml) Condition 90000			
Sample Team 18 / DC	. –		<u></u>
Well Stabilization Data Well Depth(FT.) Datum <u>870 Pひこ</u>	Time Purging beg	ins (T _o): 14	25
Static Water Level 2, (FT.) Diameter: 2"	Water Level at tin	ne T _{o:} <u>2 s \</u>	<u></u>
Water Column (FT.) Purge Method: low - Ptoい / peci	Time Purging end Water Level at tin		
Time Removed pH Conductivity TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg	<u> </u>	Purge rate (Lpm)	Appearance
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10 mV	and + / - 10% > 1 % NTU	0.3 to 0.5LPM	
1443 66 6.48 0.315 3.78 119.8 2.24 0.71		0.43	clear
11:45 86 6.44 0.315 854 119-5 0		0.40	clear
1450 100 1.43 0.314 338 117.1 2.24 0		6,4	
1455 126 6.43 0.311 8.70 115.7 2.24 0		0,4	<u> </u>
> recheck	- Q240,	(وسی	19 248.S
Hydrolos, SMARLADLADELLER 1	144	D	
5,79 ,161 9,09 50 0,17			
SAMPLING Date: 1/1 + 1 OO Anglysis: Total As. Fe. Mn. Mg. Ca, Ne. K by SW-846/ 6010B Diameter (inch) Gellon / F			
Date: 1440 Analysis: Total As, Fe, Mn, Mg, Ca, Ne, K by SW-846/60108 Diameter (inch) Gallon / F Time: 1440 Alkalinity by 2320B, Chloride by 9251, Sulfate by 3 0.040	oot delta w.t. (ft)	 	rolume lost (gations)
Field Filtering: 9038, Nikrste by 4500, and Turbidity by 2130B 1.5 0.091			
Sampling Methodology: Low Flow Sampling 2 0.163			
Laboratory: Alpha Method of Shipment: Courier			galion = 3.78 liters
Remarks: Sample ID =			

pmp

		F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling		
	9: Shepley Hill La !⊣M ~99 ~ 3		s, Massachusetts Date: <u>/2-7-0</u>		Project Numb	er: 284350.OM	.02			
	ditions <u> </u>		ΩΩ F.							
PID ~\^_		(ppm) (Condition =	<u>رمي</u>						
Sample Team	173 lon			Ob - 6-192	D-1-	<u>-</u>		.		
144 - II D 4b-		/ET.)	·	Stabilization ンタンとく	Data			Time Purging begin	ns/T): 13	(T)
Well Depth	Level 3.1		·		_			Water Level at time		
	n(+ (「' ' ' FT	Planieter <u>حن'</u> Purge Method:					Time Purging ends		
Water Commi	''		argo mouros. <u></u>	- , , , , , , , , , , , , , , , , , , ,	 			Water Level at time		
	Volume		Conductivity				Τ		Purge rate	<u></u>
Time	Removed	рΗ	P (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	(Lpm)	Appearance
i								<5 NTU preferred and + / - 10% > 1	0.3 to	
		+/-0.1	+ / - 3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM	4
1348	34	6.16	220,3	10.02	-30	3.15	0.41		0.7	clear
1353	56	6.08	240.8	9.89	-25	3,15	0,35		0,4	
1358	71	6.04	267.Ø	9.76	-22	3,15	(),30		<i>در</i> ۲	
1702	91	c,∞	275.0	9.73	-22	3,15	0,30		0,7	clear
1404	10.56	5.96	285.4	9.69	-21		0,27		0,4	clear
1408	11,56	5,97	2939	9,69	-20	3.15	0.27		0,4	
1412	13/	5,93	300.6	9,69	-19	3.15	0,27		0.4	
1418	14,50	5.94	310.6	9,74	-18	_	0.ZO		٥,٧	<u> </u>
Date:_/2/	7 100	Analyeie	Total As, Fe, Mn, Mg,	SAMPLING	M8/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)		volume lost (gallons)
	350-14	15 Allenysis.	Alkalinity by 2320B, C			†	0.040	to the time to		
Field Filterin			9038, Nitrate by 4500			1.5	0.091			
	ethodology:			1		2	0.163	<u> </u>		
	Alpha Metho			_		1	}		; ;	gallon = 3.78 liters
Remarks: Sample ID =	<i>B</i> 651-	<u>1m9</u> 9	931B							
1421	164	5,93	313.6	9.74	-13	3,15	0,21		6,4	
LowFlowBa	taSheet.xlstemplat	te-low flow		<u> </u>	10	-1		1	1	
1424	174	15,92	131651	9,77	1-12	(3.15	0.191		6.4	
1 141 '	• •	1 3				·	•	`	ļ	

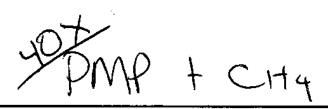
310 PMD+CH4

<u>·</u>		F	ield Data S	heets for i	Low Flow	Ground W	ater Sa	mpling	· <u> </u>	
Project Nam	e: Shepley Hill L	andfill, Deven	s, Massachusetts		Project Numb	er:_284350.OM	.02			
	<u>નાખ ૧૬ ૩</u>		Date: 12-7-0	بكرا	Time: <u>133</u>	27				
	ditionsC_1				_ 					· ·
PID Sample Team		(ppm)	Condition	<u></u>						
Sample Team	1 13113/1		MoVAL	Stabilization	Data			-		
NAVON COAL		/CT \	Deture OF	ONE	Dara			Time Purging begi	mar.124	35
Well Depth _	Level33	(FT.)	Datum	7 ·	- • ·			Water Level at time	118 (16). <u>1 7 .</u> Z ZC	/
			Diameter:					Water Level at tim		
Water Colum	n	(F1.) +	Purge Method: 15	<u> ۱۳۰۰ - ۲۰۰۰</u>	110			Time Purging ends	_	
_								Water Level at tim	еТ <u>і: З.</u>	۲_ح
	Volume	·	Conductivity						Purge rate	
Time	Removed	pH	⊃(P (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft) 	9,0, (mg/L)	Turbidity (NTU) <5 NTU preferred	(Lpm) [Appearance
		· .						and + / - 10% > 1		ļ.
		+/-0.1	+/-3%	+ / - 0.2 or 3%	+ / - 10 mV	< 0.3 ft	+ / - 10%	NTU	0.5LPM	
1345		6.88	1.932	9.42	13.7	3.54	1.35		2.4	Clear
1346		(.38	1,939	9.40	11.2	3 54	1,30		0.4	
1354		6.39	1,934	9,42	9,4		0.78		0,4	·
1450	<u> </u>	6.53	15134	9-43	7-8		0,10		0.4	
1435		6.59	1.134	5.39.4	463	3.54	<u></u>		0.4	
1413		6.51	1.133	9.44	5.6		O.		0.4	
1415	<u></u> .	C 5%	1.132	7,40	4.9	3.54	j		0,4	
			much		77 19	110 110	r2 2 [/5	ر زا		
Date: 12/ 7	1 10/60	A11	T-4-14- 44- 4	SAMPLING						
	1/0_	Analyso:	Total As, Fe, Mn, Mg, (Diameter (inch)	Gallon / Foot	deits w.t. (ft)	× v	olume lost (gallons)
Field Filterin			Alkalinity by 2320B, Ch 9038, Nitrate by 4500,	•	-	1 1 5	0.040 0.091	 		_
Sampling Me		Low Flow San		вы поприжу ву 213	905	1.5	0,483			
	Alpha Met ho					<u> </u>	0,103	<u> </u>	10	pallon = 3.78 ilters
Remarks:	•	•		_					<u> </u>	Parest 0.10 (1018
Sample ID =	- 36<	HMA	93104	. ز						

recheck w/ Fix probe Dio. = 0.4/mg/L Redox = -65.2 32×

		F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling		
Project Name Well ID: Weather Con- PID Sample Team	ditions	(ppm) (SE		ber: 284350.OM	1.02			
Well Depth Static Water I Water Columi	n	(FT.)	Datum	2**		Çi.		Time Purging beging Water Level at time Time Purging ends Water Level at time	e T _{o:} 75. ¶ o: (T ₁) _ 42.5 .	1
Time	Volume Removed	pH 4	Conductivity (mS/cm) + / - 3%	TEMP.(C) + / - 0.2 or 3%	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
1243		6.28	1004	16.65	-68		0.24			clear
1250		C.30	1006	10.04	-72	9.63	6.25	•		Clear
1253		C.3C	1006	10.02	-73		0.24			clear
1256		C.31	1000	16.02	- 74	9.03	0.24	<u> </u>		creas
									- · · · · ·	
				SAMPLING						
Date:	7 6	-	Total As, Fe, Mn, Mg, (Diameter (inch)	Gallon / Foot	della w.t. (ft)	≖ W	olume lost (gallons)
Time:	211		Alkalinity by 2320B, Cl			1	0.040			
Field Filtering			9038, Nitrate by 4500,	and Turbidity by 213	30B	1.5	0.091			
Sampling Me Laboratory: /		Low Flow San				2	0.163	1	<u> </u>	
Remarks:	=	_		\\				ι	10	gallon = 3.78 liters
Sample ID =	36 S		19932	<u>ww</u>						

0.0. probe storbroke-checked later


	V • • • • • • • • • • • • • • • • • • •
-120× \	
7 ~ (+ 3)	thu . N
	VNV -107-
	PV-49-100

	,	F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling		
Well ID: <u>≤⊮e</u>			s, Massachusetts Date: <u> 2-6-6</u>		Project Numb	per: 284350.OM	.02			
PID N	<u> </u>	(mag)	Condition 😘	4						
Sample Tean	18/00	-		***************************************						•
Well Depth	•	(FT.)		Stabilization	Data			Time Purging begi	ns (T _e): /32	5
–	Level _ <i>10</i> .6	(FT.)	Diameter :	2"	_	-		Weter Level at time		
	n	(FT.) P	urge Method:	10w-fic	m/bec	•		Time Purging ends	» (Т ₁) <u>I ЧТ</u>	<u>5</u>
<u> </u>			6	-	T	 		Water Level at time		<u> </u>
Time	Volume Removed	рĦ	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred. and + / - 10% > 1	Purge rate (Lpm)	Appearance
		+/-0.1	+/-3%	+ / - 0.2 or 3%	+ / - 10 mV	< 0.3 ft	+ / - 10%	NTU NTU	0.5LPM	
1330		465	0.637	10.19	-19.7		0		0.40	
		467	0.638	וא-נחי	18.3		0			
1355		C.67				10.71	*			
1405		6.68	0.638	9.99	-26,6	10.71				<u> </u>
1410		68	0.637	9-99	-26.4	10.71				
	<u>.</u>				Sam.	the (2 /	412		
	· · · · · · · · · · · · · · · · · · ·	re	hack	for						
	<u>.</u>		D.	O. (180	-26.8		0.35			
Date: 12 6	106	Anakola	Total As, Fe, Mn, Mg, (SAMPLING	P(PA+OD	Diameter (cent)	Salan I Saat			
	10	-	Alkalinity by 2320B, Cf			Diameter (inch)	Gallon / Foot 0.040	* delta w.t. (ff)	= VO	ume lost (gations)
Field Filterin			9038, Nitrate by 4500,	-	·	1.5	0.091			
Sampling Me	thodology:	Low Flow Sam	gnilar	, - , -		2	0.163			
Laboratory: /	Alpha Metho	d of Shipm	ent: <u>Courier</u>		,				1ga	ion = 3,76 itters
Remarks: Sample ID =	BGKH	MO53	9AW							

			ield Data S					שייייקייי		
roject Name	:: Shepley Hill Li けか 29 4	andfill, Devens	s, Massachusetts Date: 12-12-0	~	Project Numb	er: 284350.OM	.02			
	ditions		- 45°	0	⊓me: <u>/</u>					
'ID1\ <u>/</u>	\	(ppm) (Condition	l						
ample Team	DR/C	R	7							
U-0 B		(FT.)		Stabilization	Data				121	۶
	.evel		Datum		_			Time Purging begin		
	.eveii		urge Method:	Corn. A. Chr.	- low floo	ادة		Water Level at time Time Purging ends	· (T.) 35	3
vater oblam	'	(1.7)	arge mealed	JI WINT DI	100 3/10			Water Level at time	_	_
	Volume		Conductivity			1		Transi Esterat at time	Purge rate	<u> </u>
Time	Removed	Hq	_(<u>m\$/cm</u>)_	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (ŋg/Ŀ)	Turbidity (NTU)	(Lpm)	Appearance
			ms/cm				/	<5 NTU preferred and + / - 10% > 1	0.3 to	
		+/-0.1	+ / - 3%	+ / - 0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM	
13/7		6.82	778:0	11.46	T58	11,61	1/.2	_		
322		6,82	910.0	11.54	-71	20.40	4.2		,3	
333		6.85	799.6	13.14	-94	29.75	3.0			
1338		6.84	751.9	13.93	-100	30.50	2.8.			
1343		6,87	806.1	13.65	-102	32.20	2.4			
348		6.84	773,3	14.13	-106	32.75	2.4		•	
353		6.89	811.8	13.47	-105	32,70	2.2		,3	
				SAMPLING	·					
ate: 12/12		-	Total As, Fe, Mn, Mg, C			Dłameter (inch)	Gallon / Foot	* delta w.t. (ft)	= volu	me lost (gallons)
ime: ield Filterin	399		Alkalinity by 2320B, Ch	•	•	1	0.040	-		
	g: <u></u> thodology:		9038, Nitrate by 4500, a poling	and Turoloffy by 213	ROR	1.5	0.091 0.163			
	lpha Metho			_		<u> </u>	0.103		1gali	on = 3,78 liters
emarks:	•	•		7/511	M05391	21		·	-8	

		F	Field Data S	heets for	Low Flow	Ground W	/ater Sa	mpling		
	ne: Shepley Hill L		s, Massachusetts Date: 12-66)6	Project Numb	ber: 284350.OM	1.02			
			Condition Q	200						
	n 1B/D									
			Well	Stabilization	Data			·		
Well Depth _		(FT.)		OPUCC				Time Purging begi	ns (T.): 137	2S.
	Level 13	⊋ù ŒT∶	Diameter :	2"				Water Level at tim		
Water Colum		(FT.) F	urge Method:	100- 50	<u>\ T</u> ee e	~ `		Time Purging ends		
					, (2)	`		Water Level at tim		-
	Volume	γ	C Conductivity	T	1	I		Trace Edver at any	Purge rate)
Time	Removed	рH	(mS/cm)	`TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1	(Lpm)	Appearance
	_	+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTU	0.5LPM	
1425	5.57	612	0-624	9-40	-5.3	13.36	*	ſ	0.4	ckar
1431		6.93	0.624	9,40	-6,2	13.30	*		Ţ"	4
1434		6.93	0.625	9.38	-7.7	13.30	*		0.4	
					•		•			
		rec	hecked				69.0			
			<u> </u>		<u> </u>					-
									· · · · · ·	
			<u>L</u>		<u> </u>		_			<u> </u>
Date:	0100	Anakele	Total As, Fe, Mn, Mg,	SAMPLING	E/EN4ND	Diameter (b) -1-1	C-H (F1	Paralla 4 /de		
Time:		Alialysis.	Alkatinity by 2320B, Cl	• •		Diemeter (inch)	Gallon / Foot	" delta w.t. (ft)		Olume lost (gallons)
Field Filterin	ia:		9038, Nitrate by 4500,	•	-	1.5	0.091			
	ethodology:	Low Flow Sar		and valuations by 21	J02	2	0.163			·
	Alpha Metho					· 	5,100	· <u>-</u>	10	palkon = 3.78 litters
Remarks:		_		5				•	''	
Sample ID =	د صرر	H LAZ	6540)	\sim						

Project Name	Shepley's Hi	ill Landfill			Sampling Event	LTMP/PMP	12/2006
Job Number	284350.SC.0) l			Date		4
Field Team					Page	3 of	_
Field Conditions	to ann	y alw	<u> </u>				
Well/Sam	nple Number 🔃	>Hm 96 5	L	Sta	rt Time <u>)45@</u>		
	Water 4.50		Duplicate Number			Dupl. Time	
	e Point: Well TOC	Steel Casing	-	Purge Me	ethod: Ded. Pump	Other	3 4/m
	w Ceil: Y / N	٨	fin. Purge Volume (ga	_		 ate (gpm)/(mLpm	-
Time	Vol. Purged	pH	Conductivity	Turbidity	Diss. Oxygen	Temp.	Eh / ORP
	gallons / liters	<u>l</u>	mS/cm	NTU	mg/L.	°€	mv
1450		6.86	.6.17		5.69	3,59	-1430
4.55		7,57	353	. <u> </u>	3.27	5.45	-130.9
1505		6.38	.761		2.79	<u>9.81</u> 3.57	793,3
1510		13.34	7/3		1.22	1.07	722.9
1515		6.30	63		78	<u> </u>	-31.6
		-					
		-					
		<u> </u>	-		<u> </u>		
		e					
·		<i>D</i> ,		<u>,</u>	V V	<u> </u>	
	505	1	\[\] \		- Chr	<u></u>	
		d 15 "		-/()	 		+
	17/						
	7,						
		. -					
		<u> </u>	L L				
	Remarks						
Well/\$am	ple Number	SHMO65	B	Star	†Time 1510		
Initial Depth to			Duplicate Number			Dupl. Time	
	Point: Well TOC	Steel Casing		Purge Me	ethod: Ded. Pump	Other	····
	w Cell;⁄Ŷ)/ N	-	lin. Purge Volume (gai	_		ate (gpm)/(mLpm	1 , 3 L/m
Time	Vol. Purged						
(inte	gallons / litens	pH	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °⊂	Eh / ORP mv
15:20		6.5	.735		4.62	3.60	-91.6
625		6,97	15/3		3.6	3.59	- 360
1536		6,07	,754		2,01	8.54	-82.3
1555		6.97	.747	_	1.63	542	-79.0
15 tu		6:07	.740	<u> </u>	1,56	3,23	-77,4
		 					
					<u> </u>		
					· · · · ·		
··		Line			0,1		
		Ime		1,	Mg		
	ZQ X	IME		la	bul		
	50°77	Time		A.A.	bul		
	SICH	Yme		M	but		
	STORY	time		In the second	bul		
	5 mg 4	time			bul		
	5 15 Y	Time		The state of the s	bul		
	STOP Y	1 Inc		The state of the s	but		
	Remarks	1/me			bul		

Project Name	Shepley's Hi	ll Landfill			Sampling Event	LTMP/PMP	12/2006
Job Number	284350.SC.0				Date		5-06
Field Team	C.Ros	<i>P</i>			Page	/ of	_
Field Conditions	35° - Over	4917 · Calu	<u> </u>				
Well/Sam	ple Number	SHEBD		Sta	rt Time <u>0957</u>		
	Water 6.75		Duplicate Number		SHL SDW	Dupl. Time	
	Point: Well TOC	Steel Casing			ethod: Ded, Pump	Other	
	v Cell; Y / N	-	Min. Purge Volume (gal)	-		 ate (gpm)/(mLpn	1) 350 mL/m
Time	Vol. Purged gallons / liters	pH	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen	Tem p. °C	Eh / ORP
1940		7./	.196		02 1	86	124,4
1005		5.5	.190		92.1	2.76	142.9
1010		6.48	.140		90.0	4.75	141.9
1015		6.46	.189		90.0	7.65	139.9
			·	 			
							
-		 	+		<u> </u>		1
-							
		<u> </u>	1				·
		1		<u> </u>			
						.1012	
				40\C 2	1. e 1		
		<u> </u>	1 Sav 1	<u> </u>	1,00		
						-	
			 -				-
		 					
		ļ	+				
	Danis and a				···		
	Remarks						
Well/Sam	pie Number	SHL-05		Sta	rt Time		
	ple Number	SHL-ØS		Sta	rt Time 1000	Dupl. Time	
Initial Depth to	ple Number	· .	Duplicate Number	869	ON SAL 85W	Dupl. Time	
Initial Depth to Measure	pie Number Water 7.35 Point: Well Toc	Steel Casing	Duplicate Number	86 Q Purge Mi	ethod: Ded, Pump	Other	
Initial Depth to Measure Flov	ple Number Water 7.35 Point: Well Toc	Steel Casing	Duplicate Number Min. Purge Volume (gat)	86 @ Purge Mi //(L)	ethod: Ded, Pump Purge Ro	Other ate (gpm)/(mLpn	
Initial Depth to Measure	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing	Duplicate Number Min. Purge Volume (gat) Conductivity	Purge Mi //(L) Turbidity	ethod: Ded, Pump Purge Ro Diss. Oxygen	Other ate (gpm)/(mLpn Temp.	Eh / ORP
Initial Depth to Measure Flov Time	ple Number Water 7.35 Point: Well Toc	Steel Casing	Duplicate Number Min. Purge Volume (gat) Conductivity m8/cm	86 @ Purge Mi //(L)	ethod: Ded, Pump Purge Ro Diss. Oxygen mg/L	Other Temp. °C	Eh / ORP mv
Initial Depth to Measure Flov Time	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH	Min. Purge Volume (gat) Conductivity m8/cm	Purge Mi //(L) Turbidity	ethod: Ded, Pump Purge Ro Diss, Oxygen mg/L	Other offe (gpm)/(mLpn Temp. °C	Eh / ORP mv
Initial Depth to Measure Flow Time	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62	Duplicate Number Min. Purge Volume (gat) Conductivity m8/cm	Purge Mi //(L) Turbidity	ethod: Ded, Pump Purge Ro Diss. Oxygen mg/L	Other Ife (gpm)/(mLpn Temp. °C	Eh / ORP mv
Initial Depth to Measure Flow Time	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60	Duplicate Number Min. Purge Volume (gat) Conductivity m8/cm	Purge Mi //(L) Turbidity	ethod: Ded, Pump Purge Ro Diss, Oxygen mg/L	Other Ife (gpm)/(mLpn Temp. °C 7.34	Eh / ORP mv /27, 3 /33, 7 /35, 8
Initial Depth to Measure Flow Time /020 /025 /030	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60	Duplicate Number Min. Purge Volume (gat) Conductivity m8/cm	Purge Mi //(L) Turbidity	ethod: Ded. Pump Purge Ro Diss. Oxygen mg/L	Other Temp. °C	Eh / ORP mv /27.3 /33.7 /35.8
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (gat) Conductivity m8/cm	Purge Mi //(L) Turbidity	ethod: Ded, Pump Purge Ro Diss. Oxygen mg/L	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flow Time /020 /025 /030	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60	Duplicate Number Min. Purge Volume (gat) Conductivity m8/cm	Purge Mi //(L) Turbidity	ethod: Ded. Pump Purge Ro Diss. Oxygen mg/L	Other Temp. °C	Eh / ORP mv /27.3 /33.7 /35.8
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (gat) Conductivity m8/cm	Purge Mi //(L) Turbidity	ethod: Ded. Pump Purge Ro Diss. Oxygen mg/L	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (gat) Conductivity m8/cm	Purge Mi //(L) Turbidity	ethod: Ded. Pump Purge Ro Diss. Oxygen mg/L	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (gat) Conductivity m8/cm	Purge Mi //(L) Turbidity	ethod: Ded. Pump Purge Ro Diss. Oxygen mg/L	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (gat) Conductivity m8/cm	Purge Mi //(L) Turbidity	ethod: Ded. Pump Purge Ro Diss. Oxygen mg/L	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (got) Conductivity m8/cm - 0 17 - 0 95 - 0 98 - 0 97	Purge Mi //(L) Turbidity	ethod: Ded. Pump Purge Ro Diss. Oxygen mg/L	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (got) Conductivity m8/cm - 0 17 - 0 95 - 0 98 - 0 97	Purge Mi	ethod: Ded, Pump Purge Ro Diss. Oxygen mg/L 1.43 1.43	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (gat) Conductivity m8/cm	Purge Mi	ethod: Ded. Pump Purge Ro Diss. Oxygen mg/L	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (got) Conductivity m8/cm - 0 17 - 0 95 - 0 98 - 0 97	Purge Mi	ethod: Ded, Pump Purge Ro Diss. Oxygen mg/L 1.43 1.43	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (got) Conductivity m8/cm - 0 17 - 0 95 - 0 98 - 0 97	Purge Mi	ethod: Ded, Pump Purge Ro Diss. Oxygen mg/L 1.43 1.43	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (got) Conductivity m8/cm - 0 17 - 0 95 - 0 98 - 0 97	Purge Mi	ethod: Ded, Pump Purge Ro Diss. Oxygen mg/L 1.43 1.43	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (got) Conductivity m8/cm - 0 17 - 0 95 - 0 98 - 0 97	Purge Mi	ethod: Ded, Pump Purge Ro Diss. Oxygen mg/L 1.43 1.43	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (got) Conductivity m8/cm - 0 17 - 0 95 - 0 98 - 0 97	Purge Mi	ethod: Ded, Pump Purge Ro Diss. Oxygen mg/L 1.43 1.43	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9
Initial Depth to Measure Flov Time 1020 1025 1030 1040	pie Number Water 7.35 Point: Well TOC W Cell: D/ N Vol. Purged	Steel Casing pH 6.62 6.60 6.50	Duplicate Number Min. Purge Volume (got) Conductivity m8/cm - 0 17 - 0 95 - 0 98 - 0 97	Purge Mi	ethod: Ded, Pump Purge Ro Diss. Oxygen mg/L 1.43 1.43	Other Temp. °C 7.37 8.36	Eh / ORP mv /27, \$ /33, 7 /35, \$ /37, 9

DOM! LIMPS

240 Redox = 238.8 (D.D. = 9.98 mg/L

		F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling		
Project Name	: Shepley Hill La	andfill, Devens	s, Massachusetts		Project Numb	er: 284350.OM	.02			
Well ID: 5	<u> 40-9</u>		Data: 12-6-2)6	Time: 845	<u> </u>				
Weather Cond	ditions 		· · · · · · · · · · · · · · · · · · ·							
PID		(bbb)	Condition <u> </u>	46y 30'	<u> </u>					
Sample Team	972	* T 1>		<u> </u>	_					
				Stabilization	Data				e/l	
Well Depth	825		Datum		_			Time Purging begi	ns (T _o): 7	12
Static Water L	.evel	(FT.)	Diameter :	<u> 2″ _ </u>				Water Level at tim	е Т _{о:} _ %. \$	5
Water Column	<u> </u>	FT.) F	urge Method:	- F10	س اصد			Time Purging ends	E (T ₁) OS :	20
		-	_					Water Level at tim		
	Volume		Conductivity	I	 			Train Boro at an	Purge rate	
Time	Removed	pH 4	(mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	(Lpm)	Appearance
					, ,	,		<5 NTU preferred		
		١.,.						and $+ / - 10\% > 1$	0.3 to	
		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	NTÜ	0.5LPM	
0901		G.75	1232	9,64	92,7	8.85	2,36	`	0.45	Clear
0905		C.76	.732	9.66	92.7		19.0			
	720									
Chief.	3441	6.76	0.231	9.70	92.6	8.85	סרס			
0916	•	6.76	1231	9.67	91.0\$		0.75			
•120	•	6.76	- 23)	9.68	87.9	8.85	0.68	-		
1200		6.10			01.7	0-0)	4100			
	1.		SAME	tro	AT	0920				
(e-measur				•	18.20	1018				
1-11-02-100					10-0	2011/		-		
	1		L	SAMPLING						
ے اسر Date:	, 10b	Analysis:	Total As, Fe, Mn, Mg,		46/ 8010B	Diameter (inch)	Gallon / Foot	t data t /ft\		share lest fuelteen
1 -	0420	-uidijaa,	Alkalinity by 2320B, Ci			1	0 040	* delta w.t. (ft)	= V	olume lost (gallons)
Field Filtering	-		9038, Nitrate by 4500,		•	1.5	0 091			
Sampling Me		Low Flow San		ZIM TOROIGHY DY ZI		2	0.163	<u>.</u>		
	Alpha Method					Σ	0.103	<u>, , , , , , , , , , , , , , , , , , , </u>	1.	gállon = 3.78 liters
Remarks:										Janon - 0.70 Riolo
Cample ID -										

LowFlowDataSheet.xlstemplate-low flow

collected ms/msb

B60005HL9W

*Pumped @ higher rate (2 56GPM) e Extraction wells on 12-5

		-	Field Data S	heets for	Low Flow	Ground W	ater Sa	mpling		
Project Nam Well ID: Weather Cor	ne: Shepley Hill L タギム 2.1 nditions	andfill, Devens	s, Massachusetts Date: 12-/2-0 Condition	6	Project Numl Time: /05	ber: 284350.OM	1.02			
PID		(ppm) (Condition	2.C						
Sample Tear	n <u>• (</u> //	2 R	v		_	•				
Well Depth _ Static Water Water Colum	Level	(FT.) (FT.) (FT.) P	Datum BTO Diameter : Purge Method:	Stabilization VCC 4711 low-flo-	Data — <u>fexi</u>			Time Purging beging Water Level at time Time Purging ends Water Level at time	в т _{е.} _ <i>/ 4 .</i> :: (Т₁) _ <i>] </i>	<u>, </u>
Time	Volume Removed	pH +/-0.1	(mSiem) pay 5/UT + 1-3%	TEMP.(C) + / - 0.2 or 3%	Redox (mV) + / - 10 mV	Water level (Ft)	D.O. (mg/k) +/-10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
10.50					· · · · · · · · · · · · · · · · · · ·			NIO	U.SEFINI	
1059		S-84	76.8	11.45	194	14.15	74.5			
1100		5.81	75.5	12.65	195	14.15	78.9			
1105		5.79	74.8	12.87	198	14.15	78,2			
[110		5.73	74.9	13.3/	201	14.15	74.0			
			- · · · · -							
				SAMPLING						
Date: /		Analysia:	Total As, Fe, Mn, Mg, (16/ 6010B	Diameter (inch)	Gaillon / Foot	* delta w.t. (ft)	= vo	okume tost (gallons)
	115	-	Alkalinity by 2320B, Ch	•		1	0.040	wanted trial (ca)	- 70	marie and (Manus)
Fleid Filterin			9038, Nitrate by 4500,	•	=	1.5	0.091			
	ethodology:			- ·		2	0.163			
	Alpha Metho	d of Shipm	ent: <u>Courier</u>						1g:	alion = 3.78 liters
Remarks: Sample ID =	B6000	SHL2	IW							

		F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling		•
	ne: Shepley Hill L	andfill, Devens	s, Massachusetts Date:[2-/2-a	6	Project Numl Time: 09/0	ber: 284350.OM 2	1.02			
PID /	nditions	(ppm) (Condition	20c Q						
Sample Tear		7/2 (pp,)	Solidition	are.				SHL 23 h	/	
			.Well	Stabilization	Data	··· ·· · · · · · · · · · · · · · · · ·		· 		•
Well Depth _	<i>_</i> .	(FT.)	Well Datum <u>B70</u>	PVC C				Time Purging begin	ns (T _o): <i>Q9</i>	10
	Level	(FT.)	Diameter :	411				Water Level at time	эт <u>а: 2<i>6-6</i></u>	55°
Water Colum	ın	(FT.) P	urge Method:	10w-F/0-	Grantas			Time Purging ends	: (т.) <i>.094.</i>	<u>5_</u>
								Water Level at time	T: 26.	71 1
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water leve! (Ft)	D.O. (mg/k)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance
	1	+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
0915		7.62	30.4	7.63	93	26-65	99.5			
0920		7.13	26.8	11-93	160	26.65	98.0			
0925		6.88	27.3	12.85	190	26.68	97.8			
930		6.66	26.8	13.25	207	26.69	97.3			
0935	<u> </u>	6.63	27.1	13.37	209	26.71	97.5			
										<u> </u>
	2		· •	SAMPLING		T				
Date: <u>[2</u> / <u>]</u> 2		-	Total As, Fe, Mn, Mg, G	-		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= voi	ume lost (gallons)
Time: Field Filtering	940		Alkalinity by 2320B, Ch	-	-	1 1	0.040			
	ethodology:		9038, Nitrate by 4500, noting	and ithibidity by 21	306	1.5	0.091			
	Alpha Me tho					<u> </u>	2.100	• • • • • • • • • • • • • • • • • • • •	1.ga	ulion = 3.78 liters
Remarks: Sample ID =	· _	_	1-23W					·	<u>*</u>	

Project Name: Shepley Hill Landfill, Devens, Massachusetts			F	ield Data S	heets for l	Low Flow	Ground W	ater Sa	mpling		
Mell Depth (FT) Spatum	Well ID: Weather Con PID	0(-) L - Z - Z - Z - Z - Z - Z - Z - Z - Z -	سروس	Date: <u>i ユーb ~ (</u> ろのをデ	<u> </u>	Project Numb	per: 284350.om.	02			
Time Removed pH Dp (mS/cm) TEMP.(C) Redox (mV) Water level (FI) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance on the first of the first of the first of the first one of the firs	Static Water I	n(i	77 / 1 /	Datum	<u>ان د</u>	_			Water Level at time Time Purging ends	e T _{o:} <u> </u>	25 <u>2</u>
0938 — — — — — — — — — — — — — — — — — — —	Time			Op (ms/cm)	, ,				<5 NTU preferred and + / - 10% > 1	(Lpm) 0.3 to	Appearance
C91 0,757 9.26 51.9 C.98 1.48 -	0938						1		-		
6946 6.92 6.757 9.27 49.3 125 — 0.3 1949 6.92 6.758 9.74,22 48.6 6.98 0.89 — 0.3 Cleur 09526758 6.92 6.756 9.79 47.6 6.98 0.70 — AFTER SAMPLING Date: 12/6 / 06 Analysis: Total As, Fe, Mn, Mg, Ca, Na, K via SW-848/60108 Time: 1 601 Alkalinity via SW-848/2308, Chionide via SW-848/9251 Field Filtering: No Sampling Methodology: Low Flow Sampling Low Flow Sampling			691	0.757	٦.26	51,9		1,48	_		-Clear
AFTER SAMPLING SAMPLING SAMPLING	0946		6.92	0.757	9.27	49.3		1.25			
AFTER SAMPLING SAMPLING	1949			0,758	9-9-4,22	748,6	6.98	980			cleur
SAMPLING	09525	58	i I	0.756	7,29	47.6	6,98	0,70	*		
SAMPLING											
Date: Image: Analysis: Total As, Fe, Mn, Mg, Ca, Na, K via SW-846/60108 Diameter (inch) Gallon / Foot * delta w.t. (ff) = volume lost (gallons) Time: Image: <					SAMPLING						
Field FilterIng: No and Turbidity via SW-846/2130B 1.5 0.091 Sampling Methodology: Low Flow Sampling 2 0.163			Analysis:	Total As, Fe, Mn, Mg, C		6/ 60108	Diameter (inch)	Gallon / Foot	" delta w.t. (ft)	= V	olume lost (gallons)
Sampling Methodology: Low Flow Sampling 2 0.163						W-846/9251					
				•	46/2130B						
Remarks:	Laboratory: /						2	0.163		15	gallon = 3,78 liters

BG 0005HLZZW + EW welk pin ping higher

LowFlowDataSheet.xlstemplate-low flow

		F	Field Data S	Sheets for	Low Flow	Ground W	/ater Sa	mpling]	
Project Nar Well ID: 5 \footnote{\text{V}} Weather Co PID \to \text{V} Sample Tea	onditions	. 10〜27 (ppm)	s, Massachusetts Date: 12 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Project Numl	ber: 284350.ON	1.02					
Well Depth Static Water Water Colur	r Level 6.5	(FT.) (FT.) _(FT.)	Datum					Time Purging beging Water Level at time Time Purging endangements	ne T _{ox} (A. 15 s: (T ₁)	<u> </u>		
Time	Volume Removed	pH +/-0.1	Conductivity (mS/cm) +/-3%	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	1	Purge rate (Lpm)	Appearance		
1040	3 5	6.92	2764	9.36	-20.1	0.03	0.88		a40		-	
1045	14L	692	0.762	9.43	-22.C	6.18	0.10 0.70		0.4	_	_	
											_	
											_	
	1			SAMPLING			J		<u> </u>		4	
Date: 2_/_ Time: Fleld Filteri	100	Analysis:	Total As, Fe, Mn, Mg Alkalinity by 2320B, 0	, Ca, Na, K by SW-8 Chloride by 9251, Su	Ifate by	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= V	olurne lost (gallons)		
Sampling N	lethodology:			, ано тиг лику ву 2	1306	1.5	0.091 0.163	<u>L</u> .	-		1	
Laboratory: Remarks: Sample ID =	RE	od of Shipm	nent: Courier						10	palion = 3.78 liters		. \
	ataSheet.xlstempl	ate-low flow	Also	-co t	acte	3 M	5/449	初号-	100	(B6 DE	006 DU	رلىلا

* rechectured w/ 240 mV auto cal solution reads 227.2 so ok

4112

rmp

ŀ		F	ield Data S	heets for	Low Flow	Ground W	later Sa	mpling					
Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID: 5 + 10 - 0 5 - 4112 Date: 12 - 6 - 0 Time: Weather Conditions (1003 - 30 - 5													
PID	NA	(maga)	Condition	600	<u></u>								
Sample Team	well Stabilization Data												
Well Depth _		(FT.)	Datum 1270	روبكرات	_			Time Purging begi	ins (T _e): 12	<u>اث</u>			
Static Water I	_evel <u></u>	` ★ (FT.)	Diameter :	27				Water Level at tim	e T _{o:} حرَّ ع	<u>'</u> 3			
Water Column	1	(FŤ.) F	urge Method: <u> </u> t	<u> در کورتد</u>	2 /PET.			Time Purging end					
Water Level at time T ₁ : 9,5													
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Арреагалсе			
		+/-0.1	+ / - 3%	+/-0.2 or 3%	+ / - 10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM				
1235		6.65	0.156	9.60	77. 7	9,51	0.23		0.40	Clear			
1239		©,5 8	0.142	9.61	97.4	9.51	0,27		0.40	clear			
1244		6,54	0,140	9,62	104.4	9,51	0,19		040				
1247		6.54	0,139	9.56	103.7	9.51	٥, کت		0,40	ceat			
1250		6.5	0.139	9,56	102.5	9.51	c, 2/						
1501		6.74	0.219	9.76	36.2.	9.51			0.7				
1505		6,63	0.164	4.78	C5,3	9,51							
1510		6.58	0.146	9.76	913	9.51							
Date: 1 Z/ 6	100	Anabert-	Tatal As Es Ban 24-	SAMPLING	51 504 0D								
	2.50	-	Total As, Fe, Mn, Mg, C Alkalinity by 2320B, Ch	•		Diameter (inch)	Gallon / Foot 0.040	* deita w.t. (ft)	ΕVI	olume lost (gallone)			
Field Filtering			9038, Nitrate by 4500,	•	•	1.5	0.091						
Sampling Me		Low Flow San	<u>polito</u>	. ,		2	0.183						
Laboratory: A	Upha Metho	d of Shipm	ent: Courier)					19	pallon = 3,76 liters			
Remarks: Sample ID =	<u>1365</u>	MM	0541A	W	· <u>· -</u>	·							

41 B PNP * Fumping EW = 2 90 GPM on 12/5 \$ 12/6
(NORMALLY 25 GAM)

		F	ield Data S	heets for I	Low Flow	Ground W	ater Sa	mpling		 		
Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Well ID: SHO -05- H/3 Date: 12-6-00 Time: 100 Weather Conditions (ppm) Condition 4000												
PID Sample Team	<u>~</u>	(ppm) (Condition <u>ಇಲ</u>	بر.								
Well Depth Static Water Lower Lower Column	evel <u>9.3</u>	(FT.) (FT.)	Datum310	211	_			Time Purging begi Water Level at tim Time Purging ends Water Level at tim	e T _{o:} s: (T _s) 2.2	31 2 3		
Time	Volume Removed	рH	Conductivity (mS/cm)	TEMP.(C)	Redex (mV)	Water level (Ft)	D.O. (mg/L)	<5 NTU preferred and + / - 10% > 1	0.3 to	Appearance		
1216		+/-0.1 (_م . (م	0:753	+/-0.2 or 3% 9,49	+/-10 mV	<0.3 ft	+/-10% ,24		0.5LPM 0.45	Clear		
1220		C.60	5.754	9,51	5,0		1.16		0.42	<u> داهی</u>		
@1224		6.60	0,755	9.48	7 , ک	9.31	1.07		0,45	clear		
1223	_	6,60	0.754	9,56	ر ادی	9.31	1,09	1	5.45	, 1		
3 1445		છે.	0.740	9.54	21.6	, -::			0.3	_		
1448		6.6	0,747	9.60	P.3	9.31	_		6.3			
1453		C.LI	0.751	9.59	19,7	9,31	Magazi	_				
1456		6.61	0.75	9.60	19,9	9.3/						
Date: [2]	100	_Analysis:	Total As, Fe, Mn, Mg, G Alkalinity by 2320B, Ch	Ca, Na, K by SW-844	5/ 60 10B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= vc	olume lost (gallons)		
Time: <u>2</u> Field Filtering	<u>557</u> 145 ''		Alkalinity by 2320B, Ch 9038, Nitrate by 4500,			1 1.5	0.040 0.091			<u>.</u>		
Sampling Met				and ruibleary by 213		2	0.163					
Laboratory: A									19	pallon = 3.78 litem		
Remarks: Sample ID =							٥					

4.25-3.52

10 = 365HM 0541B W

Copy of SHL LowFlowDataSheet.xistemplate-low flow

41C PMP

		F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling				
Project Name Well ID: 5	Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM,02 Well ID: 5 1 M - 0 5 - 4 C Date: 12 - 6 - 6 C Time: 12.30 Weather Conditions C 10 2 3 Y											
PID/\)/	7	(ppm) (Condition	Cox								
Sample Team		<u> </u>	<u> </u>			_						
				Stabilization	Data				\-	. ×		
Well Depth _		三 (FT.)	Datum					Time Purging begi				
	_evel <u>9, S</u>	<u>''</u> (FT.)			 .			Water Level at tim				
water Columi	Vater Column (FT.) Purge Method: 1013 - Field (porc.) Time Purging ends: (T ₁) 1312 Water Level at time T ₁ : 9.69											
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)		Appearance		
	· • ·	+/-0.1	+/-3%	+ / - 0.2 or 3%	+ / - 10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM			
1300		7.28	0,768	9.70	-43.6	9,69	206		0.45			
1306		7.30	0.769	9,70	-46,6	9,69	0.06		2.45	Clear		
1309		7,30	0.77C	÷ 4.64	-45.0	9.69	6.00			1		
1317		7.30	<u>6</u> ,770	9,57	-47,5	4,69	0.00		0.45	<u> </u>		
38B 157		7,18		9,75	- 3.9	9,69			0.48			
1540		7,20	0,773	9,75	-44,5	9,69						
- ·												
7 Date: p3_/_6	106	Anabata	Taral & - F'- 14- 14- 1	SAMPLING	401.00403			-				
Time:	315	=	Total As, Fe, Mn, Mg, G Alkalinity by 2320B, Ch	-		Diameter (inch)	Gallon / Foot 0.040	* delta w.t. (ft)	= v	blume tost (gallons)		
Field Filterin	g: _/\/_		9038, Nitrate by 4500,		-	15	0.040	·				
	thodology: 1	ow Flow Sam	pnilar	7-7		2	0.163					
	aboratory: Alpha Method of Shipment: Courier 1gailon = 3.78 liters											
Remarks: Sample ID =	B65H	M05	41CW									

PMP+ CHY

	·.	F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling					
Project Nam	e: Shepley Hill L	andfill, Deven	s. Massachusetts		Project Numb	per: _284350.OM	.02						
Well ID: 5 1	1,01-35-	42 A	Date: \2-7-3	54.	Time:/2.	50							
Weather Con	ditions												
PID	AC.	(ppm) 🔻	Condition <u>ಇಲ</u>	<u>ب</u>									
Sample Tean	1 <u>13/02</u>												
				Stabilization	Data				12.0	~			
Well Depth _		一(FT.)	Datum BTO					Time Purging begi					
	Level <u>3, 4</u>				 .			Water Level at tim					
Water Colum	ın	<u>(</u> FT.) F	urge Method:	1000, £10	ry becr			Time Purging ends					
	Water Level at time T ₁ : 3, 72												
Time	Volume Removed	pH	Conductivity (m8/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU)	Purge rate (Lpm)	Appearance			
		+/-0.1	+ / - 3%	+ / - 0.2 or 3%	+ /- 10 mV	< 0.3 ft	+ / - 10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM				
1210		6.41	0.160	7.34	196.2	3.90	4.63		0.4				
1215		6.39	0.138	9.26	2059	3.72	443						
1223		4.3 %	0 135	9.15	213. 8	312	4.63						
1125		(33	0 134	9.10	217.1	3.92	4.62						
				- 120	1966	177	12	30					
				XOU	1	110 1	[-]	3.87					
								_					
				SAMPLING	· · · · · · · · · · · · · · · · · · ·								
Date: Z		Analysis:	Total As, Fe, Mn, Mg, (Ca, Na, K by SW-84	6/ 6010 0	Diameter (inch)	Gallen / Foot	* delta w.t. (ft)	= vol	ume lost (gallons)			
	30		Alkalinity by 2320B, Ch	•	-	. 1	0.040						
Field Filterin			9038, Nikrate by 4500,	and Turbidity by 213	808	1,5	0.091						
Sampling Me Laboratory:		Low Flow San				2	0.163		,	One = 3.70 Steet			
Remarks:													
Sample ID =	ملا	SHW	102 43t	†W					-,	<u></u>			

Deep

		F	ield Data S	heets for	Low Flow	Ground W	later Sa	mpling				
Well ID: S Weather Con	iditions CIR	42B	s, Massachusetts Date: 12-7- Sondition		Project Number Time:	ber: 284350.OM	1.02					
Well Stabilization Data Well Depth (FT.) Datum												
Time	Volume Removed	pH +/- 0.1	(ms/cm)	TEMP.(C) + / - 0.2 or 3%	Redox (mV) + / - 10 mV	Water level (Ft)	D.O. (mg/L) + / - 10%	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance		
1210	6	6.22	. ,	10,25	-74	3.84	0.81		4.0	clear		
1214	3,5	6.26	1019	9,74	-75		0,44		0.4	Clear		
1217	9.0	G.27		9.67	-76	3.84	0.41		r O	1		
1221	10.5	G,28	/52.1	9.59	-77-		0,43		0.7	Ţ		
ļ					<u> </u>							
	:											
			•	SAMPLING	<u> </u>	<u> </u>		L				
Date: 2./	7100	Analysis:	Total As, Fe, Mn, Mg, (6/ 6010B	Diameter (inch)	Galon / Foot	" delta w.t. (ff)	= 04	olume lost (gallons)		
Time:	241	-	Alkalinity by 2320B, Ch			1	0.040	WARM WAL (III)		sand us was / Amin's so.		
Field Filterin	<u>حريا :</u> :6		9038, Nitrate by 4500,	-	-	1.5	0.091					
	ampling Methodology: Low Flow Sampling 2 0,163											
Laboratory: / Remarks:	aboratory: Alpha Method of Shipment: Courier 1galon = 3.78 iters											
Sample ID =	· 136	5HM	6542B			<u> <u>.</u> .</u>						

DTW Before = 3.70 DTW (after of transducer back in) = 3,79

		F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling		
Project Nam Well ID: <u>/</u> V	e: Shepley Hill L	andfill, Devens	s, Massachusetts	æ —	Project Numl Time: 142	oer: 284350.OM	.02			
Weather Cor	iditions									
PID		(ppm) (Condition	ek.						
Sample Tear	n <i>DR/CI</i>	2	<i>(</i>							
Well Depth	· · · · ·	(FT.)	Datum $\mathcal{C}^{\mathcal{J}}$	Stabilization	Data			Time Purging begi	ns (T _e):_142	8
			· · · · · · · · · · · · · · · · · · ·					Water Level at time	е Т. 23	20
Water Colum	Level	(FT.) P	Diameter : Purge Method:	Jan 5/0 -	- Oeri			Time Purging ends	: rra 742	<u> </u>
	···· <u>- / </u>	X. 1.7	ango mounou.	_:•0 9 1	7 23					<u>9</u> 5 → 23.30
Time	Volume Removed	pH	Conductivity (ms/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance
			+/-3%	0.2 20/	+ / - 10 mV	-028		and + / - 10% > 1	0.3 to	
		+/-0.1		+/-0.2 or 3%		< 0.3 ft	+ / - 10%	NTU	0.5LPM	
1435		6.72	616.9	10.24	-64	23.84	11.3			
1440		6.63	678.6	10.12	-7/	23.84	5.1		.3	
1445		6.67	707.1	10.02	-74	23.90	5.0			
1450		6.70	711.9	9.98	-74	23.85	4.6			
1495		6.70	719.2	9.86	-71	23.95	4.7			
										<u></u>
				CAMPINO						
Date: /	1	Anahale	Total As, Fe, Mn, Mg,	SAMPLING	6/ 6010B	Diameter (bat)	Gallon / Foot	* d=3t= 4 /54.		home last (golla = -)
Date/ Time:	1455	-	Alkalinity by 2320B, Cl			Diameter (inch)	0.040	* deita w.t. (ft)	= vo	lume lost (gallone)
Field Filterin			9038, Nitrate by 4500,	-	-	1.5	0.040			
	ethodology:			WIN I MINURY BY 214	J00	2	0.163		··· ··· <u>-</u> ·	
	Alpha Meth o					l 2	1 0.103		100	allon = 3.78 liters
Remarks:		•							'9"	
Sample ID =		B6 01	MAPIU	J						

NSPA

		F	ield Data S	heets for	Low Flow	Ground W	ater Sa	mpling		
Project Nam Well ID:(Weather Con			i, Massachusetts Date:12-12-96		Project Numb Time: <u>/42</u>	per: 284350.OM <u>.0</u>	1.02			
PID		(ppm) (Condition	ቷ"						
Sample Tean	n <u>DR/Ck</u>	<u> </u>	0-							
Well Depth _		(FT.)	Well Datum BT05	Stabilization C						25 1430
Static Water	Level			-				Water Level at time		
Water Colum	ın	(FT.) P	urge Method:					Time Purging ends	_	· · · · · · · · · · · · · · · · · · ·
								Water Level at time	эт <u>ы 23.8</u>	30 23.70
Time	Volume Removed	ρΗ	Conductivity (marcin) MS/CC	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	<5 NTU preferred	Purge rate (Lpm)	Appearance
		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
1439						23.72			.25	
1500	<u> </u>	6.25	1331	10.75	-58	23.85	2.9			
1505		6.24	1326	11.08	-63	23.80	2-8			
1510		6.23	1332	11.15	-66	23.80	2.6			
					<u></u>					
				SAMPLING		·		L		
Date:/	10/0	Analysis:	Total As, Fe, Mn, Mg, C	Ca, Na, K by SW-84	8/ 6010B	Diameter (inch)	Galon / Foot	* deka w.t. (ft)	= 40	ume lost (galiene)
	1510		Alkalinity by 2320B, Ch			1	0.040			
Field Filterin	ig: ethodology:		9038, Nitrate by 4500, a	and Turbidity by 21:	30B	1.5	0.091			·
	anouology: Alpha Meth o					2	0.163		1	allon = 3.78 liters
Remarks: Sample ID =				666 NS	9241					man ; — 4. (O INO) 3

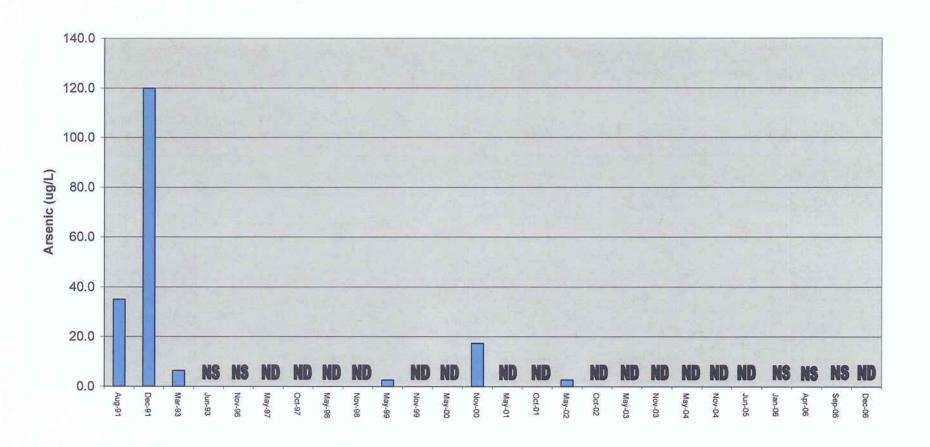
PMP

	SHP-93-	10D	Field Data S	heets for	Low Flow	Ground W	/ater Sa	mpling]
Project Nam	e: Shepley Hill1	andfill, Deven:	s, Massachusetts Date: 2 (3)		Project Numb	per: 284350.OM	1.02				
Weit ID:		<u>:</u>	Date: 121 (5)	JE.	Time: 093						
PID /	ditiona	(mag)	Condition 000	<u>, c</u>							
Sample Tean	n	<u>Z</u>	- l'								
	- ,,, -		Well	Stabilization	Data			•			7
Well Depth _	/	(FT.)	Datum	DPVCC_				Time Purging begi	ns (T _o):	<u> يا 3 ل</u>	
Static Water	Level	(FŤ.)	Diameter :	<u> </u>				Water Level at tim	е Т <u>а: [Z-^1.</u>	98	
Water Colum	n	_(FT.) P	Purge Method:	low- F10-	Grund-03			Time Purging ends	s:(T₁) <u>095</u>	<u>30</u>	
				·				Water Level at tim	e T _{1:} 3/54 7	0	
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance	
		+/-0.1	+ / - 3%	+ / - 0.2 or 3%	+ / - 10 mV	< 0.3 ft	+ / - 10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM		
0941		11.31	0.486	13.76	-14	31.46	3.62	<u></u>	03		
.5946		11.39	0.475	13.29	-26	33.95	1.10				
0951		11.41	0.469	13.63	- Z9	35.55	1.05		:		
2955		11.44	5.464	13.70	- 33	36.70	1.00		•	well pry	Jel to
)								day	7
		1/800									1
		W1157						·			
			-								
				SAMPLING		· · · · · · · · · · · · · · · · · · ·	·			<u> </u>	ユ
Date:/	 -	Analysis:	Total As, Fe, Mn, Mg, 6	=		Dismeter (inch)	Gallon / Foot	* delta w.t. (ft)	= v	olume lost (gallons)	4
	55		Alkalinity by 2320B, Ch		•	1	0.040				4
Field Filterin	g: ethodology:		9038, Nitrate by 4500,	_	30B	1.5	0.091				-1
	anodology: Alpha M etho			36.55		2	0.168	<u> </u>	al.	gallon = 3.78 liters	┥
Remarks: Sample ID =	upita ittalii	w. w.mpin	Addition Addition	Bos	5 HP93	10 DW				Agents - 3'10 Biol2	1

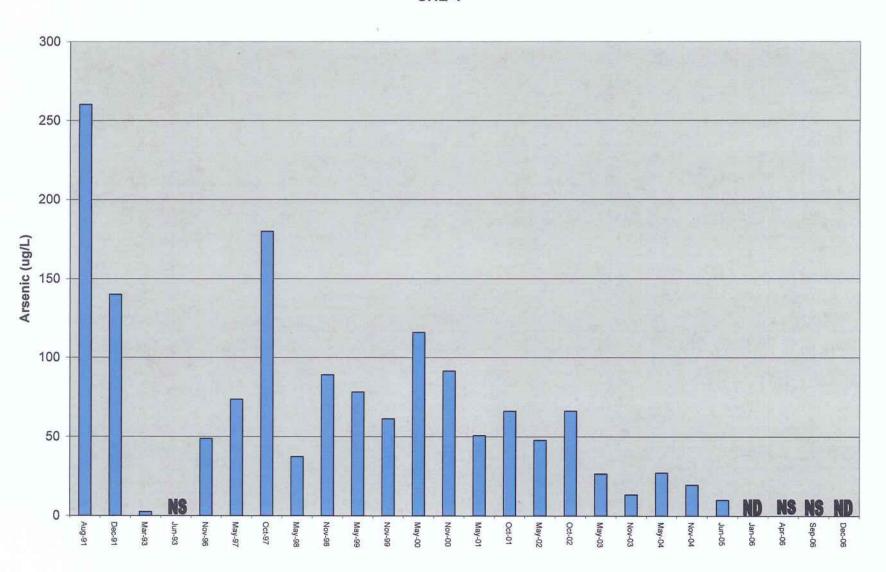
		F	Field Data S	heets for	Low Flow	Ground W	ater Sa	mpling						
Well ID:	Project Name: Shepley Hill Landfill, Devens, Massachusetts Project Number: 284350.OM.02 Time: 1000													
	Veather Conditions (Vers) 40 5													
PID	Cample Team TB Joe													
Sample Feat	Well Stabilization Data													
Well Denth														
	Static Water Level 17.61 (FT.) Diameter: 2" Water Level at time To: 17.61													
	Valer Column (FT.) Purge Method: 10\(\omega\) For \(\omega\) Time Purging ends: (T ₁) 10\(\omega\)5													
	$\frac{(F1.)}{\text{Valer Level at time } T_1} = \frac{1}{12} \frac{1}{1$													
Time	Time Removed pH (mS/cm) TEMP.(C) Redox (mV) Water level (Ft) D.O. (mg/L) Turbidity (NTU) (Lpm) Appearance													
	+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft +/-10% NTU 0.5 LPM													
1210														
1215		6.24	2488	13.29	95.2	17.61	2.64							
1020		6.24	0 483	13.31	73.5	17.61	2,33							
1025	3 °x	627	0.482	13.23	92.9		1.69							
1230		6.24	0.481	13.17	72.1	17.61	1.04							
1035	45	(24	0.482	13.14	71.8	17.61	2.59							
		<u> </u>		519 V	NVE	DAZ	1)	45						
								<u> </u>		·				
Data: 21	+ 106	Ameliate	Total Sa En Str. 14- 4	SAMPLING	0100400	Diameter God :	Outlant 15	A						
Time:\		•	Total As, Fe, Mn, Mg, 6 Alkainity by 2320B, Ch			<u>Diameter (inch)</u> 1	Gallon / Foot 0.040	delta w.t. (ff)	= 90	lume lost (gallons)				
Field Filterin			9038, Nitrate by 4500,	•	-	1.5	0.091		<u> </u>					
Sampling M	ethodology:	Low Flow San	npling			2	0.183							
Laboratory: Alpha Method of Shipment: Courier 19alion = 3.78 liters														
Remarks: Sample ID =	Remarks: RCAARSUISI)													

		F	ield Data S	heets for I	.ow Flow	Ground W	ater Sa	mpling	·	_
Project Nam Well ID: Weather Cor PID	ان ای ditions	DY .	, Massachusetts		Project Numb Time: 1111	per: 284350.OM	.02			
Sample Tear	n CR	(ppin) C	Sourdinou Ser	<u>, </u>						
Campic roal			Wall	Stabilization						
Well Depth		(FT.)	Datum 37		Duia			Time Purging begi	$_{ns(T,l)}$ $ II $	0
Static Water	Level 6. 4	<u>5</u> (FT.)	Diameter :	2"	_			Water Level at tim	e T∝.	-
	n	(FT.) P	Diameter : urge Method:_\o	- F100	locs:			Time Purging ends	s: (T.) 114	₹
		,			+ +			Water Level at tim		
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred		Appearance
		+/-0.1	÷/-3%	+ / - 0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
1130	6	6.47	,290 ,292	9.63	120.8		_		.3	
1140	9	6.69		9.50	121.5	6.45		-		
1145	1/	6.60	.281	9.60	121.1	646			J	
	į									
		<u> </u>								
,				_						
•			- X							
	l		· · · · · · · · · · · · · · · ·	SAMPLING			<u> </u>			
Date: [2/		Analysis:	Total As, Fe, Mn, Mg,	Ca, Na, K by SW-8	46/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (fi)	= V0	dume lost (gallons)
	750 ·		Alkalinity by 2320B, Ct			1	0.040			
Field Filterin		9	9038, Nitrate by 4500,	and Turbidity by 21	30B	1.5	0.091			<u> </u>
Sampling Me	ethodology:	Low Flow Sam	pling			2	0.163		<u> </u>	
	Alpha Metho			\					19	allon = 3.78 liters
Remarks: Sample ID =	- R60	000	SHLI	3W						

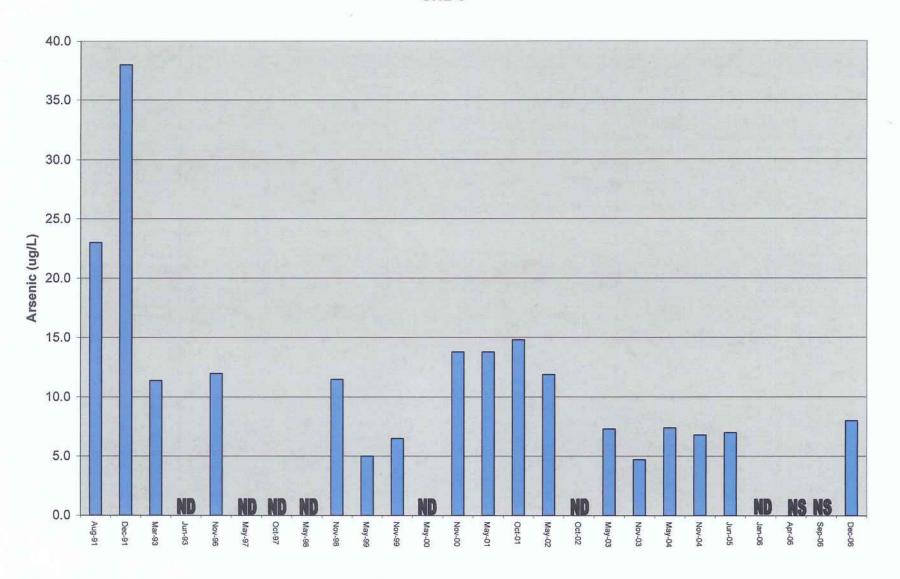
		F	ield Data S	heets for	Low Flow	Ground W	/ater Sa	mpling		·- •	
Project Nam	e: _Shepley Hill L	andfill, Devens	s, Massachusetts		Project Numl	ber: 284350.OM	1.02				
Well ID:	(P-01-	<u>36</u> X	s, Massachusetts Date: <u>し</u> ーし <u>る</u>	-0-	Time: 10	<u>45 </u>					
Weather Con	ditions										
PID		(ppm) (Condition	rel)							
Sample Tean	1 DR /C	R	Condition		_						
			Well	Stabilization	Data					-	
Well Depth _	/	(FT.)	Datum	Ta 2C				Time Purging begin	ns (T _a): <u>/04</u>	<u>/</u>	
Static Water	Level	(FT.)	Diameter :	1 "				Water Level at time	e To: 7.9	8	
Water Colum	n /	(FT) P	Datum Diameter : urge Method:	Low- Flow	- Devi			Water Level at time Time Purging ends	(T.) 112	グ	
		,	argo monioa	5-000 (1-101P	- - - 			Water Level at time			
Time	Volume Removed	рН	Conductivity (mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (maft)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance	
		+/-0.1	+/-3%	+/-0.2 or 3%	+ <u>/ -</u> 10 mV	< 0.3 ft	+/-10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM		
1110		6.67	193.6	10.89	-44	7.98	2.4				
1119		6.67	194,5	10.78	-45	8.00	2.4				
1120		6.64	193.5	10.82	-47	8.01	2.3				
			¦								
			Ga	100	1/2	0					
	· · · · · · · · · · · · · · · · · · ·		100	The C	7,0						
				SAMPLING							
Date: /2/!	3 106	Analysis:	Total As, Fe, Mn, Mg, (Ce, Ne, K by SW-84	6/ 60 10B	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= voit	ime lost (gallons)	
Time:		ı	Alikalinity by 2320B, Ch	iloride by 9251, Sulfa	ate by	1	0.040				
Field Filterin	_ —		9038, Nitrate by 4500,	and Turbidity by 213	30B	1.5	0.091				
	thodology:					2	0.163				
Laboratory: Alpha Method of Shipment: Courier 1gallon = 3.78 kters											
Remarks: Sample ID =				B	65HP1	2136XU	U				

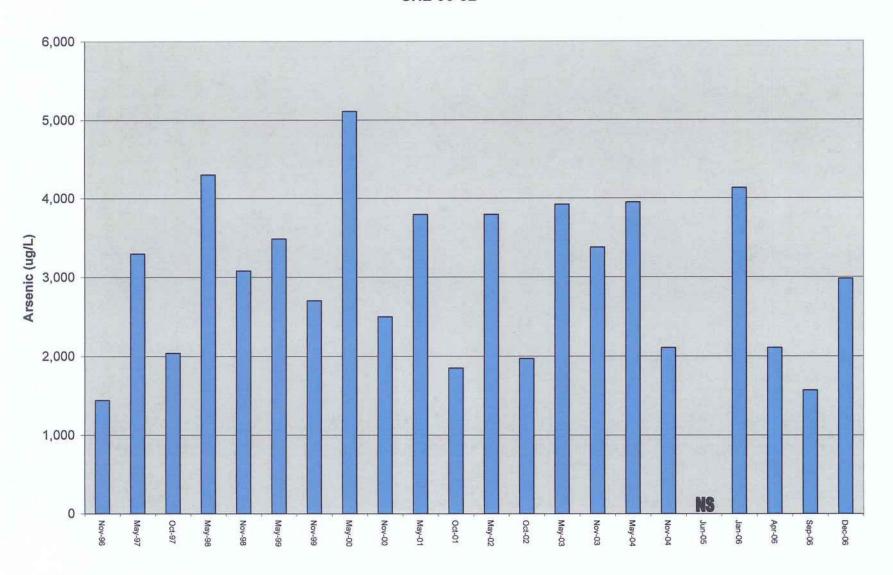


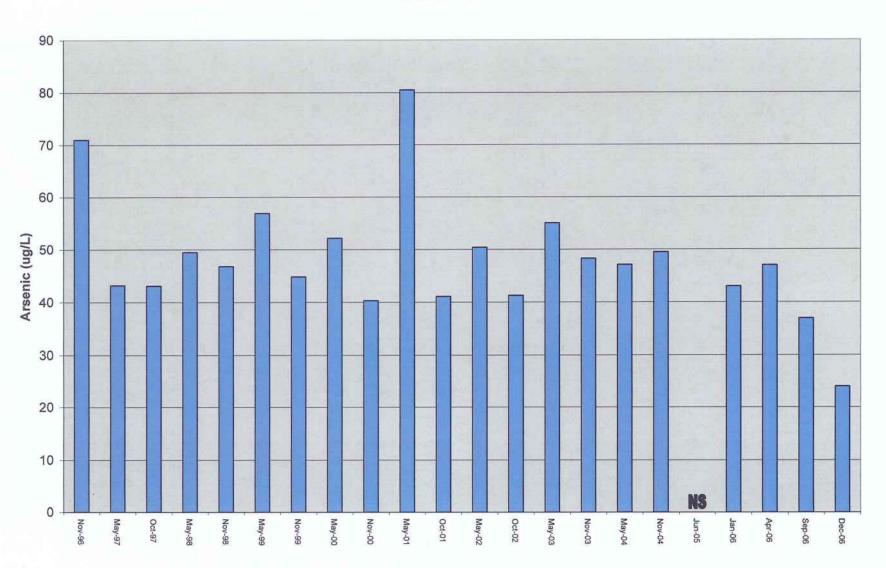
Weather Cor PID	NA m	(ppm) ((FT.)	Condition	Stabilization	_	······································		Time Purging begi Water Level at time Time Purging ends Water Level at time	е Т _{а:} <u>С. З (</u> s: (Т.) <u>Л О</u> О	<u> </u>
Time	Volume Removed	рН	Conductivity (mS/em)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/k)	Turbidity (NTU) <5 NTU preferred	Purge rate (Lpm)	Appearance
- 1		+/-0.1	+/-3%	+ / - 0.2 or 3%	+/-10 mV	< 0.3 ft	+ / - 10%	and + / - 10% > 1 NTU	0.3 to 0.5LPM	
1078		7.77	3133	9.91	-73	43	2.9			d
1050		6.79	200.0	10.14	-53	6.75	2.4			
1055		6.79	20.7	10.12	-54	6.75	2.4			
1/00		6.75	201.5	10.18	-61	6.70	2.3			
				Sourf	le p 1.	100				
					<u> </u>					
Date: <u>12/13</u>	3 106	Analysis:	Total As, Fe, Mn, Mg. (SAMPLING Ca. No. K by SW-84	6/ 6010B	Diameter (inch)	Gallon / Foot	* delta w.t. (fil)	= wat	me lost (gallone)
Time: <u></u>		-	Alkalinity by 2320B, Ch			1	0.040	marker W.L. Vill	- 101	THE PART (STRUCTURE)
Field Filteria	ng:		9038, Nitrate by 4500,			1.5	0.091			
		Low Flow San				2	0.183			
Sampling M	lethodology: Alpha Metho	Low Flow San	<u>reling</u>	B6	SHPO				1ga	llon = 3.78 liters

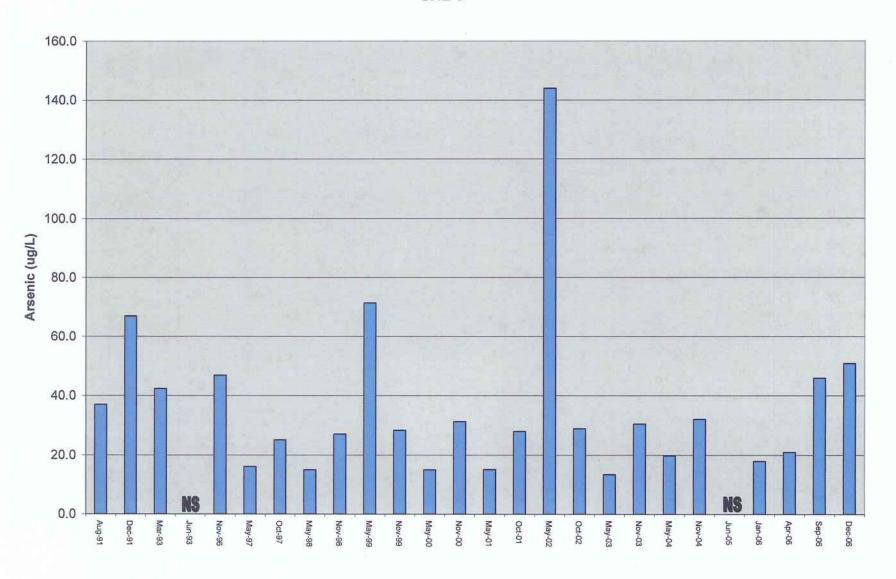


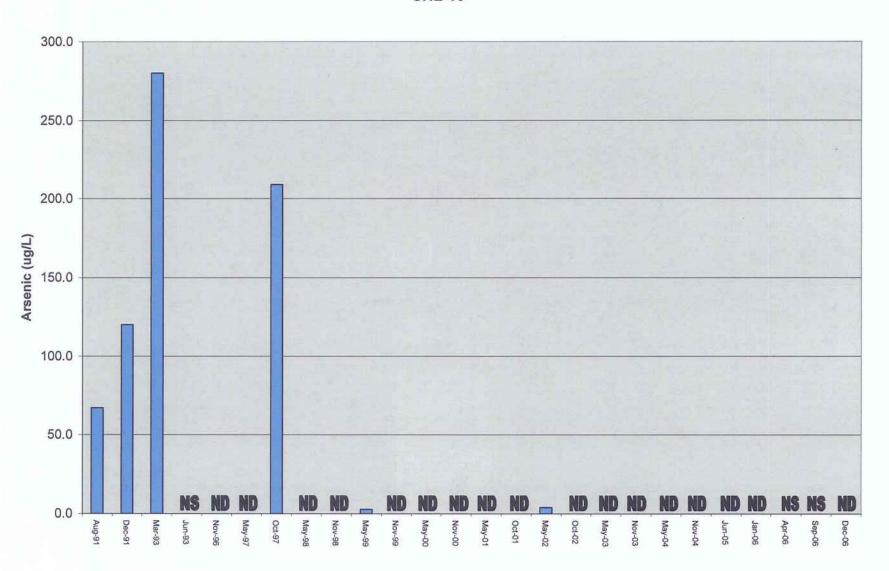
		F	Field Data S	heets for l	Low Flow	Ground W	ater Sa	mpling		
Weather Con PID	e: Shepley Hill L	(ppm)	s, Massachusetts Date: 12-13- Condition		Project Numb	per: 284350.OM D	1.02			
Well Depth _ Static Water	/	- (ET.)	Datum	Stabilization Pevi -		/		Time Purging begli Water Level at time Time Purging ends Water Level at time	: (T ₁) <u>1246</u>	?
Time	Volume Removed	pH +/-0.1	Conductivity Lm8/cm) NS/UN +/-3%	TEMP.(C) + / - 0.2 or 3%	Redox (mV) + / - 10 mV	Water level (Ft)	D.O. (mg/L)	Turbidity (NTU) <5 NTU preferred and + / - 10% > 1 NTU	(Lpm) 0.3 to 0.5LPM	Appearance
1030		7.11	313.3	9.91	-73	4.3	2.9			
1035		6.90	760 0	9.92	-72	44	2.8			
104P		6.81	309.0	9.99	-72	4,35	2.9			
			SAM	PLRD	@ 10	47				
		 	27.	· Ly	(10	10				
				SAMPLING				_		
Date: 12/12		-	Total As, Fe, Mn, Mg, C	a, Na, K by SW-84		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= vol	ume lost (gallons)
	g: ethodology:	Low Flow San			-	1.5	0.040 0.091 0.163			
Laboratory: Remarks: Sample ID =	Alpha Metho	od of Shipm	ent: <u>Courier</u>		B6 # S	HPO1 38	AW		1ga	uton = 3.78 liters

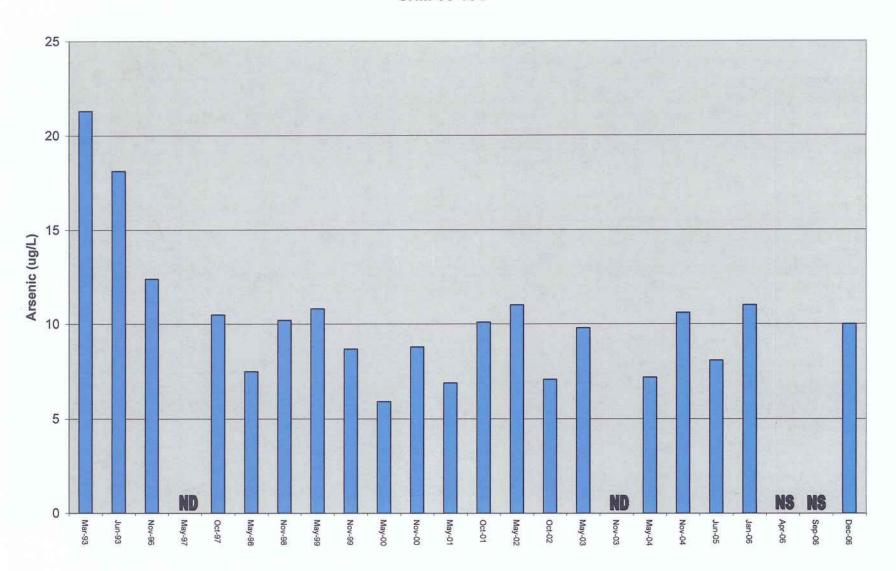

Appendix D
Comparison of Arsenic Results

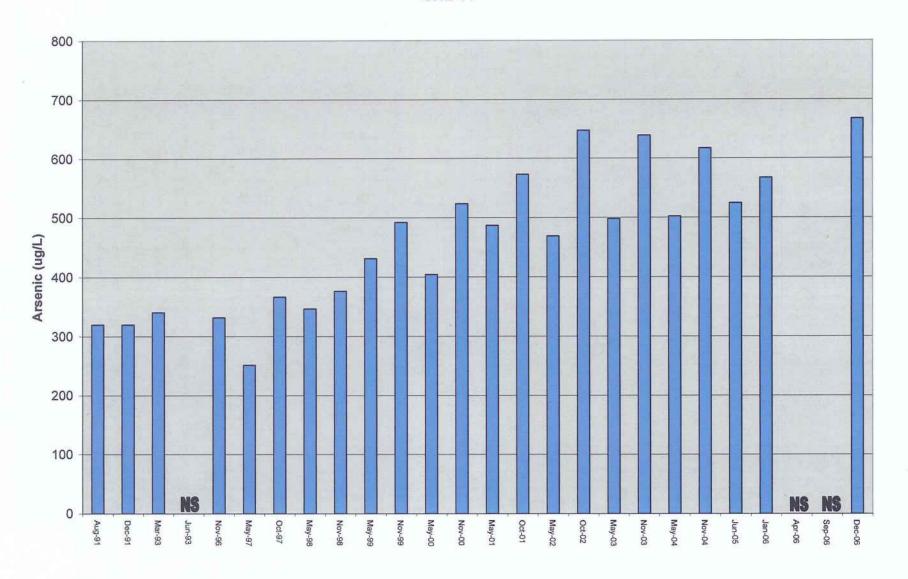

SHL-4

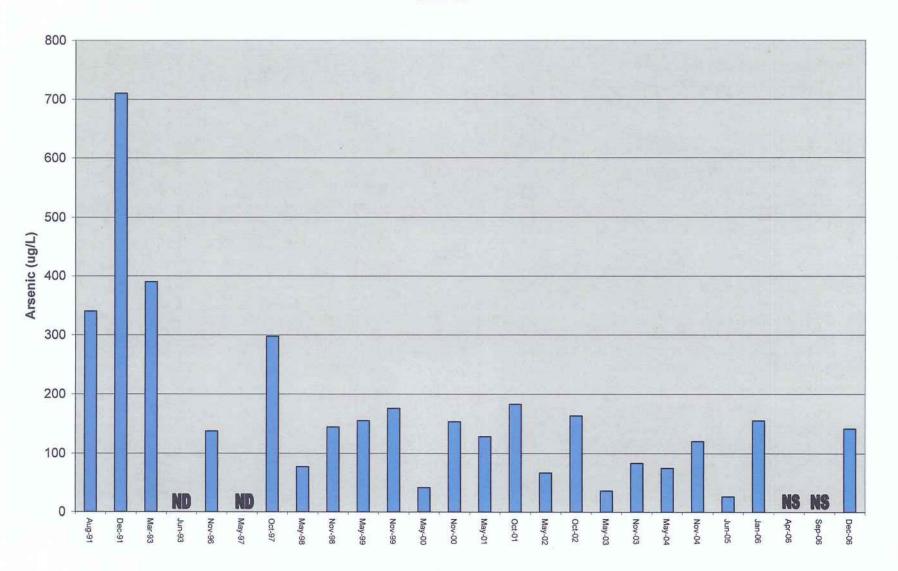

SHL-5

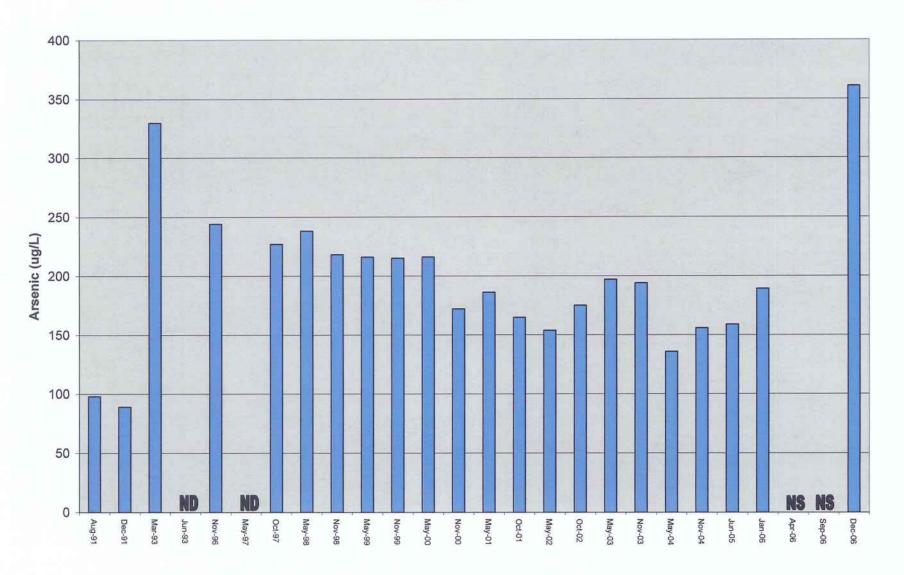

SHL-96-5B

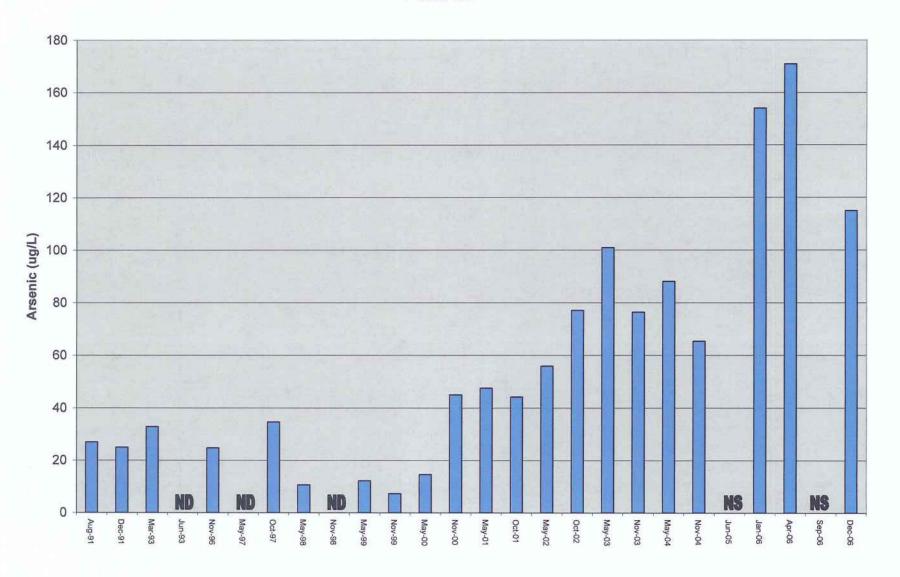

SHL-96-5C

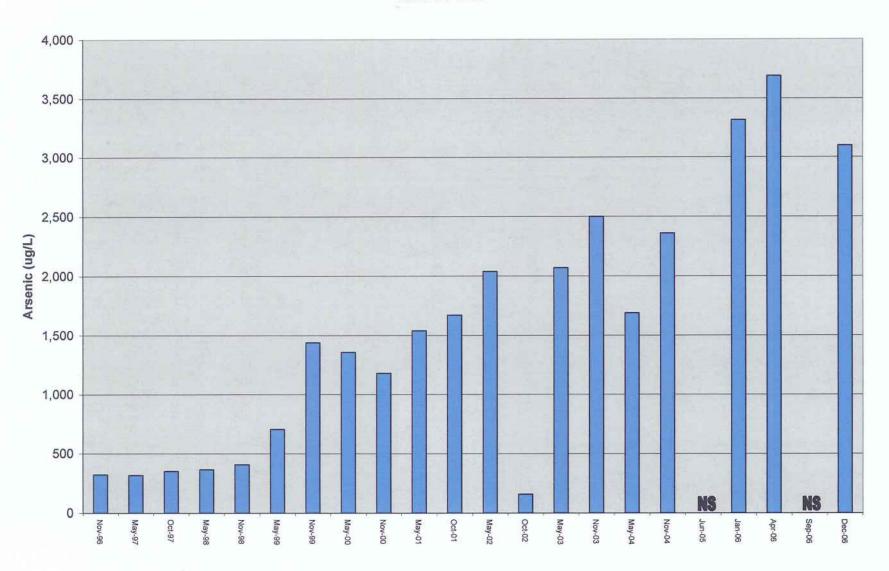

SHL-9

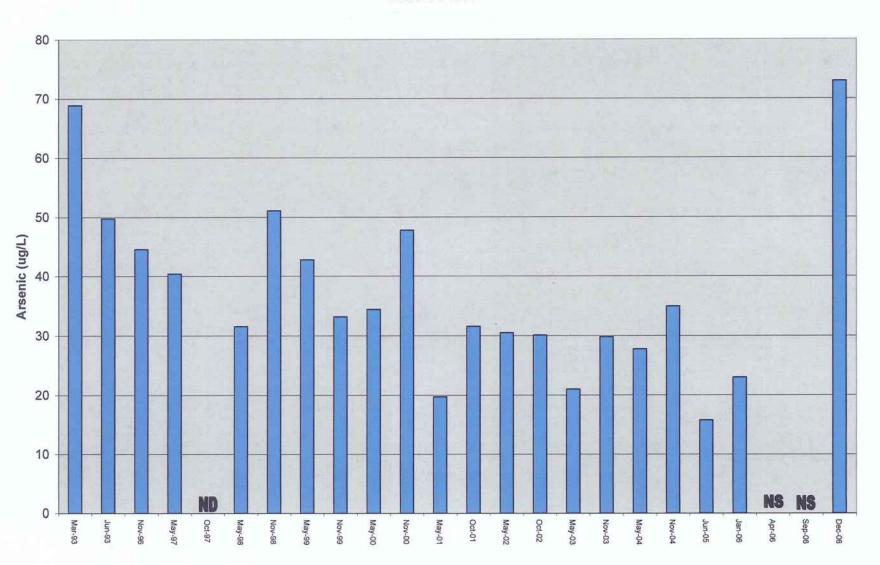

SHL-10


SHM-93-10C


SHL-11


SHL-19


SHL-20


SHL-22

SHM-96-22B

SHM-96-22C

Appendix E

Data Quality Evaluation and Chemical Quality Analysis

Reports

Fort Devens 2006 March, April, and September PMP Shepley's Hill Sampling Data Quality Evaluation Report

Introduction

The objective of this Data Quality Evaluation (DQE) report is to assess the data quality of analytical results for water samples collected for Fort Devens during the 2006 March, April, and September Performance Monitoring Program (PMP) Shepley's Hill sampling event. Individual method requirements, guidelines from the USEPA Contract Laboratory National Functional Guidelines for Inorganic Data Review, July 2002 (NFG) were used in this assessment.

This report is intended as a general data quality assessment designed to summarize data issues.

Analytical Data

This DQE report covers 62 normal (N) and 4 field duplicate (FD) environmental samples. These samples were reported under 7 sample delivery groups. Samples were collected between March 15, and September 25, 2006 and delivered to the laboratory the same day as collection. Alpha Analytical Laboratories (APHW) in Westborough, Massachusetts performed the analyses. Selected samples were analyzed for the following analytes/methods:

Table 1 Analytical Parameters					
Parameter	Method	Laboratory			
Total Alkalinity	E310.1	APHW			
pH		APHW			
Chloride	SW9251, E300.0	APHW			
Nitrogen, Nitrate	A4500, E300.0	APHW			
Sulfate	E300.0	APHW			
Biochemical Oxygen Demand (BOD), 5-day	E405.1	APHW			
Oil & Grease	E1664A	APHW			
Total Suspended Solids	E160.2	APHW			
Total Cyanide	E335.2	APHW			
Turbidity	A2130B	APHW			
Methylene Chloride	SW8260B	APHW			
1,1-Dichloroethane	SW8260B	APHW			
Chloroform	SW8260B	APHW			
Carbon Tetrachloride	SW8260B	APHW			
1,2-Dichloropropane	SW8260B	APHW			

Tal	ble 1
Analytical	Parameters

	Analytical Parameter	'S
Parameter	Method	Laboratory
Dibromochloromethane	SW8260B	APHW
1,1,2-Trichloroethane	SW8260B	APHW
Tetrachloroethene	SW8260B	APHW
Chlorobenzene	SW8260B	APHW
Trichlorofluoromethane	SW8260B	APHW
1,2-Dichloroethane	SW8260B	APHW
1,1,1-Trichloroethane	SW8260B	APHW
Bromodichloromethane	SW8260B	APHW
trans-1,3-Dichloropropene	SW8260B	APHW
cis-1,3-Dichloropropene	SW8260B	APHW
Bromoform	SW8260B	APHW
1,1,2,2-Tetrachloroethane	SW8260B	APHW
Benzene	SW8260B	APHW
Toluene	SW8260B	APHW
Ethylbenzene	SW8260B	APHW
Chloromethane	SW8260B	APHW
Bromomethane	SW8260B	APHW
Vinyl Chloride	SW8260B	APHW
Chloroethane	SW8260B	APHW
1,1-Dichloroethene	SW8260B	APHW
trans-1,2-Dichloroethene	SW8260B	APHW
Trichloroethene	SW8260B	APHW
1,2-Dichlorobenzene	SW8260B	APHW
1,3-Dichlorobenzene	SW8260B	APHW
1,4-Dichlorobenzene	SW8260B	APHW
Methyl tert butyl ether	SW8260B	APHW
m,p-Xylene	SW8260B	APHW
o-Xylene	SW8260B	APHW
cis-1,2-Dichloroethene	SW8260B	APHW
Dibromomethane	SW8260B	APHW
1,2,3-Trichloropropane	SW8260B	APHW
Styrene	SW8260B	APHW
Dichlorodifluoromethane	SW8260B	APHW
1,1-Dichloropropene	SW8260B	APHW
Bromochloromethane	SW8260B	APHW
2,2-Dichloropropane	SW8260B	APHW

	Table 1 Analytical Parameters	
<u>Parameter</u>	Method	Laboratory
1,2-Dibromoethane	SW8260B	APHW
1,3-Dichloropropane	SW8260B	APHW
1,1,1,2-Tetrachloroethane	SW8260B	APHW
Bromobenzene	SW8260B	APHW
n-Butylbenzene	SW8260B	APHW
sec-Butylbenzene	SW8260B	APHW
ert-Butylbenzene	SW8260B	APHW
o-Chlorotoluene	SW8260B	APHW
p-Chlorotoluene	SW8260B	APHW
1,2-Dibromo-3-chloropropane	SW8260B	APHW
Hexachlorobutadiene	SW8260B	APHW
Isopropylbenzene	SW8260B	APHW
p-Isopropyltoluene	SW8260B	APHW
Naphthalene	SW8260B	APHW
n-Propylbenzene	SW8260B	APHW
1,2,3-Trichlorobenzene	SW8260B	APHW
1,2,4-Trichlorobenzene	SW8260B	APHW
1,3,5-Trimethylbenzene	SW8260B	APHW
1,2,4-Trimethylbenzene	SW8260B	APHW
Total Aluminum	SW6010B	APHW
Total Arsenic	SW6010B	APHW
Total Antimony	SW6010B	APHW
Total Barium	SW6010B	APHW
Total Beryllium	SW6010B	APHW
Total Cadmium	SW6010B	APHW
Total Calcium	SW6010B	APHW
Total Chromium	SW6010B	APHW
Total Copper	SW6010B	APHW
Total Iron	SW6010B	APHW
Total Lead	SW6010B	APHW
Total Magnesium	SW6010B	APHW
Total Manganese	SW6010B	APHW
Total Mercury	SW6010B	APHW
Total Nickel	SW6010B	APHW
Total Potassium	SW6010B	APHW

Total Selenium

APHW

SW6010B

Table 1 Analytical Parameters				
<u>Parameter</u>	Method	Laboratory		
Total Silver	SW6010B	APHW		
Total Sodium	SW6010B	APHW		
Total Thallium	SW6010B	APHW		
Total Zinc	SW6010B	APHW		

The assessment of data includes a review of: (1) the Chain-of-Custody (CoC) documentation; (2) holding time compliance; (3) the required quality control (QC) samples at the specified frequencies; (4) flagging for method blanks; (5) laboratory control spiking samples (LCS); (6) analytical spike data; (7) matrix spike/matrix spike duplicate (MS/MSD) samples; and (8) flagging for equipment blank.

Data flags were assigned according to the NFG. Multiple flags are routinely applied to specific sample method/matrix/analyte combinations, but there will be only one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes matrix and blank sample impacts.

The data flags are those listed in the NFG and are defined below:

- J = Analyte is present but the reported value may not be accurate or precise (estimated).
- R = The data are unusable due to deficiencies in the ability to analyze the sample and meet QC criteria.
- U = Analyte was not detected at the specified detection limit.
- UJ = Analyte was not detected and the specified detection limit may not be accurate or precise (estimated).

Findings

The overall summaries of the data validation findings are contained in the following sections:

Holding Times

All holding-time criteria were met.

Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination.

Equipment Blank

An equipment blank was collected and analyzed at the required frequency. Turbidity and Chloride were detected in the equipment blank. These target analytes were detected in the associated samples so "J" flags were applied.

Trip Blank

Trip blanks were collected and analyzed at the required frequency. No target analytes were detected in the trip blanks so all acceptance criteria were met.

Field Duplicates

FDs were collected and analyzed at the required frequency. The relative percent differences (RPD) between the N and FD results exceeded the acceptance criteria for Turbidity for B5000SHL22W. The RPD exceedance is most likely indicative of analytical imprecision caused by the magnification of errors near the limit of detection. The detected results were "J" flagged.

Laboratory Control Samples

Laboratory control sample/laboratory control sample duplicates were analyzed as required. All accuracy and precision criteria were met.

Matrix Spike/Matrix Spike Duplicate Samples

Matrix spike/matrix spike duplicates (MS/SD) were analyzed as required. All accuracy and precision criteria were met.

Chain of Custody

Methods outlined on the CoC were performed by the lab using the equivalent Standard Method. No other discrepancies were noted.

Completeness

Out of approximately 880 points, there were no data points rejected due to QC exceedances, no data points were qualified as non-detect due to blank exceedances, and 13 data points were qualified as estimated due to QC exceedances. These numbers indicate that the overall completeness goals for the project were met and that the quality of the analytical program and laboratory is sufficient to meet the project data quality objectives.

Overall Assessment

The final activity in the data quality evaluation is an assessment of whether the data meets the data quality objectives. The goal of this assessment is to demonstrate that a sufficient number of representative samples were collected and the resulting analytical data can be used to support the decisionmaking process. The precision, accuracy, representativeness, completeness and comparability are addressed in the NFG. The following summary highlights the data evaluation findings for the above-defined events:

- 1. The completeness objectives were met for all method/analyte combinations.
- There were no results qualified because of low-level blank contamination.
- The precision and accuracy of the data, as measured by laboratory QC indicators, suggest that the NFG goals have been met.

Table 1 - Validation Flags

FieldID	Method	Analyte	Final Result	Final Flag	Reason
B5000SHL22W	A2130B	Turbidity	1.4	J	FD>RPD
DUP02092106	A2130B	Turbidity	0.92	J	FD>RPD
B3SH0539BW	A2130B	Turbidity	880	J	FD>RPD
B3000DUP2W	A2130B	Turbidity	1400	J	FD>RPD
B300SHL8SW	A2130B	Turbidity	1.2	J	FD>RPD
B3000DUP1W	A2130B	Turbidity	0.78	J	FD>RPD
B5SHM0539BW	A2130B	Turbidity	530	J	EB>MDL
B5SHM0539BW	SW9251	Chloride	46	J	EB>MDL
B5000SHL23W	A2130B	Turbidity	5.3	J	EB>MDL
B5000SHL23W	SW9251	Chloride	2.0	J	EB>MDL
B5000SHL21W	A2130B	Turbidity	0.85	J	EB>MDL
B5000SHL21W	SW9251	Chloride	2.0	J	EB>MDL
B500SHL10DW	A2130B	Turbidity	60	J	EB>MDL
B500SHL10DW	SW9251	Chloride	21	J	EB>MDL
B50000SHL15W	A2130B	Turbidity	0.78	J	EB>MDL
B50000SHL15W	SW9251	Chloride	7.1	J	EB>MDL
B50000N5P2W	A2130B	Turbidity	94	J	EB>MDL
B50000N5P2W	SW9251	Chloride	18	J	EB>MDL
B50000N5P1W	A2130B	Turbidity	37	J	EB>MDL
B50000N5P1W	SW9251	Chloride	17	J	EB>MDL

FD>RPD = Field duplicate relative percent difference greater than upper control limit

EB>MDL = Equipment blank detected above the method detection limit

J = Analyte is present but the reported value may not be accurate or precise (estimated).

Fort Devens 2006 June LTM/PMP Shepley's Hill Sampling Data Quality Evaluation Report

Introduction

The objective of this Data Quality Evaluation (DQE) report is to assess the data quality of analytical results for water samples collected for Fort Devens during the 2006 June Long-Term Monitoring Program/Performance Monitoring Program (LTM/PMP) Shepley's Hill sampling event. Individual method requirements, guidelines from the USEPA Contract Laboratory National Functional Guidelines for Inorganic Data Review, July 2002 (NFG) were used in this assessment.

This report is intended as a general data quality assessment designed to summarize data issues.

Analytical Data

This DQE report covers 47 normal (N) and 4 field duplicate (FD) environmental samples. These samples were reported under 7 sample delivery groups. Samples were collected between June 6, and June 13, 2006 and delivered to the laboratory the same day as collection. Alpha Analytical Laboratories (APHW) in Westborough, Massachusetts performed the analyses. Selected samples were analyzed for the following analytes/methods:

Table 1 Analytical Parameters				
<u>Parameter</u>	Method		Laboratory	
Total Alkalinity	E310.1		APHW	
Chloride	SW9251, E300.0		APHW	
Nitrogen, Nitrate	A4500, E300.0		APHW	
Sulfate	E300.0		APHW	
Chemical Oxygen Demand	E410.4		APHW	
Biochemical Oxygen Demand (BOD), 5-day	E405.1		APHW	
Total Organic Carbon	SW9060		APHW	
Total Suspended Solids	E160.2		APHW	
Total Cyanide	E335.2		APHW	
Hardness	A2340B		APHW	
Turbidity	A2130B		APHW	
Methylene Chloride	SW8260B		APHW	
1,1-Dichloroethane	SW8260B		APHW	
Chloroform	SW8260B		APHW	
Carbon Tetrachloride	SW8260B		APHW	
1,2-Dichloropropane	SW8260B		APHW	

-	Table 1 Analytical Parameters	S
Parameter	Method	Laboratory
Dibromochloromethane	SW8260B	APHW
1,1,2-Trichloroethane	SW8260B	APHW
Tetrachloroethene	SW8260B	APHW
Chlorobenzene	SW8260B	APHW
Trichlorofluoromethane	SW8260B	APHW
1,2-Dichloroethane	SW8260B	APHW
1,1,1-Trichloroethane	SW8260B	APHW
Bromodichloromethane	SW8260B	APHW
trans-1,3-Dichloropropene	SW8260B	APHW
cis-1,3-Dichloropropene	SW8260B	APHW
Bromoform	SW8260B	APHW
1,1,2,2-Tetrachloroethane	SW8260B	APHW
Benzene	SW8260B	APHW
Toluene	SW8260B	APHW
Ethylbenzene	SW8260B	APHW
Chloromethane	SW8260B	APHW
Bromomethane	SW8260B	APHW
Vinyl Chloride	SW8260B	APHW
Chloroethane	SW8260B	APHW
1,1-Dichloroethene	SW8260B	APHW
trans-1,2-Dichloroethene	SW8260B	APHW
Trichloroethene	SW8260B	APHW
1,2-Dichlorobenzene	SW8260B	APHW
1,3-Dichlorobenzene	SW8260B	APHW
1,4-Dichlorobenzene	SW8260B	APHW
Methyl tert butyl ether	SW8260B	APHW
m,p-Xylene	SW8260B	APHW
o-Xylene	SW8260B	APHW
cis-1,2-Dichloroethene	SW8260B	APHW
Dibromomethane	SW8260B	APHW
1,2,3-Trichloropropane	SW8260B	APHW
Styrene	SW8260B	APHW
Dichlorodifluoromethane	SW8260B	APHW
Acetone	SW8260B	APHW
Carbon disulfide	SW8260B	APHW
2-Butanone	SW8260B	APHW

Table 1 Analytical Parameters			
Parameter	Method	Laboratory	
4-Methyl-2-pentanone	SW8260B	APHW	
2-Hexanone	SW8260B	APHW	
Bromochloromethane	SW8260B	APHW	
Tetrahydrafuran	SW8260B	APHW	
2,2-Dichloropropane	SW8260B	APHW	
1,2-Dibromoethane	SW8260B	APHW	
1,3-Dichloropropane	SW8260B	APHW	
1,1,1,2-Tetrachloroethane	SW8260B	APHW	
Bromobenzene	SW8260B	APHW	
n-Butylbenzene	SW8260B	APHW	
sec-Butylbenzene	SW8260B	APHW	
tert-Butylbenzene	SW8260B	APHW	
o-Chlorotoluene	SW8260B	APHW	
p-Chlorotoluene	SW8260B	APHW	
1,2-Dibromo-3-chloropropane	SW8260B	APHW	
Hexachlorobutadiene	SW8260B	APHW	
Isopropylbenzene	SW8260B	APHW	
p-Isopropyltoluene	SW8260B	APHW	
Naphthalene	SW8260B	APHW	
n-Propylbenzene	SW8260B	APHW	
1,2,3-Trichlorobenzene	SW8260B	APHW	
1,2,4-Trichlorobenzene	SW8260B	APHW	
1,3,5-Trimethylbenzene	SW8260B	APHW	
1,2,4-Trimethylbenzene	SW8260B	APHW	
Ethyl ether	SW8260B	APHW	
Isopropyl ether	SW8260B	APHW	
Ethyl-tert-butyl-ether	SW8260B	APHW	
Tertiary-Amyl Methyl Ether	SW8260B	APHW	
1,4-Dioxane	SW8260B	APHW	
Total Aluminum	SW6010B	APHW	
Total Arsenic	SW6010B	APHW	
Total Barium	SW6010B	APHW	
Total Cadmium	SW6010B	APHW	
Total Calcium	SW6010B	APHW	
Total Chromium	SW6010B	APHW	
Total Copper	SW6010B	APHW	

Table 1 Analytical Parameters				
<u>Parameter</u>	<u>Method</u>		Laboratory	
Total Iron	SW6010B		APHW	
Total Lead	SW6010B		APHW	
Total Magnesium	SW6010B		APHW	
Total Manganese	SW6010B		APHW	
Total Mercury	SW6010B		APHW	
Total Nickel	SW6010B		APHW	
Total Potassium	SW6010B		APHW	
Total Selenium	SW6010B		APHW	
Total Silver	SW6010B		APHW	
Total Sodium	SW6010B		APHW	
Total Zinc	SW6010B		APHW	

The assessment of data includes a review of: (1) the Chain-of-Custody (CoC) documentation; (2) holding time compliance; (3) the required quality control (QC) samples at the specified frequencies; (4) flagging for method blanks; (5) laboratory control spiking samples (LCS); (6) analytical spike data; (7) matrix spike/matrix spike duplicate (MS/MSD) samples; and (8) flagging for equipment blank.

Data flags were assigned according to the NFG. Multiple flags are routinely applied to specific sample method/matrix/analyte combinations, but there will be only one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes matrix and blank sample impacts.

The data flags are those listed in the NFG and are defined below:

- J = Analyte is present but the reported value may not be accurate or precise (estimated).
- R = The data are unusable due to deficiencies in the ability to analyze the sample and meet QC criteria.
- U = Analyte was not detected at the specified detection limit.
- UJ = Analyte was not detected and the specified detection limit may not be accurate or precise (estimated).

Findings

The overall summaries of the data validation findings are contained in the following sections:

Holding Times

All holding-time criteria were met.

Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination.

Equipment Blank

An equipment blank was collected and analyzed at the required frequency. Chloroform was detected in the equipment blank. None of these target analytes were detected in any of the samples so no flags were applied.

Trip Blank

Trip blanks were collected and analyzed at the required frequency. Acetone was detected in the trip blank. None of these target analytes were detected in any of the samples so no flags were applied.

Field Duplicates

FDs were collected and analyzed at the required frequency. The relative percent differences (RPD) between the N and FD results met the acceptance criteria.

Laboratory Control Samples

Laboratory control sample/laboratory control sample duplicates were analyzed as required. Dichlorodifluoromethane, 2-Hexanone, and Chloromethane were below the laboratory control limit and their associated samples were non-detects so an "R" flag was applied. All other accuracy and precision criteria were met.

Matrix Spike/Matrix Spike Duplicate Samples

Matrix spike/matrix spike duplicates (MS/SD) were analyzed as required. Isopropylbenzene and Total potassium did not meet MS/SD acceptance criteria. The associated result was non-detect so no flags were applied. Total iron did not meet MS/SD acceptance criteria. The associated sample concentration was greater than four times the spike concentrations so no flags were required per the NFG. All other accuracy and precision criteria were met.

Chain of Custody

Methods outlined on the CoC were performed by the lab using the equivalent Standard Method. No other discrepancies were noted.

Completeness

Out of approximately 3970 points, there were 8 data points rejected due to QC exceedances, no data points were qualified as non-detect due to blank exceedances, and no data points were qualified as estimated due to QC exceedances. These numbers indicate that the overall completeness goals for the project were met and that the quality of the analytical program and laboratory is sufficient to meet the project data quality objectives.

Overall Assessment

The final activity in the data quality evaluation is an assessment of whether the data meets the data quality objectives. The goal of this assessment is to demonstrate that a sufficient number of

representative samples were collected and the resulting analytical data can be used to support the decisionmaking process. The precision, accuracy, representativeness, completeness and comparability are addressed in the NFG. The following summary highlights the data evaluation findings for the above-defined events:

- 1. The completeness objectives were met for all method/analyte combinations.
- 2. There were no results qualified because of low-level blank contamination.
- The precision and accuracy of the data, as measured by laboratory QC indicators, suggest that the NFG goals have been met.

Table 1 - Validation Flags

FieldID	Method	Analyte	Final Result	Final Flag	Reason
060806SHL5	SW8260B	Chloroform	ND	None	EB>MDL
B40SHM965BW	SW8260B	Chloroform	ND	None	EB>MDL
B40SHM965CW	SW8260B	Chloroform	ND	None	EB>MDL
061306SHL10	SW8260B	Isopropylbenzene	ND	None	MS>UCL
B40SHM965CW	SW8260B	Dichlorodifluoromethane	ND	R	LCS <lcl< td=""></lcl<>
B40SHM965CW	SW8260B	Dichlorodifluoromethane	ND	R	LCSD <lcl< td=""></lcl<>
B40SHM965BW	SW8260B	Dichlorodifluoromethane	ND	R	LCS <lcl< td=""></lcl<>
B40SHM965BW	SW8260B	Dichlorodifluoromethane	ND	R	LCSD <lcl< td=""></lcl<>
060806SHL5	SW8260B	Dichlorodifluoromethane	ND	R	LCS <lcl< td=""></lcl<>
060806SHL5	SW8260B	Dichlorodifluoromethane	ND	R	LCSD <lcl< td=""></lcl<>
060606SHL20	SW8260B	Acetone	ND	None	TB>MDL
060606SHL11	SW8260B	Acetone	ND	None	TB>MDL
060606SHL4	SW8260B	2-Hexanone	ND	R	LCS <lcl< td=""></lcl<>
060606SHL19	SW8260B	2-Hexanone	ND	R	LCS <lcl< td=""></lcl<>
B40000PSP1W	SW6010B	Total Potassium	ND	None	SD>UCL
B40000PSP1W	SW6010B	Total Potassium	ND	None	MS>UCL
B4000SHL22W	SW8260B	Chloromethane	ND	R	LCS <lcl< td=""></lcl<>
B4000SHL22W	SW8260B	Chloromethane	ND	R	LCSD <lcl< td=""></lcl<>
B4SHM9622BW	SW8260B	Chloromethane	ND	R	LCS <lcl< td=""></lcl<>
B4SHM9622BW	SW8260B	Chloromethane	ND	R	LCSD <lcl< td=""></lcl<>
B40000SHL9W	SW8260B	Chloromethane	ND	R	LCS <lcl< td=""></lcl<>
B40000SHL9W	SW8260B	Chloromethane	ND	R	LCSD <lcl< td=""></lcl<>

EB>MDL = Equipment blank greater than method detection limit.

TB>MDL = Trip blank greater than method detection limit.

MS>UCL = Matrix spike recovery greater than upper control limit.

SD>UCL = Matrix spike duplicate recovery greater than upper control limit.

LCS<LCL = Laboratory control spike recovery less than lower control limit

LCSD<LCL = Laboratory control spike duplicate recovery less than lower control limit None = A database flag with no QC implications. A flag is not applied

R = Rejected data

Fort Devens 2006 December LTM/PMP Shepley's Hill Sampling Data Quality Evaluation Report

Introduction

The objective of this Data Quality Evaluation (DQE) report is to assess the data quality of analytical results for water samples collected for Fort Devens during the 2006 December Long-Term Monitoring Program/Performance Monitoring Program (LTM/PMP) Shepley's Hill sampling event. Individual method requirements, guidelines from the USEPA Contract Laboratory National Functional Guidelines for Inorganic Data Review, July 2002 (NFG) were used in this assessment.

This report is intended as a general data quality assessment designed to summarize data issues.

Analytical Data

This DQE report covers 54 normal (N) and 3 field duplicate (FD) environmental samples. These samples were reported under 11 sample delivery groups. Samples were collected between December 5, and December 13, 2006 and delivered to the laboratory the same day as collection. Alpha Analytical Laboratories (APHW) in Westborough, Massachusetts performed the analyses. Selected samples were analyzed for the following analytes/methods:

Parameter	Method	Laboratory	
Total Alkalinity	E310.1	APHW	
Alkalinity, Carbonate	E310.1	APHW	
Methane		APHW	
Ethane		APHW	
Ethene		APHW	
рН		APHW	
Chloride	SW9251, E300.0	APHW	
Total Residual Chlorine		APHW	
Nitrogen, Nitrate	A4500, E300.0	APHW	
Sulfate	E300.0	APHW	
Chemical Oxygen Demand	E410.4	APHW	
Biochemical Oxygen Demand (BOD), 5-day	E405.1	APHW	
Total Organic Carbon	SW9060	APHW	
Total Suspended Solids	E160.2	APHW	
Total Dissolved Solids	E160.1	APHW	
Total Cyanide	E335.2	APHW	

Tal	ble 1
Analytical	Parameters

	Analytical Parameters	Analytical Parameters		
<u>Parameter</u>	Method	Laboratory		
Hardness	A2340B	APHW		
Turbidity	A2130B	APHW		
Methylene Chloride	SW8260B	APHW		
1,1-Dichloroethane	SW8260B	APHW		
Chloroform	SW8260B	APHW		
Carbon Tetrachloride	SW8260B	APHW		
1,2-Dichloropropane	SW8260B	APHW		
Dibromochloromethane	SW8260B	APHW		
1,1,2-Trichloroethane	SW8260B	APHW		
Tetrachloroethene	SW8260B	APHW		
Chlorobenzene	SW8260B	APHW		
Trichlorofluoromethane	SW8260B	APHW		
1,2-Dichloroethane	SW8260B	APHW		
1,1,1-Trichloroethane	SW8260B	APHW		
Bromodichloromethane	SW8260B	APHW		
trans-1,3-Dichloropropene	SW8260B	APHW		
cis-1,3-Dichloropropene	SW8260B	APHW		
Bromoform	SW8260B	APHW		
1,1,2,2-Tetrachloroethane	SW8260B	APHW		
Benzene	SW8260B	APHW		
Toluene	SW8260B	APHW		
Ethylbenzene	SW8260B	APHW		
Chloromethane	SW8260B	APHW		
Bromomethane	SW8260B	APHW		
Vinyl Chloride	SW8260B	APHW		
Chloroethane	SW8260B	APHW		
1,1-Dichloroethene	SW8260B	APHW		
trans-1,2-Dichloroethene	SW8260B	APHW		
Trichloroethene	SW8260B	APHW		
1,2-Dichlorobenzene	SW8260B	APHW		
1,3-Dichlorobenzene	SW8260B	APHW		
1,4-Dichlorobenzene	SW8260B	APHW		
Methyl tert butyl ether	SW8260B	APHW		
m,p-Xylene	SW8260B	APHW		
o-Xylene	SW8260B	APHW		
cis-1,2-Dichloroethene	SW8260B	APHW		

Tal	ble 1
Analytical	Parameters

	Analytical Parameters		
Parameter	Method	Laboratory	
Dibromomethane	SW8260B	APHW	
1,2,3-Trichloropropane	SW8260B	APHW	
Styrene	SW8260B	APHW	
Dichlorodifluoromethane	SW8260B	APHW	
1,1-Dichloropropene	SW8260B	APHW	
Bromochloromethane	SW8260B	APHW	
2,2-Dichloropropane	SW8260B	APHW	
1,2-Dibromoethane	SW8260B	APHW	
1,3-Dichloropropane	SW8260B	APHW	
1,1,1,2-Tetrachloroethane	SW8260B	APHW	
Bromobenzene	SW8260B	APHW	
n-Butylbenzene	SW8260B	APHW	
sec-Butylbenzene	SW8260B	APHW	
tert-Butylbenzene	SW8260B	APHW	
o-Chlorotoluene	SW8260B	APHW	
p-Chlorotoluene	SW8260B	APHW	
1,2-Dibromo-3-chloropropane	SW8260B	APHW	
Hexachlorobutadiene	SW8260B	APHW	
Isopropylbenzene	SW8260B	APHW	
p-Isopropyltoluene	SW8260B	APHW	
Naphthalene	SW8260B	APHW	
n-Propylbenzene	SW8260B	APHW	
1,2,3-Trichlorobenzene	SW8260B	APHW	
1,2,4-Trichlorobenzene	SW8260B	APHW	
1,3,5-Trimethylbenzene	SW8260B	APHW	
1,2,4-Trimethylbenzene	SW8260B	APHW	
Monochloroacetic Acid	SW6251B	APHW	
Monobromoacetic Acid	SW6251B	APHW	
Dichloroacetic Acid	SW6251B	APHW	
Trichloroacetic Acid	SW6251B	APHW	
Dibromoacetic Acid	SW6251B	APHW	
Bromochloroacetic Acid	SW6251B	APHW	
Total Aluminum	SW6010B	APHW	
Total Arsenic	SW6010B	APHW	
Total Barium	SW6010B	APHW	
Total Cadmium	SW6010B	APHW	

Table 1 Analytical Parameters			
Parameter	Method	Laboratory	
Total Calcium	SW6010B	APHW	
Total Chromium	SW6010B	APHW	
Total Copper	SW6010B	APHW	
Total Iron	SW6010B	APHW	
Total Lead	SW6010B	APHW	
Total Magnesium	SW6010B	APHW	
Total Manganese	SW6010B	APHW	
Total Nickel	SW6010B	APHW	
Total Potassium	SW6010B	APHW	
Total Selenium	SW6010B	APHW	
Total Silver	SW6010B	APHW	
Total Sodium	SW6010B	APHW	
Total Zinc	SW6010B	APHW	

The assessment of data includes a review of: (1) the Chain-of-Custody (CoC) documentation; (2) holding time compliance; (3) the required quality control (QC) samples at the specified frequencies; (4) flagging for method blanks; (5) laboratory control spiking samples (LCS); (6) analytical spike data; (7) matrix spike/matrix spike duplicate (MS/MSD) samples; and (8) flagging for equipment blank.

Data flags were assigned according to the NFG. Multiple flags are routinely applied to specific sample method/matrix/analyte combinations, but there will be only one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes matrix and blank sample impacts.

The data flags are those listed in the NFG and are defined below:

- J = Analyte is present but the reported value may not be accurate or precise (estimated).
- R = The data are unusable due to deficiencies in the ability to analyze the sample and meet QC criteria.
- U = Analyte was not detected at the specified detection limit.
- UJ = Analyte was not detected and the specified detection limit may not be accurate or precise (estimated).

Findings

The overall summaries of the data validation findings are contained in the following sections:

Holding Times

All holding-time criteria were met.

Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination.

Equipment Blank

An equipment blank was collected and analyzed at the required frequency. No target analytes were detected in the equipment blanks so all acceptance criteria were met.

Trip Blank

Trip blanks were collected and analyzed at the required frequency. No target analytes were detected in the trip blanks so all acceptance criteria were met.

Field Duplicates

FDs were collected and analyzed at the required frequency. The relative percent differences (RPD) between the N and FD results met the acceptance criteria.

Laboratory Control Samples

Laboratory control sample/laboratory control sample duplicates were analyzed as required. Dichlorodifluoromethane was above the laboratory control limit but all samples were non-detects and no flagging is required per the NFG. Hexachlorobutadiene was above the RPD limit but all samples were non-detects and no flagging is required per the NFG. Bromomethane, 2,2-Dichloropropane, and BOD were below the laboratory control limit and their associated samples were non-detects so an "R" flag was applied. All other accuracy and precision criteria were met.

Matrix Spike/Matrix Spike Duplicate Samples

Matrix spike/matrix spike duplicates (MS/SD) were analyzed as required. Hexachlorobutadiene, Total cyanide, and Acetone did not meet MS/SD acceptance criteria. The associated results were non-detect so no flags were applied. Total iron did not meet MS/SD acceptance criteria for sample B6000SHL15W. The sample concentration was greater than four times the spike concentrations for total iron so no flags were required per the NFG.

Chain of Custody

Methods outlined on the CoC were performed by the lab using the equivalent Standard Method. No other discrepancies were noted.

Completeness

Out of approximately 2340 points, there were 18 points rejected due to QC exceedances, no data points were qualified as non-detect due to blank exceedances, and two data points were qualified as estimated due to QC exceedances. These numbers indicate that the overall completeness goals for the project were met and that the quality of the analytical program and laboratory is sufficient to meet the project data quality objectives.

Holding Times

All holding-time criteria were met.

Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination.

Equipment Blank

An equipment blank was collected and analyzed at the required frequency. No target analytes were detected in the equipment blanks so all acceptance criteria were met.

Trip Blank

Trip blanks were collected and analyzed at the required frequency. No target analytes were detected in the trip blanks so all acceptance criteria were met.

Field Duplicates

FDs were collected and analyzed at the required frequency. The relative percent differences (RPD) between the N and FD results met the acceptance criteria.

Laboratory Control Samples

Laboratory control sample/laboratory control sample duplicates were analyzed as required. Dichlorodifluoromethane was above the laboratory control limit but all samples were non-detects and no flagging is required per the NFG. Hexachlorobutadiene was above the RPD limit but all samples were non-detects and no flagging is required per the NFG. Bromomethane, 2,2-Dichloropropane, and BOD were below the laboratory control limit and their associated samples were non-detects so an "R" flag was applied. All other accuracy and precision criteria were met.

Matrix Spike/Matrix Spike Duplicate Samples

Matrix spike/matrix spike duplicates (MS/SD) were analyzed as required. Hexachlorobutadiene, Total cyanide, and Acetone did not meet MS/SD acceptance criteria. The associated results were non-detect so no flags were applied. Total iron did not meet MS/SD acceptance criteria for sample B6000SHL15W. The sample concentration was greater than four times the spike concentrations for total iron so no flags were required per the NFG.

Chain of Custody

Methods outlined on the CoC were performed by the lab using the equivalent Standard Method. No other discrepancies were noted.

Completeness

Out of approximately 2340 points, there were 18 points rejected due to QC exceedances, no data points were qualified as non-detect due to blank exceedances, and two data points were qualified as estimated due to QC exceedances. These numbers indicate that the overall completeness goals for the project were met and that the quality of the analytical program and laboratory is sufficient to meet the project data quality objectives.

Overall Assessment

The final activity in the data quality evaluation is an assessment of whether the data meets the data quality objectives. The goal of this assessment is to demonstrate that a sufficient number of representative samples were collected and the resulting analytical data can be used to support the decisionmaking process. The precision, accuracy, representativeness, completeness and comparability are addressed in the NFG. The following summary highlights the data evaluation findings for the above-defined events:

- 1. The completeness objectives were met for all method/analyte combinations.
- 2. There were no results qualified because of low-level blank contamination.
- The precision and accuracy of the data, as measured by laboratory QC indicators, suggest that the NFG goals have been met.

Table 1 - Validation Flags

FieldID	Method	Analyte	Final Result	Final Flag	Reason
120506SHL5	SW8260B	Bromomethane	ND	R	LCS <lcl< td=""></lcl<>
120506SHL5	SW8260B	Bromomethane	ND	R	LCSD <lcl< td=""></lcl<>
SHL3 120806	SW8260B	Bromomethane	ND	R	LCSD <lcl< td=""></lcl<>
SHL19 120806	SW8260B	Bromomethane	ND	R	LCSD <lcl< td=""></lcl<>
SHL4 120806	SW8260B	Bromomethane	ND	R	LCSD <lcl< td=""></lcl<>
SHL11 120806	SW8260B	Bromomethane	ND	None	LCS>UCL
SHL11 120806	SW8260B	Bromomethane	ND	None	LCSD>UCL
SHL20 120806	SW8260B	Bromomethane	ND	None	LCS>UCL
SHL20 120806	SW8260B	Bromomethane	ND	None	LCSD>UCL
SHL10 120806	SW8260B	Bromomethane	ND	None	LCS>UCL
SHL10 120806	SW8260B	Bromomethane	ND	None	LCSD>UCL
SHM931C 120806	SW8260B	Bromomethane	ND	R	LCS <lcl< td=""></lcl<>
SHM931C 120806	SW8260B	Bromomethane	ND	R	LCSD <lcl< td=""></lcl<>
SHM931C 120806	SW8260B	2,2-Dichloropropane	ND	R	LCS <lcl< td=""></lcl<>
SHM931C 120806	SW8260B	2,2-Dichloropropane	ND	R	LCSD <lcl< td=""></lcl<>
B60SHM965CW	SW8260B	Bromomethane	ND	R	LCS <lcl< td=""></lcl<>
B60SHM965CW	SW8260B	Bromomethane	ND	R	LCSD <lcl< td=""></lcl<>
B60SHM965BW	SW8260B	Bromomethane	ND	R	LCS <lcl< td=""></lcl<>
B60SHM965BW	SW8260B	Bromomethane	ND	R	LCSD <lcl< td=""></lcl<>
B60000SHL9W	SW8260B	Bromomethane	ND	R	LCS <lcl< td=""></lcl<>
B60000SHL9W	SW8260B	Bromomethane	ND	R	LCSD <lcl< td=""></lcl<>
B6SHM9622BW	SW8260B	Bromomethane	ND	R	LCS <lcl< td=""></lcl<>
B6SHM9622BW	SW8260B	Bromomethane	ND	R	LCSD <lcl< td=""></lcl<>
B60000SH22W	SW8260B	Bromomethane	ND	R	LCS <lcl< td=""></lcl<>
B60000SH22W	SW8260B	Bromomethane	ND	R	LCSD <lcl< td=""></lcl<>
B6DEC06DUPW	SW8260B	Bromomethane	ND	R	LCS <lcl< td=""></lcl<>
B6DEC06DUPW	SW8260B	Bromomethane	ND	R	LCSD <lcl< td=""></lcl<>
B6000EQGW	SW8260B	Hexachlorobutadiene	ND	None	LCSRPD>UCL
B6000EQPW	SW8260B	Hexachlorobutadiene	ND	None	LCSRPD>UCL
SHL10 120806	E405.1	BOD, 5-day	ND	R	LCS <lcl< td=""></lcl<>
120506SHL5	E405.1	BOD, 5-day	ND	R	LCS <lcl< td=""></lcl<>
B60SHM965CW	E405.1	BOD, 5-day	3.2	J	LCS <lcl< td=""></lcl<>
B60SHM965BW	E405.1	BOD, 5-day	ND	R	LCS <lcl< td=""></lcl<>
B60000SHL9W	E405.1	BOD, 5-day	ND	R	LCS <lcl< td=""></lcl<>
B6SHM9622BW	E405.1	BOD, 5-day	4.2	J	LCS <lcl< td=""></lcl<>
B60000SH22W	E405.1	BOD, 5-day	ND	R	LCS <lcl< td=""></lcl<>
B6DEC06DUPW	E405.1	BOD, 5-day	ND	R	LCS <lcl< td=""></lcl<>
SHM-93-22- C121206C121206	SW8260B	Hexachlorobutadiene	ND	None	MSRPD>UCL
B6000SHL15W	SW6010B	Total iron	18	None	SD>UCL
B6000SHL9W	SW8260B	Acetone	ND	None	SD>UCL
B6000SHL9W	SW8260B	Total Potassium	ND	None	MS>UCL
B6000SHL9W	SW8260B	Total Potassium	ND	None	SD>UCL
B6000SHL9W	SW8260B	Total Mercury	ND	None	MS>UCL
B6000EQGW	E335.2	Total Cyanide	ND	None	MS>UCL

MSRPD>UCL = Matrix spike relative percent difference greater than upper control limit

MS>UCL = Matrix spike recovery greater than upper control limit

SD>UCL = Matrix spike duplicate recovery greater than upper control limit

LCS<LCL = Laboratory control spike recovery less than lower control limit

LCSD<LCL = Laboratory control spike duplicate recovery less than lower control limit

LCS>UCL = Laboratory control spike recovery greater than upper control limit

LCSD>UCL = Laboratory control spike duplicate recovery greater than upper control limit

 $LCSRPD>UCL = Laboratory\ spike\ relative\ percent\ difference\ greater\ than\ upper\ control\ limit$

None = A database flag with no QC implications. A flag is not applied

R = Rejected data

J = Analyte is present but the reported value may not be accurate or precise (estimated).

Appendix F Response to Comments

Response to EPA Comments (Letter to Mr. Robert Simeone, BRAC Environmental Coordinator, dated August 10, 2007)

EPA Comments on
Draft 2006 Annual Report
Shepley's Hill Landfill
Long Term Monitoring & Maintenance
Devens, Massachusetts
May 2007

EPA has reviewed the document titled, "2006 Annual Report, Shepley's Hill Landfill, Long Term Monitoring & Maintenance", dated May 2007, as prepared by CH2M Hill on behalf of the Army. The 2006 Annual Report documents results of long-term monitoring and maintenance activities for Shepley's Hill Landfill, which were conducted in 2006. As stated in the Executive Summary, this document discusses results from an optimized and comprehensive strategy that incorporates elements of both the former Long Term Monitoring and Maintenance Plan (LTMMP) for SHL and the Performance Monitoring Plan (PMP) for the Contingency Remedy. Results are presented for the annual landfill cap inspection, methane/ethane sampling (in gas vents and as dissolved gases in selected monitoring wells) and groundwater monitoring.

Trigger chemicals, identified in the LTMMP as those presenting carcinogenic risk, are: arsenic, 1,2-dichlorobenzene, 1,4-dichlorobenzene, and 1,2-dichloroethane. Of these, only arsenic (As) was detected above the cleanup level during the 2006 monitoring. Other contaminants of concern (COCs) that are not contributors to carcinogenic risk but were detected above their cleanup levels in the 2006 sampling are iron (Fe), manganese (Mn), and sodium (Na).

No major change in arsenic concentrations in downgradient wells has been observed yet. Continued long-term monitoring will be needed to evaluate the effectiveness of the groundwater treatment plant. The recently implemented increase in the extraction rate from 25 to 50 gpm may accelerate changes downgradient. Continued monitoring will be critical to identify hydrologic perturbations, e.g. unacceptable drawdown at downgradient wetland locations, if they occur.

Note that the Revised LTMMP (May 2007) eliminated the Group 1 and Group 2 well designation and risk reduction criteria established in the ROD for evaluating the effectiveness of the cap, since that criteria was to trigger the implementation of the contingency remedy, which is now in operation. The Revised LTMMP indicated that the BCT would work together during 2007 to identify appropriate remedy evaluation criteria to assess the effectiveness of the groundwater treatment system and that the 2007 Annual Report would provide a proposal for the new remedy evaluation criteria. EPA looks forward to working with the Army and MassDEP to meet this goal and suggests that a BCT Technical Meeting on this issue be scheduled in the Fall to address this matter.

Army Response: Comment noted.

EPA's comments on the Draft 2006 Annual Report are attached. If you have any questions, please feel free to contact me at (617) 918-1754. Thanks.

Specific Comments:

Page v, Executive Summary: The 2nd paragraph discussion on the 2006 annual landfill
inspection refers to a 2005 inspection report. Please revise the reference to the report for the
2006 inspection report and refer the reader to the landfill inspection checklist in Appendix A.

Army Response: The report reference is correct relating to cap system and drainage system issues identified in 2005 Annual Report. The intent was to provide context against which repairs made in 2006 are presented. The text has been modified to provide clarification and a reference to the checklist for the 2006 inspection, included in Appendix A, has been added.

2. Page vi, Executive Summary: The last paragraph on page vi discusses historic levels of arsenic in groundwater at SHL and states that "[T]he highest concentration observed historically at any well has been 5110 ug/L at well SHM-96-5B in May 2000." For comparison, it should be noted that the highest arsenic concentration observed anywhere within the SHL system was 5970 ug/L at piezometer N5-P1 (6/8/2006). An unfiltered sample from N5-P1 reported a value of 6080 ug/L (5800 in the filtered sample) during the November 1999 Supplemental Groundwater Investigation (Harding ESE, 2003). Also, other wells reporting elevated arsenic include: SHP-99-29X, 4380 ug/L in a filtered sample (11/1999); EW-04, 5910 ug/L (8/18/2005); SHM-05-40X, 4070 ug/L (12/2006); and SHM-05-41B, 2730 ug/L (9/2006). Please note that the latter two are beyond the toe of the landfill.

While EPA acknowledges the distinction between monitoring wells and piezometers or extraction wells, it is important to consider <u>all</u> occurrences of elevated arsenic, at all depths and at all locations within the SHL network, when proposing any conceptual model(s) for the system. The paragraph at the bottom of page vi continues at the top of page vii with the statement that monitoring wells SHM-96-22B and SHM-95-5B "...exhibit the highest arsenic levels measured at the site, one to two orders of magnitude above levels measured at other compliance wells..." This information is then used to support the interpretation that these two wells intercept "...the most reducing (impacted) zone moving north from the landfill." At this time, the links between reducing conditions in the overburden aquifer, elevated arsenic, and landfill-related impacts to groundwater have not been clearly established.

Army Response: The statements in the ES relate to compliance monitoring wells that have been monitored for many years under the LTMMP. They are not intended to relate to the highest historical occurrence at any location near SHL. The text has been changed to provide clarification. It is acknowledged that N5-P1, within the landfill, has had higher arsenic levels, during the SGI and recent monitoring. Samples from EW-04 have been higher, as well. These and the other referenced wells are not compliance wells under the LTMMP program, in place at the time. The statement at the end of the paragraph relating to SHM-96-22C and SHM-95-5B is simply that arsenic levels are "one to two orders of magnitude above levels measured at the other compliance wells and are interpreted to be completed in the most reducing (impacted) zone moving north from the landfill." The next sentence then goes on to state simply that "The Contingency Remedy extraction wells are completed in this zone upgradient adjacent to the landfill." These statements are not incorrect and will remain unchanged. The intent of these

statements was simply to provide some information about where the extraction well-field has been located relative to downgradient compliance wells that have been monitored north of the capped landfill area for many years.

3. Page vii, Executive Summary: The first complete paragraph on this page discusses trends in arsenic concentrations in monitoring wells SHM-96-22B and SHM-95-5B and suggests that these trends are "...consistent with the operation of the extraction wells..." The text acknowledges that insufficient time has elapsed to relate these trends to the extraction system with any certainty. However, it should be noted that even though the arsenic concentrations at SHM-96-22B declined somewhat between April and December 2006, the overall trend over ten years of monitoring is a general increase in arsenic in this particular monitoring well. Arsenic at SHM-95-5B peaked at 5110 ug/L in May 2000, before the installation of the extraction system, and has since shown an overall decline, with marked seasonal variations. Arsenic concentrations are generally higher in the spring sampling events than in the fall.

Army Response: Agreed, comment noted. The referenced sentence reads "[t]hese reductions are consistent with the operation of the extraction wells; however, it is too early in the operation of these wells to identify whether the trends are related to operation of the system." The statement identifies that although reductions were observed during the time frame in which the extraction system has been operating, it is too early to attribute these changes to the system.

4. <u>Page 1, Section 1.0</u>: In the last sentence in the 2nd paragraph of this section, please change "...reducing the standard from 50 ppm to 10 ppm" to "...50 pp<u>b</u> to 10 pp<u>b</u>."

Army Response: Correction made.

5. Page 2, Section 1.1: The 2nd paragraph provides an estimate of 1.3 x 10⁶ cubic yards of waste, of which approximately 25% lies below the water table. Please give a citation for the source of this information (both the waste volume and fraction below the water table).

Army Response: The Final Feasibility Study, Shepley's Hill Landfill Operable Unit, Fort Devens Feasibility Study for Group 1A Sites (ABB-ES, 1995a), Record of Decision (USAEC, 1995), and the Revised Supplemental Groundwater Investigation (Harding ESE, 2003) all refer to a landfill volume estimate of 1.3 x 10⁶ cubic yards. The text has been modified to reference (ABB-ES, 1995a). The reference to 25 percent of the volume being below the watertable has been deleted.

6. Page 3, Section 1.2 and Page 29, section 8.1: The 4th paragraph on page 3, the discussion on the Five-Year Reviews (FYRs), needs to be revised. The text states that the 2nd FYR was the 2005 FYR and that this FYR concluded that the contingency remedy should be implemented. The 2nd FYR for SHL was the 2000 FYR which required that the Army reevaluate alternative SHL-9. The decision to implement the contingency remedy followed the 2000 FYR, and the 2005 FYR, the 3rd FYR for SHL, deferred the protectiveness statement for SHL and required start-up and performance monitoring of the system and completion on the CSA/CAAA. The 1st bullet in Section 8.1 indicates that the 2000 FYR concluded that the incremental reduction

is risk was not achieved and that the agencies decided to implement Alternative SHL-9. Please clarify. Was the decision to implement the contingency remedy made in the 2000 FYR or later?

Army Response: The five year reviews, including the first SHL FYR (SWET, 1998) and the subsequent two comprehensive FYRs (HLA, 2000 and Nobis, 2005) for all of Devens and inclusive of SHL are referenced in Section 1.3. The Section 1.2 Paragraph has been modified to clarify that neither the second nor the last FYRs completed by HLA (2000) and Nobis (2005) reclassified Group 2 monitoring wells. In addition, this paragraph has been modified to clarify that the 2000 FYR recommended that the Army reevaluate the Contingency Remedy and that a decision to implement the Contingency Remedy was made at a later date. The Section 8.1 bullet has been simplified to simply state "The Contingency Remedy groundwater extraction and treatment systems began long-term operations in March 2006.

7. Page 5-7, Section 2.2 and Page 31, Section 8.2: Section 2.2 lists a number of bulleted items which identify recommendations from the 2006 landfill cap inspection. Page 7 implies that resolution of a number of these items will be deferred to the Supplemental Groundwater Investigation and Landfill Cap Assessment. The last 3 bullets in Section 8.2 attempt to address how the items listed in Section 2.2 will be reconciled. However, so that the status of the follow-up action for each of the issues listed in Section 2.2 is clear to the reader, please number them and identify in Section 8.2 specifically which items have already been addressed, are scheduled for repair, or are being deferred to the Landfill Cap Assessment.

Army Response: The recommendations for maintenance work will be addressed in a SOW expected to be completed and implemented in FY08.

8. Page 8, Section 3.1: According to the text, a key objective addressed by the annual gas survey is to verify that landfill methane generation is declining as expected. What is the basis for the statement in the 4th paragraph, "[I]n general, landfill gas production is continuing to decline"? Please provide some demonstration (graphical presentation, statistical trend analysis, or other) that this is indeed the case. Methane levels in several gas vents (GV 1, 2, 3, 5, 6, 7, 9, and 10) appear to have increased steadily over the past several years. Please provide support for the statement that, overall, methane concentrations are declining.

Army Response: The statement has been modified with the following text addition:

"In general, landfill gas production is low, typical of landfills that have been closed for many years. Landfill gas monitoring has been conducted since the 1998 Annual Report (USAEC, 1999). Review of these data and other data collected annually since 1998 indicate variability in production between vents from year to year. This is likely associated with changing soil moisture and atmospheric pressures from monitoring event to event and non-uniform response across the landfill to these changes. However, in a general sense the data indicate that production is greatest, to the south in the Phase III and IV areas that were the last active areas, being capped and closed between 1989 and 1992. By comparison, many wells to the north have had low methane readings throughout the nine years of monitoring. Gas production for the

landfill, as a whole, is low by comparison to active or recently closed municipal landfills. For active or recently closed landfills, high landfill gas flux rates result in measurable high concentrations of landfill gas near vent pipe openings under ambient conditions, prior to capping and purging. This is not the case with Shepley's Hill where ambient readings were nondetect in 2006 following capping and prior to full purging, indicative of generally low flux rates. The historic data from the perimeter gas monitoring wells on the north indicate no history of detectable methane which further suggests gas production is low by comparison with recently closed or active municipal landfills."

 Page 10, Section 3.2: Typo? Please replace "Samples from the temporary..." with "Soil" (if the text was intended to read "Soil gas samples...").

Army Response: Edit made to read "Samples from the temporary gas probes..."

10. Page 12, Section 4.1: The 1st paragraph in this section notes that Table 4-2 provides specifications for the LTMMP/PMP wells, including elevations of the screened intervals. There are numerous discrepancies between the screen lengths shown in this table and those in Table 3-1, Data Analysis Plan (AMEC, 2007). Please verify the accuracy of the screen elevations in Table 4-2.

Army Response: Table 4-2 screen elevations were derived, to the maximum extent possible, from original well completion logs and ground survey. Table 4-2 has been reviewed and rechecked against published logs and other information and is mostly correct with a few edits. A minor change has been made to SHL-10C, in which an error was detected in the calculated screen elevation. SH-96-22B screen depth has been corrected to 82.0 to 92.0 feet bgs as indicated in the original log.

Screen elevation is a calculated value from well screen depths and the ground surface elevations provided in the original logs. If ground surface elevation was not presented on particular paper logs then the surface elevations obtained by Meridian Associates in 2005 were utilized. For a number of wells, installed in the 1999-2001 timeframe logs were not available. For these a text table in Section 2.6 of the Supplemental Groundwater Investigation (Harding ESE, 2003) was used to obtain screen depths. These depths were then used to calculate screen elevations, using Meridian (2005) survey data for ground surface since the SGI table did not present ground surface elevations. The "geologic designation" column in the table is consistent with Table 2-5 in the SGI. Well locations that are highlighted by an asterisk, are those for which well completion logs could not be located; however, approximate screened-interval depths were derived from other sources (e.g. cross-sectional depictions in the SGI). These depths were then converted to elevations.

Information for a few shallow overburden/WT wells and one deep bedrock well were left blank since well construction information could not be located. In addition, a number of the N-series piezometers were left blank since logs, cross-sections, or tabular summaries for them were not available in the SGI; however, Table 2-5 of the SGI does indicate the general horizons in which they are completed. For these piezometers, some depth information is available on field

sampling forms in the appendices of the SGI; however, it was not used since it is unclear how the information was generated. The table footnotes have been updated to clarify the sources of the information used in development of the table.

11. Page 12, Section 4.1: Table 4-3 shows that water levels were recorded at the staff gauge in Plow Shop Pond. However, Figures 4-1 and 4-2 do not display these critical data. Please show the surface water levels on the maps, so that the reader can easily compare adjacent groundwater levels, locate the hinge line, etc.

Army Response: Readings added.

12. <u>Page 15</u>, <u>Section 4.2.3</u>: The 2nd sentence in this section states that selected groundwater samples from the December 2006 round were analyzed for methane and ethane. Please include here, in the table of parameters and methods on this page, and/or in Table 4-4, the method that was used for the dissolved methane/ethane analyses.

Army Response: The method utilizes a GC. The laboratory references the following procedure: Analysis of Dissolved Methane, Ethane & Ethylene in Groundwater by a Standard Gas Chromatographic Technique, Kampbell & Vandegrift, EPA-OK, Journal of Chrom, Vol 36, May 1998 & Technical Guidance for the Natural Attenuation Indicators, EPA-NE, July 2001. The text table has been modified to provide this method reference.

13. Page 16, Section 4.3: The text indicates that Figure 4-3 shows arsenic results from the LTMMP wells (for June and December 2006). Please consider developing a comparable figure for the PMP wells (for which the locations are shown on Fig. 4-3 but results are not), in order to see spatial relations of results. Also, please note that Figure 4-3 is out of order (it precedes the "Figures" section in the document).

Army Response: The LTMMP compliance monitoring depicted in Figure 4-3 provides considerable coverage relating to arsenic monitoring. The PMP data have been depicted elsewhere and are presented general locational format in summary tables. During 2006, a transition year with operation of the new system and development of a Revised LTMMP, PMP data were added to the standard LTMMP annual report to aid transition. Future annual reports, under the Revised LTMMP program, will provide depictions of the spatial coverage relating to full network being monitored for arsenic with the combined cap and extraction system remedy.

14. Page 17, Section 4.3.1: In the 4th paragraph in this section, it is stated that arsenic concentrations in SHM-96-5B have "...generally decreased since having a near all-time high result of 4110 ug/L in January 2006." It should be noted, as is stated in the Executive Summary, page vi, that the maximum arsenic observed at this well was 5110 ug/L in May 2000; subsequently, the overall trend has been decreasing. However, it is premature to attribute this 'general pattern' to a response of the flow field and redox chemistry to the operation of the nearby extraction wells.

Army Response: The Army agrees with the conclusion. The text the first sentence has been modified and new second sentence added as follows for clarification:

"The arsenic concentration at SHM-96-22B has generally increased in the past year when compared to previous years while SHL-96-5B has generally decreased since having an all-time high result of $5,110~\mu g/L$ in May, 2000. However, in January 2006, SHL-96-5B appears to have trended up briefly to 4130~u g/L before returning to lower levels, typical of recent years, later in 2006 (refer to Table 4-9)."

15. Page 19, Section 4.3.4: According to the last paragraph in this section, methane concentrations in downgradient wells range from <1 to 7910 ug/L, and it is suggested that dissolved methane/ethane is also associated with the reducing conditions that give rise to Fe, Mn, and As (through reductive dissolution). Please reconcile these statements regarding methanogenesis at depth with statements elsewhere in the report (e.g., Page 8, Section 3.1) asserting that the landfill is mature and that landfill-generated gas flux rates are low.

Army Response: The association of the highest levels of dissolved methane with the most reducing conditions observed at SHL and the presence of dissolved Fe, As, and Mn is clear. Statements about maturity of the landfill and gas generation are relative statements. Methanogenesis may occur beneath mature landfills as it does beneath young active or recently closed landfills, just not to the same degree. There is no inconsistency here. However, beneath active or recently closed landfills it would be expected to be more pervasive with greater flux of methane gas through the vadose zone and greater partitioning and flux of dissolved methane in groundwater. Generally aerobic glacial sand and gravel aquifers where methanogenis is not generally the pervasive biodegradative pathway may have zones or areas where redox conditions are sufficiently negative such that methanogens dominate. Wetlands are a natural example where enough organic matter is often available that biological activity drives redox conditions to a sufficiently reductive condition in which methanogens dominate.

16. Page 20, Section 5.1: In the 3rd paragraph, activities that were conducted prior to startup of the extraction system are discussed. It is apparent that considerable testing, sampling, and adjustments of the system were required in order to evaluate the appropriate coagulant dosage needed to achieve the goal of 10 ug/L arsenic under pumping at 25 gpm. Will the same approach be used to verify the appropriate coagulant dosage under pumping conditions at 50 gpm? Please expand this discussion to include steps that will be followed when the pumping rate is increased.

Army Response: Dosage is set and is maintained as flow is increased or decreased. In other words, coagulant additions are flow paced (automatically adjusted with flow), maintaining a constant dosage, independent of pumping rate.

17. Page 22, Section 5.2: In the 4th paragraph in this section, the presence of gaseous methane in the plant influent tank is attributed to exsolution from groundwater as it equilibrates with atmospheric pressure. The methane/ethane levels in the groundwater are "...fairly typical for groundwater having high TOC levels and...undergoing active methanogenesis." Please provide, if possible, data and/or references that support this statement. Also, please see related Specific Comment 15, above, regarding an apparent contradiction between 'active methanogenesis at depth' and statements suggesting that the landfill is mature and gas

production rates are declining. Is it possible that other carbon sources are contributing to methane production at depth?

Army Response: It is possible other carbon sources could be contributing to methanogenesis in the sand and gravel glacial aquifer. This could be researched or studied in upgradient areas near Shepley's Hill; however, it is expected that the dominant source of TOC at SHL relates to the landfill. DoD and EPA have developed a wealth of monitored natural attenuation literature that provide TOC data associated with dissolved methane as a natural attenuation parameter. Some of there reference were provided previously with the responses to comments on the "Methane Memo."

18. Page 25, Section 6.0: The 1st bullet on this page states that a remedial response objective is to "[p]rotect potential residential receptors from exposure to contaminated groundwater migrating from the landfill having chemicals in excess of MCLs". It is noted that proper operation of the groundwater extraction system has the potential to meet this objective in a strict sense, to the extent that 100% capture of the groundwater flux through the SHL catchment would prevent all groundwater from "migrating from the landfill." However, it still remains to be seen whether or not the arrest of the advective mass flux of arsenic at the north end of the landfill will have a significant effect on downgradient water quality. Continued monitoring of the downgradient domain is critical to this determination over the long term.

Army Response: Comment noted.

19. Page 25, Section 6.0: The 2nd bullet on this page states that one of the remedial response objectives (RO) is to "[p]revent contaminated groundwater from contributing to the contamination of Plow Shop Pond sediments in excess of human health and ecological risk-based concentrations." It is noted that the groundwater LTM program can only address this RO to the extent that it can provide a limited assessment of the groundwater flow pattern (e.g., region of discharge to the pond) and the As concentrations of that discharge. However, the groundwater LTM program does not test whether or not As continues to accumulate in sediment. This will need to be addressed by the AOC 72 RI/FS.

Army Response: Comment noted.

20. <u>Page 26, Section 6.0:</u> The 2nd complete paragraph on this page indicates that Army <u>may</u> conduct further evaluation of the wellfield hydraulics in order to develop data to compare with model predictions for a pumping rate of 50 gpm. Note that evaluation of wellfield hydraulics at the increased pumping rate of 50 gpm and comparison of that data to model predictions will be critical to the evaluation of the effectiveness of the remedy.

Army Response: Comment noted.

21. <u>Page 28, Section 7.0 and Table 4-7:</u> The explanation for the apparent switch in reported results from SHM-05-42A and SHM-05-42B is appreciated. Upon closer scrutiny of the data presented in Table 4-7, it appears that some other results are inconsistent with historical

Response to EPA Comments

(Letter to Mr. Robert Simeone, BRAC Environmental Coordinator, dated August 10, 2007

concentrations and possibly also due to errors arising from switching bottles during sampling or analysis, or in data entry. Please check and verify the following:

- ➤ SHP-37X: Chloride for the December 2006 sample is reported as 36000 ug/L, while the previous 3 rounds reported Cl at 1900, 1000 U, and 2700 ug/L. Similarly, Na is given as 18000 ug/L while the previous 3 rounds are 2200, 2400, and 3200 ug/L. Is it possible that the December results belong to another well, e.g. SHP-36X (Cl in the December round is 35000 ug/L, Na is 21000 ug/L)?
- Army Response: The December results have been checked for SHP-37X. They are believed to be correct. Although they deviate from the earlier 2006 results for Na and Cl they are similar, in terms of magnitude, to results from the other shallow wellpoints SHP-36X and SHP-01-38A and monitoring well SHL-13 which are all shallow overburden groundwater sampling points located near PSP. These in turn are generally consistent with the PSP-01 (pond sample). This may be indicative of pond-water dominated flux to groundwater at the 37X location established in December 2006 (screen depth 1 to 6 feet below grade). This may be related to changes in overall hydrologic conditions related to ongoing pumping and PSP hydrologic conditions in December or simply may be a more typical result for this area believed to be downgradient of the pond. These locations are scheduled to be monitored for the same analytes as part of the Revised LTMMP. These data in conjunction with other data collected by EPA in this area of the pond will be important in further defining pond groundwater interactions.
 - ➤ SHP-35X: In a previous spreadsheet, Cl for the September 2006 sampling was reported as 4200 ug/L; in Table 4-7 (this report), Cl for this round is now 42000. Please check and verify the correct value.

Army Response: The 42,000 result is correct. The earlier data summaries were draft and had not yet been validated or QA/QC'd.

- № N5-P1: Cl for the December sampling is reported as 8600 ug/L; previous rounds reported Cl at 20000, 16000, and 17000 J ug/L. Nitrogen (nitrate) for the December sampling is reported at 22000 ug/L, while the previous results are 160, 100 U, and 100 U ug/L. Sulfate for the December sampling is given as 100 U, while previous results are 10000 U, 10000U, and 8400 ug/L. Is the Cl number (8600 ug/L) possibly the December sulfate concentration and the nitrate value in the table is really for Cl? Also, is the sulfate value of 100 U actually the nitrate result? Please check values for all of these parameters and edit where appropriate.
- N5-P2: Chloride for the December round is given as 1000 U ug/L, when the previous 3 rounds reported values of 19000, 20000, and 18000 ug/L. Nitrate in the December sample is reported as 18000 ug/L, compared to previous results of 190, 140, and 100 U ug/L. Also, sulfate in December is 100 U; this reporting limit for sulfate appears only in the December results for N5-P1 and N5-P2, as it is 1000 U ug/L in all other December 2006 samples. Is the December sulfate value possibly 1000 U (in the Cl row), nitrate is 100 U (sulfate row), and the nitrate value is really Cl? Please check and edit if necessary.

➤ SHL-21: The December 2006 Cl value is 9400 ug/L (compared to two previous results, 1000 U and 2000 U); nitrate in December is 2500 ug/L (compared to 100 U in each of two previous rounds); and sulfate is 100 U (compared to 10000 U and 9500 ug/L previously). It seems possible that the December Cl value is sulfate, the nitrate value is Cl, and the sulfate value is actually nitrate. Please check and edit if necessary.

Army Response: The data are correct, however, the December Chloride, Nitrogen (nitrate), and Sulfate results were out of order during the merging process due to a change in reporting sequence in the EDD's. Most of these were caught except for SHL-10D, SHL-21, N5-P1, and N5-P-2. The summary table listing has been corrected.

Also note that in Table 4-7 the labels "methane" and "ethane" for the rows containing the dissolved gas results should be reversed.

Army Response: This has been corrected.

References:

AMEC Earth and Environmental, Inc., 2007, Scope of Work: Supplemental Groundwater and Landfill Cap Assessment for Long-Term Monitoring and Maintenance – Data Analysis Plan. Shepley's Hill Landfill, Devens Massachusetts. February 2007.

Harding ESE, 2003, Revised Draft Shepley's Hill Landfill Supplemental Groundwater Investigation, Devens Reserve Forces Training Area, Devens, Massachusetts. May 2003.

Response to DEP Comments (Letter dated August 6, 2007)

[DEP Letter to Mr. Robert Simeone, BRAC Environmental Coordinator, dated August 6, 2007]

RE: 2006 Annual Report, Shepley's Hill Landfill, Long Term Monitoring and Maintenance (2006 AR), Devens, Massachusetts, May 2007

Dear Mr. Simeone:

The Massachusetts Department of Environmental Protection (MassDEP) has reviewed the above submittal prepared by CH2M Hill, contractors for the Army's Shepley's Hill Landfill Contingency Remedy, per the DSMOA for Devens. ROD Contingency Remedy is fully op[era]tional since March 2006. Since then, more than six million gallons of groundwater has been pumped, and about 300 pounds of arsenic has been removed. With Performance Monitoring Plan, in conjunction with Long Term Monitoring and Maintenance Plan, a total of 39 monitoring wells were sampled quarterly or semiannually. Mass DEP is providing the following comments:

- 1. MassDEP had the following comments during the review of Revised Long Term Monitoring and Maintenance Plan for Shepley's Hill Landfill:
 - i. MassDEP received the methane sampling data conducted in the fall of 2006 on January 16, 2007 and additional information about recently installed landfill gas monitoring probes at southern perimeter of Shepley's Hill Landfill (SHL) on February 2, 2007, both through emails. An additional teleconference was held on February 8, 2007 with USEPA, MassDEP, Army, Army Corps of Engineer and their consultant. During the teleconference the Army agreed: 1) quarterly monitoring of dissolved methane at the subset of groundwater monitoring wells and 2) further assessment of methane generation across the site. MassDEP would like to discuss the details of those proposals at the next BCT meeting.

Army Response: As indicated in the RTC on the 2005 AR, a detailed response to follow-up comments on the 2005 AR regarding issue of methane monitoring (both landfill gas monitoring and monitoring of dissolved methane in groundwater will be provided in a separate Army response letter. Again in response to previous comments on the 2005 AR and again here, the Army did not commit to performing quarterly monitoring of dissolved methane. The Army did state in the referenced telecon that additional characterization of dissolved methane would be performed under the supplemental groundwater monitoring work plan in order to confirm the methane in groundwater sampling data collected to date. This data indicated that levels of dissolved methane in groundwater in the area of Scully Road do not pose a safety risk based on both the concentrations detected in groundwater and on the methane gas monitoring data collected in this area. The data also indicated that the methane concentrations in groundwater are attenuating in the down-gradient direction. These data and interpretations are provided in the 2006 Annual Report and also in responses to comments on the "Methane Memo."

Response to DEP Comments (Letter dated August 6, 2007)

The additional "off-site" groundwater characterization effort committed will include analyses for dissolved methane in order to confirm these conditions and the Army will work with the MADEP and USEPA in selecting the appropriate locations for this analysis.

ii. In addition, MassDEP has reviewed the newly installed landfill gas monitoring probes information and requests the Army look into the construction of the probes. In particular, the construction details do not coincide with the Annual Reports' (1999, 2001, 2003 & 2004) recommendations of installing gas monitoring probes along the southern property line. The specifications indicated:

'The probes should be installed in clusters with screens installed at deep, mid-depth and shallow intervals. The deep screen should extend to just above the saturated zone. The top of shallow screen should be installed at app. 3 to 5 feet below ground surface'.

The specifications in these Annual Reports are consistent with MA Landfill Technical Guidance Manual, May 1997 under Chapter 4 of Part I, Environmental Monitoring Program, E. Landfill Gas Monitoring Requirements, 3. Landfill Gas Measuring Devices, read as:

In most situations landfill gas probes are not acceptable as the permanent monitoring devices for the site. This is because they cannot typically be installed to depths to monitor the full unsaturated depth of soils or extend to the maximum depth of waste placement.

The gas probes installed in December 2005 had only 1-ft screen and were generally screened about 3 to 5 feet below ground surface. MassDEP believes the probes do not provide adequate monitoring for the fully unsaturated soil column and will need to be supplemented.

The Army has agreed that a comprehensive evaluation about the landfill gas issues will be conducted. MassDEP would welcome the opportunity to share this information since additional groundwater investigation is already underway.

Army Response: The Army will address this issue in separate correspondence

2. Furthermore, on page 8 of the 2006 AR, the report indicated that *landfill gas* production is continuing to decline. MassDEP requests further explanation. Especially MassDEP interpreted very little detected landfill, before purging, and increased percent LEL at several gas vents including GV-I, GV-7, GV-9, GV-11 and GV-14, may potentially imply the landfill gas not properly vented. Also, on page 9 of the report, it is stated that, if the gas vents are functioning properly and are

Response to DEP Comments (Letter dated August 6, 2007)

adequately spaced, off-gas migration of landfill gases is controlled. MassDEP has been requesting a further investigation of whether the gas vents are functioning properly and are adequately spaced. Please address.

Army Response: The passive vent system has been designed and installed in accordance to EPA guidance and accepted practice used for capping and closure of landfills. Many landfills have been closed in this manner. The passive venting systems are actually very simple designs involving no mechanical valves or other components that would fail over a 30 year post closure period. It would be helpful to the Army to understand what mechanism of failure DEP is suggesting may have occurred in this system.

Variability in gas data spatially and temporally across the landfill is not unexpected for landfills and is likely due to subtle changes in atmospheric pressure between and during monitoring events, as well as spatial changes in soil moisture, etc.

 As concentration of 10 ppb at PSP 01 may suggest groundwater monitoring at SHP-05-47A, B should be included.

Army Response: PSP-01 is a pond water sample location. SHP-05-47A,B is shallow drive point location downstream of the dam intended to evaluate hydraulics. Sufficient groundwater sampling points near the pond are available and being sampled under the Revised LTMMP for arsenic and may be used to evaluate pond water arsenic contributions to groundwater.

 Arsenic concentrations at the some Nearfield wells, including SHL-20, SHL-22, SHM-96-22B and SHM-96-22C, have significantly increased during the year of 2006. Further evaluation and sampling may be beneficial before the pumping rate of 50 gpm is implemented.

Army Response: The results for 2006 do not show significant increases at the locations mentioned. The sampling program planned under the Revised LTMMP is designed to support pumping at a cumulative rate of either 25 or 50 gpm. The BCT agreed to increase the pumping rate at the July 19th meeting.

5. In addition, the hydraulic monitoring network, as specified in Table 1 of the Performance Monitoring Plan, Shepley's Hill Landfill Groundwater Extraction, Treatment and Discharge Contingency Remedy, should be conducted while the pumping rate of 50 gpm is implemented. Also Mass DEP is concerned with any potential drawdown of Nonacoicus Brook at these higher pumping rates and requests staff gauges in NB be monitored for any potential impact from increased pumping.

Army Response: The hydraulic monitoring network currently in place will be utilized to evaluate pumping at 50 gpm