2005 Annual Report

Shepley's Hill Landfill Long Term Monitoring & Maintenance Devens, Massachusetts

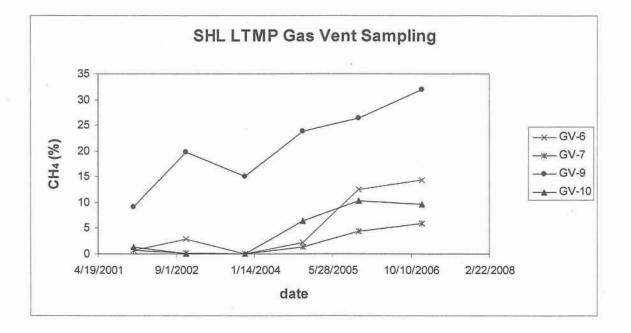
Prepared for:

Department of the Army BRAC Environmental 30 Quebec Street, Box 100 Devens, Massachusetts 01432

December 2006

Prepared By: CH2MHILL 25 New Chardon Street Suite 300 Boston, MA 02114-4770

1A 2006122 CH2MHill


EPA Comments on Draft 2005 Annual Report Shepley's Hill Landfill Long Term Monitoring & Maintenance Devens, Massachusetts December 2006

Specific Comments:

- Executive Summary, Page ES-1, Last Para: The last sentence on this page indicates that "(m)aintenance activities are scheduled to be performed including repairs to fencing and gates, maintenance to remove wetland vegetation from drainage swales, and drainage improvements for the landfill cap involving filling of low spots resulting from subsidence." Although the fencing and gate repairs were completed, as reported later in the report, the other maintenance activities are not currently scheduled, and elsewhere in the report, it is noted that these activities are anticipated to occur upon completion of the CSA/CAAA. Please clarify. Note that EPA recently requested that the Army evaluate whether removing wetland vegetation from drainage swales could be completed in the near future (i.e., not waiting until completion of the CSA) and Army is considering this.
- 2. Executive Summary, Page ES-2, 2nd Para: It is acknowledged that the primary purpose of this report is to document the routine monitoring and maintenance activities, and not to provide data analysis or interpretation. Nevertheless, the statement regarding increased readings in landfill gas vents prompted further scrutiny of previous Annual Reports as well as the data reported in the 2005 document. It is particularly interesting to note that methane concentrations in several gas vents located in the central part of the landfill (e.g., GV-6, GV-7, GV -9, and GV-10) appear to be increasing systematically (please see attached figure). SHL is a "mature" landfill and it is expected that concentrations of methane should show an overall decrease, as the readily-degradable carbon is consumed early in a landfill's history. Therefore, the observed increases may be significant and results of continued monitoring should be assessed.
- <u>Executive Summary, Page ES-2, 3rd Para</u>: The report notes that the five wells that were not monitored in June 2005 as part of the LTMP were sampled under the Performance Monitoring Plan for the Contingency Remedy and that those results "...are reported elsewhere." Please provide the reference for these data.
- 4. Section 5.0, Page 7, 2nd Para: This section states that groundwater levels were measured on August 24 and August 26, 2006, as part of the extraction test. The data in Table 5-2 indicate that baseline water levels were measured on 8/24/2005 and maximum drawdown was measured on 8/26/2006. Also, water level elevations are shown on Figures 5-1 and 5-2 for pre-test and maximum drawdown conditions, respectively. The figure captions indicate that these measurements were taken on August 24 and 26, 2005. Please correct these dates.
- 5. <u>Section 5.0, Page 7</u>: Water-level measurements taken during August 2006 confirm the general northerly direction of groundwater flow in the overburden. The last sentence in this

section suggests that results of the extraction test indicate "...that the operation of the groundwater extraction system will create an even greater northerly flow." Comparison of groundwater elevation contours on Figures 5-1 and 5-2 shows essentially no difference in the direction of groundwater flow, except in the immediate vicinity of the extraction wells. Please either explain what is meant by "...even greater northerly flow" or delete this statement.

- Section 7.3.1, Page 12, 3rd Para: This section notes that "...the highest historic level of arsenic, 3320 ug/L, was recorded at SHM-96-22B during the January 2006 sampling." Does this statement refer only to this well? Please reconcile this statement with the data in Table 7-4, in which the highest historic level of arsenic, 5110 ug/L, was found in SHM-96-5B (May 2000 sampling round).
- 7. <u>Section 10.1, Page 17, 1st Bullet</u>: The FYR referenced here is the 2000 FYR, not the 2005. Please correct the reference.
- Section 10.1, Page 17, 2nd Bullet: This bullet repeats text from Section 5.0 regarding the expectation that the groundwater extraction system will create an "...even greater northerly flow." Please see previous Specific Comment 5.

February 5, 2007

Mr. Robert Simeone BRAC Environmental Coordinator BRAC Environmental Office 30 Quebec Street, Box 100 Devens, MA 01434

Re: Draft 2005 Annual Report Shepley's Hill Landfill Long Term Monitoring & Maintenance Devens, MA December 2006

Dear Mr. Simeone:

EPA has reviewed the document titled, "2005 Annual Report, Shepley's Hill Landfill, Long Term Monitoring & Maintenance", dated December 2006, as prepared by CH2M Hill on behalf of the Army. The 2005 Annual Report documents results of long-term monitoring and maintenance activities for Shepley's Hill Landfill, which were conducted in June 2005 and January 2006. Activities detailed in the report include inspection and assessment of the condition of the cap, measurement of water levels, groundwater sampling, gas vent sampling, and installation of new gas monitoring probes along the south side of the landfill. The geotechnical engineering inspection of the landfill cap was completed by the U.S. Army Corps of Engineers. Inspection findings and recommendations for corrective action, based on the Army Corps of Engineers' inspection of the landfill, are included as an appendix to the 2005 Annual Report.

EPA's comments on the Draft 2005 Annual Report are attached. If you have any questions, please feel free to contact me at (617) 918-1754. Thanks.

Sincerely,

Ginny Lombardo Remedial Project Manager Federal Facilities Superfund Section cc: Lynne Welsh, MassDEP Hui Liang, MassDEP Ron Ostrowski, MassDevelopment Bill Brandon, EPA Jean Choi, EPA Carol Stein, Gannett Fleming Dave McTigue, Gannett Fleming Marilyn McMillan, Ayer Board of Health Charles Kibbee, EIP Corp. Nancy Roberts, Roberts Consulting, Inc. Ron McGuigan, Southern Container

TABLE OF CONTENTS

Section	Title	Page
	EXECUTIVE SUMMARY	ES-1
1.0	INTRODUCTION	
1.1	Evaluating Effectiveness of Remedial Objectives	
1.2	Five-Year Site Reviews	
1.3	2005 Annual Report Objectives	2
2.0	LANDFILL CAP MAINTENANCE ACTIVITIES	3
3.0	LANDFILL CAP MONITORING ACTIVITIES	3
4.0	LANDFILL GAS MONITORING RESULTS	4
5.0	GROUNDWATER ELEVATIONS	6
6.0	GROUNDWATER SAMPLING	
6.1	Preparation for Sampling	
6.2	Sampling	
6.3	Equipment Decontamination	9
7.0	LABORATORY TESTING	
7.1	Sample Handling	
7.2	Analyses	
7.3	Summary of Results	
7.3.1	Arsenic Results	
7.3.2	COC Results for Samples Collected Summer 2005	
7.3.3	COC Results for Samples Collected Winter 2005	
8.0	QUALITY CONTROL	
9.0	Implementation of Contingency Remedy	
9.1	Description	
9.2	Start-Up Activities	
10.0	CONCLUSIONS AND RECOMMENDATIONS	
10.1	Conclusions	
10.2	Recommendations	
11.0	REFERENCES	

TABLE OF CONTENTS (Continued)

TABLES

Table ES-1	Compliance Point Wells Exceeding Arsenic Cleanup Level in 2005
Table 1 1	(see Executive Summary)
Table 1-1	Contaminants of Concern (COC) Cleanup Levels
Table 5-1	Monitoring Well Specifications and Groundwater Elevations
Table 5-2	Site-wide Groundwater Elevations
Table 7-1	Groundwater Sample Analysis and Procedures
Table 7-2	Groundwater Analytical Results - June 2005
Table 7-3	Groundwater Analytical Results - January 2006
Table 7-4	Comparison of Historic Arsenic Results
Table 7-5	Comparison of Historic Iron, Manganese, and Sodium Results
Table 7-6	Monitoring Well Trigger Chemical Cleanup Level Exceedances at
	Monitoring Wells Previously Attaining Cleanup Goals (Group 1)
Table 8-1	Sample Preparation and Analysis Methods

FIGURES

Figure 3-1	Findings of Inspection (Site Map) - Shepley's Hill Landfill, Devens RFTA, Devens,
	MA
Figure 5-1	Contour Map of Baseline (Pre-Test) Groundwater Elevations, August 24, 2006
Figure 5-2	Contour Map of Groundwater Elevations at Maximum Drawdown, August 26, 2006
Figure 7-1	Long-Term Monitoring Network - Arsenic Data - June 2005 and January 2006

APPENDICES

- Appendix A Geotechnical Engineering Fall 2005 Annual Inspection Report
- Appendix B Groundwater Field Analysis Forms
- Appendix C Comparison of Arsenic Results
- Appendix D Data Quality Evaluation and Chemical Quality Analysis Reports
- Appendix E On-Site Discharge Evaluation Technical Memorandum
- Appendix F Extraction Test Technical Memorandum
- Appendix G Start-Up Process Testing Technical Memorandum

EXECUTIVE SUMMARY

This annual report documents the results of long term monitoring and maintenance activities conducted in the summer (June 2005) and winter of 2005 (monitoring event January, 2006), the ninth year of monitoring, at Shepley's Hill Landfill in Devens, Massachusetts. CH2M HILL prepared this report in accordance with the Record of Decision (ROD) for Areas of Contamination 4, 5, and 18 (ABB-ES, Oct 1995), and the approved Long Term Monitoring and Maintenance Plan (LTMMP), SWEC, May 1996. In addition, this report summarized activities associated with the construction and start-up of the Contingency Remedy, involving an arsenic groundwater extraction, treatment, and discharge system. The *Explanation of Significant Differences* (CH2M HILL, June, 2005) states:

Among other alternatives, the ROD describes two remedial alternatives: Alternative SHL-2, Limited Action, and Alternative SHL-9, Groundwater Pump and Discharge to the Ayer Publicly-Owned Treatment Works (POTW). These alternatives became the primary and contingency elements of the elected remedy for the Shepley's Hill Landfill remedial action, respectively. Alternative SHL-2 generally involves landfill closure with capping and monitoring. Alternative SHL-9, involving active extraction of groundwater, was selected as a contingency element of the selected remedy in order to supplement SHL-2, should SHL-2 not prove to be effective at controlling site risk.

Alternative SHL-2, required completion of landfill closure and on-going, post-closure monitoring of the effectiveness of the landfill cover. Monitoring activities are described in the LTMMP and consist of an annual inspection of the landfill cover, annual landfill gas vent monitoring, and semiannual groundwater chemistry monitoring. The Contingency Remedy, a modification of Alternative SHL-9 (Pump and Discharge to Ayer POTW) has been implemented according to the *Remedial Design and Remedial Action Workplan, Final Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill (CH2M HILL, May 2005).* Performance monitoring for start-up and initial operation of the Contingency Remedy is being conducted in accordance with the design document and the *Shepley's Hill Landfill, Performance Monitoring Plan, Groundwater Extraction, Treatment, and Discharge Contingency Remedy (CH2M HILL, August, 2005).* The LTMMP and the Performance Monitoring Plan will be merged into a single monitoring program in 2006. The results of these activities conducted in 2005 are described below.

An annual landfill inspection was conducted in the Fall of 2005 and observations made regarding the vegetative cover, vegetation types, erosion, settlement, and general condition of the various features. Presently, the landfill is in fair to good condition. The cover surface contains areas of sparse vegetation, intrusive vegetation, and settlement. Intermittent standing water, erosion, overgrowth of vegetation, and encroachment of wetland plants within drainage swales were observed. Maintenance activities are scheduled to be performed including repairs to fencing and gates, maintenance to remove wetland vegetation from drainage swales, and drainage improvements for the landfill cap involving filling of low spots resulting from subsidence.

As part of the annual landfill gas vent monitoring program, readings were collected from eighteen gas vents on the landfill plus four perimeter probes just north of the landfill. Readings collected from the four perimeter probes were similar to levels measured during last year's annual inspection. Readings collected from the 18 gas vents on the landfill indicated levels of carbon monoxide, and carbon dioxide production decreased since last year, while measurements of LEL, methane, oxygen, and hydrogen sulfide remained about the same. As observed in the 2004 monitoring, VOC concentrations were not detected.

LEL readings from the landfill gas vents near the southern end of the landfill have consistently registered higher than other areas in the past. These increased LEL readings, coupled with increased carbon monoxide, carbon dioxide, and methane readings in the landfill gas vents and the proximity of commercial development warranted installation of additional perimeter gas monitoring probes along the property line where the landfill is adjacent to structures. Nine gas monitoring probes were installed in November 2005 at the southern perimeter of the site along the commercial properties. Readings were collected from these monitoring probes in February 2006. Methane and hydrogen sulfide were not detected. Concentrations of VOCs, LEL, carbon monoxide, and carbon dioxide were detected in two or more of the probes.

Group 1 and Group 2 wells were monitored in the summer (June 2005) and winter (January 2006) of 2005 to evaluate the effectiveness of the landfill at reducing risk and achieving cleanup levels for contaminants of concern (COCs) in groundwater. The COCs are arsenic, chromium, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichloroethane, lead, manganese, nickel, sodium, aluminum, and iron. Of the network of 14 monitoring wells, nine were sampled during the June 2005 event. However, the five wells that were not monitored during the June, 2005 event were monitored independently under the Performance Monitoring Plan for the Contingency Remedy in February/April 2005 and August 2005. The data from the Performance Monitoring Plan work are reported elsewhere. Fourteen monitoring wells were scheduled to be monitored as part of the January 2006 monitoring, however, one well, SHL-3, could not be sampled because the well was pumped dry prior to stabilization. Poor recharge in monitoring well SHL-3 has been documented in previous sampling rounds.

The goal of Alternative SHL-2 alone had been to maintain groundwater quality below cleanup levels at Group 1 wells, and to attain cleanup levels at Group 2 wells. Annual reports since capping of the landfill compare the concentrations of COCs to the cleanup levels, supporting five-year site reviews in which the effectiveness of remedial actions are evaluated. Evaluating effectiveness at Group 2 wells is based on reduction of risk rather than reduction of concentration as a measure of progress toward attainment of cleanup levels, because this approach focuses on the cleanup of arsenic, which is the primary contributor to risk in the Group 2 wells. According to the LTMMP, only chemicals that present carcinogenic risk are considered trigger chemicals in the monitoring program. The trigger chemicals are arsenic, 1,2 dichlorobenzene, 1,4 dichlorobenzene and 1,2-dichloroethane. Reduction of carcinogenic risk, rather than simply reduction of contamination, is the measure of progress toward attainment of cleanup. This risk-based approach keeps the focus on mitigation of the most significant contributors to risk.

Originally, all existing wells were designated as Group 2 wells per the LTMMP, including the three newer wells installed in 1996 (SHM-96-5B, SHM-96-5C, and SHM-96-22B) based on their first

round of sampling. Risk reduction was evaluated during the first five-year review (FYR) in August 1998 (Stone & Webster 1998). During the August 1998 review, six monitoring wells (SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. The remaining eight wells continue to be classified as Group 2 wells. Since the August 1998 review, three of the Group 1 wells (SHL-9, SHL-22 and SHM-93-22C) have exceeded the cleanup level for arsenic at least once during the semi-annual monitoring. A basewide five year review for all sites at the former Fort Devens undergoing investigation and remediation, was completed in September, 2000 (HLA, 2000). This comprehensive FYR was triggered by the initiation of soil remediation activities of AOC 44 and 52 on August 11, 1995.

Data evaluated during these two five year reviews relating to Shepley's Hill Landfill triggered the implementation of the Contingency Remedy because risk reduction goals were not being met by the selected remedy, SHL-2. The Army and the regulatory agencies decided to implement the contingency element of the selected remedy, alternative remedy SHL-9, Groundwater Extraction and Discharge. Construction of the groundwater extraction and treatment system for the landfill was undertaken primarily in Fall 2004 through Spring 2005, after a design process that had been initiated in Fall 2003. The completed system is located at the north end of the landfill, near down-gradient monitoring wells SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-22, SHM-96-22B and SHM-93-22C. This system includes a wellfield with two extraction wells, a treatment plant, and utility berm across the cap connecting with the Devens POTW system and electrical power near Cooke Street. The treatment system became operational in Fall 2005.

A second basewide FYR report was completed by the United States Army Corps of Engineers, New England District (USACE) in September 2005 (Nobis, 2005). The review concluded that a protectiveness statement or determination could not be made at the time until follow-up actions were competed including start-up and performance monitoring of the extraction and treatment system, landfill cap maintenance, and completion of the Comprehensive Site Assessment/Corrective Actions Alternative Analysis (CSA/CAAA). It was anticipated that within 2 years, time enough for completion of the CSA/CAAA a protectiveness determination could be made.

Groundwater sampling was performed at nine LTMMP monitoring wells in June 2005. Two of these monitoring wells are located on the down-gradient edge of the landfill to the north, while the remaining seven are located on the east side of the landfill near Plow Shop Pond. These wells and five others, with the exception of SHL-3, were sampled as part of the January 2006 sampling. SHL-3 could not be sampled because the well was pumped dry prior to stabilization. Samples were collected in accordance with the *EPA's Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells* (July 1996). Samples were analyzed for volatile organic compounds (VOCs), inorganics, and general water quality parameters. Laboratory reports were reviewed for adherence to acceptable laboratory practices. Based on the data evaluation elements reviewed, all data was determined to be of acceptable quality for use, with some qualifications due to low matrix spike duplicate recovery, holding time exceedances, and associated field and method blank contamination in the June 2005 sampling.

Arsenic was the only trigger chemical detected above the cleanup level during the 2005 sampling program (see Table ES-1 on following page). Most results indicated no significant change from

previous arsenic levels. However, the highest concentration of arsenic, 3,320ug/L, was recorded at SHM-96-22B during the January 2006 sampling. The previous greatest concentration of 2,500 ug/L was detected during the November 2003 sampling. Northern well SHM-96-5B was the monitoring well location with the highest concentration of arsenic of the wells sampled as part of the 2005 monitoring program. The highest arsenic concentration has been recorded at SHM-96-5B for all of the sampling rounds except fall 2004, in which the highest concentration was observed in well SHM-96-22B. Wells SHM-96-5B and SHM-96-22B are located relatively close to each other and are screened at a similar depth in sand/till. Monitoring wells SHM-96-5B and SHM-96-22B show a trend of generally increasing arsenic concentrations. Both these wells have continuously exhibited the highest arsenic levels measured at the site, one to two orders of magnitude above levels measured at the other compliance wells. Seven of the thirteen monitoring wells sampled in January, 2006 were below the arsenic cleanup level. Northern well SHL-22 was the only Group 1 well having arsenic concentrations exceeding the cleanup level, which has occurred continuously since May 2002. Concentrations measured at Group 2 wells SHL-4, SHL-10 and SHM-96-5C also met the cleanup level for arsenic, a trend that has been occurring over the past years, particularly at SHL-10.

Cleanup levels for the other three trigger chemicals were not exceeded. However, cleanup levels for the COCs iron, manganese and sodium were exceeded in the 2005 sampling events. In general, with the exception of iron, manganese, and sodium concentrations at wells SHL-5, SHM-96-5C and SHM-93-10C, concentrations of iron, manganese, and sodium have remained stable or declined since 2002.

Well	Orientation to Landfill	Geological Designation	Group #	Concentration June 2005	Concentration January 2006
SHL-22	North	Till	1	Not Sampled	154 μg/L
SHM-96-22B	North	Sand/Till	2	Not Sampled	3,320 µg/L
SHM-96-5B	North	Sand/Till	2	Not Sampled	4,130 μg/L
SHL-11	East	Water Table	2	524 μg/L	567 μg/L
SHL-19	East	Water Table	2	26.7 μg/L	156 µg/L
SHL-20	East	Till	2	159 μg/L	189 µg/L

Corrective action recommendations relating to the cap system and associated drainage are included in the Geotechnical Engineering Fall 2005 Annual Inspection Report (USACE, March 2006), provided in Appendix A. These recommendations include the following: (1) repair and replace the security fence and gates as required to control access to the site and (2) place topsoil and seed over the sandy area lacking vegetation on the east side along the perimeter of the cap. Along with the corrective actions listed above, it was recommended: (1) Install additional landfill gas monitoring probes along the commercial property at the south side of the landfill and (2) Repair and re-grade around the catch basins on the south side of the landfill.

Gas monitoring probes were installed along the south side of the landfill in December 2005 and were monitored in February 2006. Although monitoring was conducted in February, 2006 it is reported in this 2005 annual report. These wells will be monitored again in 2006 as part of annual gas monitoring. In addition, in December, 2005 repairs were made to security fences and notrespassing signs were installed. Regrading activities are anticipated to occur upon completion of the CSA/CAAA. With the exception of the repairs mentioned above, and the other repairs recommended in the report, the landfill is in fair condition and appears to be functioning adequately. All of the above is discussed in more detail in Section 3.0 of this report.

1.0 INTRODUCTION

This annual report has been prepared to document the monitoring and maintenance procedures conducted in 2005 at the Shepley's Hill Landfill in Devens, Massachusetts. These procedures were conducted in accordance with the *Record of Decision, Shepley's Hill Operable Unit, Areas of Contamination 4, 5, and 18* (ROD) (ABB-ES Oct 1995) for Shepley's Hill Landfill Areas of Contamination 4, 5, and 18, and the *Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill (LTMMP)* (SWEC, May 1996). This annual report was prepared by CH2M HILL.

The ROD selected remedy, Alternative SHL-2, which is a source control action that addresses longterm residential exposure to contaminated groundwater, the principal known threat at the Shepley's Hill Landfill Operable Unit. Alternative SHL-2 consisted of completing closure of Shepley's Hill Landfill in accordance with applicable Massachusetts requirements of 310 CMR 19.000, and monitoring and evaluating the effectiveness of the landfill cover system (completed in 1993) to control groundwater contamination and site risk.

The LTMMP for Shepley's Hill Landfill, completed in May 1996, outlines the landfill closure monitoring and maintenance procedures required by the ROD. These procedures include an annual visual inspection and gas emission monitoring of the landfill cap, and a semi-annual groundwater sampling program to monitor contaminants of concern (COCs) and evaluate the effectiveness of the landfill cover system to control groundwater contamination and site risk. The COCs and their cleanup levels for Shepley's Hill Operable Unit are listed in Table 1-1.

1.1 Evaluating Effectiveness of Remedial Objectives

Fourteen compliance point wells are monitored to evaluate the effectiveness of the landfill at reducing risk and achieving cleanup levels in monitoring wells. They are designated as Group 1 or Group 2 wells. The ultimate goal of Alternative SHL-2 is to maintain groundwater quality below cleanup levels at Group 1 wells, and to attain cleanup levels at Group 2 wells.

Five-year site reviews evaluate the effectiveness of Alternative SHL-2 at reducing the potential human health risk from exposure to groundwater and at preventing groundwater from contributing to Plow Shop Pond sediment contamination in excess of human health and ecological risk-based values. Evaluating effectiveness at Group 2 wells is based on reduction of risk rather than reduction of concentration as a measure of progress toward attainment of cleanup levels, because this approach focuses on the cleanup of arsenic, which is the primary contributor to risk in the Group 2 wells.

According to the LTMMP, only chemicals that present carcinogenic risk are considered trigger chemicals in the monitoring program. The trigger chemicals are arsenic, 1,2 dichlorobenzene, 1,4 dichlorobenzene and 1,2-dichloroethane. Reduction of carcinogenic risk, rather than simply reduction of contamination, is the measure of progress toward attainment of cleanup. This risk-based approach keeps the focus on mitigation of the most significant contributors to risk.

1

The LTMMP states Alternative SHL-2 will be considered effective with regard to Group 2 wells if five-year reviews show an ongoing reduction of potential human health risk (based on trigger chemicals) at Group 2 wells and the ultimate attainment of cleanup levels for all COCs by January 2008. Alternative SHL-2 will be considered effective with regard to Group 1 wells if five-year site reviews show that groundwater quality remains at or below cleanup levels for all COCs.

Chemical concentrations in Group 1 wells have historically attained cleanup goals, while those in Group 2 have not. Originally, all existing wells were designated as Group 2 wells per the LTMMP (Stone & Webster, 1996), including three newer wells installed in 1996 (SHM-96-5B, SHM-96-5C, and SHM-96-22B) based on initial sampling. During the first five-year site review (August 1998), six monitoring wells (SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. The remaining eight wells continue to be classified as Group 2 wells. The second basewide FYR (HLA, 2000), did not reclassify any of the monitoring wells. However, the review concluded that based on the data collected to date, the required incremental reduction in risk was not achieved and the Army and regulatory agencies decided to implement Alternative SHL-9, Groundwater Extraction and Discharge.

Construction of a groundwater extraction and treatment system for the landfill was undertaken during 2004 and became fully operational following start-up testing in March 2006. The system is located just north of the landfill cap, near the set of compliance point wells that monitor the groundwater down-gradient of the landfill (SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-22, SHM-96-22B and SHM-93-22C). This construction included a utility dike across the northern half of the cap. The treatment system was not operational at the time of monitoring activities in January 2006. The data collected during 2004, 2005, and January 2006 may therefore serve as baseline data to compare pre-treatment to post-treatment conditions in the future.

1.2 Five-Year Site Reviews

Stone & Webster Environmental Technology & Services (SWEC) conducted the first two years of monitoring in 1996 and 1997. These first two years of monitoring were included in the first *Five Year Review, Shepley's Hill Landfill, Long Term Monitoring* (SWEC, August 1998) required by the ROD, and marking five years since the final capping of the landfill in 1993. Since 1998, monitoring has been conducted by USACE, New England District. In 2000, a review of all Devens sites was performed and included in the *First Five Year Review Report for Devens Reserve Forces Training Area, Devens, MA* (HLA, 2000) which included monitoring conducted for Shepley's Hill Landfill Operable Unit in 1996 through 1999. The second five year review, *2005 Five Year Review* Report, was prepared for monitoring conducted from 2000 through 2004.

1.3 2005 Annual Report Objectives

This annual report covers long term monitoring and maintenance activities conducted in 2005 including the following:

- Landfill cap inspection to identify areas requiring maintenance.
- Installation of nine landfill perimeter gas monitoring probes along the south side of the landfill.
- Landfill gas measurements at 18 gas vents and 13 landfill perimeter gas monitoring probes to establish long-term trends with regard to gas production and venting.
- Monitoring of fourteen compliance point wells for groundwater elevations and COC concentrations to compare to cleanup levels as a measure of determining the effectiveness of the selected remedy.
- Monitoring of an expanded hydraulic network as part of the baseline study established under the Groundwater Extraction, Treatment, and Discharge Remedy.

The findings documented in this annual report support the third five-year site review for monitoring to be conducted from 2005 through 2009 in which the effectiveness of the remedy is formally evaluated with regard to risk reduction and attainment of cleanup levels. Interim recommendations are identified at the end of this report.

2.0 LANDFILL CAP MAINTENANCE ACTIVITIES

The ROD for the Shepley's Hill Landfill requires monitoring and maintenance of the landfill cap based on observations made during the annual inspections. Normally scheduled maintenance activities performed during 2005 included mowing of the landfill vegetative cover and cutting of vegetative growth. An upcoming Comprehensive Site Assessment (CSA), expected to be completed by the fall of 2007, will assess the adequacy of the landfill. Following the CSA, a Corrective Action Alternatives Analysis (CAAA) will be conducted to identify any remedial repairs required. Implementation of the selected options (if required based on the outcome of the CAAA) should improve drainage and function of the landfill cap. The following items should be addressed before the next inspection or as provided for in the final recommendations in the report cited above: (1) repair and replace the security fence and gates as required to control access to the site; (2) Place topsoil and seed over the sandy area lacking vegetation on the east side along the perimeter of the cap. Along with the corrective actions listed above, it is recommended to repair and regrade around the catch basins on the south side of the landfill. With the exception of the repairs mentioned above, and the other repairs recommended in the report, the landfill cap is in fair to good condition and appears to be functioning adequately.

These activities, and all maintenance items monitored during the 2005 cap inspection, are summarized in Section 3.0 of this report. A more detailed report of the monitoring and maintenance activities completed as part of the annual inspection is provided in the Geotechnical Engineering Fall 2005 Annual Inspection Report (USACE, March 2006), which has been included as Appendix A.

3.0 LANDFILL CAP MONITORING ACTIVITIES

The Shepley's Hill Landfill at Devens, Massachusetts was inspected to identify areas requiring maintenance on November 8 and 9 2005 by personnel from the U.S. Army Corps of Engineers, New England District (USACE). Features of the landfill inspected included the cap, drainage system, gas vent system, access roads, and security fence. Observations were made regarding the vegetative

cover, vegetation types, erosion, settlement, and general condition of the various features. A narrative of the findings and recommendations of this inspection are included below.

- Catch Basin #3 near the Cooke Street entrance to the site is not set at grade. Soil excavation in this area has left the rim of the grate about six to eight inches higher than the surrounding ground. The rim of this catch basin should be lowered to the surrounding grade.
- The concrete headwall drainage structure at the terminus of the catch basin and underground conduit system on the south side is overgrown with vegetation and is silting in. The grade of the channel bottom is uneven and standing water is present. Wetland species are becoming established as well. The structure and channel immediately downstream is should be cleared, accumulated sediment should be removed, and the channel should be regraded as required to properly drain. The channel will then be reseeded or riprap should be placed, depending on water velocities. This work is scheduled to be performed in 2006. Areas of standing water are present at numerous locations across the landfill surface.
- The northern reaches of the eastern drainage swale have some minor vegetation growth and sand accumulation. The swale should be cleared of vegetation and sand.
- In the vicinity of gas vents 8, 11 and 12, the perimeter of the cap has some areas of sparse/eroded vegetation. The soil in the bare areas is mostly sand and is eroded in some areas. The area should be graded to fill in the eroded areas and topsoil should be placed to a depth of 6 inches over the sand to allow grass to grow. The grass should extend at least twenty feet past the limits of the cap.
- The access roads on the site are in good condition. There are no problems on access roads that warrant repair at this time.
- Portions of the perimeter chain-link security fence are in poor condition. Fence sections
 and gates are missing and unrestricted access to the site is available at several locations.
 Some evidence of off-road vehicles (ATV's, dirt bikes, etc.) using the cap area was seen.
 On the east side near monitoring well SHL-11, the fence has been rolled back and is
 open. A gate and lock will be added here. There are also several other locations around
 Plow Shop Pond which provide unrestricted access. The security fence should be
 repaired, with all missing fence sections, including gates, replaced or repaired.

The recommendations will be addressed in a forthcoming Comprehensive Site Assessment that will be conducted to assess the overall effectiveness of the landfill cap with regard to infiltration. A summary of Corrective Action measures for the Landfill Cap are included in Section 9.0.

4.0 LANDFILL GAS MONITORING RESULTS

The purpose of the landfill gas monitoring program is to establish long-term trends with regard to gas production and venting. A combustible gas survey was performed on 18 passive gas vents on the landfill cover and 13 perimeter gas monitoring probes to determine whether methane, hydrogen sulfide, or volatile organic compounds have accumulated in the subsurface of the landfill site or are migrating off-site, and if so, how these readings compare with the previous year.

Originally, 18 passive gas vents were installed in the landfill cover. In November 2001, four landfill perimeter gas monitoring probes were installed to monitor potential landfill gas migration from Shepley's Hill Landfill towards the north, in the direction of Sculley Road. Nine additional landfill gas monitoring probes were installed along the commercial property at the south side of the landfill in December 2005 after the initial 2005 landfill gas monitoring had been completed. These newly installed probes were sampled in February 2006 as part of a supplemental landfill gas survey.

The annual landfill gas sampling was conducted on November 8, 2005. The weather was clear, with temperatures in the 50's Fahrenheit (°F) and the barometric pressure was 29.9 inches of mercury and rising. The supplemental landfill gas sampling was conducted on February 16, 2006. Weather conditions on this day were recorded as clear, 55 °F and a barometer reading of 30.1 inches mercury and falling. Gas samples were field analyzed for the following parameters using the listed equipment:

Parameter	Gas Monitoring Equipment				
Total Volatile Organic Compounds (VOC)	Thermo Environmental 580B (PID) with a 10.6 eV lamp				
Percent Oxygen	Landtec GEM 500 landfill gas monitor (November 2005) and Landtec GA90 (February 2006)				
Hydrogen Sulfide (ppm)	Industrial Scientific TMX 412 CGI (November 2005) and Industrial Scientific MG 140 (February 2006)				
Percent Lower Explosive Limit (LEL)	Industrial Scientific TMX 412 CGI				
Carbon Monoxide (ppm)	Industrial Scientific TMX 412 CGI (November 2005) and Industrial Scientific MG 140 (February 2006)				
Percent Carbon Dioxide	Landtec GEM 500 landfill gas monitor (November 2005) and Landtec GA90 (February 2006)				
Percent Methane	Landtec GEM 500 landfill gas monitor (November 2005) and Landtec GA90 (February 2006)				

The equipment used to collect the landfill gas readings was calibrated in the shop by U.S. Environmental. Samples were collected by attaching a rubber Quik cap with a hose clamp to the gas vent pipe. A barbed fitting was placed in a drilled hole in the cap. Tubing was run from the barbed fitting to an Industrial Scientific SKC224-PCXRE air sampling pump in November 2005 and an Industrial Scientific Sampling Pump SP402 in February 2006. The pump was operated for approximately 7 to 10 minutes to purge 2 vent pipe volumes and to ensure that the gases collected were representative of the gas collection layer. The gas monitoring equipment was then attached to the pump and turned on.

5

The landfill gas monitoring results are provided in the *Geotechnical Engineering Fall 2005 Annual Inspection Report* (Appendix A). The following is a summary of the perimeter landfill gas monitoring results.

November 2005 Landfill Gas Vent Monitoring

VOCs and hydrogen sulfide were not detected in any of the gas vents. The oxygen levels ranged from 0% (V-16, and, V-17) to 21.0% (V-18). LEL readings ranged from 0% (V-15 and V-18) to over 100% LEL in eight of the 18 vents. Carbon monoxide was not measured in 16 of the 18 gas vents. The greatest carbon monoxide concentration, 3 PPM, was detected V-17. Carbon dioxide ranged from 0% (V-15 and V-18) to 27% at V-17. Methane ranged from 0% (V 15 and V-18) to 32.7 % at V-17. Levels of carbon monoxide and carbon dioxide production decreased since last year, while measurements of VOCs, LEL, methane, oxygen, and hydrogen sulfide remained about the stable. Increased levels of LEL, carbon monoxide, carbon dioxide and methane production were observed between the 2003 and 2004 monitoring.

November 2005 Landfill Gas Probe Monitoring

All four perimeter landfill gas monitoring probes (PGP-1, PPG-2, PGP-3, and PGP-4) tested negative for VOC's, LEL, hydrogen sulfide, carbon monoxide, and methane. Carbon Dioxide was detected in all four probes ranging in concentrations from 0.6% to 2.2%. Oxygen levels ranged from 19.2 % at PGP-2 to 20.3% at PGP-1 and PGP-4. Levels of all gases were similar to levels measured during 2004 annual inspection.

February 2006 Landfill Gas Probe Monitoring

VOCs were detected in seven of the nine gas probes installed along the southern border of the landfill. The VOC concentrations ranged from 0.9 ppm at LGP-14 to 0.2 ppm at LGP-7, LGP-8, and LGP-11. LEL concentrations of two percent were observed at LGP-8 and LGP-9 and one percent at LGP-7. Carbon monoxide was detected in two probes: LGP-9 at 1 ppm and LGP-14 at 2 ppm. Carbon Monoxide was detected in eight of the nine probes at concentrations ranging from 0.3 ppm (LGP-5) to 10.7 ppm (LGP-8). Methane and hydrogen sulfide were not detected.

The gas readings are within the parameters of a mature landfill. The major concern with landfill gas is off-site migration. If the gas vents are functioning properly and are adequately spaced there should be no significant off-site migration of landfill gases; however, due to the increased LEL, carbon monoxide, carbon dioxide, and methane readings, and the proximity of residential housing and commercial development, the gas monitoring probes installed along the northern and southern property lines where the landfill is adjacent to structures should continued to be monitored.

5.0 GROUNDWATER ELEVATIONS

Groundwater elevations were collected from the compliance point wells in order to observe any changes in elevation and the direction of groundwater flow. Groundwater elevations at compliance point wells were measured on the first day of each sampling event, June 6, 2005 and January 19, 2006, respectfully. The depth to water table was measured in the field, and then subtracted from the elevation of the reference point to determine the elevation of the water table at each location. Table 5-1 lists the water table elevations (for each sampling round), the geological unit(s) screened by the

wells, and the elevation of the screened interval for each well. Groundwater elevations measured in January 2006 were consistently higher than those measured in June 2005.

In addition to these semi-annual groundwater measurements, groundwater measurements of all Shepley's Hill Landfill wells were conducted by CH2M HILL in conjunction with the Performance Monitoring Plan (PMP) implemented as part of the Groundwater Extraction, Treatment, and Discharge Alternative. Site-wide groundwater measurements were collected on February 16, August 1, August, 24, August 26, and August 29, 2006. Water level measurements collected on August 24 and 26 as part of an extraction test are provided as Table 5-2. Data collected on August 24, 2006 represent water level conditions prior to the extraction test and the data collected on August 26 represent water level conditions during the extraction test. The synoptic groundwater data collected prior to and during the extraction tests has been contoured to depict conditions prior to pumping (Figure 5-1) and immediately prior to termination of pumping at 25 gpm (Figure 5-2).

During the first 5-year review (SWEC, August 1998), groundwater elevations were re-evaluated to identify hydraulic gradients and to confirm changes due to the construction of the landfill cap. Groundwater modeling suggested that the landfill cap has reduced the volume of water beneath the cap, resulting in a more northerly groundwater flow (SWEC, 1998). Water level data collected on August 24, 2006, under baseline conditions suggests that the model analysis of a northerly groundwater flow is still valid. The water level data collected during the extraction test indicates that the operation of the groundwater extraction system will create an even greater northerly flow.

6.0 GROUNDWATER SAMPLING

Groundwater sampling is conducted at the landfill on a semi-annual basis in accordance with the LTMMP at assorted compliance point monitoring wells. Nine monitoring wells were sampled as part of the 2005 summer monitoring: SHL-3, SHL-4, SHL-5, SHL-10, SHM-93-10C, SHL-11, SHL-19, SHL-20, and SHM-93-22C in June 2005. The wells were sampled on June 6 and 7, 2005. Fourteen wells were scheduled to be sampled as part of the 2005 winter sampling, including the wells mentioned above as well as SHM-96-5B, SHM-96-5C, SHL-22, and SHM-96-22B. However, monitoring well SHL-3 could not be sampled because the well went dry during purging. Poor recharge in SHL-3 has been documented in previous sampling rounds. The 2005 winter sampling was conducted on January 19, 20, and 25, 2006. The 2005 summer sampling program was conducted by USACE personnel and the 2005 winter sampling was completed by CH2M HILL personnel.

Of these fourteen long term monitoring wells, the seven at the north end of the landfill (SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-22, SHM-96-22B and SHM-93-22C) are located in the area predicted to experience the greatest intrusion of groundwater flow from the landfill, as suggested by previous modeling results (Harding ESE, A MACTEC Company, 2002). The remaining seven are located along the eastern edge of the landfill, between the landfill and Plow Shop Pond.

Four additional wells located near Molumco Road (SHM-99-31A, SHM-99-31B, SHM-99-31C, and SHM-99-32X) are frequently sampled at the same time as the compliance point wells, for comparison purposes only. However, these wells not sampled during the 2005 monitoring.

In accordance with the ROD and LTMMP, compliance point wells are designated as Group 1 or Group 2 wells. Chemical concentrations in Group 1 wells have historically attained cleanup goals, while those in Group 2 have not. Originally, all existing wells were designated as Group 2 wells per the LTMMP, including three newer wells installed in 1996 (SHM-96-5B, SHM-96-5C, and SHM-96-22B). During the first five-year site review (August 1998), six monitoring wells (SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. The remaining eight wells continue to be classified as Group 2 wells. The 2005 Five Year Review Report did not make any changes to the well group designations. If necessary, these group designations will be revised during the next five-year review (based on data collected in the years 2005 to 2009) depending on whether groundwater quality meets the criteria of section 1.2 of the ROD.

6.1 Preparation for Sampling

Sampling activities were coordinated with the Devens BRAC Environmental Office and the contract laboratory prior to commencement of sampling. Bottles were checked to insure they complied with the requirements of the sampling program. Sampling equipment, including YSI water quality meters, portable generators and tubing, was rented (or purchased in the case of supplies) from local vendors. USACE used their own Grundfos Rediflow II pumps, controllers, Heron water level indicators, and HF Scientific DRT-15CE turbidity meters for the sampling events (equipment is occasionally supplemented with identical or similar models rented from U.S. Environmental, as required – these instances are noted on the Groundwater Field Analysis Forms where appropriate). CH2M HILL rented all of the equipment used during the winter sampling from Pine Environmental. All equipment was inventoried and tested to ensure it was accounted for and functioning. The well logs of each of the wells to be sampled were reviewed by the field team prior to the scheduled event to determine tubing requirements, and brought to the landfill during the sampling event to confirm the screened intervals.

6.2 Sampling

Monitoring wells were purged and sampled in accordance with *EPA's Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells* (July 1996) using an adjustable rate, low flow pump.

Before sampling activities commenced, groundwater elevations were measured at each well location to be sampled. YSI water quality meters and turbidity meters were calibrated at the beginning of each day of use. A calibration check was also performed at the end of each day. During sampling, the generator used to power the pumps was located at a downwind area at least 30 feet away from the well being sampled, to minimize potential contamination from the exhaust. Upon initial opening of each well, initial water level measurements were collected. The pump intake was lowered to approximately the middle of the screen of each well to be sampled when possible. When the water level was below the top of the screen, the pump was positioned at a depth approximately midway between the top of the water level and the bottom of the screen.

Water quality parameters, including temperature, specific conductance, pH, oxidation-reduction potential (ORP), turbidity, and dissolved oxygen (DO) were collected every 3 to 5 minutes to ensure

proper purging of the wells before each well was sampled. The results are listed on Groundwater Field Analysis Forms located in Appendix B. Most of the water quality parameters, were monitored using a flow-through cell and a Sonde-YSI water meter (YSI 600XL). Turbidity samples were not collected from the flow through cell due to the silt buildup that can occur in the cell. A T-connector with ball valve was set up before the flow-through cell to facilitate the collection of samples for turbidity readings. With the exception of the last day of the winter sampling (January 25, 2006) dissolved oxygen readings were measured in the flow cell. Dissolved oxygen readings on January 25, 2006 were collected with a YSI 85 in-situ probe after the YSI 600 XL began giving erroneous dissolved oxygen readings. Sampling was conducted when water quality parameters became stabilized for three consecutive readings. The tubing was disconnected from the flow-through cell and samples were collected directly from the discharge tubing. Observations made during the sampling activities include:

- To ensure precision of water level measurements, well casings that had faded marks or no marks were remarked.
- At several wells during each event, the water level was lower than the top of the screen, and the pumps were lowered to approximately midway between the water level and the bottom of the screen.
- Monitoring well SHL-3 could not be sampled during the 2006 winter monitoring because the well went dry while purging Previous sampling programs have noted problems with recharge at SHL-3 due to siltation problems

6.3 Equipment Decontamination

All non-disposable sampling and testing equipment that came in contact with the sampling medium was decontaminated to prevent cross contamination between sampling points. The submersible pump was decontaminated using the following procedure:

- Upon removal of the pump from the well following sample collection, the pump was submersed in potable water and detergent (Alconox) solution. At least 1 to 2 gallons of the detergent solution was pumped through (starting the pump at a low flow rate, as in sampling, and increased to a higher speed).
- The pump was removed and sprayed with potable water to minimize the transfer of soap to the riser.
- The pump was then submersed in potable water and at least 1 to 2 gallons were pumped through.
- The pump was then submersed in deionized water and at least 1 to 2 gallons were pumped through.
- The submersible pump was sprayed with isopropyl alcohol (reagent grade) using a hand held spray bottle, over a tub. The pump was then submersed in a final deionized water rinse and at least 1 to 2 gallons were pumped through.
- The pump was air dried and wrapped in clean aluminum foil.

7.0 LABORATORY TESTING

Groundwater samples collected during the summer sampling event were sent to Severn Trent Laboratories in Colchester, Vermont for analysis. Groundwater samples collected during the winter 2005 sampling were submitted to Alpha Analytical Labs of Westborough, Massachusetts. All samples were analyzed for volatile organic compounds, inorganics, and general water quality parameters.

7.1 Sample Handling

Samples were collected in containers compatible with the intended analysis and properly preserved prior to shipment to the laboratory. Each sealed container was placed in a leak proof plastic bag and placed in a strong thermal ice chest filled with bubble wrap packing material, or equivalent, to ensure sample integrity during shipment. Ice was added to cool samples to 4 degrees Celsius (°C) or just below. Chains of custody were used to identify and document the samples being shipped. Sample custody was initiated by the sampling team upon collection of samples and chain-of-custody forms were placed in waterproof plastic bags and taped to the inside lid of the cooler. The cooler was sealed with chain-of-custody seals. Samples collected during the spring sampling were shipped to the laboratory via overnight delivery while the samples collected in January 2006 were delivered by courier.

7.2 Analyses

Contaminants of concern (COCs) for compliance point wells include arsenic, chromium, 1.2dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichloroethane, lead, manganese, nickel, sodium, aluminum, and iron. Cleanup levels for these COCs are listed on Table 1-1. Water analyses were conducted according to SW846 methods 8260B for volatile organic compounds (VOCs), and 6010B for target analyte list (TAL) metals (7471A for mercury). The summer monitoring used the following methods for general chemistry: chemical oxygen demand (COD) by EPA method 410.1, biochemical oxygen demand (BOD) by EPA method 405.1, hardness by Standard Method 2340B, alkalinity by EPA method 310.1, cyanide by EPA method 335.4, anions (chloride, nitrate, and sulfate) by EPA method 300.0, total organic carbon (TOC) by SW846 method 9060, total dissolved solids (TDS) by EPA method 160.1, and total suspended solids (TSS) by EPA method 160.2. The winter monitoring utilized the following methods for the general chemistry analyses: COD by Standard Method 5220D, BOD by Standard Method 5210B, hardness by Standard Method 2340B, alkalinity by Standard Method2320B, cyanide by Standard Method 9014, TOC by SW846 9060, TDS by Standard Method 2540C, TSS by Standard Method 2540D, chloride by Standard Method 9251, nitrate by Standard Method 4500NO3-F, and sulfate by Standard Method 9033B. These analyses were conducted on samples collected from all compliance point wells. As reported in previous annual reports, starting with the fall event of 2001, the method used to determine hardness was changed to Standard Method 2340B in order to eliminate the interference to EPA method 130.2 from other heavy metal ions typically present in some of the wells at the site. Table 7-1 summarizes the analysis procedures used.

7.3 Summary of Results

This annual report compares the COC concentrations with the cleanup levels identified in the ROD, see Table 1-1. The goal of ROD Alternative SHL-2 is to maintain groundwater quality below cleanup levels at Group 1 wells, and to attain cleanup levels at Group 2 wells.

The five-year reviews evaluate the effectiveness of Alternative SHL-2 at reducing the potential human health risk from exposure to groundwater and at preventing groundwater from contributing to Plow Shop Pond sediment contamination in excess of human health and ecological risk-based values. Evaluating effectiveness at Group 2 wells is based on reduction of risk rather than reduction of concentration as a measure of progress toward attainment of cleanup levels, because this approach focuses on the cleanup of arsenic, which is the primary contributor to risk in the Group 2 wells.

According to the LTMMP, only chemicals that present carcinogenic risk are considered trigger chemicals in the monitoring program. The trigger chemicals are arsenic, 1,2 dichlorobenzene, 1,4 dichlorobenzene and 1,2-dichloroethane. Reduction of carcinogenic risk, rather than simply reduction of contamination, is the measure of progress toward attainment of cleanup. This risk-based approach keeps the focus on mitigation of the most significant contributors to risk. Progress toward cleanup as measured by risk reduction is evaluated during five-year reviews.

The LTMMP states Alternative SHL-2 will be considered effective with regard to Group 2 wells if five-year reviews show an ongoing reduction of potential human health risk (based on trigger chemicals) at Group 2 wells and the ultimate attainment of cleanup levels for all COCs by January 2008. Alternative SHL-2 will be considered effective with regard to Group 1 wells if five-year site reviews show that groundwater quality remains at or below cleanup levels for all COCs. The Long Term Monitoring and Maintenance plan (SWET, 1996) considered all of the monitoring wells sampled in 2005 to be Group 2 wells. However, well designation based on the First Five-Year Review, SWEC (1998) considered the wells sampled in 2005 to be classified in the following designations:

- Group 1: SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C;
- Group 2: SHL-4, SHM-96-5B, SHM-96-5C, SHL-10, SHL-11, SHI-19, SHL-20, and SHM-96-22B.

The second five year review did not reclassify any of the monitoring wells. However, the review concluded that based on the data collected to date, the required incremental reduction in risk was not achieved and the Army and regulatory agencies decided to implement Alternative SHL-9, Groundwater Extraction, Treatment, and Discharge. The treatment system was not operational at the time of monitoring activities in January 2006. The data collected during 2004, 2005, and January 2006 may serve as baseline data to compare the pre-treatment and post-treatment conditions. Analytical results for groundwater analyses of samples collected at the compliance point wells are presented in Tables 7-2 and 7-3, for the summer and winter, respectively.

7.3.1 Arsenic Results

Arsenic was the only trigger chemical detected above its cleanup level at the site during the 2005 summer and winter sampling events. Figure 7-1 presents the results for these two sampling events. Historic arsenic data for the fourteen compliance point wells sampled in the 2005 monitoring are provided in Table 7-4. The compliance point monitoring well data was plotted to provide a graphical comparison of historical arsenic concentrations (see Appendix C) as discussed below.

Of the six Group 1 wells sampled in 2005 monitoring, only the sample collected from SHL-22 in January 2006 had arsenic concentrations exceeding the cleanup level (SHL-22 was not sampled in June 2005). Although SHL-22 was designated a Group 1 well in the August 1998 Five Year Review, its arsenic concentrations have consistently measured above the cleanup level since the May 2002 sampling event. Arsenic concentrations have also exceeded clean up levels at least once since the August 1998 Five Year Review in two other Group 1 wells, SHL-9 and SHM-93-22C, but have measured below the cleanup level since October 2002 and May 1999, respectively. Refer to Table 7-6 for wells that exceeded cleanup levels for trigger chemicals since achieving Group 1 status in 1998.

Of the Group 2 wells, arsenic concentrations from SHM-96-5B, SHL-11, SHL-19, SHL-20, and SHM-96-22B exceeded cleanup levels during the 2005 sampling. Most results indicated no significant change from previous arsenic levels. However, the highest historic level of arsenic, 3,320 ug/L , was recorded at SHM-96-22B during the January 2006 sampling. The previous greatest concentration, 2,500 ug/L, was detected during the November 2003 sampling. Group 2 well SHL-10 continues to have minimal to non-detect arsenic concentrations since May 1998. In addition, Group 2 wells SHL-4 and SHM-96-5C have shown arsenic concentrations meeting the cleanup level since May 2003 and November 2003, respectively.

Northern well SHM-96-5B was the sample location with the highest concentration of arsenic. The highest arsenic concentration has been recorded at SHM-96-5 for all of the sampling rounds except fall 2004, in which the highest concentration was observed in well SHM-96-22B. Wells SHM-96-5B and SHM-96-22B are located relatively close to each other and are screened at a similar depth in sand/till. These two northern wells have continuously exhibited the highest arsenic levels, one to two orders of magnitude above arsenic measured in the other compliance wells.

Historic concentrations measured in the eastern wells near Plow Shop Pond indicate arsenic concentrations are the same or decreasing in all wells but SHL-11. SHL-11 is screened at the water table, while the other eastern wells include four more screened at the water table, one at the base of till, and one at bedrock.

Historic concentrations measured in northern wells indicate arsenic concentrations are the same or decreasing in all wells except SHL-22 and SHM-96-22B, which are screened in the sand/till layer and the base of till, respectively. It is notable that concentrations in the northern wells screened at the water table do not generally change over the years monitored. These include Group 1 wells SHL-5 and SHL-9 with arsenic concentrations that usually measure well below the cleanup level, and Group 2 well SHM-96-5C with an arsenic concentration that measured below the cleanup level

during 12 of the 18 historic sampling events, including the most recent round completed in January 2006.

In general, similar arsenic concentrations were detected in the eight wells that were sampled in both the summer and winter sampling rounds. The only exception was observed at SHL-19, where the winter concentration (156 ug/L) was greater than the summer arsenic concentration (26 ug/L). Historically, the semi-annual sampling has been performed in the spring and fall seasons. Arsenic concentrations are usually higher in the fall than spring in wells SHL-11, SHL-19 and SHM-96-22B. The opposite is true for SHM-96-5B. The remaining compliance wells don't seem to show a notable seasonal trend for arsenic. The results of the spring and fall events for all COCs are summarized below.

7.3.2 COC Results for Samples Collected Summer 2005

VOCs, metals and general chemistry parameters were analyzed in nine compliance point wells at the landfill site. The compliance point wells sampled included four Group 1 wells, SHL-3, SHL-5, SHM-93-10C, and SHM-93-22C, and five Group 2 wells, SHL-4, SHL-10, SHL-11, SHL-19, and SHL-20.

Detectable levels of the VOC trigger chemicals; 1,2-dichloroethane, 1,2-dichlorobenzene, and 1,3dichlorobenzene were not observed in the nine monitoring well sampled in June 2005. The COC 1,4-dichlorobenzene was detected at SHL-11 and the corresponding duplicate sample collected at this well at estimated concentrations of 1.5 and 1.4 ug/L, which is significantly less than the Cleanup Level of 70 ug/L. Cleanup Levels for other VOC compounds detected in the sampling were not exceeded.

Arsenic, the only other trigger chemical, was detected at concentrations greater than the cleanup level of 50 μ g/L in two Group 2 compliance point wells: SHL-11 (524 ug/L) and SHL-20 (159 ug/L). The duplicate sample (collected from well SHL-11) had a concentration of 518 μ g/L. Arsenic concentrations in the samples collected in the 2005 monitoring were generally similar to concentrations observed in the 2004 monitoring.

The other COCs (those not designated as trigger chemicals) detected at concentrations above cleanup levels were also metals (iron, manganese, and sodium). Metal chemicals of concern that were not found to exceed cleanup levels at any of the wells include aluminum, chromium, lead and nickel. Iron was only detected at levels above its cleanup level of 9,100 μ g/L at the Group 2 compliance point well SHL-11 (59,400 ug/L and 57,400 ug/L in the corresponding duplicate sample). Iron was not detected above the cleanup level at Group 1 wells. The Group 1 well SHL-5 and Group 2 wells SHL-4, SHL-11 (and the corresponding duplicate sample), SHL-19, and SHL-20 had concentrations of manganese above the cleanup level of 291 μ g/L. The maximum value detected for manganese was 2,380 μ g/L at SHM-11. Sodium was detected at levels above its cleanup level of 20,000 μ g/L at Group 2 wells SHL-11 and SHL-20, at concentrations of 21,600 and 32,000 ug/L, respectively. Sodium was not detected above the cleanup level at Group 1 wells. As summarized in Table 7-5, maximum concentrations of iron, manganese, and sodium detected in the 2005 sampling were generally less than concentrations detected in the 2004 monitoring.

7.3.3 COC Results for Samples Collected Winter 2005

VOCs, metals and general chemistry parameters were analyzed for 13 groundwater monitoring wells in January 2006 as part of the 2005 winter monitoring program. Note that all 13 compliance point wells were sampled and analyzed for all required parameters.

Detectable concentrations of the VOC trigger chemicals; 1,2-dichloroethane, 1,2-dichlorobenzene, 1,3-dichlorobenzene and 1,4-dichlorobenzene were not detected in the 13 wells sampled. Cleanup Levels for other VOC compounds detected in the sampling were not exceeded.

Arsenic, the only other trigger chemical, exceeded the cleanup level of 50 μ g/L in the Group 2 compliance point monitoring wells SHM-96-5B (4,130 μ g/L), SHL-11 (567 μ g/L), SHL-19 (156 μ g/L), SHL-20 (189 μ g/L), and SHM-96-22B (3,320 μ g/L), and in the Group 1 compliance point well SHL-22 (154 μ g/L). The duplicate sample (collected from well SHM-96-5B) had a concentration of 4,190 μ g/L. Compared to 2004 data, the arsenic concentrations in the wells sampled in January 2006 increased in all the above wells, except for SHL-19.

The other COCs (those not designated as trigger chemicals) detected at concentrations above cleanup levels were also metals (iron, manganese, and sodium). Metal chemicals of concern that were not found to exceed cleanup levels at any of the wells include aluminum, chromium, lead and nickel. Iron was detected at levels above its cleanup level of 9,100 μ g/L at Group 2 compliance point wells SHM-96-5B (and corresponding duplicate sample), SHM-96-5C, SHL-11, SHL-19 and SHM-96-22B with the maximum detected (100,000 μ g/L) at well SHM-96-5C. Group 1 wells SHL-5, SHL-9, and SHL-22, and Group 2 wells SHM-96-5B (and corresponding duplicate sample), SHM-96-5C, SHL-11, SHL-19, SHL-20 and SHM-96-22B had concentrations of manganese above the cleanup level of 291 μ g/L. The maximum value detected for manganese was 7,600 μ g/L at SHM-96-5B. Sodium was detected at levels above its cleanup level of 20,000 μ g/L at Group 1 well SHL-22, and Group 2 wells SHM-96-5C, SHL-11, SHL-20, and SHM-96-22B, with a maximum concentration of 40,000 ug/L detected at two wells SHM-96-5C and SHL-22. As summarized in Table 7-5, with the exception of iron, manganese, and sodium concentrations at wells SHL-5, SHM-96-5C and SHM-93-10C, concentrations of iron, sodium, and sodium have remained stable or declined since 2002.

8.0 QUALITY CONTROL

Quality assurance/quality control (QA/QC) samples were collected to monitor the sample collection, transportation, and analysis procedures. QA/QC samples included field duplicate samples, matrix spike/ matrix spike duplicate samples, and equipment blanks. The results of the QA/QC sampling as well as an assessment of the data quality of analytical results for water samples collected during the 2005 Annual Shepley's Hill sampling events are provided in Appendix D. Based on the data evaluation elements reviewed, all data was determined to be of acceptable quality for use, with some qualifications due to low matrix spike duplicate recovery, holding time exceedances and associated field and method blank contamination in the June 2005 sampling.

9.0 IMPLEMENTATION OF CONTINGENCY REMEDY

9.1 Description

The rationale for implementing the contingency remedy for the Shepley's Hill groundwater along with detailed plans and specifications is presented in the document entitled, Remedial Design and Remedial Action Workplan, Final Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill. (CH2M HILL, May, 2005). Groundwater modeling work indicated that the system would effectively provide containment of the groundwater moving beneath Shepley's Hill Landfill and to the north if operated at 50 gallons per minute (gpm). The BRAC Cleanup Team (BCT) decided during the completion of the final design effort to conduct initial operation of the system at 25 gpm and initial operational data would be utilized to assess whether or not pumping rates could be increased in the future. The design document (CH2M HILL, May, 2005) provides the following statements about this plan:

Although the wellfield design extraction rate is 50 gallons per minute (gpm) total from the wellfield, the startup pumping rate will be a reduced rate of 25 gpm identified by the BCT while the BCT reviews initial extraction test and startup data (e.g., baseline geochemical monitoring, influent concentrations, etc.).

The primary performance objective of the extraction system is to contain the arsenic plume in the vicinity of the base boundary near the north end of the landfill. Pump test work (SWET, 1998), a 60% design for an extraction/discharge system (USAEC, 1997), and groundwater modeling (Harding ESE, 2003) provide the basis for development of this design and remedial action work plan. In addition, as mentioned previously, the Army decided in October, 2003 to treat the extracted water stream with a goal for the treatment system of 10 μ g/l for arsenic, ensuring 1) that the arsenic concentration and mass-related discharge limitation requirements of the MassDevelopment Industrial Discharge Permit would be easily met and 2) that treatment goals are consistent with the new arsenic drinking water standard of 10 μ g/l, promulgated on January 22, 2001 and due to be implemented by public water systems by January 23, 2006. The decision of the BCT to operate the wellfield at lower pumping rate (25 gpm vs the 50 gpm modeled flow) will focus groundwater extraction in the deeper part of the glacial aquifer during initial operations. Higher flow rates will likely be needed in the future to achieve full containment of the groundwater plume.

Construction of the wellfield, involving two 6-inch extraction wells, was completed in February 2005 and the remainder of system construction and connections with the treatment plant were completed in the Spring and Summer 2005. Concurrent with final design and construction work, CH2M HILL evaluated surface water and groundwater disposal options for treated water from the Arsenic Treatment Plant (CH2M HILL, 2005). This work involved hydraulic modeling to evaluate the impacts of surface water and groundwater discharge at a number of locations east and southeast of the wellfield. Appendix E provides a Technical Memorandum, dated December 22, 2005, providing details of this evaluation. In brief, the evaluation identified locations east of the treatment plant that could be viable for groundwater or surface water discharge. Further work evaluating potential process modifications that may be necessary to provide for dechlorination of effluent is being conducted in 2006.

Start-up wellfield extraction testing, plant process testing, and early system operation were conducted in late August and September 2005. Section 9.2 further describes activities conducted during system start-up.

9.2 Start-Up Activities

The extraction/recovery testing was conducted from August 24th through August 30th and involved two 24 hour drawdown tests and one recovery test of the EW-1 extraction well. A technical memorandum describing this testing is provided in Appendix F. Most importantly, hydraulic triggers established for start-up period operations (CH2M HILL, 2005c) were not exceeded during the tests at 25 gallons per minute.

During the start-up period, process testing and adjustments were made over a period of several days to evaluate the appropriate dosage of coagulant needed to achieve treatment to the operational goal of 10 ug/L. Influent and effluent sampling was conducted during this period to document arsenic, iron, and manganese concentrations throughout the testing period. This was necessary for evaluation of coagulant dosage, as well as to document influent/effluent characteristic under full operational pumping at 25 gpm. The testing demonstrated that the treatment process successfully treats a complex matrix (influent groundwater) and meets the goal of 10 ug/L arsenic. A brief summary memo (CH2M HILL, 2005d) provided in Appendix G discusses the process testing in greater detail.

In addition, to start-up process testing, geochemical and water-level monitoring were conducted during the start-up period and subsequently during routine operations in accordance with the Performance Monitoring Plan (CH2M HILL, 2005c). This data collection confirmed that the hydraulic triggers were not exceeded, in addition to demonstrating that groundwater arsenic levels and other geochemical parameters have remained relatively stable in the vicinity of the extraction wellfield and elsewhere during the early operation of the system.

During the first month of start-up operations 35% LEL was detected in the influent tank, 7% LEL in the effluent sump, and 2% LEL in the effluent manhole. Further monitoring indicated that methane was being generated from dissolved methane in influent groundwater as it is brought to the surface and equilibrates with atmospheric pressure. The methane/ethane levels in groundwater proved to be fairly typical for groundwaters having high TOC levels that are undergoing active methanogenesis. The plant was shutdown upgrade systems to ensure that hazardous atmospheres would not develop in headspaces the plant or process. Upgrades including LEL monitors on the clarifier and roll-off; an O₂ monitor on the microfilter (MF) skid; explosion-proof electrical in the effluent sump and extraction wells; and sealing/venting of the effluent sump and MF process tanks were made during the Fall and Winter and the system was brought back on line in early March, 2006.

10.0 CONCLUSIONS AND RECOMMENDATIONS

10.1 Conclusions

- The second five year review was completed by the USACE in September 2005. The five year concluded that the required incremental reduction in risk was not achieved and the Army and regulatory agencies decided to implement the Alternative SHL-9, Groundwater Extraction, Treatment, and Discharge. The groundwater extraction system began operation in March 2006.
- Site-wide groundwater measurements were collected on August 24 and 26, 2005. Water level data collected on August 24, 2006, representing baseline conditions suggests that the previous model analysis of a northerly groundwater flow is still valid. The water-level data collected on August 26 during an extraction test indicates that the operation of the groundwater extraction system will be expected create an even greater northerly flow.
- The locations of the wells in the LTMP remain appropriate, relative to source areas and the direction of groundwater flow.
- Shepley's Hill Landfill Cap appears to be in fair to good condition.
- The Geotechnical Engineering Annual Inspection in 2005 (refer to Appendix A) concluded: An upcoming Comprehensive Site Assessment will assess the adequacy of the landfill. Following the CSA, a Corrective Action Alternatives Analysis will be conducted to identify any remedial repairs required. Implementation of the selected options (if required based on the outcome of the CAAA) should improve the drainage and function of the landfill cap. The following items should be addressed before the next inspection or as provided for in the final recommendations in the report cited above: (1) Repair and replace the security fence and gates as required to control access to the site; (2) Place topsoil and seed over the sandy area lacking vegetation on the east side along the perimeter of the cap. Along with the corrective actions listed above, it is recommended to (1) Install additional landfill gas monitoring probes along the commercial property at the south side of the landfill (the probes were installed in November 05, after this inspection) (2) Repair and regrade around the catch basins on the south side of the landfill. With the exception of the repairs mentioned above, and the other repairs recommended in the report, the landfill is in fair condition and appears to be functioning adequately. As noted, gas probes were installed on the south end of the landfill monitored in February, 2006 (refer to Appendix A). Methane was not detected in any of the new or older perimeter gas probes. In addition, in December, 2005 the security fence was repaired and no-trespassing signs were installed.

10.2 Recommendations

- The list of parameters monitored as part of the long term sampling program should be reviewed as recommended in the 2005 Five Year Review Report (USACE, September 2005) with the intent of eliminating parameters that have no significant site history and do not contribute to site risks or to the understanding of the groundwater chemistry. These include copper, lead, nickel, selenium, silver, cyanide, BOD, and VOCs.
- Integrate LTM and PMP groundwater sampling programs.

• Other recommendations made in this annual report that are not currently scheduled but should be addressed in the future include, (1) Repair and regrade around the catch basins on the south side of the landfill; and (2) Repair the hasps on the casings of groundwater monitoring wells SHL-4 and SHL-9.

11.0 REFERENCES

ABB Environmental Services, Inc. (ABB-ES), 1993. *Final Remedial Investigation Addendum Report*, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. December.

ABB Environmental Services, Inc. (ABB-ES), 1995a. *Final Feasibility Study, Shepley's Hill Landfill Operable Unit,* Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. September.

ABB Environmental Services, Inc. (ABB-ES), 1995b. *Record of Decision, Shepley's Hill Landfill Operable Unit*, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. September.

CH2M HILL, 2003. Remedial Design and Remedial Action Workplan, Draft Final Sixty Percent (60%)/Draft One-Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill, Prepared for Base Realignment and Closure (BRAC), Atlanta Field Office. December.

CH2M HILL, 2005a. Remedial Design and Remedial Action Workplan, Final Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill. May.

CH2M HILL, 2005b Explanation of Significant Differences, Groundwater Extraction, Treatment, and Discharge Contingency Remedy, Shepley's Hill Landfill, Fort Devens, MA., June.

CH2M HILL, 2005c. Shepley's Hill Landfill, Performance Monitoring Plan, Groundwater Extraction, Treatment, and Discharge Contingency Remedy. August.

CH2M HILL, 2005d. Startup Testing Report Groundwater Treatment System Shepley's Hill Landfill, Devens, MA, October.

CH2M HILL, 2005e. Final Technical Memorandum, On-Site Discharge Evaluation– Shepley's Hill Groundwater Extraction, Treatment, and Discharge System. December.

CH2M HILL, 2006 Final Technical Memorandum Start-Up Extraction Test – Shepley's Hill Groundwater Extraction, Treatment, and Discharge System. February

Harding Lawson Associates, 1999. *Final Work Plan – Supplemental Groundwater Investigation at Shepley's Hill Landfill*, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. February.

Harding ESE, A MACTEC Company, 2002. *Revised Draft Shepley's Hill Landfill Supplemental Groundwater Investigation*, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. February.

Nobis Engineering, 2005. 2005 Five-Year Review Report, Former Fort Devens, Devens, Massachusetts. Prepared for US. Army BRAC Environmental Office, Devens, MA September.

Stone & Webster Environmental Technology & Services, 1996. Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill, Fort Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England Division. March.

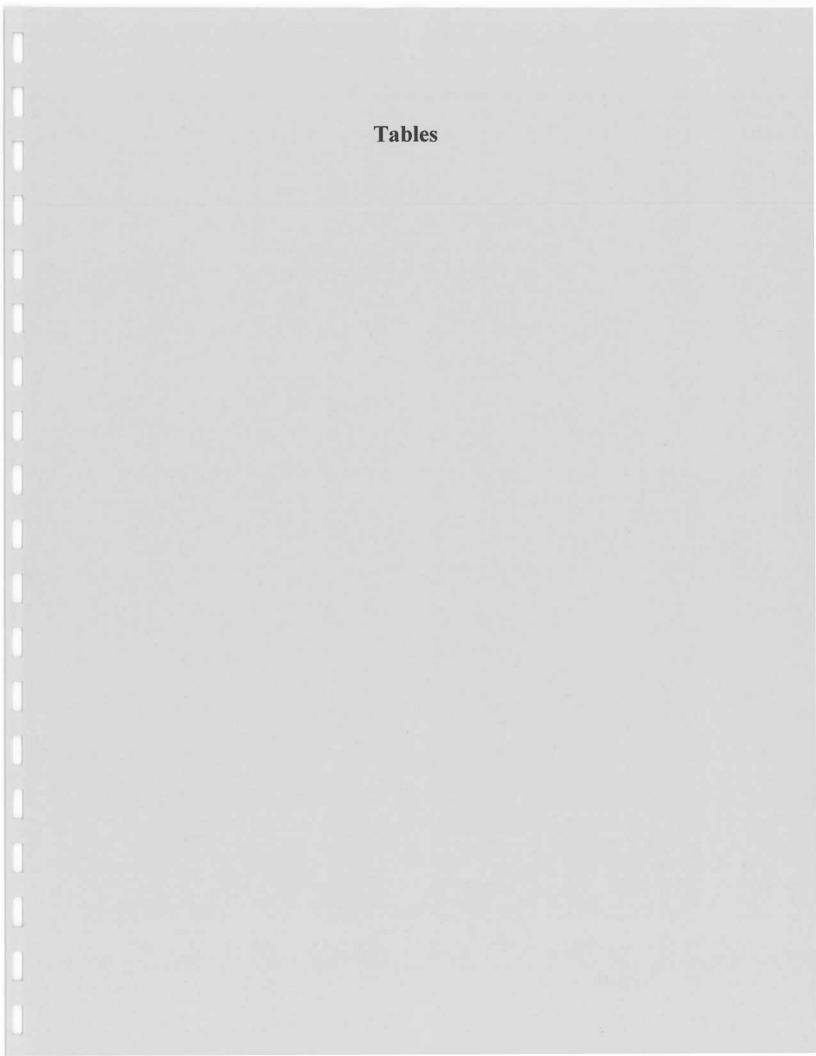
Stone & Webster Environmental Technology & Services, 1997. *Shepley's Hill Landfill, Annual Report 1996*, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England Division. April.

Stone & Webster Environmental Technology & Services, 1998. *Final Five Year Review, Shepley's Hill Landfill, Long Term Monitoring*, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. August.

Stone & Webster Environmental Technology & Services, 1998. Groundwater Pumping Test Report, Shepley's Hill Landfill, Devens, MA. January.

U.S. Army Corps of Engineers, New England District (CENAE), 2006. *Geotechnical Engineering* Fall 2005 Annual Inspection Report, Shepley's Hill Landfill. March.

U.S. Army Corps of Engineers, New England District (CENAE), 2005. 2005 Five-Year Review, Shepley's Hill Landfill. September.


U.S. Army Corps of Engineers, New England District (CENAE), 2004. 2003 Annual Report, Shepley's Hill Landfill, Long Term Monitoring and Maintenance, Devens, Massachusetts. March.

U.S. Army Corps of Engineers, New England District (CENAE), 2003. Draft Cap Drainage Report, Shepley's Hill Landfill, Devens RFTA, Ayer, Massachusetts. January.

US Army Corps of Engineers, New England District, 1997. 60% Design Extraction/Discharge System, Shepley's Hill Landfill, Devens, MA. November.

US Army Environmental Center (USAEC), 1995. Record of Decision, Shepley's Hill Landfill Operable Unit, Fort Devens, Massachusetts. September.

U.S. Environmental Protection Agency (USEPA) Region 1, 1996. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples From Monitoring Wells, SOP #: GW 0001, Revision 2. July 30.

	Table 1-1 s of Concern (COC) - Shepley's Hill Landfi Devens, Massachuse	
COC	Cleanup Level ug/L	Selection Basis
Arsenic	50	MCL
Chromium	100	MCL
1,2-Dichlorobenzene	600	MCL
1,4-Dichlorobenzene	5	MCL
1,2-Dichloroethane	5	MMCL
Lead	15	Action Level
Manganese	291	Background
Nickel	100	MCL
Sodium	20,000	Health Advisory
Aluminum	6,870	Background
Iron	9,100	Background

Based Upon Record of Decision

		Monito		Table 5-1 fications and G epley's Hill Lan ens, Massachu	dfill	er Elevation	S			
Well ID	Description	Orientation to	Ground Surface Elevation ²	Reference Elevation ²	Total Depth	Screen Length	June 2005		January 2006	
		Landfill ¹	(ft msl)	(ft msl)	(feet)	(feet)	Water Levels	Groundwater Elevation (ft msl)	Water Levels	Groundwater Elevation (ft msl)
SHL-3	Water Table	East	247.4	248.6	33.29	10	29.75	218.85	29.58	219.02
SHL-4	Water Table	East	226.4	228.1	14.65	10	10.05	218.05	9.69	218.41
SHL-5	Water Table	North	217.9	218.6	13.75	10	2.59	216.01	1.40	217.20
SHM-96-5B	Base of Sand/Till	North	218.5	220.0	92.47	10	4.36	215.64	3.89	216.11
SHM-96-5C	Water Table	North	218.7	219.4	79.62	10	3.88	215.52	5.98	213.42
SHL-9	Water Table	North	221.7	223.0	26.25	10	7.51	215.49	6.72	216.28
SHL-10	Water Table	East	249.1	248.8	29	15	30.35	218.41	30.64	218.47
SHM-93-10C	Bedrock	East	247.1	248.6	56.31	10	28.86	219.74	28.46	220.14
SHL-11	Water Table	East	235.0	236.5	30	15	18.28	218.22	17.99	218.51
SHL-19	Water Table	East	239.5	241.5	32.37	15	22.19	219.31	21.49	220.01
SHL-20	Base of Till	East	235.4	237.0	50.55	10	18.62	218.38	18.34	218.66
SHL-22	Base of Till	North	220.0	220.6	110.6	10	5.24	215.36	4.75	215.85
SHM-96-22B	Sand/Till Interface	North	220.0	221.7	92.42	30	5.10	216.60	4.56	217.14
SHM-93-22C	Bedrock	North	219.9	220.4	137.5	10	6.30	214.10	6.10	214.30

Notes:

North wells are located in the direction of groundwater flow away from the landfill. East wells are located between landfill and East Plow Pond.
 Elevations based Meridian Associates survey (7&8/2005), referenced to be National Geodetic Vertical Datum of 1929 (NGVD29).

Site-Wide Groundwater Elevations Shepley's Hill Landfill Devens, Massachusetts							
			Deveno, i		: 8/24/05	Maximum Dr	awdown: 8/26/0
Well ID	Ground Surface Elevation ^{1,3} (ft msl)	Outer Casing Elevation ^{1,3} (ft msl)	Reference Elevation ^{1,3} (ft msl)	DTW (TOC) (ft)	Elevation (ft msl)	DTW (TOC) (ft)	Elevation (ft msl)
SHM-05-39A	222.9	222.9	222.6	11.93	210.7	11.88	210.7
SHM-05-39B	222.9	222.9	222.6	12.70	209.9	12.66	209.9
SHM-05-40X	224.6	224.6	224.4	14.55	209.9	14.56	209.8
SHM-05-41A	223.8	223.8	223.5	10.71	212.8	10.82	212.7
SHM-05-41B	223.6	223.6	223.3	10.53	212.8	10.63	212.7
SHM-05-41C	224.0	224.0	223.6	10.75	212.9	10.86	212.7
SHM-05-42A	214.5	217.9	217.8	4.98	212.8	5.10	212.7
SHM-05-42B	214.5	217.9	217.8	4.93	212.9	5.07	212.7
SHM-99-31A	213.9 213.7	215.7 215.5	215.4	4.40	211.0	4.28	211.1 211.1
SHM-99-31B SHM-99-31C	213.7	215.5	215.4	4.52	211.1	4.63	211.2
SHM-99-31C	213.7	213.9	222.3	10.17	211.2	10.24	212.1
SHP-05-47A	214.4	NA	218.5	5.97	212.1	Dry	Dry
SHP-05-47A	214.4	NA	216.3	3.93	212.5	3.81	212.5
SHP-05-47B	214.4	NA	210.3	Dry	Dry	Dry	Dry
SHP-05-48B	213.9	NA	217.0	Dry	Dry	Dry	Dry
SHP-05-40B	213.3	NA	217.8	5.93	211.9	Dry	Dry
SHP-05-49B	213.3	NA	216.2	4.28	211.9	4.65	211.6
SHP-99-33A	222.1	NA	224.1	13.17	210.9	13.19	210.9
SHP-99-33B	222.2	NA	223.7	12.42	211.3	12.55	211.2
SHP-99-34A	223.6	NA	225.7	13.65	212.1	13.56	212.1
SHP-99-34B	223.6	NA	225.6	13.33	212.3	13.25	212.4
WP-01	213.3	NA	213.4	Dry	Dry	Dry	Dry
EW-01	NA	228.2	228.0	14.22	213.8	24.18	203.8
EW-01 pilot	NA	228.2	228.0	14.22	213.8	14.84	213.2
EW-04	NA	228.5	228.1	14.53	213.6		
EW-04 pilot	NA	228.5	228.1	14.62	213.5	14.82	213.3
SHL-13	220.1	222.3	221.8	7.59	214.2	7.52	214.3
SHL-21	258.7	261.2	260.0	45.81	214.2	45.75	214.3
SHL-22	220.0	221.4	220.6	7.36	213.2	7.57	213.0
SHL-23 SHL-5	240.5	242.6 218.9	242.3 218.6	28.16	214.1 213.3	28.17 5.38	214.1 213.2
SHL-5 SHL-8D	217.9	218.9	218.6	and the second se	213.3		
SHL-8D	220.1	222.3	2221.0	8.03	213.8	8.04	213.8 213.7
SHL-03	220.1	222.5	223.0	9.83	213.0	9.95	
SHL-9 SHM-05-45A	221.7	223.5	223.0	9.83	213.2	9.95	213.1 213.3
SHM-05-45A	227.7	230.3	230.1	16.29	213.8	16.61	213.3
SHM-05-46A	227.3	229.4	229.3	15.32	213.0	15.49	213.5
SHM-05-46B	227.1	228.8	228.7	14.60	214.0	14.76	213.7
SHM-93-22C	220.0	221.7	221.7	8.45	213.3	8.65	213.1
SHM-96-22B	219.9	221.6	220.4	7.23	213.2	7.42	213.0
SHM-96-5B	218.5	220.2	220.0	6.39	213.6	6.65	213.4
SHM-96-5C	218.7	219.6	219.4	5.98	213.4	6.12	213.3
SHP-05-43	259.4	262.4	261.7	45.45	216.3	45.36	216.3
SHP-05-44	256.4	259.5	259.1	42.46	216.6	42.40	216.7
N-1, P-1	228.8	231.5	231.0	14.93	216.1	14.86	216.1
N-1, P-2	228.8	231.5	231.0	14.80	216.2	14.77	216.2
N-1, P-3	228.8	231.5	231.2	14.46	216.7	14.40	216.8
N-2, P-1 N-2, P-2	221.6	223.8	223.1	5.92	217.2	5.85	217.3
N-2, P-2 PSP-01	221.6 NA	223.8 NA	223.0 216.1	6.14	216.9 217.0	6.08 0.97	216.9
SHL-11	235.0	237.0	236.5	18.98	217.0	18.91	217.1 217.6
SHL-20	235.4	237.0	237.0	19.33	217.5	19.30	217.0
SHL-4	226.4	228.4	228.1	10.77	217.3	11.07	217.0
SHP-01-36X	221.1	NA	225.1	7.16	217.9	8.11	217.0
SHP-01-37X	219.5	NA	223.7	6.91	216.8	6.53	217.2
SHP-01-38A	219.8	NA	221.8	4.39	217.4	4.36	217.4
SHP-01-38B	219.9	NA	222.0	4.49	217.5	4.34	217.7
N-3, P-1	219.8	222.5	221.8	4.76	217.0	4.71	217.1
N-3, P-2	219.8	222.5	221.5	4.78	216.7	4.76	216.7
N-4, P-14	218.3	219.9	219.2				
N-4, P-24	218.3	219.9	219.2	2.10	217.1	2.09	217.1
N-4, P-3 ⁴	218.3	219.9	219.2				6 <u>24</u>
N-5, P-1	241.7	244.9	243.7	23.38	220.3	23.35	220.4
N-5, P-2	241.7	244.9	243.7	23.27	220.4	23.22	220.5
N-6, P-1	257.1	259.9	259.9	36,51	223.4	36.05	223.9
N-7, P-1	254.4	257.7	256.6	30.35	226.3	30.34	226.3
N-7, P-2	254.4	257.7	257.1	30.43	226.7	30.44	226.7
SHL-15	260.1	261.2	260.9	18.93	242.0	18.98	241.9
SHL-18	236.8	238.8	238.6	19.60	219.0	19.62	219.0
SHL-19	239.5	241.8	241.5	23.38	218.1	23.40	218.1
SHL-3	247.4	248.6	248.6	30.77	217.8	30.80	217.8
SHM-93-10C SHM-93-10D	247.1	249.1	248.6	29.92	218.7	23.93	224.7
SHM-93-10D SHM-93-10E	246.5	249.1	248.9	30.63	218.3	30.64	218.3
SHM-93-10E	246.6 236.3	248.8	248.5 238.3	29.73	218.8	29.64	218.9
SHL-24	236.3	238.7 239.9	238.3	19.29	219.0	19.30	219.0
SHP-95-27X	237.8	239.9	239.8	15.69	224.1 205.5	15.72	224.1
SHP-99-35X	257.5	259.3	259.2	36.39	205.5	16.14 35.05	222.4 224.2

NA=Not Available (survey data not available)

NA=Not Available (survey data not available)
Notes:
1. Field survey performed by Meridian Associates, Inc. between July and August 2005.
2. Northing and easting coordinates based upon project system, reported to be North American Datum of 1983 (NAD83).
3. Elevations referenced to National Geodetic Vertical Datum of 1929 (NGVD29).
4. N-4 ice damaged. P-2 measurement approx.
5. Reference elevation generally inner (PVC) casing or zero mark on stageboard. SHL-3 PVC (elev. 247.8) not used for reference due to depth in protective casing.

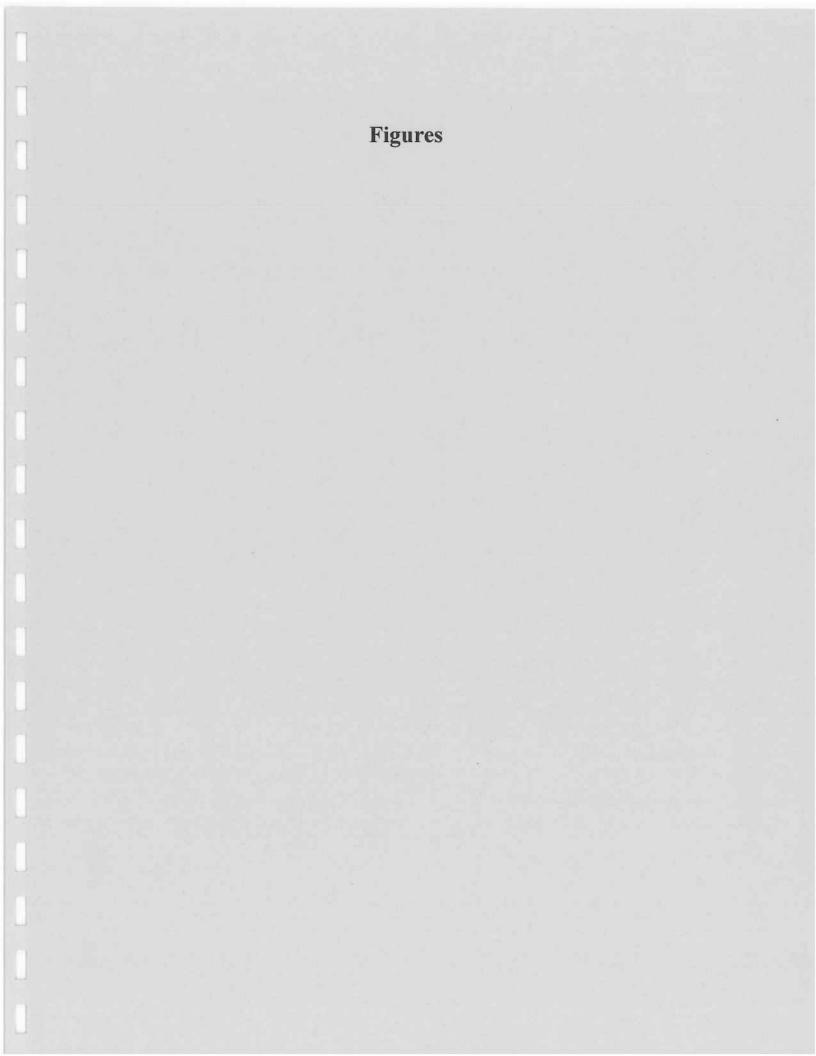
	Table 7-1					
Groundwa	ter Sample Analysis and P	rocedures				
	Shepley's Hill Landfill					
	Devens, Massachusetts					
Parameters June 2005 Method January 2006 Metho						
Volatile Organic Compounds	SW846 8260B	SW846 8260B				
Inorgai	nics	15				
Aluminum	SW846 6010B	SW846 6010B				
Arsenic	SW846 6010B	SW846 6010B				
Barium	SW846 6010B	SW846 6010B				
Cadmium	SW846 6010B	SW846 6010B				
Chromium	SW846 6010B	SW846 6010B				
Copper	SW846 6010B	SW846 6010B				
Cyanide	EPA Method 335.4	SM 9014				
Iron	SW846 6010B	SW846 6010B				
Lead	SW846 6010B	SW846 6010B				
Manganese	SW846 6010B	SW846 6010B				
Mercury	SW846 7470A	SW846 7470A				
Nickel	SW846 6010B	SW846 6010B				
Selenium	SW846 6010B	SW846 6010B				
Sodium	SW846 6010B	SW846 6010B				
Silver	SW846 6010B	SW846 6010B				
Zinc	SW846 6010B	SW846 6010B				
General Laboratory Parame						
Hardness	SM 2340B	SM 2340B				
Total Dissolved Solids	EPA 160.1	SM 2540C				
Total Suspended Solids	EPA 160.2	SM 2540D				
Chloride	EPA 300.0	SM 9251				
Nitrate as N	EPA 300.0	SM 4500NO3-F				
Sulfate	EPA 300.0	SM 9038B				
Alkalinity	EPA 310.1	SM 2320B				
Biological Oxygen Demand - 5 Day	EPA 405.1	SM 5210B				
Chemical Oxygen Demand	EPA 410.1	SM 5220D				
Total Organic Carbon	SW 846 9060	SW 846 9060				
General Field Parame	ters					
рН	YSI 600 XL	YSI 600 XL				
Temperature	YSI 600 XL	YSI 600 XL				
Specific Conductivity	YSI 600 XL	YSI 600 XL				
Dissolved Oxygen	YSI 600 XL	YSI 600 XL/ YSI 85				
Oxygen Reduction Potential	YSI 600 XL	YSI 600 XL				
Turbidity	HF Scientific DRT-15CE	LaMotte 202				

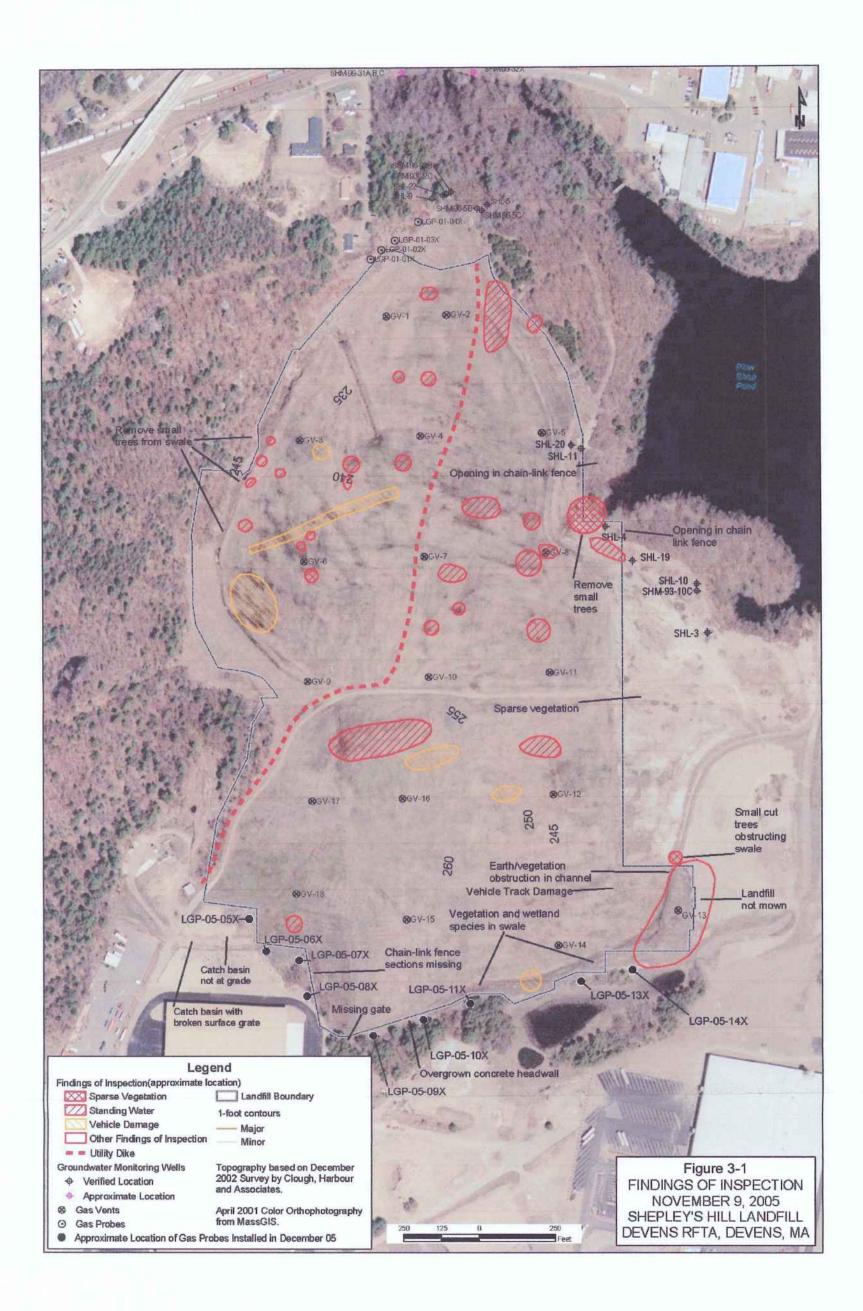
			Gr	oundwater Ar June Shepley	able 7-2 nalytical Resu e 6-7, 2005 /'s Hill Landfil Massachuset	1					
PARAMETERS	CLEANUP				-		ng Well ID				
	LEVEL (1)	SHL-3	SHL-4	SHL-5	SHL-10	SHM-93-10C	SHL-11	SHL-11 DUP	SHL-19	SHL-20	SHM-93-22C
VOLATILES (8260B)	70 (4)	5011	5011	5011	5011	5011	FOU	5011	5011	5011	5011
1,1-Dichloroethane	70 (4)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	500	5.0 U
1,2-Dichlorobenzene	600	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	50U	5.0 U
1,2-Dichloroethane	5 70 (2)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.4 J	1.4 J	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
1,2-Dichloroethene (total) 1,3-Dichlorobenzene	600 (2)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,4-Dichlorobenzene	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.8 J	5.0 U	2.1 J	5.0 U
2-Butanone	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 U	5.0 U
4-Methyl-2-Pentanone	_	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	3,000 (4)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	50U	5.0 U
Benzene	5 (2)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.5 J	1.4 J	5.0 U	5.0 U	5.0 U
Methyl-t-Butyl Ether	70 (4)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Xylenes	10,000 (2)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 U	5.0 U
METALS (6010B or as noted)											
Aluminum	6,870	88 U	88 U	227	88 U	88 U	88 U	88 U	88U	88 U	88 U
Arsenic	50	4.5 U	10.1	7 B	4.5U	8.1 B	524	518	26.3	159	15.8
Barium	2,000 (2)	8.4 U	35 B	9.5 B	8.4 U	8.4 U	78.5 B	77.2 B	10.3 B	86.8 B	70.8 B
Cadmium	5 (2)	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
Chromium	100	2.9 B	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2U	2.4 B
Copper	1,300 (3)	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	6.6 B	4.2 U	4.2 U	4.2 U	4.2 U
Iron	9,100	37.9 U	1,220	2,930	37.9 U	37.9 U	59,400	57,400	6,680	5,980	572
Lead	15	2.7 U	2.7 U	2.7 U	2.7 U	2.7 U	4.8	2.9 U	2.7 U	2.7 U	2.7 U
Manganese	291 (5)	1.7 B	361	476	1.5 B	27.5	2,380	2,300	1,090	6,270	218
Mercury (7470A)	2 (2)	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Nickel	100	3 U	4.2 B	3 U	3 U	3 U	3 U	3 U	4 B	7.2 B	3 U
Selenium	50 (2)	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U
Silver	40 (4)	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U
Sodium	20,000	696 B	7,190	3,240 B	841 B	7,840	21,600	20,900	1,470 B	32,000	9,910
Zinc	2,000 (4)	1.9 B	3.6 U	7 B	4.7 B	1.6 U	5 B	3.6 B	2.5 B	3.1 B	16.4 B
GENERAL CHEMISTRY								2		í í	
Alkalinity as CaCO ₃	-	7,600 UJ	58,100 UJ	41,100 UJ	17,600 UJ	191,000 J	201,000 J	207,000 J	32,700 UJ	277,000 J	147,000 J
Biochemical Oxygen Demand		1,100 U	1,100 U	1,300	1,100 U	1,100 U	1,400	1,100 U	1,100 U	1,100 U	1,300
Chemical Oxygen Demand		20,000 U	20,000 U	20,000 U	20,000 U	20,000 U	20,000 U	20,000 U	20,000 U	20,000 U	20,000 U
Chloride		690 U	8,800	6,400	1,100 U	24,300	23,900	22,900	1,100 U	31,700	15,000
	200 (2)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Cyanide (Total)	200 (2)		and the second	and the second se				and the second se			11127-22-22-1
Hardness as CaCO ₃	-	5,800	49,800	38,900	17,400	209,000	127,000	123,000	26,500	254,000	149,000
Nitrate as Nitrogen	10,000 (2)	370 U	440 U	200 U	430 U	330 U	420 U	410 U	480 U	550 U	520 U
Sulfate	500,000 (2)	3,900	7,300	910 U	3,000	23,600	880 U	1,200 U	8,900	11,700	8,700
Total Dissolved Solids		21,000 1,000 U	81,000 1,700	77,000 6,000	28,000 1,000 U	270,000 1,000 U	585,000 * 3,600	297,000 4,800	56,000	362,000	200,000
Total Organic Carbon		1,700	1,700	1,600	500 U	500 U	33,100	4,800	1,100	3,000 7,900	4,300
Total Suspended Solids FIELD READINGS (units as note	d holow)	1,700	1,200	1,000	5000	5000	33,100	41,000	5,000	7,900	1,600
		11.2	0.8	0.3	11.2	0.7	0.5	0.5	1.9	0.3	1.0
Dissolved Oxygen (mg/L) Oxidation Reduction Potential (mv)	-	176	122	153	211	249	-7	-7	69	-1	-23
pH	1	6.6	5.6	4.2	6.4	7.3	EF	EF	4.9	6.2	6.8
Specific Conductivity (µS/cm)	-	18	141	94	29	433	548	548	88	586	292
Notes:	1	1.9		EF = equipment							606
Shaded areas with bold numbers indic	ate cleanup level e	xceedance -				in the ROD (unle	ss otherwised not	ed).			
B = (Inorganics) value below laboratory								amination Level v	vas used.		2
J = estimated value	• • • • • • • • • • • • • • • • • • •							m Contamination			
* = duplicate analysis Relative Percent	Difference outside	acceptance limit	ts					ency Plan GW-1 s		d.	
U = below laboratory RL								een in use by US			
NS = not sampled					le collèceren ne réfere autor		As there was no	ESD prepared,			
NA = not analyzed				the ROD val	ue iscurrently refl	ected in this table).				

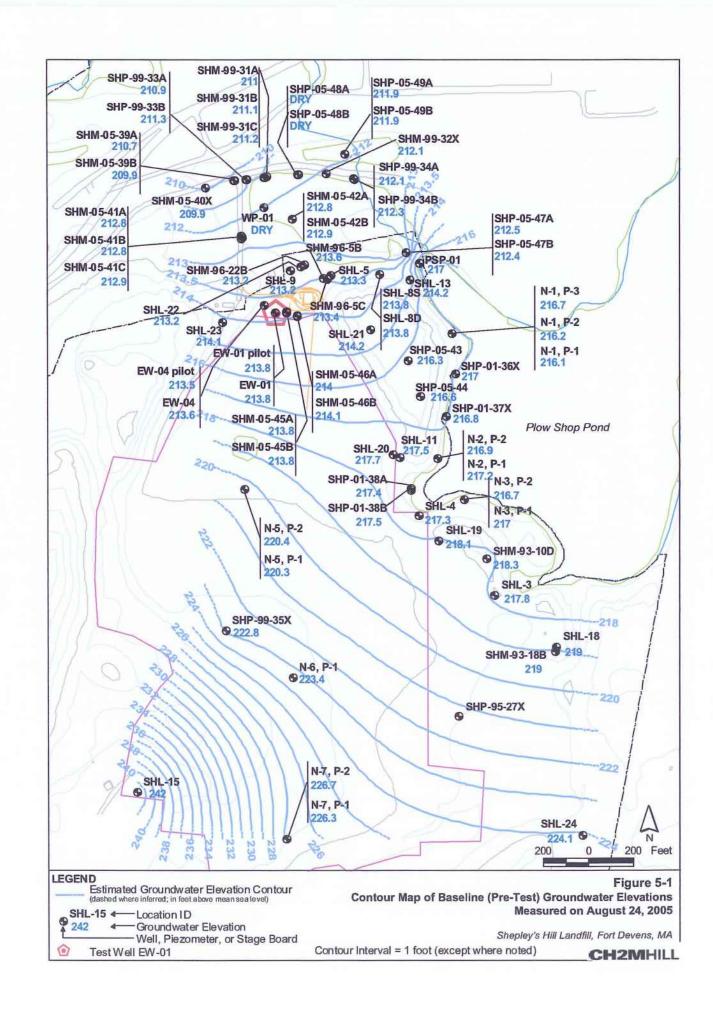
	Groundwater Analytical Results (ug/L) January 19, 20, and 25, 2006 Sampling Event Shelpey's Hill Landfill Compliance Point Wells Devens, Massachusetts Monitoring Well ID														
Parameters	Cleanup Level (1)	SHL-4	SHL-5	SHM-96-5B	SHM-96-5B DUP	SHM-96-5C	SHL-9	Mc SHL-10	onitoring Well ID SHM96-10C	SHL-11	SHL-19	SHL-20	SHL-22	SHM-96-22B	SHM-93-22C
Volatile Organics (8260B)	Level (1)	SHL-4	3112-3	SIIW-90-9B	31111-90-58 001	3110-30-30	5112-9	5112-10	SIIM30-TOC	bins-i1	SIIL-19	J DIIL-20	5116-62	BIII(1-70-22B	311/1-95-220
I,1-Dichloroethane	70 (4)	0.75 U	0.75 U	1.0	1.0	1.0	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	1.4	1.3	0.75 U
1,2-Dichlorobenzene	600	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
1,2-Dichloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichlorobenzene	600 (2)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2,5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
1.4-Dichlorobenzene	5	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
2-Butanone		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	32
4-Methyl-2-pentanone		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	3,000 (4)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzene	5 (2)	0.5 U	0.5 U	0.94	0.94	1.6	0.5 U	0.5 U	0.5 U	1.4	0.5 U	1.1	0.5 U	1.1	0.5 U
Chlorobenzene		0.5 U	0.5 U	0.84	0.88	2.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.72	0.5 U
Chloroform		0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
Ethyl ether		2.5 U	2.5 U	17	17	18	2.5 U	2.5 U	6.7	15	2.5 U	11	19	17	8.2
Methyl tert butyl ether	70 (4)	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride (6)		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5,0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Tetrahydrofuran		10 U	10 U	10 U	10 U	88	10 U	10 U	10 U	10 U	10 U	10 U	140	10 U	33
Vinyl chloride		1.0 U	1.0 U	1.0 U	1.0 U	1.1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylenes (total)	10,000 (2)	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (Total)	70 (2)	0.75 U	0.75 U	2.1	2.1	2.2	0.75 U	0.75 U	0.75 U	1.2	0.75 U	0.6	1.9	2.5	0.75 U
Total Metals (6010B or as noted)			W		- A23 	10				- 2/e					
Aluminum, Total	6,870	100 U	170	100 U	100 U	100 U	110	100 U	470	100 U	100 U	100 U	100 U	100 U	100 U
Arsenic, Total	50	5 U	5.0 U	4,130	4,190	43	18	5.0 U	11	567	156	189	154	3,320	23
Barium, Total	2,000 (2)	10	10	50	50	70	10 U	10 U	10 U	70	10	90	10	70	90
Cadmium, Total	5 (2)	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chromium, Total	100	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Copper, Total	1,300 (2)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Iron, Total	9,100	280	2,600	39,000	40,000	100,000	4,400	50 U	490	57,000	13,000	5,500	650	70,000	740
Lead, Total	15	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Manganese, Total	291 (5)	200	500	7,500	7,600	4,600	310	10 U	60	2,400	980	5,500	2,600	1,700	250
Mercury, Total (7470A)	2 (2)	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U 25 U	0.2 U 25 U	0.2 U 25 U	0.2 U 25 U	0.2 U	0.2 U	0.2 U
Nickel, Total	100	25 U	25 U	25 U	25 U	25 U 10 U	25 U 10 U	25 U 10 U	10 U	10 U	10 U	10 U	25 U 10 U	25 U 10 U	25 U
Selenium	50 (2)	10 U	10 U 7 U	10 U 7 U	10 U 7 U	7 U	7 U	7 U	7 U	7 U	7 U	7 U	7 U	7 U	10 U 7 U
Silver, Total	40 (4)	7 U 2,000 U	2,500	28,000	28,000	40,000	2,000	2,000 U	9,500	24,000	2,000 U	29,000	40,000	31,000	13,000
Sodium, Total	20,000	2,000 U 50 U	2,500 50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Zinc, Total Genearl Chemistry	2,000 (4)	500	300	1 30.0	1 300	500	1 .00	550	1 .00	1 200	1 50 0	1 50 0		500	30.0
Alkalinity, Total	-	17	29	320	330	440	54	14	180	260	35	250	380	320	160
Solids, Total Dissolved		25,000	70,000	320,000	340,000	440,000	130,000	25,000	240,000	210,000	73,000	270,000	450,000	300,000	230,000
Solids, Total Dissolved Solids, Total Suspended		5,000 U	5,000 U	59,000	62,000	110,000	5,000 U	6,400	6,700	28,000	33,000	8,500	5,000 U	87,000	9,800
Cyanide, Total	200 (2)	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloride	- 200 (2)	1,000	2,200	21,000	21,000	51,000	6,200	1,200	21,000	22,000	1,000 U	24,000	32,000	23,000	18,000
Nitrogen, Nitrate	10,000 (2)	700	620	220	190	240	100 U	200	100 U	190	100 U	100 U	4,200	210	110
Sulfate	500,000 (2)	10,000 U	24,000	10,000 U	10,000 U	10,000 U	10,000 U	10,000 U	22,000	10,000 U	10,000 U	10,000 U	10,000 U	10,000 U	10,000 U
Chemical Oxygen Demand	(5)	20,000 U	33,000	26,000	29,000	45,000	20,000 U	20,000 U	20,000 U	24,000	20000 U	20,000	20,000 U	26,000	20,000 U
BOD, 5 day		2,000 U	2,000 U	2,900	2,000 U	5,000 U	2,000 U	2,000 U	2,000 U	8,200	2,000 U	2,000 U	2,000 U	4,800	2,000 U
Total Organic Carbon	-	850	4,800	4,500	4,400	8,900	6,000	500 U	760	3,800	1,000	3,000	4,000	5,300	4,500
Hardness	-	16,000	43,000	220,000	220,000	270,000	57,000	13,000	200,000	130,000	35,000	180,000	320,000	190,000	160,000
Field Readings (units as noted)	1														
Dissolved Oxygen (mg/L)	-	5.28	0.65		0.22	0.15	0.45	6.71	0.01	0.63	2.42	0.2	0.16	0.17	0.73
Oxidation Reduction Potential (mv)	· · · ·	412	425.2		82.1	-85.9	-23.4	330.4	228.2	3.7	282.9	-0.2	208.2	-114.0	-235.1
pH		5.81	5.2		6.53	6.49	5.92	6.04	7.4	6.2	5.78	6.45	5.17	5.54	8.49
Specific Conductivity (uS/cm)		48	113		666	1035	141	39	450	689	120	634	744	730	375

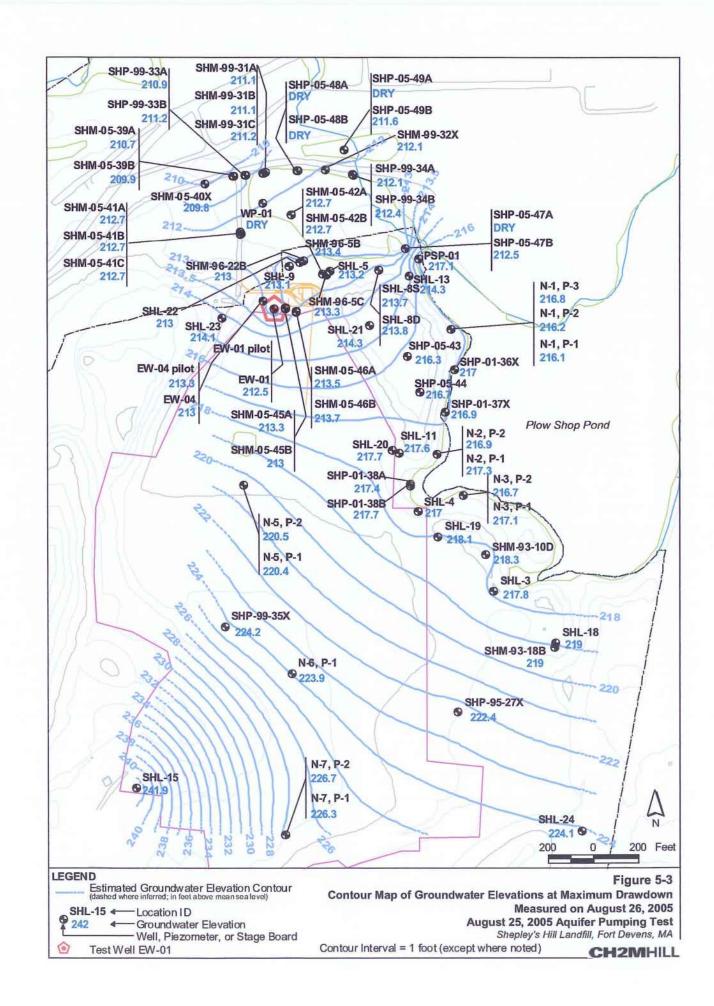
Shaded areas with bold numbers indicate cleanup level exceedance U = Analyte or compound was analyzed but not detected at a concentration above the reporting limit.

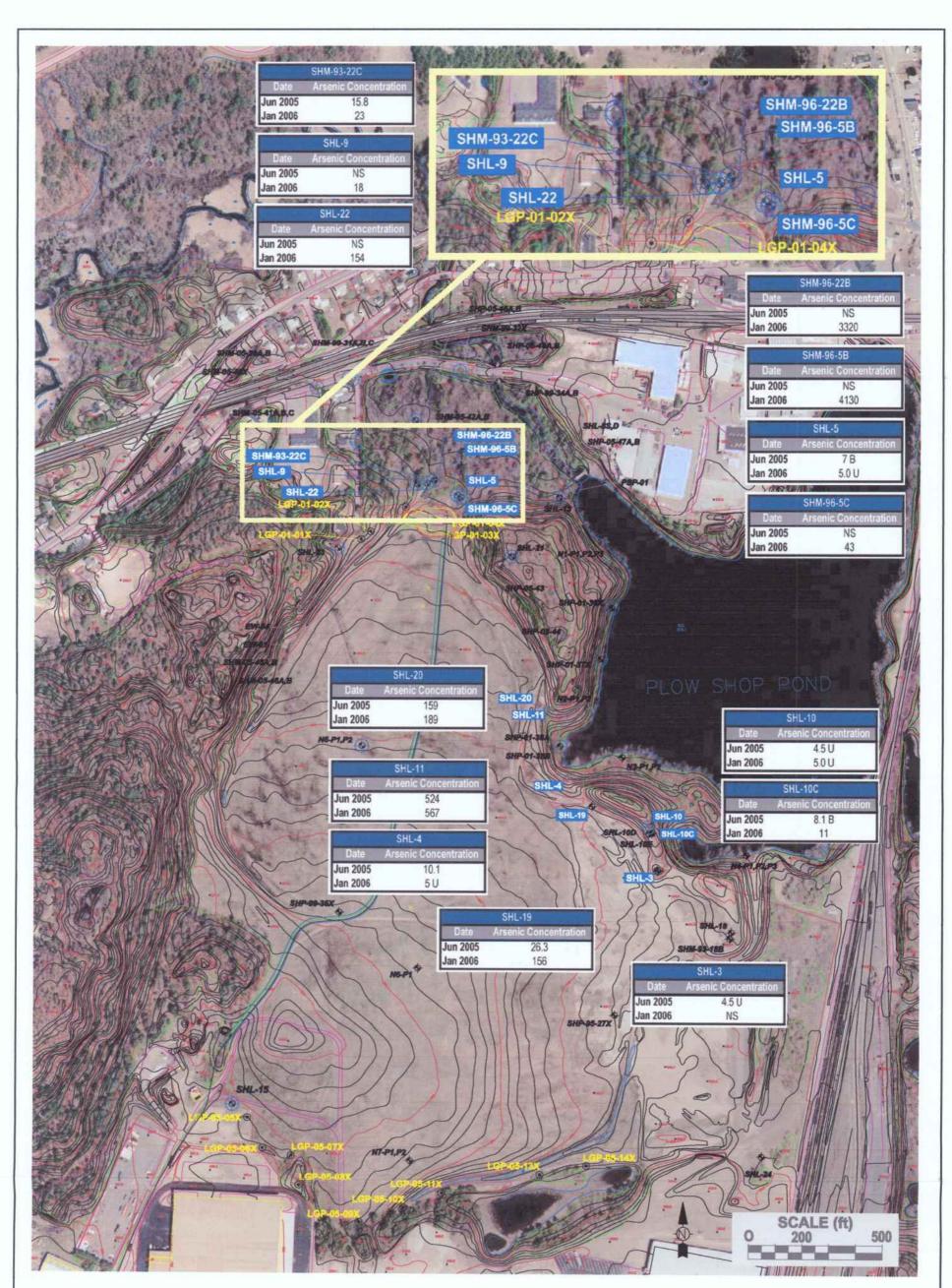
U = Analyte or compound was analyzed but not detected at a concentration above the reporting limit.
(1) Cleanup values as developed in the ROD (unless otherwise noted)
(2) No cleanup value was developed so the Federal Maximum Contamination Level was used.
(4) No cleanup value was developed so the Massachusetts Contingency Plan GW-1 standard was used.
(5) The LTMMP listed a cleanup goal of 1,715 ug/L. This level has been in use by the USACE in past years. The ROD indicated a cleanup goal of 291 ug/L. As there was no ESD prepared, the ROD value is currently reflected in this table.
(6) Methylene Chloride was detected in the equipment blank a concentration of 8.5 ug/L but not detected in any of the groundwater samples
(7) YSI 600 XLM failed, collected In-situ readings with a YSI 85 probe.


			Shep	oley's			npliance Poir	nt W	lells				
		_		_	Devens, M	and the second	and the second				_		-
Sample	0111 07	A) T	0111 4	(0)			Well ID (grou			0111 07	a)	0111 40	1
Date	SHL-3 (1)	SHL-4	(2)	SHL-5 (1)		(2)	SHM-96-5C (2)	SHL-9 (1)	SHL-10 67.0	1
Aug-91 Dec-91	35.0	-	260 140		23.0 38.0		NS NS	-	NS NS	37.0 67.0		120	-
Mar-93	6.5		2.54	_	11.4		NS	+	NS	42.4		280	-
Jun-93	NS		NS	1.000	NS		NS	-	NS	42.4 NS		NS	-
Nov-96	NS		48.8		12.0		1,440	-	71	46.9	-	3.4 B	-
May-97	<10	-	73.6	J	<10		3,300	J	43.2	16.1	J	<10	-
Oct-97	<10		180	J	<10		2,040	-	43.1	25.2		209	-
May-98	<5	-	37.4	-	<5		4,300	-	49.5	15.0	-	<5	-
Nov-98	<5.4		89.1		11.5		3,080	-	46.8	27.2		<5.4	-
May-99	2.7	в	78.2		5.0	В	3,490	-	57	71.3	-	2.7	-
Nov-99	<1.9	-	61.3	-	6.5	5	2,700	-	44.8	28.5		<1.9	-
May-00	<2.5		116		<2.5	-	5,110	-	52.2	15.0		<2.5	-
Nov-00	17.4		91.5		13.8		2,500		40.3	31.4		<4.2	-
May-01	<4.1		50.8		13.8		3,800		80.5	15.1		<4.1	-
Oct-01	<1.5		66.0		14.8		1,850		41.1	28.1		<1.5	-
May-02	2.8	в	47.8	В	11.9	В	3,800		50.4 B	144		4.0	-
Oct-02	<3.2		66.1		<3.2		1,970		41.3	29		<3.2	7
May-03	<4.7		26.6		7.3		3,920		55.1	13.4		<4.7	
Nov-03	<4.1		13.4		4.7	В	3,380		48.3	30.6		<4.1	-
May-04	<2.6		27.2		7.4	В	3,950		47.1	19.8		<2.6	
Nov-04	<5.8		19.5		6.8	В	2,110		49.5	32.2		<5.8	
Jun-05	<4.5		10.1		7.0	В	NS		NS	NS		<4.5	-
Jan-06	NS		<5		<5		4,130		43.0	18.0		<5	
Sample							Well ID (grou		and the second				_
Date	SHM-93-10)C (1)	SHL-11	(2)	SHL-19	(2)	SHL-20 (2)	SHL-22 (1)	SHM-93-22	2B (2)	SHM-93-2	2
Aug-91	NS		320		340		98		27	NS		1	
Dec-91	NS		320		710		89		25	NS		NS	_
Mar-93	21.3		340		390		330	_	32.9	NS		68.9	_
Jun-93	18.1		NS		NS		NS		NS	NS		49.8	_
			332		138		244		24.8	324		44.6	
Nov-96	12.4		252	J	<10	_	<10		<10	318	J	40.4	
May-97	<10		200		298		227		34.8	352		<10	_
May-97 Oct-97	<10 10.5		366				238		10.6	365		31.6	
May-97 Oct-97 May-98	<10 10.5 7.5		346		77.5	_	and the second se					51.1	
May-97 Oct-97 May-98 Nov-98	<10 10.5 7.5 10.2		346 376		145		218		<5.4	406			_
May-97 Oct-97 May-98 Nov-98 May-99	<10 10.5 7.5 10.2 10.8	В	346 376 431		145 156		218 216		12.2 B	707		42.8	
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99	<10 10.5 7.5 10.2 10.8 8.7		346 376 431 492		145 156 176		218 216 215		12.2 B 7.3	707 1,440		33.2	_
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99 May-00	<10 10.5 7.5 10.2 10.8 8.7 5.9	B	346 376 431 492 404		145 156 176 41.4		218 216 215 216		12.2 B 7.3 14.6	707 1,440 1,360		33.2 34.4	
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99 May-00 Nov-00	<10 10.5 7.5 10.2 10.8 8.7 5.9 8.8		346 376 431 492 404 523		145 156 176 41.4 154		218 216 215 216 172		12.2 B 7.3 14.6 45	707 1,440 1,360 1,180		33.2 34.4 47.8	
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99 May-00 Nov-00 May-01	<10 10.5 7.5 10.2 10.8 8.7 5.9 8.8 6.9		346 376 431 492 404 523 487		145 156 176 41.4 154 129		218 216 215 216 172 186		12.2 B 7.3 14.6 45 47.6	707 1,440 1,360 1,180 1,540		33.2 34.4 47.8 19.7	
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99 May-00 Nov-00 May-01 Oct-01	<10 10.5 7.5 10.2 10.8 8.7 5.9 8.8 6.9 10.1	J	346 376 431 492 404 523 487 573		145 156 176 41.4 154 129 183		218 216 215 216 172 186 165		12.2 B 7.3 14.6 45 47.6 44.2 14.2	707 1,440 1,360 1,180 1,540 1,670		33.2 34.4 47.8 19.7 31.6	
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99 May-00 Nov-00 May-01 Oct-01 May-02	<10 10.5 7.5 10.2 10.8 8.7 5.9 8.8 6.9 10.1 11.0		346 376 431 492 404 523 487 573 469		145 156 176 41.4 154 129 183 66.9		218 216 215 216 172 186 165 154		12.2 B 7.3 14.6 45 47.6 44.2 55.9 B	707 1,440 1,360 1,180 1,540 1,670 2,040		33.2 34.4 47.8 19.7 31.6 30.5	
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99 May-00 Nov-00 May-01 Oct-01 May-02 Oct-02	<10 10.5 7.5 10.2 10.8 8.7 5.9 8.8 6.9 10.1 11.0 7.1	J	346 376 431 492 404 523 487 573 469 648		145 156 176 41.4 154 129 183 66.9 164		218 216 215 216 172 186 165 154 175		12.2 B 7.3 14.6 45 47.6 44.2 55.9 B 77.1 1	707 1,440 1,360 1,180 1,540 1,670 2,040 159		33.2 34.4 47.8 19.7 31.6 30.5 30.1	
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99 May-00 Nov-00 May-01 Oct-01 May-02 Oct-02 May-03	<10 10.5 7.5 10.2 10.8 8.7 5.9 8.8 6.9 10.1 11.0 7.1 9.8	J	346 376 431 492 404 523 487 573 469 648 498		145 156 176 41.4 154 129 183 66.9 164 36.1		218 216 215 216 172 186 165 154 175 197		12.2 B 7.3 14.6 45 47.6 44.2 55.9 B 77.1 101	707 1,440 1,360 1,180 1,540 1,670 2,040 159 2,070		33.2 34.4 47.8 19.7 31.6 30.5 30.1 21.0	
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99 May-00 Nov-00 May-01 Oct-01 May-02 Oct-02 May-03 Nov-03	<10 10.5 7.5 10.2 10.8 8.7 5.9 8.8 6.9 10.1 11.0 7.1 9.8 <5.2	J	346 376 431 492 404 523 487 573 469 648 498 639		145 156 176 41.4 154 129 183 66.9 164 36.1 83.6		218 216 215 216 172 186 165 154 175 197 194		12.2 B 7.3 14.6 45 47.6 44.2 55.9 B 77.1 101 76.4 101	707 1,440 1,360 1,180 1,540 1,670 2,040 159 2,070 2,500		33.2 34.4 47.8 19.7 31.6 30.5 30.1 21.0 29.8	
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99 May-00 Nov-00 May-01 Oct-01 May-02 Oct-02 May-03 Nov-03 May-04	<10 10.5 7.5 10.2 10.8 8.7 5.9 8.8 6.9 10.1 11.0 7.1 9.8 <5.2 7.2	J B B	346 376 431 492 404 523 487 573 469 648 498 639 502		145 156 176 41.4 154 129 183 66.9 164 36.1 83.6 75		218 216 215 216 172 186 165 154 175 197 194 136		12.2 B 7.3 14.6 45 47.6 44.2 55.9 B 77.1 101 76.4 88.1	707 1,440 1,360 1,180 1,540 1,670 2,040 159 2,070 2,500 1,690		33.2 34.4 47.8 19.7 31.6 30.5 30.1 21.0 29.8 27.8	
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99 May-00 Nov-00 May-01 Oct-01 May-02 Oct-02 May-03 Nov-03 May-04 Nov-04	<10 10.5 7.5 10.2 10.8 8.7 5.9 8.8 6.9 10.1 11.0 7.1 9.8 <5.2 7.2 10.6	J B B B B	346 376 431 492 404 523 487 573 469 648 498 639 502 617		145 156 176 41.4 154 129 183 66.9 164 36.1 83.6 75 121		218 216 215 216 172 186 165 154 175 197 194 136 156		12.2 B 7.3 14.6 45 47.6 44.2 55.9 B 77.1 101 76.4 88.1 65.4 65.4	707 1,440 1,360 1,180 1,540 1,670 2,040 159 2,070 2,500 1,690 2,360		33.2 34.4 47.8 19.7 31.6 30.5 30.1 21.0 29.8 27.8 34.9	
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99 May-00 Nov-00 May-01 Oct-01 May-02 Oct-02 May-03 Nov-03 May-04 Nov-04 Jun-05	<10 10.5 7.5 10.2 10.8 8.7 5.9 8.8 6.9 10.1 11.0 7.1 9.8 <5.2 7.2 10.6 8.1	J B B	346 376 431 492 404 523 487 573 469 648 498 639 502 617 524		145 156 176 41.4 154 129 183 66.9 164 36.1 83.6 75 121 26.3		218 216 215 216 172 186 165 154 175 197 194 136 156 159		12.2 B 7.3 14.6 45 47.6 44.2 55.9 57.1 101 76.4 88.1 65.4 NS	707 1,440 1,360 1,180 1,540 1,670 2,040 159 2,070 2,500 1,690 2,360 NS		33.2 34.4 47.8 19.7 31.6 30.5 30.1 21.0 29.8 27.8 34.9 15.8	
May-97 Oct-97 May-98 Nov-98 May-99 Nov-99 May-00 Nov-00 May-01 Oct-01 May-02 Oct-02 May-03 Nov-03 May-04 Nov-04	<10 10.5 7.5 10.2 10.8 8.7 5.9 8.8 6.9 10.1 11.0 7.1 9.8 <5.2 7.2 10.6 8.1 11.0	J B B B B B	346 376 431 492 404 523 487 573 469 648 498 639 502 617 524 567		145 156 176 41.4 154 129 183 66.9 164 36.1 83.6 75 121 26.3 156		218 216 215 216 172 186 165 154 175 197 194 136 156 159 189		12.2 B 7.3 14.6 45 47.6 44.2 55.9 B 77.1 101 76.4 88.1 65.4 105.4	707 1,440 1,360 1,180 1,540 1,670 2,040 159 2,070 2,500 1,690 2,360		33.2 34.4 47.8 19.7 31.6 30.5 30.1 21.0 29.8 27.8 34.9	


.*:


							Table 7.5							
				(omparison of Hi	ictoria Iron Ma	Table 7-5	odium Concentra	tions (ug/L)					
				,		nelpey's Hill Lar			ations (ug/L)					
					51		s, Massachuse							
	a set and a set of the set				Hie	torical Concent	souther summer want of the state of the state					The States of States		
Sample		T State A			1115) (group designa	tion)					
Date	SHL-3 (1)	SHL-4 (2)	SHL-5 (1)	SHM-96-5B (2)	SHM-96-5C (2)	SHL-9 (1)	SHL-10 (2)	SHM-93-10C (1)	SHL-11 (2)	SHL-19 (2)	SHL-20 (2)	SHL-22 (1)	SHM-93-22B (2)) SHM-93-22C (
May-02	30	1,520	1,110	40,100	49,200	19,300	<17.0	71	55,400	13,900	7,010	606	92,000	916
Oct-02	<22.6	4,380	1,120	18,700	44,800	8,430	<22.6	53	64,500	27,600	9,100	707	446	778
May-03	56	2,790	1,140	37,400	78,900	3,280	47	41	62,200	6,740	7,720	626	88,600	885
Nov-03	540	1,840	1,720	32,000	63,200	7,820	<45.0	<45.5	68,700	15,400	8,190	444	87,000	904
May-04	30 B	4,330	1,900	29,000	71,100	5,680	<19.2	32 B	60,500	13,400	5,640	541	59,500	1,010
Nov-04	<35.5	6,690	2,740	21,600	55,400	8,580	39 B	48 B	63,000	20,000	6,630	469	82,900	1,340
Jun-05	<37.9	1,220	2,930	NS	NS	NS	<37.9	<37.9	59,400	6,680	5,980	NS	NS	572
Jan-06	NS	280	2,600	39,000	100,000	4,400	<50	490	57,000	13,000	5,500	650	70,000	740
					· · · · · · · · · · · · · · · · · · ·									
					Histor	ical Concentrat	ions for Manga	nese (MCL is 291						Land Marin Terran De Tan
Sample) (group designa						
Date	SHL-3 (1)	SHL-4 (2)	SHL-5 (1)	SHM-96-5B (2)	SHM-96-5C (2)	SHL-9 (1)		SHM-93-10C (1)	SHL-11 (2)	SHL-19 (2)	SHL-20 (2)	SHL-22 (1)	SHM-93-22B (2)) SHM-93-22C (
May-02	14 B	573	289	11,000	4,110	446	1 B	45 B	2,010	2,280	5,950	1,370	1,680	425
Oct-02	<2.5	436	259	13,000	4,110	484	<2.5	47	1,990	3,400	7,200	1,760	12	407
May-03	2	843	273	9,500	4,230	364	1	37	2,180	1,200	7,260	1,860	1,340	324
Nov-03	20	324	340	10,600	4,260	412	<1.6	46	3,030	2,100	7,760	2,110	1,950	425
May-04	<1.9	856	332	8,910	3,960	336	<1.9	30	2,340	1,510	6,560	1,960	798	368
Nov-04	1 B	1,240	439	10,800	3,970	373	1 B	48	2,570	2,950	5,630	2,460	1,590	385
Jun-05	2 B	361	476	NS	NS	NS	2 B	28	2,380	1,090	6,270	NS	NS	218
Jan-06	NS	200	500	7,500	4,600	310	<10	60	2,400	980	5,500	2,600	1,700	250
		h				, ,		~						
INCO DE LA COMPANY					Histor	rical Concentral	tions for Sodiu	m (MCL is 20,000)		THE REPORT OF STREET			Carl Contractor
Sample						Mc	nitoring Well I	D (group designa	tion)					
Date	SHL-3 (1)	SHL-4 (2)	SHL-5 (1)	SHM-96-5B (2)	SHM-96-5C (2)	SHL-9 (1)	SHL-10 (2)	SHM-93-10C (1)	SHL-11 (2)	SHL-19 (2)	SHL-20 (2)	SHL-22 (1)	SHM-93-22B (2)	SHM-93-22C (1
May-02	1,340 B	6,370	2,340 B	38,600	34,000	2,380 B	1,380 B	8,620	27,600	2,570 B	34,000	43,700	35,900	18,800
Oct-02	1,570	2,840	2,180	36,200	35,400	2,560	1,520	8,180	29,800	4,240	35,600	45,500	114,000	19,500
May-03	1,220	2,380	2,340	32,600	32,000	2,080	950	8,990	31,100	1,600	36,800	43,400	37,300	14,200
Nov-03	1,360 B	13,400	2,030 B	33,500	34,800	2,310 B	1,280 B	8,370	27,000	2,670	35,800	42,700	36,300	17,400
May-04	1,060 B	5,390	2,040 B	31,000	30,000	1,620 B	1,020 B	8,650	22,500	2,300 B	33,300	40,900	56,900	15,100
Nov-04	684 B	4,060	1,870 B		32,200	1,550 B	845 B	8,190	22,800	2,280 B	31,900	41,900	34,300	16,100
Jun-05	696	7,190	3,240 B	and the second se	NS	NS	841 B	7,840	21,600	1,470 B	32,000	NS	NS	9,910
Jan-06	NS	<2,000	2,500	28,000	40,000	2,000	<2,000	9,500	24,000	<2,000	29,000	40,000	31,000	13,000
Notes:				ces (MCL cleanup		and the second								
			-		equipment or prep	aration blank								
			e indicated metho	od detection limit						× .				
	NS = Not Sampl	led												


	Table 7 g Well Chemical Cleanup L Vells Previously Attaining 0 Shepley's Hil Devens, Mass	evel Exceedances At Monitoring Cleanup Goals (Group 1) Il Landfill
Monitoing Well Identification	Well Designation (Based on First Five-Year Review, SWEC, 8/98)	Exceedances of Cleanup Levels for Triggering Chemicals, Since Achieving Group 1 Status
SHL-3	Group 1	None
SHL-4	Group 2	Not Applicable
SHL-5	Group 1	None
SHL-9	Group 1	71.3 ug/L As (Spring 1999) 144 ug/L As (Spring 2002)
SHL-10	Group 2	Not Applicable
SHL-11	Group 2	Not Applicable
SHL-19	Group 2	Not Applicable
SHL-20	Group 2	Not Applicable
SHL-22	Group 1	55.9 B ug/L As (Spring 2002) 77.1 ug/L As (Fall 2002) 101 ug/L As (Spring 2003) 76.4 ug/L As (Fall 2003) 88.1 ug/L As (Spring 2004) 65.4 ug/L As (Fall 2004) 154 ug/L As (Winter 2005)
SHM-93-10C	Group 1	None
SHM-93-22C	Group 1	51.1 ug/L (Fall 1998)
SHM-96-5B	Group 2	Not Applicable
SHM-96-5C	Group 2	Not Applicable
SHM-96-22B	Group 2	Not Applicable
Notes: As = Arsenic B = Value was withi	ng five times of the greater ar preparation blank samples	nount detected in the equipment or


		Table	8-1									
	Sample F	Preparation an	d Analysis Methods,									
	Container	s, Holding Tim	es, and Preservatives	5								
		Shepley's Hi	ill Landfill									
		Devens, Mass	sachusetts									
Parameters Analysis Method Sample Container Minimum Preservative Holding												
	Jun-05	Jan-06		Volume		Time						
Volatile Organic Compounds	SW846 8260B	SW846 8260B	3 x 40 mL Vials with Teflon septa screw caps	40 mL	HCl to pH <2 No Headspace 4° +/- 2° C	14 Days						
Metals, except Cyanide Mercury Hardness	SW846 6010B EPA Method 335.4 SW846 7470A SM 2340B	SW846 6010B SM 9014 SW846 7470A SM 2340B	1 Liter HDPE	300 mL	HNO3 to pH <2	180 Days (except Hg) 28 Days Hg						
Cyanide	EPA Method 335.4	SM 9014	500 ml HDPE	500 mL	NaOH to pH >12 4 [°] +/- 2o C	14 Days						
Anions Chloride Nitrate as N Sulfate Alkalinity Total Dissolved Solids	EPA 160.1 EPA 300.0 EPA 300.0 EPA 300.0 EPA 160.2 EPA 160.1	SM 2540C SM 9251 SM 4500NO3-F SM 9038B SM 2540D SM 2540C	500 mL HDPE	100 mL	4° +/- 2° C	28 Days 48 Hours 28 Days 14 Days 48 Hours						
Chemical Oxicdation Demand	EPA 410.1	SM 5220D	250 mL HDPE	250 mL	H2SO4 to pH <2 4° +/- 2o C	28 Days						
Biochemical Oxidation Demand - 5 Day	EPA 405.1	SM 5210B	1 Liter HDPE	1 Liter	4° +/- 2° C	48 Hours						
Total Suspended Solids	EPA 160.2	SM 2540D	1 Liter HDPE	1 Liter	4° +/- 2° C	7 Days						
Total Organic Carbon	SW 846 9060	SW 846 9060	3 x 40 mL Vials with Teflon septa screw caps	40 mL	H2SO4 to pH <2 4° +/- 2o C	28 Days						

LEGEND

Long Term Monitoring Network

Permanent Gas Monitoring Probes

(SHL-9)

(LGP-05-05X)

Note: Contingency Remedy performance monitoring network included for reference. Includes Hydraulic $\mbox{\ensuremath{\oplus}}$ and Geochemistry monitoring $\mbox{\ensuremath{\oplus}}$.

CH2MHILL

FIGURE 7-1 Long Term Monitoring Network

Appendix A

Geotechnical Engineering Fall 2005 Annual Inspection Report

US Army Corps of Engineers® New England District

GEOTECHNICAL ENGINEERING FALL 2005 ANNUAL INSPECTION REPORT

SHEPLEY'S HILL LANDFILL FORMER FORT DEVENS DEVENS, MASSACHUSETTS

March 2006

1.0 BACKGROUND

Shepley's Hill Landfill encompasses approximately 84 acres in the northeast corner of the main post of the former Fort Devens, Massachusetts (Figure 1). The landfill is bordered to the northeast by Plow Shop Pond, to the north by Nonacoicus Brook (which drains the pond), to the west by Shepley's Hill, to the south by recent commercial development, and to the east by the site of a former railroad roundhouse.

The landfill was reportedly operating by the early 1940s, and evidence from test pits within the landfill suggests earlier usage, possibly as early as the mid-nineteenth century. The landfill contains a variety of waste materials, including incinerator ash, demolition debris, asbestos, sanitary wastes, spent shell casings, glass, and other wastes. The maximum depth of the refuse occurs in the central portion of the landfill and is estimated to be about 40 feet. The volume of waste in the landfill has been estimated at over 1.3×10^6 cubic yards (cy), of which approximately 25 percent is below the water table.

The landfill was closed in five phases between 1987 and 1992-93 in accordance with Massachusetts regulations 310 CMR 19.000 (1985). The Massachusetts Department of Environmental Protection (MADEP) approved the closure plan in 1985. Closure consisted of installing a 30/40-mil polyvinyl chloride (PVC) membrane cap, covered with soil and vegetation and incorporating gas vents. Closure also included installation of wells to monitor groundwater quality around the landfill, and construction of a storm drainage system to control surface water runoff. MADEP issued a Landfill Capping Compliance Letter approving the closure in February 1996.

The ROD outlined the remediation objectives for the site (USEPA, 1995). It requires the Army to monitor groundwater, inspect and maintain the landfill, and prepare annual reports. It also requires that the Army review the effectiveness of the remedy every five years.

2.0 LANDFILL CAP MONITORING ACTIVITIES

The Shepley's Hill Landfill at Devens, Massachusetts was inspected on 8 and 9 November 2005 by personnel from the U.S. Army Corps of Engineers, New England District (NAE). Features of the landfill inspected included the cap, the drainage system, the gas vent system, access roads, and the security fence. Observations were made regarding the vegetative cover, vegetation types, erosion, settlement, and general condition of the various features. A comprehensive site assessment is currently being conducted to assess the effectiveness of the landfill cap. Appendix A of this report contains the Landfill Maintenance Checklist that summarizes the findings of this inspection. All observations are also presented on Figure 1. A narrative of the findings of this inspection follows.

- Catch Basin #3 near the Cooke Street entrance to the site is not set at grade. Soil excavation in this area has left the rim of the grate about six to eight inches higher than the surrounding ground. The rim of this catch basin should be lowered to the surrounding grade.
- The concrete headwall drainage structure at the terminus of the catch basin and underground conduit system on the south side is overgrown with vegetation and is silting in (Photo 1). The grade of the channel bottom is uneven and standing water is present. Wetland species are

becoming established as well. The entire southern swale should be cleared, accumulated sediment should be removed, and the channel should be regraded as required to properly drain. The channel should then be revegetated.

- Ponded areas of standing water are present at numerous locations across the landfill surface. See Figure 1 and Photos 2, 3 and 5.
- The northern reaches of the eastern drainage swale have some minor vegetation growth and sand accumulation. The swale should be cleared of vegetation and sand.
- East of gas vents 8, 11 and 12, the perimeter of the cap has some areas of erosion and sparse vegetation. The soil in these areas is comprised predominantly of sand. The areas should be graded to fill in the eroded areas and topsoil should be placed to a depth of 6 inches over the sand to allow grass to grow. The grass should extend at least twenty feet past the limits of the cap.
- The access roads on the site are in good condition. There are no problems on access roads that warrant repair at this time.
- Portions of the perimeter chain-link security fence are in poor condition. Fence sections and gates are missing and unrestricted access to the site is available at several locations. Some evidence of off-road vehicles (trucks, ATV's, dirt bikes, etc. see photo 3) using the cap area was seen. On the east side near monitoring well SHL-11, the fence has been rolled back and is open. A gate and lock should be added here if permanent access is required. There are also several other locations around Plow Shop Pond (see Photo 4) which provide unrestricted access. The security fence should be repaired, with all missing fence sections, including gates, replaced or repaired.
- The gas monitoring probes at the northwest edge of the landfill are in excellent condition, with locked, steel caps. The gas vents are in good condition. All screens and pipes are in functional condition. The older gas vents, painted yellow, are showing signs of age, with rusting/corrosion evident (See Photo 7). They should be scraped, cleaned, and repainted.
- A summary of Corrective Action measures for the Landfill Cap are included in Section 4.0.

3.0 LANDFILL GAS MONITORING RESULTS

The purpose of the landfill gas monitoring program is to establish long-term trends with regard to gas production and venting. A combustible gas survey was performed to determine whether methane, hydrogen sulfide, or volatile organic compounds have accumulated in the subsurface of the landfill site or are migrating off-site. Four landfill perimeter gas monitoring probes were installed on 7 November 2001 on the northern side of the landfill. The purpose of the probes is to monitor potential landfill gas migration from Shepley's Hill Landfill towards Sculley Road. Following this inspection, ten more probes were installed on the the southern perimeter of the landfill and will be available for the next annual report

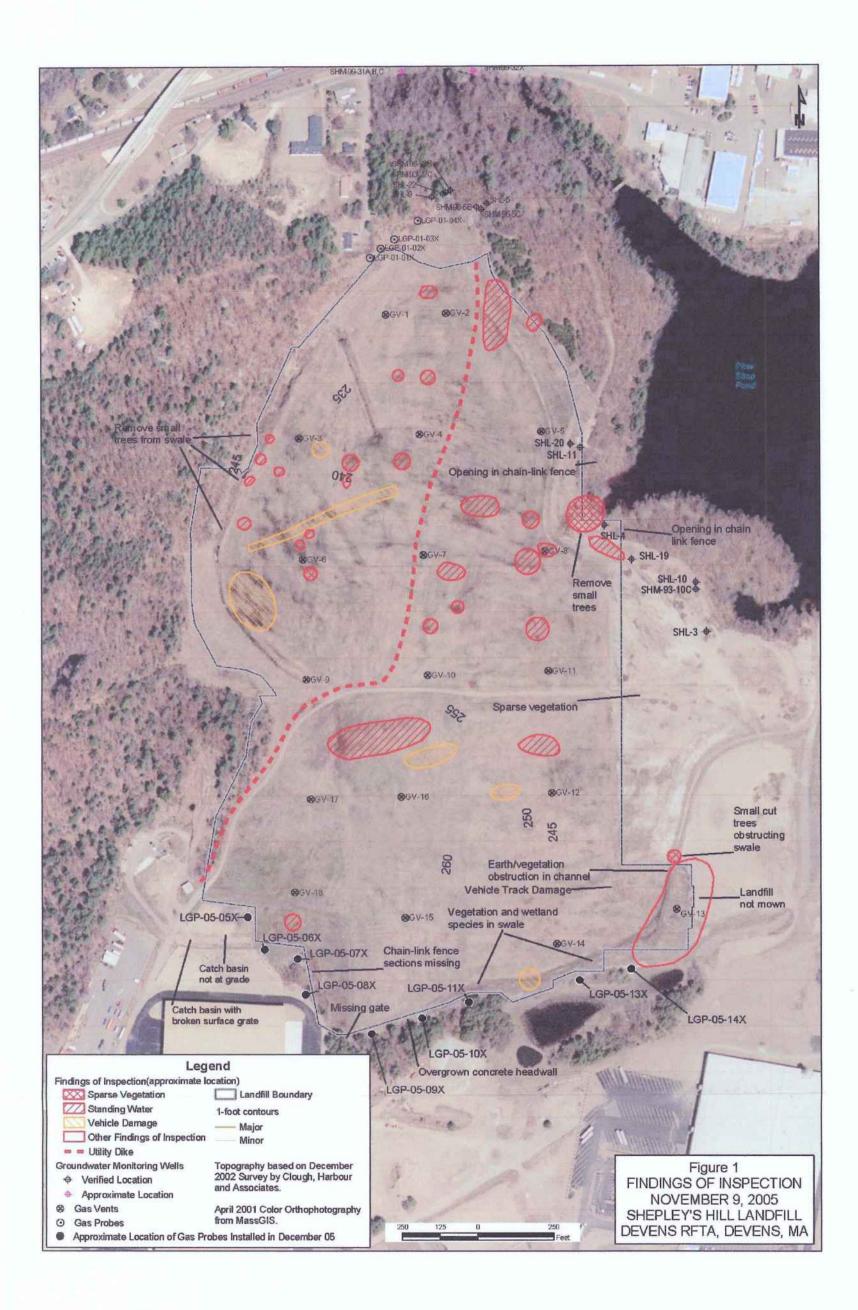
The annual landfill gas sampling was conducted on 8 and 9 November 2005. The weather was sunny,

with temperatures in the 50's (F) and the barometric pressure was 29.9 inches of mercury and rising. Gas samples were field analyzed for the following parameters using the listed equipment:

Parameter	Equipment
Total Volatile Organic Compounds (VOC)	Thermo Environmental 580B (PID) with a 10.6 eV lamp
Percent Oxygen	Landtec GEM 500 landfill gas monitor
Hydrogen Sulfide (ppm)	Industrial Scientific TMX 412 CGI
Percent Lower Explosive Limit (LEL)	Industrial Scientific TMX 412 CGI
Carbon Monoxide (ppm)	Industrial Scientific TMX 412 CGI
Percent Carbon Dioxide	Landtec GEM 500 landfill gas monitor
Percent Methane	Landtec GEM 500 landfill gas monitor

The TMX 412, PID and the GEM 500 were all calibrated in the shop by U.S. Environmental. Samples were collected by attaching a rubber Quik cap with a hose clamp to the gas vent pipe. A barbed fitting was placed in a drilled hole in the cap. Tubing was run from the barbed fitting to a SKC224-PCXRE air pump. The pump was operated for approximately 7 to 10 minutes to purge 2 vent pipe volumes and to ensure that the gases collected were representative of the gas collection layer. The gas monitoring equipment was then attached to the pump and turned on. The readings were recorded on the Landfill Gas Monitoring form (Appendix B) after they had stabilized. The locations of the gas vents are shown in Figure 1.

The results from the monitoring event can be found on Table 1 in Appendix B. The following is a brief summary of the results. The perimeter landfill gas monitoring probes (LGP-01, LGP-02, LGP-03, LGP-04) tested negative for VOC's, hydrogen sulfide, carbon monoxide, and methane. Minimal levels of carbon dioxide were detected, ranging from 0.6 % at LGP-04 to 2.2 % at LGP-02. Oxygen levels ranged from 19.2 % at LGP-02 to 20.3% at LGP-01 and LGP-04.


The following summarizes the gas vent readings. VOCs were not detected in any of the gas vents. The oxygen levels ranged from 0% (Vent # 9, 16,17) to 21.0% (Vent # 15) using the GEM 500. No hydrogen sulfide was detected in any of the gas vents. Methane LEL readings ranged from 0% at V-15 and V-18 to over 100% LEL in many of the vents. No carbon monoxide was detected in any of the gas vents except for V-16 and V-17, which had readings of 2 and 3 ppm, respectively. Carbon dioxide ranged from 0% (Vent # 15, 18) to 27.0% at Vent #17. Methane ranged from 0% (Vent # 15,18) to 32.7% at Vent #17.

The gas readings are within the parameters of a mature landfill. The vents are functioning properly. The scenario of high atmospheric pressure to low atmospheric pressure results in a venting of landfill gas into the atmosphere. The scenario of low atmospheric pressure to high atmospheric pressure results in air intrusion into the upper portion of the landfill. The scenario during this inspection was most likely the latter, as barometric pressure was rising during the inspection. The major concern with landfill gas is off-site migration. If the gas vents are functioning properly and are adequately spaced there should not be off-site migration of landfill gases; however, due to the high LEL readings and the proximity of residential housing and commercial development, gas monitoring probes should be installed along the property line where the landfill is adjacent to structures (note that this has been done at the northern end near Sculley Road). Gas monitoring probes should also be installed at the southern perimeter of the site along the commercial properties. The LEL readings along the southern perimeter have consistently registered high LEL readings in the past, and were sometimes above 100%. As of the date of this inspection, 10 landfill gas probes were planned to be installed on the southern perimeter of the landfill and will be available for analysis for the next annual inspection.

4.0 CORRECTIVE ACTION

An upcoming Comprehensive Site Assessment will assess the adequacy of the landfill. Following the CSA, a Corrective Action Alternatives Analysis will be conducted to identify any remedial repairs required. Implementation of the selected options (if required based on the outcome of the CAAA) should improve the drainage and function of the landfill cap. The following items should be addressed before the next inspection or as provided for in the final recommendations in the report cited above: (1) Repair and replace the security fence and gates as required to control access to the site; (2) Place topsoil and seed over the sandy area lacking vegetation on the east side along the perimeter of the cap. Along with the corrective actions listed above, it is recommended to (1) Install additional landfill gas monitoring probes along the commercial property at the south side of the landfill (the probes were installed in November 05, after this inspection) (2) Repair and regrade around the catch basins on the south side of the landfill. With the exception of the repairs mentioned above, and the other repairs recommended in the report, the landfill is in fair condition and appears to be functioning adequately.

FIGURE

PHOTOGRAPH LOG

Index of Photographs

Picture 1 - Southern Swale Looking East.

Picture 2 - Northwest Swale Looking East

Picture 3 - Northwest Swale Area Looking North East

Picture 4 - Fence Line Looking West Near Plow Shop Pond

Picture 5 - Northern End of Landfill, Along Utility Berm, Looking South.

Picture 6 - Looking South from Center of Landfill

Picture 7 - Gas Vent No. 3

Photo 1

Photo 2

Photo 3

Photo 4

Photo 5

Photo 6

Photo 7

APPENDIX A

Inspection & Maintenance Check List

DATE: 8 November 2005 INSPECTOR: Kullberg/Michalak

LANDFILL ATTRIBUTE	OBSERVATIONS	RECOMMENDATIONS	SAT/ UNSAT
Cover Surface	1. Vegetative cover is generally satisfactory except as noted in the comments that follow. Various species growing; mowed to about 8 inches height (see Photo 6).	1. See specific comments under the sections that follow.	SAT
	2. There are several areas where settlement has occurred.	2. A Comprehensive Site Assessment (CSA) is being conducted to address this condition.	SAT
	3. Trees were removed in the fall of 2002 & 2004 in the vicinity of GV-13, the southern perimeter, and the eastern perimeter, and have not reestablished.	3. Monitor for tree growth in future	SAT
	4. A utility berm was constructed through the middle of the landfill in 2004. It provides utility service to a newly constructed pumping station at the northeastern corner of the landfill.	4.Observe effect on drainage patterns in the vicinity of the utility berm during future inspections. This may be investigated as part of the ongoing CSA.	NA
	5. Several areas on the landfill have sustained damage by trespassing vehicles, and in some cases damage by lawn mowing equipment (Photo 3).	5. Damaged areas should be repaired as soon as possible.	UNSAT
Vegetative Growth	1. In the vicinity of gas vents 8, 11 and 12, the perimeter of the cap has some areas of sparse/eroded vegetation. The soil in the bare areas is mostly sand and is eroded in some areas. The area should be graded to fill in the eroded areas and topsoil should be placed to a depth of 6 inches over the sand to allow grass to grow. The grass cover should extend at least twenty feet beyond the limits of the cap.	1. This area should be reseeded, with hay or straw placed on the surface, to prevent further erosion. This area to be considered as part of the CSA.	UNSAT
Landfill Gas Vent Wells	1. The gas vents are in good condition. All screens and pipes are in functional condition. All of the non-galvanized vents are showing signs of rusting and corrosion. These include all gas vents except for V-12 through V-15.	1. All of the nongalvanized vents should be scraped, cleaned and painted.	SAT

OBSERVATIONS	RECOMMENDATIONS	SAT/ UNSAT
1. Most of the drainage swale on the south side is being invaded by vegetation/wetland species. There are also intermittent zones of standing water indicating a lack of proper channel slope and drainage.	1. The swale should be cleared of vegetation, accumulated sediment, and debris. The swale should then be regraded to promote adequate drainage.	UNSAT
2. In the south east side drainage swale, in the vicinity of gas vent #13 and continuing downstream to the rip rap - lined channel, the drainage swale is overgrown with vegetation and wetland species. It appears to be heavily silted in and has a large area of standing water. There is an earth and vegetation obstruction just upstream of the new rock section preventing the drainage of water and turning the channel into a pond.	2. The swale should be cleared of vegetation, accumulated sediment, and debris. The swale should then be regraded to promote adequate drainage.	UNSAT
1. The concrete drainage structure at the terminus of the catch basin and underground conduit system on the southwest side is overgrown with vegetation and is silting in. Standing water is present and wetland species are becoming established as well.	1. The structure and channel immediately downstream should be cleaned out and the channel regraded as required to properly drain.	UNSAT
 Catch Basin #2 near the entrance to the site has a broken surface grate. Catch Basin #3 near the entrance to the site is not set at grade. The rim of the basin is about six to eight inches higher than the surrounding ground. 	 The surface grate should be replaced. The rim of this catch basin should be lowered to meet the surrounding grade. 	UNSAT UNSAT
	 Most of the drainage swale on the south side is being invaded by vegetation/wetland species. There are also intermittent zones of standing water indicating a lack of proper channel slope and drainage. In the south east side drainage swale, in the vicinity of gas vent #13 and continuing downstream to the rip rap - lined channel, the drainage swale is overgrown with vegetation and wetland species. It appears to be heavily silted in and has a large area of standing water. There is an earth and vegetation obstruction just upstream of the new rock section preventing the drainage of water and turning the channel into a pond. The concrete drainage structure at the terminus of the catch basin and underground conduit system on the southwest side is overgrown with vegetation and is silting in. Standing water is present and wetland species are becoming established as well. Catch Basin #2 near the entrance to the site has a broken surface grate. Catch Basin #3 near the entrance to the site has a broken surface grate. 	1. Most of the drainage swale on the south side is being invaded by vegetation/wetland species. There are also intermittent zones of standing water indicating a lack of proper channel slope and drainage.1. The swale should be cleared of vegetation, accumulated sediment, and debris. The swale should be then be regraded to promote adequate drainage.2. In the south east side drainage swale, in the vicinity of gas vent #13 and continuing downstream to the rip rap - lined channel, the drainage swale is overgrown with vegetation and wetland species. It appears to be heavily silted in and has a large area of standing water. There is an earth and vegetation obstruction just upstream of the new rock section preventing the drainage of water and turning the channel into a pond.2. The structure and channel immediately downstream should be cleared out and the channel regraded to promote adequate drainage.1. The concrete drainage structure at the terminus of the catch basin and underground conduit system on the southwest side is overgrown with vegetation and is silting in. Standing water is present and wetland species are becoming established as well.1. The structure and channel immediately downstream should be cleaned out and the channel regraded as required to properly drain.1. Catch Basin #2 near the entrance to the site has a broken surface grate.1. The surface grate should be replaced.2. Catch Basin #3 near the entrance to the site is not set at grade. The rim of the basin is about six to eight inches higher than the surrounding2. The rim of this catch basin should be lowered to meet the surrounding grade.

Settlement	1. It appears that many areas of the landfill may be settling. The extent and its effect on the function of the landfill is unknown	1 A Comprehensive Site Assessment is underway to address this condition.	SAT
Erosion	1. No substantial erosion observed.		SAT
Access Roads	1. The access roads on the site are in good condition.	 There are no problems on access roads which warrant repair at this time. 	SAT
Security Fencing	1. The perimeter chain-link security fence is in poor condition. Fence sections and gates are missing and unrestricted access to the site is available at many locations. Some damage to the cap by off-road vehicles (trucks, ATV's, dirt bikes, etc.) using the turfed cap areas was observed.	1. The security fence should be repaired/replaced and extended. This work is currently planned under the maintenance work underway at the landfill.	UNSAT
Wetland Encroachment	1. Wetland encroachment is taking place at several locations, but is not happening on a wide scale. Overall, the areas of encroachment are small. These locations have been noted in above comments.	1. Wetland encroachment should be eliminated by simple mowing in some areas, and by regrading channels in other areas. The above comments address the actions to take at specific locations. A CSA is underway to address this concern at the landfill.	UNSAT
the most critical and(1) Repair and replace	equired: The following problem areas, from among those should be addressed before the next inspection; ace the security fence and gates as required to control ac to cap caused by trespassers and lawn mowing equipme	ccess to the site;	ove, are

UNSAT- Unsatisfactory

NA – Not Applicable

APPENDIX B

Landfill Gas Monitoring

APPENDIX B Landfill Gas Monitoring Table 1

INSPECTOR: Kullberg/ Michalak TITLE: Civil Engineer DATE: 11/08/05

ORGANIZATION: CENAE-EP

WEATHER: Sunny, 55 d F

BAROMETER: 29.9 in Hg and rising.

Vent No.	VOC ppm PID	O ₂ % GEM 500	H ₂ S ppm ISTMX	LEL % ISTMX	CO ppm ISTMX	CO ₂ % GEM 500	CH4 % GEM 500	Remarks
V-1	0	5.6	0	32	0	10.8	1.7	CGI 02 - 6.9
V-2	0	5.2	0	>100	0	12.8	8.6	CGI 02 - 13.4
V-3	0	2.8	0	>100	0	15.1	9.0	CGI O2 - 3.6
V-4	0	6.4	- 0	50	0	10.6	4.3	CGI 02 - 12.7
V-5	0	10.4	0	11	0	7.7	1.4	CGI O2 - 17.1
V-6	0	0.4	0	>100	0	18.9	12.5	CGI O2 - 12.9
V-7	0	2.1	0	14	0	12.2	4.4	CGI 02 - 17.6
V-8	0	8.3	0	25	0	8.9	4.2	CGI O2 - 15.8
V-9	0	0	0	>100	0	21.8	26.4	CGI O2 - 9.0
V-10	0	0.6	0	>100	0	14.8	10.3	CGI O2 - 9.3
V-11	0	10.1	0	12	0	6.4	2.2	CGI O2 - 18.4
V-12	0	2.8	0	>100	0	9.4	6.4	CGI O2 - 4.7
V-13	0	20.2	0	25	0	0.5	0.5	CGI O2 - 19.1
V-14	0	20.7	0	6	0	0.2	0.3	CGI O2 - 20.9
V-15	0	20.9	0	0	0	0	0	CGI O2 - 21.0
V-16	0	0	0	>100	2	23.7	20.7	CGI O2 – 0.3
V-17	0	0	0	>100	3	27	32.7	CGI O2 - 0.2
V-18	0	21.0	0	0	0	0	0	CGI O2 - 20.9
LGP-1	0	20.3	0	0	0	0.7	0	CGI O2 - 20.7
LGP-2	0	19.2	0	0	0	2.2	0	CGI O2 - 19.6
LGP-3	0	19.5	0	0	0	1.7	0	CGI O2 - 20.1
LGP-4	0	20.3	0	0	0	0.6	0	CGI O2 - 20.5

CALIBRATION INFORMATION:

Instrument: Thermo Environmental 580B PID 10.6 SN#: 182 Calibrated by: US Environmental Rental Co. 7 November 2005

Calibrated With: 100 ppm isobutylene (R.F. = 1.0)

Instrument: Industrial Scientific TMX412 SN#: 98090009-447 Sampling Pump: Industrial Scientific Sampling Pump SP402 SN#: 9911050-292 Calibrated by: US Environmental Rental Co. 8 November 2005 Calibrated With: 50 ppm CO, 25 H₂S, 50% LEL Methane, 20.9% O₂

Instrument: Landtec GEM 500 Serial#: E-0904 Calibrated by: US Environmental Rental Co. 7 November 2005 Calibrated With: 15% CH4, 15% CO2, 20.9% O2

* Note: Barometric Pressures were obtained from NOAA National weather Service Forecast Office Boston, MA at http://www.erh.noaa.gov/box/stationobs.shtml for the nearest available reporting station at the airport in Fitchburg, MA for the sample date 8 November 2005.

APPENDIX C Landfill & Gas Probe Supplemental Inspection

1.0 PURPOSE

Perimeter gas probes were installed (Photo 2) on the southern border of the landfill in December 2005 and were sampled for gas levels on February 16, 2006. This supplemental inspection appendix presents the gas level readings recorded, documents the installation of new perimeter fencing at Shepley's Hill Landfill, and documents some damage to the access roads at SHL which occurred during the recent maintenance contract work.

2.0 FENCING AND ACCESS ROADS

New chain link fencing was installed during recent maintenance work at the landfill. On the south side near the former Web Van warehouse, a section of fencing was constructed at a location of unrestricted access (Photo 3). Two other sections of fencing and gates were added on the south and west sides of Plow Shop Pond where the fence had been rolled back for access (Photos 4 & 5). The fencing appeared to be in excellent condition and will help minimize unauthorized access to the landfill by pedestrians and vehicles.

During the recent maintenance work, the access roads were slightly damaged by rutting and erosion (Photos 1 & 6). The access roads should be regraded, gravel added if necessary, and revegetated on the perimeter.

3.0 GAS PROBE READINGS

INSPECTOR: Kullberg/ Michalak TITLE: Civil Engineer DATE: 02/16/06

ORGANIZATION: CENAE-EP WEATHER: Sunny, 55 d F

BAROMETER: <u>30.1 in Hg @ 1030</u> BAROMETER: <u>30.0 in Hg @ 1200</u>

Probe Numbe r	VOC ppm PID	O ₂ % GA90	H ₂ S ppm MG140	LEL % MG140	CO ppm MG140	CO ₂ % GA90	CH4 % GA90	Remarks
LGP-5	0.2	20.6	0	0	0	0.3	0	CGI O2 - 20.7
LGP-6	0.7	20.6	0	0	0	0	0	CGI O2 - 21.0
LGP-7	0.2	11.6	0	1	0	3.8	0	CGI O2 -12.4
LGP-8	0.2	11.9	0	2	0	10.7	0	CGI O2 - 13.8
LGP-9	0	12.5	0	2	1	5.9	0	CGI O2 -13.2
LGP-10	0	15.5	0	0	0	7.6	0	CGI O2 - 19.5
LGP-11	0.2	17.8	0	0	0	3.9	0	CGI O2 -18.4
LGP-12	x	х	x	x	x	x	x	Not Installed
LGP-13	0.4	17.0	0	0	0	2.4	0	CGI O2 – 19.2
LGP-14	0.9	8.2	0	0	2	3.2	0	CGI O2 - 9.0

CALIBRATION INFORMATION:

Instrument: <u>Thermo Environmental 580B PID 10.6 SN#: 237</u> Calibrated by: <u>US Environmental Rental Co. 15 February 2006</u> Calibrated With: <u>100 ppm isobutylene (R.F. = 1.0)</u>

Instrument: Industrial Scientific MG 140 SN#: 01044002-134 Sampling Pump: Industrial Scientific Sampling Pump SP402 SN#: 0004373-050 Calibrated by: US Environmental Rental Co. 15 February 2006 Calibrated With: 50 ppm CO, 25 H₂S, 50% LEL Methane, 20.9% O₂

Instrument: Landtec GA90 Serial#: G1457 Calibrated by: US Environmental Rental Co. 15 February 2006 Calibrated With: <u>15% CH₄, 15% CO₂, 20.9% O₂</u>

4.0 Photographs

РНОТО 1

РНОТО 3

PHOTO 4

РНОТО 5

PHOTO 6

Appendix B

Groundwater Field Analysis Forms

June 2005 Monitoring

U. S. Army Corps of Engineers GROUNDWATER LEVEL MEASUREMENT SHEET

SITE INFORMATION

Site Name:Shepley's Hill LandfillLocation:Devens, MADate:06 June 2005

Project Name: Long Term Monitoring & Maint Personnel: Jack Keenan, Ton Markotte

WEATHER CONDITIONS AND EQUIPMENT

Temperature Range:	-	70'5		
Precipitation: dri				
	[]	Yes	[x]	No

Equipment No.: _________ Barometric Pressure: 30.0"

Monitoring Well	Date/Time	Reference Point	Elevation of Reference Point (feet NGVD)	Water Level Indicator Reading (feet)	Groundwater Elevation (feet NGVD)
SHL-3	1135	top of casing	248.5 (top of cas.)	29.75	218.7.5
SHL-4	1220	top PVC	228.71	10,05	218.66
SHL-5	1520	top PVC	218.53	2.59	715.94
SHL-9	1532	top PVC	222.84	7.51	215.33
SHL-10	0845	top PVC	248.76	30.35	218.41
SHL-11	1513	top PVC	236.34	18.28	218.06
SHL-19	1320	top PVC	241.34	22.19	219.15
SHL-20	1510	top PVC	236.84	18.62	218.22
SHL-22	1537	top PVC	220.45	5.24	21.5.21
SHM-93-10C	0845	top PVC	248.42	28.84	219.54
SHM-93-22C	1536	top PVC	. 221.55	6.30	215.25
SHM-96-5B	1529	top PVC	219.81	4.36	215.45
SHM-96-5C	1527	top PVC	219.25	3.88	215.37
SHM-96-22B	1540	top PVC	220.27	5.10	215.17

9/98

GWM WELL #	E SHI	-3			L	J.S. A	rmy C	orps	of Engi	ineers
SCREEN INTERVAL DE	PTH: 251-	-351/1	WELL DIAMETER	2 in					ng Log S	
H2O LEVEL: DEPTH, PR	E PUMP INSERTION	V 29.75		<u>~</u>	Proj					Devens, MA
	T PUMP INSERTION	91000		-					STRESS ME	
DEPTH SAMPLED:	33.0		REFERENCE POINT	PVC OR CASING	Metals/Hardnes					40ml glass vials (HCI)
DATE: 6 June 200	and the second s	1135	(DEPTHS RECORDED BENEATH		Cyanide 1 x 250				BOD 1 x 1L	
RECORDED BY:JK SS	and the second se	SIGNATURE:	Thomas A. Mar	cotta	Anions, Alkalinity	TDS 1x	500ml HDPE	Ξ	COD 1 x 25	0mL HDPE (H2SO4)
SAMPLED BY: JK SS	AG	SIGNATURE:	Thomas J. M.	arcotte	TSS 1 x 1L HDF	PE			TOC 3 x 40	ml glass víals (H2SO4)
TIME WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	pН	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr) BELOW MP (fee	t) SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)	
1030 30:30	118.0	240	and the second second	11.49	20	7.63	235.0	11.59	7.50	
1034 30.31	118.0	240		11.43	19	7.28		11.10	6.50	
1038 29.80	118.0	240	0.75 gal	13.29	19	7.06	the second design of the second se	10.97	5.95	
1042 29.70	122.8	80	· · · · ·	13.96	19	7.05		10.97	4.85	
1046 29.71	159.2	240	1000	14.27	19	6.90	219.1	10.91	7.50	
1050 29.85	168-2	240		14.51	19	6.82	189.1	10.64		
1054										Back Flush well
										had stopped
1100 30.50	121.0	480	1.50	18.72	19	6.83	155.3	10.54	63	11
1104 30.12	121.0	600		15.15	18	6.77	167.3	11.14	44	
1108 30.45	121.0	640	2.75	14.42	18	6.73	144.9	11.27	43	
1112 30.48	121.0	600		12.83	18	6.69	147.3	11.31		
1116 30.48	121.0	600		12.43	18	6.66	159.9	11.26	6.05	
1120 30.48	121.0	600	4.00	12.26	18	the second se	160.6	11-25	3.65	
1124 30.48	121.0	600	5.00	12.13	18	6.63	174.1	11.20	2.75	
1128 30.48	121.0	600	- 1	12.08	18			11.20	2.45	
(132 30.48	121.0	600		12.11	18	6.61	175.8	11.20	2.52	
NOTES: SAMPLE TAKEN AT:					1 2,45 3%	+0.1 unit	+10 mv	10%	10%	

YSI# CODG95

GWM	WELL #	SHL	- 4			l				of Engi	
SCREEN	INTERVAL DEPTH	1: 5.7-	15.7'	WELL DIAMETER	e: z"		Grour	ndwater	Sampl	ing Log S	Sheet
	EL: DEPTH, PRE P			2		Proj	ect Nam	ne: Shep	ley's Hil	I Landfill, D	Devens, MA
	DEPTH, POST P	UMP INSERTIO	N 10.05	•			SAMPLE	E METHOD:	EPA LOV	V STRESS ME	ETHOD
	AMPLED:	13		REFERENCE POINT		Metals/Hardnes	s 1 x 1L H	DPE (HNO:	3)	VOC'S 3x	40ml glass vials (HCI)
DATE:	6/6/05	TIME:	2.21	CONTRACTOR CONTRACT	H) NGVI	Cyanide 1 x 25				BOD 1 x 1L	
	ED BY: JK (SS) A		SIGNATURE:	- the flo		Anions, Alkalinity		500ml HDP	E		0mL HDPE (H2SO4)
SAMPLED	BY: JK S A	G TM	SIGNATURE:	stan		TSS 1 x 1L HD	PE		_	TOC 3 x 40	ml glass vials (H2SO4)
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	pH	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)	1	(mv)	(mg/L)	(NTU's)	and association
1234	10,20	73.0	2000	1901							Hunger botona (
1237	10.15	70.7	1400	1.5g-1	1160						to YSI
-		15		nected to	YSI				1005	10.0	cleaver water
1240	10.10	69.0	700	2.5 501	11.06	142	5.68	117.7	0.95	5.0	
1243	10.10	69.2	700	and the second s	11.10	142	5.65	117.6	0.60	4.5	
1246	10.10	69.2	700	3 5 9=1	11.14	142	5.64	117.6	0.61	4.5	
1749	10.10	69.2	700	1	11.17	142	5.64	117.7	0.63	4.1	
1252	10,10	69.2	700	4.5 g=1	11.17	142	5.63	117.8	6.45	3.5	
1255	10.11	69.2	700	5.5 9~1	11.15	142			0.70	2.8	
1301	10.11	69.2	700	1.5 921	11.16	141	5.62	120.0	0.77	2.0	and the state of the second states of the
1364	10.11	69.2		6.5 401	11.14	141	5.61	121,5	0,50	1.8	
1301	10,11	67	760	6. 991	11.17		15.01	101,3	10,00	1.0	
					1				1		
			1		1	1	1.11		1		
							1		1		
							1		1		
								100000			
OTES:					20.3 3%	± 4.2 3%	+0.1 unit	+10 mv	10%	10%	
SAMPLE	TAKEN AT: /	305			-0.5	4.2	1	1	+ 0.0	\$ <5,	

YSI # 600698

GWM W	'ELL # _	SHL-S	5			L	J.S. A	rmy C	orps	of Engin	eers
SCREEN INTE	RVAL DEPTH:	6 1	- 15 1 0-	WELL DIAMETER:	1"		Groun	dwater	Sampl	ing Log Sh	leet
120 LEVEL: I	DEPTH, PRE PU	MP INSERTION	2.621	2/	-6	Proje				Landfill, De	
DI	EPTH, POST PU	MP INSERTION								STRESS MET	
DEPTH SAMP		8.0f		REFERENCE POINT:	RVOOR CASING	Metals/Hardness	s 1 x 1L HI	DPE (HNO3)	VOC'S 3 x 40	ml glass vials (HCI
DATE: 6/	7/05 -	TIME:	1145	(DEPTHS RECORDED BENEATH)		Cyanide 1 x 250				BOD 1 x 1L HI	DPE
RECORDED B	Y:JK SS AG	TM	SIGNATURE:	Thomas a Marc	tto.	Anions, Alkalinity	TDS 1x5	500ml HDPE	£	COD 1 x 250m	L HDPE (H2SO4)
SAMPLED BY:	JK SS AG	(TM)	SIGNATURE:	Thomas Mar	entre	TSS 1 x 1L HDF	PE			TOC 3 x 40ml	glass vials (H2SO4
TIME V	VATER DPTH	PUMP	PURGE RATE	CUMVOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr) BE	LOW MP (feet)	SETTING	(mi/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)	
1056 3	.05	45.6	560		11-81	92	4.61	123.6	1.12	9.62	
1180 3	3,03	45.6	400	22	12.02	93	4.27	130.7	0.77	5.47	
1104 3	.07	45.6	560		12.02	91	4.18	134.2	0.59	3.63	
108 3	3,09	45.6	560	5l	11.95	91	4.11	137.5	0.52	3-49	
1112 3	3.11	45.6	560		12.08	94	4.08	140.1	0.61	2.80	
1116 3	R., 96	43.7	400	9 L	12.58	95	4.16	141.2	0.43	3,04	
1	2.96	43.7	400	11	12.65	95	4.13	145.3	0.45	2.65	
1124 2	2.96	43.7	400		12.49	95	4.06	148.2	0.34	1-40	
	R.96	43.7	400	14	12.62	94	4.01	152.6	0.32	1.25	
1132 3	2.96	43.7	400	15	13.38	94	4.13	152.3	0.38	1.48	
	2.96	4307	400		13.56	94	4.22	152.7	0.35	1.55	
1140 0	2.96	43.7	400	17	13.60	94	4-24	152.6	0.34	1.47	
							-				
IOTES:	EN AT: 11	100 000			±0,36 3%	\$2.5 3%	+0.1 unit	+10 mv	±.04 10%	<i>L5</i> 10%	

'YSI # 9860508 AA TURBIDITY # 910290

Pump - Grunfos Redi-flow II

GWI	I WELL #	SHL	-i0			U	J.S. A	rmy C	orps	of Eng	ineers
SCREEN	INTERVAL DEPTH			WELL DIAMETER:	2"	100000000000000000000000000000000000000	Grour	dwater	Sampl	ing Log	Sheet
H2O LEV	EL: DEPTH, PRE PI	JMP INSERTION	× 30.35	-0		Proje					Devens, MA
	DEPTH, POST PI			· · · · · · · · · · · · · · · · · · ·						V STRESS M	
DEPTH S	AMPLED:	35'		REFERENCE POINT:	EVC OR CASING	Metals/Hardness	s 1 x 1L H	DPE (HNO3)	VOC'S 3x	40ml glass vials (HCI)
DATE:	616/05	TIME:	845	(DEPTHS RECORDED BENEATH)		Cyanide 1 x 250				BOD 1 x 1L	. HDPE
	ED BY:JK SAC	G TM	SIGNATURE:	- Sth		Anions,Alkalinity	TDS 1x	500ml HDPE	Ξ	COD 1 x 25	50mL HDPE (H2SO4)
SAMPLE	DBY: JK 🔄 AC	G TM	SIGNATURE:	Am		TSS 1 x 1L HDF	ΡE			TOC 3 x 40	ml glass vials (H2SO4)
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	pH	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm))		(mv)	(mg/L)	(NTU's)	
106	30.28	120	400		16.75	30	7.17	149.6	11.51	9.5	Very clear where is
910	30 40	119.5	450		10.70	26	6.72	160.7	11.34	5.0	
914	30.40	119.5	500	1 gallon	12.56	26	6.44	170.6	11.26	1.3	
117	30 40	119.5	500		12 75	76	6.39	176.9	11.29	1.0	
520	30.40	119.5	502		12.86	28	6.37	185.2	11.26	6.8	
723	30.40	119.5	500	2 1/2-11-1	12.37	28	6.37	187.2	11.23	07	
926	30.40	119.5	500		12.90	28	6.37	1931	11.24	0.5	
929	30.40	119.5	500		12.89	28	6.37	195.5	11.22	0.4	
732	30 40	119.5	500	Baullins	12.74	28	6.37	198.1	11.20	0.5	
935	30.40	119.5	500		12.80	28	6.37	202.9	11.13	0.5	
938	30,40	119.5	500	LIgallons	12. 00	29	6.36	208.2	11.12	0.3	
141_	30.40	119.5	500		12.90	29	6.37	209-1	11.12	0.2	
jun.	30.40	119.5	500	540110-1	12.85	25	6.37	210.5	11.16	6.2	
IOTES:					3%	±0.8 3%	+0,1 unit	+10 mv	10%	10%	
	TAKEN AT: 9	45			10.37 3%	Lo.a Sid	V	1	10% 1.1	4,510%	and the second second
		4			67					V	

YSI # 9860508 TURBIDITY # 910290

Pump - Grunfos Redi-flow II

GWI	1 WELL #	SHM	- 93-10	ic.			J.S. A	rmy C	orps	of Engi	neers
SCREEN	INTERVAL DEPTH		7-55-71	WELL DIAMETER	2. 4"	and a second second	Grour	ndwater	Sampli	ing Log S	heet
	EL: DEPTH, PRE P		N 78.86		. /	Proi	ect Nam	e: Shepl	ev's Hill	Landfill. D	evens, MA
	DEPTH, POST P			2	_					/ STRESS ME	
DEPTH S	AMPLED:	50'		REFERENCE POIN	T: PVOOR CASING	Metals/Hardnes					Oml glass vials (HCI)
	6/6/05	TIME:	0845	(DEPTHS RECORDED BENEAT	\smile	Cyanide 1 x 25				BOD 1 x 1L	
RECORD	ED BY:JK SS A		SIGNATURE:	hey la		Anions, Alkalinity					mL HDPE (H2SO4)
	DBY: JK SS A		SIGNATURE:	Abx br		TSS 1 x 1L HD					I glass vials (H2SO4
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	pH	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)	
0917	29,75	119.5	530		10.88	432	7.14	241,3	1.49	0.22	
0921	29,90	118.7	300	2/GAL	11.78	431	7,21	244.5	1.08	0.24	
0924	29,95	118.7	300		11.91	433	7.27	237.5	0,90	0.32	
0929	29,98	118.7	300	2 GAL	11.94	433	7.27	239,2	0,85	0.43	
0932	29,98	118.7	300		11.98	433	7.30	241.6	0.77	0,50	
0935	29,98	118.7	300		12,03	433	7.30	243.0	0.77	0.51	
0938	30.0	118.7	300		12,07	433	7.33	745.6	0.75	0,49	
0942	30,0	118.7	300	23 6AL	12,13	433	7.34	249,2	0.72	0,52	
									3		
-							1.00				
							-				
	10.00	1000					1		_		
		1.5									
				1.							
OTES:	TAKEN AT:	949			3%	3%	+0.1 unit	+10 mv	10%	10%	
			1.	and the second							

YSI #0000698 TURBIDITY # 39576

Pump - Grunfos Redi-flow II

SAMPLED BY: JK SS AG TM SIGNATURE: TSS 1 X 1L HDPE - TOC 3 x 400 TIME WATER DPTH PUMP PUMP PURGE RATE CUM. VOLUME WATER SPECIFIC PH ORP/Eh D.O. TURBIDITY (RMM) BELOW MP (feet) SETTING (m/min) PURGED (gal) TEMP (°C) CONO. (µStern) (m/m) (mgL) (MTUS) $$$4.95 18.357 95.5 25001 11.051 5500 41.92 -4.1 0.87 12.00 12.00 4.96.1 11.61 5472 4.41 0.647 12.00 $$50 [$.355 95.1 1200 4.96.1 11.61 5472 4.445 16.44 100 4.72 557 12.00 4.96.1 12.00 4.96.1 12.00 4.96.1 12.00 4.96.1 12.00 4.96.1 12.00 4.96.1 12.00 57.7 12.44 100 4.72 4.45 16.74 0.477 25.7 12.50 $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	evens, MA
REFERENCE POINT: (wook cases) Metals/Hardness 1 x 1L HDPE (HN03) - > VOC'S 3 x Norm Control of the content of the conten of the content of the content of the cont	And and a second se
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c} \text{CORDED BY: JK } \begin{array}{c} \text{SO} \text{AG TM} \\ \text{MPLED BY: JK } \begin{array}{c} \text{SO} \text{AG TM} \\ \text{MPLED BY: JK } \begin{array}{c} \text{SO} \text{AG TM} \\ \text{SIGNATURE:} \\ $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mL HDPE (H2SO4)
$\begin{array}{c c} (24h) & \text{BELOW MP} (16ei) \\ \text{SETTING} \\ (m1/min) \\ 45 \\ 18.35 \\ 75.5$	nl glass vials (H2SO4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	COMMENTS
48 $i f.35$ 95.5 2501 175 50 $(F.35)$ 95.5 1250 $3ga1$ 11.58 550 4.57 -4.1 0.87 130 53 18.35 95.1 1200 $4ga1$ 11.61 542 4.71 17.0 0.47 75 54 18.35 95.1 1200 $4ga1$ 11.61 542 4.71 17.0 0.47 75 55 18.35 95.1 1200 $5ga1$ 11.61 5472 4.48 19.4 0.477 25 57 18.35 95.1 1300 $79a1$ 11.61 5472 4.25 20.7 0.47 14.4 0.5 18.34 95.1 1300 $79a1$ 11.64 543 370 -19.6 0.50 6.6 0.5 18.34 95.1 1250 $9ge1$ 11.64 544 340 -18.4 6.50 5.1 11 18.34 95.1 1250	Rumpid Grange /R
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	to YST
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Clearer Roduced Pump
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reduced speed
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Slight odor h
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
16 18.34 95.1 1750 1191 1161 544 3.03 -15.9 0.52 4.0 19 18.34 95.1 1250 1291 11.65 543 2.78 -13.9 0.53 3.8 22 18.34 95.1 1250 1291 11.65 544 2.78 -13.9 0.53 3.8 22 18.34 95.1 1250 1391 11.61 546 2.56 -13.9 0.51 3.9 125 18.34 95.1 1250 1391 11.61 546 2.36 -11.0 0.54 2.9 28 18.34 95.1 1250 14961 11.67 548 2.01 -9.3 0.51 2.0 31 18.34 95.1 1250 $159c1$ 11.62 546 1.69 7.0 0.51 2.9 34 18.34 95.1 1250 $159c1$ 11.62 546 $1.69.3$ 0.51	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a second and a second at
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
TES:	
DTES: + - 3% + 3% +0.1 unit +10 my 10% 10%	Ph senier is old
$T_{1,3} = 3\% + .6 - 3\% + 0.1 \text{ unit} + 10 \text{ mV} = 10\% = 10\%$	th senior is dre
MPLE TAKEN AT: 935	
De to extremely rushy/orange colored water - Egalling were pumped out will water b	come clear
below Concepting to 952 1# Clean TURBIDITY # GUI 2010 Pump - Grunfos Redi-flow II	
78 6 0 5 0 8 10 (90	and the second
* Semple taken a 935 all paromonitors statistical except ph which is all (well below	2 . 6)

GWM	I WELL #	SHL	-19			L	J.S. A	rmy C	orps	of Engi	neers
	INTERVAL DEPTH	1: 17.0-	32.0'	WELL DIAMETER:	41'					ng Log S	
H2O LEVI	EL: DEPTH, PRE P	UMP INSERTION	1 22.19	-		Proj	ect Nam	e: Shep	ley's Hill	Landfill, D	Devens, MA
	DEPTH, POST PI						and the second sec			STRESS ME	
DEPTH S		27'		REFERENCE POINT:	- NOOR CASING	Metals/Hardnes	s 1 x 1L H	DPE (HNO	3)	VOC'S 3x4	40ml glass vials (HCl)
DATE: (016105	TIME:	1320	(DEPTHS RECORDED BENEATH)	NGVE	Cyanide 1 x 25	oml HDPE	NaOH)		BOD 1 x 1L	HDPE
RECORD	ED BY: JK SS AC		SIGNATURE:	Thomas A Mar	cotte	Anions, Alkalinity	TDS 1x5	00ml HDP	Ξ	COD 1 x 250	OmL HDPE (H2SO4)
SAMPLED	BY: JK SS AC	G (TM)	SIGNATURE:	Thomas J.M.	arcotto	TSS 1 x 1L HDI	PE			TOC 3 x 40r	ml glass vials (H2SO4)
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	pH	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)	24-1-0-1
1246	22.28	105.2	1280		11.31	104	5.68	32.1	1021	87.7	reditish-Brown stug
1250	22.19	105.2	1500	2.0	11.18	100	5.47	34.1	0.98	61.8	
1254	22.19	105.2	1600	3.5	11.12	96	5.29	46.1	1.08	28.3	
1258	22.25	102.6	960	4.5 -	11.96	92	5.13	50.7	1.48	16:9	
1302	22.19	102.6	900	5.5	11-94	91	5.11	55.5	1.66	14.8	
1306	22.19	102.6	960	6.5	11.98	90	5.05	59.3	1066	18.8	
1310	22.19	102.6	900	7.5	11.95	89	4.98	63.7	1.74	20.5	
1314	22.19	102.6	960	8.5	11.99	88	4.92	66.5	1.86	18.5	
1318	22.19	102.6	960	9+5	11.99	88	4.89	68.5	1.88	19.0	
	and the second					1.00	1.2				
					1.1.2.1					-	
	Landa and										
	the second second										
		1						1			
	- manufacture and	_									
NOTES:					- 20/		101	110	400/	100/	
	TAKEN AT:	320			5.35 3%	127 3%	+0.1 unit	+10 mv	10%	10%	
				10	1	11		-	1		
-let w	ell discharge i	nto bucket	at start to	eliminate slug	L~2.5 ga	llons)		_			
				V	0	1.1					
YSI#	9860508 AA	TURBIDITY #	#910210		Pump - Gru	nfos Redi-flow I	I				

GWM WELL# SH1 - 20 SCREEN INTERVAL DEPTH: 41.0 - 51.0 fut well DIAMETER: 4 H20 LEVEL: DEPTH, PRE PUMP INSERTION 18.65 fut Fut DEPTH, POST PUMP INSERTION 18.65 fut Fut Groundwater Sampling Log Sheet DEPTH, POST PUMP INSERTION 18.65 fut Fut Groundwater Sampling Log Sheet DEPTH, POST PUMP INSERTION 18.65 fut Fut Fut Fut DEPTH SAMPLE HG Fut Fut Fut Fut Fut DATE: (1105) TIME: 083 Fut	GWM	IWELL#	541 -	20			U	J.S. A	rmy C	orps	of Engir	neers
Project Name: Shepley's Hill Landfill, Devens, MA DEPTH, POST PUMP INSERTION JB, 65 feet DEPTH SAMPLED: MG better Mig. 65 Project Name: Shepley's Hill Landfill, Devens, MA SAMPLE DEPTH SAMPLED: Mig. 65 Summer seconce between person reconce person	SCREEN	INTERVAL DEPTI	H: 410	ELO Rea	- WELL DIAMETER	. At		Grour	ndwater	Sampl	ina Loa Sh	neet
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H2O LEVE	EL: DEPTH, PRE P	UMP INSERTIO			······	Proj	ect Nam	e: Shep	ley's Hill	Landfill, De	evens, MA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-d		the second se				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DEPTH S		All setting the setting the set of the set o				Metals/Hardnes					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DATE:	617/05										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			G) TM	the second s	March				CALCULAR CONTRACT	E	COD 1 x 250n	nL HDPE (H2SO4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPLED	DBY: JK SS à	б тм	SIGNATURE:	Hunden	_	-11			-	TOC 3 x 40ml	glass vials (H2SO
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	pH	ORP/Eh	D. O.	TURBIDITY	COMMENTS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BELOW MP (feet)			- PURGED (gal)		COND. (µS/cm)		(mv)	(mg/L)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							580	6.25	-17.8	1.31		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0843	and the second se								1.07		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10					13.20						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- I		-	El GALION							
0858 18.65 72.1 35° $2.264u$ and 13.85 587 6.22 -7.0 0.52 38.9 0901 18.65 92.1 35° 13.98 585 6.22 -7.0 0.52 38.9 0901 18.65 92.1 35° 13.98 585 6.22 -5.6 0.42 34.2 0904 18.65 72.1 35° 13.93 587 6.21 -5.2 0.41 30.6 0907 18.65 92.1 35° 14.0° 585 6.21 -4.2 0.39 28.8 0910 18.65 92.1 35° 14.14 584 6.20 -3.6 0.38 25.5 0910 18.65 92.1 35° 14.14 584 6.20 -3.6 0.38 25.5 0913 18.65 92.1 35° 14.17 585° 6.20° -3.0° 0.34 20.1 0916 18.65 92.1		and the second sec	and the second se			and an other than the second se						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						the second se	the second se					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			and the second se	and the second s	226ALLONS							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			the second se				the second s		and the second se	and the second se		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		the second se		- Kanada - Andrew - A		sector in the sector is not a sector in the sector is not the sect						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								and the second se				
0916 18.65 92.1 350 14.13 586 6.19 - 2.2 0.34 20.1 0919 18.65 92.1 350 14.21 586 6.18 -1.5 0.33 18.9										and the second s		
0919 18.65 92.1 350 14.21 586 6.18 -1.5 0.33 18.9	and the second s	And the second sec	and the second se		a 361113:05							
0172 18.65 92.1 550 7.401000 14.23 586 6.16 - 0.5 0.33 17.9	- And - A											
	0122	18.65	92.1	350	7. 46AUPNS	14.23	586	6116	- 0,5	0,33	17.9	
			1									
NOTES: 3% 3% +0.1 unit +10 mv 10% 10%	INTES:					20/	20/	10.1.1.1.1	110 mu	100/	100/	

YSI # 0000698 TURBIDITY # 39576

Pump - Grunfos Redi-flow II

	1 WELL #		- 93-220			L L				of Eng	
	INTERVAL DEPTH			WELL DIAMETE	R: 4		Grour	ndwater	Sampl	ing Log	Sheet
20 LEV	EL: DEPTH, PRE P	UMP INSERTION				Proj					Devens, MA
	DEPTH, POST P		5.09		- ~					/ STRESS M	
EPTH S	SAMPLED:	130'		REFERENCE POIN					3)		40ml glass vials (HCI)
	617105	TIME:	1040	(DEPTHS RECORDED BENEA		Cyanide 1 x 25		114 million		BOD 1 x 1L	
ECORD	ED'BY:JK (SS) A	G TM	SIGNATURE:	Age		Anions, Alkalinity	2.53C	500ml HDP	E		0mL HDPE (H2SO4)
AMPLE	D BY: JK 🐼 A	G TM	SIGNATURE:	dit -		TSS 1 x 1L HD	PE			TOC 3 x 40	ml glass vials (H2SO4)
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	pH	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)	
245	5.10	71.3	T								Clear colur
050	6.30	81.1	Vories	Zgel	10.44	433	6,88	-70.9	2.06	3.0	sulfer our
055	9.50	97.0	drue dur	3901	10.60	524	6.75	-117.3	0.30	2.8	
100	17.00	128.1	1	6901	10,67	362	6.73	-90.1	0.21	2.5	
05	21,40	153.4	5	10 921	10.77	272	6.64	- 48.1	0.63	2.0	
110	29,10	152.4		17921	10.51	265	6.67	- 10.11	0.79	2.3	
15	34.43	152.4	V	17 901	10.92	260	6.69	-1.4	0.97	2.5	Reduce speed
051	37.12	147.2	1460	120 901	11.05	263	6.62	-1,6	6.93	2.0	Reduced pury Spec
125	38.70	139.3	800	21 941	11.22	269	6.56	-9.2	0.92	1.8	ti in te
130	39.70	136.0	225		1217	277	6.67	-15.8	0.92	2.0	
135	39.75	136.0	200		11.90	278	6.71	-14.0	0.95	1.9	
140	39.80	136.0	150	22901	12.10	280	6.73	-11.3	0.99	2.0	well Shopped
43	39.80	136.0	150		12.21	282	6.75	-9.6	103	2.1	d'imine down
46	39.81	136,0	150		12.16	285	6.73	-13 7	1.02	2.0	shaded ysz - al
149	39.81	136.0	150		12,02	289	6.72	-17.0	1.01	7.3	
152	39.81	136,0	150		11.87	291	6.73	-20.3	1.00	0.5	
155	39.81	136.0	150		11.93	292	6.75	-231	1.00	1.9	
											and the second
11111											
OTES:					103 3%	1 5 3%	+0.1 unit	t +10 mv	10%	_10%	·
AMPLE	TAKEN AT: //	55			V	/	V		10.1	45	de sub-ser de sub-
l ha	s history of	law tracking	as with we	ll is drawn	down ~ 3	a feat to 1	mi merelt	hed :	- well	down	dwa at first
	wh a level	that it	244		1	innyh					
SI#	in a livel	TURBIDITY #		echange enous		infos Redi-flow I	1				
076	5 <i>\$</i>		1576		i unip Ore						

January 2006 Monitoring

SHL-3

		Fie	eld Data She	eets for Lo	w Flow G	round Wate	er Sampl	ing		
Sample Sou Weather Co	nditions Cle	(oppm)	Condition 900		Project Numb Date: 1_/	9 <u>106 -</u>	1/20/06	•		
Well Depth	35	(FT.)	VV-4-31	Stabilization I	-	Flow I		Water Level Time Purging) begins (T _o):_ at time T _{o:}) ends: (T ₁) at time T _{1:}	
Time	Volume Removed	рН +/-0.1	+/- 3%	TEMP.(C) + / - 0.2 or 3%	Redox (mV) + / - 10 mV	Water level (Ft) < 0.3 ft	D.O. (mg/L) + / - 10%	Turbidity (NTU) < 5 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
419/06	- Water	tab	le too de	ep for	pcris	staltic f	mp			
1/21/06		1	to pum			and the second sec	Flow) E ,	well	kept
1008	5621	6.17		11.58	309			109		
	Collecte		pled aft mitted	er 2	5 VS	<u>remove</u>	way bu	t sau	nple	
				SAMPLING						
Date: / / /	015		Analysis:	NE		Diameter (inch)	Gallon / Foot 0.040	* delta w.t. (ft)	= volum	e lost (gallons)
ield Filteri	and the second sec		140			1.5	0.091			nandt ferant ini-
	lethodology:		mpling			2	0.163			
_aboratory:	: Method of S	hipment:				4	0.652		1gallo	n = 3.78 liters

Field Team	284350.OM.0		windy		-	Sampling Even Date Pag	0 1/19/06	.
	ple Number S ^{Water} 9, 69 g Bottom	TOC 2 2			We	t Time 1130 steel Casing	-	
Depth ft below TOC	Time	pН	Conductivity mS/cm	Turbidit NTU		Diss. Oxygen mg/L	Temp. °C	Eh / ORP mv
	1				-			
		~						
			<					
	Cardina - Cardana							
				1				
					1	-		
						1		
				-			×	
		-4						
eopump	Start C 113 Ded: Pump Othe	er	Split Sam Duplicate	Sample ID	-	Purge Rate	Split Time Dupl. Time (gpm)/(mLpm)	0.SLPr
-	Ded. Pump Othe	er	Duplicate	Sample ID	Pm	Contraction of the local data	Dupl. Time	0.5LPr Eh/ORP mv
low Cell:	Ded: Pump Othe N Vol. Purged gallons / liters 0,5 12 L	pH 5,36	Duplicate	Sample ID	PM IV	Purge Rate	Dupl. Time (gpm)/(mLpm) Temp.	Eh / ORP mv
low Cell: (Time	Ded. Pump Other Y N Vol. Purged gallons / liters Or5 12L D102 29	pH 5,36	Duplicate	Sample ID	PM IV	Purge Rate Diss. Oxygen mg/L	Dupl. Time (gpm)/(mLpm)(Temp. °C 10.55	Eh/ORP mv 326.8
low Cell:	Ded. Pump Other Vol. Purged gallons / liters 0.5 12 L 0.5 12 L 18.5L	PH DH 5,36 121 (3) 5,72	Duplicate	Sample ID	PM IV	Purge Rate	Dupl. Time (gpm)/(mLpm) Temp. °C	Eh / ORP mv
low Cell: (Time	Ded. Pump Other Y N Vol. Purged gallons / liters 0.5 0.5 0.5 12.6 0.75 <td>Min. Pu pH 5,36 ;71 cost 5,72 2 1,71 5,69</td> <td>Duplicate</td> <td>Sample ID</td> <td>PM IV</td> <td>Purge Rate Diss. Oxygen mg/L</td> <td>Dupl. Time (gpm)/(mLpm)(Temp. °C 10.55</td> <td>Eh/ORP mv 326.8</td>	Min. Pu pH 5,36 ;71 cost 5,72 2 1,71 5,69	Duplicate	Sample ID	PM IV	Purge Rate Diss. Oxygen mg/L	Dupl. Time (gpm)/(mLpm)(Temp. °C 10.55	Eh/ORP mv 326.8
low Cell: (Time 12.67	Ded. Pump Othe N Vol. Purged gallons / liters Or5 12L D10 c 9 18.5L DTW	PH PH 5,36 71 Cost 5,72 2,72 2,72 2,72 1,71 5,69 1,71	Duplicate rge Volume (gal)/(L) Conductivity mS/cm .035 .035 .036	Sample ID 0.5 L Turbidit NTU NA (d NA NA NA	PM IV	Purge Rate Diss. Oxygen mg/L 4,15 4,15 4,66	Dupl. Time (gpm)/(mLpm) Temp. °C 10.35	Eh/ORP mv 326,8 387
low Cell: (Time 12.67 12.12	Ded. Pump Other Y N Vol. Purged gallons / liters 0.5 0.5 0.5 12.6 0.75 <td>PH PH 5,36 1,1 Cost 5,72 2,72</td> <td>Duplicate rge Volume (gal)/(L) Conductivity mS/cm .035 .035 .035 .035 .035 .035</td> <td>Sample ID 0.5 L Turbidi NTU NA (Cl NA NA NA NA</td> <td>PM IV</td> <td>Purge Rate Diss. Oxygen mg/L 4,15 4,15 4,66 4,66 4,29</td> <td>Dupl. Time (gpm)/(mLpm) Temp. °c 10.55 10.39 10.91</td> <td>Eh/ORP mv 326.8 387 405.3 417.5</td>	PH PH 5,36 1,1 Cost 5,72 2,72	Duplicate rge Volume (gal)/(L) Conductivity mS/cm .035 .035 .035 .035 .035 .035	Sample ID 0.5 L Turbidi NTU NA (Cl NA NA NA NA	PM IV	Purge Rate Diss. Oxygen mg/L 4,15 4,15 4,66 4,66 4,29	Dupl. Time (gpm)/(mLpm) Temp. °c 10.55 10.39 10.91	Eh/ORP mv 326.8 387 405.3 417.5
low Cell: (Time 1267 1212	Ded. Pump Othe N Vol. Purged gallons / liters Or5 /2.L DTU c 9 18.SL DTW = DTW =	PH PH 5,36 71 (2) 5,42 2,72 2,72 2,71 5,68 2,71 5,68 2,71 5,68 2,71 5,68 2,71 5,83	Duplicate rge Volume (gal)/(L) Conductivity mS/cm .035 .035 .036	Sample ID 0.5 L Turbidit NTU NA (d NA NA NA	PM IV	Purge Rate Diss. Oxygen mg/L 4,15 4,15 4,66	Dupl. Time (gpm)/(mLpm)_(Temp. °c 10.55 10.39 10.91	Eh/ORP my 326.8
low Cell: (Time 1267 1212 1218	Ded. Pump Othe N Vol. Purged gallons / liters Or5 /2.L DTU c 9 18.SL DTW = DTW =	PH PH 5,36 1,1 Cost 5,72 2,72	Duplicate rge Volume (gal)/(L) Conductivity mS/cm .035 .035 .035 .035 .035 .035	Sample ID 0.5 L Turbidi NTU NA (Cl NA NA NA NA	PM IV	Purge Rate Diss. Oxygen mg/L 4,15 4,15 4,66 4,66 4,29	Dupl. Time (gpm)/(mLpm) Temp. °c 10.55 10.39 10.91	Eh/ORP mv 326,8 387 405,3 417,5
low Cell: (Time 12.67 12.12	Ded. Pump Othe N Vol. Purged gallons / liters Or5 12 L DTU c 9 18.SL DTU c DTW 22 L DTW 23 L DTW 24 L DTW	Min. Pu pH 5,36 171 (2) 5,42 2,72 2,72 2,71 5,68 2,71 5,68 2,71 5,68 2,71 5,68 2,71 5,83 2,9,71 5,83 2,9,71 5,83	Duplicate rge Volume (gal)/(L) Conductivity mS/cm .035 .035 .035 .035 .035 .035 .035 .035	Sample ID 0.5 L Turbidi NTU NA (d) NA NA NA NA NA NA NA NA NA NA	PM IV Car,	Purge Rate Diss. Oxygen mg/L 4,15 4,80 4,66 4,66 4,39 5,98	Dupl. Time (gpm)/(mLpm)(Temp. °c 10.55 10.39 10.39 10.91 10.80 10.85	Eh/ORP mv 326.8 387 405.3 417.5 411.4 411.4
eopump low Cell: (Time 1267 1212 1218 1218 1218 1235 233	Ded. Pump Othe N Vol. Purged gallons / liters Or5 /2.L DTW = 0 DTW =	Min. Pu pH 5,36 171 (2) 5,42 2,72 2,72 2,71 5,68 2,71 5,68 2,71 5,68 2,71 5,68 2,71 5,83 2,9,71 5,83 2,9,71 5,83	Duplicate rge Volume (gal)/(L) Conductivity mS/cm .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035	Sample ID 0.5 L Turbidi NTU NA (d) NA NA NA NA NA NA NA NA NA NA	PM IV Car,	Purge Rate Diss. Oxygen mg/L 4,15 4,15 4,66 4,66 4,66 4,39 5,98 5,28	Dupl. Time (gpm)/(mLpm)(Temp. °c 10.55 10.39 10.39 10.91 10.80 10.85	Eh/ORP mv 326,8 387 405,3 417,5 4117,5 411,4

Field Team	Shepley's Hill 284350.OM.C TB3CC Clear 4	02			Sampling Event Date Page	1/20/01	GW
	nple Number			Sto	art Time_&AM		
nitial Depth to	Water 1, 40		N	and the second se	Steel Casing		
	g Lock Or				1		
Depth ft below TOC	Time	pH	Conductivity ms/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Eh / ORP mv
>							
				_			
						1	
							1
Remarks: Purge Method:	Army Co- LDO X 1.0 Start Q	and the second se	Split Sam	ole ID 0	anaerobic 12006-5410	5 Split Time	
Purge Method:	All the second sec	ar 0808	Split Sam Duplicate	ole ID 0 Sample ID	12006-5410	5 Split Time	0450
Purge Method:	Starte Ded. Pump Othe	ar 0808	Split Sam	ole ID 0 Sample ID	12006-5410	5 Split Time	0450
Purge Method:	Start C Ded. Pump Othe DIN Vol. Purged gallons / liters	0 80 2 er Min. Pu pH	Split Sam Duplicate	Die ID 0 -Sample ID 0 -Sample ID 0 -Sample ID 0 	Purge Rate (c Diss. Oxygen mg/L	5 Split Time Dupl, Time gpm)/(mLprn) (Temp, °C 4,13	0450 .3LPI Eh/ORP mv
Purge Method: Seopump Tow Cell:	Start C Ded. Pump Othe)/N Vol. Purged gallons / liters 3L DTW = 1.9	0808 Min. Pu pH 5.38 6 (41	Split Sam Duplicate rae Volume (gal)/(L) Conductivity mS/cm 5	Die ID 0 -Sample ID 0 -Sample ID 0 -Sample ID 0 	Purge Rate (g Diss. Oxygen mg/L	5 Split Time Dupl, Time gpm)/(mLprn) C Temp. °C	0450 .3LPI Eh/ORP mV
low Cell: Time	Start C Ded. Pump Othe Dr. N Vol. Purged gallons / liters 3L DTW = 1.9 AL DTW = 1.9 AL	080 ar Min. Pu pH 5.38 6.41 8 5.2 (a)	Split Sam Duplicate ray Volume (gal)/(L) Conductivity mS/cm C = 0.3 L 0. 28 074	Die ID 0 Sample ID	Purge Rate (c Diss. Oxygen mg/L 1.17 0.93	5 Split Time Dupl, Time gpm)/(mLprn) (Temp, °C 4,13	0450 0.3LPI Eh/ORP mv 431 424.1
urge Method: eopump low Cell: Time 0819 0830 0839	Start Q Ded. Pump Other P/N Vol. Purged gallons / liters 3L DTW = 1.9 4L DTW = 1.9 4L DTW = 1.9 4L DTW = 1.9	080 ar Min. Pu pH 5,38 6,41 8 5,26 5,26	Split Sam Duplicate rae Volume (pai)/(L) Conductivity mS/cm 0.0741 c = 0.3 L 0.078 0.078	Die ID 0 Sample ID	Purge Rate (c Diss. Oxygen mg/L 1.17 0.93	5 Split Time Dupl, Time gpm)/(mLpm) (Temp. °C 4,13 4.19 4.21	0450 .3LPI Eh/ORP mv 431 424.1 424.1 424.3
Purge Method: Beopump Now Cell: Time 0819 0839 0839 0839	Start e Ded. Pump Other)/N Vol. Purged gallons / liters 3L DTW = 1.9 4L DTW = 1.9	080 ar Min. Pu pH 5.38 6 7.41 8 5.20 5.20 F 11.98	Split Sam Duplicate ray Volume (gat)/(L) Conductivity mS/cm 0.0741 0.078 0.078 . 41car 0.080	Die ID 0 Sample ID	Purge Rate (c Diss. Oxygen mg/L 1.17 0.93 0.75 0.35 LPM 0.68	5 Split Time Dupl, Time gpm)/(mLprn) (Temp. °c 4,13 4,19 4,21 4,21 4,20	0450 .3LPI Eh/ORP mv 431 424.1 424.1 424.1 424.1 424.3 428.
Purge Method: Beopump Now Cell: Time 0819 0839 0839 0839	Start C Ded. Pump Other D/N Vol. Purged gallons / liters 3L DTW = 1.9 4L DTW = 1.9 4L DTW = 1.9 4L DTW 13.5 DTW 13.5 DTW	080 min. Pu pH 5.38 7.41 8 5.20 = 11.98 5.20	Split Sam Duplicate Tap Yolume (act)/(1) Conductivity ms/cm/3 0.07-1 e = 0.3 L 0.07-1 0.07-8 0.07-8 0.07-8 0.07-8 0.05-80 0.05-04	Die ID 0 Sample ID	Purge Rate (c Diss. Oxygen mg/L 1.17 0.93	5 Split Time Dupl, Time gpm)/(mLpm) (Temp. °C 4,13 4.19 4.21	0450 .3LP Eh/ORP mv 431 424.1 424.1 424.1 428. 428.
Purge Method: Seopump Flow Cell: (Time 08/9	Start Q Ded. Pump Other D / N Vol. Purged gallons / liters 3L DTW = 1.9 4L DTW = 1.9 4L 4L DTW = 1.9 4L 4L DTW = 1.9 4L 4L 2L DTW = 1.9 4L 2L	080 min. Pu pH 5.38 9.41 8 5.20 - 1.98 5.20 - 1.98 5.20 1.98 5.20 1.98 5.20 1.98 5.20	Split Sam Duplicate Tap Yolume (gat)/(L) Conductivity mS/cm ¹⁵ 0.0741 c = 0.3 L 0.124.014 0.078 . 4 Icor 0.080 0.193.09 3.2 0.4 L	Die ID 0 Sample ID	Purge Rate (c Diss. Oxygen mg/L 1.17 0.93 0.75 0.35 LPM 0.68 0.62	5 Split Time Dupl, Time gpm)/(mLprn) (Temp. °c 4,13 4,19 4,21 4,21 4,20	0450 .3LPI Eh/ORP mv 431 424.1 424.1 424.1 424.1 424.2 428. 428. 426.2
Purge Method: Seopump Now Cell: (Time 0819	Start Q Ded. Pump Other D / N Vol. Purged gallons / liters 3L DTW = 1.9 4L DTW = 1.9 4L 4L DTW = 1.9 4L 4L DTW = 1.9 4L 4L 2L DTW = 1.9 4L 2L	080 Min. Pu pH 5.38 6.41 8 5.20 5.20 - 1.98 5.20 - 1.98 5.20 - 1.98 5.20 - 1.98 5.20 - 1.98 5.20	Split Sam Duplicate Tap Yolume (act)/(1) Conductivity ms/cm/3 0.07-1 e = 0.3 L 0.07-1 0.07-8 0.07-8 0.07-8 0.07-8 0.05-80 0.05-04	Die ID 0 Sample ID 0 Sample ID 0 Surbidity NTU 6.08 Pm 5.17 5.18 5.17 5.18 5.17 5.18 5.17 5.18 5.17 0 2.65 PM	Purge Rate (c Diss. Oxygen mg/L 1.17 0.93 0.75 0.35 LPM 0.68	5 Split Time Dupl, Time gpm)/(mLpm) (Temp. °C 4,13 4.19 4.21 4,21 4,21 4,21 4,21 4,21	0450 .3LP/ Eh/ORP mv
Purge Method: Seopump Now Cell: (Time 08/9 08/9 08/9 08/9 08/9 08/9 08/9	Start Q Ded. Pump Other D / N Vol. Purged gallons / liters 3L DTW = 1.9 4L DTW = 1.9 4L 4L DTW = 1.9 4L 4L DTW = 1.9 4L 4L 2L DTW = 1.9 4L 2L	080 min. Pu pH 5.38 9.41 8 5.20 - 1.98 5.20 - 1.98 5.20 1.98 5.20 1.98 5.20 1.98 5.20	Split Sam Duplicate Tag Volume (gal)/(L) Conductivity mS/cm 0.0741 c = 0.3 L 0.078 . 4 Icar 0.078 . 4 Icar 0.078 . 4 Icar 0.080	Die ID 0 Sample ID 0 Sample ID 0 Surbidity NTU 6.08 Pm 5.17 5.18 5.17 5.18 5.17 5.18 5.17 5.18 5.17 0 2.65 PM	Purge Rate (c Diss. Oxygen mg/L 1.17 0.93 0.75 0.35 LPM 0.68 0.62 0.65	5 Split Time Dupi, Time gpm)/(mLpm) (Temp. °c 4,13 4.19 4,20 4,19 4,20	0450 .3LPI Eh/ORP mv 431 424.1 424.1 424.2 425.2
Purge Method: Seopump Flow Cell: (Time 08/9	Start Q Ded. Pump Other D / N Vol. Purged gallons / liters 3L DTW = 1.9 4L DTW = 1.9 4L 4L DTW = 1.9 4L 4L DTW = 1.9 4L 4L 2L DTW = 1.9 4L 2L	080 min. Pu pH 5.38 9.41 8 5.20 - 1.98 5.20 - 1.98 5.20 1.98 5.20 1.98 5.20 1.98 5.20	Split Sam Duplicate Tag Volume (gal)/(L) Conductivity mS/cm 0.0741 c = 0.3 L 0.078 . 4 Icar 0.078 . 4 Icar 0.078 . 4 Icar 0.080	Die ID 0 Sample ID 0 Sample ID 0 Surbidity NTU 6.08 Pm 5.17 5.18 5.17 5.18 5.17 5.18 5.17 5.18 5.17 0 2.65 PM	Purge Rate (c Diss. Oxygen mg/L 1.17 0.93 0.75 0.35 LPM 0.68 0.62 0.65	5 Split Time Dupi, Time gpm)/(mLpm) (Temp. °c 4,13 4.19 4,20 4,19 4,20	0450 .3LPI Eh/ORP mv 431 424.1 424.1 424.2 425.2
Purge Method: Seopump Now Cell: (Time 08/9 08/9 08/9 08/9 08/9 08/9 08/9	Start Q Ded. Pump Other D / N Vol. Purged gallons / liters 3L DTW = 1.9 4L DTW = 1.9 4L 4L DTW = 1.9 4L 4L DTW = 1.9 4L 4L 2L DTW = 1.9 4L 2L	080 min. Pu pH 5.38 9.41 8 5.20 - 1.98 5.20 - 1.98 5.20 1.98 5.20 1.98 5.20 1.98 5.20	Split Sam Duplicate Tag Volume (gal)/(L) Conductivity mS/cm 0.0741 c = 0.3 L 0.078 . 4 Icar 0.078 . 4 Icar 0.078 . 4 Icar 0.080	Die ID 0 Sample ID 0 Sample ID 0 Surbidity NTU 6.08 Pm 5.17 5.18 5.17 5.18 5.17 5.18 5.17 5.18 5.17 0 2.65 PM	Purge Rate (c Diss. Oxygen mg/L 1.17 0.93 0.75 0.35 LPM 0.68 0.62 0.65	5 Split Time Dupi, Time gpm)/(mLpm) (Temp. °c 4,13 4.19 4,20 4,19 4,20	0450 .3LPI Eh/ORP mv 431 424.1 424.1 424.2 425.2
Purge Method: Seopump Now Cell: (Time 08/9 0839 0839 0843 0843	Start Q Ded. Pump Other D / N Vol. Purged gallons / liters 3L DTW = 1.9 4L DTW = 1.9 4L 4L DTW = 1.9 4L 4L DTW = 1.9 4L 4L 2L DTW = 1.9 4L 2L	080 min. Pu pH 5.38 9.41 8 5.20 - 1.98 5.20 - 1.98 5.20 1.98 5.20 1.98 5.20 1.98 5.20	Split Sam Duplicate Tag Volume (gal)/(L) Conductivity mS/cm 0.0741 c = 0.3 L 0.078 . 4 Icar 0.078 . 4 Icar 0.078 . 4 Icar 0.080	Die ID 0 Sample ID 0 Sample ID 0 Surbidity NTU 6.08 Pm 5.17 5.18 5.17 5.18 5.17 5.18 5.17 5.18 5.17 0 2.65 PM	Purge Rate (c Diss. Oxygen mg/L 1.17 0.93 0.75 0.35 LPM 0.68 0.62 0.65	5 Split Time Dupi, Time gpm)/(mLpm) (Temp. °c 4,13 4.19 4,20 4,19 4,20	0450 .3LPI Eh/ORP mv 431 424.1 424.1 424.2 425.2

Veather Cor PID	iditions	picy pocation) <u>51</u> (ppm) (0	ld Data She	ĸ		round Wat _{er:}		ling		
Static Water	79' A65 Level 5.98	7 (FT.) TOL (FT.)	Datum	Stabilization I 4'' PVC Peristaltic Pur				Water Level Time Purging	g begins (T_o) : at time T_o : g ends: (T_1) at time T_1 :	7823
Time	Volume Removed	<u>р</u> Н +/-0.1	SPCOND(mS/cm) + / - 3%	TEMP.(C) + / - 0.2 or 3%	Redox (mV) + / - 10 mV	Water level (Ft) < 0.3 ft	D.O. (mg/L) + / - 10%	Turbidity (NTU) < 5 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
0911	82	C.24	0.777	8.64	205.5	3.35*	0,22	15.8	0.45	clear
0926	15	6.47	0.784	8.75	-58.5	3 34	0.16	2.35	0.45	clear
0932	17.5	6.47	0.786	8.71	-70.7	3.35	0.14	1.92	0.45	1
0940	20	6.48	17386	8.66	-79.2	3.35	6.14	1.33	0.45	
0948	23	6.48	0.780	8.55	- 85.4	3.35	0,15	1.46	0.4	4
0952	25	6.49		8.55	- 85.9	3.35	0.15	1.39	0.4	4
				¥				L.	attery	?)
Date: 1 / 5	20/06	<u> </u>	Analysis:	SAMPLING		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	- volum	e lost (gallons)
Time:	951		006 - SP	1m-96	-56	1	0.040		- roiun	a roor (Respond)
Field Filterin Sampling Mo aboratory: Remarks:	ethodology: Method of S	Low Flow Sam		ple time =095	ID	1.5 2 4	0.091 0.163 0.652]	1gallo/	n = 3.78 liters

		Fie	ld Data She	ets for Lo	w Flow G	round Wat	er Sampl	ing		
ID NI	e: Shepi ce (Well No./Lo nditions	(ppm)	P HM-96-5 UOIF Condition Cte		Project Numb	aci 264	350			
/ell Depth _ tatic Water	273'B6	5 (FT.)	Datum	Stabilization				Water Level Time Purging) begins (T _o):, at time T _{o:}) ends: (T ₁) _ at time T _{1:}	025
Time	Volume Removed	рН +/-0.1	ercond(mS/cm)	TEMP.(C) + / - 0.2 or 3%	Redox (mV) + / - 10 mV	Water level (Ft) < 0.3 ft	D,O. (mg/L) + / - 10%	Turbidity (NTU) < 5 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
1003	136	6.59	0.509	8.66	-85.5	4.11	0.54	0.6	0.4	Clear
012	16L	6.54	0.503	8.77	-81.3	4.11	0.26	0.43	0.4	Clear
1016	1.8L	6.54	0.502	8,74	-81.4	4.11	0.24	0.62	1/	clear
1022	all	6.53	0.503	8.82	-82.1	4.11	0.22	0.59	0.4	Clear
					•		1.20	* •		
1										
			<u> </u>	SAMPLING						
ate: 1 / 3 ime: 102	0/06	Tr	Analysis:	-SUMA-	or the	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= volun	ne lost (gallons)
ield Filterin	g:			- odv	16 10	1.5	0.040			
ampling M	thodology: 1	ow Flow San	<i>Courier</i>			2	0.163			

ld Condition	284350.0M n T.B 7 Cl is clcar 50)°⊏			Sampling Event Date Page	1/20/0	&
	mple Number 🛃 o Water 🛛 G , 7 ng	12."		Neasure Point: we		Them	4
Depth ft below TOC	Time	pH	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Eh / ORP mv
				-/	[
						4	_
						in the second second	
		1					
		· ·					_
urge Method:	-welded) Shrat	Split Sam		tole had		1515
éopump	Begin Pum Ded. Pump Ott	per400	Split Sam Duplicate	ple ID Sample ID	2006 - 544	9 Split Time Dupl. Time	X
éopump	- Weided Begin pum	per400	Split Sam	ple ID Sample ID	2006 - 544	9 Split Time Dupl. Time	X O.YLP
ow Cell:	Begin Pum Ded. Pump Oth Vol. Purged gallons / liters Ded.) <u>Shuit</u> p <u>e</u> 1400 her Міп. Ри рН	Split Sam Duplicate Irge Volume (gal)/(L) Conductivity mS/cm	ple ID Sample ID O.4 LP Turbidity NTU 3.10	ZOOG - SHLO X M Purge Rate (Diss. Oxygen	Split Time Dupl. Time gpm)/(mLpm) Temp.	
eopump ow Cell: Time	With Occ Begin pum Ded. Pump Oth Wol. Purged gollons / liters Dest CG4c = 0	ре1400 her Міп. Ри рН С. 20 .4 с. 20 .4 с. 20 .4 с. 20	Split Sam Duplicate urge Volume (gal)/(L) Conductivity mS/cm	ple ID Sample ID O.4 LPI Turbidity NTU 3.10 7.22 3.89	Purge Rate (Diss. Oxygen mg/L	gpm)/(mLpm)_ Temp. °C	
eopump ow Cell: Time 1991	With Good Begin pum Ded. Pump Oth Wol. Purged gollons / liters Begin pum CG+L = 0	ре1400 her Міп. Ри рН С. 20 .4 с. 20 .4 с. 20 .4 с. 20	Split Sam Duplicate urge Volume (gal)/(L) Conductivity mS/cm	ple ID Sample ID O.4 LP Turbidity NTU 3.10 7.22	Purge Rate (Diss. Oxygen mg/L & 0.7D	9 Split Time Dupl, Time gpm)/(mLpm) Temp. °c 9.13 9.04	X 0.4LP Eh/ORP mv - 102.2
eopump low Cell: Time 1991 451	United States	P C 1400 her Min. Pu pH C. 20 .4 .4 .4 .5 .76 .5 .82	Split Sam Duplicate urge Volume (gal)/(L) Conductivity mS/cm ./09 	ple ID Sample ID 0.4 LP Turbidity NTU 3.10 7.22 3.39 0.4 LPM 3.49	2006 - 5H4 M Purge Rate (Diss. Oxygen mg/L 2.0.20 0.53 0.47	9 Split Time Dupl. Time gpm)/(mLpm) Temp. °c 9.13 9.04 9.06	X 0.4LP Eh/ORP mv - 102.2 - 31.6 - 31.4
eopump ow Cell: Time 1991 451 456	- WCICCC Begin Pum Ded. Pump Oth Oth Vol. Purged gallons / liters 25 L CG4C = 0 29 L BTC> = 31 L 33 L	Min. Pu pH G. 20 94 5.76 5.82 5.82	Split Sam Duplicate urge Volume (gal)/(L) Conductivity mS/cm ./09 	ple ID Sample ID 0.4 LPI Turbidity NTU 3.10 7.22 3.89 0.4 LPM 3.49 3.49 3.40	2006 - 5H4 M Purge Rate (Diss. Oxygen mg/L 2 0. 53 0. 47 0. 48	P Split Time Dupl. Time gpm)/(mLpm) Temp. °C 9.13 9.04 9.06 9.000	X <u>0.4</u> LP Eh/ORP my - 102.2 - 31.6 - 31.4 - 27.4
low Cell:	- WCIGCO Begin Pum Ded. Pump Oth Ded. Pump Oth Wol. Purged gollons / liters 25 L CG+1 = 0 29 L 31 L 33 L 33 L 36 L	P C 1400 her Min. Pu pH C. 20 .4 .4 .4 .5 .76 .5 .82	Split Sam Duplicate urge Volume (gal)/(L) Conductivity mS/cm ./09 	ple ID Sample ID 0.4 LPI Turbidity NTU 3.10 7.22 3.89 0.4 LPM 3.49 3.49 3.40	2006 - 5H4 M Purge Rate (Diss. Oxygen mg/L 2.0.20 0.53 0.47	9 Split Time Dupl. Time gpm)/(mLpm) Temp. °c 9.13 9.04 9.06	X 0. 4 LP Eh/ORP mv - 102.2 - 31.6 - 31.4
eopump ow Cell: Time 1991 451 456	- WCIGCO Begin Pum Ded. Pump Oth Ded. Pump Oth Wol. Purged gollons / liters 25 L CG+1 = 0 29 L 31 L 33 L 33 L 36 L	Min. Pc P C 1400 her Min. Pc PH C. 20 S. 32 S. 32 S. 32 S. 32 S. 32 S. 32	Split Sam Duplicate Irge Volume (gal)/(L) Conductivity mS/cm ./09 	ple ID Sample ID 0.4 LPI Turbidity NTU 3.10 7.22 3.89 0.4 LPM 3.49 3.49 3.40	2006 - 5H4 M Purge Rate (Diss. Oxygen mg/L 2 0. 53 0. 47 0. 48	P Split Time Dupl. Time gpm)/(mLpm) Temp. °C 9.13 9.04 9.06 9.000	X <u>0.4</u> LP Eh/ORP my - 102.2 - 31.6 - 31.4 - 27.4
eopump low Cell: Time 1991 451 456	- WCIGCO Begin Pum Ded. Pump Oth Ded. Pump Oth Wol. Purged gollons / liters 25 L CG+1 = 0 29 L 31 L 33 L 33 L 36 L	Min. Pc P C 1400 her Min. Pc PH C. 20 S. 32 S. 32 S. 32 S. 32 S. 32 S. 32	Split Sam Duplicate urge Volume (gal)/(L) Conductivity mS/cm ./09 	ple ID Sample ID 0.4 LPI Turbidity NTU 3.10 7.22 3.89 0.4 LPM 3.49 3.49 3.40	2006 - 5H4 M Purge Rate (Diss. Oxygen mg/L 2 0. 53 0. 47 0. 48	P Split Time Dupl. Time gpm)/(mLpm) Temp. °C 9.13 9.04 9.06 9.000	X <u>0.4</u> LP Eh/ORP my - 102.2 - 31.6 - 31.4 - 27.4
eopump low Cell: Time 1991 451 455	- WCIGCO Begin Pum Ded. Pump Oth Ded. Pump Oth Wol. Purged gollons / liters 25 L CG+1 = 0 29 L 31 L 33 L 33 L 36 L	Min. Pc P C 1400 her Min. Pc PH C. 20 S. 32 S. 32 S. 32 S. 32 S. 32 S. 32	Split Sam Duplicate urge Volume (gal)/(L) Conductivity mS/cm ./09 	ple ID Sample ID 0.4 LPI Turbidity NTU 3.10 7.22 3.89 0.4 LPM 3.49 3.49 3.40	2006 - 5H4 M Purge Rate (Diss. Oxygen mg/L 2 0. 53 0. 47 0. 48	P Split Time Dupl. Time gpm)/(mLpm) Temp. °C 9.13 9.04 9.06 9.000	X <u>0.4</u> LP Eh/ORP my - 102.2 - 31.6 - 31.4 - 27.4
eopump low Cell: Time 1991 451 455	- WCIGCO Begin Pum Ded. Pump Oth Ded. Pump Oth Wol. Purged gollons / liters 25 L CG+1 = 0 29 L 31 L 33 L 33 L 36 L	Min. Pc Pe1400 her Min. Pc PH G. 20 S. 76 S. 76 S. 76 S. 76 S. 76 S. 78 S.	Split Sam Duplicate urge Volume (gal)/(L) Conductivity mS/cm ./09 	ple ID Sample ID 0.4 LPI Turbidity NTU 3.10 7.22 3.89 0.4 LPM 3.49 3.49 3.40	2006 - 5H4 M Purge Rate (Diss. Oxygen mg/L 2 0. 53 0. 47 0. 48	P Split Time Dupl. Time gpm)/(mLpm) Temp. °C 9.13 9.04 9.06 9.000	X <u>0.4</u> LP Eh/ORP my - 102.2 - 31.6 - 31.4 - 27.4
eopump low Cell: Time 1991 451 451 505	- WCIGCO Begin Pum Ded. Pump Oth Ded. Pump Oth Wol. Purged gollons / liters 25 L CG+1 = 0 29 L BEC = 31 L 33 L 36 L	P C 1400 her Min. Pu PH C 20 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4	Split Sam Duplicate Irge Volume (gal)/(L) Conductivity mS/cm .107 .107 .107 .107 .107 .107	ple ID Sample ID 0.4 LPI Turbidity NTU 3.10 7.22 3.89 0.4 LPM 3.49 3.49 3.49 3.49	2006 - 5H4 M Purge Rate (Diss. Oxygen mg/L 2.0.70 0.53 0.47 0.48 0.45	Split Time Dupl. Time gpm)/(mLpm) Temp. °c 9.13 9.00 9.00	X <u>0.4</u> LP Eh/ORP mv - 102.2 - 31.6 - 31.9 - 27.4 - 23.4
eopump low Cell: Time 1991 451 451 505	- WCICCC Begin Pum Ded. Pump Oth Ded. Pump Oth Vol. Purged gallons / liters 25 L 7641 = 0 29 L 9702 = 31 L 33 L 33 L 33 L	P C 1400 her Min. Pu PH C 20 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4	Split Sam Duplicate Irge Volume (gal)/(L) Conductivity mS/cm .107 .107 .107 .107 .107 .107	ple ID Sample ID 0.4 LPI Turbidity NTU 3.10 7.22 3.89 0.4 LPM 3.49 3.49 3.49 3.49	2006 - 5H4 M Purge Rate (Diss. Oxygen mg/L 2.0.70 0.53 0.47 0.48 0.45	Split Time Dupl. Time gpm)/(mLpm) Temp. °c 9.13 9.00 9.00	X <u>0.4</u> LP Eh/ORP mv - 102.2 - 31.6 - 31.4 - 27.4 - 23.4

Sample Soul Neather Cor PID	e: Shep rce (Well No./L nditions m	ley L ocation) S	Id Data She F HL - 10 Gondition		Project Numb Date:/_		er Sampl	ing			
Well Depth _ Static Water	39'ß	64 19FT.)	Datum	Stabilization Stabilization Stabilization Stabilization Stabilization Stabilization	1	i Flow I		Water Level Time Purgin	g begins (T _o): at time T _o : g ends: (T ₁) _ at time T _{1:}	30,64	
Time	Volume Removed	рН +/-0.1	*/- 3%	TEMP.(C) + / - 0.2 or 3%	Redox (mV) + / - 10 mV	Water level (Ft) < 0.3 ft	D.O. (mg/L)	Turbidity (NTU) < 5 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance	
1150	Count	set W		a: Stop	ped Dun	apigd rop	ed pur	no 1'	5	-]
	sot	w.Q	readin		<u> </u>	30.70	- <u>P</u>	7			
1210	Connec	ted FI	ow Cell								
1212	47	7.29	1	13.87	206.2	×	11.92(1)	1.70	0.6	Clear	12
1219	52	6.21	,033	14.22	329.9	*	11.78 ?	0.99	0.6	1.	
1224	54	6.08	,032	13.94	355.5	*	11,98?	0.59	11	Clear	120
1227	56	6.03	.034	13.65	3692	X	1208?		0.6	clean	
1230	58	6.02	.033	13.64 SAMPLING	367.2	*	12,18?	0,17	11	14	iac
Date:/	1		Analysis:	CANILLING		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= volur	ne lost (gallons)	
Time: Field Filterir						1	0.040				-
	ethodology:	Low Flow Con		>		1.5	0.091				-
	Method of S		SEC SEC	-		2	0.163		Institu	on = 3.78 liters	1

ID ISA (ppm) Condition GOOD NO LOCA					
ample Team TB / DR (ppm) Condition _ 9000 NO 10CK Well Stabilization Data					
ell Depth (FT.) Datum		Time Purging			
atic Water Level 30.64 (FT.) Diameter : 4" Steel		Water Level a Time Purging			
ater Column(FT.) Purge Method: Peristaltic Pump		Water Level a			
Volume	1	Turbidity	Purge rate	1	
Time Removed pH SPCOND(mS/cm) TEMP.(C) Redox (mV) Water level (Ft)	D.O. (mg/L.)	(NTU)	(Lpm) 0.3 to	Appearance	
+/-0.1 +/-3% +/-0.2 or 3% +/-10 mV <0.3 ft	+/- 10%	< 5 NTU	0.5LPM		
233 60 6.03 .032 13.66 369.8 * 1	12.27?	0.11	0.6	Clear	
	12.31?	0,13	0.6		1287
240 (After)					
Putropping 30.72					
600 Pumped 10 min e 0.6 LPM (128,2)	1.5				
	G.71				
te: / 25/06 Analysis: TD = 61250(- 64/ - 10 Diameter (inch)	Gallon / Foot	* dollar			
12: 1350	0.040	* delta w.t. (ft)	= voiun	ne lost (gallons)	C. Frederic
Id Filtering: NO VOCS, Metals, ICA 15	0.091				
npling Methodology: Low Flow Sampling L	0.163				
narks: Alpha courier	0.652		Igalic	on = 3.78 liters	

>/

		Fie	Id Data She	ets for Lo	w Flow G	iround Wat	er Samp	ling	200 - 21.	
Sample Sou Weather Co	e: Sheple rce (Well No./Lo nditions Sno m TB / DR	cation) S	Hm -96 -10 condition goe	0F 0F 00 - ND 10		ber: 25.06				
Well Depth _ Static Water	54'865 Level 28.4	6 10 (FT.)	Datum Diameter :	-Peristaltic Pu		F1002 #		Water Level Time Purging	g begins (T _o): at time T _{o:} g ends: (T ₁) at time T _{1:}	029
Time	Volume Removed	рН +/-0.1	••PCOND(mS/cm)	TEMP.(C) + / - 0.2 or 3%	Bedox (mV) +/-10 mV	Water level (Ft) < 0.3 ft	D.O. (mg/L) +/-10%	Turbidity (NTU) < 5 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
0917						31.09			1.2	Clear
0925		7.63	6.354	11.48	257.8	31.01	0.77	15.0	1.0	1. H.
0937	ZOL		0.354	11.35	239.1	32.19	0.45		0.55	
0953	27L			anna a' mar a D		31,38				
	R.	Start	pump c	0955						
1002	30	7.55	0.358	12.05	173.8		0,67	10.34	014	cleat
1008	33	7.47	0.358	12.11	179.8	31.34	0,36	9,97	0.4	Llenr
1008	CCO	NTIA	NED)	SAMPLING					0.4	
Date:/_	1	102	Analysis:	SAMPLING		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= volun	ne lost (gallons)
Time:			and the second			1	0.040		7.21411	
Field Filterin			Spe			1.5	0.091			
sampling M	ethodology: I Method of S	ow Flow San	npling ~D	-		2 4	0.163			100 M

ample Sour	e: Sheple ree (Well No./Loo nditions <u>5NO</u>	y (F	Id Data She		Project Numb		er Sampl	ing		
/ell Depth _ tatic Water		(FT.)	Datum Diameter :	Stabilization	Data			Water Level	begins (T_o) : at time T_o of ends: (T_1) at time T_1 : 3	28.46
Time	Volume Removed	рН +/-0.1	SPEOND(mS/cm)	TEMP.(C) + / - 0.2 or 3%	*Bedox (mV) + / - 10 mV	Water level (Ft) , < 0.3 ft	D.O. (mg/L) +/-10%	Turbidity (NTU) < 5 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance
015	35L	7.43	.356	12.07	186.2	31.27	6.31	6.55	0.4	Clert
023	38L	7.42	0.359	12.14	193.0	31,34	0.29	4.07	0.4	1
029	YOL	7.40	A CONTRACTOR OF A CONTRACTOR O	12.17	191.6	31,34	0.29	4,01	0.4	Y.
1615	Pumped	For	10 min	e 13	0.0					
				12.04	228.2	in-sita	= 0.07	£X.		
_										
		-		SAMPLING						
	15/00		Analysis: Me	tals, vo	Sou, Nog	Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= volum	ne lost (gallons)
ime: ield Filterir	ig: <u>NO</u>		Har	dress,	Sou, NOR	1.5	0.040			
	ethodology:	ow Flow San	npling TS	S, E	TCN.	2	0.163			
aboratory:	Method of Sh	nipment:	All	CI, BC	Dicon	4	0.652		1gallo	n = 3.78 liters
emarks:	• •	8 5	17	2						

×

Job Number Field Team	CC/TB)2			Sampling Event Date Page	1/19/06	on sau
d Conditions	_cold, clea	r, windy	24095				-
Well/Sam	nple Number 6	HL-11		Sta	rt Time 1307		
tial Depth to	Water +1.99-	- cc 17.90	1 toc Med	asure Point: w	ell TOC Steel Casing		
ertical Profilin	q	Ratton	= 27'B65				
Depth	Time	DH	Conductivity	Turbidity	Diss. Oxygen	Temp.	Eh / ORP
ft below TOC			mS/cm	NTU	mg/L	°S	mv
-						/	
	- N			/			
		/		~			
/							
L						<u> </u>	
Remarks: irge Method:	Ded. Pump Othe			HB-Time 3		spilling of l Dupl. Time	906-SHI
irge Method:		ər	Split Sample	HB-Time 3	13:55 X		x
irge Method:	Ded. Pump Othe	ər	Split Sample _ Duplicate So	HB-Time 3			x
w Cell: Time	Ded. Pump Othe	er Min. Pu рН 6.34	Split Sample Duplicate So urge Volume (gal)/(L) Conductivity mS/cm	ample ID	13:55 X Purge Rate (g Diss. Oxygen mg/L D.66	Sp <mark>1Pine 0 1</mark> Dupl. Time 0 1 pm)/(mLpm) 0 Temp. °C (0.50	.4 LPM
ow Cell: Time	Ded. Pump Othe V/N Vol. Purged galions liters 2.0 3.5	ег Min. Pu рН 6.34 6.19	Split Sample Duplicate Se urge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541	Turbidity NTU	13:55 X Purge Rate (g Diss. Oxygen mg/L	Sp <mark>1Pine 011</mark> Dupl. Time pm)/(mLpm) Temp. °C	4 LPM Eh/ORP mv 89.0
rige Method: popump) pow Cell: Time 13:214 (3:34	Ded. Pump Othe V/ N Vol. Purged gallons litters 2.0 3.5 DTTW: 13.0	Pr Min. Pu pH 6.34 6.34 6.19 6.19	Split Sample Duplicate Se urge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L D. 66 0. 50	sp 1Po) Dupl. Time pm)/(mLpm) Temp. °C [0.50 [0.59	* .4 Lpm Eh/ORP mv 89.0 37.2
rige Method: popump pow Cell: Time 13:244 (3:34 13:42	Ded. Pump Othe VI N Vol. Purged gallons litters 2.0 3.5 DTW: 18.0 ~3.4 4.0	Min. Pu pH 6.34 6.19 6.20 6.20 6.20	Split Sample Duplicate S Junge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4L9/41 0.546 0.642	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L 0. 66 0.50 0.50 0.50 0.51	Sp <mark>1P</mark>	× .4 LPM Eh/ORP mv 89.0 37.2 29.9
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe Vol. Purged gallons litters 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5	Min. Pu pH 6.34 6.19 6.20 6.20 6.20	Split Sample Duplicate So Inge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4LPM 0.546 0.542 0.534	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L 0.66 0.50 0.50 0.50 0.51 0.51 0.59	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPN Eh/ORP mv 89.0 37.2 27.9 16.0 5.5
rige Method: popump pow Cell: Time 13:244 (3:34 13:42	Ded. Pump Othe Vol. Purged Cations differs 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5 ~4.4	Min. Pu pH 6.34 6.19 6.20 6.20 6.20 6.20 6.20	Split Sample Duplicate S Irge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4/LP/41 0.546 0.546 0.542 0.534 0.534	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L 0. 66 0.50 0.50 0.50 0.51	Sp <mark>1P</mark>	.4 LPM Eh/ORP
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe Vol. Purged gallons litters 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5	Min. Pu pH 6.34 6.19 6.20 6.20 6.20	Split Sample Duplicate So Inge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4LPM 0.546 0.542 0.534	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L 0.66 0.50 0.50 0.50 0.51 0.51 0.59	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPM Eh/ORP mv 89.0 37.2 27.9 16.0 5.5
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe Vol. Purged Cations differs 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5 ~4.4	Min. Pu pH 6.34 6.19 6.20 6.20 6.20 6.20 6.20	Split Sample Duplicate S Irge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4/LP/41 0.546 0.546 0.542 0.534 0.534	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L D. 66 0.50 0.50 0.51 0.51 0.59 0.65	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPM Eh/ORP mv 89.0 37.2 27.9 16.0 5.5
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe Vol. Purged Cations differs 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5 ~4.4	Min. Pu pH 6.34 6.19 6.20 6.20 6.20 6.20 6.20	Split Sample Duplicate S Irge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4/LP/41 0.546 0.546 0.542 0.534 0.534	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L D. 66 0.50 0.50 0.51 0.51 0.59 0.65	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPN Eh/ORP mv 89.0 37.2 27.9 16.0 5.5
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe Vol. Purged (ations) liters 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5 ~4.4	Min. Pu pH 6.34 6.19 6.20 6.20 6.20 6.20 6.20	Split Sample Duplicate S Irge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4/LP/41 0.546 0.546 0.542 0.534 0.534	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L D. 66 0.50 0.50 0.51 0.51 0.59 0.65	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPN Eh/ORP mv 89.0 37.2 27.9 16.0 5.5
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe Vol. Purged (ations) liters 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5 ~4.4	Min. Pu pH 6.34 6.19 6.20 6.20 6.20 6.20 6.20	Split Sample Duplicate S Irge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4/LP/41 0.546 0.546 0.542 0.534 0.534	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L D. 66 0.50 0.50 0.51 0.51 0.59 0.65	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPN Eh/ORP mv 89.0 37.2 27.9 16.0 5.5
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe Vol. Purged (ations) liters 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5 ~4.4	Min. Pu pH 6.34 6.19 6.20 6.20 6.20 6.20 6.20	Split Sample Duplicate S Irge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4/LP/41 0.546 0.546 0.542 0.534 0.534	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L D. 66 0.50 0.50 0.51 0.51 0.59 0.65	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPM Eh/ORP mv 89.0 37.2 27.9 16.0 5.5
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe Vol. Purged (ations) liters 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5 ~4.4	Min. Pu pH 6.34 6.19 6.20 6.20 6.20 6.20 6.20	Split Sample Duplicate S Irge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4/LP/41 0.546 0.546 0.542 0.534 0.534	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L D. 66 0.50 0.50 0.51 0.51 0.59 0.65	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPM Eh/ORP mv 89.0 37.2 27.9 16.0 5.5
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe Vol. Purged (ations) liters 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5 ~4.4	Min. Pu pH 6.34 6.19 6.20 6.20 6.20 6.20 6.20	Split Sample Duplicate S Irge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4/LP/41 0.546 0.546 0.542 0.534 0.534	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L D. 66 0.50 0.50 0.51 0.51 0.59 0.65	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPM Eh/ORP mv 89.0 37.2 27.9 16.0 5.5
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe Vol. Purged (ations) liters 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5 ~4.4	Min. Pu pH 6.34 6.19 6.20 6.20 6.20 6.20 6.20	Split Sample Duplicate S Irge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4/LP/41 0.546 0.546 0.542 0.534 0.534	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L D. 66 0.50 0.50 0.51 0.51 0.59 0.65	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPM Eh/ORP mv 89.0 37.2 27.9 16.0 5.5
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe Vol. Purged (ations) liters 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5 ~4.4	Min. Pu pH 6.34 6.19 6.20 6.20 6.20 6.20 6.20	Split Sample Duplicate S Irge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4/LP/41 0.546 0.546 0.542 0.534 0.534	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L D. 66 0.50 0.50 0.51 0.51 0.59 0.65	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPN Eh/ORP mv 89.0 37.2 27.9 16.0 5.5
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe (7) / N Vol. Purged gallons liters 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.9 ~4.4 DTW: 18.0	Min. Pu pH 6.34 6.20 6.20 6.20 6.20 6.20 6.20 6.20	Split Sample Duplicate Se urge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4/LP/M 0.546 0.942 0.532 0.532 0.97 LP/M	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L D. 66 0.50 0.50 0.51 0.51 0.59 0.65	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPM Eh/ORP mv 89.0 37.2 27.9 16.0 5.5
rige Method: popump pow Cell: Time 13:244 (3:34 13:39 13:42 13:46	Ded. Pump Othe Vol. Purged (ations) liters 2.0 3.5 DTW: 18.0 ~3.7 4.0 4.5 ~4.4	Min. Pu pH 6.34 6.20 6.20 6.20 6.20 6.20 6.20 6.20	Split Sample Duplicate Se urge Volume (gal)/(L) Conductivity mS/cm 0.539 0.541 4/LP/M 0.546 0.942 0.532 0.532 0.97 LP/M	Turbidity NTU	13: 55 X Purge Rate (g Diss. Oxygen mg/L D. 66 0.50 0.50 0.51 0.51 0.59 0.65	Spite of 1 Dupl. Time 011 Dupl. Time 0 pm)/(mLpm) 0 Temp. °C 10.50 10.59 10.55 10.55 10.23	× .4 LPM Eh/ORP mv 89.0 37.2 27.9 16.0 5.5

	284350.OM.O CC/TB. Clear, wind		F		Date Page		
	ple Number 5	/ 1		Star	t Time 1030		
	Water 21.49		M	easure Point: We			
ertical Profilin		m= 30'	2.44				
Depth	Time	pH	Conductivity	Turbidity	Diss. Oxygen	Temp.	Eh / ORF
ft below TOC	inne	pri	mS/cm	NTU	mg/L	°C	mv
0					/		
				/			and the second
2000 - 18 March	and the second second		<u> </u>				
			1	1			
				\langle			
	ar and a second and a						*
				Contraction of the second second			
		/	and a second				
				6			
			And the second s				
		Contraction of the second	and the second s				
				7	-		
Remarks: urge Method:	Ded. Pump Othe	er	Spiik Samp Duplicate	ble ID Ø]] Sample ID	906-041-19	Split Time 11	40 (X
irge Method:	Ded. Pump Othe			Sample ID	- K	Dupl. Time	X
rge Method:	2		Duplicate	Sample ID	- K		X 10. 0.5
ow Cell: Time	N Vol. Purged	Min. Pur pH 6.13	Duplicate ge Volume (gal)/(L) Spect 57 Conductivity ms/cm 3 0.137	Sample ID	Purge Rate (Diss. Oxygen mg/L	Dupl. Time	2 0.5 "Eh/ORF MV
opump ow Cell: Time	Vol. Purged gallon / liters	Min. Pur pH 6.13 . 5.99	Duplicate ge Volume (gal)/(L) Conductivity ms/cm 3 0.137 0.132	Sample ID Turbidity NTU	Purge Rate g Diss. Oxygen mg/L Diss. Oxygen	Dupl. Time Dupl. Time Temp. °C Q.66 Q.99	200.3
Time	Vol. Purged gattori / liters	Min. Pur pH 6.13 . 5.79. 5.78	Duplicate ge Volume (gal)/(L) Speci () (C) Conductivity ms/cm 3 0:137 0:137 0:131	Sample ID Turbidity NTU	Purge Rate g Diss. Oxygen mg/L 0.66 0.94 1.03	Dupl. Time Dupl. Time Temp. °C 0.65 0.65 0.99 0.05	200. 201.0
Time	Vol. Purged gallon / liters 0.5 1.0 1.5 2.0	Min. Pur pH 6.13 .5.79. 5.78 5.78	Duplicate ge Volume (gal)/(L) Conductivity ms/cm 3 0:137 0:137 0.131 0.128	Sample ID Turbidity NTU	Purge Rate g Diss. Oxygen mg/L 0.66 0.94 1.03 1.51	Dupl. Time Dupl. Time Temp. °C 0.65 0.65 0.05 0.05 0.09	200.2 201.0 211.0
IN 22 1042 1042 1046 1055 1056	Vol. Purged gallong / liters 0.5 1.0 1.5 2.0 2.15 3.0	Min. Pur pH 6.13 .5.79. 5.78 5.78 5.78 5.78 5.74	Duplicate ge Volume (gal)/(L) Speci () (C) Conductivity ms/cm 3 0:137 0:137 0:131	Sample ID	Purge Rate & Diss. Oxygen mg/L 0.66 0.94 1.03 1.91 1.82 1.82 1.84	Dupl. Time Dupl. Time Temp. °C 0.66 0	200.3 201.0 221.0 230.
In 200 In 200	Vol. Purged gallong / liters 0.5 1.0 1.5 2.0 2.15 3.0 PTW : 21.5	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.76 5.76	Duplicate ge Volume (gal)/(l) Specify Conductivity ms/cm 3 0.137 0.137 0.131 6.128 0.123 0.123	Sample ID	Purge Rate & Diss. Oxygen mg/L 0.66 0.94 1.03 1.51 1.82 1.84 2.21	Dupl. Time Dupl. Time Temp. °C 0.66 0.66 0.66 0.66 0.09 0.06 0.09 0.12 0.12 0.22 0.22	200.3 201.0 220.3 201.0 220.3 220.3 220.3 220.3 220.3 220.3 220.3 220.3 220.3 220.3 220.3 220.3 220.3 220.3 220.3 220.3 220.3
In 28 In 28 In 28 In 22 In 46 In 56 In 56	Vol. Purged gollong / liters 0.5 1.0 1.5 2.0 2.5 3.0 DTW: 21.5 4.0	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.74 5.76 5.76	Duplicate ge Volume (gal)/(l) Speci (gal)/(l) Cdnductivity ms/cm 3 0.137 0.137 0.132 0.131 0.123 0.123 0.123	Sample ID	Purge Rate g Diss. Oxygen mg/L 0.66 0.94 1.03 1.51 1.82 1.82 1.84 2.21	Dupl. Time Temp. °C 0.66 0.66 0.66 0.66 0.06 0.06 0.09 0.12 0.12 0.12 0.22 0.22 0.22	200. 201. 220. 230. 252 252.
II 15 II 122	Vol. Purged gallon / liters 0.5 1.0 1.5 2.0 2.15 3.0 DTW : 21.6 4.5	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.74 5.74 5.76 5.76 5.76	Duplicate ge Volume (gal)/(l) Conductivity ms/cm 3 0.137 0.137 0.131 0.128 0.123 0.123 0.123 0.123 0.123	Sample ID	Purge Rate g Diss. Oxygen mg/L Diss. Oxygen mg/L D.66 0.94 1.03 1.51 1.51 1.51 1.52 1.54 2.21 2.21 2.05	Dupl. Time Temp. °C 0.66 0.66 0.66 0.66 0.06 0.06 0.09 0.12 0.12 0.22 0.22 0.22 0.22 0.30	X Veh/ORF 197 200.3 201.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0 200.3 201.0 200.3 201.0 200.3 201.0 201.0 200.3 201.0 200.3 201.0 200.3 201.0 200.3 201.0 200.3 201.0 200.3 200.3 201.0 200.3 201.0 200.3 200.3 201.0 200.3 201.0 200.3 200.3 201.0 200.3
II 15 II 122	Vol. Purged (gattor) / liters 0.5 1.0 1.5 2.6 2.5 3.0 DTW : 21.5 4.0 4.5 5.0	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.74 5.74 5.76 5.76 5.76	Duplicate ge Volume (gal)/(l) Speci (jar) Conductivity ms/cm 3 0.137 0.137 0.137 0.137 0.128 0.123 0.123 0.123 0.123 0.123 0.123	Sample ID	Purge Rate g Diss. Oxygen mg/L 0.66 0.94 1.03 1.51 1.51 1.52 1.84 2.21 2.21 2.21 2.06 2.34	Dupl. Time Temp. °C Q.65 Q.65 Q.65 Q.65 Q.65 Q.65 Q.65 Q.99 Q.06 Q.99 Q.05 Q.22 Q.22 Q.22 Q.28	200. 201. 201. 201. 211. 220. 252. 252. 261. 274.
II 28 IO 28 IO 42 IO 46 IO 56 IO 56 II 02 II 15	Vol. Purged gallon / liters 0.5 1.0 1.5 2.0 2.15 3.0 DTW : 21.6 4.5	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.74 5.76 5.76	Duplicate ge Volume (gal)/(l) Conductivity ms/cm 3 0.137 0.137 0.131 0.128 0.123 0.123 0.123 0.123 0.123	Sample ID	Purge Rate g Diss. Oxygen mg/L Diss. Oxygen mg/L D.66 0.94 1.03 1.51 1.51 1.51 1.52 1.54 2.21 2.21 2.05	Dupl. Time Temp. °C 0.66 0.66 0.66 0.66 0.06 0.06 0.09 0.12 0.12 0.22 0.22 0.22 0.22 0.30	200. 201. 201. 201. 211. 220. 252. 252. 261. 274.
II 15 II 122	Vol. Purged gallong / liters 0.5 1.0 1.5 2.0 2.15 3.0 DTW: 21.5 4.0 DTW: 21.5 4.5 5.5	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.74 5.74 5.74 5.78 5.78 5.78	Duplicate ge Volume (gal)/(l) Speci (jar)/(l) Conductivity ms/cm 3 0.137 0.137 0.132 0.131 6.128 0.123 0.129 0.123 0.123 0.120	Sample ID	Purge Rate & Diss. Oxygen mg/L bb0.66 0.94 1.03 1.51 1.82 1.84 2.21 2.21 2.21 2.06 2.34 2.42	Dupl. Time Temp. °C Q.66 Q.66 Q.66 Q.66 Q.66 Q.99 Q.12 Q.12 Q.12 Q.22 Q.22 Q.22 Q.28 Q.28 Q.28 Q.28	200.2 201.0
II 15 II 122	Vol. Purged (gattor) / liters 0.5 1.0 1.5 2.6 2.5 3.0 DTW : 21.5 4.0 4.5 5.0	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78	Duplicate ge Volume (gal)/(l) Speci (jar) Conductivity ms/cm 3 0.137 0.137 0.137 0.137 0.128 0.123 0.123 0.123 0.123 0.123 0.123	Sample ID	Purge Rate g Diss. Oxygen mg/L Diss. Oxygen Diss. Oxygen mg/L Diss. Oxygen Diss. Diss.	Dupl. Time Temp. °C Q.66 Q.66 Q.66 Q.66 Q.66 Q.99 Q.12 Q.12 Q.12 Q.22 Q.22 Q.22 Q.28 Q.28 Q.28 Q.28	200. 201. 201. 201. 211. 220. 252. 252. 261. 274.
Inge Method: Popump ow Cell: Time 10 42 10 42 10 42 10 55 10 55	Vol. Purged (gallon) / liters 0.5 1.0 1.5 2.0 2.5 3.0 DTW: 21.6 4.5 9.0 5.5 5.5	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.78 5.76 5.76 5.76 5.78 5.78 5.78	Duplicate ge Volume (gal)/(l) Specific 2 Conductivity mS/cm 3 0.137 0.137 0.131 6.128 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.120	Sample ID	Purge Rate & Diss. Oxygen mg/L 1.03 1.51 1.82 1.84 2.21 2.21 2.05 2.34 2.42 plc) after	Dupl. Time Temp. °C Q.66 Q.66 Q.66 Q.66 Q.66 Q.99 Q.12 Q.12 Q.12 Q.22 Q.22 Q.22 Q.28 Q.28 Q.28 Q.28	200. 201. 201. 201. 211. 220. 252. 252. 261. 274.
Inge Method: Popump ow Cell: Time 10 42 10 42 10 42 10 55 10 55	Vol. Purged (gallon) / liters 0.5 1.0 1.5 2.0 2.5 3.0 DTW: 21.6 4.5 9.0 5.5 5.5	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.78 5.76 5.76 5.76 5.78 5.78 5.78	Duplicate ge Volume (gal)/(l) Speci (jar)/(l) Conductivity ms/cm 3 0.137 0.137 0.132 0.131 6.128 0.123 0.129 0.123 0.123 0.120	Sample ID	Purge Rate & Diss. Oxygen mg/L 1.03 1.51 1.82 1.84 2.21 2.21 2.05 2.34 2.42 plc) after	Dupl. Time Temp. °C Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.62 Q.22 Q.22 Q.22 Q.28 Q.28 Q.28 Q.28 Q.28	200.2 201.0 201.0 201.0 211.5 220. 230. 252 252. 261. 274.
In the sepump ow Cell: Time 10 42 10 42 10 46 10 55 10 56 10 56 11 02 11 15 11 22 11 35	Vol. Purged (gallon) / liters 0.5 1.0 1.5 2.0 2.5 3.0 DTW: 21.6 4.5 9.0 5.5 5.5	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.78 5.76 5.76 5.76 5.78 5.78 5.78	Duplicate ge Volume (gal)/(l) Specific 2 Conductivity mS/cm 3 0.137 0.137 0.131 6.128 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.120	Sample ID	Purge Rate & Diss. Oxygen mg/L 1.03 1.51 1.82 1.84 2.21 2.21 2.05 2.34 2.42 plc) after	Dupl. Time Temp. °C Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.62 Q.22 Q.22 Q.22 Q.28 Q.28 Q.28 Q.28 Q.28	200.2 201.0 201.0 201.0 211.5 220. 230. 252 252. 261. 274.
In the sepump ow Cell: Time 10 42 10 42 10 46 10 55 10 56 10 56 11 02 11 15 11 22 11 35	Vol. Purged (gallon) / liters 0.5 1.0 1.5 2.0 2.5 3.0 DTW: 21.6 4.5 9.0 5.5 5.5	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.78 5.76 5.76 5.76 5.78 5.78 5.78	Duplicate ge Volume (gal)/(l) Specific 2 Conductivity mS/cm 3 0.137 0.137 0.131 6.128 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.120	Sample ID	Purge Rate & Diss. Oxygen mg/L 1.03 1.51 1.82 1.84 2.21 2.21 2.05 2.34 2.42 plc) after	Dupl. Time Temp. °C Q.66 Q.66 Q.66 Q.66 Q.66 Q.99 Q.12 Q.12 Q.12 Q.22 Q.22 Q.22 Q.28 Q.28 Q.28 Q.28	200.2 201.0 201.0 201.0 211.5 220. 230. 252 252. 261. 274.
Inge Method: Popump ow Cell: Time 10 42 10 42 10 42 10 55 10 55	Vol. Purged (gallon) / liters 0.5 1.0 1.5 2.0 2.5 3.0 DTW: 21.6 4.5 9.0 5.5 5.5	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.78 5.76 5.76 5.76 5.78 5.78 5.78	Duplicate ge Volume (gal)/(l) Specific 2 Conductivity mS/cm 3 0.137 0.137 0.131 6.128 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.120	Sample ID	Purge Rate & Diss. Oxygen mg/L 1.03 1.51 1.82 1.84 2.21 2.21 2.05 2.34 2.42 plc) after	Dupl. Time Temp. °C Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.62 Q.22 Q.22 Q.22 Q.28 Q.28 Q.28 Q.28 Q.28	200.2 201.0 201.0 201.0 211.5 220. 230. 252 252. 261. 274.
Inge Method: Popump ow Cell: Time 10 42 10 42 10 42 10 55 10 55	Vol. Purged (gallon) / liters 0.5 1.0 1.5 2.0 2.5 3.0 DTW: 21.6 4.5 9.0 5.5 5.5	Min. Pur pH 6.13 5.79 5.78 5.78 5.78 5.78 5.78 5.76 5.76 5.76 5.78 5.78 5.78	Duplicate ge Volume (gal)/(l) Specific 2 Conductivity mS/cm 3 0.137 0.137 0.131 6.128 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.120	Sample ID	Purge Rate & Diss. Oxygen mg/L 1.03 1.51 1.82 1.84 2.21 2.21 2.05 2.34 2.42 plc) after	Dupl. Time Temp. °C Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.66 Q.62 Q.22 Q.22 Q.22 Q.28 Q.28 Q.28 Q.28 Q.28	200.2 201.0 201.0 201.0 211.5 220. 230. 252 252. 261. 274.

.

*

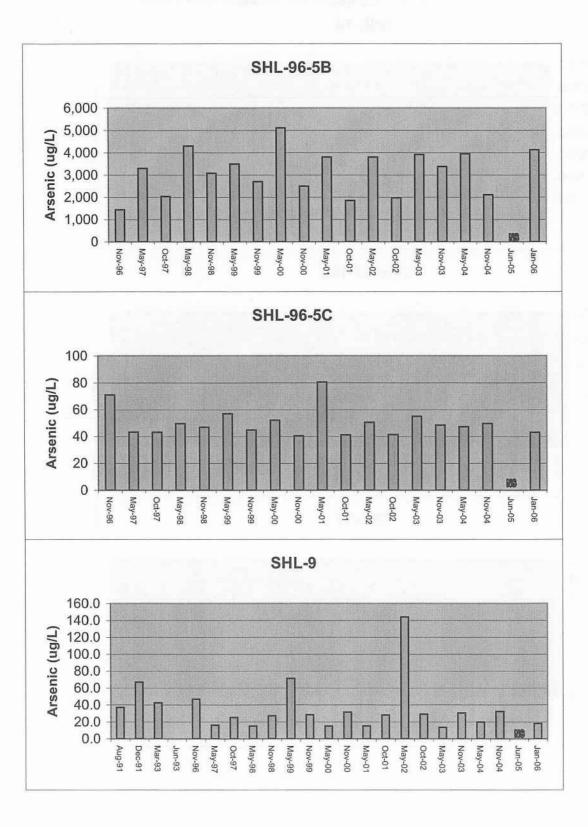
				2	1 States	1. 1. A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				
		Fie	ld Data She	ets for Lo	w Flow G	round Wat	er Sampli	ng		
	: Shepk	an Hi	00 1 E		Project Numb	19/06	+320			
ample Sour	ce (Well No./Lo	cation)	HL-20		Date: 1 /	19/06				
/eather Cor	iditions <u>C1</u>	ear?	HL-20	2						
D NA		(ppm) (Condition _ go	00						
ample Tear	n TB/cc	1	Moll S	Stabilization I	- Data				-	
Vell Depth _		(FT.)	Datum	Tex				Time Puraina	begins (T _o):	1415
tatic Water	Level 18.3			"Stee	1			Water Level a	at time T _o . 11	8,34
	n(urge Method:	Peristaltic Pur					ends: (T1)	
								Water Level a	at time T _{1:}	18,35
	Volume	Law.						Turbidity	Purge rate	
Time	Removed	pH	SPCOND(mS/cm)	TEMP.(C)	Redox (mV)	Water level (Ft)	D.O. (mg/L)	(NTU)	(Lpm) 0.3 to	Appearance
		+/-0.1	+/-3%	+/-0.2 or 3%	+/-10 mV	< 0.3 ft	+/-10%	< 5 NTU	0.5LPM	
1426	1.0	6.43	0.471	10.51	0.10	18.34	0.83	@JAkker	0.4	Clear
1429	1.2	6.44	0.479	10.51	0,3	18.35	0.61	NA	0,4	clear
1434	1.6	6.45	.487	10,64	0,3		0.42	1	"	1
1438	2.0	646	1.489	10.57	0.2		32		.4	1.
1441	23	OUL.	2490	IN I.U	0.0	18,35	AR		0.4	-9
11-11	a	10.79	10.10	10.01	2.0	10.0	0.01			
1944	2.5	6.45	.47/	10.2	-0,0		0.25	1	11	
1450	3.0	6.45	0,492	10,69	-02		0.22		0.4	L
1453	3.2	C 25	1,492	10:65	02	18.35	20).	.4	1.
100	0100	Terro		SAMPLING	0.0	1000	ise	~		
ate: 01/ 1			Analysis:	To sum of the second		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= volum	e lost (gallons)
ime:						1	0.040			
ield Filterir ampling M	ethodology:	ow Flow San	apling			1.5	0.091			
	Method of S		ibuild			2	0.163			n = 3.78 liters

	ple Number	4.75				The second se	
ertical Profiling	Water <u>SHL-2</u>		Me		rt Time 1217 ell TOC Steel Casing		
Depth fr below TOC	Time	Hq	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp.	Eh / ORP
	/	··· .	•				
			1				
				/	T		
				/			
				~			
	/		1				
	/					<	
/						/	
	Ded. Pump Othe		Split Samp Duplicate	le ID 01 Sample ID	2006- 54220	Dupi. lime	3
ow Cell: (Vol. Purged	pH	Conductivity	Turbidity	Diss. Oxygen	pm)/(mLpm)_C	Eh / ORP
1236	gollons / liters	9.41	mS/cm	NTU 2.03	mg/L 0.25	°C 9.85	-8.9
	DTW:-	9.22 ft					1
1241	S.OL	9.25 5.22fz	0.595	0.44	0.23	9.62	13.1
1247	101	5.07	0.577	1.18	0,20	9.89	49,7
1254	Bate = . 12L	375 LC 4.99	0.57B	1:32	0.17	10.05	92.1
	TTIAL -> C	2252	Rate = 0.2	75 LAM			
303	162	5.00	0,575		0.17	9,95	136.0
1309	16 L Drw = 5.	4.99	0.575	2.06	0.17	10.07	169.0
1319	231	4.97	0.574	1.43	0.16	9.98	215.4
325	26L DTW->S	5.19	0.592 Pate 3 0.39	5 1.02	0.16	9.94	208.2
and the second se	Arcoox	didn	of Stabi	ize, Ja	upled after	C	hant
	and the second se		· · · · · · · · · · · · · · · · · · ·				
				Fill			
			- (

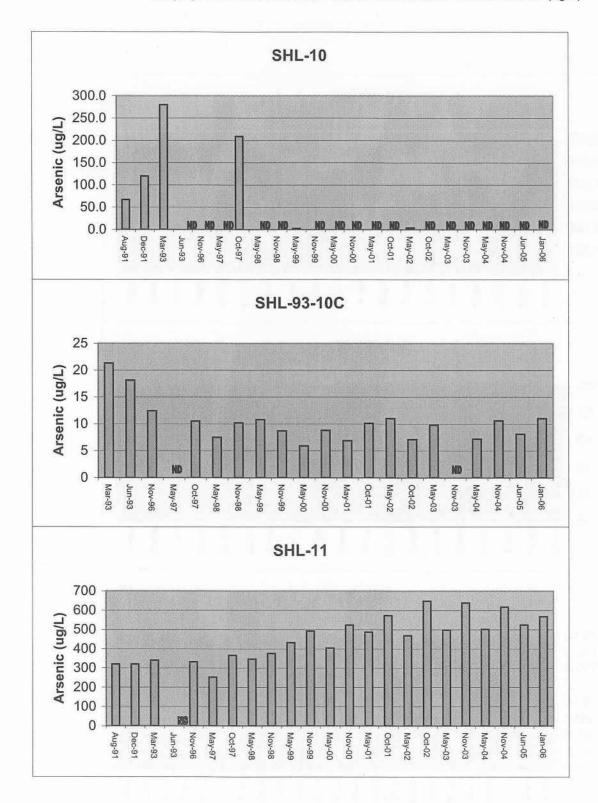
Service and the service of the	Shepley's Hill 284350.OM.0 TBACU 'Clear,			Sampling Event Devens 6W Date 1/20/06 Page of				
itial Depth to V	ple Number 5 Water 4.56				t Time 13:45	start	3	
Depth ft below TOC	Time	рН	Conductivity mS/cm	Turbidity NTU	Diss. Oxygen mg/L	Temp. °C	Eh / ORP mv	
							•	
						/		
							*	
			<					
				/				
					~			
urge Method:	Ded, Pump Othe	er	Split Samp Duplicate		2006-541193-2	28 Split Time	4130	
Purge Method:	6					Dupl-Time	4130	
Purge Method:	6		Duplicate			Dupl Time	0.375	
Purge Method: Beopump Now Cell: Time 13:53	N Vol. Purged gallons / liters 32	Min. Pur pH 6.19	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554	Sample ID -	Purge Rote (g	Dupl.Time pm)/(mLpm) Temp.	.395 Eh/ORP	
Purge Method: Beopump How Cell: Time 13:53 DT (4:04	N Vol. Purged gallons / liters 3L N: 4.56 Pu 7L	Min. Pur pH 6.19 vge vate 6.19	Puplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 1:0.395 0.555	Sample ID -	Purge Rate (g Diss. Oxygen mg/L	Dupl.Time pm)/(mLpm)(Temp. °C	375 Eh/ORP mv 105.0	
Purge Method: Beopump How Cell: Time 13:53 DTI 14:04 OT	N Vol. Purged gallons / liters 3L N: 4.56 Fu H: 4.56 Fu	Min. Pur pH 6.19 Vige Vate 6.19 rae Rate:	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 V: 0.395 0.555 0.395	Turbidity NTU 4.06 4.2-1	Purge Rote (g Diss. Oxygen mg/L 0.17 0.17	Dupl.Time pm)/(mLpm) Temp. °C 9.31 9.42	- 106.0	
Purge Method: eopump low Cell: Time 13:53 DTI 14:04 OT 14:11 DTW	N Vol. Purged gallons / liters 3L N: 4.56 Pu 7L N: 4.56 Pu 10L ; 4.66 Pur	Min. Pur pH 6.19 Vge vate 6.19 rge Rate: 0 6.08 Tae cate:	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 1:0.395 0.555 0.395 0.375	Sample ID Turbidity NTU 4.06 4.2-1 3.2	Purge Rote (g Diss. Oxygen mg/L 0.19 0.19 0.19	Dupl_Time pm)/(mLpm)(Temp. °C 9.31 9.42 9.42 9.48	- 114.4	
Well/Sample itial Depth to Wa ertical Profiling Depth It below TOC Remarks: urge Method: reopumb Dec Iow Cell: Time I3:53 DTW I4:04 U4:04 U7W I4:17 DTW I4:21 I4:25	\bigcirc N Vol. Purged gallons / liters 3L N: 4.56 Pu 3L N: 4.56 Pu 10L : 4.56 Pu 12L J 4.56 Pu	Min. Pur pH 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 1:0.395 0.555 0.395 0.560 0.375 0.560 0.315	Sample ID Turbidity NTU 4.06 4.21 3.2 3.0	Purge Rote (g Diss. Oxygen mg/L 0.19 0.19 0.19 0.19	Dupl.Time pm)/(mLpm)(°C 9.31 9.42 9.48 9.80	- 114.4	
Purge Method: Beopump Iow Cell: Time 13:53 DTI 14:04 DTI 14:11 DTW 14:13 DTW 14:13 DTW 14:21		Min. Pur pH 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 1:0.395 0.555 0.395 0.560 0.375 0.560 0.315 0.560 0.560 0.560	Sample ID Turbidity NTU 4.06 4.21 3.2 3.0 2.6	Purge Rote (g Diss. Oxygen mg/L 0.19 0.19 0.19 0.19 0.19 0.19	Dupl_Time pm)/(mLpm) °C 9.31 9.42 9.48 9.80 9.80 9.83	- 114.2 - 114.2	
Purge Method: Beopump How Cell: Time 13:53 DTI 14:04 OT 14:04 OT 14:19 DTW 14:19 DTW 14:21 14:25	N Vol. Purged gallons / liters 3L N: 4.56 Pu 3L W: 4.56 Pu 10L : 4.66 Pur 12L 14.56 Pu 13L 13L 14.5L	Min. Pur pH 6.19 Vale vate 6.19 val Rate: 0 6.08 ge cate: 6.38	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 1:0.395 0.555 0.395 0.560 0.375 0.560 0.315	Sample ID Turbidity NTU 4.06 4.21 3.2 3.0	Purge Rote (g Diss. Oxygen mg/L 0.19 0.19 0.19 0.19	Dupl.Time pm)/(mLpm)(°C 9.31 9.42 9.48 9.80	- 114.9 - 114.2	
Purge Method: Beopump How Cell: Time 13:53 DTI 14:04 OT 14:04 OT 14:19 DTW 14:19 DTW 14:21 14:25	N Vol. Purged gallons / liters 3L N: 4.56 Pu 3L W: 4.56 Pu 10L : 4.66 Pur 12L 14.56 Pu 13L 13L 14.5L	Min. Pur pH 6.19 Vge vate 6.19 vge vate 6.19 vge vate: 0 6.08 ge cate: 5.38 vge cate: 5.38 vge cate 5.63 5.54	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 1:0.395 0.555 0.395 0.560 0.375 0.560 0.315 0.560 0.560 0.560	Sample ID Turbidity NTU 4.06 4.21 3.2 3.0 2.6	Purge Rote (g Diss. Oxygen mg/L 0.19 0.19 0.19 0.19 0.19 0.19	Dupl_Time pm)/(mLpm) °C 9.31 9.42 9.48 9.80 9.80 9.83	- 114.2 - 114.2	
Purge Method: Beopump How Cell: Time 13:53 DTI 14:04 OT 14:04 OT 14:19 DTW 14:19 DTW 14:21 14:25	N Vol. Purged gallons / liters 3L N: 4.56 Pu 3L W: 4.56 Pu 10L : 4.66 Pur 12L 14.56 Pu 13L 13L 14.5L	Min. Pur pH 6.19 Vge vate 6.19 vge vate 6.19 vge vate: 0 6.08 ge cate: 5.38 vge cate: 5.38 vge cate 5.63 5.54	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 1:0.395 0.555 0.395 0.560 0.375 0.560 0.315 0.560 0.560 0.560	Sample ID Turbidity NTU 4.06 4.21 3.2 3.0 2.6	Purge Rote (g Diss. Oxygen mg/L 0.19 0.19 0.19 0.19 0.19 0.19	Dupl_Time pm)/(mLpm) °C 9.31 9.42 9.48 9.80 9.80 9.83	- 114.9 - 114.2	
Purge Method: Beopump How Cell: Time 13:53 DTI 14:04 OT 14:04 OT 14:19 DTW 14:19 DTW 14:21 14:25	N Vol. Purged gallons / liters 3L N: 4.56 Pu 3L W: 4.56 Pu 10L : 4.66 Pur 12L 14.56 Pu 13L 13L 14.5L	Min. Pur pH 6.19 Vge vate 6.19 vge vate 6.19 vge vate: 0 6.08 ge cate: 5.38 vge cate: 5.38 vge cate 5.63 5.54	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 1:0.395 0.555 0.395 0.560 0.375 0.560 0.375 0.560 0.375 0.560 0.560 0.560	Sample ID Turbidity NTU 4.06 4.21 3.2 3.0 2.6	Purge Rote (g Diss. Oxygen mg/L 0.19 0.19 0.19 0.19 0.19 0.19	Dupl_Time pm)/(mLpm) °C 9.31 9.42 9.48 9.80 9.80 9.83	- 114.9 - 114.2	
Purge Method: Beopump How Cell: Time 13:53 DTI 14:04 OT 14:04 OT 14:19 DTW 14:19 DTW 14:21 14:25	N Vol. Purged gallons / liters 3L N: 4.56 Pu 3L W: 4.56 Pu 10L : 4.66 Pur 12L 14.56 Pu 13L 13L 14.5L	Min. Pur pH 6.19 Vge vate 6.19 vge vate 6.19 vge vate: 0 6.08 ge cate: 5.38 vge cate: 5.38 vge cate 5.63 5.54	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 1:0.395 0.555 0.395 0.560 0.375 0.560 0.375 0.560 0.375 0.560 0.560 0.560	Sample ID Turbidity NTU 4.06 4.21 3.2 3.0 2.6	Purge Rote (g Diss. Oxygen mg/L 0.19 0.19 0.19 0.19 0.19 0.19	Dupl_Time pm)/(mLpm) °C 9.31 9.42 9.48 9.80 9.80 9.83	- 114.9 - 114.2	
Purge Method: Beopump How Cell: Time 13:53 DTI 14:04 OT 14:04 OT 14:19 DTW 14:19 DTW 14:21 14:25	N Vol. Purged gallons / liters 3L N: 4.56 Pu FL W: 4.56 Pu IDL : 4.56 Pur I2L J 4.56 Pu I2L J 4.56 Pu I2L J 4.56 Pu I2L J 4.56 Pu	Min. Pur pH 6.19 Vge vate 6.19 vge vate 6.19 vge vate: 0 6.08 ge cate: 5.38 vge cate: 5.38 vge cate 5.63 5.54	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 1:0.395 0.555 0.395 0.560 0.375 0.560 0.375 0.560 0.375 0.560 0.560 0.560	Sample ID Turbidity NTU 4.06 4.21 3.2 3.0 2.6	Purge Rote (g Diss. Oxygen mg/L 0.19 0.19 0.19 0.19 0.19 0.19	Dupl_Time pm)/(mLpm) °C 9.31 9.42 9.48 9.80 9.80 9.83	- 106.0 - 112.0 - 114.4 - 114.5 - 114.5 - 114.2	
Purge Method: Beopump How Cell: Time 13:53 DTI 14:04 OT 14:04 OT 14:19 DTW 14:19 DTW 14:21 14:25	N Vol. Purged gallons / liters 3L N: 4.56 Pu FL W: 4.56 Pu IDL : 4.56 Pur I2L J 4.56 Pu I2L J 4.56 Pu I2L J 4.56 Pu I2L J 4.56 Pu	Min. Pur pH 6.19 Vge vate 6.19 vge vate 6.19 vge vate: 0 6.08 ge cate: 5.38 vge cate: 5.38 vge cate 5.63 5.54	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 1:0.395 0.555 0.395 0.560 0.375 0.560 0.375 0.560 0.375 0.560 0.560 0.560	Sample ID Turbidity NTU 4.06 4.21 3.0 2.6 2.73	Purge Rote (g Diss. Oxygen mg/L 0.19 0.19 0.19 0.19 0.19 0.19	Dupl_Time pm)/(mLpm) °C 9.31 9.42 9.48 9.80 9.80 9.83	- 106.0 - 112.0 - 114.4 - 114.5 - 114.5 - 114.2	
Purge Method: Beopump How Cell: Time 13:53 DTI 14:04 OT 14:11 DTW 14:12 14:25 DTU 14:25 DTU 14:25 DTU 14:25	N Vol. Purged gallons / liters 3L N: 4.56 Pu FL W: 4.56 Pu IDL : 4.56 Pur I2L J 4.56 Pu I2L J 4.56 Pu I2L J 4.56 Pu I2L J 4.56 Pu	Min. Pur pH 6.19 Vge vate 6.19 vge vate 6.19 vge vate 9.08 ge cate: 5.38 vge cate 5.54 e:0.375	Duplicate ge Volume (gal)/(L) Conductivity mS/cm 0.554 1:0.395 0.555 0.395 0.560 0.375 0.560 0.375 0.560 0.375 0.560 0.560 0.560	Sample ID Turbidity NTU 4.06 4.21 3.0 2.6 2.73	Purge Rote (g Diss. Oxygen mg/L 0.19 0.19 0.19 0.19 0.19 0.19	Dupl_Time pm)/(mLpm) °C 9.31 9.42 9.48 9.80 9.80 9.83	- 106.0 - 112.0 - 114.4 - 114.5 - 114.5 - 114.5	

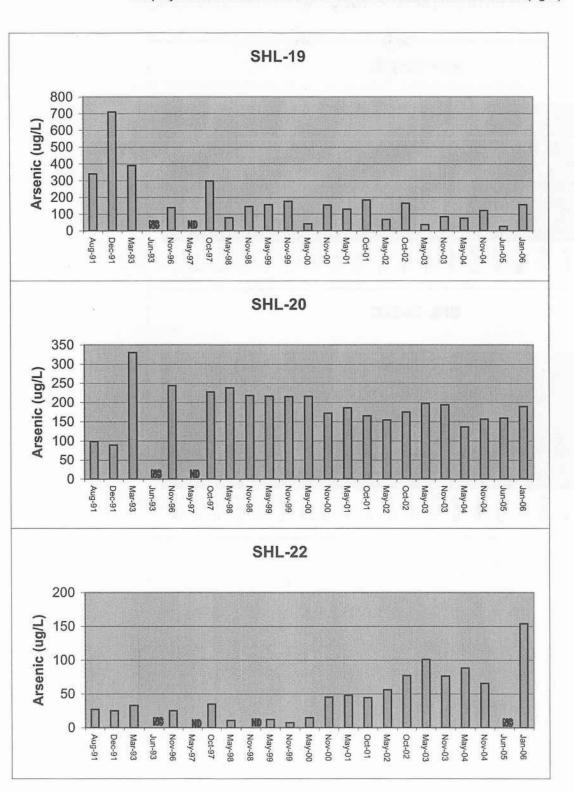
Veather Cor PID Sample Tear	nditions <u>Cla</u>	(ppm)		60							
Well Depth _ Static Water	Level 6.1	(FT.)	VVell S Datum	Peristaltic Pur	Data			Water Level	at time To:	1330 6.10* 1515* 48.29*	
Time	Volume Removed	рН +/-0.1	epcond(mS/cm)	TEMP.(C) + / - 0.2 or 3%	Redox (mV) + / - 10 mV	Water level (Ft) < 0.3 ft	D.O. (mg/L) + / - 10%	Turbidity (NTU) < 5 NTU	Purge rate (Lpm) 0.3 to 0.5LPM	Appearance	
1400	48L					37.15			0.8		
1420		8.72	.236	10.82	73.5	45,93	NOT	Sitt	0.7	Clear	Hz
1423		8.61	.242	10.75	0.9	46.02	WORK ENE		0.7	1	854.4
1429		8.52	,249	10.88	-113.5	84-	Live	493	0.7		
1440		8.60	.262	10.85	-154.2	46.78			0.7		
1445		8.60	.270	10.82	-175.4	47.37		5,33	0.7		
1458	722	8.55	.279	10.95	-199.3	47.93		5.01	0.7	V.	163.2
Date: /	1		Analysis:	SAMPLING		Diameter (inch)	Gallon / Foot	* delta w.t. (ft)	= volu	me lost (gailons)	
Time: Field Filterir	na:					1	0.040				
Sampling M	ethodology:		ipling Sec	2.		2	0.091				1
.aboratory: Remarks:	Method of S	snipment:	Y.	9.2		4	0.652	1	1gall	on = 3.78 liters	

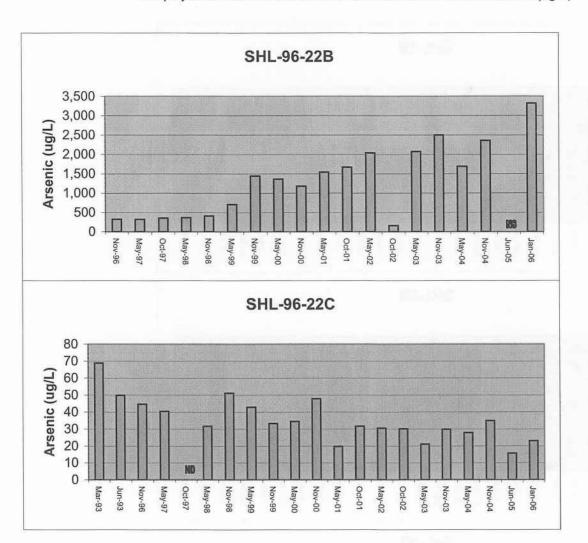
			ing	er Sampli	round Wat	w Flow G	ets for Lo	ld Data She	Fie		
					er: 25/06	Project Numb Date: <u>1 / 1</u>		Condition	(ppm)	e: Shepley ree (Well No./Lo nditions 5/co m T3/0	Sample Sour Weather Cor PID N/
		at time T_0 (T_1)	Water Level				Peristaltic Pur	Datum Diameter :	(FT.)	Level 6.10	
e	Appearance	Purge rate (Lpm) 0.3 to 0.5LPM	Turbidity (NTU) < 5 NTU	D.O. (mg/L) + / - 10%	Water level (Ft) < 0.3 ft	Redox (mV) +/- 10 mV	TEMP.(C) + / - 0.2 or 3%	8PCOND(mS/cm)	рН +/-0.1	Volume Removed	Time
162	Clear	0.7	4.17	NOT	48.05	-225.2	10.86	1000	8.50	77L	1505
		1	4,21	working		-230.0	CLARKE STREET, STRE	- Control and the control of the con	8.52	81	1510
_		4	4.18		48.29	-235.1			8.49	84L	1515
_					at D.O.	The					1530
				50.73	2/ PSI 85	*,	**				
							SAMPLING				
-	ne lost (gallons)	= volum	* delta w.t. (ft)	Gallon / Foot 0.040	Diameter (inch)	3-224	- SHM 9:	Analysis:	100	5 06	Date: 1/2
				0.091	1.5		S, VOC, H			ig: NO	Field Filterin
	n = 3.78 liters	teater		0.163	2 4	No SAN	105, C1, No 300, C00,	npling Inc. toy,		ethodology: L Method of S	


Appendix C

Comparison of Arsenic Results


					Historic A Hill Landfi	II Cor	ic Concentrat						
			_		Devens, M								_
Sample	-		0			oring	Well ID (grou		n)				-
Well Group #	2	-	2	101	2		2	2	0.101	2		2	(0)
Date	SHL-3 (1)	-	SHL-4	2)	SHL-5	(1)	SHM-96-5B (C (2)	SHL-9 (1)	SHL-10	(2
Aug-91	35.0	-	260	_	23.0	_	NS	NS	_	37.0	-	67.0	_
Dec-91	120	-	140	_	38.0		NS	NS	_	67.0		120	
Mar-93	6.5	-	2.54	-	11.4	_	NS	NS		42.4		280	-
Jun-93	NS	\rightarrow	NS		NS		NS	NS		NS		NS	
Nov-96	NS	-	48.8		12.0	-	1,440	71	-	46.9		3.4 B	
May-97	<10	-	73.6	J	<10	_		J 43.2	_	16.1	J	<10	_
Oct-97	<10	-	180		<10		2,040	43.1		25.2		209	
May-98	<5	-	37.4	_	<5		4,300	49.5	-	15.0	-	<5	
Nov-98	<5.4	-	89.1		11.5	-	3,080	46.8		27.2	_	<5.4	
May-99	2.7	В	78.2	-	5.0	В	3,490	57	-	71.3	_	2.7	_
Nov-99	<1.9	-	61.3	_	6.5	_	2,700	44.8		28.5	_	<1.9	
May-00	<2.5	-	116		<2.5	-	5,110	52.2		15.0		<2.5	_
Nov-00	17.4	-	91.5	_	13.8	-	2,500	40.3	-	31.4		<4.2	_
May-01	<4.1	-	50.8		13.8	_	3,800	80.5	_	15.1		<4.1	
Oct-01	<1.5	-	66.0	-	14.8		1,850	41.1	-	28.1		<1.5	
May-02	2.8	В	47.8	В	11.9	В	3,800	50.4	В	144		4.0	
Oct-02	<3.2	-	66.1		<3.2		1,970	41.3		29	_	<3.2	
May-03	<4.7	_	26.6	_	7.3		3,920	55.1		13.4	_	<4.7	
Nov-03	<4.1	_	13.4		4.7	B	3,380	48.3		30.6	_	<4.1	
May-04	<2.6		27.2		7.4	В	3,950	47.1	_	19.8		<2.6	_
Nov-04	<5.8	-	19.5		6.8	В	2,110	49.5		32.2	_	<5.8	
Jun-05 Jan-06	<4.5 NS	_	10.1		7.0 <5	В	NS 4,130	NS 43.0		NS 18.0	_	<4.5 <5	
Sample Well Group #	2		2	(0)	2		Well ID (grou	2		2		2	
Date	SHM-93-10C	; (1)	SHL-11	(2)	SHL-19	(2)	SHL-20 (2)		(1)	SHM-93-22	B (2)		2C
Aug-91	NS	-	320		340	_	98	27		NS		NS	_
Dec-91	NS	-	320		710	_	89	25	_	NS	1.1	NS	_
Mar-93	21.3	-	340		390	_	330	32.9		NS	_	68.9	
Jun-93	18.1	-	NS		NS		NS	NS		NS	_	49.8	
Nov-96	12.4	-	332		138	_	244	24.8	-	324		44.6	_
May-97	<10	-	252	J	<10		<10	<10		318	J	40.4	_
Oct-97	10.5	-	366		298		227	34.8	_	352	_	<10	_
May-98	7.5	-	346	_	77.5	_	238	10.6	-	365		31.6	_
Nov-98	10.2	-	376		145		218	<5.4		406	_	51.1	-
May-99	10.8	В	431		156		216	12.2	В	707		42.8	_
Nov-99 May-00	8.7	-	492		176		215	7.3		1,440		33.2	
	5.9 8.8	J	404		41.4	-	216	14.6	-	1,360		34.4	_
	0.0	-	523		154		172	45		1,180		47.8	
Nov-00			487 573		129		186	47.6		1,540		19.7	-
Nov-00 May-01	6.9	-	3/3		183		165	44.2	В	1,670 2,040	_	31.6 30.5	
Nov-00 May-01 Oct-01	6.9 10.1	P						77.1	D	159			
Nov-00 May-01 Oct-01 May-02	6.9 10.1 11.0	в	469					1 11.1		1 2379		30.1	
Nov-00 May-01 Oct-01 May-02 Oct-02	6.9 10.1 11.0 7.1	В	469 648		164		175					21.0	
Nov-00 May-01 Oct-01 May-02 Oct-02 May-03	6.9 10.1 11.0 7.1 9.8	В	469 648 498		164 36.1		197	101		2,070		21.0	_
Nov-00 May-01 Oct-01 May-02 Oct-02 May-03 Nov-03	6.9 10.1 11.0 7.1 9.8 <5.2		469 648 498 639		164 36.1 83.6		197 194	101 76.4		2,070 2,500		29.8	
Nov-00 May-01 Oct-01 May-02 Oct-02 May-03 Nov-03 May-04	6.9 10.1 11.0 7.1 9.8 <5.2 7.2	в	469 648 498 639 502		164 36.1 83.6 75		197 194 136	101 76.4 88.1		2,070 2,500 1,690		29.8 27.8	
Nov-00 May-01 Oct-01 May-02 Oct-02 May-03 Nov-03 May-04 Nov-04	6.9 10.1 11.0 7.1 9.8 <5.2 7.2 10.6	BB	469 648 498 639 502 617		164 36.1 83.6 75 121		197 194 136 156	101 76.4 88.1 65.4		2,070 2,500 1,690 2,360		29.8 27.8 34.9	-
Nov-00 May-01 Oct-01 May-02 Oct-02 May-03 Nov-03 May-04	6.9 10.1 11.0 7.1 9.8 <5.2 7.2	в	469 648 498 639 502		164 36.1 83.6 75		197 194 136	101 76.4 88.1		2,070 2,500 1,690		29.8 27.8	


Shepley's Hill Landfill Historic Arsenic Groundwater Concentrations (ug/L)



Shepley's Hill Landfill Historic Arsenic Groundwater Concentrations (ug/L)

Shepley's Hill Landfill Historic Arsenic Groundwater Concentrations (ug/L)

Shepley's Hill Landfill Historic Arsenic Groundwater Concentrations (ug/L)

Appendix D

Data Quality Evaluation and Chemical Quality Analysis Reports

June 2005 Monitoring

Data Evaluation Report For Shepley's Hill Landfill, Fort Devens, MA Long Term Monitoring Groundwater Samples Samples Collected June 2005

Introduction

Nine total groundwater samples were collected were collected from Shepley's Hill Landfill at the former Fort Devens, Ayer, Massachusetts. The samples were analyzed at Severn Trent Laboratories (in Colchester VT) for Volatile Organic Compounds (VOCs), Project specific Metals, Alkalinity, Anions (Nitrate, Phosphate, Sulfate, and Chloride), Biochemical Oxygen Demand (BOD₅), Chemical Oxygen Demand (COD), Total Hardness, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Cyanide and Total Organic Carbon (TOC). The samples were collected on June 6 and 7, 2005 (see Groundwater Analytical Results Table.

Laboratory reports were reviewed for adherence to acceptable laboratory practices. The data evaluation elements reviewed include sample shipment temperatures, holding times, blank sample results, surrogate recoveries, LCS/LCSD recoveries and precision, MS/MSD recoveries and precision, and precision between sample duplicates.

The results were evaluated for acceptability in accordance with the laboratory's defined acceptance limits, with standard EPA SW846 guidance, with guidelines provided in EM 200-1-3, Appendix I "Shell For Analytical Requirements", dated 1 February 2001, and/or EM 200-1 - 10 (DRAFT/Final), "Guidance for Evaluating Performance Based Chemical Data Packages".

Sample Shipment and Receipt

All sample coolers were packed with ice in the field. Sample shipments were received at the laboratory on June 7 and 8, 2005. All samples were appropriately preserved. There are no sample shipment or receipt anomalies associated with these samples.

Data Qualification by Method

Volatile Organic Compounds (VOCs, SW-846 Method 5030/8260B)

SAMPLES :

SHL- 19 - Results for 2-butanone, acetone and xylenes are qualified ("J") estimated due to low matrix spike duplicate recovery, low matrix spike recovery, and low matrix spike recovery and high RPD between MS and MSD, respectively.

SHL-11-DUP - Due to equipment blank contamination, the reported value for acetone for this sample, 2.4 J ug/L, is elevated to the reporting limit for acetone and is reported as 5.0 U ug/L.

Metals (SW-846 Method 601 0B; Mercury Method 7470)

No data review qualifiers were applied. All data is acceptable and useable as reported.

Alkalinity (Method 310.1)

All alkalinity results are qualified as ("J") estimated due to holding time exceedance of date of sampling to date of analysis.

Biological oxygen Demand (BOD₅, EPA Method 405.1)

No data review qualifiers were applied. All data is acceptable and useable as reported.

COD (Method 410.4)

No data review qualifiers were applied. All data is acceptable and useable as reported.

Anions (Method 300.0)

SAMPLES:

SHL-3 - Due to equipment blank contamination, the reporting limit for chloride is elevated to the level found in the sample and reported as 690 U ug/L.

SHL-5 - Due to equipment blank contamination, the reporting limit for sulfate is elevated to the level found in the sample and reported as 910 U ug/L.

SHL-10 - Due to equipment blank contamination, the reporting limit for chloride is elevated to the level found in the sample and reported as 1,100 U ug/L.

SHL-11 - Due to equipment blank contamination, the reporting limit for sulfate is elevated to the level found in the sample and reported as 880 U ug/L

SHL-11 DUP - Due to equipment blank contamination, the reporting limit for sulfate is elevated to the level found in the sample and reported as 1,200 U ug/L.

SHL-19 - Due to equipment blank contamination, the reporting limit for chloride is elevated to the level found in the sample and reported as 1,100 U ug/L.

All sample results for nitrate are qualified. Due to equipment blank contamination, the reporting limit for nitrate is elevated to the level found in each sample and reported as ("U").

Hardness as CaCO₃ (Method 130.2)

No data review qualifiers were applied. All data is acceptable and useable as reported.

Total Cyanide (EPA Method 335.4)

No data review qualifiers were applied. All data is acceptable and useable as reported.

TDS (Method 160.1)

No data review qualifiers were applied. All data is acceptable and useable as reported.

TSS (Method 160.2)

No data review qualifiers were applied. All data is acceptable and useable as reported.

Total Organic Carbon (SW-846 Method 9060)

No data review qualifiers were applied. All data is acceptable and useable as reported.

CHEMICAL QUALITY ASSURANCE REPORT

LONG TERM GROUNDWATER MONITORING AT SHEPLEY'S HILL LANDFILL DEVENS, MASSACHUSETTS JUNE 2005 SAMPLING ROUND

PREPARED BY DAVID LUBIANEZ OF THE GEOLOGY & CHEMISTRY SECTION ENGINEERING/PLANNING DIVISION

DEPARTMENT OF THE ARMY NEW ENGLAND DISTRICT, CORPS OF ENGINEERS CONCORD, MASSACHUSETTS

MARCH 3, 2006

CHEMICAL QUALITY ASSURANCE REPORT

LONG TERM GROUNDWATER MONITORING AT SHEPLEY'S HILL LANDFILL DEVENS, MASSACHUSETTS JUNE 2005 SAMPLING ROUND

One groundwater QA sample from Shepley's Hill Landfill Long Term Monitoring, Devens Massachusetts project was analyzed by the QA laboratory, resulting in a total of 37 target determinations. In 24 of these determinations analytes were detected by one or both laboratories. Results from the analysis of QA samples were compared with results from analyses of the corresponding primary samples.

All primary lab analyses were performed by Severn Trent Laboratories, Inc., Colchester, VT. Analyses performed were VOCs; trace metals, aluminum, arsenic, barium, cadmium, chromium, copper, iron, manganese, lead, nickel, silver, selenium, sodium, zinc, and mercury; total dissolved solids (TDS), chloride, nitrate, sulfate, alkalinity, total cyanide, biological oxygen demand (BOD), total organic carbon (TOC), total suspended solids (TSS) and chemical oxygen demand (COD). QA laboratory analyses were performed by AMRO Environmental Laboratories, Merrimack, NH.

Comparability and agreement was evaluated and expressed in terms of relative percent difference (RPD). For all analyses, RPD values greater than or equal to 75% RPD constituted a data discrepancy. For VOCs and metals, only project specific targets were used for comparison.

The primary and QA samples agreed overall in 33 (89%) of the comparisons. Primary and QA samples agreed quantitatively in 19 out of 24 (79%) of the comparisons. Refer to Table 1 for a QA split sample data comparison summary. Quantitative agreement represents only those determinations where analyte was detected by at least one laboratory.

Primary laboratory QC was evaluated and reported in the data evaluation report. See that report for findings. QA laboratory data was evaluated for custody, holding times, and laboratory QC compliance and found to be within criteria except as noted: sample SHL-11 had the pH adjusted to >12 upon receipt at the laboratory and the analysis for nitrate was performed outside of holding time. These discrepancies could result in possible low bias. Any other noted QC anomalies did not seriously impact the QA data or its usability and are not considered significant. None of the above noted QC issues significantly impact the usability of the QA data. All QA data is acceptable for its intended use and data comparison between laboratories exhibits mostly good agreement except for metals, which exhibited only fair agreement.

Table 1

Quality Assurance Split Sample Data Comparison Summary

Project: Shepley's Hill Landfill, LTM , Devens, Massachusetts

	Overall Agreement (1)		Quantitative Agreement (2)	
Test Parameter	Number	Percent	Number	Percent
VOC	12/12	100	3/3	100
Trace Metals	11/15	73	6/11	54
TDS	1/1	100	1/1	100
Chloride	1/1	100	1/1	100
Nitrate	1/1	100	1/1	100
Sulfate	1/1	100	1/1	100
Alkalinity	1/1	100	1/1	100
Total Cyanide	1/1	100	1/1	100
BOD	1/1	100	1/1	100
COD	1/1	100	1/1	100
TOC	1/1	100	1/1	100
TSS	1/1	100	1/1	100
Total	33/37	89	19/24	79

NOTES:

(1) Represents the number and percentage agreement of all determinations including analytes not detected by either laboratory.

(2) Represents the number and percentage agreement of only those determinations where an analyte was detected by at least one laboratory.

Groundwater Analytical Results - June 6-7, 2005 Sampling Event Shepley's Hill Landfill Devens, Massachusetts (Sheet 1 of 1)

	Well No.	SHL-11	SHL-11-QA	
PARAMETERS	CLEANUP	µg/L	µg/L	RPD
	LEVEL (1)			
	µg/L			
VOLATILES (8260B)				
1,1-Dichloroethane	70 (4)	5.0 U	2.0 U	N/A
1,2-Dichlorobenzene	600	5.0 U	2.0 U	N/A
1,2-Dichloroethane	5	5.0 U	5.0 U	N/A
1,2-Dichloroethene (total)	70 (2)	1.4 J	1.2 J	15
1,3-Dichlorobenzene	600 (2)	5.0 U	2.0 U	N/A
1,4-Dichlorobenzene	5	5.0 U	1.6 J	N/A
2-Butanone	(a)	5.0 U	10 U	N/A
4-Methyl-2-Pentanone	-	5.0 U	10 U	N/A
Acetone	3,000 (4)	5.0 U	10 U	N/A
Benzene	5 (2)	1.5 J	1.4	7
Methyl-t-Butyl Ether	70 (4)	5.0 U	2.0 U	N/A
Xylenes	10,000 (2)	5.0 U	2.0 U	N/A
METALS (6010B or as noted)				
Aluminum	6,870	88 U	480	N/A
Arsenic	50	524	527	1
Barium	2,000 (2)	78.5 B	67 U	16
Cadmium	5 (2)	0.6 U	5.0 U	N/A
Chromium	100	1.2 U	10.0 U	N/A
Copper	1,300 (3)	6.6 B	4.82 J	31
Iron	9,100	59400	57000	4
Lead	15	4.8	1.1 J	125
Manganese	1,715	2380	2410	1
Mercury (7470A)	2 (2)	0.1 U	0.2 U	N/A
Nickel	100	3 U	4.94 J	N/A
Selenium	50 (2)	3.8 U	5.0 U	N/A
Silver	40 (4)	1.8 U	2.36 J	N/A
Sodium	20,000	21600	21100	2
Zinc	2,000 (4)	5 B	27.4	138
GENERAL CHEMISTRY				
Alkalinity as CaCO ₃	-	201,000	170,000	17
Biochemical Oxygen Demand	-	1,400	2,000 U	N/A
Chloride		23,900	25,000	4
Chemical Oxygen Demand	-	20,000 U	16,000 J	N/A
Cyanide (Total)	200 (2)	10 U	5.0 J	N/A
Hardness as CaCO ₃	-	127,000	123,000	3
Nitrate as Nitrogen	10,000 (2)	420 U	51 J	N/A
Sulfate	500,000 (2)	880 U	730 J	N/A
Total Dissolved Solids	-	585,000*	380,000	42
Total Suspended Solids	-	33,100	21,000	45
Total Organic Carbon	-	3,600	3,600	0

Notes:

Shaded areas with bold numbers indicate cleanup level exceedance -

B = value within 5 times of the greater amount detected in the equipment or preparation blank samples

B (inorganics)= value below PQL but above IDL

J = estimated value

U = Below laboratory RL

* = duplicate analysis Relative Percent Difference outside acceptance limits

N/A = not applicable

January 2006 Monitoring

Fort Devens 2005 Annual Shepley's Hill Sampling Data Quality Evaluation Report

Introduction

The objective of this Data Quality Evaluation (DQE) report is to assess the data quality of analytical results for water samples collected for Fort Devens during the 2005 Annual Shepley's Hill sampling event. Individual method requirements, guidelines from the USEPA Contract Laboratory National Functional Guidelines for Inorganic Data Review, July 2002 (NFG) were used in this assessment.

This report is intended as a general data quality assessment designed to summarize data issues.

Analytical Data

This DQE report covers 17 normal (N) and one field duplicate (FD) environmental samples. These samples were reported under three sample delivery groups. Samples were collected between January 19 and January 25, 2006 and delivered to the laboratory the same day as collection. Alpha Analytical Laboratories (APHW) in Westborough, Massachusetts performed the analyses. Selected samples were analyzed for the following analytes/methods:

	Table 1 Analytical Parameters		
Parameter	Method	Laboratory	
Total Alkalinity	A2320B	APHW	
Total Dissolved Solids	A2540C	APHW	
Total Suspended Solids	A2540D	APHW	
Total Cyanide	SW9014	APHW	
Chloride	SW9251	APHW	
Nitrogen, Nitrate	A4500	APHW	
Sulfate	SW9038	APHW	
Chemical Oxygen Demand	A5220D	APHW	
Biochemical Oxygen Demand (5-day)	A5210B	APHW	
Total Organic Carbon	SW9060	APHW	
Hardness	A2340B	APHW	
Methylene Chloride	SW8260B	APHW	
1,1-Dichloroethane	SW8260B	APHW	
Chloroform	SW8260B	APHW	
Carbon Tetrachloride	SW8260B	APHW	
1,2-Dichloropropane	SW8260B	APHW	

DATA QUALITY EVALUATION REPORT

	Table 1 Analytical Parameters	S	
Parameter	Method	Laboratory	
Dibromochloromethane	SW8260B	APHW	
1,1,2-Trichloroethane	SW8260B	APHW	
Tetrachloroethene	SW8260B	APHW	
Chlorobenzene	SW8260B	APHW	
Trichlorofluoromethane	SW8260B	APHW	
1,2-Dichloroethane	SW8260B	APHW	
1,1,1-Trichloroethane	SW8260B	APHW	
Bromodichloromethane	SW8260B	APHW	
trans-1,3-Dichloropropene	SW8260B	APHW	
cis-1,3-Dichloropropene	SW8260B	APHW	
1,1-Dichloropropene	SW8260B	APHW	
Bromoform	SW8260B	APHW	
1,1,2,2-Tetrachloroethane	SW8260B	APHW	
Benzene	SW8260B	APHW	
Toluene	SW8260B	APHW	
Ethylbenzene	SW8260B	APHW	
Chloromethane	SW8260B	APHW	
Bromomethane	SW8260B	APHW	
Vinyl Chloride	SW8260B	APHW	
Chloroethane	SW8260B	APHW	
1,1-Dichloroethene	SW8260B	APHW	
trans-1,2-Dichloroethene	SW8260B	APHW	
Trichloroethene	SW8260B	APHW	
1,2-Dichlorobenzene	SW8260B	APHW	
1,3-Dichlorobenzene	SW8260B	APHW	
1,4-Dichlorobenzene	SW8260B	APHW	
Methyl tert butyl ether	SW8260B	APHW	
m,p-Xylene	SW8260B	APHW	
o-Xylene	SW8260B	APHW	
cis-1,2-Dichloroethene	SW8260B	APHW	
Dibromomethane	SW8260B	APHW	
1,2,3-Trichloropropane	SW8260B	APHW	
Styrene	SW8260B	APHW	
Dichlorodifluoromethane	SW8260B	APHW	
Acetone	SW8260B	APHW	
Carbon disulfide	SW8260B	APHW	

C:\DOCUMENTS AND SETTINGS\SSMITH9\MY DOCUMENTS\SSS\PROJ\DEVENS_SHL\2005_ANNUAL_LTM\2005_06 REPORT\APP_D_ANALYTICAL QAQC\CH2M_HILL_QA_QC_DEVENS_SHEPLEYSHILL_2005ANNUAL_0506.DOC 2

	Table 1 Analytical Parameters	s	
Parameter	Method	Laboratory	
2-Butanone	SW8260B	APHW	
4-Methyl-2-pentanone	SW8260B	APHW	
2-Hexanone	SW8260B	APHW	
Bromochloromethane	SW8260B	APHW	
Tetrahydrofuran	SW8260B	APHW	
2,2-Dichloropropane	SW8260B	APHW	
1,2-Dibromoethane	SW8260B	APHW	
1,3-Dichloropropane	SW8260B	APHW	
1,1,1,2-Tetrachloroethane	SW8260B	APHW	
Bromobenzene	SW8260B	APHW	
n-Butylbenzene	SW8260B	APHW	
sec-Butylbenzene	SW8260B	APHW	
tert-Butylbenzene	SW8260B	APHW	
o-Chlorotoluene	SW8260B	APHW	
p-Chlorotoluene	SW8260B	APHW	
1,2-Dibromo-3-chloropropane	SW8260B	APHW	
Hexachlorobutadiene	SW8260B	APHW	
Isopropylbenzene	SW8260B	APHW	
p-lsopropyltoluene	SW8260B	APHW	
Naphthalene	SW8260B	APHW	
n-Propylbenzene	SW8260B	APHW	
1,2,3-Trichlorobenzene	SW8260B	APHW	
1,2,4-Trichlorobenzene	SW8260B	APHW	
1,3,5-Trimethylbenzene	SW8260B	APHW	
1,2,4-Trimethylbenzene	SW8260B	APHW	
Ethyl ether	SW8260B	APHW	
Isopropyl ether	SW8260B	APHW	
Ethyl tert butyl ether	SW8260B	APHW	
Tertiary amyl methyl ether	SW8260B	APHW	
1,4-Dioxane	SW8260B	APHW	
Total Aluminum	SW6010B	APHW	
Total Arsenic	SW6010B	APHW	
Total Barium	SW6010B	APHW	
Total Cadmium	SW6010B	APHW	
Total Chromium	SW6010B	APHW	
Total Copper	SW6010B	APHW	

C:\DOCUMENTS AND SETTINGS\SSMITH9\MY DOCUMENTS\SSS\PROJ\DEVENS_SHL\2005_ANNUAL_LTM2005_06 REPORT\APP_D_ANALYTICAL QAQC\CH2M_HILL_QA_QC_DEVENS_SHEPLEYSHILL_2005ANNUAL_0506.DOC 3

DATA QUALITY EVALUATION REPORT

	Table 1 Analytical Parameters	
Parameter	Method	Laboratory
Total Iron	SW6010B	APHW
Total Manganese	SW6010B	APHW
Total Mercury	SW7470A	APHW
Total Nickel	SW6010B	APHW
Total Silver	SW6010B	APHW
Total Sodium	SW6010B	APHW
Total Zinc	SW6010B	APHW

The assessment of data includes a review of: (1) the Chain-of-Custody (CoC) documentation; (2) holding time compliance; (3) the required quality control (QC) samples at the specified frequencies; (4) flagging for method blanks; (5) laboratory control spiking samples (LCS); (6) analytical spike data; (7) matrix spike/matrix spike duplicate (MS/MSD) samples; and (8) flagging for equipment blank.

Data flags were assigned according to the NFG. Multiple flags are routinely applied to specific sample method/matrix/analyte combinations, but there will be only one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes matrix and blank sample impacts.

The data flags are those listed in the NFG and are defined below:

- J = Analyte is present but the reported value may not be accurate or precise (estimated).
- R = The data are unusable due to deficiencies in the ability to analyze the sample and meet QC criteria.
- U = Analyte was not detected at the specified detection limit.
- UJ = Analyte was not detected and the specified detection limit may not be accurate or precise (estimated).

Findings

The overall summaries of the data validation findings are contained in the following sections:

Holding Times

All holding-time criteria were met.

Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination.

Equipment Blank

An equipment blank was collected and analyzed at the required frequency. Methylene chloride, chloroform, and acetone were detected in the equipment blank. None of these target analytes were detected in any of the samples so no flags were applied.

Trip Blank

Trip blanks were collected and analyzed at the required frequency. No target analytes were detected in the trip blanks so all acceptance criteria were met.

Field Duplicates

FDs were collected and analyzed at the required frequency. The relative percent differences (RPD) between the N and FD results met the acceptance criteria.

Laboratory Control Samples

Laboratory control sample/laboratory control sample duplicates were analyzed as required. Tetrahydrofuran was above the RPD limit but all samples were non-detects and no flagging is required per the NFG. Carbon tetrachloride and 1,2,3-trichloropropane was above the laboratory control limit but all samples were non-detects so no flags were applied. All other accuracy and precision criteria were met.

Matrix Spike/Matrix Spike Duplicate Samples

Matrix spike/matrix spike duplicates (MS/SD) were analyzed as required. Total mercruy did not meet MS/SD acceptance criteria for sample 011906-SHL19. The associated result was non-detect so no flags were applied. All other accuracy and precision criteria were met.

Chain of Custody

Methods outlined on the CoC were performed by the lab using the equivalent Standard Method. No other discrepancies were noted.

Completeness

Out of approximately 1350 points, there were no data points rejected due to QC exceedances, no data points were qualified as non-detect due to blank exceedances, and no data points were qualified as estimated due to QC exceedances. These numbers indicate that the overall completeness goals for the project were met and that the quality of the analytical program and laboratory is sufficient to meet the project data quality objectives.

Overall Assessment

The final activity in the data quality evaluation is an assessment of whether the data meets the data quality objectives. The goal of this assessment is to demonstrate that a sufficient number of representative samples were collected and the resulting analytical data can be used to support the decisionmaking process. The precision, accuracy, representativeness, completeness and comparability are addressed in the NFG. The following summary highlights the data evaluation findings for the above-defined events:

- 1. The completeness objectives were met for all method/analyte combinations.
- 2. There were no results qualified because of low-level blank contamination.
- 3. The precision and accuracy of the data, as measured by laboratory QC indicators, suggest that the NFG goals have been met.

C:IDOCUMENT\$ AND SETTINGS\SSMITH9\MY DOCUMENT\$\SSS\PROJ.DEVENS_SHL\2005_ANNUAL_LTM\2005_06 REPORT\APP_D_ANALYTICAL QAQC\CH2M_HILL_QA_QC_DEVENS_SHEPLEYSHILL_2005ANNUAL_0506.DOC 6 Appendices E – G

CD Enclosed

Final On-Site Discharge Evaluation– Shepley's Hill Groundwater Extraction, Treatment, and Discharge System

PREPARED FOR:	BRAC Clean-Up Team (BCT)
PREPARED BY:	CH2M HILL
DATE:	December 22, 2005

Introduction

CH2M HILL has conducted this evaluation for the Devens BRAC Environmental Office to evaluate on-site discharge for the Shepley's Hill Landfill Arsenic Treatment Plant (ATP). Currently, the treatment plant is constructed and includes a discharge pipeline across the landfill connected to the Devens Regional Waste Water Treatment Facility (DRWWTF) sewer system at the intersection of Cook and Antietam Streets. The Army BRAC Environmental Office has requested that CH2M HILL undertake an effort, expected to bring considerable life-cycle operational cost savings, to evaluate both surface water and groundwater discharge of treated water within the immediate area of the ATP.

This effort involved evaluation of the following elements:

- The hydraulics relating to both groundwater and surface water discharge;
- Applicable Relevent and Appropriate Requirements (ARARs);
- Potential treatment plant process needs.

To conduct this effort, CH2M HILL staff met with the Base Clean-Up Team (BCT) first to introduce the effort in early May. Following completion of the initial hydraulic modeling effort, CH2M HILL met with the BCT again at a technical meeting on June 2, 2005 to present findings, solicit input, and develop a short list of alternatives to carry forward for further evaluation. A draft technical memorandum, dated June 29, 2005 was prepared and presented at the BCT on June 30, 2005. DEP and EPA submitted formal comments, dated August 12, 2005 and September 16, 2005, respectively. Responses to these comments were provided to the BCT and on-site discharge was discussed further at the October 6, 2005 BCT meeting.

The following sections of this technical memorandum (Tech Memo) present the hydraulic modeling analysis, applicable relevant and appropriate requirements (ARARs), potential process needs, a summary feasibility screening comparison, and recommendations based on the analysis conducted and responses to comments on the draft analysis from the BCT.

Hydraulic Modeling Analysis

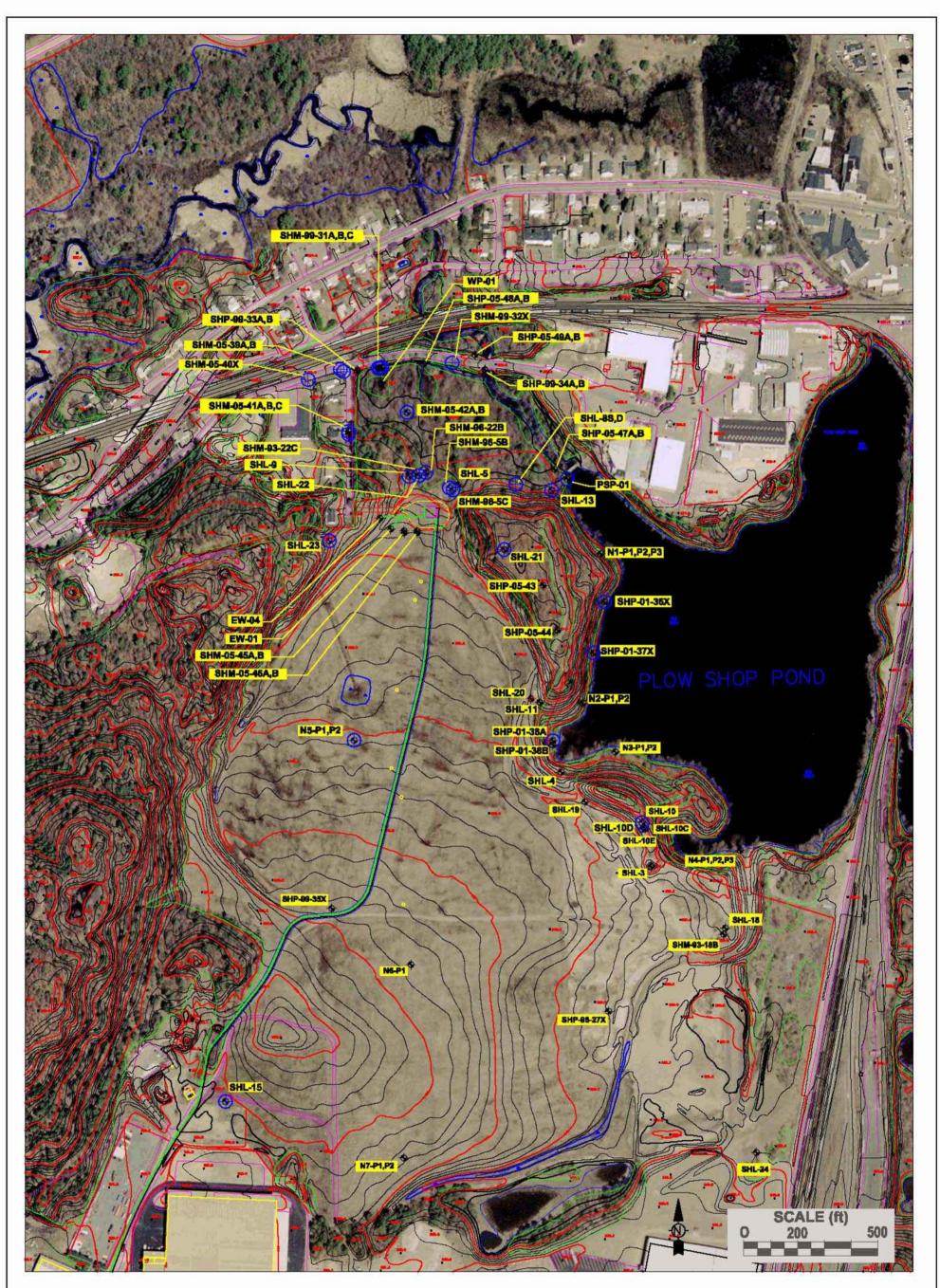

The Shepley's Hill landfill groundwater model developed over several years by the Army (HLA, 2003) was utilized for the design of the extraction well field installed north of the landfill during the winter of 2004/2005. Details of the design basis are provided in the Remedial Design and Remedial Action Workplan, Groundwater Extraction, Treatment, And Discharge Contingency Remedy, Final 100% Submittal (CH2M HILL, 2005).

Figure 1 provides a map depicting the location of two extraction wells (EW-01 and EW-04) that will be operated at a total cumulative rate of 25 gallons per minute (gpm) during the initial operation of the groundwater extraction system. The alignment of the discharge pipeline/berm across the capped landfill and along Cook Street is also depicted in Figure 1. Installation of this pipeline was completed in December, 2004. Figure 1 also depicts the performance monitoring network developed for both geochemical monitoring and hydraulic monitoring during the three month start-up period. Following collection of data during this period, the monitoring network may be modified. If a decision is made to complete final design and construction of an on-site discharge option, this network and other wells located in the Shepley Hill landfill area would be available to monitor performance of a combined, on-site extraction and discharge system.

Prior to initiating the hydraulic modeling effort, the landfill property and vicinity were reviewed for locations for placement of groundwater discharge points, including reinjection wells, trenches/infiltration galleries, and basins. In addition, optimal locations for surface water discharge were considered. The results of this preliminary review, briefly presented to the BCT on May 12, 2005, consisted of the following elements:

- On-site groundwater discharge would not be evaluated within the footprint of the capped areas;
- The primary goal of groundwater discharge would be to enhance the performance of Run 412, the final design model run used for siting of the extraction wellfield;
- Groundwater discharge on the west side of the landfill was not considered to be viable due to shallow overburden adjacent to Shepley's Hill and expected inefficiency involving potential recirculation of treated water back to the extraction wellfield.
- Generally, offbase discharge to the north of the extraction wellfield was not considered due to off-base access requirements, the existence of good viable alternatives to the east of the landfill, and expected concerns regarding the geochemical effects of downgradient discharge into the aquifer zone impacted by groundwater from the landfill.

In summary, this meant that the modeling evaluation would focus generally to the east of the landfill area, as defined by the capped area, and the treatment plant. Following the preliminary evaluation, several locations for testing of groundwater discharge were developed. The modeling effort was then conducted in two phases with the best alternatives from the first phase being carried forward to the second phase. Table 1 summarizes the scope of the modeling effort conducted during Phase 1 and 2.

LEGEND

- Hydraulic Monitoring Network
- Geochemistry Sentinel Network

Note: New Well Locations Approximate (to be surveyed)

FIGURE 1 Performance Monitoring Network

Modeling Phase	Objective/Description
Phase 1	Evaluate the modeled hydraulic response of the extraction wellfield to the design flow of 50 gpm, involving reinjection in Layer 1.
Phase 2	Further analysis of alternatives selected from Phase 1. Evaluate the modeled hydraulic response to groundwater discharge of the existing extraction wellfield operating at both 25 and 50 gpm. This analysis also included simulation of a pair of injection wells, infiltration trenches/galleries, and infiltration basins.

 TABLE 1

 Groundwater Modeling Phases

TABLE 2

Results of the first modeling phase were presented to the BCT at a technical meeting on June 2, 2005 and a set of alternatives was selected to carry forward for further analysis. Table 2 provides a summary of the simulations that were conducted in each phase and a brief description of the characteristics of each of them.

Model Run	Phase	Discharge Approach	Flow (gpm)	Comment
412	n/a	POTW (offsite)	50	Design scenario selected for 100% design.
Northern Area	a (N-Series)		
N001	1	Inject, single well	50	kame terrace
N002	1	Inject, single well	50	East of ATP, foot of kame terrace
N002-2	2	Inject, single well	25	
N002A	2	Inject, two well	50	
N002-2A	2	Inject, two well	25	
N002B	2	Infilt., trench/gallery	50	
N002-2B	2	Infilt., trench/gallery	25	
N002C	2	Infilt., basin	50	
N002-2C	2	Infilt., basin	25	
N003	1	Inject, single well	50	North of ATP near boundary
N004	1	Inject, single well	50	East of ATP, foot of kame terrace
N004-2	2	Inject, single well	25	
N004A	2	Inject, two well	50	
N004-2A	2	Inject, two well	25	
N004B	2	Infilt., trench/gallery	50	
N004-2B	2	Infilt., trench/gallery	25	
N004C	2	Infilt., basin	50	
N004-2C	2	Infilt., basin	25	
N005	1	Inject, single well	50	Kame Terrace

Model Run	Phase	Discharge Approach	Flow (gpm)	Comment
Central Area (C-Series)			
C001	1	Inject, single well	50	Center, upgrad. PSP
C002	1	Inject, single well	50	Center, upgrad. PSP
C003	1	Inject, single well	50	Center, dngrad. PSP
C004	1	Inject, single well	50	Center, upgrad. PSP
C004-2	2	Inject, single well	25	
C004A	2	Inject, two well	50	
C004-2A	2	Inject, two well	25	
C004B	2	Infilt., trench/gallery	50	
C004-2B	2	Infilt., trench/gallery	25	
C004C	2	Infilt., basin	50	
C004-2C	2	Infilt., basin	25	
Southern Area	a (S-Series)			
S001	1	Inject, single well	50	Southeast
S002	1	Inject, single well	50	Southeast
S002-2	2	Inject, single well	25	
S002A	2	Inject, two well	50	
S002-2A	2	Inject, two well	25	
S002B	2	Infilt., trench/gallery	50	
S002-2B	2	Infilt., trench/gallery	25	
S002C	2	Infilt., basin	50	
S002-2C	2	Infilt., basin	25	
S003	1	Inject, single well	50	Southeast
S004	1	Inject, single well	50	Southeast
S005	1	Inject, single well	50	South
S006	1	Inject, two wells	50	South
S007	1	Inject, single well	50	Southeast
S008	2	Inject, single well	50	Southeast

Footnotes:

- 1. Table includes 50 and 25 gpm scenarios. The 50 gpm scenarios were tested due to 50 gpm extraction well design criteria and viable alternatives from Phase 1 testing were then tested in various discharge configurations and at 50 and 25 gpm.
- 2. The "B" series simulate discharge to a 40' by 80' area orthogonal to flow lines through infiltration using trenches, or a gallery/basin. The "C" series simulate discharge to an 80' by 80' area through infiltration using trenches, or a gallery/basin.

Run 412, the 50 gpm design run (CH2M HILL, 2005), involving offsite discharge of water to the DRWWTF (local POTW), is provided for reference. In the case of "off-site" discharge, groundwater in the area of Shepley's Hill landfill is only responding to the extraction stress. When treated water is place back in the aquifer through infiltration or reinjection in the vicinity of the wellfield, some effect on the performance of the extraction wellfield is expected. As mentioned previously, the primary goal of this modeling effort was to identify discharge arrangements that would be expected to enhance the performance of the extraction wellfield without requiring pumping rates to be modified (ie. increased) to achieve similar capture.

Alternatives of surface water release either at Nonacoicus Brook (NB) or Plow Shop Pond (PSP), are considered to perform similarly to Run 412. This is due to the general discharge of groundwater in the lower reaches of the Nonacoicus Brook, 18.9 square mile drainage.

Particle tracking and the results of capture zone analyses for each of the model runs conducted in Phase 1 were presented to the BCT and the pros and cons of each arrangement were discussed. A set of model runs including N002, N004, C004, and S002 was selected to carry forward to Phase 2 for further analysis. Table 2 provides a summary of all the model runs that were conducted in Phase 1 and 2.

The objective of Phase 2 of the modeling effort was to further test a variety of discharge schemes for the shortlist of groundwater discharge locations. These would be tested at 50 gpm and 25 gpm. These discharge schemes involved a pair of injection wells (in adjacent 40' by 40' model cells) and infiltration involving a 40' by 80' areas (two cell combination) and 80' by 80' areas (4 cell combination) to simulate trenches, galleries, or basins. These schemes were designated the A, B, and C cases, respectively.

For injection, the "A" case, a pair of injection wells was selected since a minimum of two injection wells would help to facilitate long-term maintenance. These wells were placed in adjacent model cells arranged orthogonal to flow. The infiltration approaches were simulated through adjustments in existing model recharge values to account for additional recharge of 25 gpm and 50 gpm across the discharge cells. In the "B" and "C" cases, two adjacent cells located orthogonal to flow and four cells in a square configuration were used to simulate areas that would be used for infiltration trenches, galleries, or basins. Calculations of infiltration capacity and review of other projects utilizing infiltration in similar sandy materials indicate that these are sufficient areas for infiltration of water at 50 gpm. Infiltration capacity is a parameter that during system operations may change considerably with time. This is usually due to fouling associated with precipitation of effluent dissolved constituents at the infiltration bed interface, associated with changes in redox and associated biological growth. In the case of ATP, much of the dissolved load will have been removed from the effluent stream so this is not expected to be a significant issue. However, it will be considered during final design of an infiltration approach.

The results of the Phase 2 runs are provided in Attachment A and are discussed later in the feasibility screening section.

Applicable or Relevant and Appropriate Requirements

According to Section 121 of CERCLA, work at CERCLA sites should result in a standard of control equal to that of any other applicable or relevant and appropriate requirements (ARARs) or standards promulgated under any federal or more stringent state environmental statutes. Requirements under other environmental laws may be either "applicable" or "relevant and appropriate" but not both.

To evaluate ARARS, the first step is to determine if a requirement is applicable. As identified in the National Contingency Plan, Section 300.5, applicable requirements are cleanup standards, levels of control, limitations, or other substantive requirements promulgated under federal or state environmental laws that address a hazardous substance, pollutant, contaminant, remedial action, location or other circumstances of a CERCLA site.

If a standard is identified as not directly "applicable", then the next step in the process is to determine if it may be "relevant and appropriate". Relevant and appropriate requirements mean those standards and other substantive requirements, criteria, or limitations that while not "applicable" to a hazardous substance pollutant, or contaminant, remedial action, location, or other circumstances at a CERCLA site, address situations similar enough to those encountered at the CERCLA sites such that they are "relevant and appropriate".

CERCLA remedial actions are exempt from permitting requirements; consequently, only substantive portions of ARARs must be complied with. Permitting and reporting requirements, which are considered to be administrative requirements, are not ARARs. ARARs are typically divided into three categories: chemical-specific ARARs relating to the substances present at the site, location-specific ARARs relating to where the site is situated, and action-specific ARARs relating to the type of actions that may be taken to address the problem.

A remedial action may be selected that does not meet all ARARs (ie. involving an ARAR waiver) per Section 121(d)(4)). The circumstances of a waiver are a) the remedial action is an **Interim Measure** or only part of the complete remedy, b) compliance with the standard would present **greater risk** to human health and the environment, c) compliance with a standard is **technically impracticable**, d) **equivalent performance** will be achieved to that under an otherwise applicable standard or limitation, e) a **State has inconsistently applied requirements** in similar remedial situations, and f) the remedial action does not provide a balance between the need for remedial action at a site and the availability of the Fund for other sites (ie **Fund balancing**). This last circumstance or rationale for a waiver is not available to DoD.

ARARs have been reviewed and summarized for groundwater and surface water discharge and are presented in a table presented in Attachment B. The primary applicable standards of compliance for this project relate to discharge limitations for groundwater and surface water. The Record of Decision (ROD) establishes groundwater clean-up standards for a number of parameters for the Shepley's Hill Landfill project. These may be assumed to indirectly represent effluent limitations if remediation system effluent is being discharged to groundwater on site. In addition, State groundwater quality standards (314 CMR 6.00), as applied through the groundwater discharge permit program (314 CMR 5.00), are applicable. Currently, the area is classified as a Class I groundwater. Table 3 provides the ROD cleanup goals and the Class I groundwater standards and limitations.

TARI	F 3	
INDL	L J	

Groundwater Discharge Standards

Chemical of Concern	Limitation (ug/L)	Basis		
ROD Cleanup Goals				
Arsenic	50 ¹	MCL		
Chromium	100	MCL		
1,2-Dichlorobenzene	600	MCL		
1,4-Dichlorobenzene	5	MMCL		
1,2-Dichloroethane	5	MCL		
Lead	15	Action Level		
Manganese	1715	Site Risk Assessment		
Nickel	100	MCL		
Sodium	20,000	Health Advisory		
Aluminum	6,870	Background		
Iron	9,100	Background		
State Groundwater Standards (314 CM	<i>IR 5 and 6)</i>			
Coliform Bacteria	Shall not be discharged in amounts sufficient to render ground waters detrimental to public health, safety or welfare, or impair the ground water for use as a source of potable water.	314 CMR 5		
Arsenic	50 ¹	314 CMR 5		
Barium	1000	314 CMR 5		
Cadmium	10	314 CMR 5		
Chromium	50	314 CMR 5		
Flouride	2400	314 CMR 5		
Lead	50	314 CMR 5		
Mercury	2	314 CMR 5		
Total Trihalomethanes	100	314 CMR 5		
Selenium	10	314 CMR 5		
Silver	50	314 CMR 5		

¹ The Safe Drinking Water Act required EPA to revise the existing 50 ug/L standard for arsenic in drinking water. On January 22, 2001 EPA adopted a new drinking water MCL for arsenic of 10 ug/L. All community water systems must comply with the standard beginning on January 23, 2006.

Chemical of Concern	Limitation (ug/L)	Basis
Endrin (1,2,3,4,10, 10-hexachloro-1,7- epoxy-1, 4,4a,5,6,7,8,9a-octahydro-1, 4- endo,endo-5,8-dimethano naphthalene)	.2	314 CMR 5
Lindane (1,2,3,4,5, Shall not exceed 0.004 mg/l 6-hexachlorocyclohexane, gamma isomer)	4	314 CMR 5
Methoxychlor (1,1,1- Shall not exceed 0.1 mg/l Trichloro-2, 2-bis (p-methoxyphenyl) ethane)	100	314 CMR 5
Toxaphene (C10H10C18, Shall not exceed 0.005 mg/l Technical Chlorinated Camphene, 67-69% chlorine)	5	314 CMR 5
Chlorophenoxys: 2,4-D,(2,4-Dichloro- Shall not exceed 0.1 mg/l phenoxyacetic acid)	100	314 CMR 5
2,4,5-TP Silvex (2,4, Shall not exceed 0.01 mg/l 5-Trichlorophenoxypropionic acid)	10	314 CMR 5
Radioactivity	Shall not exceed the maximum radionuclide contaminant levels as stated in the National Interim Primary Drinking Water Standards.	314 CMR 5
Toxic Pollutants (other than those listed above)	Shall not exceed "Health advisories"	314 CMR 5
Secondary Effluent Limitations for Class	l and II Groundwater	
Copper	1000	314 CMR 5
Foaming Agents	1000	314 CMR 5
Iron	300	314 CMR 5
Manganese	50	314 CMR 5
Oil and Grease	15,000	314 CMR 5
рН	6.5 to 8.5 std units	314 CMR 5
Sulfate	250,000	314 CMR 5
Zinc	5000	314 CMR 5
All other pollutants	None in such concentrations which in the opinion of the Department would impair the ground water for use as a source of potable water or cause or contribute to a condition in contravention of standards for other classified waters of the Commonwealth.	314 CMR 5
Additional Effluent Limitation Class I Grou	undwater	
Nitrate Nitrogen (as Nitrogen)	10,000	314 CMR 5
Total Nitrogen (as Nitrogen)	10,000	314 CMR 5
Chlorides	250,000	314 CMR 5
TDS	1,000,000	314 CMR 5

It should be noted, however, that a portion of the area surrounding the Shepley's Hill landfill is designated as a Non-Potential Drinking Water Source Area (NPDWSA), per the MCP (310 CMR 40.0006). This is due to the level and type of development, including railroads, warehouses, shopping areas, and etc., over the medium and high yield deposits mapped by the USGS and qualifying as Potentially Productive Aquifers, per 310 CMR 40.0006. Landfills are not included in the definition of developed areas. The landfill area does not overlay a Zone II or IWPA for municipal wells. The McPherson Well Zone II is to the north and west of the site and is likely hydraulically isolated from groundwater from the Shepley's Hill area which discharges in the upper reaches of the Nonacoicus in the vicinity of West Main Street. The potential for a hydraulic connection will be further evaluated in the Shepley's Hill Landfill CSA/CAAA being conducted by Army BRAC.

The Nonacoicus Brook and Plow Shop Pond are considered Class B waters according to the Massachusetts Surface Water Quality Standards (314 CMR 4.06). They are not used for water supply in the area, but are habitat for fish, other aquatic life and wildlife and may support contact recreation. In addition, neither are considered an "Outstanding Resource Water", according to 314 CMR 4.06(3) which would prohibit any new discharges, unless the discharge is considered to enhance the resource.

In accordance with the Clean Water Act, each state establishes a program to assess the quality of surface water resources and reports its findings to EPA every two years (due on April 1 in even numbered years). This process output results in the development of a § 303(d) list of "impaired waters" for the state. Impaired water bodies are then further evaluated and a "total maximum daily load" (TMDL) is calculated for specific parameters such that if point and non-point sources are controlled in a manner that loading goals are met, applicable surface water quality standards may then be met for the water body. Regulations that govern the preparation of the § 303(d) lists require states to make use of all available monitoring data, including NPDES reporting, in making their assessments. The 2002 final and 2004 draft listings for PSP and NB are Category 5 ("waters requiring a TMDL") and Category 3 ("no uses assessed"), respectively. PSP is indicated to be 29 acres in size and needing TMDLs for metals, noxious aquatic plants, and exotic species. NB is indicated to be 1.5 miles in length from the outlet of Plow Shop Pond to the confluence with the Nashua River and the Category 3 listing essentially indicates that insufficient information was available for the State to list as "impaired or threatened and needing or not needing a TMDL" (Category 4 or 5) or unimpaired for some or all uses (Category 1 or 2).

Plow Shop Pond and the Nonacoicus Brook are included in the upper reaches of the Squannasitt Area of Critical Environmental Concern (ACEC). These include a 200 foot riverfront area and a 100 foot wetlands buffer zone around Plow Shop Pond. Though this designation does not preclude treated water discharges or other projects from occurring in the area, it does mean that State environmental resource agencies specifically engage in environmental reviews of projects to ensure that the interests contained within the ACEC designation are protected. State mapping of biological resource areas, including estimated and priority habitats, wetlands and vernal pools (identified and certified), and the Natural Heritage and Endangered Species Program (NHESP) "Biomap" and "Living Waters" initiatives which identify core upland biological and aquatic habitats (including supporting watersheds) important for protecting biodiversity, is provided in Attachment C. Previous discussions with the State project manager indicate that a rare species of grass and turtle

may be present in the area of the Nonacoicus Brook and Plow Shop Pond. CH2M HILL also talked with the Daniel Nein, Endangered Species Project Analyst, of the MassWildlife, Natural Heritage and Endangered Species Program (NHESP) and submitted a letter, dated July 15, 2005, requesting a review of their database for the area of Plow Shop Pond and the Nonacoicus Brook near the dam. Attachment D provides a copy of this letter and the NHESP response, dated August 11, 2005. In addition, 2005 MassGIS data for estimated and priority habitats was researched. These habitats, defined as polygons, are consistent with those identified by NHESP and listed in the 11th Edition (2003) of the Massachusetts Natural Heritage Atlas.

Table 4 provides a summary of the species identified by NHESP and provides notes/comments concerning the habitat they are associated with. Much of this information comes from rare species fact sheets available from NHESP and other organizations. The priority habitat and estimated habitat polygons are the same as those identified previously through review of the 2001 Atlas; however, they have been renumbered as follows: Priority Habitat 290 is now 269, Estimated Habitat 4018 is now 567, and Priority Habitat-317 is now 300. This renumbering was confirmed with NHESP.

The Priority Habitat-300 (formerly PH 317) polygon previously identified in the landfill area involves primarily upland species not expected to be affected by operation of the treatment system. The wetlands species are identified in the Priority Habitat-269/Estimated Habitat-567 (formerly PH-290/WH-4018) polygon north of West Main Street. It is not anticipated that on-site discharge or drawdown from the extraction wells would have an appreciable impact this far north. No habitat polygons have been identified in the reach of the Nonacoicus between the Dam and West Main Street.

Currently, maintenance schedules for the landfill cap, involving once a year mowing, account for the Grasshopper Sparrow's nesting season. Construction of any new discharge pipelines and discharge areas would need to be planned to ensure protection of the species identified in Priority Habitat 300.

Common Name	Scientific Name	Taxonomic Group	State Status	Notes/Comment
Plants		·		
Houghton's Flatsedge	Cyperus houghtonii	Plant	Endangered	Priority Habitat-300; Landfill area/woods; species likely on dry upland areas (Shepley's Hill?)
Ovate Spiked- Sedge	Eleocharis ovata	Plant	Endangered	Priority Habitat-269/Estimated Habitat- 567; Area north of West Main Street; wetland species
Wild Senna	Senna hebecarpa	Plant	Endangered	Priority Habitat-269/Estimated Habitat- 567; Area north of West Main Street; likely upland areas

TABLE 4

NHESP Rare Species Associated with Priority Habitat-300 and Priority Habitat-269/Estimated Habitat-567 Polygons

Common Name	Scientific Name	Taxonomic Group	State Status	Notes/Comment
Animals				
Upland Sandpiper	Bartramia longicauda	Bird	Endangered	Priority Habitat-300 and Priority Habitat- 269; Landfill area/woods and area north of West Main Street; habitat "open grassy areas, wet meadows, old fields, and pastures"
Grasshopper Sparrow	Ammodramus savannarum	Bird	Threatened	Priority Habitat-300; Landfill Area/woods; habitat "in sandplain grasslands, pastures, hayfields, and airfields characterized by bunch grasses"
Blanding's Turtle	Emydoidea blandingii	Reptile	Threatened	Priority Habitat-269/Estimated Habitat- 567; Area north of West Main Street; habitat "primarily aquatic preferring densely vegetated shallow ponds, marshes and small streams."
Wood Turtle	Clemmys insculpta	Reptile	Special Concern	Priority Habitat-269/Estimated Habitat- 567; Area north of West Main Street; "The preferred habitat of the Wood Turtle is riparian areas. Slower moving streams are favored, with sandy bottoms and heavily vegetated stream banks."
Blue Spotted Salamander	Abystoma laterale	Amphibian	Special Concern	Priority Habitat-269/Estimated Habitat- 567; Area north of West Main Street; "Blue spotted salamanders require moist, moderately shaded environments having depressions available for seasonal flooding [vernal pools]"

An evaluation of baseflow of the Nonacoicus Brook was conducted as part of this project. Review of drainages of similar size nearby, particularly Priest Brook in Winchendon, which is 19.4 square miles and which has an 86 year record, indicate that the flow characteristics of the ungaged Nonacoicus would be expected to be as follows in Table 5, based on a drainage area of 18.9 square miles.

TABLE 5 Drainage-Area Ratio Calculation						
River	Area (sq. mi)	Discharge Unit	Min.	Mean	Max.	
Priest	10.4	cfs	4.8	42.3	226	
Brook	19.4	19.4	gpm	2,154	18,986	101,456
Nonacoicus	18.9	cfs	4.7	41.2	220	
Brook	10.9	gpm	2,110	18,492	101,436	

Table 6 presents surface water discharge limitations identified in the NPDES Remediation General Permit for the state of Massachusetts. The NPDES program in Massachusetts is jointly administered by the EPA and DEP. The general permit was released for public comment in December, 2004 and was issued final on September 9, 2005 (see 70 Federal Register 53663). The permit reflects the substantive requirements that are applicable to remediation projects including CERCLA projects. The NPDES process, through exclusions, has provided a means for remediation projects to be initiated and move forward quickly. All non-CERCLA remediation projects in Massachusetts in the future will be required to meet the requirements of the General Remediation Permit. The State surface water discharge regulations provide an exemption at 314 CMR 5.05(3) for remediation projects, as follows:

Any discharge in compliance with the written instructions of an On-Scene Coordinator pursuant to 33 CFR Part 153 - Control of Pollution by Oil and Hazardous Substances, Discharge Removal and 40 CFR Part 300, Subchapter J - Superfund, Emergency Planning, and Community Right-To-Know Programs, Subparts B and C, or if conducted as an Immediate Response Action in compliance with M.G.L. c. 21E and the regulations promulgated thereunder, 310 CMR 40.0000, or if approved in writing by the Department, as necessary to abate, prevent, or eliminate an imminent hazard to the public health, or safety, welfare or the environment.

Whether or not this exemption applies to the ATP project, in the short term for start-up operations or for long-term operations, the discharge limitations have been evaluated here.

Effluent Characteristic	Units	Discharge Limitation	Monitoring Requirement	
			Measurement Frequency	Sample Type
pH Range for Class A and Class B Waters ¹	Standard Units	6.5 to 8.3 ²	1/Month	Grab ³
Daily Max. Temp. – Fisheries Warm water /Cold water	۴	83/68	1/Month	Grab ⁴
<i>Temperature Change</i> Class B – Warm/Cold & Lakes and Pond	۴	5/3	1/Month	Grab⁴

 TABLE 6

 NPDES Remediation General Permit -- Surface Water Discharge Limitations

Table V. Chemical Effluent Limits and Monitoring Requirements by Sub-Category
c. Sites Containing Primarily Metals

Pollutants to be Monitored	Effluent Limit	Limit Type	Sample Type	Sampling Frequency	
All Metals listed in Appendix III (See below)	See Appendix III	See Appendix III	grab	1/month	
Cyanide	SW = 1.0 ug/l , FW = 5.2 ug/l ⁵	monthly average	grab	1/month	
Carbon Tetrachloride	4.4 ug/l	daily maximum	grab	1/month	
1,2 (or o)- Dichlorobenzene (DCB)	600 ug/l	daily maximum	grab	1/month	

1,3 (or m)- Dichlorobenzene	320 ug/l	daily maximum	grab	1/month
1,4 (or p)- Dichlorobenzene	5.0 ug/l	daily maximum	grab	1/month
Total Dichlorobenzene	763 ug/l - NH only	daily maximum	grab	1/month
1,1-Dichloroethane (DCA)	70 ug/l	daily maximum	grab	1/month
1,2-Dichloroethane	5.0 ug/l	daily maximum	grab	1/month
1,1-Dichloroethylene (DCE)	3.2 ug/l	daily maximum	grab	1/month
cis-1,2-Dichloroethylene	70 ug/l	daily maximum	grab	1/month
Methylene Chloride	4.6 ug/l	daily maximum	grab	1/month
Tetrachloroethylene (PCE)	5.0 ug/l	daily maximum	grab	1/month
1,1,1-Trichloroethane (TCA)	200 ug/l	daily maximum	grab	1/month
1,1,2 Trichloroethane	5.0 ug/l	daily maximum	grab	1/month
Trichloroethylene (TCE)	5.0 ug/l	daily maximum	grab	1/month
Vinyl Chloride	2.0 ug/l	daily maximum	grab	1/month
Total Suspended Solids (TSS)	30.0 mg/l	monthly average	grab	1/month
	Appendix III Effluent	Limitations – Metal Para	meters	
Metal parameters	Total Recoverable Metal Limit @ H = 50 mg/l CaCO36 for Discharges in Massachusetts (ug/l)	Total Recoverable Metal Limit @ H = 25 mg/l CaCO37 for Discharges in New Hampshire (ug/l)	Averaging Time	Sample Type
Antimony	5.6	5.6	daily maximum	grab
Arsenic	FW = 10 SW = 36	FW = 10 SW = 36	monthly average	grab
Cadmium	FW = 0.2 SW = 8.9	FW = 0.8 SW = 9.3	monthly average	grab
Chromium III	FW = 48.8 SW = 100	FW = 27.7 SW = 100	monthly average	grab
Chromium VI	FW = 11.4 SW = 50.3	FW = 11.4 SW = 50.3	monthly average	grab
Copper	FW = 5.2 SW = 3.7	FW = 2.9 SW = 3.7	monthly average	grab
Lead	FW = 1.3 SW = 8.5	FW = 0.5 SW = 8.5	monthly average	grab

Mercury	FW = 0.9 SW = 1.1	FW = 0.9 SW = 1.1	monthly average	grab
Nickel	FW = 29.0 SW = 8.2	FW = 16.1 SW = 8.2	monthly average	grab
Selenium	FW = 5.0 SW = 71	FW = 5.0 SW = 71	monthly average	grab
Silver	FW = 1.2 SW = 2.2	FW = 0.4 SW = 2.2	daily maximum	grab
Zinc	FW = 66.6 SW = 85.6	FW = 37 SW = 85.6	monthly average	grab
Iron	1,000	1,000	daily maximum	grab

- 1. State certification requirement.
- 2. The permittee may request that the pH range be widened to within 6 to 9 s.u. or another range due to naturally occurring conditions in the receiving water. Similarly, permittees may request such a change if the naturally occurring source water is unaltered by the permittee's operation. The scope of any demonstration must receive prior approval from the MA DEP. An NOC must be submitted to the EPA-NE Director upon approval from the state (see Appendix V).
- 3. pH sampling for compliance with permit limits may be performed using field methods as provided for in EPA test method 150.1.
- 4. Temperature sampling per Method 170.1
- 5. Limits for cyanide are based on EPA's water quality criteria expressed as micrograms (ug) of free cyanide per liter. There is currently no EPA approved test method for free cyanide. Therefore, total cyanide must be reported. Although the maximum values for cyanide are 5.2 ug/l and 1.0 ug/l for freshwater and saltwater, respectively, the compliance limits are equal to the minimum level (ML) of the test method used as listed in Appendix VI (i.e., 10 ug/l).
- Assumes FW Hardness Value (H) = 50 mg/l as CaCO3 in MA: Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc which are Hardness Dependent.
- 7. Assumes FW Hardness Value (H) = 25 mg/L in NH for: Cadmium, Chromium III, Copper, Lead, Nickel, Silver, and Zinc which are Hardness Dependent.

TABLE 7

NPDES Remediation General Permit – Metals Limitations with Dilution

	Based Ceiling Limitations For Facilities Located In Massachusetts (for discharges to freshwater at H = 50 mg/L CaCO3)1							
	Parameter		I	Dilution Range	Concentratio	า		
		0 - 5	0 - 5 5 -10 10 - 50 50 - 100 >100 Ceiling value					
1.	Antimony	5.6	30	60	141	141	141 ²	
2.	Arsenic	10	50	100	500	540	540 ³	
3.	Cadmium	0.2	1.0	2.0	10.0	20.0	260	
4.	Chromium III	48.8	244	489	1,710	1,710	1,710	
5.	Chromium VI	11.4	57	114	570	1,140	1,710 4	
6.	Copper	5.2	26	52	260	520	2,070	

Appendix IV Total Recoverable Metals Limitations (ug/L) At Selected Dilution Ranges and Technology

7. Lead	1.3	6.5	13	66	132	430
8. Mercury	0.9	2.3	2.3	2.3	2.3	2.3 ⁵
9. Nickel	29.0	145	290	1,451	2,380	2,380
10. Selenium	5.0	25	50	250	408	408 ⁶
11. Silver	1.2	6	12	57	115	240
12. Zinc	66.6	333	666	1,480	1,480	1,480
13. Iron	1,000	5,000	5,000	5,000	5,000	5,000

1. Based on 7Q10 Flow.

 Based on 40 CFR 437.42, "The Centralized Waste Treatment Point Source Category - Subpart D - Multiple Wastestreams -Best Practicable Control Technology" (BPT) daily maximum for Antimony

- Based on 40 CFR 445.11, "RCRA Subtitle C Landfill Best Practicable Control Technology" (BPT) for Arsenic.
- 4. Assumes Hexavalent Chromium reduced to Tri-valent Chromium in treatment.
- 5. Based on 40 CFR 437.42, "The Centralized Waste Treatment Point Source Category Subpart D Multiple Wastestreams -Best Practicable Control Technology" (BPT) daily maximum for Mercury.
- 6. Based on 40 CFR 437.42, "The Centralized Waste Treatment Point Source Category Subpart D Multiple Wastestreams -Best Practicable Control Technology" (BPT) daily maximum for Selenium.

The NPDES program provides for the consideration of dilution in the development of discharge limitations for metals. Table 7 also shows ranges of dilution factors and associated limitations for various metals. The dilution ranges are based on the relationship of the effluent flow to the seven (7) day mean, ten year low flow (7Q10).

K.G. Ries, III, and P. J. Friesz (USGS, 2000) provide a summary of two key methods that have been used to evaluate low flow statistics for ungaged drainages. These methods include the 1) the drainage-area ratio method, used above and 2) a multiple linear regression analysis method. The drainage-area ratio method is commonly used to calculate low-flow statistics for ungaged drainage basins; however, basins of similar size and hydrologic (i.e. geologic, climatic, and development) characteristics should be used for this type of analysis. The second method provides a means to utilize data from multiple gage sites within a region and account for the influence of multiple independent physical and climatic variables. This method has been developed, in cooperation with the Massachusetts Departments of Environmental Management and Environmental Protection, into an on line accessible method merged with a GIS system for evaluation of streams in Massachusetts (USGS, 2000). This system, referred to as Stream Stats, enables the efficient calculation of the 7-day, 10-year low-flows (7Q10) for drainages of interest and is accepted by NPDES regulatory programs. The Stream Stats calculated 7Q10 for the lower reach of Nonacoicus Brook is in Table 8.

Statistic	Estimated Streamflow	90% Prediction Interval		
		Minimum	Maximum	
7-day, 10-year low flow	1.36 cfs	0.36 cfs	4.72 cfs	
	610 gpm	162 gpm	2119 gpm	

TABLE 8 Stream Statistics 7Q10

This indicates that at 25 and 50 gpm, the estimated flow of Nonacoicus Brook provides a dilution of 25 times and 13 times, respectively. Consequently, the discharge limitations for metals that are applicable are those associated with the 10-50 times dilution range in Table 7. For surface water discharge, the arsenic limitation is indicated to be 100 ug/l.

Discussion and comment on this analysis by EPA and DEP indicate that Stream Stats may not be a valid approach to conduct 7Q10 analyses since the watershed is developed and altered with impoundments (e.g. Plow Shop Pond and Grove Pond). In addition, it is not possible with the current on-line tool to develop precise drainage area calculations for the anticipated discharge location immediately downstream of the PSP dam/spillway. Further work relating to development of the 7Q10 and determination of dilution factors may be conducted later during detailed design work, as needed. The BCT will be consulted during development of the specific approach. Comments and responses on the draft document are provided in Appendix E.

In addition, comments by DEP relate to suggested monitoring work for the Army to undertake, particularly relating to satisfying the Antidegradation Provisions of the Massachusetts surface water quality standards (314 CMR 4.04). Although EPA is the NPDES issuing authority in Massachusetts, EPA looks to the state to conduct antidegradation reviews. DEP has an antidegradation review procedure. The Tier I element of this procedure, involving review for protection of existing uses, involves 1) identification of existing uses, 2) evaluation of quality impacts including water quality, hydrologic modification, or habitat alteration; and 3) comparison with water quality criteria.

As a Class B water, the Nonacoicus is considered a high quality water and subject to Tier II evaluation. High quality waters and significant resource waters are "protected and maintained for their existing level of quality (antidegradation review procedure)." The Tier II evaluation has two steps: 1) determination of whether significant water quality lowering would occur and 2) authorization of a variance. The Director may determine that the discharge is insignificant because it is de minimus, temporary, or the effluent is of equal or better quality than the receiving water. A variance may also be granted where the applicant can demonstrate compliance with four provisions of 314 CMR 4.04 (a) 1-4. These provisions are 1) demonstration of socio/economic importance, 2) demonstration of no less damaging alternative site, 3) demonstration of mitigation of the discharge (designed and operated to minimize impacts to water quality) and lastly, 4) a demonstration that the "discharge will not impair existing water uses…a level of water quality less than that specified for the Class."

DEP through an email, dated November 9, 2005, provided a memo from Paul Hogan, NPDES Program Chief, suggesting the types of data needed to support an Antidegradation Review. Further discussion of the scope of this effort and the extent to which existing background and plant operational data may satisfy these data needs will be undertaken during detailed design work should surface water discharge be pursued.

In the overall evaluation of ARARs, it is important for project stakeholders, including the regulatory agencies, the Army, and the public to keep in mind that the objective of the contingency remedy, in simple terms is to protect downgradient receptors. As such, the net effect of the operating remediation system on downgradient resources should be considered. If there are any impacts related to the selected approach for discharge to ecological resources, these need to be balanced against the overall reduction in risks to human health and to ecological resources over the length of the Nonacoicus River downstream where groundwater impacted by the Shepley's Hill landfill vicinity is expected to discharge.

Potential Process Needs

The treatment process is designed to aggressively oxidize iron and remove arsenic in association with precipitated iron. Bench-scale tests conducted during the system design process support this observation. Initial bench tests also indicated that sodium hypochlorite or ferric chloride would provide significant arsenic removal; however, in order to minimize potential manganese fouling of microfilter membranes, a more aggressive oxidant, chlorine dioxide, was selected. This would ensure that during the inline mixing of influent, manganese would be more fully precipitated and thus would collect on the microfilter membrane surface rather than within the filter membrane, providing for effective backwashing and removal. Early operation of the treatment system in August, 2005 indicates that the process effectively removes arsenic, reaching a goal of 10 ug/L with a high enough dose of chlorine dioxide.

To control the chlorine residual (free chlorine, chlorite, and chlorine dioxide) in the process effluent stream, chemical additions (dosing) will need to be carefully controlled and monitored during operations. The level of treatment dosing will be balanced against arsenic removal to ensure that chlorine residual is minimized. To achieve extremely low arsenic loading in the effluent may require heavy dosing of the influent stream; however, if slightly higher levels of arsenic are acceptable, then reduced dosing is possible. Process designers are confident that under the POTW scenario, and with the loading limitation of .07 pounds per day and a concentration limitation of 150 ug/l received at the POTW plant, the plant could be operated efficiently, balancing treatment dosing against the level of arsenic treatment. Discussions between the Army and the POTW, since issuance of the original POTW discharge permit in July, 2003 have led to reduced triggers for corrective action at the plant, however, they are still greater than the expected discharge limitation of 10 ug/l under the current Class I groundwater classification. As indicated in the ARARs section of the memo, the 7Q10 low-flow analysis indicates that under a surface water discharge scenario, NPDES discharge limitations in Massachusetts may allow up to 100 ug/l arsenic to be released with the effluent since the dilution falls within the 10 to 50 times range. If a reevaluation of the 7Q10 results in a 5-10 dilution range, then the target concentration would be 50 ug/L.

Under the POTW discharge scenario, much of the chlorine residual is expected to be consumed in the 2-3 miles of pipeline between the ATP and the DRWWTF. However, for

on-site discharge, chlorine residual is of concern due to the short distance to discharge and the potential that this residual could generate total trihalomethanes in groundwater which have a limitation of .1 mg/l. For surface water the RGP provides a total residual chlorine (TRC) limit of 11 ug/L for projects involving hydrostatic testing of pipelines and tanks. This limit is not listed specifically in the permit for other types of projects; however, associated permit guidance indicates that this limit applies to treatment systems that use chlorine compounds. In summary, if on-site discharge to either groundwater or surface water is selected, a dechlorination, granular activated carbon (GAC) in a contact tank, often provides necessary treatment to address chlorine residual and thus minimize the generation of total trihalomethanes in the effluent stream or within the aquifer. Further evaluation of this process need will be conducted, should either groundwater or surface water discharge be selected for final design and construction. During the early operation of the treatment system monitoring data relating to chlorine residual in the effluent will be collected.

Although other metals are not expected to be an issue from a groundwater or surface water discharge limitation perspective, it is expected that the load of metals, other than Arsenic, Iron, and Manganese, would be reduced, as well, through the process with the production of ferric hydroxide from dissolved iron. The jar testing that was completed for the project indicated that raw water pH will be below 7 and that the finished water pH may be as high as about 8, within the acceptable range under state groundwater and surface water limitations. Plant data collected for treated water during early operation of the plant indicate that the pH of treated water ranges between 6 and 7 standard units.

Feasibility Screening and Modeling Results

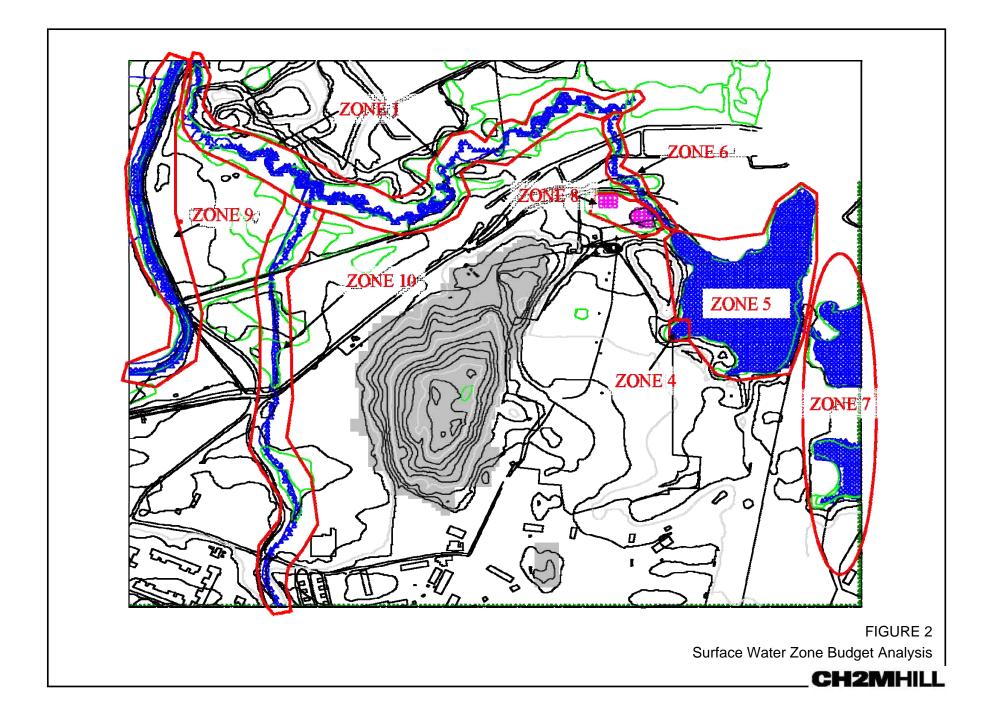
This section provides a feasibility screening for Run 412 (design model) and the on-site discharge options that have been considered in more detail as part of this evaluation. Table 9 provides a feasibility screening comparison matrix that considers effectiveness, implementability, and cost associated with the north, central, and south groundwater discharge locations and the surface water discharge locations. It compares them with the current designed/constructed system involving POTW discharge.

Scenario	Effectiveness	Implementability	Cost				
Discharge to POT	Ŵ						
1. Run 412 with Discharge to POTW	<u>Advantages</u> Modeling suggests effective capture at 50 gpm with discharge off-site to POTW.	Advantages Easily implemented with completed sewer at Cook Street	<u>Advantages</u> Very low additional capital costs.				
	Disadvantages Potential drawdown impacts to north and east of extraction wellfield.	Disadvantages Long-term pipeline/berm maintenance.	<u>Disadvantages</u> Annual discharge fees, monitoring/reporting costs, permit renewal/ maintenance costs.				
Surface Water Dis	charge						
2. Surface water discharge to Nonacoicus Brook	Advantages Returns water locally to Nonacoicus River ecosystem offsetting potential drawdown. Impacts to extraction wellfield capture zone expected to be negligible. Arsenic standard for treated water may be higher under NPDES program.	<u>Advantages</u> Pipeline and eductor easily installed and maintained. Utilize established corridor between plant and brook.	<u>Advantages</u> Low capital costs to install/maintain pipe and eductor and to modify treatment process, if needed.				
	<u>Disadvantages</u> Additional potential discharge limitations to meet substantive NPDES requirements.	Disadvantages Adjustments to process, expected to be minor, may be necessary. Potential habitat monitoring due to ACEC. Potential negative perception of point source discharge.	<u>Disadvantages</u>				
3. Plow Shop Pond	Advantages Returns water locally to PSP/Nonacoicus River ecosystem. Impacts to extraction wellfield capture zone expected to be negligible. Arsenic standard for treated water may be higher under NPDES program.	<u>Advantages</u> Pipeline and eductor easily installed and maintained. Utilize established corridor between plant and brook.	<u>Advantages</u> Low capital costs to insta /maintain pipe and educt and to modify treatment process, if needed.				

 TABLE 9
 Feasibility Screening

 Surface and Groundwater Discharge

Scenario	Effectiveness	Implementability	Cost
	Disadvantages Additional potential discharge limitations to meet substantive NPDES requirements.	Disadvantages Adjustments to process, expected to be minor, may be necessary. Potential habitat monitoring due to ACEC.	<u>Disadvantages</u>
		Potential negative perception of point source discharge.	
Groundwater Disc	harge		
4. Site East of Treatment Plant (N002/N004 Area)	Advantages Enhanced capture zone relative to Run 412. Drawdown of Run 412, in vicinity of Nonacoicus, offset by mounding from groundwater recharge. Discharge to aquifer zone not affected by landfill derived groundwater. Shallow groundwater oxic with positive ORP.	<u>Advantages</u> Pipeline and infiltration system (trenches or infiltration galleries) or injection wells easily installed. Little sitework or clearing needed.	Advantages Relatively low capital costs to install pipeline and discharge approach. These costs offset by POTW discharge fee savings.
	<u>Disadvantages</u> Concerns about geochemical effects in aquifer zone between property line and West Main Street /Nonacoicus Brook	Disadvantages Adjustments to process may be necessary to ensure trihalomethane generation negligible and standard met. Chemical-specific ARARs based on Class I groundwater. Additional monitoring downgradient may be needed.	<u>Disadvantages</u> Additional treatment process may be needed to meet substantive requirements of Massachusetts groundwater discharge permit program (314 CMR 5).
5. Site East of Landfill (C004)	Advantages Capture zone improved over the southern landfill footprint relative to Run 412. Discharge to aquifer zone not expected to have been significantly affected by landfill derived groundwater. Geochemistry in this area expected to be oxic with positive ORPs, particularly for shallow groundwater.	<u>Advantages</u> Pipeline easily installed along east side of landfill.	Advantages Relatively low to moderate capital costs to install pipeline around east side of landfill. These costs offset by POTW discharge fee savings.


Scenario	Effectiveness	Implementability	Cost					
	Disadvantages	Disadvantages	Disadvantages					
	Capture zone less effective in vicinity of "Red Cove"; however, over time treated water expected to replace water that escapes capture in this area.	Discharge area along fairly steep slope adjacent to southern arm of PSP (may be outside fence line). Site work would be needed to accommodate infiltration system or injection wells.	Additional treatment process may be needed to meet substantive requirements of Massachusetts groundwater discharge permit program (314 CMR					
		Adjustments to process may be necessary to ensure trihalomethane generation negligible and standard met. Chemical-specific ARARs based on Class I groundwater	5).					
6 Site East of	Advantagoo	5	Advertaria					
6. Site East of Landfill (S002)	Advantages Capture zone improved in southern most area of landfill footprint relative to Run 412. Discharge to aquifer zone not expected to have been significantly affected by landfill derived groundwater. Geochemistry in this area expected to be oxic with positive ORPs, particularly for shallow groundwater.	<u>Advantages</u> Pipeline and infiltration system (trenches or infiltration galleries) or injection wells easily installed.	Advantages Relatively low to moderate capital costs to install pipeline around east side of landfill. These costs offset by POTW discharge fee savings.					
	<u>Disadvantages</u>	<u>Disadvantages</u>	Disadvantages					
	Capture zone less effective along eastern boundary and in vicinity of "Red Cove"; however, over time groundwater with little or no landfill impact and treated water expected to replace water that escapes capture in this area.	Adjustments to process may be necessary to ensure trihalomethane generation negligible and standard met. Chemical-specific ARARs based on Class I groundwater	Additional treatment process may be needed to meet substantive requirements of Massachusetts groundwater discharge permit program (314 CMR 5).					

Additional groundwater modeling work was conducted during the Phase 2 modeling effort for the short list of alternatives selected at the conclusion of Phase 1, to better understand how these would operate under differing discharge scenarios. Table 2 provides a list of these runs which included both 25 and 50 gpm simulations with two-well reinjection and infiltration (simulating trenches, galleries or basins) over areas of 40' by 80' and 80'by 80'. The earlier Hydraulic Modeling Analysis section provides discussion of the modeling approach.

Attachment A provides particle tracking plots for each of the short list of on-site model runs at 25 and 50 gpm, including N002, N004, C004, and S002, vs. Run 412 (POTW discharge). Capture zone plots are provided for all of these new simulations at 50 gpm under a total of four differing discharge arrangements. In addition, a capture zone plot for N002, N004, C004, and S002 in the single well configuration (Phase 1) is provided at 25 gpm. At the

reduced pumping rate, the capture zone is not sensitive to differing discharge approaches, so plots of these capture zones were not generated for comparison.

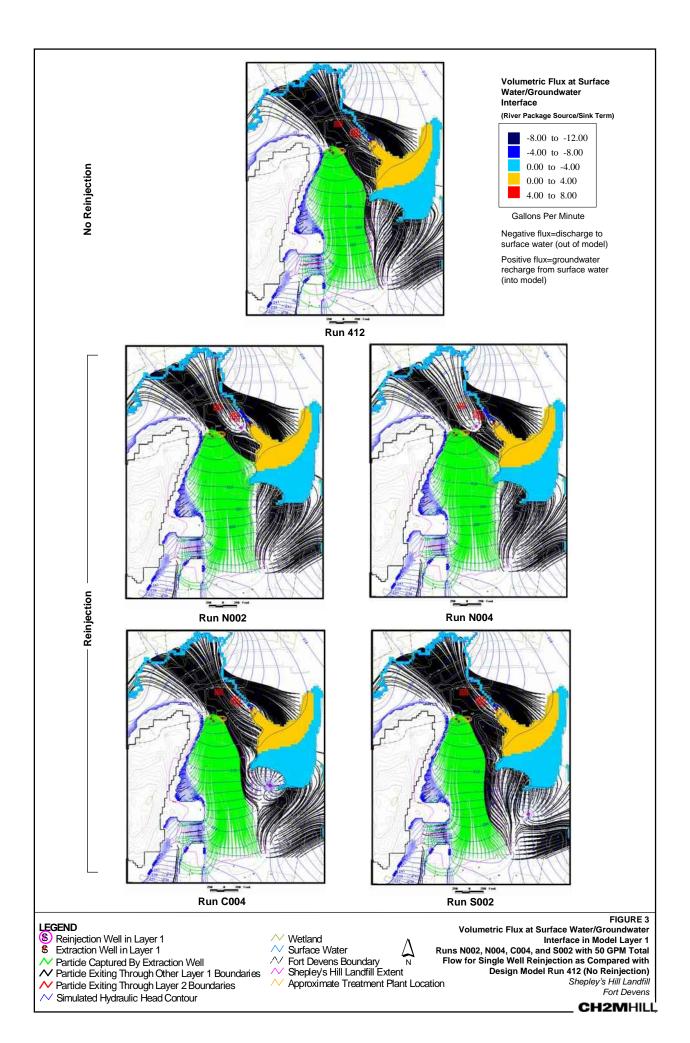
The calibrated groundwater model budget statistics indicate that the "river cells" representing the boundary condition between the groundwater, advective flow model and Nonacoicus Brook are discharging only downstream of the Plow Shop Pond dam. Therefore, it is likely that surface water discharge options would behave hydraulically much like Run 200 (the unpumped condition) or Run 412, with groundwater largely discharging and surface water gaining volume with distance downstream of the dam. As part of the modeling effort, a zone budget analysis was conducted to quantify how pumping and reinjection stresses affect the movement of water between the groundwater model and surface water. Figure 2 provides an illustration of the model domain with zones identified and Table 10 provides budget statistics for each of the zones.

TABLE 10 Simulated Water Budget for Surface Water Features Shepley's Hill Groundwater Flow Model

Simulation ID	Extraction Rate	Eastern Ponds Zone 7					Red Zor				Red Cove :	of PlowSh and Nona. e 11		Plows	minus Red Zone 5	Nona Broo	nt BelowPo e 6	Nona, Brook minus segment below Plow Shop Pond Zone 1				Wetla		Western Tributary Zone 10				Nashua River Zone 9							
		Out - SW/ Discharge gpm	Out - SW	h - GW Discharge gpm	h - GW Recharge (ft3/d)	Out - SW Discharge gpm	Out - SW	h - GW Discharge gpm	h - GW Recharge (fB/d)	Out - SW Discharge gpm	Out - SW Discharge (ft3/d)	h - GW Recharge gpm	In - GW Recharge (ft3/d)	Out - SW Discharge gpm	Out - SW	In - GW Recharge gpm	ln - GW Recharge	Out - SW Discharge gpm	Out - SW Discharge (ft3/d)	In - GW	h - GW Recharge (fB/d)	Out - SW Discharge gpm	Out - SW Discharge (ft3/d)	h - GW	h - GW Recharge (ft3/d)	Out - SW Discharge gpm	Out Only- SW Discharge (ft3/d)	Out - SW/ Discharge gpm	Out - SW Discharge (ft3/d)	In - GW Recharge gpm	h - GW Recharge (ff3/d)	120000000000000000000000000000000000000	Out - SW	h · GW	h - GW Recharge (ft3/d)
Run 200	NA	93.24		0.00		3.32	640	0.000	0	0.11	21	15.86	3,052	42.01	8,088	64.05	12,329	107.53	20,700	0.00	0	201.14	38,719	1.44		19.18	3,692	57.01	10,975	223.31	42,988	335.46	64,576		- Annother and
	50 GPM 25 GPM	92.97 93.06	17,896 17,915	00.0 00.0		1.49 2.41	287 465	0.005 0.000	0.89 0	0.00 0.02	0 3	19.08 17.40			7 692 7 874	76.73 70.18	14,770 13,510	89.85 98.89	17,297 19,037	0.00 0.00	0	196.12 198.63			277 277	11.19 15.18	2,153 2,922	57.01 57.00	10,975 10,973	223.34 223.32	42,992 42,989	335.41 335.44	64,586 64,573	4.97 4.98	958 955
N002 N002-2	50 GPM 25 GPM	93.05 93.08	17,913 17,917	00.0 00.0		2.09 2.76	402 531	0.000 0.000	0 0	0.01 0.05	2 9	13.70 14.75		41.20 41.65	7,931 8,018	57.76 60.78	11,119 11,700	107.28 107.42	20,651 20,679	0.00 00.0	0 0	198.20 199.65		3 1.44 2 1.44	277 277	19.98 19.53	3,845 3,759	57.01 56.99	10,975 10,971	223.33 335.45		335.42 335.45			958 955
N004 N004-2	50 GPM 25 GPM	93.09 92.95	17,893	00.0 00.0		2.43 2.92	562	0.000 0.000	0	0.02 0.07	5 13	15.40 15.60		41.29 41.70	7,949 8,026	62.93 63.20	12,115 12,165	108.21 108.01	20,831 20,791	0.00 00.0	0 0	199.59 200.34			277 277	22.11 20.68	4,258 3,980		10,975 10,968		42,989 42,986	335.44 335.50	64,572 64,583		
C004 C004-2	50 GPM 25 GPM	95.74 94.48				3.76 3.53	723 679	0.000 0.000	0 0	0.04 0.07	8 13	18.60 17.23		77.01 59.66	14,824 11,485	73.63 68.90	14,174 13,244	90.78 99.10	17,476 19,076		0 0	196.55 199.00		5 1.44 7 1.44	277 277	11.60 15.31	2,232 2,947	57.00 57.01	10,973 10,974		42,993 42,989		64,567 64,572	4.97 4.96	956 958
9002 9002-2	50 GPM 25 GPM	105.23 99.25	20,258 19,106	00.0 00.0	0	2.28 2.83	439 544	0.000 0.000	0	0.00 0.04	0.25 7	18.76 17.21	1 AGMON	60.64 51.33	11,672 9,881	75.14 69.26	14,464 13,333	90.60 99.39	17,441 19,132		0	196.45 198.78	5 C107570283		277 277	11.54 15.40	2,222 2,965		10,975 10,975		42,991 42,990		64,587 64,571	4.97 4.98	958 956

Figure 3 illustrates the modeled distribution of water flux at the surface water/groundwater interface for Runs N002, N004, C004, and S002 compared with Run 412. Blue areas are those areas where groundwater is discharging to surface water at a rate of 0 and 4 gpm and yellow-orange areas where surface water is recharging groundwater at a rate between 0 and 4 gpm. This type of plot provides a good visual representation of the hingeline of Plow Shop Pond. The hingeline separates areas of PSP having discharging or recharging groundwater and illustrates that Nonacoicus Brook is receiving groundwater discharge through out the full length of the reach north of the Plow Shop Pond dam.

The following are key observations concerning the model simulations:


Particle Tracking and Capture Zone Assessment

- All discharge locations tested are not particularly sensitive to the type of discharge approach selected. The 80' by 80' basin arrangement for C004 is slightly different than other arrangements, demonstrating some expansion of the capture zone on the eastern side of the landfill (similar to Run 412). This location is far enough east that the spreading of the recharge stress in the basin configuration is reducing the effect on the wellfield capture zone.
- An additional simulation conducted for a new area, numbered S008, near the extreme east side of the landfill property has performance characteristics very similar to Run 412. In this case, discharged water is having little effect on the characteristics of the extraction wellfield capture zone.

Water Budget (zone budget analysis)

- Nonacoicus Brook and the wetlands downstream are discharging groundwater. Nonacoicus Brook is a discharging stream over most of its length, particularly the section downstream of the dam to the area near West Main Street.
- Run 412 reduces the flow of groundwater to the Nonacoicus in the area north of the dam to north of West Main Street ("Zone 6") by 18 gpm. With on-site discharge to the northern locations (N002/N004) the volume of groundwater discharging in this reach is roughly restored to the 108 gpm that exists under unpumped conditions.
- PSP on the whole, is recharging groundwater in all simulations except C004 (50gpm) in which the overall budget shifts to an overall discharging situation. Note, however, that the distribution of groundwater recharge or surface water discharge is dependent upon location within the pond. This pond generally receives groundwater in the upstream end and discharges to groundwater in the downstream end.
- The upstream ponds (Grove Pond) at the edge of the model discharges to groundwater.
- A small amount of water, approximately 3 gpm, discharges to the Red Cove area in Zone 4. This discharge is reduced by approximately 55% with the operation of the Run 412 wellfield. On-site discharge generally has the effect of restoring the net discharge of groundwater to Red Cove. The C004 run (50 gpm) increases the flow to Red Cove to 4 gpm; however, this is likely a combination of treated water and water east of the landfill footprint being forced toward Red Cove. Note that the water discharging to surface water represents a small percentage of the water moving across pond model cells between groundwater and surface water.

• Roughly 130 gpm of ground water is leaving the groundwater model and going to surface water (including wetlands) in the area immediately downstream of the PSP dam (Zones 6 and 8) under unpumped conditions (Run 200). With pumping at 50 gpm (Run 412), this is reduced to approximately 100 gpm. On site discharge roughly restores this balance of 130 gpm leaving the model with the N002/N004 configuration. C004 and S002 are very similar to Run 412 with groundwater discharge reduced to approximately 100 gpm in the Zone 6/Zone 8 area. However, this is offset by increased discharge to surface water in PSP (Zone 7).

Conclusions and Recommendations

The modeling and feasibility screening for the alternatives evaluated indicate the following:

- Run 412, operating at 50 gpm, reduces groundwater discharge from the model to surface water in the area of "Red Cove" (Zone 4) by 55% with pumping, reducing the discharge from 3.32 gpm to 1.49 gpm.
- Surface water discharge is a viable alternative from an effectiveness, implementability, and cost perspective for discharge near Shepley's Hill. This approach provides water to Nonacoicus Brook in the reach where groundwater modeling indicates pumping in the extraction wellfield would reduce discharge of groundwater to surface water by roughly 30 gallons per minute. The best location for surface water discharge would be in the Nonacoicus Brook near the Plow Shop Pond Dam. It is expected that surface water discharge may be accomplished in a manner protective of brook habitat and dechlorination steps in the process could be accomplished to meet the total residual chlorine limitation. In addition, it is anticipated that further evaluation of the 7Q10 and effluent monitoring for the operating plant (with POTW connection) will demonstrate that the surface water antidegradation provisions of 314 CMR 4.04 may be met. Overall, reduction of the arsenic load in the area of plume discharge, expected with operation of the treatment system over time, should provide a net benefit to the Nonacoicus Brook ecosystem.
- Of the groundwater discharge options tested, the northern locations (N002/N004) perform the best, providing capture of water along most of the length of the landfill (as defined by the capped area), reducing the flow of water to Red Cove, and balancing the extraction stress with reinjection, providing groundwater recharge in Zone 6 and 8 along the Nonacoicus Brook back to the levels of the unstressed condition. Discharge would be best accomplished with trenches or infiltration galleries such that effluent would interact with shallow groundwater that has positive ORP values and high DO (refer to data from MW 8S). In addition, a small network of wells may be established immediately downgradient to assess geochemistry.

Effluent data are being collected with the early operation of the treatment plant. These data, other information, and further work with the BCT will be utilized by the Army to determine whether a groundwater or surface water discharge approach or a combination of the two will undergo further design evaluation in the area directly east of the treatment plant. It is anticipated that needed data may be derived from existing background information, plant monitoring data, or some limited new data collection to support the final design of either or both types of discharge. In addition, the performance monitoring network may be easily modified to collect data necessary to ensure that groundwater or surface water discharge limitations are met.

References

CH2M HILL, 2005. Remedial Design and Remedial Action Workplan, Final Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill. May.

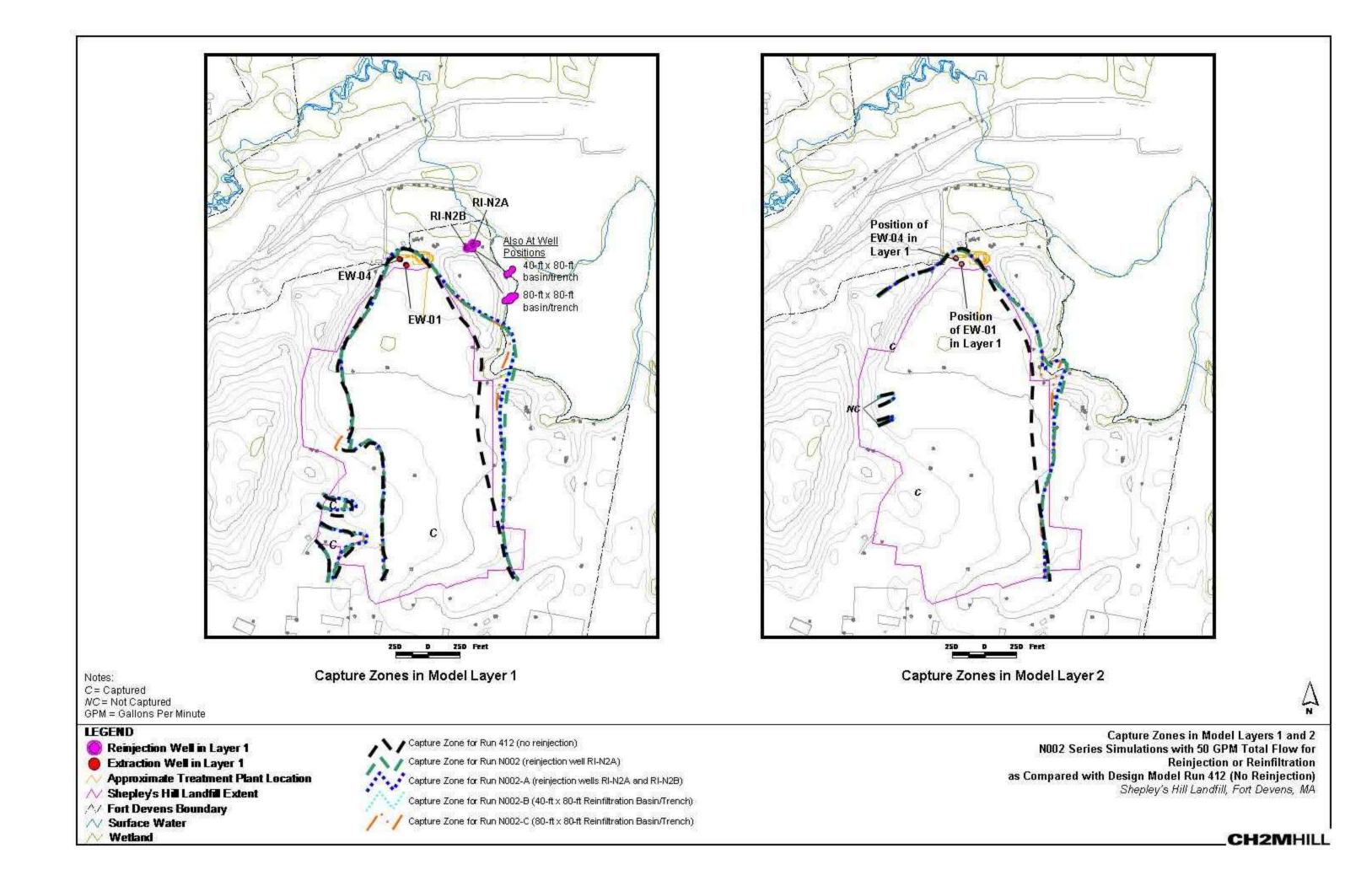
Harding ESE, 2003. Revised Draft Shepley's Hill Landfill Supplemental Groundwater Investigation, Devens Reserve Forces Training Area, Devens, MA. Volume 1 and 2. Prepared for the US Army Corps of Engineers, New England District, May.

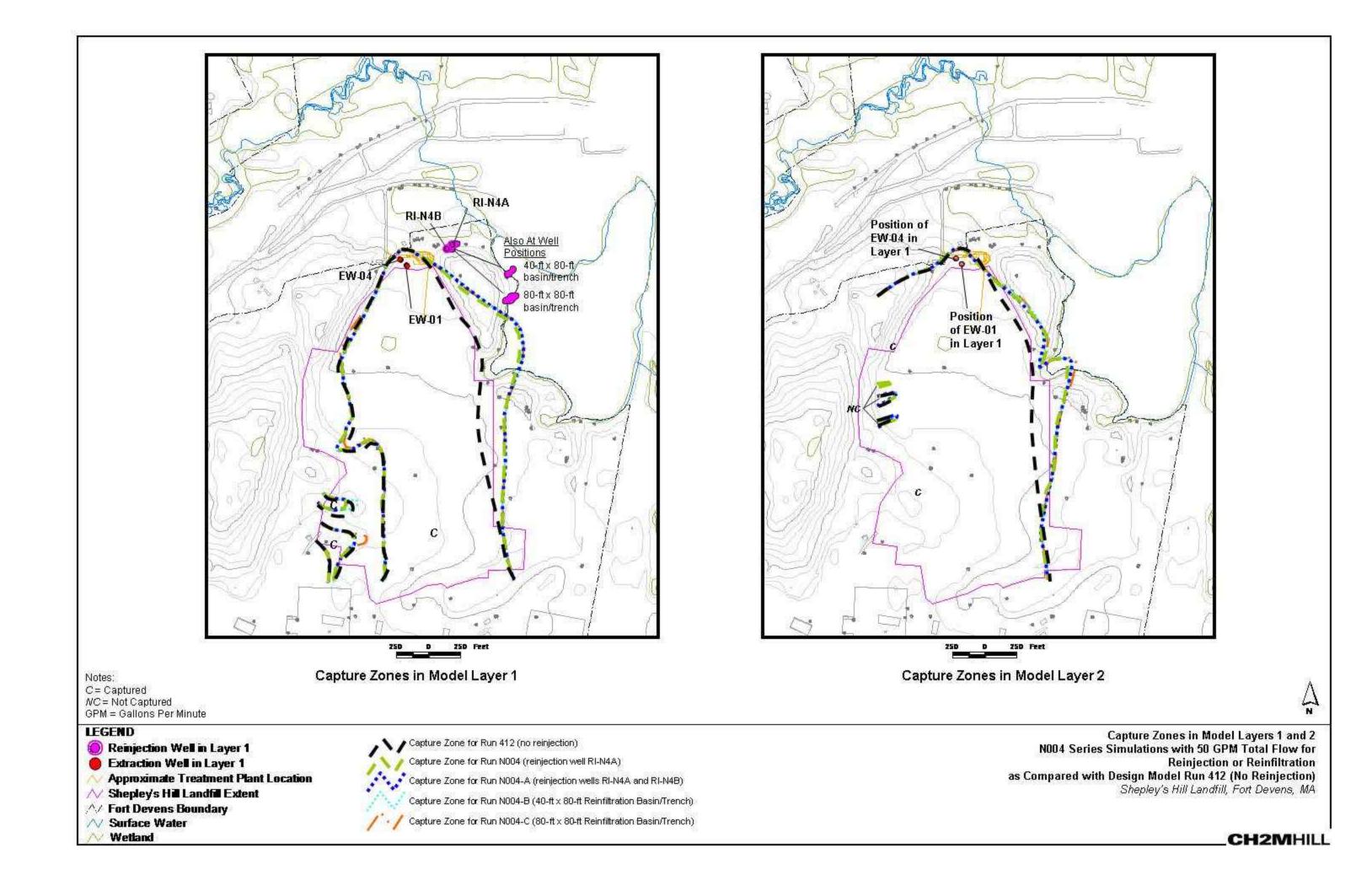
Flynn, Robert H., 2002, Development of Regression Equations to Estimate Flow Durations and Low-Flow-Frequency Statistics in New Hampshire Streams, USGS Water-Resources Investigations Report 02-4298 in cooperation with NHDES.

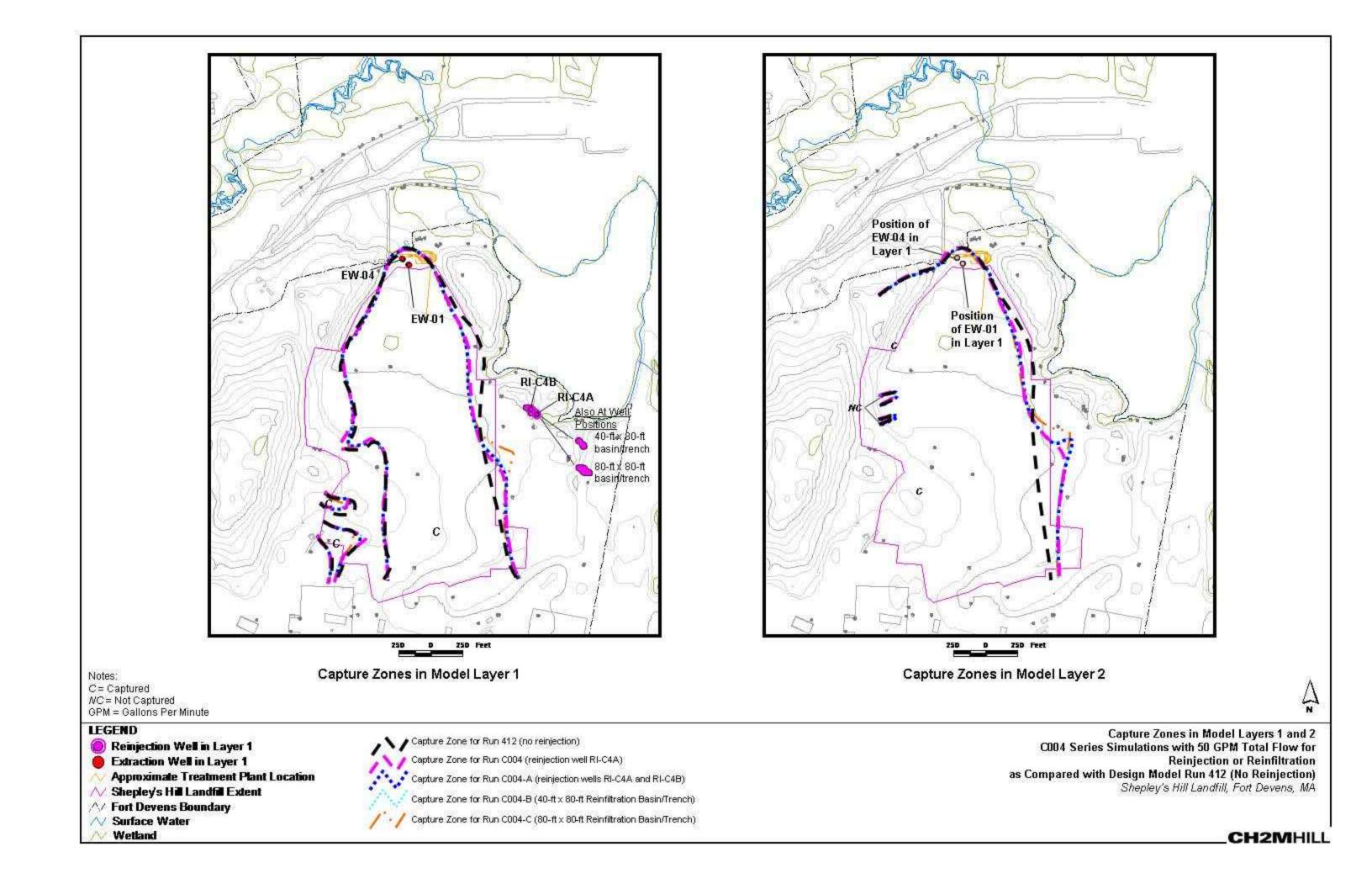
Flynn, Robert H., 2003, A Stream-gaging Network Analysis for the 7-Day, 10-year Annual Low Flow in New Hampshire Streams, USGS Water-Resources Investigations Report 03-4023 in cooperation with the NHDES. MassDevelopment, 2003. Shepley's Hill Landfill, Industrial Wastewater Discharge Permit #20, July 14.

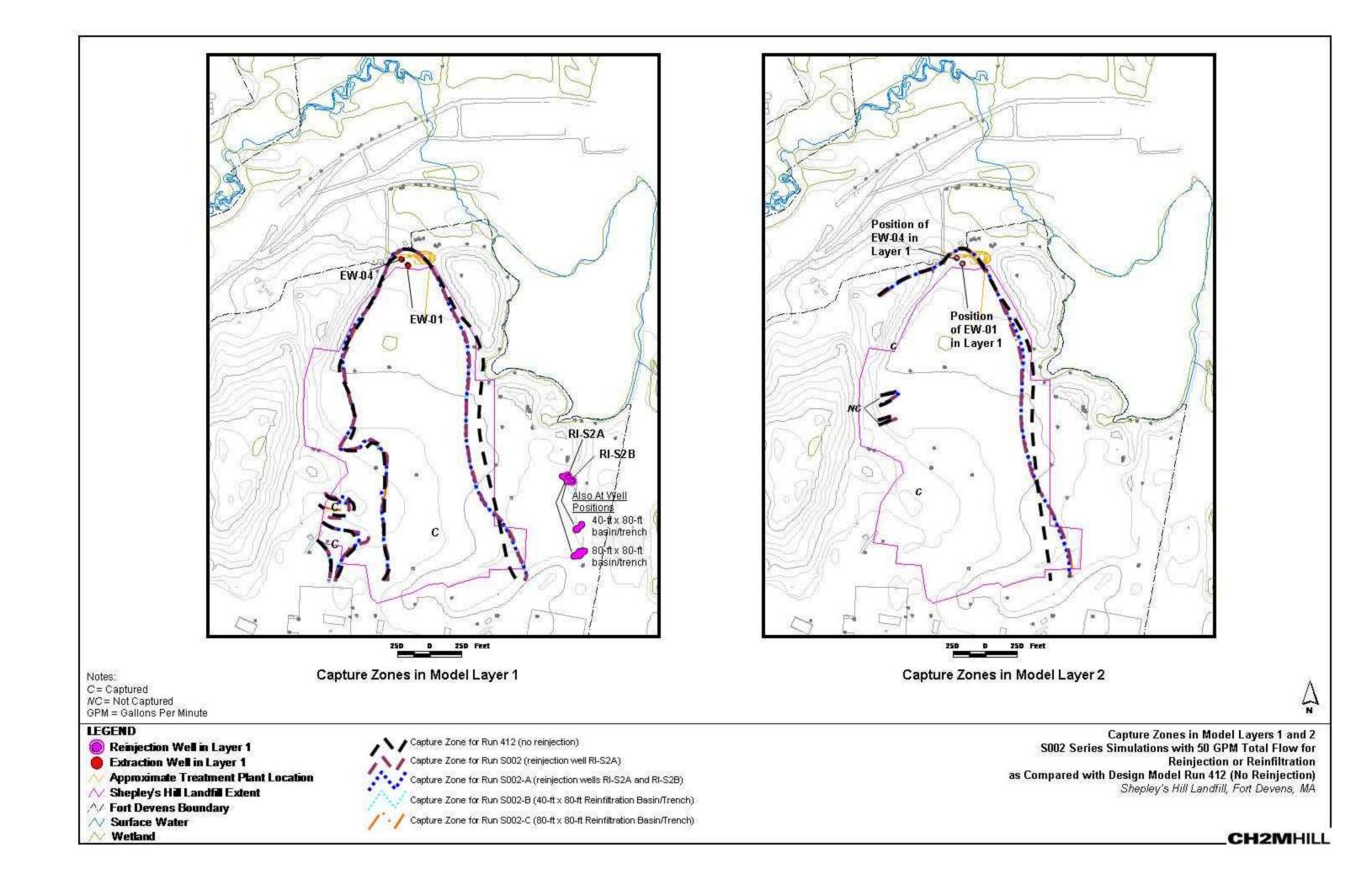
Reis II, Kernell G., 1999, Streamflow Measurements, Basin Characteristics, and Streamflow Statistics for Low-Flow Partial-Record Stations Operated in Massachusetts from 1989 Through 1996, USGS Water Resources Investigations Report 99-4006.

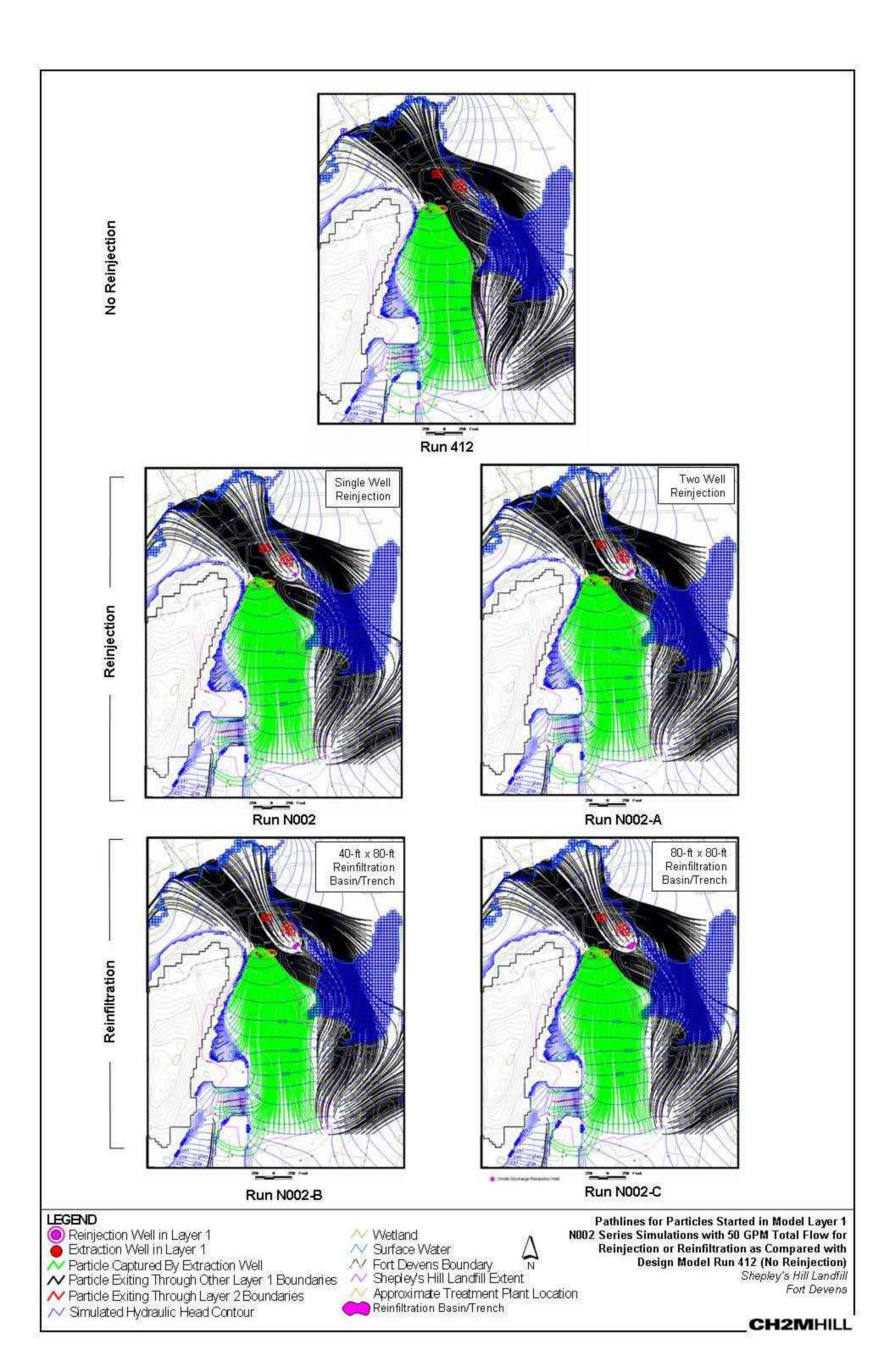
Ries III, Kernell G. and Paul J. Friesz, 2000, Methods for Estimating Low-FlowStatistics for Massachusetts Streams. USGS Water-Resources Investigations Report 00-4135 Prepared in cooperation with the Massachusetts Department Of Environmental Management, Office Of Water Resources.

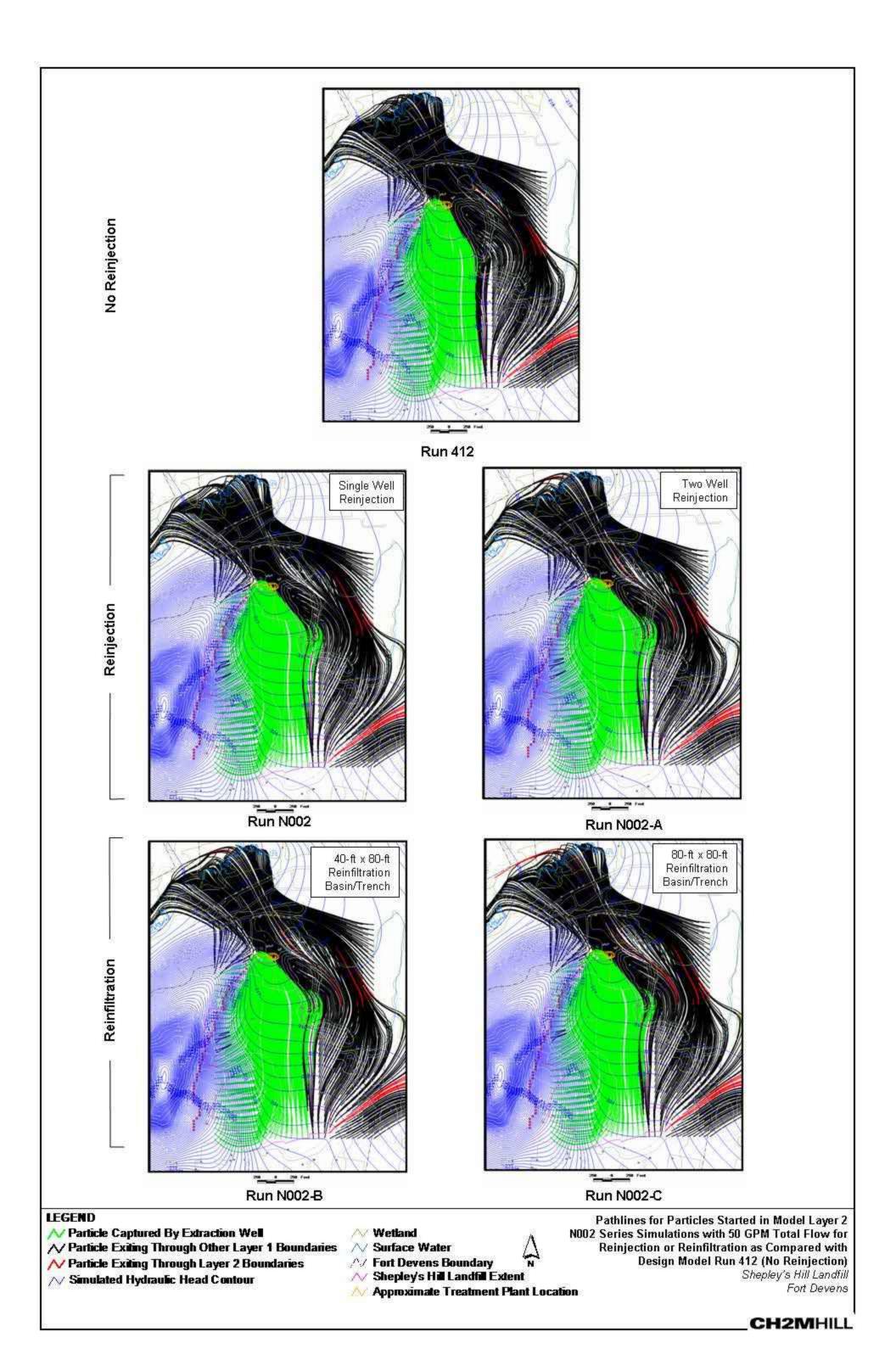

Stone and Webster Environmental Technology & Services (SWET) 1996. Long Term Monitoring and Maintenance Plan, Shepley's Hill, Fort Devens, Massachusetts; prepared for US Army Corps of Engineers, New England Division, Waltham, Massachusetts, May.

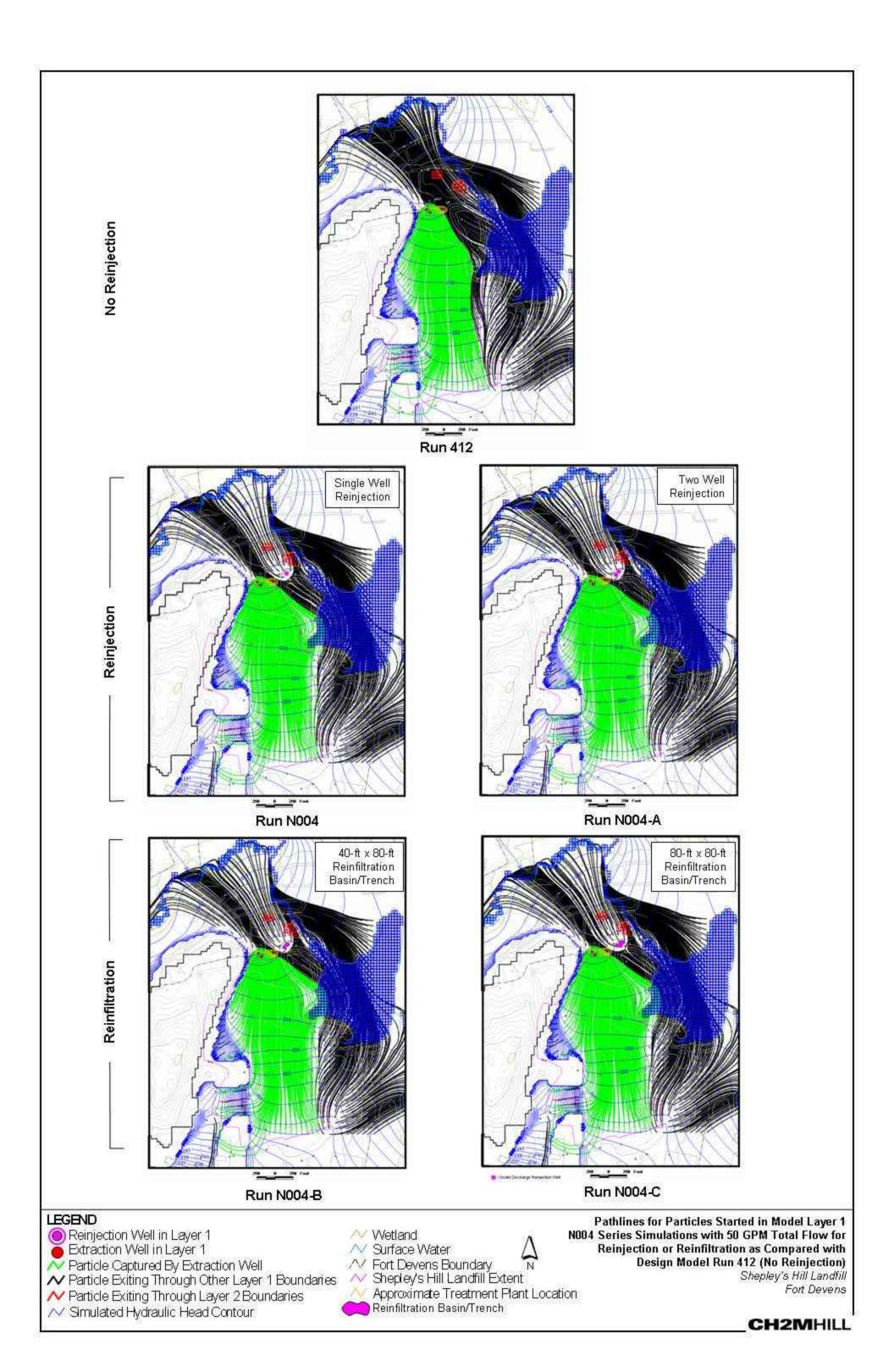

U.S. Army Corps of Engineers, New England District (ABB Environmental Services), 1995 Fort Devens Feasibility Study For Group 1A sites - Final Feasibility Study; Shepley's Hill Landfill Operable Unit, Data Item A009.

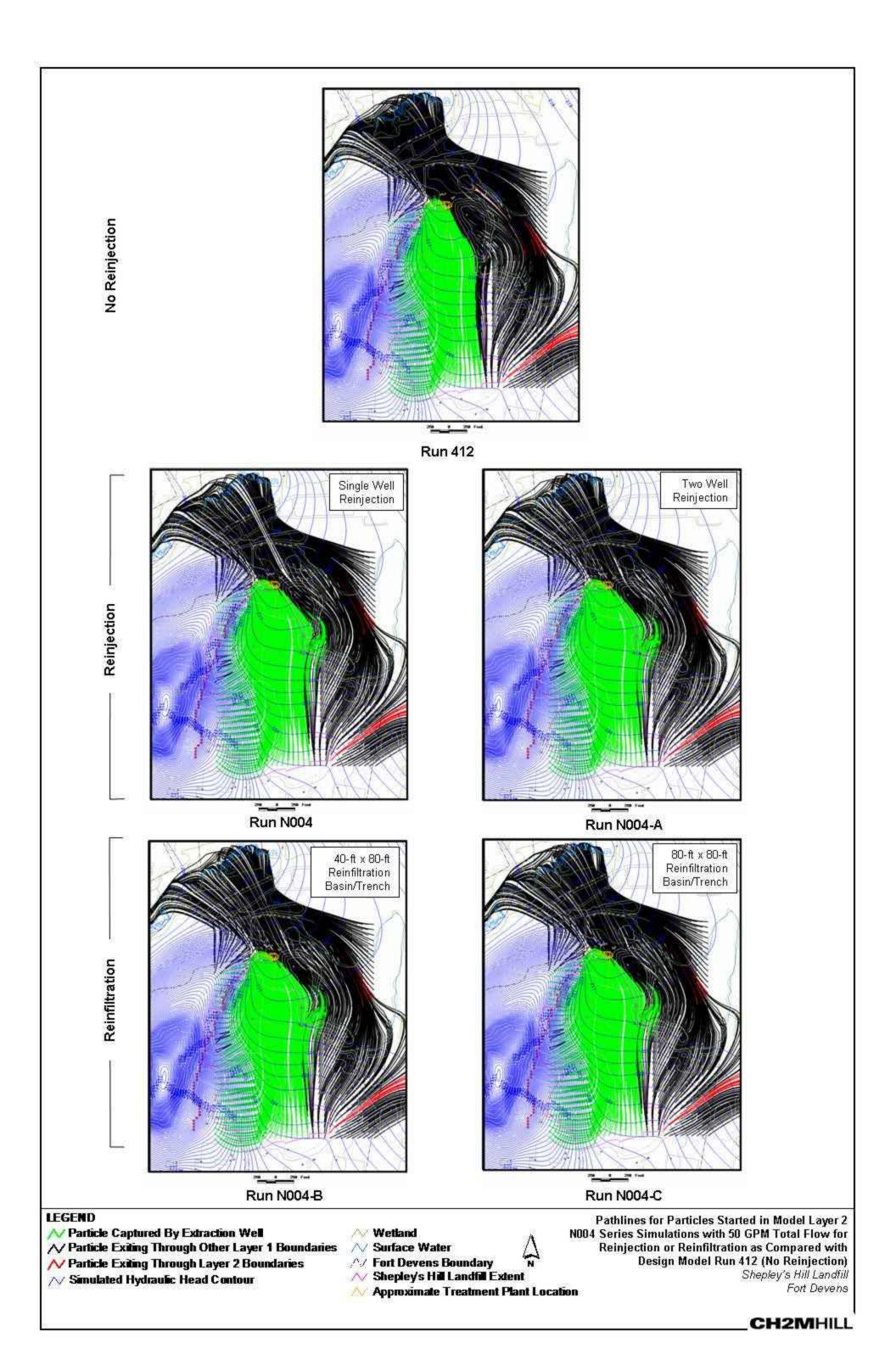

US Army Corps of Engineers, New England District, 2003. 2002 Annual Report, Shepley's Hill Landfill Long Term Monitoring & Maintenance, Devens, Massachusetts. March.

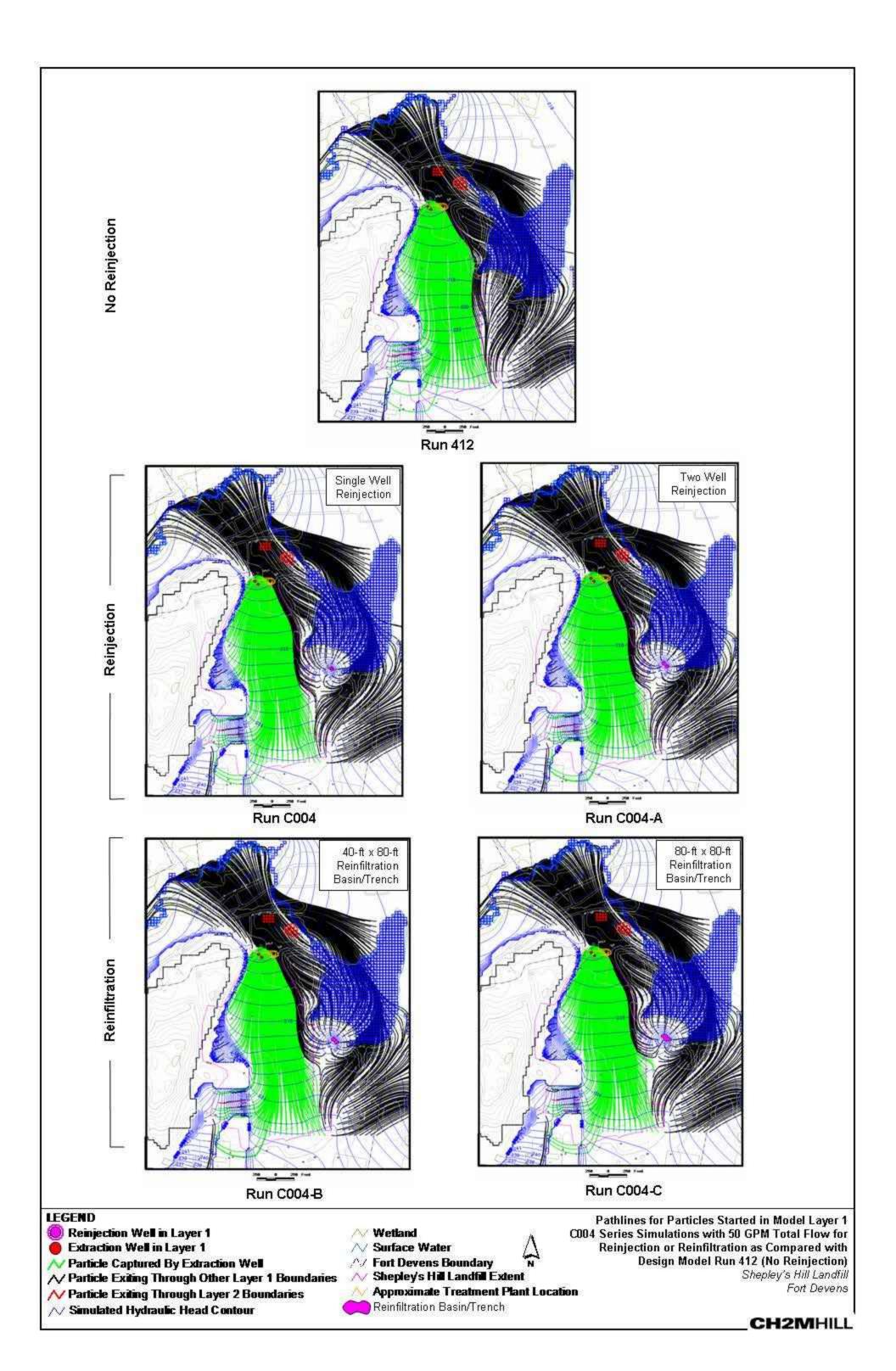

US Army Environmental Center (USAEC), 1995. Record of Decision, Shepley's Hill Landfill Operable Unit, Fort Devens, Massachusetts. September.

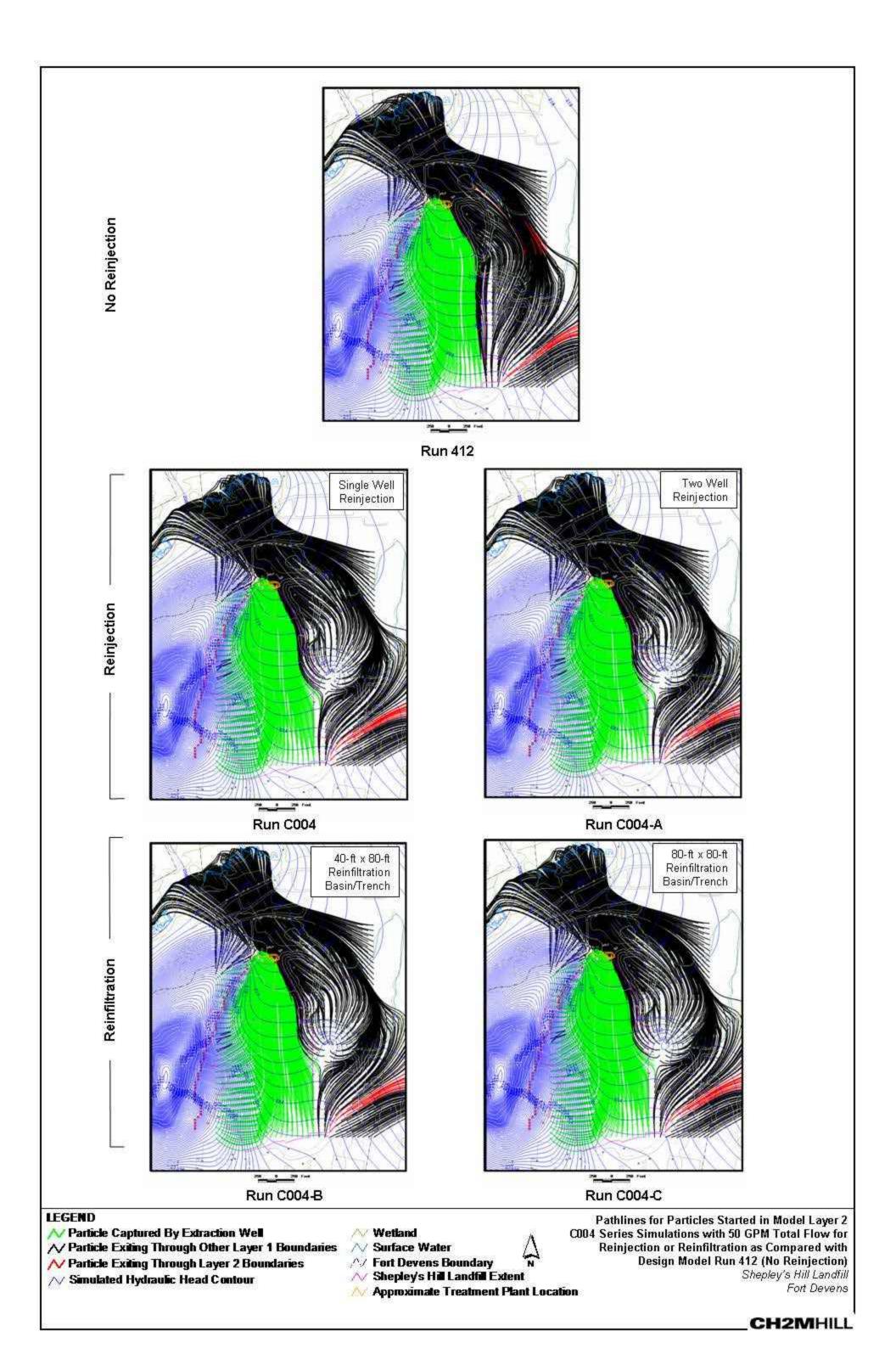

ATTACHMENT A – Phase 2 Modeling

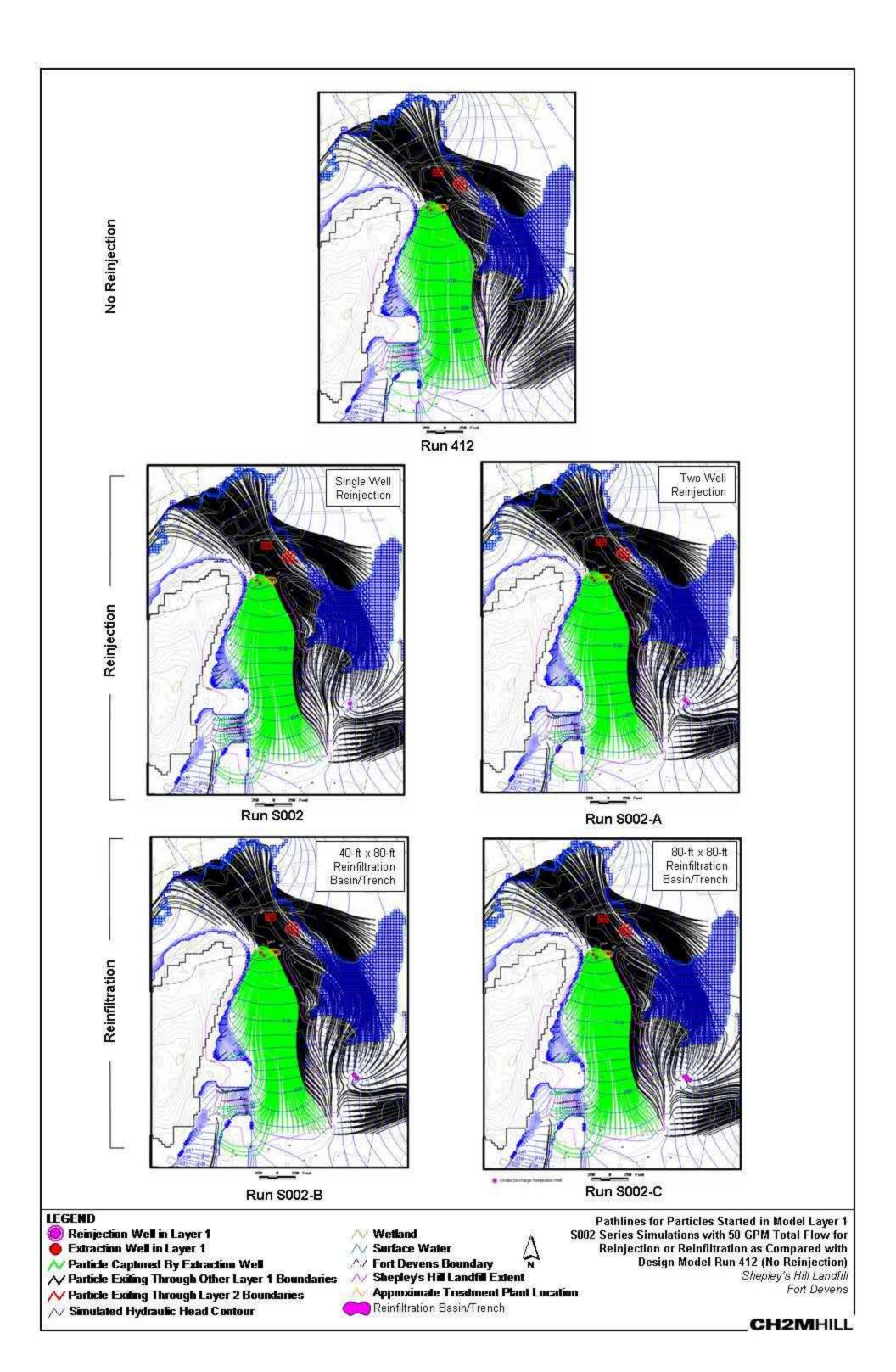


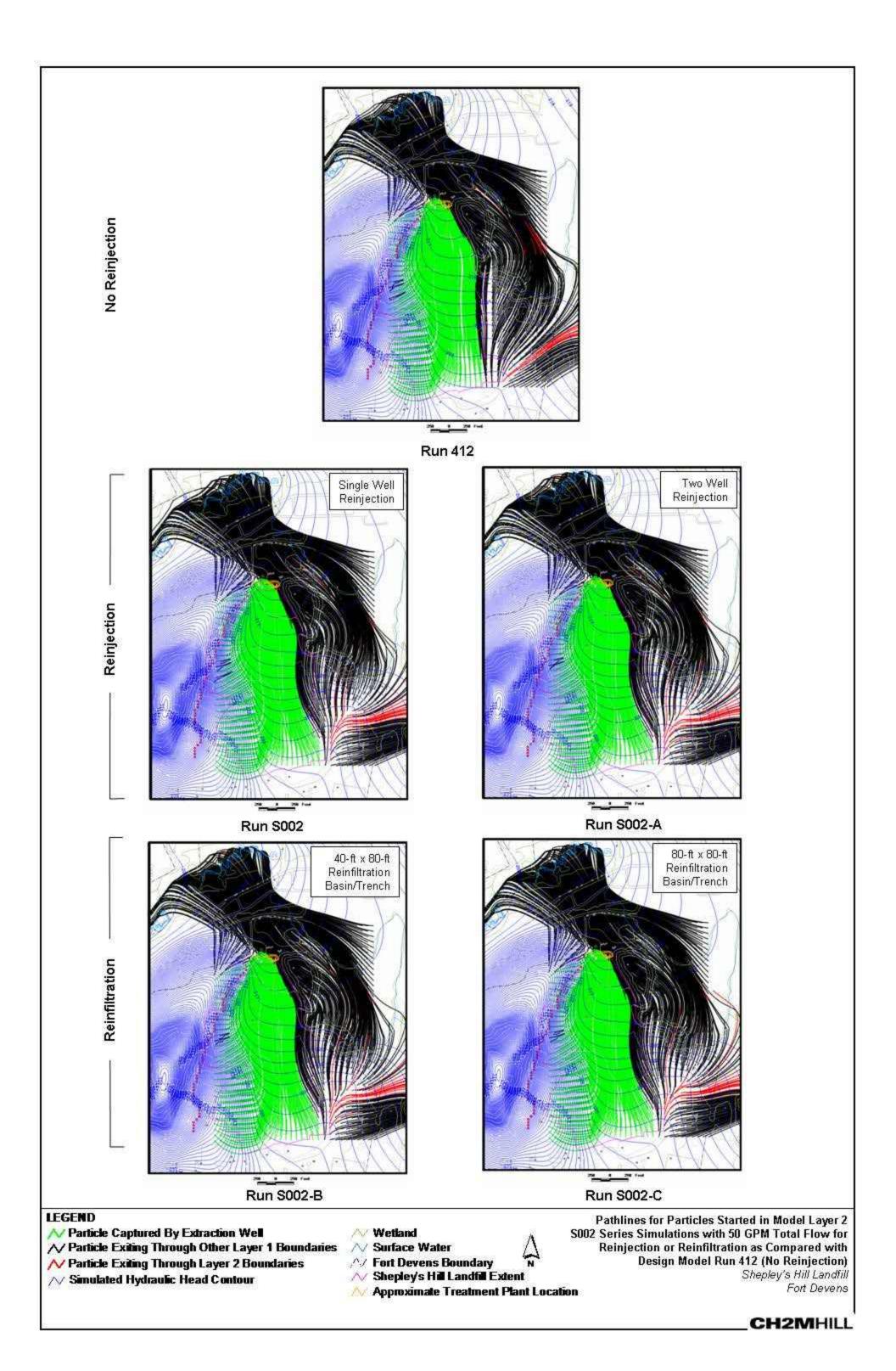


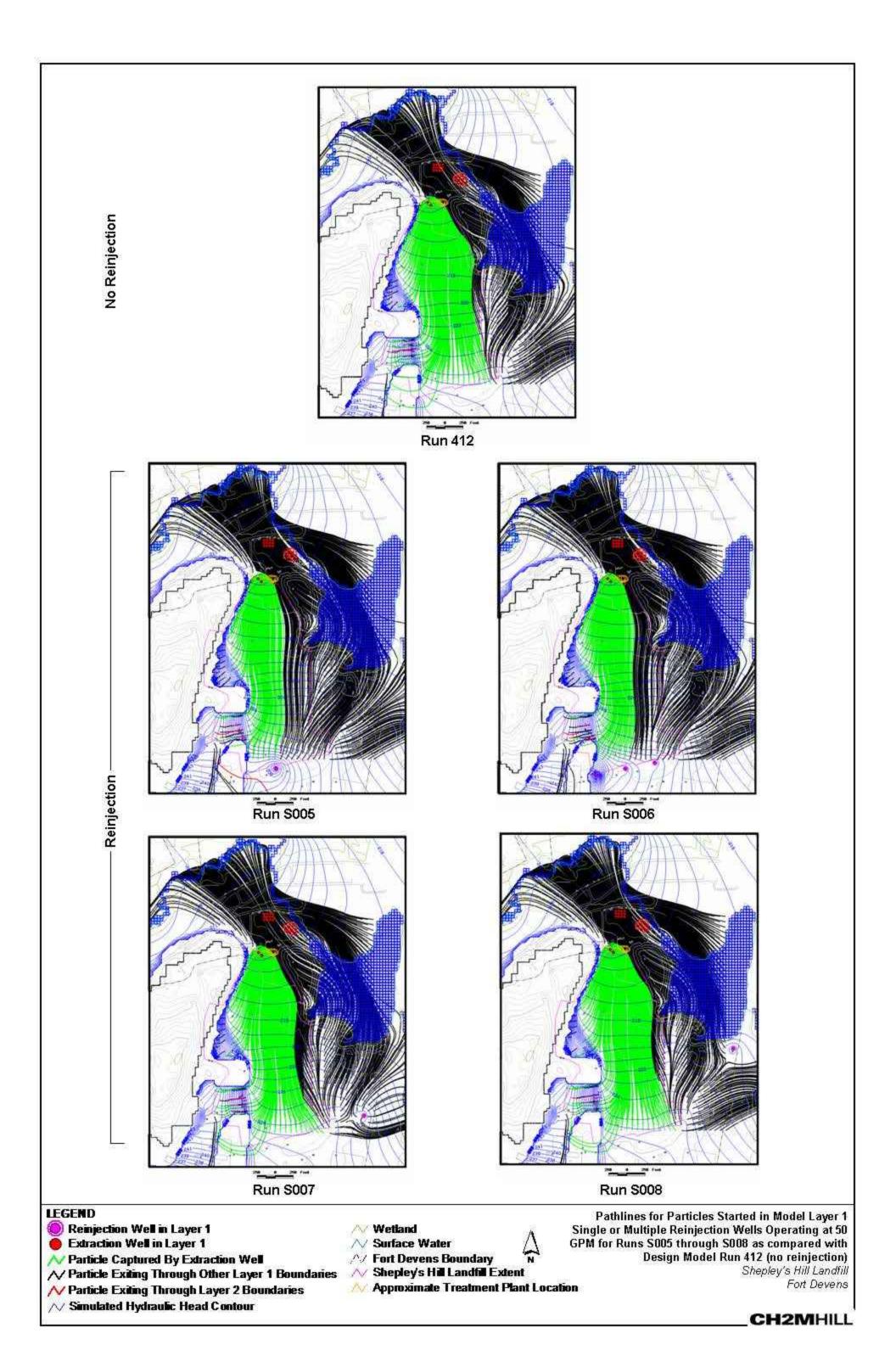


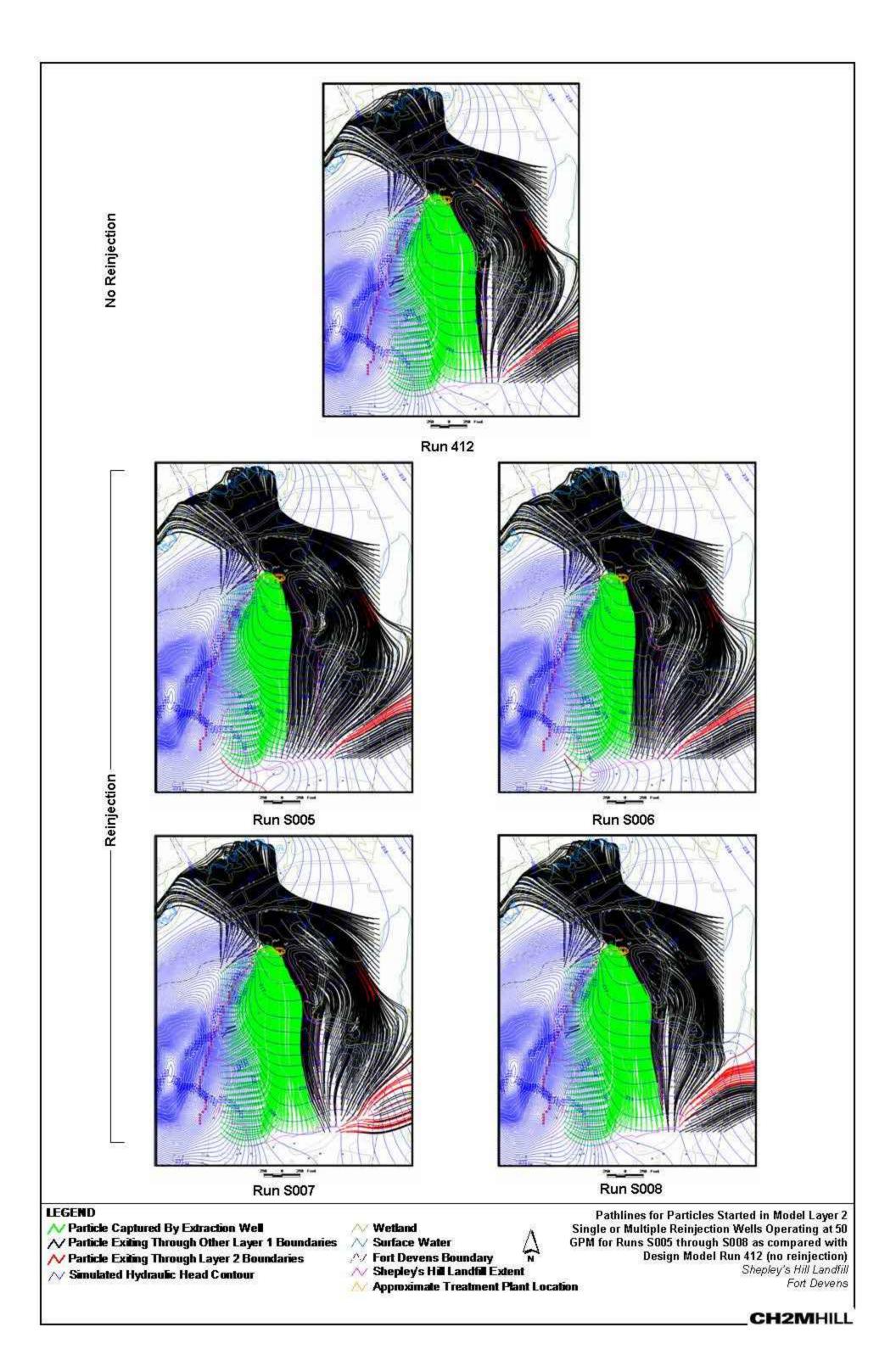


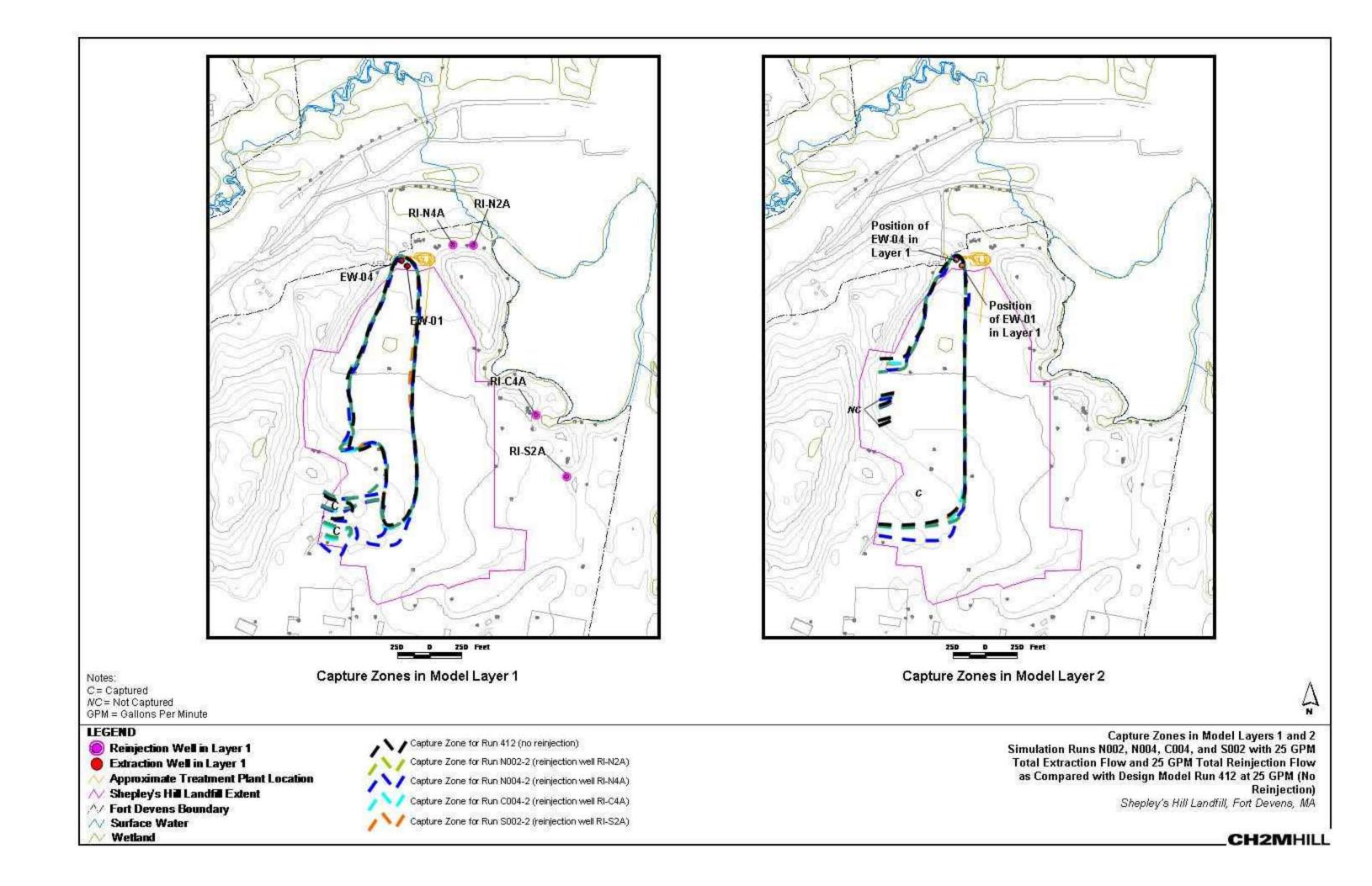


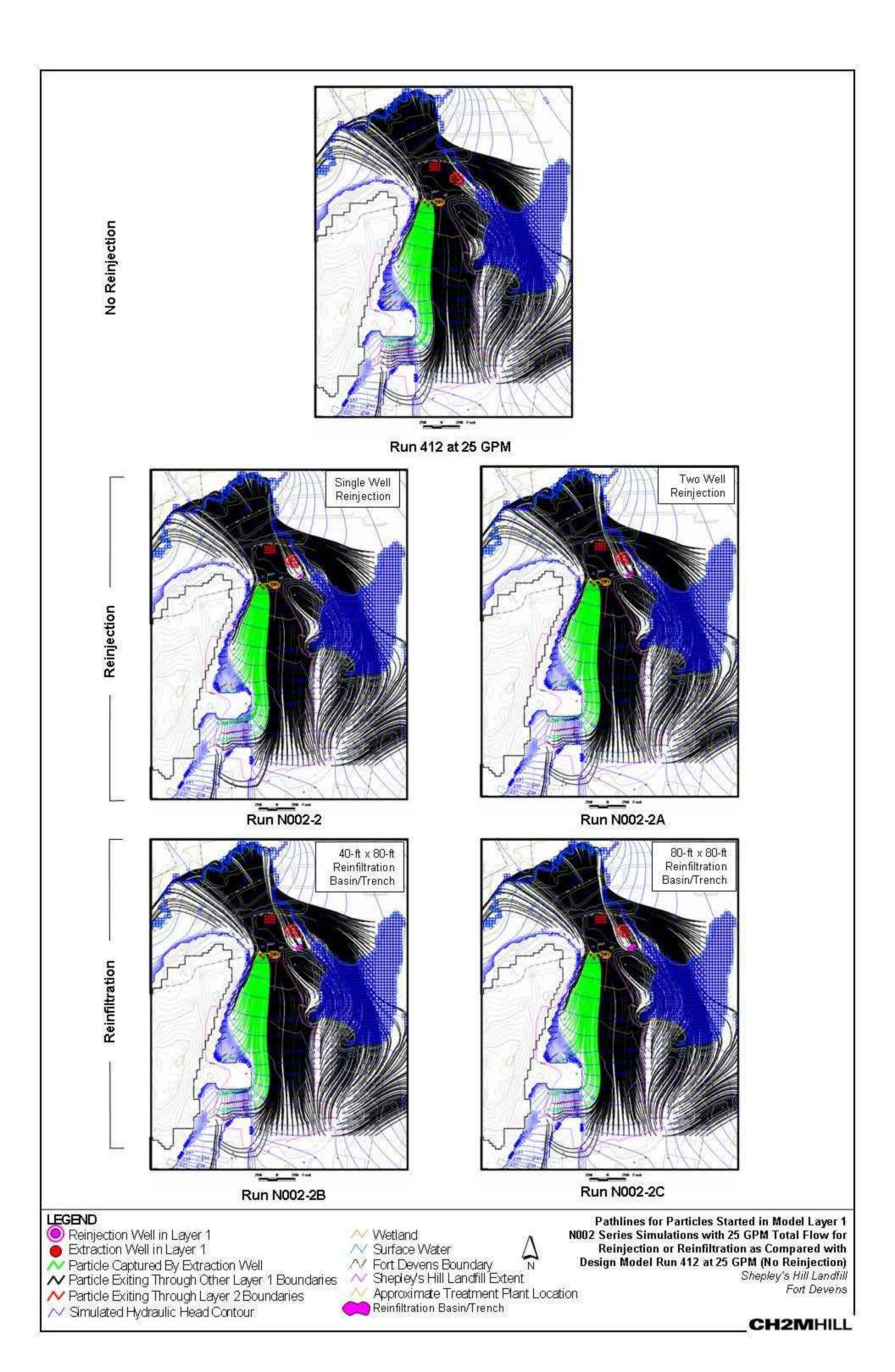


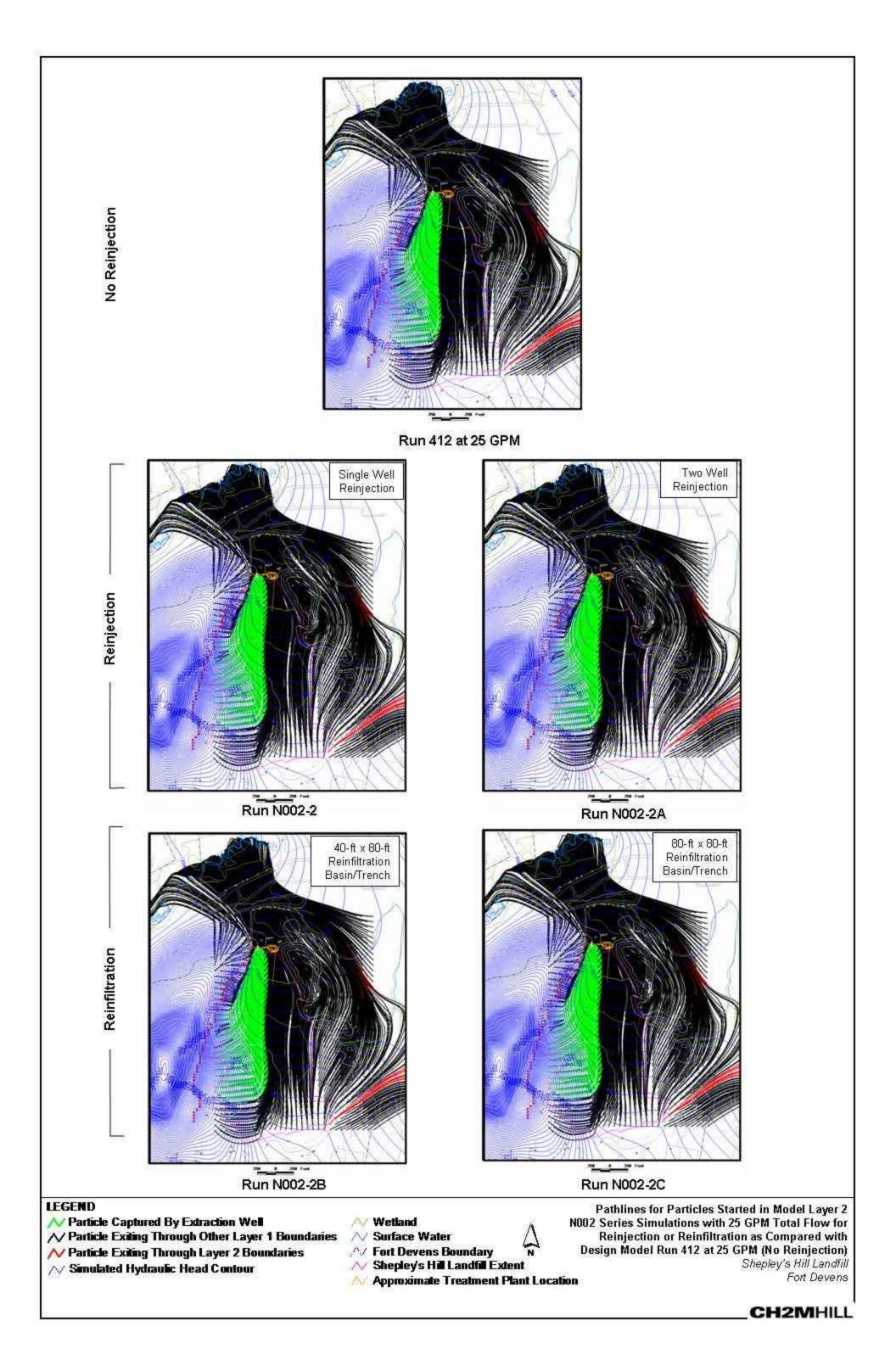


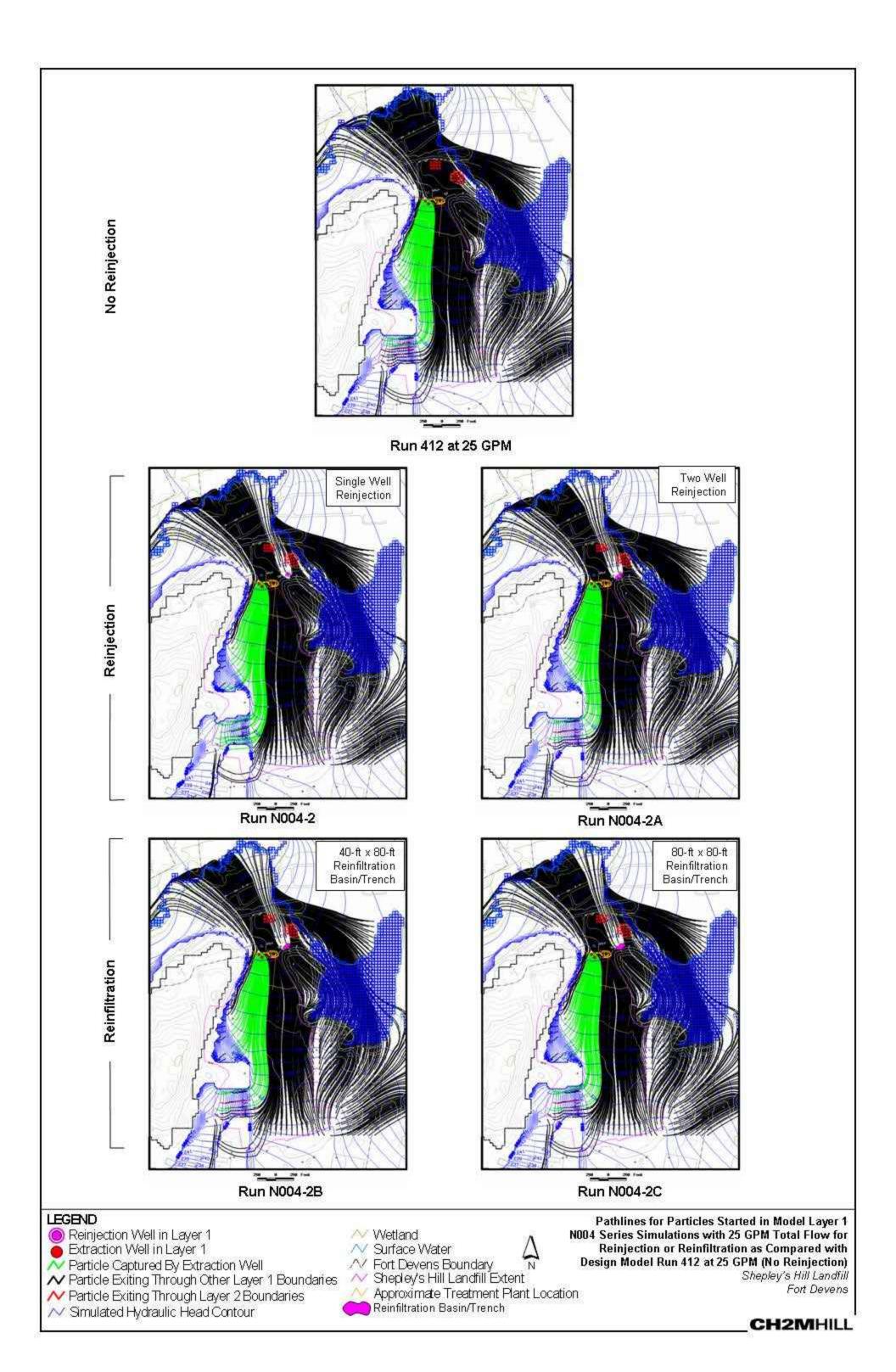


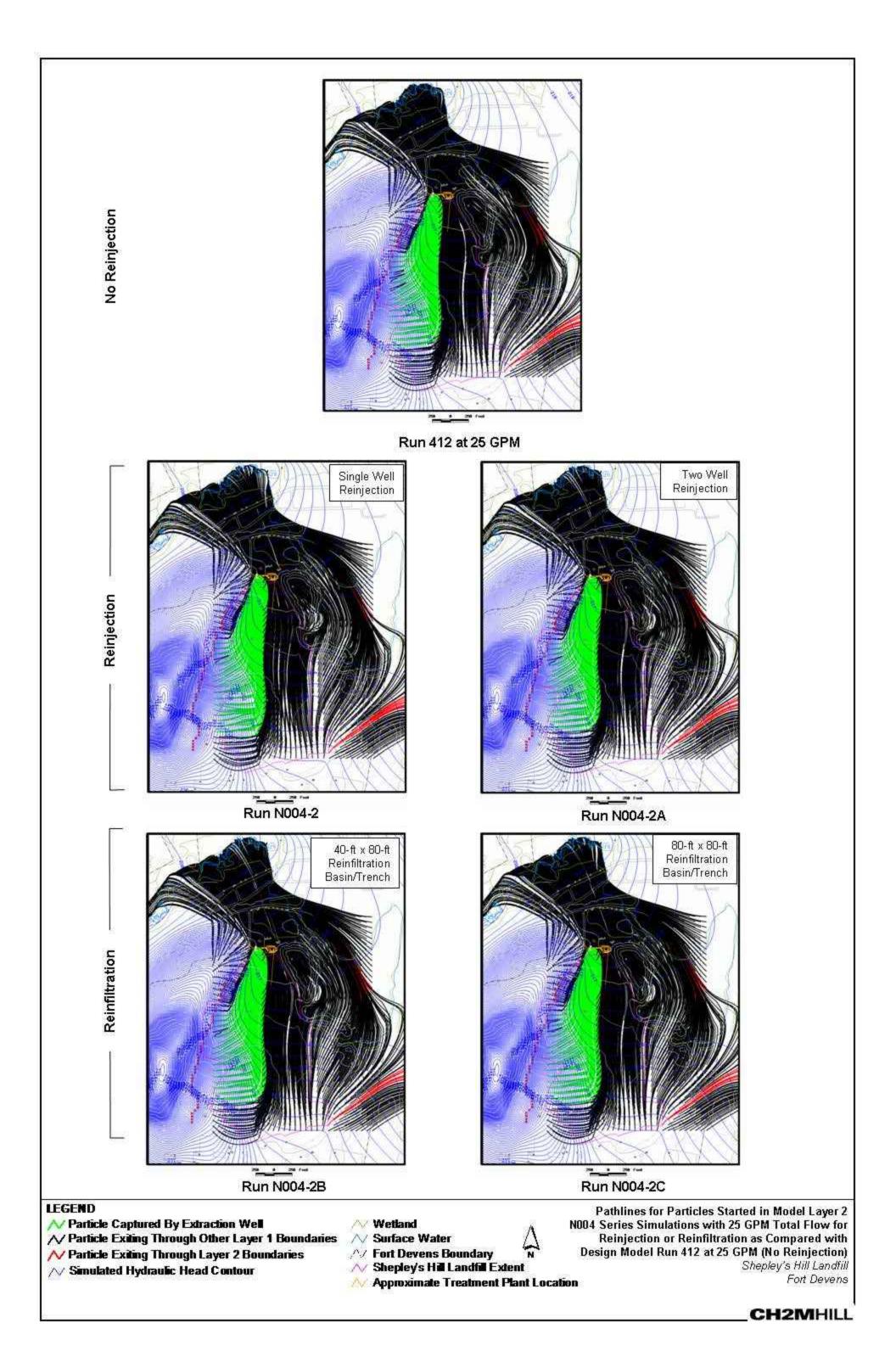


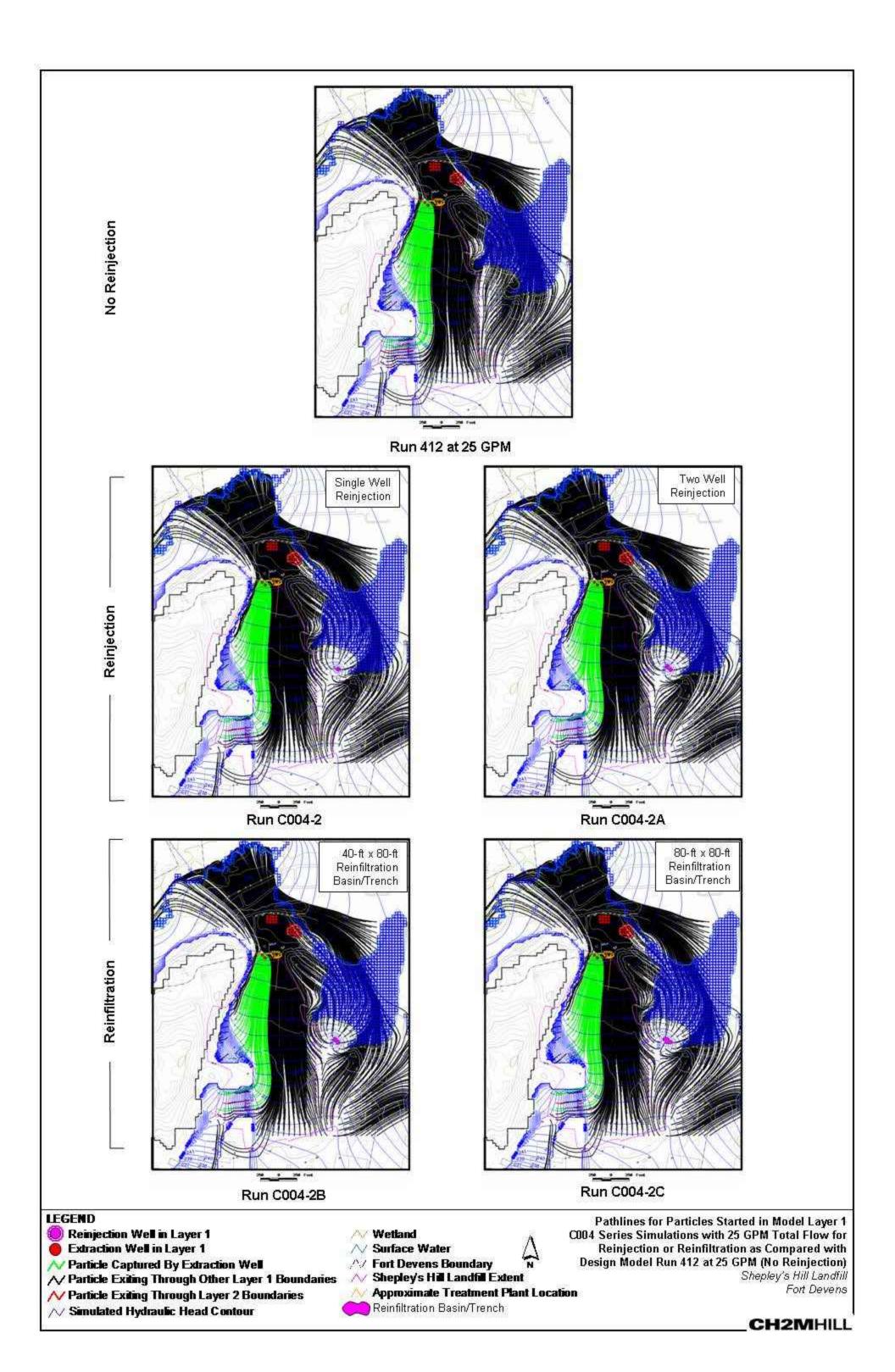


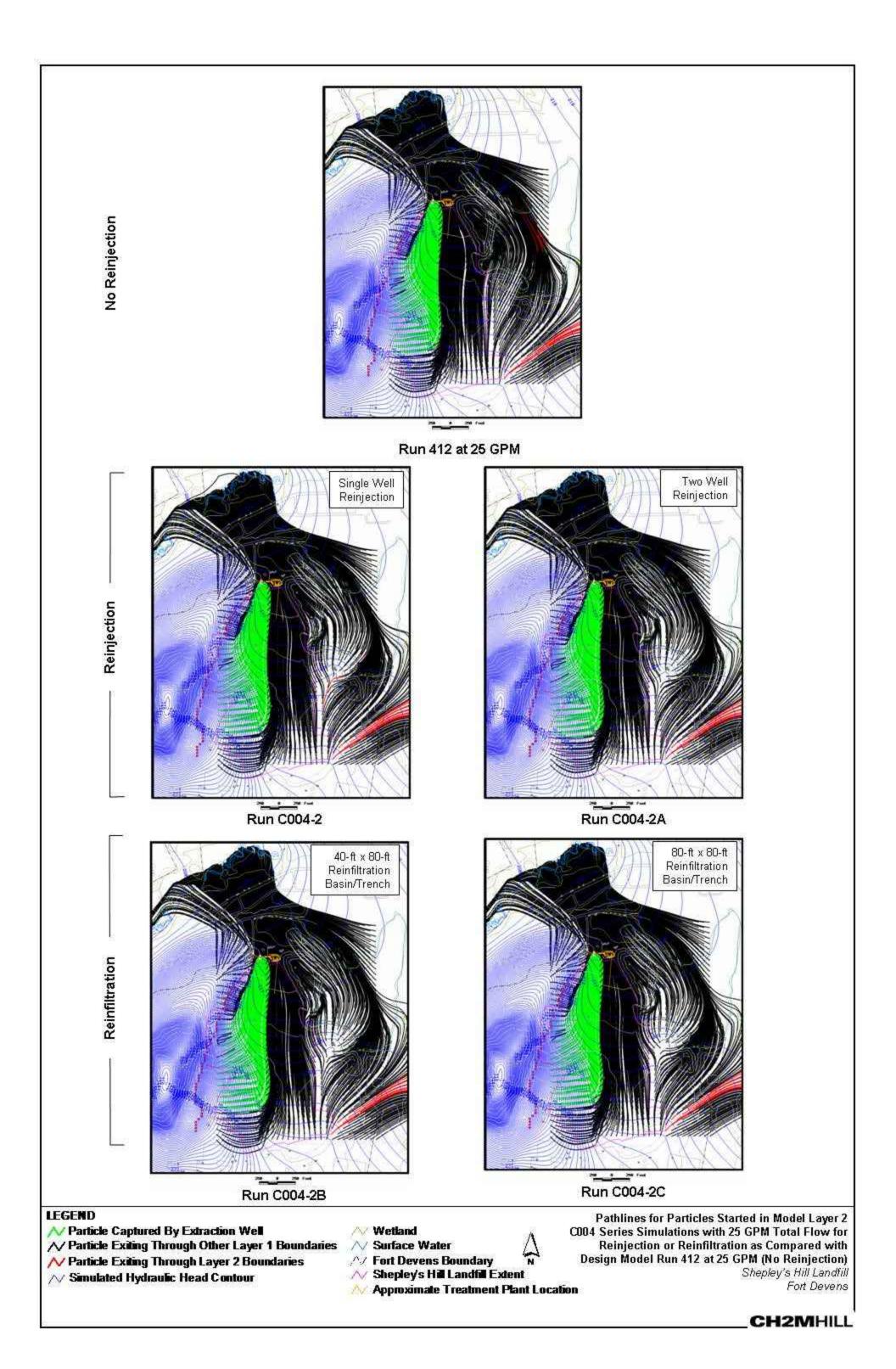


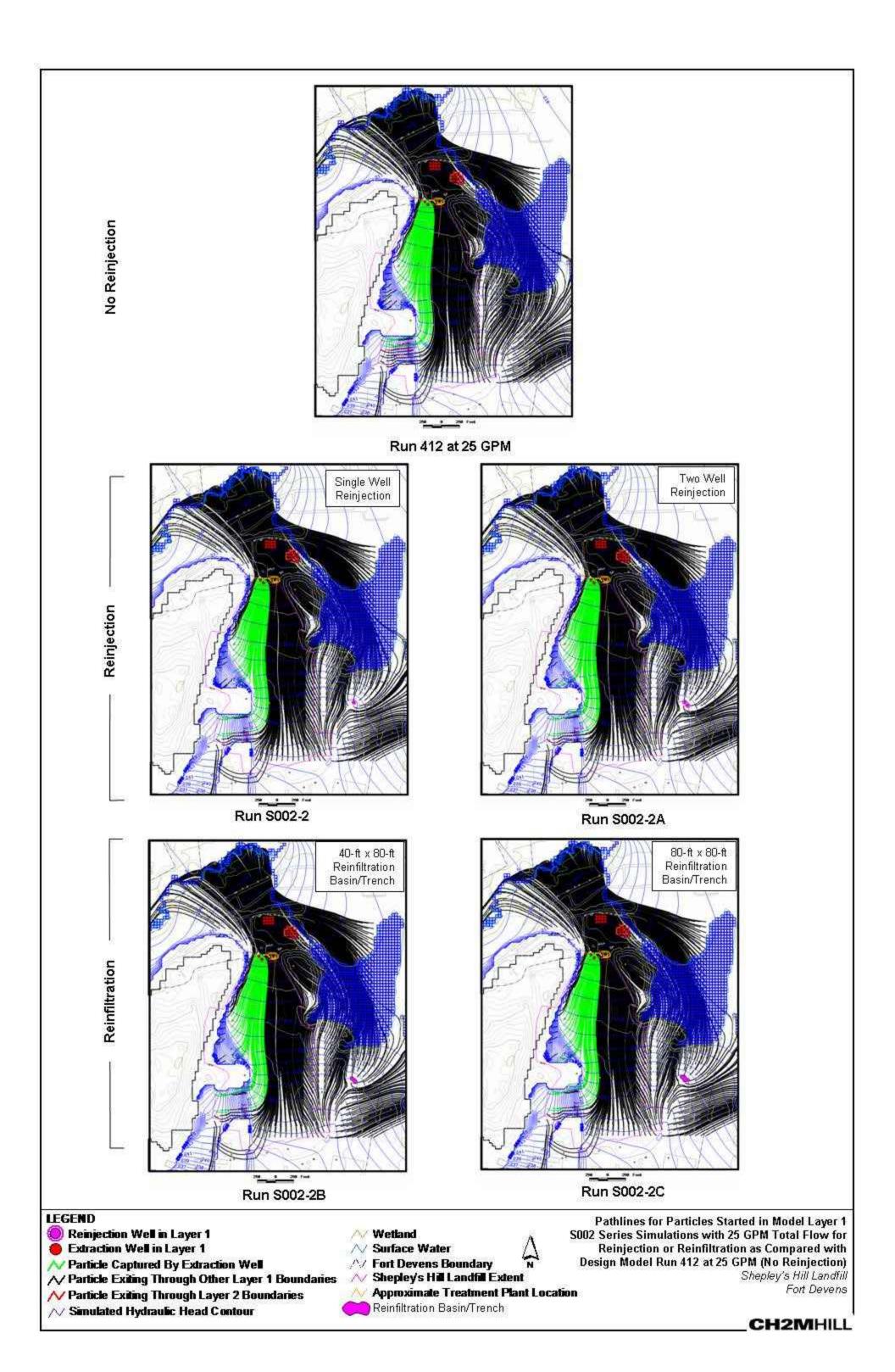


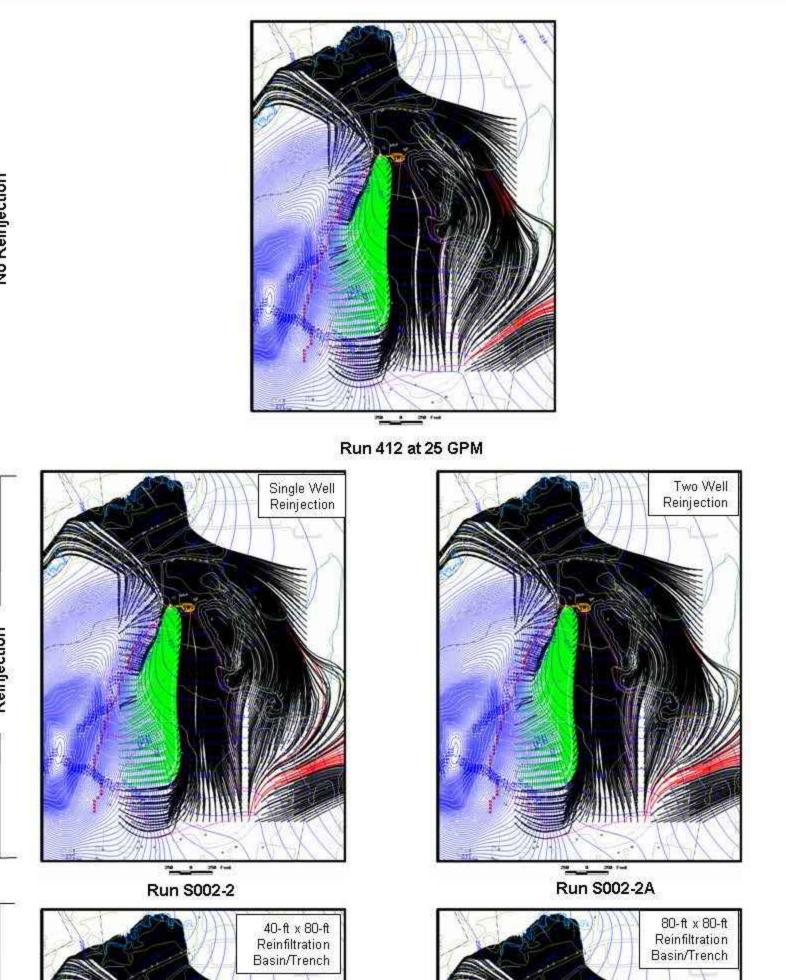


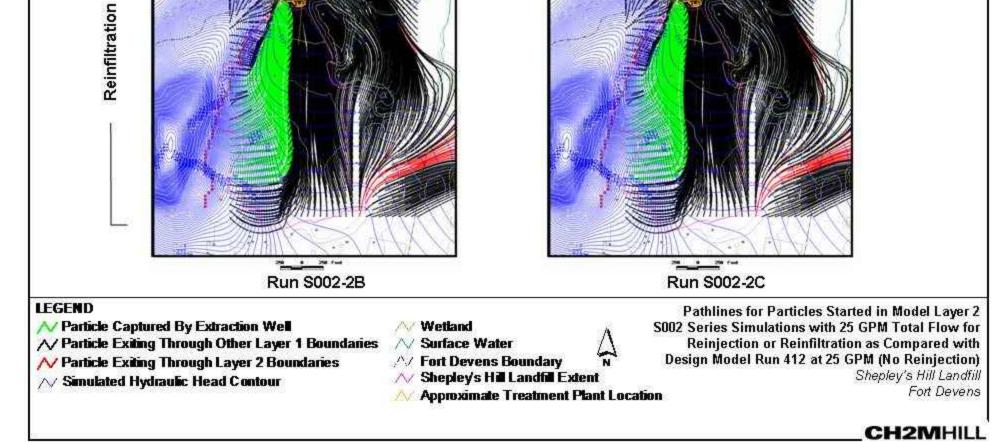












No Reinjection

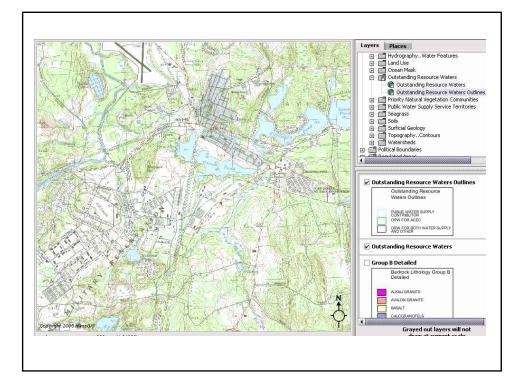
Reinjection

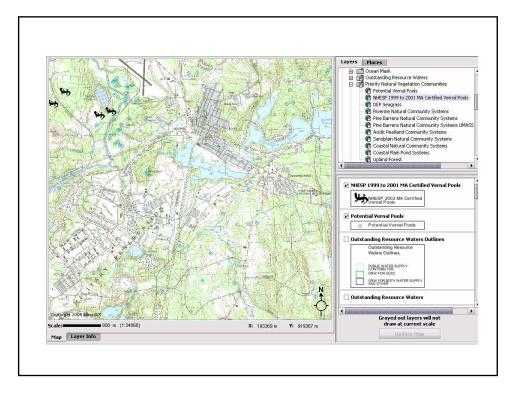
ATTACHMENT B - ARARs

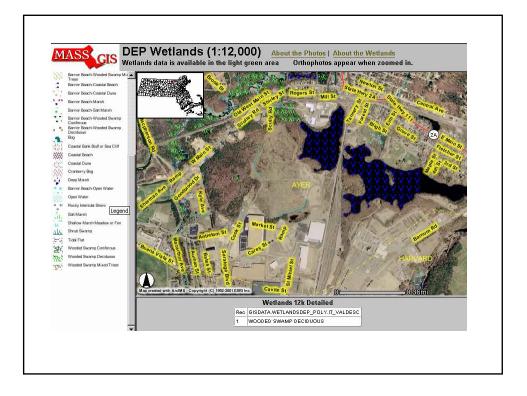
Attachment B ARARS							
Requirement	Authority	Status	Synopsis	Action to Meet Requirement			
Groundwater Discharge -	- Chemical Spec	rific					
SDWA -MCLs (40 CFR 141.61-141.63	Federal	Relevant and Appropriate	The purpose of the SDWA is to protect United Stated drinking water resources. MCLs have been promulgated for a number of contaminants (inorganic and organic). These levels regulate the concentration of contaminants in public drinking water supplies, but may also be considered relevant and appropriate for groundwater aquifers used for drinking water.	MCLs will be used as a treatment goal for the treatment system. In other words the system will be designed and operated to treat extracted water to below MCLs prior to discharge to the aquifer.			
Massachusetts Drinking Water Standards (310 CMR 22.00)	State	Relevant and Appropriate	Massachusetts Drinking Water Standards establish MMCLs for public drinking water systems. If state MMCLs are more stringent than Federal standards, the state levels must be attained.	MMCLs if more stringent than Federal MCLs will be used as treatment goals for the treatment system.			
Massachusetts Groundwater Discharge Permit Program and Groundwater Quality Standards (314 CMR 5.00 and 6.00)	State	Applicable	These standards limit the concentration of certain chemical constituents in Massachusetts waters. The groundwater beneath the area being considered for groundwater discharge is classified as a Class I.	The system will be designed and operated to attain groundwater quality standards prior to discharge of water.			
Groundwater Discharge -	- Location Spec	ific					
M.G.L. c. 131A: Massachusetts Endangered Species Act; 321 CMR 8.00, List of	State	Applicable	The Commonwealth of Massachusetts has the authority to research, list, and protect any species. The Commonwealth lists species as threatened, endangered, or of	State-listed species have been identified in the vicinity of Shepley's Hill include the Grasshopper			

Attachment B -- ARARS

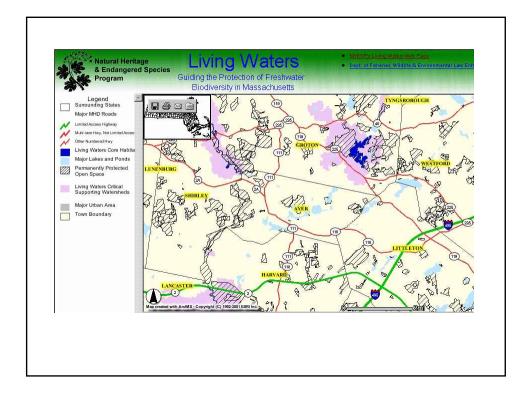
Requirement	Authority	Status	Synopsis	Action to Meet Requirement				
Endangered Wildlife and Wild Plants; 321 CMR 10.00, Massachusetts Endangered Species Regulations.			special concern. The state list may differ from the federal list. Actions must be conducted in a manner that minimizes impacts to listed species.	Sparrow which used the capped area as habitat.				
Groundwater Discharge	Groundwater Discharge Action Specific							
RCRA - Identification and Listing of Hazardous Wastes; Toxicity Characteristics (40 CFR 261.24)	Federal	Relevant and Appropriate	These requirements identify the maximum concentrations of contaminants for which the waste would be a RCRA-characteristic hazardous waste for toxicity. The analhtical test given in Appendix II is referred to as the TCLP test.	Process sludge will be analyzed according to TCLP. If TCLP results exceed the standards in 261.24, the material will be disposed of off-site in a RCRA-permitted treatment, storage, and disposal facility.				
RCRA Subtitle C, 40 CFR Part 264 – Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.	Federal	Relevant and Appropriate	These standards, which regulate the operation of facilities that treat, store, or dispose of hazardous waste, are implemented through authorized state RCRA program cited below (Massachusetts Hazardous Waste Management Regulations)	See MA haz. waste regulations below.				
Underground Injection Control Program, 40 CFR 144, 146, 147, 1000	Federal	Applicable	Minimum performance standards for underground injection wells. Prohibits injection that may cause a violation of primary drinking water standards. Infiltration galleries or trenches fall within the broad definition of Class V wells.	Extracted groundwater will be treated to levels equal to or below federal and state drinking water standards to ensure that discharges to injection wells, infiltration				

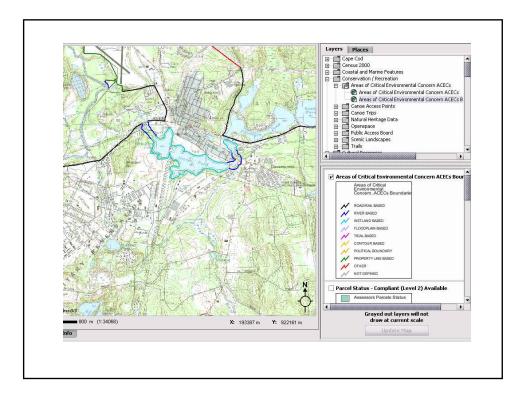

Requirement	Authority	Status	Synopsis	Action to Meet Requirement
				trenches, or galleries will not cause a violation of drinking water standards in the receiving aquifer.
Massachusetts Air Pollution Control Regulations (310 CMR 7.00)	State	Applicable	Regulations set emission limits necessary to attain ambient air quality standards.	The activities of the remedial action (including construction) will be conducted to meet standards. If limits are exceeded, emissions will be managed through engineering controls.
Massachusetts HWMR - Requirements for Generators (310 CMR 30.300-30.371)	State	Relevant and Appropriate	This regulation sets standards for generators of hazardous waste involving waste accumulation, waste shipment, and preparation of the uniform hazardous waste manifest. Massachusetts specifies requirements for very small quantity generators, as well as small and large quantity generators.	If RCRA-characteristic wastes are generated, the material will be managed in accordance with these requirements.
Massachusetts Hazardous Waste Management Regulations – Location Standards for Facilities (310 CMR 30.700 – 30.707)	State	Relevant and Appropriate	There shall be a minimum of 300 feet from the active portion of the facility to the property line.	This Shepley's Hill treatment plant is not currently considered a hazardous waste management facility. Placement of the facility provided few options given the limited space

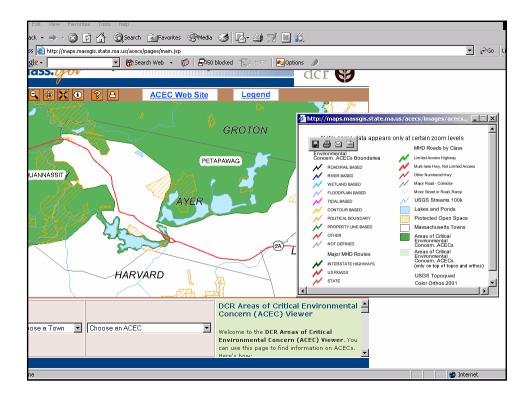

Requirement	Authority	Status	Synopsis	Action to Meet Requirement		
				available north of the landfill off the cap. If it's status changes a waiver may be requested for exemption from the distance requirement.		
Massachusetts Underground Water Source Protection, 310 CMR 27.00	State	Applicable	Under these regulations, "no underground injection shall be allowed where a Class V well causes or allows movement of fluid containing any pollutant into underground sources of drinking ater and the presence of such pollutant causes or is likely to cause a violation of any Massachusetts Drinking Water Regulation or adversely affects or is likely to adversely affect the health of persons." Class V wells are defined to include "recharge wells used to replenish the water in an aquifer."	Extracted groundwater will be treated to levels at or below federal and state drinking water standards to ensure that discharges to injection wells, trenches, or infiltration galleries will not cause any violation of drinking water standards in the receiving aquifer.		
Surface Water Discharge –	Chemical Specij	fic				
Federal CWA NPDES Program and State Massachusetts Surface Discharge Permit Progam and Surface Water Quality Standards (314 CMR 3.00 and 4.00)	Federal/State	Applicable	These regulations limit discharges to surface waters to protect surface water quality. Discharges may be limited or prohibited to protect existing uses and not interfere with the attainment of designated uses in downstream and adjacent segments.	Groundwater will be treated to meet specified discharge limiations.		

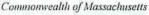

Requirement	Authority	Status	Synopsis	Action to Meet Requirement
Surface Water Discharge -	- Location-Speci	fic		
Rivers and Harbors Act of 1899 (33 USC 403; 33 CFR Parts 320-323)	Federal	Applicable	Section 10 of the Rivers and Harbors Act of 1899 requires authorization from the Secretary of the Army Corps of Engineers, for the construction of any structure in or over any "navigable water of the U.S." It also requires such authorization for the excavation or deposition of material in such waters, or any obstruction or alteration in such waters.	Although not anticipated, any action within navigable waters will be coordinated with the Army Corp of Engineers.
Protection of Wetlands – Executive Order 11990 (40 CFR 6, Appendix A)	Federal	Applicable	Under this order, federal agencies are required to minimize the degradation, loss, or destruction of wetlands, and to preserve the natural and beneficial values of wetlands. A remedial action should not adversely affect a wetland, if another practicable alternative is available. If no alternative is available, efforts should be made to mitigate the impacts from the remedial action	To the extent possible, wetlands and buffer areas will be avoided. Any action needed within the wetland area will be conducted in a manner to minimize impacts and provide for restoration.
Fish and Wildlife Coordination Act (16 USC 661 et seq., 40 CFR 6.302)	Federal	Applicable	This act requires that any federal agency proposing to modify a body of water must consult with the US Fish and Wildlife Service, National Marine Fisheries Services, and related state agencies to develop measures to prevent, mitigate, or compensate for project-related losses to fish and wildlife. EPA's NPDES permit	The actions to be taken should considered in the overall context of the operation of the Contingency Remedy and anticipated improvements of wetland and riverine resources

Requirement	Authority	Status	Synopsis	Action to Meet Requirement
			regulations (40 CFR 122.49) reference compliance with this act.	
CWA Section 404, 40 CFR Part 230, 33 CFR Parts 320-323	Federal	Applicable	No adverse impacts to wetlands should occur as part of a remedial action if a practicable alternative exists. If no alternative exists the effects must be mitigated.	The extraction wellfield, treatment system, and discharge will be operated to minimize impacts to wetlands.
Floodplain Management Executive Order 11988 (40 CFR part 6, Appendix A)	Federal	Applicable	Requires federal agencies to minimize potential harm to or within floodplains and avoid floodplain development wherever there is a practicable alternative.	Space for development of the remediation system was limited to a small area north of the capped landfill area. The competed plant elevation is above the 100 year flood level.
Massachusetts Wetland Protection Requirements (310 CMR 10.00)State -Applicable		Regulates activities in freshwater wetlands, 100-year floodplains, and 100 foot buffer zones beyond such areas. Regulated activities include certain types of construction and excavation activities.	Construction of infiltration galleries, injection wells, or discharge piping to surface water will likely take place within protected resource areas and should meet the protective requirements of this regulation.	


ATTACHMENT C – Resource Mapping







ATTACHMENT D – NHESP Consultation

Division of Fisheries & Wildlife

Wayne F. MacCallum, Director

August 11, 2005

Spence Smith CH2M HILL 25 New Chardon Street, Suite 300 Boston, MA 02114-4770

Re: Nonacoicus Brook and Vicinity Near Plow Shop Pond Ayer, MA NHESP Tracking Number: 05-18244

Dear Mr. Smith,

Thank you for contacting the Natural Heritage and Endangered Species Program ("NHESP") of the MA Division of Fisheries & Wildlife for information regarding state-protected rare species in the vicinity of the above referenced site. We have reviewed the site and would like to offer the following comments.

This project site is located near Priority Habitat 300 as indicated in the 11th Edition of the Massachusetts Natural Heritage Atlas. Our database indicates that the following state-listed rare species have been found in the vicinity of the site:

Scientific name	Common Name	Taxonomic Group	State Status
Cyperus houghtonii	Houghton's Flatsedge	Plant	Endangered
Bartramia longicauda	Upland Sandpiper	Bird	Endangered
Ammodramus savannarum	Grasshopper Sparrow	Bird	Threatened

This project site is located near Priority Habitat 269 and Estimated Habitat 567 as indicated in the 11th Edition of the Massachusetts Natural Heritage Atlas. Our database indicates that the following state-listed rare species have been found in the vicinity of the site:

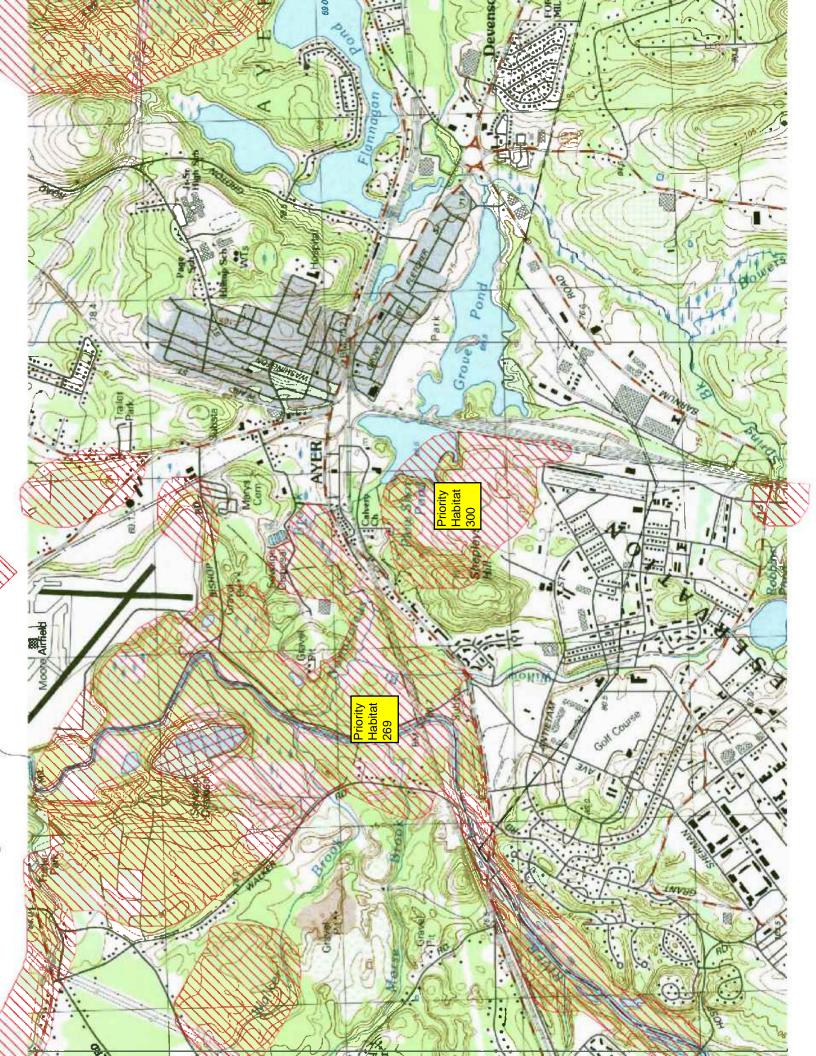
Scientific name	Common Name	Taxonomic Group	State Status
Senna hebecarpa	Wild Senna	Plant	Endangered
Bartramia longicauda	Upland Sandpiper	Bird	Endangered
Emydoidea blandingii	Blanding's Turtle	Reptile	Threatened
Clemmys insculpta	Wood Turtle	Reptile	Special Concern
Ambystoma laterale	Blue-Spotted Salamander	Amphibian	Special Concern

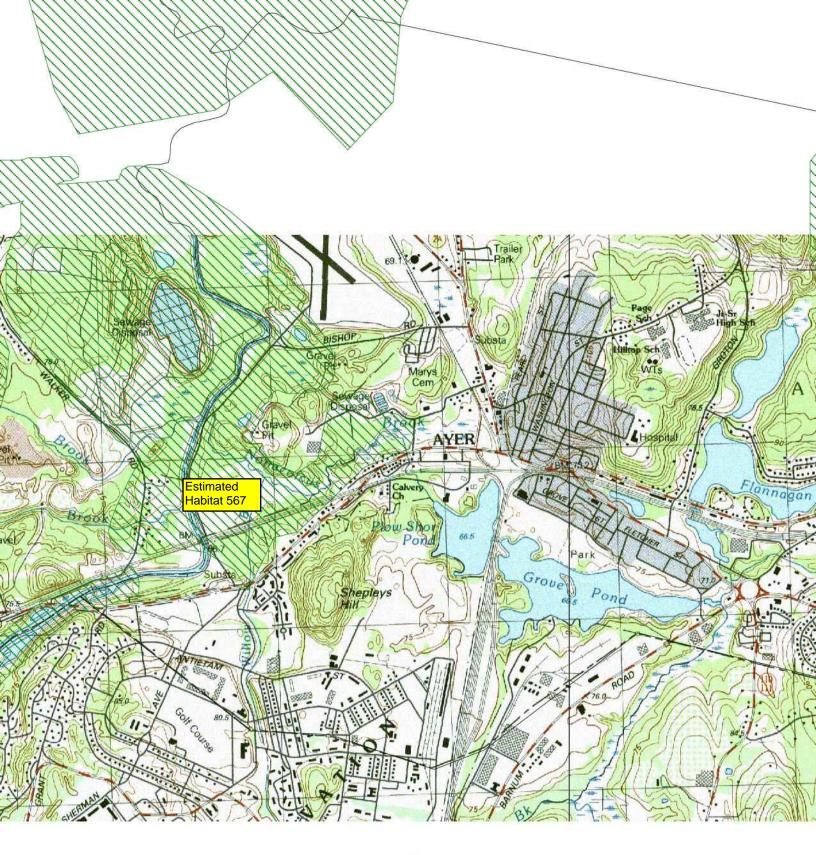
Division of Fisheries and Wildlife Field Headquarters, One Rabbit Hill Road, Westborough, MA 01581 (508) 792-7270 Fax (508) 792-7275 An Agency of the Department of Fisheries, Wildlife & Environmental Law Enforcement

www.masswildlife.org

This project site is located near Priority Habitat 269 and Estimated Habitat 567 as indicated in the 11th Edition of the Massachusetts Natural Heritage Atlas. Our database indicates that the following state-listed rare species have been found in the vicinity of the site:

Scientific name	Common Name	Taxonomic Group	State Status
Eleocharis ovata	Ovate Spike-Sedge	Plant	Endangered


These species are protected under the Massachusetts Endangered Species Act (M.G.L. c. 131A) and its implementing regulations (321 CMR 10.00). State-listed wildlife are also protected under the state's Wetlands Protection Act (M.G.L. c. 131, s. 40) and its implementing regulations (310 CMR 10.37 and 10.59). Fact sheets for these species can be found on our website <u>http://www.state.ma.us/dfwele/dfw/nhesp/nhfact.htm</u>.


This evaluation is based on the most recent information available in the NHESP database, which is constantly being expanded and updated through ongoing research and inventory. Should your site plans change, or new rare species information become available, this evaluation may be reconsidered.

If you have any questions regarding this review please call Joanne Theriault, Environmental Review Assistant, at ext. 310.

Sincerely, mon W. French

Thomas W. French, Ph.D. Assistant Director

ATTACHMENT E – Response to Comments

Draft On-Site Discharge Evaluation – Shepley's Hill Groundwater Extraction, Treatment, and Discharge System, June 30, 2005

The following document includes comments and responses on the *Draft On-Site Discharge Evaluation – Shepley's Hill Groundwater Extraction, Treatment, and Discharge System, June 30, 2005,* prepared on behalf of the Devens BRAC Environmental Office, and provided to the Base Clean-Up Team (BCT). EPA comments were provided in a letter to Robert Simeone, Devens BRAC Environmental Coordinator, dated September 16, 2005.

Environmental Protection Agency, letter dated September 16, 2005

Comment (cover letter):

EPA has reviewed the "Draft On-Site Discharge Evaluation Shepley's Hill Groundwater Extraction, Treatment, and Discharge System" technical memorandum, dated June 30, 2005. The technical memorandum provides an assessment of various options for on-site discharge of treated water from the SHL extraction/treatment system. The primary focus of the document is on the hydraulic impacts of on-site discharge (e.g., changes in the capture zone of the extraction wells, changes in groundwater/surface water interactions, etc.). In addition, it provides a summary of relevant regulations that constrain the discharge options. The memo was prepared by CH2MHill for the Devens BCT.

The document presents an assessment of the "pros and cons" of various discharge options. The advantages of on-site discharge over the present course (i.e., discharge to the Devens POTW) include lower O&M costs and the opportunity to use the discharge flow to achieve positive hydraulic effects. Release of treated water directly to the Nonacoicus Brook, the Army's preferred alternative, would replace volume that otherwise will be lost due to reduced groundwater discharge downgradient of the extraction wells. Also, reinjection or reinfiltration of treated water to the groundwater along the southern part of the landfill, which was considered in the analysis, offers the potential for some mitigation of adverse impacts in the vicinity of Red Cove.

EPA generally concurs with the conclusions drawn from this analysis, primarily that discharge of treated water in the vicinity of the dam appears to be a viable option with potential advantages. However, the EPA has reviewed the MADEP's August 12, 2005 comment letter on this technical memorandum and is aware that the DEP has a number of significant concerns with the Army's on-site discharge proposals. It appears that DEP's Antidegradation Policy would be an ARAR for surface water discharge. The Army will need to satisfy the DEP's concerns prior to implementing an on-site discharge option.

EPA's comments on the technical memorandum are attached. The key comments relate to the need for additional performance monitoring, primarily with respect to hydraulic information, to validate model predictions and further evaluate the potential impacts of onsite discharge options. The chosen discharge scenario will dictate the monitoring needs. Therefore, our comments reflect generally what the additional monitoring needs would be based on whether surface water discharge of reinfiltration/reinjection options are pursued, but details on the monitoring requirements would need to be discussed and agreed upon by the BCT, once decisions are made regarding which option or options will be further investigated.

Response:

Comment noted. Data collected during the early operations of the treatment plant and extraction wellfield, with discharge to the POTW, will be useful for the BCT, supporting decision-making about on-site discharge options to be further investigated. In addition, these data will be helpful in the evaluation and any adjustments to performance monitoring plans for either a surface water or reinfiltration/reinjection option.

General Comments

1. If surface water discharge is pursued, the Army would need to evaluate whether the continuous discharge to the brook would damp out natural cycles of high and low stream flow to a significant and/or deleterious extent. (Estimates presented in the document indicate that 50 gpm discharge to the brook would represent about 1/3 of the 90% prediction-interval minimum ambient stream flow and about 8% of the mean stream flow.)

Response:

The discharge would not be expected to dampen the short-term hydrologic response of Nonacoicus Brook in terms of increased flow. Short-term events such as thunderstorms or rapid spring thaws may induce flooding independent of the controlled discharge of treated groundwater. However, the continuous discharge flow would be expected to dampen low-flows during drought or dry periods.

2. If an on-site discharge scenario is ultimately selected, the modeling analysis highlights the need to expand the performance monitoring program, primarily with respect to hydraulic information, in two key areas: 1) Red Cove; and 2) Nonacoicus brook and wetlands downstream of the dam. Groundwater and surface water monitoring would need to be expanded to be of sufficient density and frequency to validate the model predictions in these areas. The modeling suggests reduced groundwater discharge to each of these areas under the preferred surface water discharge scenario, but the related effects to water levels (groundwater and surface water) and flow rates (groundwater and surface water), particularly in the brook and wetlands, are of equal or perhaps greater relevance. Discharge to surface water may require that the hydraulic monitoring program be expanded in the area downstream of the dam to include synoptic measurement of stream water levels, in-stream flow rates, and water levels in an expanded number of wetland and stream piezometer locations in order that the modelpredicted changes to flux and water levels may be identified and resolved at an appropriate scale, and the model validated. BCT discussions are needed on additional hydraulic monitoring needs to further evaluate on-site discharge options.

Response:

Recommended changes to hydraulic monitoring would be developed during final design of a selected on-site discharge option. This monitoring would be designed to evaluate actual performance vs. model predictions.

3. With respect to Red Cove, EPA has noted in previous comments that the Army's groundwater model does not appear to adequately represent "ambient" (i.e., non-pumping) groundwater flow conditions in the Red Cove area. Although the model suggests potential positive benefits to the Red Cove Area (e.g., run 412), since it is not clear that the current monitoring network adequately resolves flow in that area of the site, it is also unclear how the model-predicted changes in that area will be verified. As discussed in EPA's presentation to the BCT on June 9, 2005, and previously, additional monitoring is needed in the Red Cove area, including additional monitoring wells within the landfill footprint, shoreline piezometers, surface water staff gauges, etc. Further discussions are needed. This is particularly important if one of the reinjection or reinfiltration scenarios are pursued.

Response:

Discussions relating to additional monitoring would occur during the final design of a discharge option.

4. If future consideration is given to ground water reinjection scenarios, the scenarios invoking groundwater discharge to the southern part of the landfill are interesting in that they appear to offer the potential for some mitigation in the vicinity of Red Cove. If these scenarios are investigated further, the monitoring issues/needs identified in the Red Cove area (see previous comment) should be carefully considered.

Response:

Monitoring needs in the area of Red Cove will be considered as an on-site discharge option is further developed during the final design process.

Specific Comments

1. <u>Page 2, 1st Para, and Figure C.1-1</u>: Once a final discharge scenario decision is reached, the BCT should review the adequacy of the current monitoring network and determine any necessary changes and/or additions.

Response:

Agreed.

2. <u>Page 2, 1st Bullet:</u> Cost should also be included as a decision-making criterion.

Response:

Cost is a decision-making criterion considered in the evaluation of options. The bullets on Page 2 present overarching considerations (e.g. no consideration given to discharge within the capped area and off-base).

3. <u>Page 9, 1st Para:</u> It should be noted that the potential of a hydraulic connection between groundwater from the Shepley's Hill area and the McPherson Well Zone II will be assessed as part of the CSA/CAAA study.

Response:

Reference to the CSA/CAAA work will be added.

4. <u>Page 9 - 10 and Table 4</u>: The appropriateness of the use of Priest Brook in Winchendon as a suitable analogue for Nonacoicus Brook is in need of additional support/justification. In particular, it is noted that Nonacoicus Brook is essentially located in a semi-urban environment and is influenced by a number of factors such as impoundments, storm drainage, runoff from impervious surfaces, etc. Does Priest Brook share such characteristics? What analysis supports or refutes such comparison? As stated at previous meetings, collection of actual stream flow data in the area of interest, under an appropriate range of conditions, needs to be considered in order to give credence to the flow analysis presented in Table 4.

Response:

Both the Nonacoicus and Priest Brook watersheds are rural/suburban settings. Specific differences in the degree of development between the two have not been evaluated in detail but are not expected to be significant. Differences in infiltration capacity of the watershed dues to development are probably offset by slightly higher detention in the Nonacoicus Brook watershed. The Priest Brook example provides a similar sized watershed in a similar hydrologic setting and, most importantly, has a lengthy record of 86 years. The longer the record is, the better the flow statistics or chance that the gage records have captured a wide range of discharge response. The drainage-area ratio method is commonly used to develop flow statistics for ungaged streams or those having records of short duration. Short-term gaging of the Nonacoicus would provide records of short duration that would not add much additional certainty to the analysis. Longer-term records of other streams would still be required through direct comparison or through regression analyses of data from multiple streams in the region to adequately characterize the magnitude and frequency of lower probability events (ie high and low flows). The Stream Stats analysis provides the regression analytical approach to derive flow statistics for the region. This was utilized to derive the 7Q10 for the Nonacoicus.

5. <u>Page 10, 3rd Para:</u> What is the status of the rare species assessment in the Nonacoicus Brook and Plow Shop Pond area?

Response:

A consult was requested from Natural Heritage Endangered Species program and a response has been received. The findings are summarized in the table below. No habitat polygons have been identified in the reach of the Nonacoicus between the Dam and West Main Street. Due to the types of species and the habitat identified, upland areas near the landfill and wetland areas north of West Main Street, it is not anticipated that on-site discharge would impact these species in their identified habitats.

Common Name	Scientific Name	Taxonomic Group	State Status	Notes/Comment
Plants	1			r.
Houghton's Flatsedge	Cyperus houghtonii	Plant	Endangered	PH-300; Landfill area/woods; species likely on dry upland areas (Shepley's Hill?)
Ovate Spiked - Sedge	Eleocharis ovata	Plant	Endangered	PH-269/EH-567; Area north of West Main Street, wetland specie
Wild Senna	Senna hebecarpa	Plant	Endangered	PH-269/EH-567; Area north of West Main Street; likely upland areas
Animals		8		
Upland Sandpiper	Bartrania Iongicauda	Bird	Endangered	PH-300 and PH-269; Landfill area /woods and are north of West Main Street; habitat "open grassy areas, wet meadows, old fields and pastures"
Grasshopper Sparrow	Arronod romus savannarion	Bird	Threatened	PH-300; Landfill Area/woods; habitat "in sandplain grasslands, pastures, hayfields, and airfields characterized by bunch grasses"
Blanding's Turtle	Emydoidea blandingii	Reptile	Threatened	PH-269/EH-567; Area north of West Main Street; habitat "primarily aquatic preferring densely vegetated shallow ponds, marshes and small streams."
Wood Turtle	Clemnys insculpte	Reptile	Special Concern	PH-269/EH-567; Area north of West Main Street; "The preferred habitat of the Wood Turtle is riparian areas. Slower moving streams are favored, with sandy bottoms and heavily vegetated stream banks."
Blue Spotted Salamander	Abystoma laterale	Amphibian	Special Concern	PH-269/EH-567; Area north of West Main Street; "Blue spotted salamanders require moist, moderately shaded environments having depressions available for seasonal flooding [vernal pools]

6. <u>Page 12</u>: The discussion of the estimation of surface-water discharge statistics based on drainage-basin area notes that, "... basins of similar size and hydrologic ... characteristics should be used" Are the Priest Brook and Nonacoicus Brook drainages "similar"? The Nonacoicus Brook drainage includes a significant area of relatively static surface water (Plow Shop, Grove, and upstream ponds). These might be expected to affect the gross water balance in the drainage, particularly in the summer months, when the ponds may lose a significant volume of water to evapotranspiration. If the Priest Brook drainage has much less surface water area, the extrapolation to the Nonacoicus drainage may overestimate the stream flow. Does the literature address the comparability of basins with different fractions of surface water cover?

Response:

See response to Specific Comment 4.

7. <u>Page 16, Table 7:</u> An inspection of Table 7 suggests that Scenarios 5 and 6 are almost identical. Scenario 5 (Site East of Landfill (C004)) appears to have one additional disadvantage pertaining to working on steep slopes. Is Scenario 6 (site east of landfill (S002)) therefore considered to be superior?

Response:

Of the two, Scenario 6 appears to be superior due to constructability issues for Scenario 5.

7. <u>Page 19, Water Budget Analysis</u>: The water budget analysis focuses on changes in groundwater flux, expressed in gpm. It would also be useful, however, to estimate reduction/ increase in groundwater levels over relevant sub-areas of the site. For example, it is stated that, "Run 412 reduces the flow of ground water to the Nonacoicus in the area north of the dam to north of West Main Street ("Zone 6") by 18 gpm." What affect will this have on groundwater levels in this area? Will wetland resources be impacted adversely? The hydraulic performance monitoring will need to be reassessed to address this issue if onsite discharge options are pursued. See General Comment 2, above.

<u>Response</u>: Run 412, the wellfield design run, involves discharge to the POTW. Predicted drawdown maps for Run 412 have been provided to the BCT. The performance monitoring network was developed to assess this drawdown with operation of the system. Drawdown triggers were developed as part of the performance monitoring plan and these triggers were not exceeded during the extraction test. Modeling work demonstrates that on-site discharge to surface water or groundwater in the vicinity of the Nonacoicus is expected to mitigate any drawdown in this area.

8. <u>Page 20, Conclusions and Recommendations</u>: In addition to defining >capture=, additional hydraulic performance monitoring is needed to verify the various model-predicted changes to groundwater discharge (and related hydraulic effects). Since the predicted changes are spatially variable, a greater density of hydraulic monitoring data will be needed in some areas of the site should an on-site discharge option be adopted. See General Comment 2, above. As noted in General Comment 3 above, the model appears to be somewhat at odds with actual groundwater flow data in the area of Red Cove. In any case (including the present offsite discharge scenario), the model should be verified and updated as necessary in conjunction with the collection and synthesis of performance monitoring data collected as pumping is initiated and a new equilibrium is established.

Response:

See response to General Comment 2.

Draft On-Site Discharge Evaluation – Shepley's Hill Groundwater Extraction, Treatment, and Discharge System, June 30, 2005

The following document includes comments and responses to DEP comments on the *Draft On-Site Discharge Evaluation – Shepley's Hill Groundwater Extraction, Treatment, and Discharge System, June 30, 2005,* prepared on behalf of the Devens BRAC Environmental Office, and provided to the Base Clean-Up Team (BCT). DEP comments were provided in a letter to Robert Simeone, Devens BRAC Environmental Coordinator, dated August 12, 2005.

Massachusetts Department of Environmental Protection, Letter dated August 12, 2005

Comment:

The Massachusetts Department of Environmental Protection (MassDEP) has reviewed the report entitled, "<u>Draft On-Site Discharge Evaluation-Shepley's Hill Landfill Groundwater</u> <u>Extraction, Treatment, and Discharge System</u>," prepared by CH2M Hill, dated June 30, 2005 ("the Report"), which evaluates groundwater and surface water discharge alternatives for the effluent from the Shepley's Hill Landfill Arsenic Treatment Plant (ATP). As explained below, MassDEP is concerned that the groundwater and surface water discharge alternatives identified therein would violate substantive state requirements previously identified as applicable requirements (i.e. ARARs). MassDEP believes that these requirements cannot be waived pursuant to §121(d)(4) of CERCLA under the circumstances.

Response:

The DEP indicates that both the groundwater and surface water alternatives would violate the substantive state requirements previously identified. We believe we have captured and evaluated substantive requirements in the analysis. Operation of the extraction and treatment system with the current discharge to POTW will provide additional field data, supporting further development and design of an on-site discharge approach. Responses below follow specific comments.

Comment:

The Massachusetts Surface Water Quality Standards designate Plow Shop Pond and Nonacoicus Brook as Class B, High Quality Waters. See, 314 CMR 4.06(2). As Class B, High Quality Waters, Plow Shop Pond and Nonacoicus Brook are designated for protection under 314 CMR 4.04. The applicable standards for performance for this project include not only the effluent limitations outlined in the Report but also the Antidegradation Provisions published at 314 CMR 4.04. Plow Shop Pond and Nonacoicus Brook, therefore, must be protected and maintained for their existing level of quality unless limited degradation for a new or increased discharge is authorized by the Department after the Department determines that such discharge "is insignificant because it does not have the potential to impair any existing or designated water use and cause any significant lowering of water quality" under 314 CMR 4.04(2) or the proponent demonstrates to the Department's satisfaction under 314 CMR 4.04(4), after public notice in accordance with 314 CMR 2.06, that no less environmentally damaging alternative site for the activity, source for the disposal, or method of elimination of the discharge is reasonably available or feasible," amongst other things.

Accordingly, MassDEP would consider a discharge to Plow Shop Pond or Nonacoicus Brook consistent with the Antidegradation Provisions only if it is "insignificant" because it does not have the potential to impair any existing or designated water use and cause any significant lowering of water quality or the proponent can satisfactorily demonstrate that no less environmentally damaging alternative site for the activity, source for the disposal, or method of elimination of the discharge is reasonably available or feasible. Because the discharge can be routed through the Devens Regional Wastewater Treatment Facility, it is not readily apparent how the proponent could satisfy the Commonwealth's Antidegradation Provisions.

Response:

BRAC is confident that the Class B designated uses of Plow Shop Pond and the Nonacoicus Brook would be maintained and enhanced with surface water discharge. In addition, the discharge of water locally within the pond brook ecosystem offsets the hydraulic stress associated with groundwater capture. Start-up operations for the system, as configured with the POTW discharge, will provide data that further demonstrate that surface water designated uses would not be impaired and may actually be enhanced. This concern will be revisited as these data are collected and shared with the DEP and the other members of the BCT.

Comment:

The groundwater discharge alternatives are also problematic. The regulations at 314 CMR 5.00 establish the Commonwealth of Massachusetts' Groundwater Discharge Program under which discharges of pollutants to the ground waters of the Commonwealth are regulated by MassDEP pursuant to M.G.L. c. 21, § 43. In addition to regulating these discharges, M.G.L; c. 21, §§ 26 through 53 also requires that MassDEP regulate the outlets for such discharges and any treatment works associated with these discharges. Through 314 CMR 5.00, MassDEP controls the discharge of pollutants to the ground waters of the Commonwealth to assure that these waters are protected for their highest potential use. See, 314 CMR 5.01. The alternative groundwater discharges identified in the Report would not be allowed under 314 CMR 5.06(3) if a sewer system is reasonably accessible and permission to enter such a sewer system can be obtained from the authority having jurisdiction over it, in accordance with 310 CMR 15.02(12) and M. G. L. c. 83, § 11. Because the discharge can be routed through the Devens Regional Wastewater Treatment Facility, it is not readily apparent how the proponent could satisfy this requirement.

<u>Response:</u> The treated water would meet the substantive standards, water quality based effluent limitations identified in 310 CMR 5.10 (3). The project, as a groundwater remediation project, is intended to improve groundwater quality thus protecting human health and the environment. The treatment plant effluent is not an industrial discharge that may be viewed to further degrade or tax a resource. The project should be viewed more holistically as providing a net benefit to potential human and ecosystem receptors by improving overall water quality in the area downgradient of the landfill. In addition, local hydraulic impacts to the ecosystem are mitigated with groundwater reinjection.

On-site recharge to groundwater provides an effective means to place treated water back in the aquifer in very close proximity to the area where it is removed for treatment. This is consistent with the spirit of Water Management Act (MGL c. 21G) and implementing regulations (310 CMR 36.00). In addition, 310 CMR 5.05 (2) provides an exemption for "Any recharge well used exclusively to replenish the water in an aquifer with uncontaminated water." Remediation projects are often viewed as exempt since they are undertaken to protect and enhance groundwater resources, differing in that regard from other industrial discharges. The Army's intent to meet the groundwater quality-based discharge limitations at 310 CMR 5.10 (3) would protect groundwater. As a practical matter, POTW treatment plant capacity should be reserved for sewage and industrial process waters from the communities. If remediation projects can meet typically more rigorous discharge limitations of either surface water or ground water discharge, then POTW capacity should not be used.

Comment:

MassDEP offers the following additional comments relative to the ARAR section of the

Report.

1 **Groundwater Discharge -Location-Specific** -First row should specify: Massachusetts Endangered Wildlife and Plants (321 CMR 8.00) and Massachusetts Endangered Species Act (321 CMR 10.00).

<u>Response:</u> This will be corrected to include M.G.L. c. 131A: Massachusetts Endangered Species Act; 321 CMR 8.00, List of Endangered Wildlife and Wild Plants; 321 CMR 10.00, Massachusetts Endangered Species Regulations.

Comment:

2. **Groundwater Discharge -Action-Specific** -Add new ARAR for the following: Massachusetts HWMR Groundwater Protection (310 CMR 30.660-679), State, Relevant and Appropriate, These regulations require groundwater monitoring at specified regulated units that treat, store, or dispose of hazardous waste. Maximum concentration limits for the hazardous' constituents are specified in 310 CMR 30.668

<u>Response:</u> Groundwater monitoring for the landfill as a "regulated unit" is being conducted in accordance the Record of Decision for Shepley's Hill Landfill (1995) and the associated long-term monitoring program. The identified requirements have been previously considered as part of the development of the long-term monitoring program. This program would be modified to incorporate any compliance monitoring should final design and construction of the groundwater discharge option be pursued.

Comment:

3. **Groundwater Discharge -Chemical Specific** -Under 314 CMR 5.10 (inclusive) and 314 CMR 5.19 discharge limits for new discharges are technology based, the ATP was developed to meet a 10 ug/l arsenic discharge limit and that should have been the stated goal of a groundwater [or surface water] discharge.

<u>Response:</u> The treatment plant was initially designed with the objective of meeting the discharge limitations of the Devens Regional Waste Water Treatment Plant, as specified

in the permit issued in July, 2003. The Army further decided that a design goal for the treatment would be 10 ug/l for arsenic.

Comment:

4. **Surface Water Discharge -Location-Specific** -Add new ARAR as follows: - Massachusetts Wetland Protection Requirements (310 CMR 10.00), -State, - Applicable, -Regulates activities in freshwater wetlands, 100-year floodplains, and 100 foot buffer zones beyond such areas: Regulated activities include certain types of construction and excavation activities. Construction of infiltration galleries, injection wells, or discharge piping to surface water will likely take place within protected resource areas and should meet the protective requirements of this regulation.

Response: This will be added.

Comment:

5. Surface Water Discharge -Chemical Specific -Table 5 Surface Water Discharge Standards should include a limit for chlorine/trihalomethane.

<u>Response:</u> We have not identified a surface water effluent limitation for either chlorine or trihalomethane in the NPDES remediation general permit (RGP) administered by EPA Region 1 and the DEP or the State surface water quality regulations that is directly applicable to remediation situations involving metals sites. However, the RGP presents a total residual chlorine (TRC) standard, of 11ug/L intended, as indicated in Table Vof the RGP, for projects involving hydrostatic testing of pipelines and tanks. However, permit guidance indicates that this should apply to all treatment systems by stating "permittees covered by the RGP who submit information in an NOI or an NOC under this permit which indicates that chlorine compounds are used in the activity or treatment systems must dechlorinate and monitor for the TRC in the effluent...this permit sites effluent limits based on the EPA recommended water quality criteria which are 11 ug/L for freshwater (chronic)..."

Comment:

6. Surface Water Discharge -Location Specific and Action Specific -The NPDES program allows for dilution consideration in developing discharge limits for metals but the calculation should only consider the drainage area ~ the proposed discharge location to develop the dilution range. In this draft, the whole watershed is inappropriately considered available for dilution.

<u>Response:</u> The USGS StreamSTATs procedure was utilized, as specified in NPDES and DEM guidance, to calculate the applicable 7Q10 discharge. If a decision is made to pursue surface water discharge further, other drainage area/discharge volume calculations may be discussed with the BCT.

Comment:

Additionally, MassDEP notes the following technical deficiencies in the Options Evaluation:

Feasibility Screening and Modeling Results -The matrix in Table 7 does not include the additional cost or time it will take to address specific technical issues associated with the Discharge Options. It is presumed that these would be addressed in the Comprehensive Site Assessment/Corrective Action Alternative Analysis that will not be completed in the foreseeable future and those results could change this Reports Screening results.

<u>Response</u>: Table 7 is a feasibility screening matrix to support general evaluation of discharge options and identify advantages and disadvantages based on effectiveness, implementability and cost. Costs/time associated with technical issues are included. The evaluation of on-site discharge options for the existing pump and treat system is not dependent upon the CSA/CAAA.

Comment:

2. Feasibility Screening and Modeling Results -Page 17 -Additional groundwater modeling was completed to evaluate the hydraulic impact of alternative discharge locations. However, to appropriately evaluate a groundwater discharge, both a refined hydraulic groundwater model and a detailed geochemical model would need to be developed to accurately predict the impacts of re-injection. At a minimum, the parameters to include would be differing soil types and hydraulics of the injection areas, addition information on soil adsorption, precipitation and dissolution reactions, consideration for non-equilibrium and equilibrium conditions, surface water interactions, and vertical and horizontal gradient influences. This information was not presented in the Report.

<u>Response:</u> On site groundwater recharge was evaluated in the same manner as groundwater extraction, supporting the design of the extraction wellfield. The BCT has defined a monitoring approach, presented elsewhere, to evaluate any changes in geochemical conditions and hydraulics in the aquifer. This monitoring program would be modified to incorporate evaluation of either surface water discharge or groundwater discharge if either of these is selected for implementation.

Comment:

4 Potential Process Needs -Discussion is presented about balancing treatment dosing and arsenic removal/discharge. The process should not trade-off one pollutant for another. The effluent must meet all applicable discharge limits.

<u>Response:</u> The effluent will meet applicable standards.

Comment:

Recommendations and Conclusions -I understand that new information on both the interpretation of groundwater flow data by the groundwater model and present groundwater discharge to Red Cove was presented at the last Restoration Advisory Meeting. This information should be evaluated in the context of the final remedy for the Shepley's Hill Landfill and the other Operable Units associated with Shepley's Hill Site. In addition, the Report focused narrowly on the hydraulics and relative costs of the discharge alternatives identified. It relies on a groundwater model that has not been developed to provide the appropriate level of detail needed to evaluate the hydro-geologic impacts of

each alternative and some ARARs were simply not included for consideration. The Conclusions and Recommendations contained in the Report warrant reconsideration.

Response: Comment noted.

Comment:

4 MassDEP remains concerned that high levels of arsenic are continuing to migrate from the landfill and the Contingency Remedy will not adequately address migration of the arsenic plume and other issues at the site associated with possible cap system failure. MassDEP, therefore, requested in August 2004 that the United States Environmental Protection Agency consider re-opening the Record of Decision to allow for additional assessment of the groundwater, including assessing alternative methods to divert groundwater away from the landfill, and consideration of additional alternative remedial actions to address the continuing generation of leachate and containment of the advancing groundwater, including assessing alternative remedial actions to address the consideration of additional alternative remedial actions the groundwater, including assessing alternative remedial actions to address the consideration of additional alternative remedial actions to address the consideration of additional alternative remedial actions to address the consideration of additional alternative remedial actions to address the consideration of additional alternative remedial actions to address the continuing generation of leachate and containment of the advancing groundwater, including assessing alternative methods to divert groundwater away from the landfill, and consideration of additional alternative remedial actions to address the continuing generation of leachate and containment of the advancing groundwater plume, and it is looking forward to working with the Army in the implementation of a Comprehensive Site Assessment/Corrective Action Alternative Analysis for Shepley's Hill Landfill per the Massachusetts Solid Waste Program requirements and Landfill Technical Guidance Manual.

Response: Comment noted.

Start-Up Extraction Test – Shepley's Hill Groundwater Extraction, Treatment, and Discharge System

PREPARED FOR:	BRAC Clean-Up Team (BCT)
PREPARED BY:	CH2M HILL
DATE:	February 28, 2006

Introduction

The purpose of this letter report is to provide hydraulic data, results and interpretations from extraction testing work conducted during the start-up of the Shepley's Hill Extraction, Treatment, and Discharge system. The extraction testing was conducted at EW-1 and involved two 24 hr drawdown tests and a recovery test. EW-1 was selected for testing since modeling work conducted during system design activities demonstrated that EW-1 performance and the combined well field, involving EW-01 and EW-04 operating as a pair, would be very similar.

The hydraulic monitoring approach, further described in the Contingency Remedy Performance Monitoring Plan (CH2M HILL, 2005b), involved extensive manual and data logger measurements. These measurements were collected at multiple locations from August 24, 2005 through August 30, 2005. The work was scheduled such that the operating treatment plant would be functioning and available to treat the groundwater effluent during the test, avoiding the need for tank storage. Consequently, the work was conducted following initial start-up/shakedown activities when plant treatment process adjustments were complete. Prior to initiating the test the wellfield and plant remained idle for 5 days, to ensure that the aquifer had returned to steady state conditions.

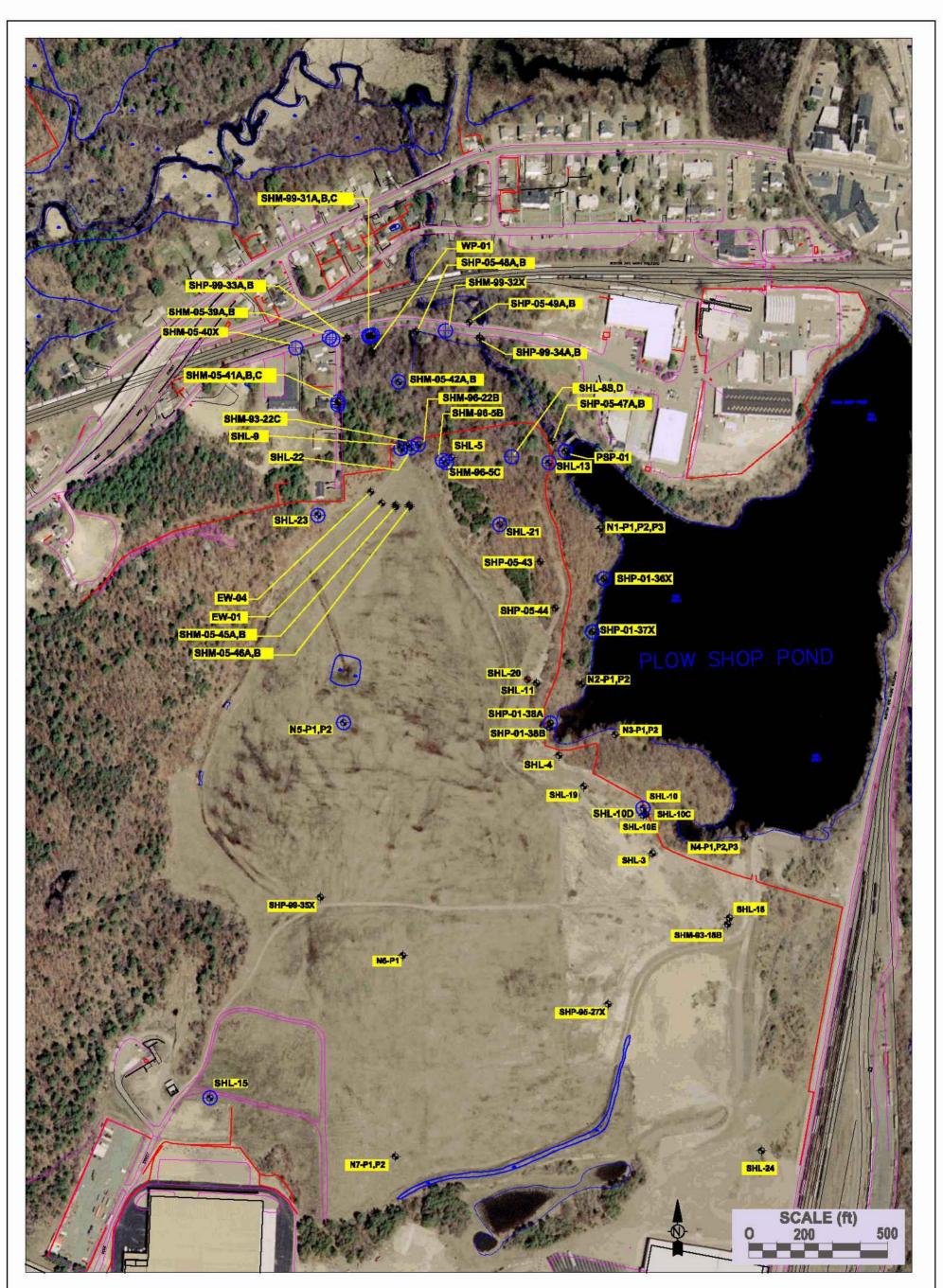
The objective of the testing was to measure drawdown in the plume capture area with normal operation of the wellfield at 25 gpm and to derive aquifer hydraulic characteristics in the area of the wellfield. In addition to drawdown data, recovery data were also evaluated to characterize aquifer hydraulics through distance-drawdown and time-drawdown analyses. Comparison of these data is made with predictive simulations of the groundwater model involving Runs 401 through 403.

This memo provides well completion and boring logs for wells constructed both on base and off base during the design and construction of the Contingency Remedy (Attachment A). All of these new locations are part of either the hydraulic or geochemical monitoring networks described in the Contingency Remedy Performance Monitoring Plan (CH2M HILL, 2005b).

Hydraulic Monitoring

Figure 1 depicts the location of the wells, piezometers, and surface water stage locations that are included in the geochemical and hydraulic performance monitoring network. All of

these locations were occupied prior to, during, and following the extraction test to characterize groundwater elevation and surface water stage under baseline, maximum drawdown, and recovery conditions. Subsets of these monitoring locations were visited frequently throughout the test for manual measurements or were automatically logged with pressure transducers to support estimation of hydraulic parameters through timedrawdown and distance-drawdown analyses.


The wells that were logged with pressure transducers are identified in Figure 1 and Table b-1. Table B-1 and Table B-2 provide lists of wells that are part of the hydraulic and geochemical monitoring networks (CH2M HILL, 2005b). All of these wells were monitored during the extraction test. Attachment B provides two tables, Table B-3 and Table B-4, summarizing water-level measurements collected before and during the tests. Table B-3 includes monitoring well locational coordinates and surveyed reference elevations from Meridian Associates, Inc (2005). The depth-to-water data for pre-extraction test baseline events, maximum drawdown, recovery, and post-extraction are converted to elevations and have been used to develop synoptic water-level plots. Table B-4 contains manual measurements collected regularly throughout the tests. Nearfield wells were monitored roughly every hour during the early stages of the extraction test and those further afield were monitored every 2 to 3 hours.

Chemical Monitoring

During early August 2005 the treatment plant start-up testing was conducted and by August 19, 2005 process adjustments were complete and the system was ready to support the extraction test. The plant and wellfield were shutdown on Friday, August 19th to allow the aquifer to recover over the weekend and the extraction test was scheduled to be begin the following Thursday, August 25th.

During the extraction test, samples were collected for influent and effluent analysis to provide data on expected arsenic concentrations in influent and effectiveness of treatment. These samples were collected on roughly 6 hour intervals throughout the initial drawdown test and daily the following week when the second extraction test was conducted. These data are presented in Table 1 and demonstrate that significant concentrations of arsenic, averaging 3067 ug/l, were present in the influent stream from EW-1 throughout the testing period. The average effluent arsenic concentration during this period was 3.9 ug/l. Concentrations as high as 5910 ug/l were encountered earlier in the month from EW-04 during start-up testing. The treatment goal of 10 ug/l for arsenic was met throughout the test.

Plans to collect total dissolved solid (TDS) data were modified for the extraction test. The Army BRAC had committed to design and construct a treatment plant as part of the contingency remedy so these data were no longer necessary for decision making. However, one influent sample was collected during the first sampling event of the extraction test confirming the expected high total dissolved solids in the influent to the treatment plant, having a result of 350 mg/l.

LEGEND

- + Hydraulic Monitoring Network
- Geochemistry Sentinel Network

Note: New Well Locations Approximate (to be surveyed)

FIGURE 1 Performance Monitoring Network

SAMPLE	ID	IN0825050900	EF0825050902	IN0825051500	EF0825051500	IN0825052100	EF0825052100	IN0826050900	EF0826050900	EFFLUENT 0829	EFFLUENT 0830
SAMPLE T (Plant Proc		INFLUENT	EFFLUENT	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT	INFLUENT	EFFLUENT	EFFLUENT	EFFLUENT
SAMPLING I	DATE	25-AUG-05	25-AUG-05	25-AUG-05	25-AUG-05	25-AUG-05	25-AUG-05	26-AUG-05	26-AUG-05	29-AUG-05	30-AUG-05
SAMPLE T	IME	9:00	9:02	15:00	15:00	21:00	21:00	9:00	9:00	14:00	14:30
LAB SAMPL	E ID	L0509870-01	L0509870-02	L0509870-03	L0509870-04	L0509870-05	L0509870-06	L0509870-07	L0509870-08	L0510043-01	L0510043-02
	Units										
Solids, Total Dissolved	ug/l	350000	NS	NS	NS	NS	NS	NS	NS	NS	NS
			1				1		1	ſ	
Arsenic, Total	ug/l	3152 ¹	7.9	3045 ¹	5.6	3025 ¹	2.9	3044 ¹	4	1.5	1.2

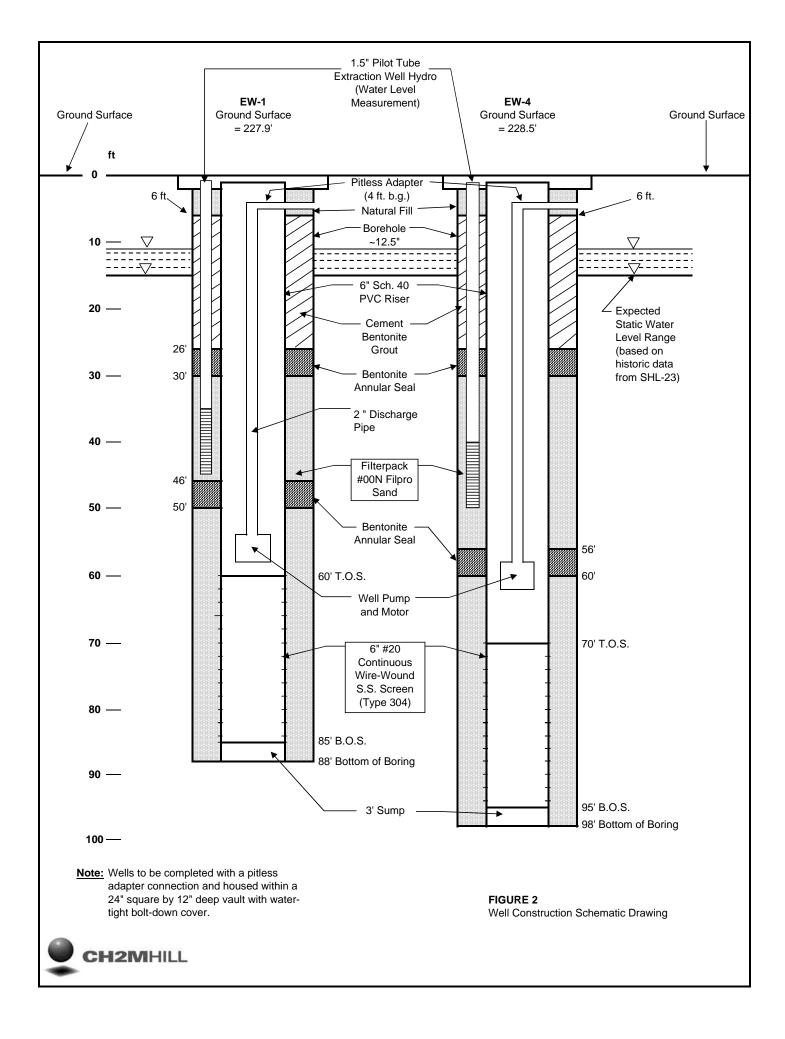
TABLE 1 Chemical Monitoring During the Extraction Test

¹ Influent values data. Average influent concentration 3067 ug/l and average effluent concentration 3.9 ug/l during extraction tests.

Hydraulic Testing and Analysis

Construction of the two extraction wells was completed in early 2005. Figure 2 provides an extraction well schematic drawing of each of the extraction wells that were installed. Attachment A provides boring logs and well completion diagrams for both extraction wells locations. Shortly after installation of the extraction wellfield was complete, both wells were developed and step tests were completed. The section that follows describes the step tests and the extraction tests and analyses in further detail.

Step-Drawdown Tests


Step-drawdown tests of extraction wells EW-01 and EW-04 were conducted on February 15, 2005. Each well was pumped at 5, 15, and 25 gallons per minute (gpm) successively for 25 to 30 minutes at each rate, and the resulting drawdown was measured in each extraction well. In addition, new monitoring wells SHM-05-45A, SHM-05-45B, SHM-05-46A, and SHM-05-46B, approximately 50 and 100 feet east of the EW-01, were monitored. This was done to develop a sense of expected drawdown in the nearfield area. This information was utilized to further evaluate the planned monitoring network for the extraction test, such that adjustments could be made in this network, if needed.

Prior to initiating pumping for each step-drawdown test, static water levels in the extraction wells and the monitoring wells were collected manually. As the test progressed, water levels in the wells were collected at intervals between two and five minutes. These water levels are provided in Table 2. Pumped water was stored in a frac tank. Although the tests occurred on the same day, the first test (EW-01) was expected to have had a negligible effect on the second test (EW-04), since the volume of water associated with these short duration tests was relatively small (~1500 gallons).

Table 3 presents the cumulative drawdown at the end of each pumping interval for the test well and four monitoring wells. From this drawdown information and the pumping rate, the specific capacity of a well, a measure of yield or productivity, may be calculated. Specific capacity (C_s) is equal to the pumping rate (Q) divided by the drawdown (Δh_w). In other words, the specific capacity is a measure of the yield, usually represented in gallons per minute, of the saturated aquifer per foot of drawdown. Specific capacity is easily measured and provides an effective means to evaluate well production potential and track changes over time as a well is operated.

Specific capacities for EW-01 ranged from 2.1 to 3.1 gpm/ft and for EW-04 from 2.7 to 3.1 gpm/ft. These data indicate that on average EW-01 produces 2.8 gpm/ft and EW-04 produced 2.9 gpm/ft. It should be noted that specific capacities may change with pumping, increasing with well development or decreasing if fouling of screens occurs as a production well is operated. Improved specific capacities with increased pumping during the test at EW-01 suggest that the well development may have been enhanced through the test. In addition, specific capacities generally decrease with higher pumping rates due to well screen inefficiency becoming more prevalent at higher rates.

EW-01 and EW-04 each have approximately 50 and 60 ft of saturated thickness above the tops of the screened intervals, respectively (See Figure 2). This roughly calculates to a potential yield for EW-01 of 142 gpm and 174 gpm for EW-04, if operated independently, before the watertable would be drawn down to the screened depth. This simply gives a

Δt (min)	EW-01	SHM-05-45A (CS-50)	SHM-05-45B (CD-50)	SHM-05-46A (CS-100)	SHM-05-46B (CD-100)	∆t (min)	EW-04	SHM-05-45A (CS-50)	SHM-05-45B (CD-50)	SHM-05-46A (CS-100)	SHM-05-46B (CD-100)
5 GPM				. ,		5 GPM		. ,		. ,	
0	12.28	14.35	14.91	13.92	13.31	0	13.41	14.20	14.80	13.81	13.18
2	13.48	14.41	14.98	13.96	13.34	2	14.98	14.24	14.84	13.82	13.21
4	14.41	14.42	14.99	13.98	13.37	4	15.02	14.24	14.85	13.81	13.20
7	14.48	14.44	15.00	13.97	13.35	6	15.02	14.25	14.84	13.82	13.21
10	14.48	14.43	15.00	13.98	13.35	8	15.02	14.27	14.85	13.84	13.23
15	14.48	14.43	15.00	13.98	13.35	13	15.02	14.27	14.85	13.84	13.23
20	14.48	14.43	15.00	13.98	13.35	18	15.02	14.27	14.85	13.84	13.23
25	14.48	14.43	15.00	13.98	13.35	23	15.02	14.27	14.85	13.84	13.23
						28	15.02	14.27	14.85	13.84	13.23
15 GPM						15 GPM					
27	17.12	14.51	15.15	14.00	13.43	30	18.84	14.31	14.90	13.85	13.25
29	17.15	14.54	15.17	14.00	13.46	32	18.87	14.33	14.92	13.85	13.28
31	17.15	14.54	15.17	14.01	13.45	34	18.89	14.34	14.95	13.86	13.28
33	17.15	14.57	15.17	14.02	13.47	36	18.89	14.37	14.99	13.89	13.29
35	17.15	14.57	15.18	14.02	13.47	38	19.00	14.39	14.99	13.91	13.31
40	17.15	14.57	15.18	14.02	13.47	43	19.01	14.39	14.99	13.92	13.32
45	17.15	14.57	15.18	14.02	13.47	48	19.01	14.39	14.99	13.92	13.32
50	17.15	14.57	15.18	14.02	13.47	53	19.01	14.39	14.99	13.92	13.32
						58	19.01	14.39	14.99	13.92	13.32
25 GPM						25 GPM					
52	18.31	14.67	15.33	14.15	13.56	60	21.97	14.43	15.01	13.93	13.34
54	20.31	14.68	15.34	14.13	13.58	62	21.98	14.43	15.01	13.95	13.34
56	20.35	14.70	15.34	14.16	13.59	64	22.00	14.44	15.01	13.95	13.35
58	20.31	14.71	15.35	14.17	13.57	66	22.01	14.45	15.02	13.96	13.35
60	20.31	14.71	15.36	14.17	13.61	68	22.01	14.45	15.02	13.96	13.36
65	20.31	14.71	15.36	14.17	13.61	73	22.01	14.46	15.02	13.97	13.35
70	20.31	14.71	15.36	14.17	13.61	78	22.01	14.46	15.02	13.97	13.36
75	20.31	14.71	15.36	14.17	13.61	83	22.01	14.46	15.02	13.97	13.36
						88	22.01	14.46	15.02	13.97	13.36

TABLE 2

Extraction Well Step Tests

			EW	-01 Step-Drawo	down Test			
		EW-01		SHM-05- 45A	SHM-05- 45B	SHM-05- 46A	SHM-05- 46B	
Discharge (gpm)	Duration (min)	Cumulative Drawdown (ft)	Specific Capacity (gpm/ft)	Cumulative Drawdown (ft)	Cumulative Drawdown (ft)	Cumulative Drawdown (ft)	Cumulative Drawdown (ft)	
5	25	2.20	2.3	0.08	0.09	0.06	0.04	
15	25	4.87	3.1	0.22	0.27	0.10	0.16	
25	25	8.03	3.1	0.36	0.45	0.25	0.30	
			EW	-04 Step-Drawo	down Test			
		EW-04		SHM-05- 45A	SHM-05- 45B	SHM-05- 46A	SHM-05- 46B	
Discharge (gpm)	Duration (min)	Cumulative Drawdown (ft)	Specific Capacity (gpm/ft)	Cumulative Drawdown (ft)	Cumulative Drawdown (ft)	Cumulative Drawdown (ft)	Cumulative Drawdown (ft)	
5	28	1.61	3.1	0.07	0.05	0.03	0.05	

0.19

0.26

0.19

0.22

0.11

0.16

0.14

0.18

TABLE 3 Summary of Step-Drawdown Test Results

gpm = gallons per minute ft = feet d = day

30

30

5.60

8.60

2.7

2.9

min = minute

15

25

٦

sense of potential yields for these extraction wells though they would have to be outfitted with higher capacity pumps to achieve these flows. In addition, the inlets for the current pumps are located in the interval approximately 3 to 5 feet above the top of screen to ensure uniform flow across the screen and motor cooling.

In summary, step test data indicate that the extraction wells are appropriately constructed to support the cumulative wellfield design flow rate of 50 gpm during normal operations, should it be increased from the current rate of 25 gpm agreed upon by the BCT. In addition, each individual extraction well will support a rate of 50 gpm while the other well is down for maintenance. Grundfos 40S30-9 (3 hp) well pumps were selected for these extraction wells to provide for pumping at lower rates while still allowing individual wells to achieve 50 gpm, if needed.

Constant Rate Pumping and Recovery Tests

Two constant-rate aquifer pumping tests were conducted with extraction well EW-01 as the test well. For the first test, EW-01 was pumped at a target rate of 25 gallons per minute (gpm) for 27.8 hours starting on August 25, 2005 at 6:54 AM. Water levels were allowed to recover over approximately 72 hours prior to the second test. Following the recovery period, a second test was conducted to enhance the data set available for analysis, addressing concerns relating to potential slippage of transducer cables during the first test. The second test was conducted, with EW-01 pumping at a target rate of 25 gpm for 24.5 hours starting on August 29, 2005, at 11:07 AM. Both drawdown and the recovery data sets are evaluated below.

Field Approach

Prior to each aquifer pumping test, static water levels were collected manually from the test well, 13 near-field observation wells with pressure transducers, and other monitoring wells and piezometers. Manual water levels were also collected periodically throughout the tests from these wells. Although manual measurements are collected with precision reported in hundredths, these data are rounded to tenths when used for groundwater contouring or other analyses. The accuracy is less than the precision due to inherent ground survey error for each well or reference point. The accuracy of the ground survey measurements is expected to be +/- .05 feet vertical and the error associated with manual water-level measurements is also estimated to be +/- .05 feet vertical. All manual water levels are provided in Table B-4 in Attachment B. Table B-3 presents a summary of baseline data, maximum drawdown, recovery, and operational waterlevel snapshots. This summary was developed primarily from manual water-level data but has been supplemented with water levels from data loggers for some locations.

During each test, water levels were recorded automatically using two In Situ Hermit 3000 data loggers connected to 15 and 20 psi pressure transducers in the 13 near-field observation wells (EW-04, SHM-05-45A, SHM-05-45B, SHM-05-46A, SHM-05-46B, SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-22, SHM-96-22B, SHL-22C, and SHL-23) and the test well EW-01, respectively. Logarithmic testing for all tests and loggers was selected with a maximum time between readings equal to 10 minutes. This provided for frequent readings on a 2-3 second basis early in the test and a number of readings throughout the duration of the tests.

Both drawdown and recovery were recorded during the first aquifer pumping test, while only drawdown was recorded during the second test (extraction well EW-01 continued

normal operation at the target rate of 25 gpm following this test). The raw displacement data were downloaded from the dataloggers to a laptop computer in the field and subsequently backed up to network drives for subsequent analysis.

Data Analysis

The aquifer test data collected were analyzed using AQTESOLV for Windows (HydroSOLVE, Inc., 2003) to process data logger data and aid in curve matching to obtain estimates of transmissivity/hydraulic conductivity, storativity, and specific yield. Analytical methods available for unconfined aquifers were evaluated and the mathematical solution first developed by Neuman (1974) and enhanced by Moench (1993, 1993) was determined to provide the best means, through curve-matching, for estimating hydraulic properties from drawdown and recovery data for the unconfined aquifer. This solution accounts for delayed gravity response and partial penetration. The assumptions inherent in the Neuman solution are as follows:

- The aquifer is homogeneous, isotropic and of uniform thickness and of infinite areal extent;
- The aquifer is unconfined;
- Flow is unsteady; and
- Diameter of pumping well is very small so that storage in the well can be neglected.

These assumptions, as with any mathematical solution, are never fully met in natural settings and the degree of agreement with each of these assumptions varies from location to location within the aquifer. However, curve matching with theoretical solutions still provides a powerful means to evaluate aquifer response and estimate aquifer properties. Evaluation of drawdown and recovery data from multiple tests and locations provides a means to develop a range of estimates representative of aquifer-wide properties and to converge on average values for aquifer parameters. The time-drawdown and recovery (residual) data from both pump tests and the recovery test as matched with Neuman solutions are provided in Attachment C and summarized later. In addition, to time drawdown analyses conducted at each of the nearfield wells, semilog plots of distance-drawdown (Cooper-Jacob 1946), were developed to provide another method for estimating transmissivity and storativity.

A uniform saturated thickness of 109 feet was assumed for the unconsolidated aquifer based upon aquifer characteristics observed at SHL-22, which terminates at the bottom of the unconsolidated aquifer (top of bedrock), and static water level measured prior to the tests. The saturated thickness thins toward the landfill and likely thickens north of SHL-22, so this thickness was assumed to best represent average conditions in the area of the test. A horizontal-to-vertical anisotropy factor of 10:1 was assumed. The effects of partial penetration by test well EW-01 and the 13 observation wells were also accounted for in the data analyses. Table 4 summarizes the well information used in the data analyses.

Some water-level observations from the first aquifer pumping test (8/25 through 8/26) required adjustment during data analysis due to apparent transducer cable slippage. These locations included SHL-5, SHM-96-5C, SHL-9, SHM-96-22B, SHM-05-45B, and SHM-05-46A. The slippage of these transducers is believed to have been related to disturbance of the transducers by ground survey crews. This was recognized during the test and each

Well ID	Easting (ft)	Northing (ft)	Distance from Pumping Well (ft)	Top of Screen Depth (ft bgs)	Bottom of Screen Depth (ft bgs)	Finish Length (stickup or flush) (ft)	Inner Casing Diameter (in)	Borehole Diameter (in)
EW-1	629942.7	3027959.9	0.0	60	85	-0.5	6	18
EW-4	629894.9	3027990.9	57.0	70	95	-0.5	6	18
SHL-9	630009.4	3028147.0	198.6	15	25	1.8	2	6
SHL-5	630191.8	3028124.9	298.8	3	13	1	2	6
SHM-96-5B	630158.2	3028112.7	264.2	80	90	1.7	4	10
SHM-96-5C	630173.5	3028106.1	273.2	50	60	0.9	4	8
SHL-22	630056.4	3028162.8	232.6	105	115	1.4	4	10
SHM-96-22B	630071.9	3028169.8	246.5	82	92	1.7	4	10
SHM-93-22C	630045.9	3028158.2	223.5	124.3	134.3	1.7	4	6
SHL-23	629712.7	3027916.7	234.0	23	33	2.1	2	6
SHM-05-45A	629995.4	3027962.0	52.7	20	25	2.4	2	6
SHM-05-45B	629995.2	3027956.7	52.6	65	75	2.6	2	6
SHM-05-46A	630041.7	3027946.5	99.9	20	25	2.1	2	6
SHM-05-46B	630041.2	3027941.1	100.3	65	75	1.7	2	6

TABLE 4 Summary of Well Information

ft = feet ft bgs = feet below ground surface in = inches

transducer was re-secured to ensure they did not move during the remainder of the test. In addition, a decision was made to conduct a second drawdown test following completion of the recovery test to ensure that good data were available. Shifts in the data related to transducer slippage were observable, enabling adjustments to be made prior to analysis. The raw and corrected water-level data are provided on CD (see Attachment D).

Pumping rates used in the aquifer test analyses were based on actual influent flow rates recorded every 15 seconds at the treatment plant. These flow rates were averaged over the individual backwash cycles, as well as over the intervals between the backwash cycles. The backwash cycles typically occur approximately every 45 minutes and last a little over two minutes at an average flow rate of approximately 10 gpm. The intervals between the backwash cycles lasted approximately 42 minutes at an average flow rate of 27.7 gpm. For the first test, EW-01 was pumped at an average rate of 26.8 gallons per minute (gpm) and for the second test, EW-01 was pumped at an average rate of 26.6 gpm. The influent flow rates recorded by the treatment plant, as well as the averages calculated from this data, are provided on the CD in Attachment D.

Attachment E provides daily and hourly precipitation data for Hanscom Field (Bedford), elevation 166 ft above mean sea level (amsl) east of the site and Fitchburg Municipal Airport, elevation 339 feet amsl west of Devens. Devens has an elevation of 215 feet amsl. Bedford is considered to provide the most representative record of conditions present at Devens during the tests. These daily and hourly data generally agree with what was observed by field staff during the extraction test. Table 5 presents a brief summary relating precipitation data from Bedford to the observations at Devens for the period August 24 through August 30.

Date/Day	Test	Bedford Precipitation	Devens Observation/Comment
Aug 24/Wed.	Baseline monitoring	Trace, .12 inch	Brief isolated thunderstorms around 6:00 pm during completion of pre-test manual waterlevel survey.
Aug 25/Thurs.	Drawdown	Dry, .00 inch	Dry at SHL. Drawdown test initiated at 6:54 AM.
Aug 26/Fri.	Drawdown and Recovery	Dry, .00 inch	Dry at SHL. Drawdown test terminated at 10:33 AM.
Aug 27/Sat.	Recovery	Dry, .01 inch	Recovery continues and largely complete. No field staff on site
Aug 28/Sun.	Recovery	.16 inch	Recovery data collection continues through weekend. No field staff on site. Rainstorms widespread throughout the state.
Aug 29/ Mon.	Recovery and Drawdown	Trace, .01 inch	Second drawdown test initiated at 11:07 AM.
Aug 30/ Tues.	Drawdown	.16", 900-1000; .19" 1000-1100; .15" 1100-1200; .01" 1200-1300	Strong rain in early morning hours as 24 hr test is completed. Field staff observed continued rain throughout morning. Drawdown test terminated at 11:37 AM.

TABLE 5

Precipitation Summary (Bedford and Shepley's Hill)

Given the timing and duration of rainfall, the effects are expected to have had negligible impact on the tests. In general, the full water-level data set indicates a slight declining water-level trend throughout the period of the tests (8/24 through 8/29). This likely relates to longer term trends (seasonality) and the short duration precipitation events were not significant enough to measurably affect this overall groundwater trend during the period of the test.

Hydraulic Triggers

Manual water-level readings were collected continuously by two field teams during the first 10 hours of the tests. These readings provided areal coverage supplementing the intensive data collected with data loggers and provide the opportunity to specifically observe wells along Molumco Road and Nonacoicus Brook and within the wetland identified to evaluate hydrology in the brook/wetland environment. These wells, in addition to a stage board in the wetland, are designed to evaluate hydraulic triggers as specified in the Performance Monitoring Plan (CH2M HILL, 2005).

At the time of the test, the hand-installed piezometers SHP-05-47A; SHP-05-48A, B; SHP-05-49A were dry. In addition, the wetland area identified for location of a stage board (WP-01) was dry. This was due to the generally low water conditions in the area at the end of the summer. The deeper B screens at SHP-05-47B (downstream of the dam) and SHP-05-49B (downstream of Molumco Road), however, provided the opportunity to monitor shallow water table conditions near the brook throughout the duration of the test. The data at SHP-05-49B indicate that the shallow installations are very responsive to changes in surface water levels. The data from SHP-05-49B and observations of the brook during the extraction test indicated that the stage of Nonacoicus Brook was dropping throughout the day on August 25th. This surface water response or hydrograph is likely the short duration response to the storms in the Nonacoicus Basin that occurred the previous evening on August 24th. Consequently, these shallow installations in close proximity to the brook probably best reflect surface water stage and are susceptible to short-term changes that mask the trends in groundwater stage over the larger area. Stresses influencing groundwater levels at a larger scale, such as would be expected from a pumping well are likely better evaluated with wells located further from the Brook.

The hydraulic triggers specified in the Performance Monitoring Plan (CH2M HILL, 2005b) for the start-up period (including extraction test) are as follows:

<u>Start-up Period</u>: If during start-up operations either >.2 feet of drawdown is observed at the SHP-05-47A,B and SHP-05-49A,B locations or >.4 feet is observed at the locations along Molumco Road, consistently over three measurements, and this drawdown is clearly associated with the operation of the extraction system (ie. not associated with sudden changes in brook water levels due to beaver dam breaches or other factors), the system will be temporarily shutdown while the BCT reviews the complete hydraulic dataset.

Data for wells along Molumco Road, including SHP-99-34 A, B, SHM-99-32X, SHM-99-31 A,B,C, and SHP-99-33A, B; the wetland area SHM-05-42 A,B; up Scully Road, including SHM-05-41 A,B,C; and between the plant and Plow Shop Pond, including 8 S,D and SHL-13, provide excellent additional locations to evaluate the response of groundwater to the 25 gpm stress applied at EW-01 during the extraction test. These data (see Table B-3 and B-4) suggest that drawdown response is on the order of hundredths and likely less than a tenth of a foot within a few hundred feet of EW-01 pumping at 25 gpm.

The dataset suggests that the drawndown triggers established for the project (CH2M HILL, 2005) were not exceeded during the test and are not expected to be exceeded if the pumping rate is doubled in the future to the design rate of 50 gpm. With these small changes in waterlevels, it becomes difficult to resolve what may be induced by pumping vs. fluctuations or continuous changes in water elevations associated with seasonal climatic adjustments.

Hydraulic Parameters

Neuman (1974) solutions were fitted to data plotted as time versus drawdown on log-log plots and the ratio of total pumping time to time since pumping ceased versus residual drawdown (recovery) on semi-log plots (see Attachment C). Table 6 presents a summary of the estimates of aquifer parameters from this time-drawdown analysis for both drawdown tests and recovery tests. In addition, Table 6 presents estimates of transmissivity and storativity derived from a distance-drawdown analysis (Cooper-Jacob 1946). Figures 3 and 4 provide the distance-drawdown plots.

Time-drawdown analyses indicate average transmissivity of $6172 \text{ ft}^2/\text{d}$ and specific yield of .027. Distance-drawdown tests indicate an average transmissivity of 2906 ft²/d. The previous pump test conducted at SHM-96-5C, to the northeast of EW-1 yielded a similar transmissivity of 1.9 ft²/min or 2736 ft²/d (SWET, 1998).

TABLE 6 Summary of Estimated Aquifer Parameters (Drawdown and Recovery Analyses)

				Neuma	n Solution		Cooper-Jacob Distance- Drawdown	
Well ID 	Radius From Pumping Well (ft)	Maximum Drawdown (ft)	Transmissivity (ft ² /d)	Storativity 	Specific Yield 	Beta 	Transmissivity (ft ² /d)	Storativity
Drawdown & F	Recovery Analysis	- 8/25-8/26/05						
Shallow (scree	ened less than 35 f	t bgs)						
SHM-05-45A	49.76	0.50	731	6.3E-05	7.7E-02	3.4E-03		
SHM-05-46A	99.79	0.47	824	6.2E-06	2.4E-03	1E-03		
SHL-9	207.22	0.12	6,170	5E-05	6.2E-03	3.6E-03		
Intermediate (generally screened	l between 35 and 7	′5 ft bgs)					
SHM-05-45B	51.51	0.78	4,670	1.4E-03	4.7E-03	3.8E-02	2736	4.0E-02
SHM-05-46B	98.71	0.45	3,356	1.7E-03	7E-02	8.6E-02	2100	4.0L-02
SHM-96-5C	273.54	0.14	16,140	2.1E-03	2.6E-02	2.6E-02		
Deep (general	ly screened betwee	en 75 and 115 ft bg	is)					
EW-04	56.57	0.55	7,324	1.2E-03	2.9E-02	1.3E-02		
SHM-96-22B	247.58	0.18	12,370	7E-04	4.7E-03	3.1E-02		
SHM-96-5B	266.30	0.18	6,713	1.3E-03	2.4E-02	1.6E-01		
Recovery Ana	lysis 8/26-8/29/200	5						
Shallow (scree	ened less than 35 f	t bgs)					NA	NA
SHM-05-45A	49.76	0.47	552	6.5E-05	9.2E-02	3.6E-03		
SHM-05-46A	99.79	0.37	555	1.1E-04	6.8E-02	3E-02		
SHL-9	207.22	0.1	4,096	4.6E-05	6.1E-03	3.1E-03		
Intermediate (generally screened	l between 35 and 7	′5 ft bgs)		·			
SHM-05-45B	51.51	0.45	4,460	2.9E-03	4.2E-03	1.6E-02		
SHM-05-46B	98.71	0.38	9,482	3.2E-03	1E-02	6E-03		
SHM-96-5C	273.54	0.13	15,810	1.5E-03	3.1E-02	2.3E-02	7	

				Neuma	n Solution		Cooper-Jacob Drawdo	
Well ID 	Radius From Pumping Well (ft)	Maximum Drawdown (ft)	Transmissivity (ft ² /d)	Storativity 	Specific Yield 	Beta 	Transmissivity (ft ² /d)	Storativity
Deep (general	ly screened betwee	en 75 and 115 ft b	gs)		I			
EW-04	56.57	0.45	6,238	1.9E-03	3.5E-02	1E-02		
SHM-96-22B	247.58	0.15	7,958	7E-04	2.1E-02	8.7E-02		
SHM-96-5B	266.30	0.15	5,307	9.6E-04	3.8E-02	2E-01		
Drawdown Ana	alysis - 8/29-8/30/2	005						
Shallow (scree	ened less than 35 f	it bgs)						
SHM-05-45A	49.76	0.49	616	1.7E-04	6.6E-02	8.8E-03		
SHM-05-46A	99.79	0.40	720	4.1E-05	1.8E-02	8.4E-03		
SHL-9	207.22	0.15	4,992	2.5E-05	1.1E-03	2.3E-03		
Intermediate (generally screened	between 35 and 3	75 ft bgs)					
SHM-05-45B	51.51	0.76	2,145	5.3E-04	6.6E-02	6.1E-02	3075	3.3E-02
SHM-05-46B	98.71	0.41	8,973	2.6E-03	4.1E-03	1E-02		5.5L-02
SHM-96-5C	273.54	0.18	13,270	1.4E-03	1.9E-03	4.6E-02		
Deep (general	ly screened betwee	en 75 and 115 ft b	gs)					
EW-04	56.57	0.47	5,097	1.2E-03	1.9E-02	3.2E-02		
SHM-96-22B	247.58	0.20	10,580	6.3E-04	2.1E-03	7.9E-02		
SHM-96-5B	266.30	0.19	7,505	7.9E-04	7.9E-03	1.4E-01		
AVERAGE (all	tasts)		6,172	1.0E-03	2.7E-02	4.2E-02	2,906	3.7E-02

Figure 3 Distance Drawdown- First Extraction Test

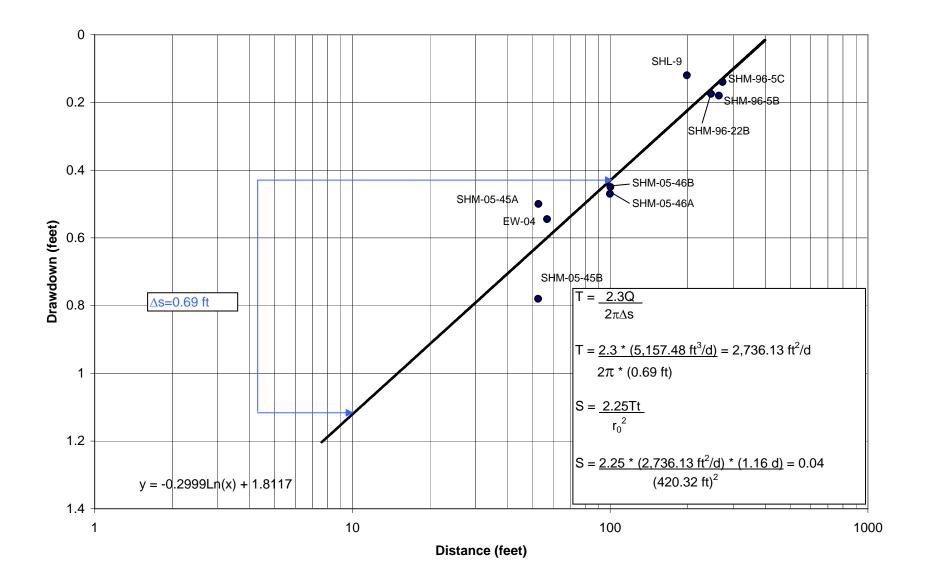
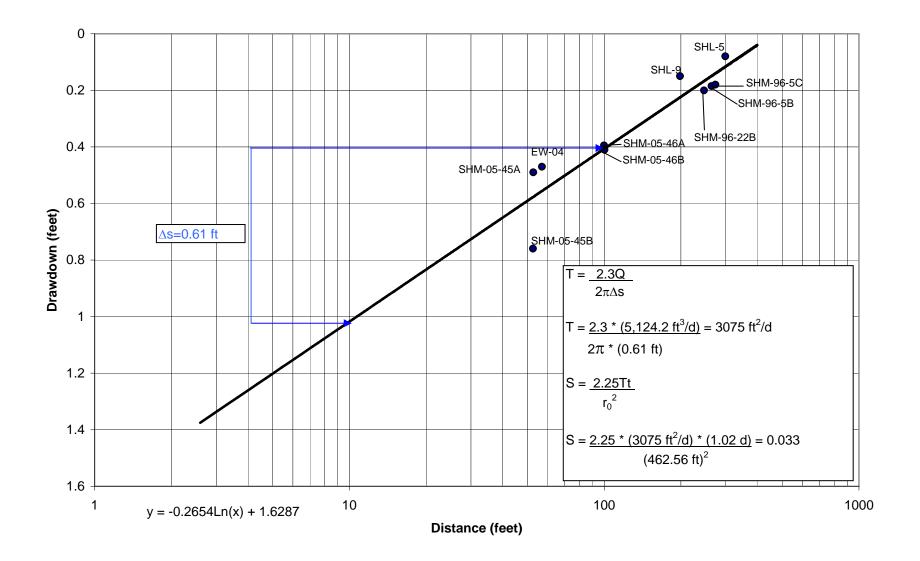
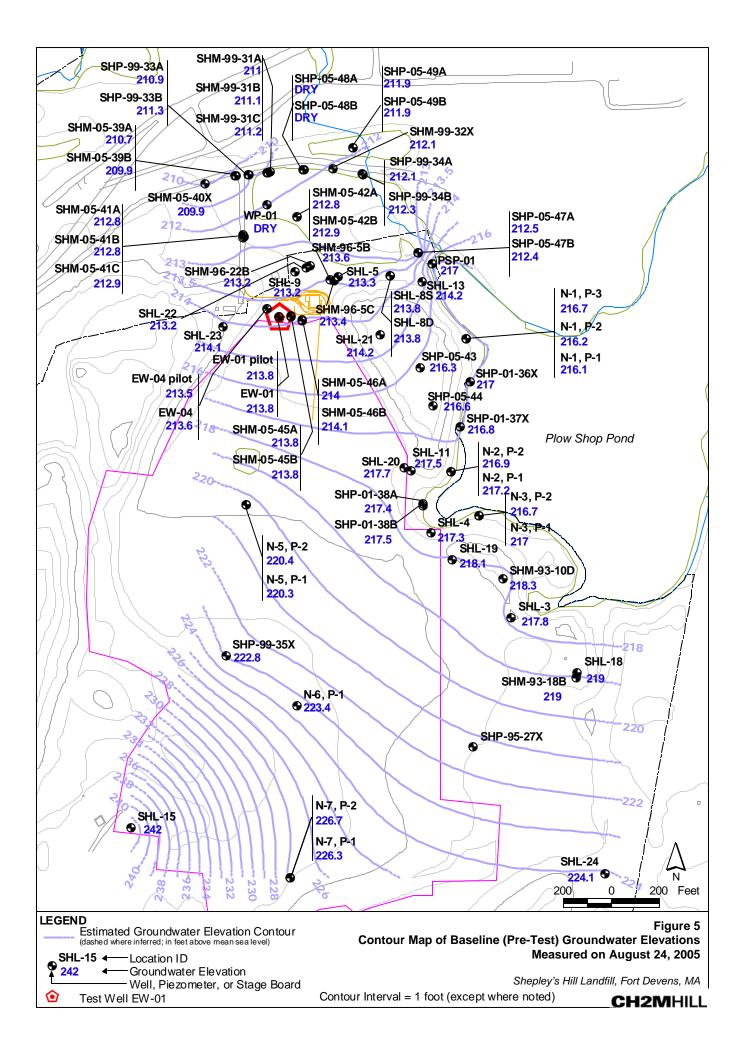
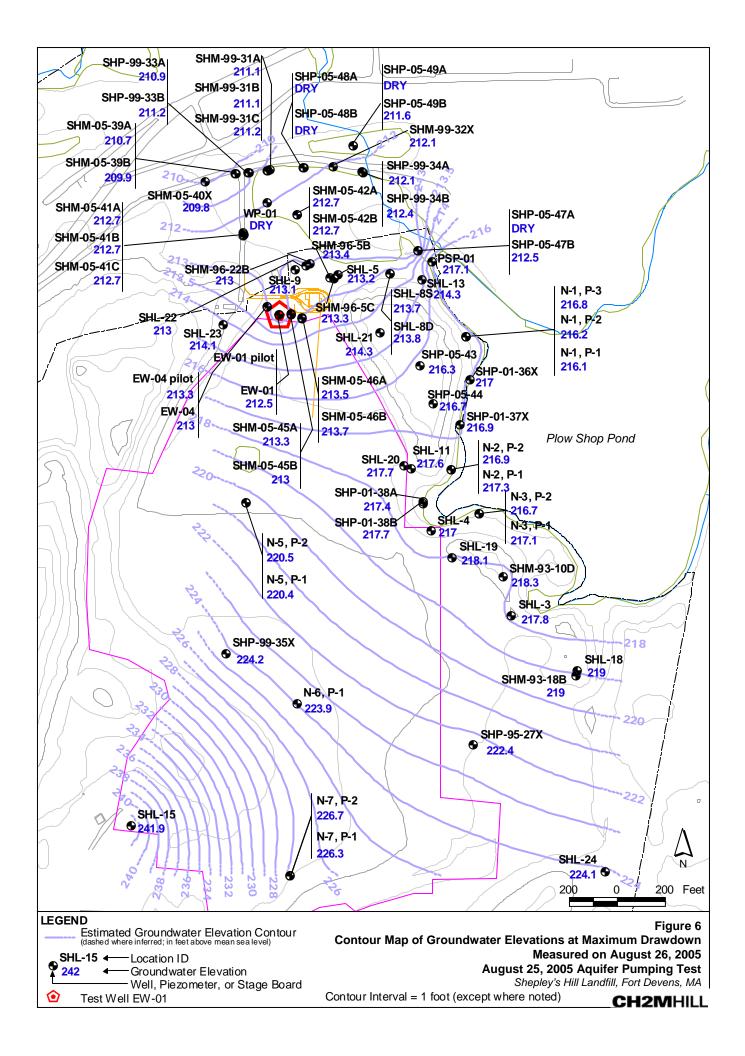



Figure 4 Distance Drawdown- Second Extraction Test

Assuming roughly a saturated thickness of approximately 100 feet, then the average transmissivities derived from the time-drawdown analyses of 6172 ft²/d and the distance-drawdown analyses of 2972 ft²/d yield average hydraulic conductivities of 61.72 ft/d and 29.72 ft/d, respectively. Converted to metric units these are equivalent to 2.18E-02 cm/s and 1.05E-02 cm/s. These values are characteristic for glacial outwash deposits (involving dominantly fine sands with little silt).

Groundwater Flow


Data collected prior to and during the extraction test were compared with the summary of synoptic water level elevations collected historically and presented in the Supplemental Groundwater Investigation (Harding ESE, 2003, Appendix C). This comparison indicates that the water elevations during the test were similar to "average" water level conditions.


The synoptic groundwater data collected prior to and during the extraction tests (see Table B-3) has been contoured to depict conditions prior to pumping (Figure 5) and immediately prior to termination of pumping at 25 gpm (Figure 6). To develop the plots, the data from wells nested in the unsaturated zone were averaged, due to generally minor vertical gradients observed throughout the area. This produces average head conditions across the thickness of the unconsolidated aquifer.

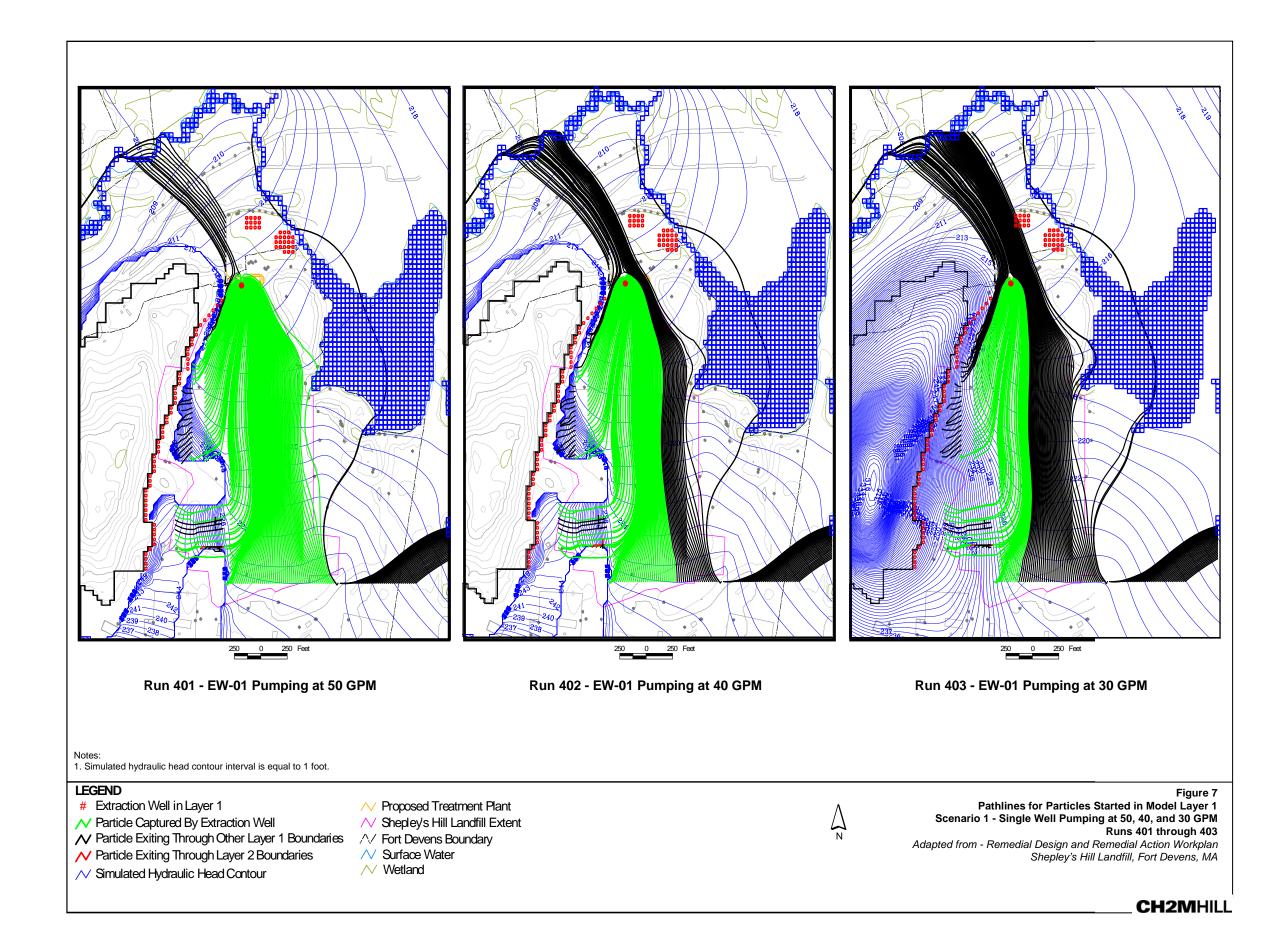

Figure 5 presents the pretest groundwater table from the synoptic dataset collected on the evening of August 24th and Figure 6 presents the watertable on August 26th immediately prior to the termination of the first extraction test. These two figures illustrate the effect of the operating system on the watertable in the vicinity of EW-01, particularly the shift of the 213 – 215 foot groundwater elevation contours. A 213.5 ft groundwater elevation contour has been added to further describe the drawdown in the area around the wellfield.

Figure 7 presents particle track simulations for EW-01 operating at 50, 40, and 30 gpm. These are from simulation runs 401, 402, and 403, respectively that are provided in the *Final One Hundred Percent* (100%) *Submittal, Remedial Design and Remedial Action Workplan* (CH2M HILL, 2005a). The original design demonstrated that EW-01 operating alone at a pumping rate of 50 gpm (Run 401) would meet design objectives. However, a decision was made to move forward with Run 412, an EW-01/EW-04 combination operated at a cumulative rate of 50 gpm, since it would provide similar performance to EW-01 operated alone while providing redundancy with a two-well scheme. Subsequently, the BCT decided that initial operations of the system would be at target rate of 25 gpm rather than 50 gpm.

Runs 401, 402, and 403 in Figure 7 illustrate what might be expected from EW-01 at 50, 40, and 30 gpm. Particle tracks for Run 403 generally agree with the configuration of the watertable developed with pumping of EW-01 during the extraction test at 25 gpm. This indicates that the extraction wellfield is having the hydraulic effect on the aquifer that is expected based on the predictions of the groundwater model. It is expected that at 50 gpm the actual observations vs. predicted would be similar. Further monitoring of the system during operation of both EW-01 and EW-04 at 25 gpm will confirm that the dual-well extraction well configuration provides capture equivalent to EW-01 operating alone.

Conclusions and Recommendations

The extraction tests provide baseline data for evaluation of extraction well/wellfield performance during operation of the system. Hydraulic monitoring data collected during regular monitoring events throughout routine operation of the system will provide additional synoptic water level datasets for evaluation. The following are conclusions and recommendations from the extraction well step tests, extraction test, and other monitoring:

- Specific capacities for EW-1 and EW-4 average 2.8 and 2.9 gpm/ft of drawdown, respectively. These results indicate that the wells are appropriately designed to support the design pumping rate of 50 gpm either split between them or with either well operating alone (during maintenance). The design assumes that 50 gpm is the maximum cumulative flow for the wellfield.
- Time-drawdown analyses indicate an average transmissivity of 6172 ft²/d, specific yield of .027. Distance-drawdown tests indicate an average transmissivity of 2906 ft²/d. These values are representative for glacial outwash deposits involving dominantly fine sands. The previous pump test conducted at SHM-96-5C, to the northeast of EW-1 yielded a similar transmissivity of 1.9 ft²/min or 2736 ft²/d (SWET, 1998).
- Assuming an average saturated thickness of approximately 100 feet, the average transmissivities derived from the time-drawdown analyses of 6172 ft²/d and the distance-drawdown analyses of 2972 ft²/d yield average hydraulic conductivities of 61.72 ft/d and 29.72 ft/d, respectively or 2.18E-02 cm/s and 1.05E-02 cm/s, expressed in metric units.
- The comprehensive synoptic water level datasets collected during the extraction test indicate that the drawndown triggers established for the project (CH2M HILL, 2005) were not exceeded during the test and are not expected to be exceeded if the pumping rate is doubled in the future to the design rate of 50 gpm.
- Influent arsenic data collected during the extraction test (EW-01 operating) indicate that this constituent averaged 3067 ug/l. Concentrations as high as 5910 ug/l were encountered prior to the extraction test when EW-04 was operated at 25 gpm during process start-up testing. Test data suggest that the extraction wells are appropriately located.
- The average treatment plant effluent arsenic concentration during the test period was 3.9 ug/l, indicating that the treatment process is capable of meeting the design treatment goal of 10 ug/l, with the influent characteristics encountered under full pumping stress.
- Ongoing hydraulic monitoring during the completion of start-up activities and operation of the system will provide data concerning performance of the system during normal seasonal watertable fluctuation.

References

CH2M HILL, 2003. Remedial Design and Remedial Action Workplan, Draft Final Sixty Percent (60%)/Draft One-Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill, Prepared for Base Realignment and Closure (BRAC), Atlanta Field Office. December.

CH2M HILL, 2005a. *Remedial Design and Remedial Action Workplan, Final Hundred Percent* (100%) *Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill.* May.

CH2M HILL, 2005b. Shepley's Hill Landfill, Performance Monitoring Plan, Groundwater Extraction, Treatment, and Discharge Contingency Remedy. August.

Cooper, H.H. and C.E. Jacob, 1946. *A generalized graphical method for evaluating formation constants and summarizing well field history*, Am. Geophys. Union Trans., vol. 27, pp. 526-534.

Harding Lawson Associates, 2002. Revised Draft Shepley's Hill Landfill Supplemental Groundwater Investigation, Devens Reserve Forces Training Area, Devens, MA. Volume 1 and 2. Prepared for the US Army Corps of Engineers, New England District. February.

Harding ESE, 2003. *Revised Draft Shepley's Hill Landfill Supplemental Groundwater Investigation, Devens Reserve Forces Training Area, Devens, MA.* Volume 1 and 2. Prepared for the US Army Corps of Engineers, New England District, May.

HydroSOLVE, Inc. *AQTESOLV for Windows*. Version 3.50-Professional. 2003. MassDevelopment, 2003. *Shepley's Hill Landfill, Industrial Wastewater Discharge Permit* #20, July 14.

Moench, A.F., 1993. *Computation of type curves for flow to partially penetrating wells in water-table aquifers*, Ground Water, vol. 31, no. 6, pp. 966-971.

Moench, A.F., 1996. *Flow to a well in a water-table aquifer: an improved Laplace transform solution*, Ground Water, vol. 34, no. 4, pp. 593-596.

Neuman, S.P., 1974. Effect of partial penetration on flow in unconfined aquifers considering delayed gravity response, Water Resources Research, vol. 10, no. 2, pp. 303-312.

Stone and Webster Environmental Technology & Services (SWET) 1996. *Long Term Monitoring and Maintenance Plan, Shepley's Hill , Fort Devens, Massachusetts*; prepared for US Army Corps of Engineers, New England Division, Waltham, Massachusetts, May.

Stone and Webster Environmental Technology & Services, 1998. *Groundwater Pumping Test Report, Shepley's Hill Landfill, Devens, MA*. January.

US Army Corps of Engineers, New England District, 2003. 2002 Annual Report, Shepley's Hill Landfill Long Term Monitoring & Maintenance, Devens, Massachusetts. March.

US Army Environmental Center (USAEC), 1995. *Record of Decision, Shepley's Hill Landfill Operable Unit, Fort Devens, Massachusetts.* September.

US Army Corps of Engineers, New England District, 1997. 60% Design Extraction/Discharge System, Shepley's Hill Landfill, Devens, MA. November.

Attachment A Boring and Well Completion Logs

					CT NUMBER 284350.SC.01	BORING NUMBI	ER I M-05-39 SHEET 1 OF 2				
	CI	12IV	1HILI			SOIL BORI	NG LOG				
PROJEC	CT :	Shepley'	s Hill Lan	dfill	LOCATION : Ayer, MA						
ELEVAT		222.9'			DRILLING CONTRACTO	ng					
-				NT USED : 12/03/2004 &	Geoprobe and Hollow St 02/01/2005 END : 12/	em Auger /03/2004 & 02/02/2005	LOGGER : Tseng				
	ELOW SU			STANDARD		ESCRIPTION	COMMENTS				
	INTERVA			PENETRATION							
		RECOVE	RY (IN) #/TYPE	TEST RESULTS 6"-6"-6"-6"	SOIL NAME, USCS GROU MOISTURE CONTENT, RI OR CONSISTENCY, SOIL	ELATIVE DENSITY,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.				
				(N)	MINERALOGY.	enteerenz,					
_ _ _ 5							Note: Geoprobe water profiling followed by HSA soil sampling and well installations 				
 10							No water sample collected - dry				
	12-14						Water sample OBSB0114W Screen depth 12-14 ft bgs				
 20 	19-21			9-11-11-12	Dark brown fine to course S	AND, trace gravel	 Soil sample OBSB0119S 				
25 30 	27-29 29-31			4-5-7-9	Light brown medium SAND,	trace gravel					
35 40	37-39 39-41			4-6-7-7	Greyish brown fine to mediu	m SAND, trace pebbles	 Water sample OBSB0139W Screen depth 37-39 ft bgs Soil sample OBSB0139S				

		PROJE	CT NUMBER 284350.SC.01		R M-05-39 SHEET 2 OF 2				
C C	H2MHILI			SOIL BOR					
PROJECT : ELEVATION :	Shepley's Hill Lan 222.9'		LOCATION : Ayer, MA DRILLING CONTRACTOF Dragin Drilling						
			Geoprobe and Hollow						
WATER LEVELS DEPTH BELOW SU		12/03/2004 & STANDARD	02/01/2005 END : 12	2/03/2004 & 02/02/2005 DESCRIPTION	5 LOGGER : Tseng COMMENTS				
INTERV		PENETRATION			CONNELLIO				
	RECOVERY (IN) #/TYPE	TEST RESULTS 6"-6"-6"-6" (N)	SOIL NAME, USCS GR MOISTURE CONTENT OR CONSISTENCY, Se MINERALOGY.		DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(N) 3-4-5-8 6-9-5-7	MINERALOGY. Greyish brown fine SANI		- - <				
 80					- - 				

			PROJEC	CT NUMBER 284350.SC.01	BORING NUMBE	R I-05-40X SHEET 1 OF 1
•	H2N	IHILL		Ş	SOIL BOR	ING LOG
PROJECT :	Sheplev's	s Hill Landfill	-		LOCATION :	Ayer, MA
ELEVATION :	224.6'			DRILLING CONTRACT		•
		EQUIPMENT US		Geoprobe and Hollow S		
WATER LEVEL				02/02/2005 END : 12/0	06/2004 & 02/02/2005 SCRIPTION	
DEPTH BELOW	VAL (FT)		ANDARD TRATION	CORE DE	SCRIPTION	COMMENTS
	RECOVER	RY (IN) #/TYPE RE	TEST SULTS 6"-6"-6" (N)	SOIL NAME, USCS GRO MOISTURE CONTENT, F OR CONSISTENCY, SOI MINERALOGY.	RELATIVE DENSITY,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
_ _ _ 5						 Note: Geoprobe water profiling followed by HSA soil sampling and well installations
- - - 10 - 12-1 - 12-1 - 14-1 15		2.	-3-4-6	Brown fine to medium SAN	D, trace pebbles	 No water sample collected - dry No water sample OBSB0214W Screen depth 12-14 ft bgs Soil sample OBSB0214S
13 20 22-2	4					
 25 30						_ Screen depth 22-24 ft bgs
- 32-3 - 35 - 36-3 - 40		5-1	1-14-51	Medium to course SAND, s (Gravel up to 3/4" in size)	ome rounded gravel	Water sample OBSB0234W Screen depth 32-34 ft bgs Soil sample OBSB0232S Water sample OBSB0238W Screen depth 36-38 ft bgs Refusal at 38 ft bgs

	PROJECT NUMBER 284350.SC.01	BORING NUMBER	03 SHEET 1 OF 1						
CH2MHILL		SOIL BORIN	G LOG						
PROJECT : Shepley's Hill Landfill		LOCATION : Ayer, MA							
ELEVATION : approx. 224'	DRILLING CONTRACT	•							
DRILLING METHOD AND EQUIPMENT US WATER LEVELS :	ED : Geoprobe START : 12/6/2004	END : 12/06/2004	LOGGER : Tseng						
		ESCRIPTION	COMMENTS						
RECOVERY (IN) #/TYPE 6"-6	TRATION EST SOIL NAME, USCS GRO MOISTURE CONTENT, I "-6"-6" OR CONSISTENCY, SO (N) MINERALOGY.	RELATIVE DENSITY,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.						
		- - - - -							
 10		-	No water sample collected - dry						
		-	No water sample collected - damp						
17-19 			Water sample OBSB0319W and duplicate						
20 25									
27-29 		- - - - -	Water sample OBSB0329W Screen depth 27-29 ft bgs						
35 		- - - -	Water sample OBSB0339W Screen depth 37-39 ft bgs						
40		_	Refusal at 41 ft bgs						

			CT NUMBER 284350.SC.01		R M-05-41 SHEET 1 OF 3				
	CH2MHIL	L	SOIL BORING LOG						
PROJECT :	Shepley's Hill La	ndfill		LOCATION :	Ayer, MA				
ELEVATION :	223.8' (A), 223.6	(B), 224.0 (C)	DRILLING CONTRACTO	DR : Dragin Drilling	•				
DRILLING ME WATER LEVE	THOD AND EQUIPM	ENT USED : : 12/06/2004 &	Geoprobe and Hollow St						
	SURFACE (FT)	STANDARD		/07/2004 & 02/02/2005 SCRIPTION	5 LOGGER : Tseng/Bakey COMMENTS				
INTE	RVAL (FT) RECOVERY (IN) #/TYPE	PENETRATION TEST RESULTS 6"-6"-6"-6"	SOIL NAME, USCS GROU MOISTURE CONTENT, R OR CONSISTENCY, SOIL	ELATIVE DENSITY,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.				
_ _ _ 5		(N)	MINERALOGY.		_ _ Note: Geoprobe water profiling followed by _ HSA soil sampling and well installations. _ 				
_ _ 10 _					-				
 15					_ No water sample collected - field param or 				
19- 20	21 24"	4-5-6-6	2" wet dark brown GRAVEL and silt. 10" moist yellow-ora fine to course SAND.		_ _ Soil sample SB04-20-22 				
22- 25 	24				_ _ Water sample OBSB0424W _ Screen depth 22-24 ft bgs _ 				
29- 30	31 17"	2-2-3-2	15" yellow-orange wet poorl fine to course SAND. 2" yellow-orange GRAVEL v		 Soil sample SB04-29-31 				
32 	34		fine to course sand.		_ _ Water sample OBSB0434W and MS/MSD _ Screen depth 32-34 ft bgs _ 				
39 40	41 11"	7-7-8-9	8" light brown moist well gra SAND with some gravel. 3" with fine to medium sand an	moist GRAVEL	Soil sample SB04-39-41				

					PROJEC	CT NUMBER				
		108/		8		284350.SC.01	SI	HM-0	5-41 SHEET 2 OF 3	
	G	H2IV	IHILI			;	SOIL BOP	RIN	G LOG	
PROJEC	:T:	Shepley's	s Hill Land	dfill			LOCATION	: Aye	er, MA	
ELEVAT		223.8' (A), 223.6 (B), 224.0		DRILLING CONTRACT	•			
DRILLIN WATER		OD AND E				Geoprobe and Hollow S 02/01/2005 END : 12/		005	LOGGER : Tseng/Bakey	
		RFACE (F1			IDARD		SCRIPTION	000	COMMENTS	
	INTERVA	L (FT)		PENET	RATION					
		RECOVE	RY (IN) #/TYPE	RES 6"-6'	EST IULTS '-6"-6" N)	SOIL NAME, USCS GRO MOISTURE CONTENT, F OR CONSISTENCY, SOI MINERALOGY.	RELATIVE DENSITY,		DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.	
- - 45	42-44								Water sample OBSB0444W Screen depth 42-44 ft bgs	-
45 50	49-51	24"		10-16	-18-25	7" wet yellow-orange well (with silt.	graded fine SAND	-	Soil sample SB04-49-51	-
	52-54					17" moist dense poorly gra course SAND with approx 1.5" course GRAVEL in sh	30% gravel and silt.		Water sample OBSB0454W Screen depth 52-54 ft bgs	-
55								-		-
60	60-62	8"				8" slough			No soil sample.	_
-	62-64 64-66	17"		16-19	-21-31	7" slough		-	Water sample OBSB0464W Screen depth 62-64 ft bgs	-
65 						10" moist grey to yellow-or medium to course SAND w 1.5" GRAVEL in shoe.				-
70	72-74								Water sample OBSB0474W Screen depth 72-74 ft bgs	-
75 - -	74-76	0"				NR			Geoprobe refusal at 74 ft bgs	-
_ 80										_

		F	PROJECT NUMBER 284350.SC.01	BORING NUMBE	R Л-05-41 SHEET 3 OF 3			
C	H2MHI	LL	SOIL BORING LOG					
PROJECT : ELEVATION :	Shepley's Hill L 223.8' (A), 223.)' (C) DRILLING CONTF	LOCATION : ACTOF Dragin Drilling	Ayer, MA			
DRILLING METH	IOD AND EQUIP	MENT USEI	D: Geoprobe and Ho	low Stem Auger				
WATER LEVELS				: 12/03/2005 & 02/02/2005 RE DESCRIPTION				
DEPTH BELOW SU	. ,	STANI PENETF		REDESCRIPTION	COMMENTS			
	RECOVERY (IN) #/TYP!	TE: E RESU 6"-6"-	ST SOIL NAME, USCS JLTS MOISTURE CONTI -6"-6" OR CONSISTENCY	GROUP SYMBOL, COLOR, ENT, RELATIVE DENSITY, 7, SOIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.			
- - 84-86 85 - 86-88 - - 90 - - 94-96 95 - - 100 - - 1100 - - 1100 - - 1105 - - 1110 - - 1115 - - 1120 - -	18" 18" 18"	6"-6". (N 16-31- 13-23- 14-22-	N MINERALOGY. -26-19 18" slough -30-60 15" slough 3" wet dense SILT w GRAVEL in shoe.	th fine gravel and course sand	-			

				PROJEC	T NUMBER	BORING NUMBER					
			89		284350.SC.01	SE	305 SHEET 1 OF 2				
1	CI	H2MHIL	L		SOIL BORING LOG						
PROJEC	СТ :	Shepley's Hill La	ndfill			LOCATION :	Ayer, MA				
ELEVAT	ION :	approx. 222'			DRILLING CONTRACT		• ·				
		OD AND EQUIPI	IENT USE		Geoprobe						
	LEVELS	: RFACE (FT)	CT A	START : NDARD		END : 12/07/2004 ESCRIPTION	LOGGER : Tseng COMMENTS				
DEPIND	INTERVA			RATION	CORE DI	SCRIPTION	COMMENTS				
		RECOVERY (IN) #/TYPE	TI RES 6"-6	EST BULTS "-6"-6"	SOIL NAME, USCS GRO MOISTURE CONTENT, OR CONSISTENCY, SO MINERALOGY.	RELATIVE DENSITY,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.				
-											
-							-				
-							-				
5											
-							-				
-							-				
_											
10											
-											
-											
_											
15											
-											
-											
_											
20											
-											
-											
_											
25											
-	27-29						Water sample OBSB0529W				
-	21-29						_ Screen depth 27-29 ft bgs				
_											
30											
-											
-							-				
_							-				
35											
-	37-39						 _ Water sample OBSB0539W				
-	51-59						_ Screen depth 37-39 ft bgs				
_											
40							-				
			1								

		PROJE	CT NUMBER 284350.SC.01		305 SHEET 2 OF 2			
CI	H2MHILI		SOIL BORING LOG					
PROJECT :	Shepley's Hill Lan	dfill		LOCATION :	Ayer, MA			
ELEVATION :	approx. 222'		DRILLING CONTRAC					
DRILLING METH WATER LEVELS		ENT USED : START	Geoprobe : 12/6/2004	END: 12/07/2004				
DEPTH BELOW SU		START		END : 12/07/2004 DESCRIPTION	LOGGER : Tseng COMMENTS			
INTERVA		PENETRATION						
	RECOVERY (IN) #/TYPE	TEST RESULTS 6"-6"-6"-6" (N)		ROUP SYMBOL, COLOR, , RELATIVE DENSITY, OIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.			
_ _ _ 45					-			
47-49 50 					_ Water sample OBSB0549W _ Screen depth 47-49 ft bgs			
55 55 57-59 60					_ Water sample OBSB0559W _ Screen depth 57-59 ft bgs			
65 _ 67-69					_ Water sample OBSB0569W _ Screen depth 67-69 ft bgs			
- 70 - - -					Refusal at 69 ft bgs			
- 75 - - - 80								

		PROJE	CT NUMBER 284350.SC.01		-05-42 SHEET 1 OF 2			
¢c	H2MHIL		SOIL BORING LOG					
PROJECT :	Shoploy's Hill Lan	dfill		LOCATION :	Aver MA			
ELEVATION :	Shepley's Hill Lan 214.5'		DRILLING CONTRAC		Ayer, MA			
		ENT USED :	Geoprobe	<u> </u>				
WATER LEVEL		START		END : 12/09/2004	LOGGER : Bakey/Tseng			
DEPTH BELOW S		STANDARD	CORE	DESCRIPTION	COMMENTS			
INTER	VAL (FT) RECOVERY (IN) #/TYPE	PENETRATION TEST RESULTS 6"-6"-6" (N)		ROUP SYMBOL, COLOR, ; RELATIVE DENSITY, OIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.			
_ _ _ 5					Note: Wells SHM-05-42A and SHM-05-42 were installed approx. 100 ft north of origir soil boring			
- - - 10								
-								
15 _ _ _								
20 					 			
25 27-29	9							
30					_ Screen depth 27-29 ft bgs			
_ _ _ 35								
37-39	9				Water sample OBSB0639W			
40								

		PROJEC	CT NUMBER					
CI	H2MHILI		284350.SC.01 SHM-05-42 SHEET 2 OF 2 SOIL BORING LOG					
PROJECT :	Shepley's Hill Lan	dfill		LOCATION :	Ayer, MA			
ELEVATION :			DRILLING CONTRAC		<u> </u>			
WATER LEVELS	OD AND EQUIPME	START:	Geoprobe/Hollow Ste 12/6/2004	END : 12/07/2004	LOGGER : Bakey/Tseng			
DEPTH BELOW SU		STANDARD		DESCRIPTION	COMMENTS			
INTERVA	IL (FT) RECOVERY (IN) #/TYPE	PENETRATION TEST RESULTS 6"-6"-6" (N)		ROUP SYMBOL, COLOR, , RELATIVE DENSITY, OIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.			
- - - 45					_			
- _ _ 47-50		111-45-26-12			Water sample OBSB0649W _ Screen depth 47-49 ft bgs _ Soil sample PZNSB064750			
50 <u> </u> 50-55 <u> </u>		4-4-7-8			Soil sample PZNSB065053 empty Collected sleeve 50-55 Water sample 50-55			
55 55-60 57-59					Collected sleeve 55-60 Water sample 55-60 _ Water sample OBSB0659W _ Screen depth 57-59 ft bgs			
60 					Water sample 60-65			
65 67-69 					_ Water sample OBSB0669W _ Screen depth 67-69 ft bgs			
70					Water sample 70-75			
- 75 - - -					Refusal at 74 ft bgs - Geoprobe 			
80					Water sample 80-85			

		PROJECT NUM 28435	BER 0.SC.01	BORING NUMBER EW-01	SHEET 1 OF 3			
CH	I2MHILL		SOIL BORING LOG					
PROJECT :	Fort Devens			LOCATION : Aye	er, MA			
ELEVATION :	approx 227.9'		DRILLING CONTRACTOR	t: Dra	agin Drilling			
DRILLING METH	HOD AND EQUIPME	INT USED :	HSA/CME 95 START : 9/30/2004	END : 10/01/04	LOGGER : C.DiSante/T.Bakey			
DEPTH BELOW S	URFACE (FT)	STANDARD	CORE DESC		COMMENTS			
INTERV	AL (FT BGS)	PENETRATION						
	RECOVERY (IN) #/TYPE	TEST RESULTS	SOIL NAME, USCS GROUP MOISTURE CONTENT, REL		DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS,			
	#/1172	6"-6"-6" (N)	OR CONSISTENCY, SOIL S MINERALOGY.		TESTS, AND INSTRUMENTATION.			
- 0-1 - 1-5 - 5 - 10 - 10 - 15 20 - 20 - 25	1/cuttings 2/cuttings 3/cuttings	5	Dark brown fine SAND mix Well-graded yellowish brow trace gravel	vn fine SAND with				
	4/cuttings	5	Light brown fine SAND, tra	ce gravel, wet				
30 30-32 35	18" 5/ss	2-2-2-2	Medium brown fine SAND (15%), loose	with angular gravel	Soil sample collected at 30-32 ft bgs Sample ID: SIEW0130S Water sample collected at 33-37 ft bgs. Sample ID: SIEW0130W			
37-39 40	12" 6/ss	4-4-4	Greyish brown medium SA with some coarse sand and subangular					

				PROJECT NUM 28435	BER 0.SC.01	BORING NUMBER EW-01	SHEET 2 OF	3		
	СН	2 M F	ILL	SOIL BORING LOG						
PROJE	CT :	Fort Dev	rens			LOCATION : Aye	er, MA			
ELEVAT		approx.			DRILLING CONTRACTOR	L: Dra	agin Drilling			
DRILLIN	IG METH	OD AND	EQUIPMEN	T USED :	HSA/CME 95					
DEPTH F	BELOW SU	REACE (E	T)	STANDARD	START : 9/30/2004 CORE DESC	END : 10/01/04	LOGGER : C.DiSante/T.Bakey COMMENTS			
	INTERVA			PENETRATION	00112 0200					
		RECOVE		TEST	SOIL NAME, USCS GROUP	SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE,			
			#/TYPE	RESULTS 6"-6"-6"-6" (N)	MOISTURE CONTENT, REL OR CONSISTENCY, SOIL S MINERALOGY.		DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.			
40 _	40-42	8"	7/ss	4-5-5-6	Medium to coarse olive gre graded with same gravel (2		Soil sample collected from 40-42 ft b Sample ID: SIEW0140S	gs		
- 45 -	-				g	,	Water sample collected from 45-49 fr Sample ID: SIEW0140W	t bgs.		
- 50 - -	-						Water sample collected from 50-54 f Sample ID: SIEW0150W	t bgs.		
55 - -	55-57	24"	8/ss	2-3-3-2	Olive grey fine SAND, well	sorted	Soil sample collected from 55-57 ft b Sample ID: SIEW0150S	gs		
60	-						Water sample collected from 60-64 f Sample ID: SIEW0160W	t bgs.		
65 - -	65-67	18"	9/ss	9-14-15-16	Very dense fine grey SANI angular gravel	D and trace grey	Soil sample collected from 65-67 ft b Sample ID: SIEW0160S	gs		
70 	-		10/cuttings		Augering through yellowish grey moist well graded fine subangular fine gravel	0 0	No water sample collected from 70-7 due to low water level pump could no overcome	-		
- - 75 _	74-76	12"	11/ss	5-5-5-5	2" well graded medium to o grey SAND	coarse greenish	Soil sample collected from 74-76 ft b Sample ID: SIEW0170S	gs		
80	76-78	24"	12/ss	5-5-5	10" poorly graded fine gree 6" poorly graded fine greer 10" Well graded medium to 8" poorly graded fine greer	hish grey SAND coarse SAND				

				PROJECT NUMBER BORING NUMB 284350.SC.01 EV				SHEET 3	OF 3		
	СН	2 M F	IILL	SOIL BORING LOG							
PROJEC	СТ :	Fort Dev	rens			LOCATION : Ay	er, MA				
ELEVAT		approx 2			DRILLING CONTRACTOR	R: Dra	agin Drilling				
DRILLIN	GMETH	OD AND	EQUIPMEN	T USED :	USED : HSA/CME 95 START : 9/30/2004 END : 10/01/04 LOGGER : C.DiSante/T.Bakey						
DEPTH B		RFACE (F		STANDARD	CORE DESC			COMMENTS	5		
	INTERVA	L (FT BGS		PENETRATION			DEDTUO				
		RECOVE	#/TYPE	TEST RESULTS	SOIL NAME, USCS GROUP MOISTURE CONTENT, REL			F CASING, DRILLIN FLUID LOSS,	IG RATE,		
				6"-6"-6"-6" (N)	OR CONSISTENCY, SOIL S MINERALOGY.			ND INSTRUMENTA	TION.		
80	84-86	10"	13/ss	22-60/4"	8" Moist greenish grey fine		Sample ID Soil sample	Piple collected from SIEW0180W			
85 					2" Yellowish orange grave			: SIEW0180S hrough gravelly m Is	naterial		
90	89-91	10"	14/ss	15-22-34-22	6" well graded g.g. fine S/ 4" Weathered bedrock sub to coarse GRAVEL, well gr sand	angular-angular fine					
95 100 105 105 110 110 1115 1120					Auger refusal at 96 ft bgs		End of bor	ehole			

				PROJECT NUM			I		
	CH2MHILL			28435	0.SC.01	EW-04	•	SHEET 1 C	DF 3
		21111		SOIL BORING LOG					
PROJEC	: T	Fort Dev	rens			LOCATION : Aye	er, MA		
ELEVAT	ION :	approx.2			DRILLING CONTRACTOR	: Dra	agin Drilling		
DRILLIN	GMETH	OD AND	EQUIPMEN	IT USED :	HSA/CME 95 START : 10/5/2004	END : 10/06/04	LOGGER	R : C.DiSante/T.Bakey	
DEPTH B	ELOW SU	RFACE (F	T)	STANDARD	CORE DESCI		LOUGEN	COMMENTS	
	INTERVA	L (FT BGS		PENETRATION					
		RECOVE	RY (IN) #/TYPE	TEST RESULTS	SOIL NAME, USCS GROUP MOISTURE CONTENT, REL			F CASING, DRILLING R/ FLUID LOSS,	ATE,
				6"-6"-6"-6"	OR CONSISTENCY, SOIL STRUCTURE,			ND INSTRUMENTATION	۱.
<u> </u>			1/cuttings	(N)	MINERALOGY. Medium brown fine SAND,	loose; trace coarse			
_			Ū		sand				
-									
5									
-									
-									
-									
10									
_									
-									
15									
_									
-									
20									
-									
_									
25									
-									
-									
30									
-								water sample at 30-34 : SIEW0430W	ft bgs
							Collect MS		
		.							
35	35-37	24"	2/ss	2-2-2-2	Medium brown fine SAND, sand	loose; trace coarse			
_									
-									
40									

				PROJECT NUM								
		2M⊦		28435	0.SC.01	EW-04	+	SHEET 2	OF 3			
	GH	ZIVIF	11LL	SOIL BORING LOG								
PROJE	CT :	Fort Dev	ens		LOCATION : Ayer, MA							
ELEVAT		approx. 2			DRILLING CONTRACTOR		agin Drilling	g				
DRILLIN	IG METH	OD AND I	EQUIPMEI	NT USED :	HSA/CME 95 START : 10/5/2004	END: 10/06/04		R : C.DiSante/T.B	akay			
DEPTH E	BELOW SU	RFACE (F	T)	STANDARD	CORE DESC	END : 10/06/04 RIPTION	LUGGEI	COMMENTS	акеу			
		L (FT BGS		PENETRATION		-						
		RECOVE	RY (IN) #/TYPE	TEST RESULTS 6"-6"-6"-6"	SOIL NAME, USCS GROUP MOISTURE CONTENT, REI OR CONSISTENCY, SOIL S	ATIVE DENSITY,	DRILLING	F CASING, DRILLI FLUID LOSS,				
				(N)	MINERALOGY.	TRUCTURE,	1E313, A	ND INSTRUMENT	ATION.			
40	-							nple collected at 4 D: SIEW0440W	10-44 ft bgs.			
45 - - -	- _ 45-47 - -	18"	3/ss	3-3-3-3	12" Very fine light brown p SAND 6" Medium grey mottled m coarse SAND			le collected from D: SIEW0440S	45-47 ft bgs			
50 	-							nple collected at 5 D: SIEW0450W	50-54 ft bgs.			
55 - -	_ _ 55-57 -	12"	4/ss	5-5-5-6	6" Very fine light brown SA 6" fine light brown SAND	ND	-	le collected from a D: SIEW0450S	55-57 ft bgs			
60	-							nple collected at 6 D: SIEW0460W	60-64 ft bgs.			
65	65-67 67-69	4" 19"	5/ss 6/ss	3-3-4-4 3-4-3-4	Olive grey wet poorly grad			le collected from D: SIEW0460S	65-67 ft bgs			
- - 70 -	- 07-09 		0/33	00-4	10" Olive grey wet poorly o 9" Wet olive grey and blac medium SAND with silt			nple collected at 7 D: SIEW0470W	70-74 ft bgs.			
- 75 -	74-76	21"	7/ss	5-5-11-7	Wet olive grey well graded with silt	fine to medium SANE	Soil samp	le collected from D: SIEW0470S	75-77 ft bgs			
80	-											

				PROJECT NUM 28435	BER 0.SC.01	BORING NUMBER	Ļ	SHEET 3	OF 3			
-	CH2MHILL				SOIL BORING LOG							
PROJEC	:T:	Fort Dev	ens			LOCATION : Ay	er, MA					
ELEVAT		approx. 2			DRILLING CONTRACTO	•	agin Drilling					
DRILLIN			EQUIPMEN	IT USED :	HSA/CME 95							
					-	4 END : 10/06/04	LOGGER	: C.DiSante/T.Ba	akey			
DEPTH BI	INTERVA			STANDARD PENETRATION	CORE DESC	CRIPTION		COMMENTS				
		RECOVE		TEST	SOIL NAME, USCS GROU	P SYMBOL COLOR	DEPTH OF	- CASING, DRILLIN	IG RATE			
			#/TYPE	RESULTS	MOISTURE CONTENT, RE			FLUID LOSS,	,			
				6"-6"-6"-6"	OR CONSISTENCY, SOIL	STRUCTURE,	TESTS, AN	ND INSTRUMENTA	TION.			
				(N)	MINERALOGY.							
80 <u> </u>								ple collected from : SIEW0480W	n 80-84 ft bgs.			
- 85 -	84-86	15"	8/ss	4-5-6-6	6" Wet olive grey well gra SAND with silt 9" Wet olive grey poorly g		e collected from 8 : SIEW0480S	35-87 ft bgs				
_ 90 _					Auger through wet olive <u>c</u> graded fine SAND with si							
95 95 - - - 100 -	95-97	16"	9/ss	9-17-30-50/4"	4" Wet olive grey and bla SAND with silt 12" Moist olive grey well g gravel		No sample					
- 105 - - 110 - - -					Auger Refusal at 107 ft b	gs	End of bore	ehole				
115 120												

		PROJECT NUM 28435	BER 0.SC.01	BORING NUMBER SB-03 (on base) SHEET 1 OF 3					
CH2	MHILL		SOIL BORING LOG						
PROJECT : Fo	ort Devens			LOCATION : Aye	er, MA				
ELEVATION : ap	prox. 235.3'	DRILLING CONTRACTOR : Dragin Drilling							
DRILLING METHOD	AND EQUIPMEN	IT USED :	HSA/CME 95						
DEPTH BELOW SURF.		STANDARD	START : 10/1/2004 CORE DESC	END : 10/04/04	LOGGER	: C.DiSante/T.Bakey COMMENTS			
INTERVAL (F		PENETRATION	CORE DESC	KIP HON		COMMENTS			
	ECOVERY (IN)	TEST	SOIL NAME, USCS GROUP	SYMBOL, COLOR,	DEPTH OF	CASING, DRILLING RATE,			
	#/TYPE	RESULTS 6"-6"-6"-6" (N)	MOISTURE CONTENT, REL OR CONSISTENCY, SOIL S MINERALOGY.	ATIVE DENSITY,		FLUID LOSS, ID INSTRUMENTATION.			
$ \begin{array}{c} $	24" 4/ss		Dry yellowish orange well with silt; Little (5-10%) fine Dry yellowish orange well with silt; Trace (0-5%) silt, Dry yellowish orange well with silt; Trace (0-5%) silt, Dry yellowish orange well with silt; Trace (10-15%) si	graded fine SAND trace fine gravel graded fine SAND t, trace fine gravel		ple collected at 30-34 ft bgs. SISB0330W			

PROJECT NUMBER 284350.SC.01						BORING NUMBER SB-03 (on-	base)	SHEET 2	OF 3			
CH2MHILL					SOIL BORING LOG							
	ION :	Fort Dev approx 2	235.3'	NT USED :	LOCATION : Ayer, MA DRILLING CONTRACTOR : Dragin Drilling JSED : HSA/CME 95							
DIVILLIN				W UOLD .		END : 10/04/04	LOGGER	: C.DiSante/T.B	akev			
DEPTH BI	ELOW SU	RFACE (F	T)	STANDARD	CORE DESC			COMMENTS	anoy			
		L (FT BGS		PENETRATION								
		RECOVE	RY (IN) #/TYPE	TEST RESULTS 6"-6"-6"-6" (N)	SOIL NAME, USCS GROUP MOISTURE CONTENT, REI OR CONSISTENCY, SOIL S MINERALOGY.	ATIVE DENSITY,	DRILLING	F CASING, DRILLI FLUID LOSS, ND INSTRUMENT				
40								ple collected at 4 : SISB0340W	10-44 ft bgs.			
45 - - -	45-47 47-49	2" 5"	5/ss 6/ss	2-3-3-3 3-3-3-4	Medium brown fine silty S/ Medium to coarse grey SA GRAVEL (dark grey); trace mixed with medium grey a	ND (brown) and es of fine grey sand						
50 								ple collected at 5 : SISB0350W	50-54 ft bgs.			
_ 55 _	54-56	20"	7/ss	3-4-5-6	Medium to coarse grey SA and black sand	ND and medium grey						
- 60 -								ple collected at 6 : SISB0360W	60-64 ft bgs.			
65	65-67	24"	8/ss	3-4-5-5	Fine light grey silty SAND, dense	well sorted medium						
- 70 -								ple collected at 7 : SISB0370W	70-74 ft bgs.			
- 75 -	75-77	24"	9/ss		(75-76.1 ft bgs) Fine light ((76.1-77 ft bgs) Medium lo trace fine silt							
_ _ 80												

				PROJECT NUM 28435	^{BER} 0.SC.01	BORING NUMBER SB-03 (on	base)	SHEET 3 OF 3				
	СН	2 M F	IILL		SOIL BORING LOG							
PROJEC	CT :	Fort Dev	rens			LOCATION : Ay	er, MA					
ELEVAT	ION :	235.3'			RILLING CONTRACTOR : Dragin Drilling							
DRILLIN	IG METH	OD AND	EQUIPMEN	T USED :	HSA/CME 95							
			T \			END : 10/04/04	LOGGEF	R : C.DiSante/T.Bakey COMMENTS				
DEPTHB		JRFACE (F AL (FT BGS		STANDARD PENETRATION	CORE DESC	RIPTION		COMMENTS				
		RECOVE		TEST	SOIL NAME, USCS GROUP	SYMBOL, COLOR,	DEPTH O	F CASING, DRILLING RATE,				
			#/TYPE	RESULTS	MOISTURE CONTENT, REI			FLUID LOSS,				
				6"-6"-6"-6"	OR CONSISTENCY, SOIL S	STRUCTURE,	TESTS, A	ND INSTRUMENTATION.				
80				(N)	MINERALOGY.		Water con	anle collected from 90.94 ft bas				
80								nple collected from 80-84 ft bgs. D: SISB0380W				
_												
_												
85	85-87	14"	10/ss	3-3-3-3	Fine to medium light grey	SAND		le collected from 85-87 ft bgs): SISB0380S				
-												
90					Auger through gravelly lay	er at 90-92 ft bgs						
-												
_												
95 [–]												
_												
-												
-												
100												
_												
-												
105 _					Weathered bedrock mater	ial from 105 109 ft bac						
105					weathered bedrock mater	arnom 103-100 h bys						
-					Auger Defined at 400 ft ha	-						
-					Auger Refusal at 108 ft bg	5	End of bor	renoie				
110 _												
-	,											
-												
_												
115												
_												
-												
120 _												

	PROJECT NUMBER			WELL NUMBER		
	28	4350.SC.01		EW	-01 SHEET	T 1 OF 1
CH2MHILL		WELL	COMF	PLETION	DIAGRAM	
PROJECT : Shepley's Hill Landfill	LOCATION : Ayer, MA					
DRILLING CONTRACTOR : Dragin Drilling DRILLING METHOD AND EQUIPMENT US						
WATER LEVELS :	START :	1/4/2005	END :	1/7/2005	LOGGER : C.DiS	ante/T.Bakey
3b	2 1	_	Ground elev Top of casin		228.2 228.0	
3a —		3-	Wellhead pro	otection cover type	Bolt-down vault No	
			,	pad dimensions	Approx. 5 ft square	
8	26 & 46 ft 30 & 50 ft	4-	Dia./type of	well casing	6" diameter sch. 40	PVC
	60 ft	5-	Type/slot siz	ze of screen	6" diameter stainles	s steel, 20-slot
7		6-	Type screen a) Quantity u		Filpro sand #00N	
		7-	Type of seal a) Quantity u		Bentonite chips (Pu (Note:Two seals 26-30	
	5	8-	Grout a) Grout mix		Cement-bentonite See notes below - pitot this area - completion d	
25 ft	6		Developmen	nt method	Grundfos pump	
			Comments			
				eter PVC pitot tube	installed with screen fro	om 34 ft bgs to 44 ft bgs
					ogs. Bentonite seal from - cement-bentonite	26 ft bgs to 30 ft bgs.
_ ↓ ↓ →	→ 					

	PROJECT NUMBER		v	WELL NUMBER			
	2843	50.SC.01		EW	-04	SHEET 1	OF 1
CH2MHILL		WELL	COMP	LETION	DIAG	RAM	
PROJECT : Shepley's Hill Landfill	LOCATION : Ayer, MA						
DRILLING CONTRACTOR : Dragin Drilling							
DRILLING METHOD AND EQUIPMENT US WATER LEVELS :			END :	2/11/2005	LOGGE	R : C.DiSante/T.	.Bakey
3b			Ground elevat		22	8.5	
3a —			Wellhead prote a) drain tube?	ection cover type	Bolt-dow No	n vault	
			,	d dimensions		5 ft square	
8	26 & 56 ft 30 & 60 ft	4- C	Dia./type of we	ell casing	6" diame	ter sch. 40 PVC	
	70 ft	5- T	Type/slot size	of screen	6" diame	ter stainless steel,	, 20-slot
98 ft 4	¥		Type screen fi a) Quantity use	-	Filpro sa	nd #00N	
			Type of seal a) Quantity use	ed		e chips (Puregold eals 26-30 and 56	
	5		Grout a) Grout mix u			tonite elow - pitot tube in mpletion details p	
25 ft	6	E	Development i	method	Grundfos	pump	
		C	Comments				
		_				screen from 40 f	
	-		30 ft bgs to 46 ft b e bentonite seal =		e seal from 26 ft by tonite	gs to 30 ft bgs.	
	1						

	PROJECT NUMBER			WELL NUMBER			
	284	4350.SC.01		SHM-05	-39A	SHEET 1	OF 1
CH2MHILL		WEL		IPLETION	DIAG	RAM	
PROJECT : Shepley's Hill Landfill		LOCATION	1:	Ayer, MA			
DRILLING CONTRACTOR : Dragin Drilling		_					
DRILLING METHOD AND EQUIPMENT USED WATER LEVELS :	START :	2/1/2005	END :	2/1/2005	LOGGE	ER : Tseng	
WATER LEVELS :		2/1/2005	 Ground ele Top of cas Wellhead (a) drain tu b) concrete Dia./type of Type/slot s Type screet a) Quantity Type of se a) Quantity Grout a) Grout m 	evation at well ing elevation protection cover type pe? e pad dimensions f well casing isize of screen al v used ix used ent method	22 22: Flush 6" No - Roa Approx. 2 2" diame 2" diame Filpro sa Bentonite Cement- Grundfos	e chips bentonite	-slot
6 in							

	PROJECT NUMBER		WELL NUMBER						
	2843	50.SC.01	SHM-05-39	B SHEET 1	OF 1				
CH2MHILL		WELL COMPLETION DIAGRAM							
PROJECT : Shepley's Hill Landfill		LOCATION :	Ayer, MA						
DRILLING CONTRACTOR : Dragin Drilling									
DRILLING METHOD AND EQUIPMENT US WATER LEVELS :		2/1/2005 END :	2/1/2005 L	OGGER : Tseng					
	01/11/1 2		2/1/2000						
3b 1		1- Ground elev 2- Top of casir		222.9					
3a —/		 3- Wellhead pr a) drain tube 		ush 6" diameter road box o - Road box has rubber					
				pprox. 2 ft square	3641				
8	59 ft 61 ft	4- Dia./type of	well casing 2"	diameter sch. 40 PVC					
		5- Type/slot siz	ze of screen 2"	diameter sch. 40 PVC, 1	IO-slot				
7 68 ft 4		6- Type screer a) Quantity		pro sand					
		7- Type of sea a) Quantity		entonite chips					
	5	8- Grout a) Grout mix b) Method o c) Vol. of we		ement-bentonite					
	6	Developmen	nt method Gr	rundfos pump					
		Comments							
↓									
	•								
<u>6 in</u>									

PROJECT: Shapley's Hill Landfill LOCATION: Ayer, MA PROJECT: Shapley's Hill Landfill LOCATION: Ayer, MA DRILLING CONTRACTOR: Organization 224:4 VITER LEVELS: START: 2/2/2005 END: 2/2/2005 Image: State of the state		PROJECT NUMBER		WELL NUMBER			
PROJECT: Shepley's Hill Landill LOCATION: Ayer, MA DRILLING CONTRACTOR: Dragin Drilling Drilling DRILLING CONTRACTOR: Dragin Drilling Drilling DRILLING CONTRACTOR: Dragin Drilling Drilling DRILLING METHOD AND ECOUPHENT USED: Hollow Stem Auger END: 2/2/2005 LOGGER: Top of casing elevation 224.4		284350.SC.0)1	SHM-05	-40X	SHEET 1	OF 1
DRILLING CONTRACTOR: Dragin Drilling DRILLING CONTRACTOR: Dragin Drilling WATER LEVELS: START: 2/2/2005 END: 2/2/2005 LOGGER: Tseng Image: Stratt in the strate in the strat	CH2MHILL	WE	LL COM	PLETION	DIAG	RAM	
DRILLING METHOD AND EQUIPMENT USED : Hollow Stem Auger WATER LEVELS: START: 2/2/2005 END : 2/2/2005 LOGGER: Tseng Image: Strate Levels: Image: Strate Levels: Image: Strate Levels: Image: Strate Levels: 2/2/2005 LOGGER: Tseng Image: Strate Levels: Image: Strate Levels: Image: Strate Levels: Image: Strate Levels: 2/2/2005 LOGGER: Tseng Image: Strate Levels: Image: Strate Levels: Image: Strate Levels: Image: Strate Levels: 2/2/2005 LOGGER: Tseng Image: Strate Levels: Image: Strate Levels: <th>PROJECT : Shepley's Hill Landfill</th> <td>LOCATIO</td> <td colspan="3">OCATION : Ayer, MA</td> <td></td> <td></td>	PROJECT : Shepley's Hill Landfill	LOCATIO	OCATION : Ayer, MA				
WATER LEVELS: START: 2/2/2005 END: 2/2/2005 LOGGER: Tseng 3 3 1 Ground elevation at well 224.6 2 Top of casing elevation 224.4 3 3 - Elub 8 ⁻¹ diameter road box with bolt-down con a diameter sch. 40 PVC 4 Dia./type of well casing 2 ⁺ diameter sch. 40 PVC 5 Type / steel 2 ⁺ diameter sch. 40 PVC, 10-slot 6 Type screen filter a) Quantity used 2 ⁺ diameter sch. 40 PVC, 10-slot 7 5 Type of seal a) Quantity used Bentonite chips 8 Grout a) Guantity used Bentonite chips 9 Ouanity used Cament-bentonite 9 Ouanity used Cament-bentonite 9 Ouanity used Cament-bentonite 10 Void of valid casing grout Development method Grundfog pump							
3b 24.4 3a 24.4 3a 24.4 3a 3a a 1. Ground elevation at well 224.4 3. Wellhead protection cover type Flush 6° dimeter road box with bolt-down cover type a) drain tube? No. Road box has rubber seal a) drain tube? Approx.2 ft square b) concrete pad dimensions Approx.2 ft square c) dia/type of well casing 2° diameter sch. 40 PVC 5 Type screen filter 2° diameter sch. 40 PVC, 10-slot 6 Type screen filter Filpro sand a) Quantity used Bentonite chips a) Quantity used Bentonite chips b) Method of placement 0' Vol. of well casing grout c) Vol. of well casing grout Cement-bentonite b) Method of placement 0' Vol. of well casing grout c) Vol. of well casing grout Grout c) Vol. of well casing grout Grout c) Wellow well casing grout Grout c) Wellow wellow wellow Grout wellow wellow wellow c) Wellow wellow wellow Grout c) Wellow wellow Grout wellow wellow			END :	2/2/2005	LOGGE	ER : Tseng	
	3b 3a 8 7 34 ft 4 1 2 ft 1 1 1 1 1 1 1 1 1 1 1 1 1	26.5 ft 29.5 ft 32 ft 4 4 4 5	 2- Top of casing 3- Wellhead provide the point of th	g elevation	22/ Flush 6" No - Roa Approx. 2 2" diame 2" diame Filpro sau Bentonite Cement- Grundfos	4.4 diameter road box v d box has rubber se 2 ft square ter sch. 40 PVC ter sch. 40 PVC, 10 nd e chips bentonite s pump	-slot

	PROJECT NUMBER			WELL NUMBER					
	284	4350.SC.01		SHM-05	5-41A	SHEET 1	OF 1		
CH2MHILL		WELL COMPLETION DIAGRAM							
PROJECT : Shepley's Hill Landfill		LOCATION	1:	Ayer, MA					
DRILLING CONTRACTOR : Dragin Drilling				•					
			FND ·	2/7/2005	LOGGE	R · Tseng/Bakey			
DRILLING CONTRACTOR : Dragin Drilling DRILLING METHOD AND EQUIPMENT US WATER LEVELS :	ED : Hollow Stem Auge START : 2 1 35.5 ft 39 ft 42 ft 42 ft 5 6	2/7/2005 1 2 3 4 2 5 6 7	 Prop of cas Wellhead p a) drain tub b) concrete Dia./type o Type/slot s Type/slot s Type screet a) Quantity Type of se a) Quantity Grout a) Grout b) Method 	e pad dimensions	22 22: Flush 6" of No - Roa Approx. 2 2" diamet 2" diamet Filpro sar Bentonite Cement-t Grundfos	diameter road box w d box has rubber sea 2 ft square ter sch. 40 PVC ter sch. 40 PVC, 10- nd e chips	al		
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	1								

	PROJECT NUMBER		WELL NUMBER						
	284350.SC.01		SHM-05	-41B	SHEET 1	OF 1			
CH2MHILL	WEL	WELL COMPLETION DIAGRAM							
PROJECT : Shepley's Hill Landfill	LOCATIO	N :	Ayer, MA						
DRILLING CONTRACTOR : Dragin Drilling									
		END :	3/30/2005	LOGGE	R : Tseng/Bakev				
DRILLING METHOD AND EQUIPMENT USE WATER LEVELS :	START : 3/30/2005	a) drain tube?	elevation	22 22: Flush 6" co No - Road Approx. 2 2" diamet 2" diamet 2" diamet Eilpro sar Bentonite Cement-b Grundfos	e chips pentonite				
<u>6 in</u>									

	PROJECT NUMBER			WELL NUMBER					
	28	4350.SC.01		SHM-05	5-41C	SHEET 1	OF 1		
CH2MHILL		WELL COMPLETION DIAGRAM							
PROJECT : Shepley's Hill Landfill		LOCATIO	ION : Ayer, MA						
DRILLING CONTRACTOR : Dragin Drilling				•					
			END :	2/4/2005	LOGGE	R : Tseng/Bakev			
DRILLING CONTRACTOR : Dragin Drilling DRILLING METHOD AND EQUIPMENT US WATER LEVELS :	ED : Hollow Stem Auge START :	2/4/2005	 a) drain tub b) concrete 4- Dia./type o 5- Type/slot s 6- Type scree a) Quantity 7- Type of sea a) Quantity 3- Grout a) Grout b) Method 	ng elevation	22 22: Flush 6" of No - Roa Approx. 2 2" diamet 2" diamet Filpro sar Bentonite Cement-t Grundfos	diameter road box w d box has rubber sea 2 ft square ter sch. 40 PVC ter sch. 40 PVC, 10- nd e chips	al		
↓ <u>↓</u>									

Addition Status Status Status Or 1		PROJECT NUMBER		WELL NUMBER				
PROJECT: Shapley's Hill Landill LOCATION: Ayer, MA DRILLING CONTRACTOR: Drain Drilling DRILLING CONTRACTOR: START: 3239/2005 END: 03/29/2005 LOGGER: Tsem UTER LEVELS: START: 3239/2005 END: 03/29/2005 LOGGER: Tsem UTER LEVELS: Of Count all well 24.5		284350.SC.01		SHM-05	-42A	SHEET 1	OF 1	
DRILLING CONTRACTOR: Dragn Drilling DRILLING CONTRACTOR: Dragn Drilling WATER LEVELS: START: 3/29/2005 END: 03/29/2005 LOGGER: Tseng 1 - Ground elevation at well 214.5 2 - Top of casing elevation a) vent hole? 1 - Ground elevation at well 214.5 2 - Top of casing elevation a) vent hole? 3 - concrete pad dimensions None 4 - Dia/type of well casing 1 * schedule 40 PVC 5 - Type/stot size of screen 1 * diameter sch. 40 PVC, 10-slot 6 - Type screen filter a) Quantity used 1 - Ground elevation at well 214.5 5 - Type/stot size of screen 1 * diameter sch. 40 PVC, 10-slot 6 - Type screen filter a) Quantity used 1 - Dia/type of well casing grout 8 - Grout a) Quantity used 1 - Otroe - native material b) Method of placement. c) Vol. of well casing grout Estimated purge volume_N/A Comments Note SHM-05-42B are microwells completed in the same borehole.	CH2MHILL	w	ELL CO	COMPLETION DIAGRAM				
DRULLING METHOD AND EQUIPMENT USED: Holiow Stem Auger WATER LEVELS: START: 3/28/2005 END: 03/28/2005 LOGGER: Tseng Image: Construction of the state of the sta	PROJECT : Shepley's Hill Landfill	L	OCATION :	Ayer, MA				
WATER LEVELS: START: 3/28/2005 END: 03/28/2005 LOGGER: Tseng 2a 1 Ground elevation at well 214.5 3 concrete pad dimensions None 4 Dia./type of well casing elevation 217.9 3 concrete pad dimensions None 4 Dia./type of well casing 1* schedule 40 PVC 5 Type Isolatize of screen 1* diameter sch. 40 PVC, 10-slot 6 Type screen filter Backtill - let hole collapse a) Quantity used 10 lbs powder for 10 gallons slurry 8 Grout a) Quantity used 10 lbs powder for 10 gallons slurry 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout 0 Vol. of well casing grout								
2a 1 Ground elevation at well 214.5 3 3 1 Ground elevation 217.9 a) Vent hole? No No 3			2/20/2005	END : 02/20/2005	1000	ED · Toong		
2a 1 Ground elevation at well 214.5 3 3 1 Status 217.9 a) vent hole? No No 3 3 1 Schedule 40 PVC 427 1 Ground elevation at well 11 schedule 40 PVC 5 Type/slot size of screen 11 diameter sch. 40 PVC, 10-slot 6 Type screen filter Backfill - let hole collapse a) Quantity used 10 lbs powder for 10 gallons slurry 8 Grout a) Grout mix used None - native material b) Method of placement 0) Vol. of well casing grout Comments Scrout a) Ouget in the same borehole. Sconella collapse	WATER LEVELS .	START.	3/29/2005	END . 03/29/2005	LUGG	ER. Iseng		
		1 34 ft 37 ft 40 ft	2- Toj a) 1 3- cor 4- Dia 5- Tyj 6- Tyj a) 0 7- Tyj a) 0 8- Gro a) 0 b) 1 c) 1 Est	or of casing elevation vent hole? ncrete pad dimensions h./type of well casing pe/slot size of screen pe screen filter puantity used pauantity used Grout mix used Method of placement vol. of well casing grout timated purge volume mm <u>ents</u> Note SHM-05-42A	2' No None 1" sched 1" diame Backfill Bentonit 10 lbs p None - r t N/A and SHM-	17.9 dule 40 PVC eter sch. 40 PVC, 1 eter sch. 40 PVC, 1 eter sch. 40 PVC, 1 eter sch. 40 PVC, 1 eter sch. 40 PVC ter sch. 40 PVC	ns slurry	

	PROJECT NUMBER		WELL NUMBER			
	284350.SC.01		SHM-05-4	2B SHEET 1 OF 1		
CH2MHILL	v		MPLETION DIAGRAM			
PROJECT : Shepley's Hill Landfill		LOCATION :	Ayer, MA			
DRILLING CONTRACTOR : Dragin Drilling DRILLING METHOD AND EQUIPMENT USE	D: Hollow Stem Auger					
WATER LEVELS :	START :	3/29/2005	END: 03/29/2005	LOGGER : Tseng		
WATER LEVELS :	- 2 - 2 - 2 - 5 - 6	 Groun Top of a) ven concret Dia./ty Type/s Type s Qua Type of a) Qua Grout a) Grout b) Met c) Vol. 	d elevation at well	214.5 217.9 0 one "schedule 40 PVC "diameter sch. 40 PVC, 10-slot ackfill - let hole collapse entonite powder 0 lbs powder for 10 gallons slurry one - native material /A SHM-05-42B are microwells		

PROJECT NUMBER			WELL NUMBER						
	284350.SC.01		SHP-05	-43 SHEET	1 OF 1				
CH2MHILL		WELL COMPLETION DIAGRAM							
PROJECT : Shepley's Hill Landfill DRILLING CONTRACTOR : Dragin Drilling		LOCATION :	Ayer, MA						
DRILLING METHOD AND EQUIPMENT US	ED : DPT (Geoprobe 66	520DT)							
WATER LEVELS :	START :	12/10/2004	END : 12-10-2004	LOGGER : Bakey					
2a	- 2	1- Groun	d elevation at well	259.4					
			casing elevation	262.4					
		a) ven		No					
			lot size of screen	1" diameter sch. 40 F	VC, 10-slot				
		Comm	ents						
					<u> </u>				
	50.5 ft								
60.5 ft									
	ł								
	2								
	3								
10 ft									
_ 									

	284350.SC.01		SHP-05	-44	SHEET 1	OF 1			
GHZIMHILL	v	WELL COMPLETION DIAGRAM							
PROJECT : Shepley's Hill Landfill DRILLING CONTRACTOR : Dragin Drilling		LOCATION :	Ayer, MA						
DRILLING METHOD AND EQUIPMENT USE WATER LEVELS :	ED : DPT (Geoprobe 66 START :	520DT) 12/10/2004	END : 12-10-2004	LOGGER :	Bakey				
	ED: DPT (Geoprobe 64 START :	12/10/2004 1- Groun 2- Top of a) ven	d elevation at well casing elevation t hole? slot size of screen	256.4 259.5 No		- <u>-slot</u>			

	PROJECT NUMBER		WELL NUMBER		
284350.SC		50.SC.01	SHM-05	-45A SHEET 1	OF 1
CH2MHILL	١	WELL COM		DIAGRAM	
PROJECT : Shepley's Hill Landfill		OCATION :	Ayer, MA		
DRILLING CONTRACTOR : Dragin Drilling			4 '		
DRILLING METHOD AND EQUIPMENT USE WATER LEVELS :	ED: Hollow Stem Auger START :	1/28/2005	END : 01/28/2005	LOGGER : Bakey	
WATER LEVELS .	START.	1/28/2005	END . 01/20/2003	LOGGER . Dakey	
3 2a 3a 3b 8 8 7 25 ft 4 5 ft 5 ft 6 in	-2 1 1 16 ft 18 ft 20 ft 5 6	 2- Top of cas a) vent ho 3- Wellhead a) weep h b) concret 4- Dia./type of 5- Type/slot : 6- Type screance a) Quantit 7- Type of seance a) Quantit 8- Grout a) Grout n b) Method c) Vol. of the 	le?	227.3 229.7 No 4" diameter steel casing w No Approx. 3 ft square 2" diameter sch. 40 PVC, 2" diameter sch. 40 PVC, Grundfos pump Grundfos pump	

	PROJECT NUMBER		WELL NUMBER		
	284350.SC.01		SHM-05	-45B SHEET 1 O	F 1
CH2MHILL		WELL CON			
PROJECT : Shepley's Hill Landfill		LOCATION :	Ayer, MA		
DRILLING CONTRACTOR : Dragin Drilling			y = 1		
DRILLING METHOD AND EQUIPMENT US WATER LEVELS :			END - 04/04/0005		
WATER LEVELS :	START :	1/31/2005	END : 01/31/2005	LOGGER : Bakey	
3 2 3 3 3 4 7 7 5 ft 4 10 ft 10 ft 6 in	-2	 2- Top of ca a) vent hu 3- Wellheac a) weep l b) concre 4- Dia./type 5- Type/slot 6- Type scre a) Quanti 7- Type of s a) Quanti 8- Grout a) Grout a) Grout 	d protection cover type hole?	227.7 230.3 No 4" diameter steel casing with locki No Approx. 3 ft square 2" diameter sch. 40 PVC 2" diameter sch. 40 PVC, 10-slot Filpro sand Bentonite chips Cement-bentonite Grundfos pump Grundfos pump	

24430.SC.01 SHM-05-46A SHET 1 OF 1		PROJECT NUMBER		WELL NUMBER				
PROJECT: Shepley's Hill Landill LOCATION: Ayer, MA DRULING CONTRACTOR: Dragin Drilling:	284350.SC		350.SC.01	SHM-05	-46A SHEET 1	OF 1		
DRILLING CONTRACTOR. Drain Dolling. WATER LEVELS: START : 127/2005 END : 01/27/2005 LOGGER : Bakey 1- Ground elevation at well 22.0 3b 1- Ground elevation at well 27.3 3b 1- Ground elevation at well 27.3 3b 1- Ground elevation at well 27.1 3b 1- Ground elevation at well 27.1 3b 3b 3c 3c 3c 3c 3c 3c 3c <th>CH2MHILL</th> <th></th> <th></th> <th colspan="5"></th>	CH2MHILL							
DRILLING CONTRACTOR. Drain Dolling. WATER LEVELS: START : 127/2005 END : 01/27/2005 LOGGER : Bakey 1- Ground elevation at well 22.0 3b 1- Ground elevation at well 27.3 3b 1- Ground elevation at well 27.3 3b 1- Ground elevation at well 27.1 3b 1- Ground elevation at well 27.1 3b 3b 3c 3c 3c 3c 3c 3c 3c <td>PROJECT : Shepley's Hill Landfill</td> <td></td> <td>LOCATION :</td> <td>Ayer, MA</td> <td></td> <td></td>	PROJECT : Shepley's Hill Landfill		LOCATION :	Ayer, MA				
WATER LEVELS: START: 1/27/2005 END: 01/27/2005 LOGGER: Bakey 3a	DRILLING CONTRACTOR : Dragin Drilling			# *				
3 1 Ground elevation at well 227.3 3a 1 Ground elevation at well 227.3 3b 14.5 ft 1. Ground elevation at well 229.4 3. Welthead protection cover type 4' diamet steel casing with locking cap a) weep hole? No 4. Dia./type of well casing 2' diameter steel casing with locking cap No Approx.3 ft square 4. Dia./type of well casing 2' diameter sch. 40 PVC S 5. Type/slot size of screen 2' diameter sch. 40 PVC, 10-slot S 6. Type screen filter a) Quantity used Filpro sand 2' diameter sch. 40 PVC, 10-slot 8. Grout S. Grout mix used S S 9. Quantity used S S S 9. Vol. of well casing grout Cement-bentonite S 9. Vol. of well casing grout Grundtos pump Comments State Comments S S State Comments S S State S S S 9. Vol. of well casing grout S S State S S S S S				END : 01/27/2005				
2a 1 Ground elevation at well 227.3 3a 1 - Ground elevation at well 229.4 a) vent hole? No a) vent hole? No a) welphole? No b) concrete pad dimensions Approx.3 ft square 4 Dia./type of well casing 2' diameter sch. 40 PVC 5 Type/slot size of screen 2' diameter sch. 40 PVC, 10-slot 6 Type of seal Bentonite chips a) Quantify used - - 7 Type of seal Bentonite chips a) Quantify used - - 9 Of placement - 0 O' placement - 0 O' placement - 0 O' placement - 0 O' out nix used -	WATER LEVELS .	START.	1/21/2005	LIND . 01/27/2003	LOGGER . Dakey			
	2a	1 14.5 ft 17.5 ft 20 ft 20 ft	 2- Top of car a) vent ho 3- Wellhead a) weep h b) concre 4- Dia./type 5- Type/slot 6- Type scre a) Quantii 7- Type of sr a) Quantii 8- Grout a) Grout r b) Methoo c) Vol. of Developm 	sing elevation	229.4 No 4" diameter steel casing w No Approx. 3 ft square 2" diameter sch. 40 PVC 2" diameter sch. 40 PVC, ' Filpro sand Bentonite chips Cement-bentonite			

Р	ROJECT NUMBER			460		
		WELL CON	SHM-05		SHEET 1	OF 1
PROJECT : Shepley's Hill Landfill		LOCATION :	Ayer, MA			
DRILLING CONTRACTOR : Dragin Drilling DRILLING METHOD AND EQUIPMENT USED			, , , , , , , , , , , , , , , , , , ,			
WATER LEVELS :	START :	1/27/2005	END : 01/27/2005	LOGGER :	Bakey	
3 3 3 3 3 3 4 7 7 7 7 7 7 7 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 5 5 6 1 1 5 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1	 2- Top of c a) vent l 3- Wellheat a) weep b) concr 4- Dia./type 5- Type/slc 6- Type sc a) Quan 7- Type of a) Quan 8- Grout a) Grout b) Methor c) Vol. c 	d protection cover type hole?	No Approx. 3 ft 2" diameter 2" diameter 2" diameter 5" Filpro sand Bentonite ch Cement-ben Grundfos pu	sch. 40 PVC sch. 40 PVC, 10 nips)-slot

			WELL NUMBER SHM-05-47A SHEET 1 OF 1			
CH2MHILL	284350.SC.01		5HM-05	-47A	SHEET 1	OF 1
CHZIMHILL	V	VELL CO	MPLETION	DIAG	RAM	
PROJECT : Shepley's Hill Landfill		LOCATION :	Ayer, MA			
DRILLING CONTRACTOR :	-D · Hand-driven					
WATER LEVELS :	START :	2/18/2005	END : 02/18/2005	LOGGE	R : Tseng	
DRILLING METHOD AND EQUIPMENT USE	ED: Hand-driven START:	1- Groi 2- Top a) vi 3- Typi	END : 02/18/2005	214 218 No	4.4	

	PROJECT NUMBER		WELL NUMBER			
	284350.SC.01		SHM-05-	-47B SHE	ET 1	OF 1
CH2MHILL	١		IPLETION	DIAGRA	Μ	
PROJECT : Shepley's Hill Landfill DRILLING CONTRACTOR : DRILLING METHOD AND FOUIPMENT USE	D · Hand-driven	LOCATION :	Ayer, MA			
WATER LEVELS :	START :	2/18/2005	END : 02/18/2005	LOGGER : Tse	ng	
DRILLING METHOD AND EQUIPMENT USE	ED: Hand-driven START:	1- Groun 2- Top of a) ven	d elevation at well casing elevation t hole? slot size of screen	214.4 216.3 No		

	PROJECT NUMBER 284350.SC.01		WELL NUMBER SHM-05	_/Q A				
	2843:	50.50.01	3111-03	-40A	SHEET 1	OF 1		
•	۱ ۱	WELL COMPLETION DIAGRAM						
PROJECT : Shepley's Hill Landfill		LOCATION :	Ayer, MA					
DRILLING CONTRACTOR : DRILLING METHOD AND EQUIPMENT US	ED : Hand-driven							
WATER LEVELS :	START :	2/17/2005	END : 02/17/2005	LOGGER	: Tseng			
DRILLING METHOD AND EQUIPMENT US	ED: Hand-driven START:	1- Gro 2- Тор а) v 3- Тур	END : 02/17/2005	213.s 217 No	9	- <u>slot</u>		

284350.SC.01 SHM-05-48B SHEET 1 C WELL COMPLETION DIAGRAM PROJECT : Shepley's Hill Landfill LOCATION : Ayer, MA DRILLING CONTRACTOR : DRILLING METHOD AND EQUIPMENT USED : Hand-driven WATER LEVELS : START : 2/17/2005 END : 02/17/2005 LOGGER : Tseng 2a 2 1 Ground elevation at well 213.8 2 Top of casing elevation a) vent hole? 218.4 No 3- Type/slot size of screen 1" diameter sch. 40 PVC, 10-slot	WELL NUMBER SHM-05-48B SHEET 1 OF 1		
WELL COMPLETION DIAGRAM PROJECT : Shepley's Hill Landfill LOCATION : Ayer, MA DRILLING CONTRACTOR : DRILLING METHOD AND EQUIPMENT USED : Hand-driven WATER LEVELS : START : 2/17/2005 END : 02/17/2005 LOGGER : Tseng 1 Ground elevation at well 213.8 2a 1 1- Ground elevation at well 213.8 2- Top of casing elevation a) vent hole? 218.4 No	F 1		
DRILLING CONTRACTOR : DRILLING METHOD AND EQUIPMENT USED : Hand-driven WATER LEVELS : START : 2/17/2005 END : 02/17/2005 LOGGER : Tseng 2 2 1 Ground elevation at well 213.8 2- Top of casing elevation 218.4 No 2 No			
DRILLING METHOD AND EQUIPMENT USED : Hand-driven WATER LEVELS : START : 2/17/2005 END : 02/17/2005 LOGGER : Tseng 2a 2 1 Ground elevation at well 213.8 2- Top of casing elevation a) vent hole? 218.4 No			
WATER LEVELS : START : 2/17/2005 END : 02/17/2005 LOGGER : Tseng 2a 1 1- Ground elevation at well 213.8 2- Top of casing elevation a) vent hole? 218.4			
2a 1 1- Ground elevation at well 213.8 1 1- Ground elevation at well 213.8 2- Top of casing elevation a) vent hole? 218.4			
3 ft 2 ft 1 ft 3 ft			

	PROJECT NUMBER			40.4		
	2843	50.SC.01	SHM-05	-49A	SHEET 1	OF 1
	۱ N	WELL CC	MPLETION	DIAG	RAM	
PROJECT : Shepley's Hill Landfill		LOCATION :	Ayer, MA			
	ED · Hand-driven					
WATER LEVELS :	START :	2/17/2005	END : 02/17/2005	LOGGEF	R : Tseng	
DRILLING CONTRACTOR : DRILLING METHOD AND EQUIPMENT US WATER LEVELS : 2a	ED: Hand-driven START:	1- Gro 2- Top a) \ 3- Typ	END : 02/17/2005	213 217 No	3.3	
•						

	PROJECT NUMBER	50.SC.01	WELL NUMBER SHM-05	- 49R SH	EET 1	OF 1
	2043	50.50.01		- 30 38		OF 1
•	,	WELL CC	MPLETION	DIAGRA	M	
PROJECT : Shepley's Hill Landfill		LOCATION :	Ayer, MA			
DRILLING CONTRACTOR : DRILLING METHOD AND EQUIPMENT USEI	D: Hand-driven					
WATER LEVELS :	START :	2/17/2005	END : 02/17/2005	LOGGER : Tse	eng	
2a	- 2	1- Gro	und elevation at well	213.3		
		_				
	Î		of casing elevation	216.2 No		
		3- Тур	e/slot size of screen	1" diameter sch.	40 PVC, 10-sl	ot
			nments			
	25.4					
	2.5 ft					
3.5 ft						
	¥					
	3					
1 ft						

Attachment B Synoptic Water-Level Data Baseline and Extraction/Recovery Test

TABLE B-1	
Hydraulic Monitoring Network	
Shepley's Hill Landfill, Fort Devens,	MA

Well Identifier	Monitoring Method ¹	Comment
Near Field		
SHL-21	Manual	
SHL-13	Manual	
SHM-96-22B	Datalogger	
SHL-22	Datalogger	
SHM-93-22C	Datalogger	
SHL-5	Datalogger	
SHM-96-5C	Datalogger	
SHM-96-5B	Datalogger	
SHL-9	Datalogger	
SHL-23	Datalogger	
SHM-05-45A,B	Datalogger	~50 ft east of EW-1.
SHM-05-46A,B	Datalogger	~100 ft east of EW-1.
SHP-05-43	Manual	
SHP-05-44	Manual	
EW-01 pilot tube	Manual	Extraction well pilot tube.
EW-04 pilot tube	Manual	Extraction well pilot tube.
Pond Area		
PSP-01	Manual	Stage board near Pond outlet
SHP-01-38A,B	Manual	
N2-P1,P2	Manual	
SHP-01-37X	Manual	
SHP-01-36X	Manual	
N1-P1,P2,P3	Manual	
SHL-20	Manual	
SHL-11	Manual	
SHL-4	Manual	
Downgradient Area		
SHM-05-41A,B,C	Manual	MW triplet on Scully Road
SHM-05-42A,B	Manual	Microwell couplet in wooded area east of Scully Road

Well Identifier	Monitoring Method ¹	Comment
SHP-99-33A, B	Manual	Molumco Road
SHP-99-31A, B, C	Manual	Molumco Road
SHP-99-34A,B	Manual	Molumco Road
SHP-05-47A,B	Manual	Piezometer couplet hand installed, 80' N. of Spillway, west bank.
SHP-05-48A,B	Manual	Piezometer couplet hand installed, S. of Molumco Rd. in wetland channel.
SHP-05-49A,B	Manual	Piezometer couplet hand installed, 40' N. of Molumco Rd. Culvert West Bank.
WP-01	Manual	Stage board - wetland pool area southwest of SHP-05-48A,B.
Upgradient Area		
SHL-10D	Manual	
SHL-15	Manual	
N5-P1,P2	Manual	
N3-P1,P2	Manual	
SHL-19	Manual	
SHL-10, C, E	Manual	
SHL-3	Manual	
N4-P1,P2,P3	Manual	
SHP-99-35X	Manual	
SHL-18	Manual	
SHM-93-18B	Manual	
N6-P1	Manual	
SHP-95-27X	Manual	
N7-P1,P2	Manual	
SHL-24	Manual	

¹ Wells identified to be monitored with data loggers are monitored manually except during the extraction test.

Monitoring Well/Piezometer Identification	Comment
SHL-23	West Peripheral
SHL-22	LTM downstream
SHL-9	LTM downstream
SHM-96-22B	LTM downstream
SHM-96-5B	LTM downstream
SHM-96-05C	LTM downstream
SHL-8S,D	East peripheral
SHL-13	East peripheral
SHL-21	East peripheral
PSP-01	East peripheral (Plow Shop Pond – surface water)
SHP-01-36X	East peripheral (near Plow Shop)
SHP-01-37X	East peripheral (near Plow Shop)
SHP-1-38A	East peripheral (near Plow Shop)
SHL-10D	East peripheral
SHL-15	Upgradient
N5-P1,P2	Upgradient
SHM-05-39A,B	New downgradient
SHM-05-40X	New downgradient
SHM-05-41A,B,C	New downgradient
SHM-05-42A,B	New downgradient
SHM-99-31A, B,C	Downgradient
SHM-99-32X	Downgradient

 TABLE B-2

 Geochemistry Sentinel Monitoring

 Shepley's Hill Landfill, Fort Devens, MA

1					[Baseline			Baseline			Max Drawdo	wn		Recovery			Max Drawdo	wn		Operations 1				Operations 2			
Well ID	Northing ^{1,2} (ft)	Easting ^{1,2}	Ground Surface Elevation ^{1,3} (ft msl)	Outer Casing Elevation ^{1,3} (ft msl)	Reference Elevation ^{1,3} (ft msl)	Date DTW Measured	DTW (TOC) (ft)	Elevation (ft msl)	Date DTW Measured	DTW (TOC) (ft)	Elevation (ft msl)	Date DTW Measured	DTW (TOC) (ft)	Elevation (ft msl)	Date DTW Measured	DTW (TOC) (ft)	Elevation (ft msl)	Date DTW Measured	DTW (TOC) (ft)	Elevation (ft msl)	Date DTW Measured	Time DTW Measured	DTW (TOC) (ft)	Elevation (ft msl)	Date DTW Measured	Time DTW Measured	DTW (TOC) (ft)	Elevation (ft msl)
SHM-05-39A	3028544.3	629761.4	222.9	222.9	222.6	8/4/2005	11.51	211.1	8/24/2005	11.93	210.7	8/26/2005	11.88	210.7	8/29/2005	12.00	210.6				9/6/2005	933	11.95	210.7	9/21/2005	756	12.03	210.6
SHM-05-39B	3028543.7	629765.5	222.9	222.9	222.6	8/4/2005	12.28	210.3	8/24/2005	12.70	209.9	8/26/2005	12.66	209.9	8/29/2005	12.75	209.9				9/6/2005	932	12.65	210.0	9/21/2005	754	12.80	209.8
SHM-05-40X SHM-05-41A	3028514.3 3028290.9	629636.9 629796.2	224.6 223.8	224.6 223.8	224.4 223.5	8/4/2005 8/4/2005	14.25 10.21	210.2 213.3	8/24/2005 8/24/2005	14.55 10.71	209.9 212.8	8/26/2005 8/26/2005	14.56 10.82	209.8 212.7	8/29/2005 8/29/2005	14.66 10.83	209.7 212.7				9/6/2005 9/6/2005	1016 1048	14.52 10.78	209.9 212.7	9/21/2005 9/21/2005	800 811	14.68 10.96	209.7 212.5
SHM-05-41B	3028299.2	629796.1	223.6	223.6	223.3	8/4/2005	10.00	213.3	8/24/2005	10.53	212.8	8/26/2005	10.63	212.7	8/29/2005	10.63	212.7				9/6/2005	1042	10.61	212.7	9/21/2005	809	10.79	212.5
SHM-05-41C	3028285.4	629795.9	224.0	224.0	223.6	8/4/2005	10.30	213.3	8/24/2005	10.75	212.9	8/26/2005	10.86	212.7	8/29/2005	10.81	212.8				9/6/2005	1049	10.83	212.8	9/21/2005	813	11.00	212.6
SHM-05-42A SHM-05-42B	3028375.7 3028375.7	630018.4 630018.4	214.5 214.5	217.9 217.9	217.8 217.8	8/3/2005 8/3/2005	4.47 4.38	213.3 213.4	8/24/2005 8/24/2005	4.98 4.93	212.8 212.9	8/26/2005 8/26/2005	5.10 5.07	212.7 212.7	8/29/2005 8/29/2005	5.03 4.98	212.8 212.8				9/6/2005 9/6/2005	1216 1217	5.11 5.10	212.7 212.7	9/21/2005 9/21/2005	804 805	5.21 5.20	212.6 212.6
SHM-99-31A	3028558.1	629894.9	213.9	217.5	217.0	8/3/2005	3.50	210.4	8/24/2005	4.40	212.0	8/26/2005	4.28	212.7	8/29/2005	4.42	212.0				9/6/2005	823	4.58	210.8	9/21/2005	746	4.35	212.0
SHM-99-31B	3028560.0	629899.9	213.7	215.5	215.4	8/3/2005	3.88	211.5	8/24/2005	4.32	211.1	8/26/2005	4.35	211.1	8/29/2005	4.41	211.0				9/6/2005	824	4.30	211.1	9/21/2005	746	4.47	210.9
SHM-99-31C SHM-99-32X	3028561.1 3028574.6	629908.5 630170.1	213.7 220.2	215.9 222.5	215.8 222.3	8/3/2005 8/5/2005	4.19 9.75	211.6 212.6	8/24/2005 8/24/2005	4.59 10.17	211.2 212.1	8/26/2005 8/26/2005	4.63 10.24	211.2 212.1	8/29/2005 8/29/2005	4.71 10.29	211.1 212.0				9/6/2005 9/6/2005	824 716	4.06 10.19	211.7 212.1	9/21/2005 9/21/2005	745 736	4.75 10.36	211.1 211.9
SHP-05-47A	3028226.7	630522.8	214.4	NA	218.5	8/2/2005	4.61	212.0	8/24/2005	5.97	212.1	8/26/2005	Dry	Dry	8/29/2005	10.23	212.0				9/7/2005	728	5.68	212.1	9/21/2005	836	Dry	Dry
SHP-05-47B	3028226.2	630523.8	214.4	NA	216.3	8/2/2005	1.22	215.1	8/24/2005	3.93	212.4	8/26/2005	3.81	212.5	8/29/2005	3.87	212.4				9/7/2005	727	3.60	212.7	9/21/2005	836	3.91	212.4
SHP-05-48A SHP-05-48B	3028570.0 3028569.4	630046.0 630046.3	213.9 213.8	NA NA	217.0 218.4	8/5/2005 8/5/2005	5.50 4.67	211.5 213.7	8/24/2005 8/24/2005	Dry Dry	Dry Drv	8/26/2005 8/26/2005	Dry Dry	Dry Dry	8/29/2005 8/29/2005	Dry Dry	Dry Dry				9/6/2005 9/6/2005	1303 1303	Dry 4.95	Dry 213.5	9/21/2005 9/21/2005	741 740	Dry 4.93	Dry 213.5
SHP-05-49A	3028569.4	630250.6	213.8	NA	218.4	8/5/2005	4.67 Dry	Dry	8/24/2005	5.93	211.9	8/26/2005	Dry	Dry	8/29/2005	Dry	Dry				9/6/2005	810	4.93 5.89	213.5	9/21/2005	740	4.93 Dry	Dry
SHP-05-49B	3028663.6	630250.7	213.3	NA	216.2	8/5/2005	4.35	211.9	8/24/2005	4.28	211.9	8/26/2005	4.65	211.6	8/29/2005	4.90	211.3				9/6/2005	809	4.66	211.5	9/21/2005	733	4.92	211.3
SHP-99-33A SHP-99-33B	3028551.6 3028550.7	629818.5 629815.5	222.1 222.2	NA NA	224.1 223.7	8/4/2005	12.76 12.31	211.3 211.4	8/24/2005 8/24/2005	13.17 12.42	210.9 211.3	8/26/2005 8/26/2005	13.19 12.55	210.9 211.2							9/6/2005 9/6/2005	925 927	12.47 11.20	211.6 212.5	9/21/2005 9/21/2005	749 750	13.12 12.59	211.0 211.1
SHP-99-336	3028550.7	630294.9	222.2	NA	225.7	8/4/2005 8/4/2005	13.46	211.4	8/24/2005	13.65	211.3	8/26/2005	13.56	211.2	8/29/2005	13.67	 212.0				9/6/2005	759	12.65	212.5	9/21/2005	730	12.59	211.1
SHP-99-34B	3028552.3	630291.0	223.6	NA	225.6	8/4/2005	13.47	212.1	8/24/2005	13.33	212.3	8/26/2005	13.25	212.4	8/29/2005	13.95	211.7				9/6/2005	805	13.33	212.3	9/21/2005	731	12.52	213.1
WP-01	3028426.8	629893.7	213.3	NA	213.4	8/5/2005	Dry	Dry	8/24/2005	Dry	Dry	8/26/2005	Dry	Dry	8/29/2005	Dry	Dry				9/6/2005	1220	Dry	Dry	9/21/2005	807	Dry	Dry
EW-01 EW-01 pilot	3027959.9 3027959.9	629942.7 629942.7	NA NA	228.2 228.2	228.0 228.0	8/2/2005	 13.92	214.1	8/24/2005 8/24/2005	14.22 14.22	213.8 213.8	8/26/2005 8/26/2005	24.18 14.84	203.8 213.2	8/29/2005 8/29/2005	14.32 14.34	213.7 213.7	8/30/2005 8/30/2005	24.00 14.93	204.0 213.1	 9/7/2005	1020	 14.98	228.0	 9/21/2005	1059	 14.54	 213.5
EW-04	3027990.9	629894.9	NA	228.5	228.1				8/24/2005	14.53	213.6				8/29/2005	14.61	213.5	8/30/2005	15.14	213.0	9/7/2005	1018	14.95	228.1	9/21/2005	1105	14.96	213.1
EW-04 pilot	3027990.9	629894.9	NA	228.5	228.1	8/2/2005	13.60	214.5	8/24/2005	14.62	213.5	8/26/2005	14.82	213.3	8/29/2005	14.75	213.4	8/30/2005	15.00	213.1								
SHL-13 SHL-21	3028105.8 3027884.4	630539.8 630363.4	220.1 258.7	222.3 261.2	221.8 260.0	8/2/2005 8/3/2005	7.00 45.20	214.8 214.8	8/24/2005 8/24/2005	7.59 45.81	214.2 214.2	8/26/2005 8/26/2005	7.52 45.75	214.3 214.3	8/29/2005 8/29/2005	7.58 45.90	214.2 214.1	8/30/2005 8/30/2005	7.54 45.92	214.3 214.1	9/7/2005 9/7/2005	703 828	7.47 45.94	214.3 214.1	9/21/2005 9/21/2005	832 842	7.67 46.14	214.1 213.9
SHL-22	3028162.8	630056.4	220.0	221.4	220.6	8/2/2005	6.82	213.8	8/24/2005	7.36	213.2	8/26/2005	7.57	213.0	8/29/2005	7.53	213.1	8/30/2005	7.70	212.9	9/7/2005	1034	7.65	213.0	9/21/2005	817	7.64	213.0
SHL-23	3027916.7	629712.7	240.5	242.6	242.3	8/5/2005	27.42	214.9	8/24/2005	28.16	214.1	8/26/2005	28.17	214.1	8/29/2005	28.32	214.0	8/30/2005	28.39	213.9	9/7/2005	958	28.49	213.8	9/21/2005	1520	28.67	213.6
SHL-5 SHL-8D	3028124.9 3028127.6	630191.8 630406.7	217.9 220.1	218.9 222.3	218.6 221.8	8/3/2005 8/2/2005	4.50 7.46	214.1 214.3	8/24/2005 8/24/2005	5.32 8.03	213.3 213.8	8/26/2005 8/26/2005	5.38 8.04	213.2 213.8	8/29/2005 8/29/2005	5.48 8.02	213.1 213.8	8/30/2005	5.54	213.1	9/7/2005 9/7/2005	1210 731	5.48 8.14	213.1 213.7	9/21/2005 9/21/2005	828 830	5.58 8.33	213.0 213.5
SHL-8S	3028127.6	630406.7	220.1	222.3	222.0	8/2/2005	7.68	214.3	8/24/2005	8.22	213.8	8/26/2005	8.27	213.7	8/29/2005	8.28	213.7				9/7/2005	730	8.52	213.5	9/21/2005	830	8.45	213.6
SHL-9	3028147.0	630009.4	221.7	223.5	223.0	8/2/2005	9.23	213.8	8/24/2005	9.83	213.2	8/26/2005	9.95	213.1	8/29/2005	9.97	213.2	8/30/2005	10.14	213.0	9/7/2005	1021	10.12	212.9	9/21/2005	816	10.11	212.9
SHM-05-45A SHM-05-45B	3027962.0 3027956.7	629995.4 629995.2	227.3 227.7	229.7 230.3	229.5 230.1	8/2/2005 8/2/2005	15.06 15.62	214.4 214.5	8/24/2005 8/24/2005	15.69 16.29	213.8 213.8	8/26/2005 8/26/2005	16.09 16.61	213.3 213.0	8/29/2005 8/29/2005	15.82 16.35	213.7 213.8	8/30/2005 8/30/2005	16.30 16.93	213.2 213.0	9/7/2005 9/7/2005	951 950	16.27 16.86	213.2 213.2	9/21/2005 9/21/2005	1053 1052	16.03 16.60	213.5 213.5
SHM-05-46A	3027936.5	630041.7	227.3	229.4	229.3	8/2/2005	14.67	214.6	8/24/2005	15.32	213.0	8/26/2005	15.49	213.5	8/29/2005	15.41	213.9	8/30/2005	15.81	213.5	9/7/2005	946	15.82	213.5	9/21/2005	1052	15.65	213.7
SHM-05-46B	3027941.1	630041.2	227.1	228.8	228.7	8/2/2005	13.96	214.7	8/24/2005	14.60	214.1	8/26/2005	14.76	213.7	8/29/2005	14.71	214.0	8/30/2005	15.11	213.6	9/7/2005	948	15.13	213.6	9/21/2005	1051	14.94	213.8
SHM-93-22C SHM-96-22B	3028158.2 3028169.8	630045.9 630071.9	220.0 219.9	221.7 221.6	221.7 220.4	8/3/2005 8/2/2005	7.89 6.66	213.8 213.7	8/24/2005 8/24/2005	8.45 7.23	213.3 213.2	8/26/2005 8/26/2005	8.65 7.42	213.1 213.0	8/29/2005 8/29/2005	8.62 7.38	213.1 213.0	8/30/2005 8/30/2005	8.81 7.54	212.9 212.9	9/7/2005 9/7/2005	1033 1104	8.69 7.41	213.0 213.0	9/21/2005 9/21/2005	817 820	8.75 7.49	213.0 212.9
SHM-96-5B	3028112.7	630158.2	218.5	220.2	220.4	8/2/2005	5.81	213.7	8/24/2005	6.39	213.6	8/26/2005	6.65	213.4	8/29/2005	9.61	213.6	8/30/2005	6.66	212.3	9/7/2005	1135	6.63	213.4	9/21/2005	825	6.74	212.3
SHM-96-5C	3028106.1	630173.5	218.7	219.6	219.4	8/3/2005	5.40	214.0	8/24/2005	5.98	213.4	8/26/2005	6.12	213.3	8/29/2005	6.12	213.3	8/30/2005	6.23	213.2	9/7/2005	1136	6.07	213.3	9/21/2005	827	6.22	213.2
SHP-05-43 SHP-05-44	3027747.1 3027588.9	630532.5 630586.4	259.4 256.4	262.4 259.5	261.7 259.1	8/3/2005 8/3/2005	45.06 42.21	216.6 216.9	8/24/2005 8/24/2005	45.45 42.46	216.3 216.6	8/26/2005 8/26/2005	45.36 42.40	216.3 216.7	8/29/2005 8/29/2005	45.48 42.50	216.2 216.6				9/7/2005 9/7/2005	940 935	45.43 42.41	216.3 216.7	9/21/2005 9/21/2005	846 849	45.89 42.53	215.8 216.6
N-1, P-1	3027568.9	630723.3	236.4	239.5	239.1	8/3/2005	14.81	216.9	8/24/2005	14.93	216.0	8/26/2005	14.86				216.1				9/7/2005	935 841	14.84	216.2	9/21/2005	855	14.93	216.0
N-1, P-2	3027867.9	630723.3	228.8	231.5	231.0	8/3/2005	14.54	216.5	8/24/2005	14.80	216.2	8/26/2005	14.77	216.2	8/29/2005	14.80	216.2				9/7/2005	842	14.70	216.3	9/21/2005	852	14.83	216.2
N-1, P-3 N-2, P-1	3027867.9 3027311.3	630723.3 630658.7	228.8 221.6	231.5 223.8	231.2 223.1	8/3/2005 8/1/2005	14.33 5.81	216.9 217.3	8/24/2005 8/24/2005	14.46 5.92	216.7 217.2	8/26/2005 8/26/2005	14.40 5.85	216.8 217.3	8/29/2005 8/29/2005	14.46 5.84	216.7 217.3				9/7/2005 9/7/2005	842 859	14.33 6.67	216.9 216.4	9/21/2005 9/21/2005	856 906	14.50 5.91	216.7 217.2
N-2, P-1 N-2, P-2	3027311.3	630658.7	221.6	223.8	223.1	8/1/2005	6.02	217.3	8/24/2005	6.14	217.2	8/26/2005	5.85 6.08	217.3	8/29/2005	5.84 6.04	217.3				9/7/2005	900	6.05	216.4	9/21/2005	906	6.09	217.2
PSP-01	3028179.0	630581.0	NA	NA	216.1	8/5/2005	0.98	217.1	8/24/2005	0.94	217.0	8/26/2005	0.97	217.1	8/29/2005	0.96	217.1				9/7/2005	725	1.00	217.1	9/21/2005	832	0.95	217.1
SHL-11	3027316.1	630496.1	235.0	237.0	236.5	8/1/2005	18.80	217.7	8/24/2005	18.98	217.5	8/26/2005	18.91		8/29/2005	18.91	217.6				9/7/2005	918	18.91	217.6	9/21/2005	921	19.02	217.5
SHL-20 SHL-4	3027329.4 3027057.2	630463.1 630575.7	235.4 226.4	237.0 228.4	237.0 228.1	8/1/2005 8/1/2005	19.15 10.63	217.9 217.5	8/24/2005 8/24/2005	19.33 10.77	217.7 217.3	8/26/2005 8/26/2005	19.30 11.07	217.7 217.0	8/29/2005 8/29/2005	19.23 10.78	217.8 217.3				9/7/2005 9/7/2005	919 922	19.30 10.77	217.7 217.3	9/21/2005 9/21/2005	925 927	19.41 10.86	217.6 217.2
SHP-01-36X	3027688.5	630738.3	221.1	NA	225.1	8/3/2005	7.99	217.0	8/24/2005	7.16	217.9	8/26/2005	8.11	217.0	8/29/2005	7.72	217.4				9/7/2005	847	8.00	217.1	9/21/2005	902	8.04	217.1
SHP-01-37X		630696.6	219.5	NA	223.7	8/3/2005	6.80	216.9	8/24/2005	6.91	216.8	8/26/2005	6.53	217.2	8/29/2005	6.85	216.9				9/7/2005	855	6.68	217.0	9/21/2005	904	6.80	216.9
SHP-01-38A SHP-01-38B		630544.0 630545.1	219.8 219.9	NA NA	221.8 222.0	8/1/2005 8/1/2005	4.26 4.33	217.5 217.7	8/24/2005 8/24/2005	4.39 4.49	217.4 217.5	8/26/2005 8/26/2005	4.36 4.34	217.4 217.7	8/29/2005 8/29/2005	4.37 4.42	217.4 217.6				9/7/2005 9/7/2005	904 910	5.74 4.61	216.1 217.4	9/21/2005 9/21/2005	916 917	4.12 4.41	217.7 217.6
N-3, P-1		630777.8	219.8	222.5	222.0	8/1/2005	4.67	217.1	8/24/2005	4.76	217.0	8/26/2005	4.71	217.1	8/29/2005	4.68	217.0				9/7/2005	925	4.70	217.4	9/21/2005	929	4.77	217.0
N-3, P-2	3027130.2	630777.8	219.8	222.5	221.5	8/1/2005	4.78	216.7	8/24/2005	4.78	216.7	8/26/2005	4.76	216.7	8/29/2005	4.76	216.7				9/7/2005	927	4.70	216.8	9/21/2005	929	4.78	216.7
N-4, P-1 ⁴	3026762.2	631241.7	218.3	219.9	219.2																							
N-4, P-2⁴ N-4, P-3⁴	3026762.2 3026762.2	631241.7 631241.7	218.3 218.3	219.9 219.9	219.2 219.2	8/1/2005	1.99	217.2	8/24/2005	2.10	217.1	8/26/2005	2.09	217.1	8/29/2005	2.02	217.2				9/6/2005	1350	2.02	217.2	9/21/2005 	945	2.05	217.2
N-4, P-3 N-5, P-1	3026762.2	629805.6	218.3	219.9	219.2	8/5/2005	22.93	220.8	8/25/2005	23.38	220.3	8/26/2005	23.35	220.4		23.48	220.2				9/6/2005	1458	23.59	220.1	9/21/2005		23.83	219.9
N-5, P-2	3027173.0	629805.6	241.7	244.9	243.7	8/5/2005	22.74	221.0	8/25/2005	23.27	220.4	8/26/2005	23.22	220.5	8/29/2005	23.22	220.5				9/6/2005	1457	23.46	220.2	9/21/2005	1045	23.67	220.0

			Ground	Outer																								
			Surface	Casing	Reference	Date DTW	DTW		Date DTW	DTW		Date DTW	DTW		Date DTW	DTW		Date DTW	DTW		Date DTW	Time DTW	DTW		Date DTW	Time DTW	DTW	
Well ID	Northing ^{1,2}	Easting ^{1,2}	Elevation ^{1,3}	Elevation ^{1,3}	³ Elevation ^{1,3}	Measured	(TOC)	Elevation	Measured	(TOC)	Elevation	Measured	(TOC)	Elevation	Measured	(TOC)	Elevation	Measured	(TOC)	Elevation	Measured	Measured	(TOC)	Elevation	Measured	Measured	(TOC)	Elevation
N-6, P-1	3026338.7	630017.1	257.1	259.9	259.9	8/1/2005	36.13	223.8	8/24/2005	36.51	223.4	8/26/2005	36.05	223.9	8/29/2005	36.63	223.3				9/6/2005	1444	36.74	223.2	9/21/2005	1016	37.00	222.9
N-7, P-1	3025618.6	629991.0	254.4	257.7	256.6	8/1/2005	29.88	226.7	8/24/2005	30.35	226.3	8/26/2005	30.34	226.3	8/29/2005	30.46	226.1				9/6/2005	1513	30.53	226.1	9/21/2005	1025	30.98	225.6
N-7, P-2	3025618.6	629991.0	254.4	257.7	257.1	8/1/2005	29.96	227.1	8/24/2005	30.43	226.7	8/26/2005	30.44	226.7	8/29/2005	30.57	226.5				9/6/2005	1512	30.62	226.5	9/21/2005	1029	30.98	226.1
SHL-15	3025829.5	629326.4	260.1	261.2	260.9	8/1/2005	18.17	242.7	8/24/2005	18.93	242.0	8/26/2005	18.98	241.9	8/29/2005	19.10	241.8				9/6/2005	1520	19.22	241.7	9/21/2005	1034	18.69	242.2
SHL-18	3026474.8	631186.3	236.8	238.8	238.6	8/5/2005	19.27	219.3	8/24/2005	19.60	219.0	8/26/2005	19.62	219.0	8/29/2005	19.67	218.9				9/6/2005	1355	19.65	219.0	9/21/2005	950	19.77	218.8
SHL-19	3026946.0	630664.9	239.5	241.8	241.5	8/1/2005	23.14	218.4	8/24/2005	23.38	218.1	8/26/2005	23.40	218.1	8/29/2005	22.43	219.1				9/7/2005	931	23.44	218.1	9/21/2005	933	23.53	218.0
SHL-3	3026705.6	630910.8	247.4	248.6	248.6	8/1/2005	30.50	218.1	8/24/2005	30.77	217.8	8/26/2005	30.80	217.8	8/29/2005	30.82	217.8				9/6/2005	1337	30.74	217.9	9/21/2005	940	30.84	217.8
SHM-93-10C	3026846.1	630886.0	247.1	249.1	248.6	8/1/2005	29.71	218.9	8/24/2005	29.92	218.7	8/26/2005	23.93	224.7	8/29/2005	30.02	218.6				9/6/2005	1328	29.98	218.6	9/21/2005	952	29.95	218.7
SHM-93-10D	3026867.8	630876.9	246.5	249.1	248.9	8/1/2005	30.43	218.5	8/24/2005	30.63	218.3	8/26/2005	30.64	218.3	8/29/2005	30.61	218.3				9/6/2005	1318	30.62	218.3	9/21/2005	937	30.65	218.3
SHM-93-10E	3026841.5	630878.1	246.6	248.8	248.5	8/1/2005	29.54	219.0	8/24/2005	29.73	218.8	8/26/2005	29.64	218.9	8/29/2005	28.76	219.7				9/6/2005	1333	29.83	218.7	9/21/2005	935	29.38	219.1
SHM-93-18B	3026453.1	631180.4	236.3	238.7	238.3	8/1/2005	18.95	219.4	8/24/2005	19.29	219.0	8/26/2005	19.30	219.0	8/29/2005	19.38	218.9				9/6/2005	1402	19.33	219.0	9/21/2005	936	19.43	218.9
SHL-24	3025635.8	631303.4	237.8	239.9	239.8				8/24/2005	15.69	224.1	8/26/2005	15.72	224.1	8/29/2005	15.83	224.0				9/6/2005	1412	15.80	224.0	9/21/2005	1001	15.96	223.8
SHP-95-27X	3026164.7	630753.2	236.3	238.7	238.5	8/1/2005	15.36	223.1	8/24/2005	33.02	205.5	8/26/2005	16.14	222.4	8/29/2005	16.25	222.3				9/6/2005	1420	16.36	222.1	9/21/2005	1008	16.61	221.9
SHP-99-35X	3026547.3	629722.7	257.5	259.3	259.2	8/1/2005	36.19	223.0	8/24/2005	36.39	222.8	8/26/2005	35.05	224.2	8/29/2005	36.44	222.8				9/6/2005	1450	36.52	222.7	9/21/2005	1036	36.59	222.6

NA=Not Available (survey data not available)

Corrections made to manual measurement errors identified in Table B-1 based on other readings or response of locations nearby.

9.61 =Suspect measurement.

213.5 =Correction based on water level changes observed via data loggers.

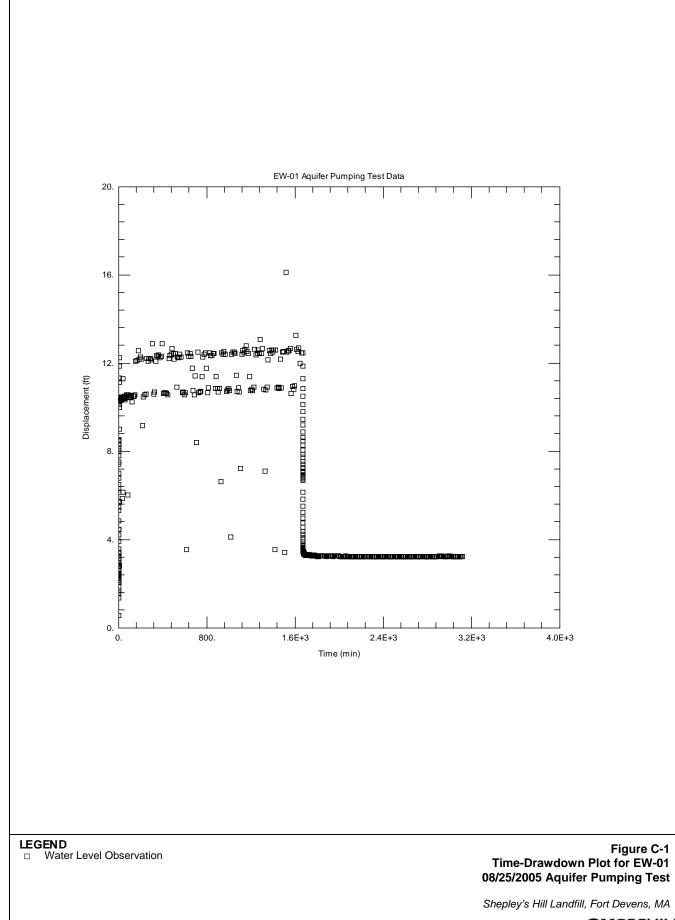
Notes:

Field survey performed by Meridian Associates, Inc. between July and August 2005.
 Northing and easting coordinates based upon project system, reported to be North American Datum of 1983 (NAD83).
 Elevations based upon project system, reported to be National Geodetic Vertical Datum of 1929 (NGVD29).
 N-4 ice damaged. P-2 measurement approx.

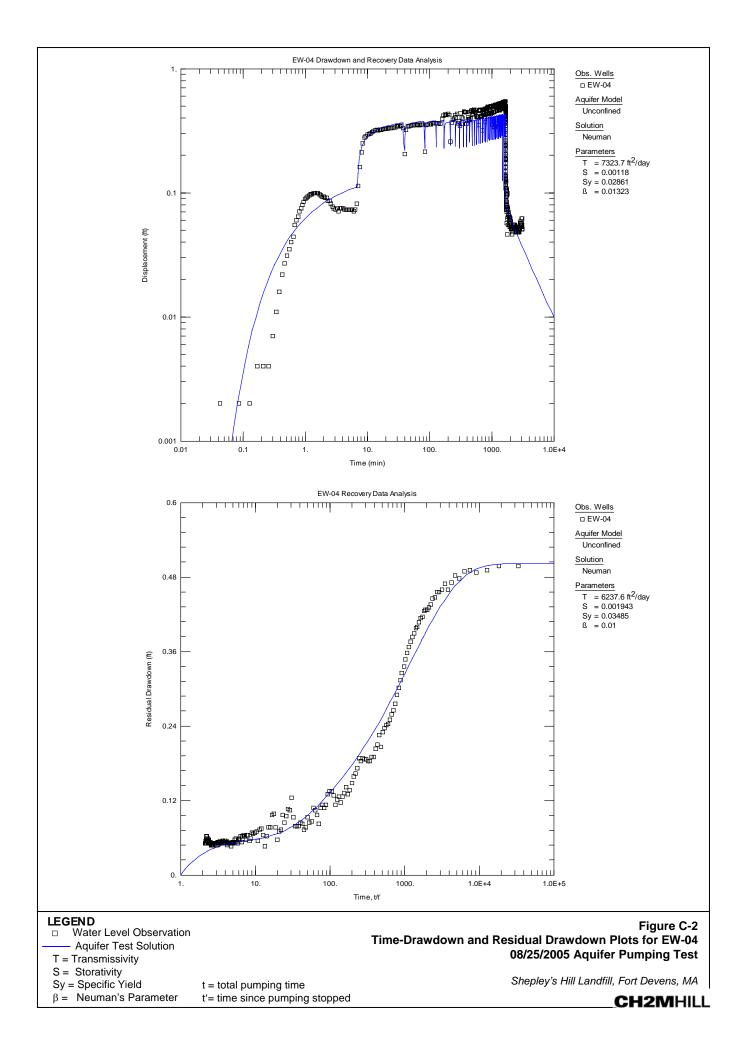
Table B -4 Manual Water Level Measurements

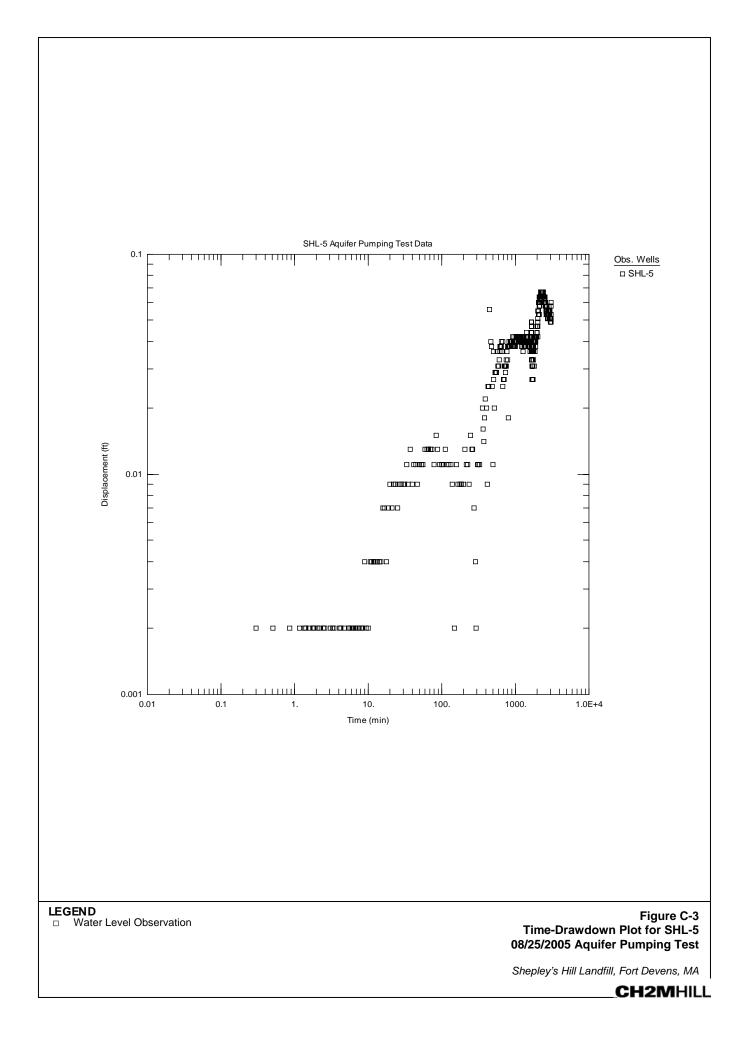
Water Level Location	24-Aug Time	Baseline Depth	25-Aug Time	Extraction Depth	26-Aug Time	Extraction Depth	29-Aug Time	Recharge Depth	30-Aug Time	Extraction Depth
EW-01 EW-04		14.22 14.53	1758	17.05	758	24.18	747 742	14.32 14.61	1020 1103	22-24 15.1
EW1 Piezometer		14.55	1800	14.56	756	14.84	742	14.81	103	15.1
EW4 Piezometer		14.62	1752	14.75	754	14.82	740	14.75	1102	15.0
N-1, P-1		14.93	704	14.84	845	14.86	817	14.94		
N-1, P-1 N-1, P-1			804 906	14.84 14.84						
N-1, P-1			1002	14.84						
N-1, P-1			1116	14.85						
N-1, P-1			1250	14.85						
N-1, P-1			1349	14.88						
N-1, P-1 N-1, P-2		14.80	1648 705	14.86 14.75	846	14.77	817	14.80		
N-1, P-2			805	14.75						
N-1, P-2			907	14.75						
N-1, P-2			1003	14.74						
N-1, P-2 N-1, P-2			1117 1250	14.77 14.77						
N-1, P-2 N-1, P-2			1250	14.77						
N-1, P-2			1649	14.76						
N-1, P-3		14.46	705	14.41	847	14.40	818	14.46		
N-1, P-3			806	14.41						
N-1, P-3 N-1, P-3			907 1003	14.42 14.41						
N-1, P-3			1003	14.41						
N-1, P-3			1251	14.43						
N-1, P-3			1350	14.43						
N-1, P-3			1650	14.44						
N-2, P-1 N-2, P-1		5.92	716 818	5.88 5.85	857	5.85	831	5.84		
N-2, P-1			916	5.85						
N-2, P-1			1014	5.89						
N-2, P-1			1128	5.86						
N-2, P-1			1301	5.87						
N-2, P-1 N-2, P-1			1403 1702	5.93 5.90						
N-2, P-1 N-2, P-2		6.14	717	5.90 6.07	858	6.08	830	6.04		
N-2, P-2		-	819	6.06						
N-2, P-2			917	6.07						
N-2, P-2			1014	6.08						
N-2, P-2 N-2, P-2			1129 1303	6.09 6.08						
N-2, P-2			1303	6.08						
N-2, P-2			1703	6.08						
N-3, P-1	1747	4.76	1054	5.82	907	4.71	842	4.68		
N-3, P-1			1340 1740	4.73 4.74						
N-3, P-1 N-3, P-2	1747	4.78	1740	4.74	909	4.76	843	4.76		
N-3, P-2			1341	4.74			0.0			
N-3, P-2			1743	4.73						
N-4, P-2	1718	2.10	1034	2.07	935	2.09	900	2.02		
N-4, P-2 N-4, P-2			1323 1728	2.07 2.08						
N-5, P-1			754	23.38	1018	23.35	941	23.48		
N-5, P-1			834	23.36	.010	20.00	571	_0.40		
N-5, P-1			935	23.34						
N-5, P-1			1031	23.39						
N-5, P-1 N-5, P-1			1143 1310	23.33 23.35						
N-5, P-1 N-5, P-1			1319 1421	23.35 23.35						
N-5, P-2			755	23.33	1020	23.22	940	23.22		
N-5, P-2			835	23.26	-					
N-5, P-2			936	23.23						
N-5, P-2 N-5, P-2			1034 1144	23.24 23.23						
N-5, P-2 N-5, P-2			1320	23.23						
N-5, P-2			1425	23.21						
N-5, P-2			1727	23.19						
N-6, P-1	1652	36.51	1013	36.50	1013	36.50	915	36.63		
N-6, P-1			1256	36.51						
N-6, P-1 N-7, P-1	1628	30.35	1702 956	36.50 30.34	950	30.34	920	30.46		
N-7, P-1	1020	00.00	1246		330	50.54	520	50.40		
N-7, P-1			1653	30.35						
N-7, P-2	1628	30.43	954	30.45	953	30.44	920	30.57		
N-7, P-2			1245	30.93						
N-7, P-2 PSP-01		0.94	1652 740	30.43 0.96	821	0.97	805	0.96		
PSP-01 PSP-01		0.94	740 859	0.96 0.96	021	0.97	CUG	0.90		
PSP-01			956	0.96						
PSP-01			1050	0.96						
PSP-01			1338	0.96						
PSP-01			1442	0.96						
PSP-01			1745	0.96						

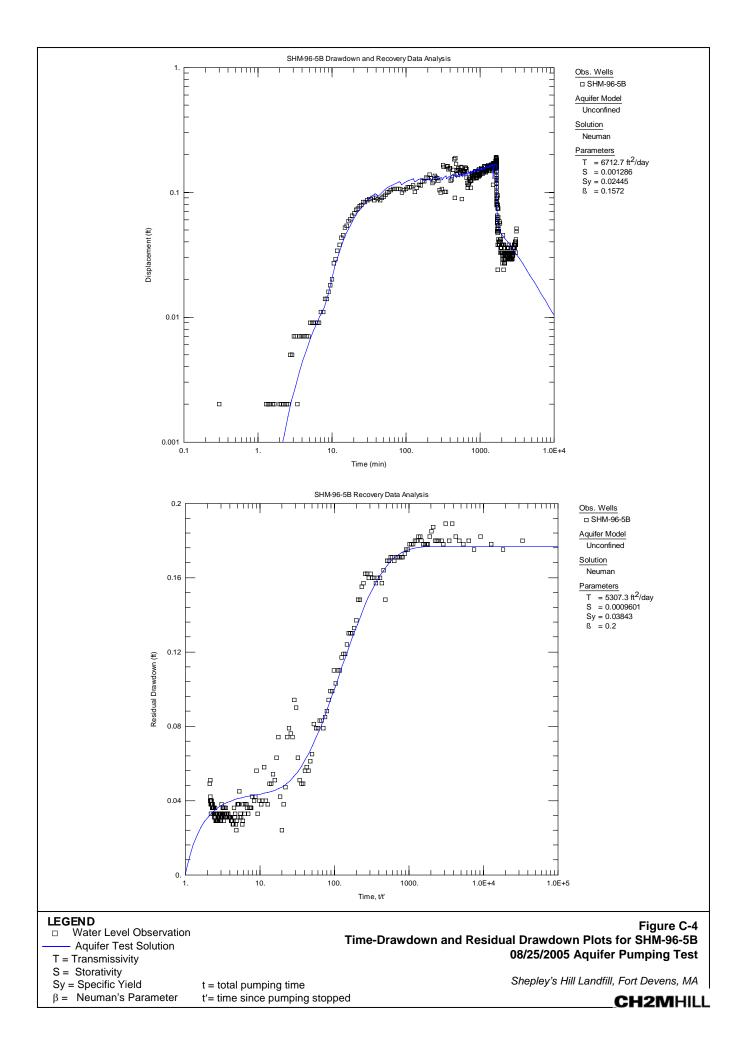
r Level Location	24-Aug Time	Baseline Depth	25-Aug Time	Extraction Depth	26-Aug Time	Extraction Depth	29-Aug Time	Recharge Depth	30-Aug Time	Extractior Depth
SHL-11		18.98	727	18.94	902	18.91	835	18.91		
SHL-11			827	18.90						
SHL-11 SHL-11			925 1023	18.89 18.91						
SHL-11			1023	18.91						
SHL-11			1309	18.91						
SHL-11			1411	18.90						
SHL-11			1711	18.90						
SHL-13		7.59	738	7.51	817	7.52	804	7.58	1125	7.
SHL-13 SHL-13			855 953	7.48 7.49						
SHL-13			955 1048	7.49						
SHL-13			1336	7.55						
SHL-13			1441	7.54						
SHL-13			1742	7.59						
SHL-15	1619	18.93	949	18.97	1003	18.98	926	19.10		
SHL-15			1239	18.97						
SHL-15 SHL-18	1714	19.60	1647 1030	18.98 19.62	930	19.62	857	19.67		
SHL-18	1714	15.00	1320	19.63	550	13.02	007	13.07		
SHL-18			1724	19.63						
SHL-19	1743	23.38	1049	23.40	920	23.40	845	22.43		
SHL-19			1335	23.41						
SHL-19			1738	23.42						
SHL-19										
SHL-20		19.33	728	19.31	903	19.30	837	19.23		
SHL-20			828 927	19.30 19.20						
SHL-20 SHL-20			927 1024	19.29 19.28						
SHL-20			1024	19.28						
SHL-20			1310	19.28						
SHL-20			1412	19.26						
SHL-20			1712	19.29						
SHL-21		45.81	734	45.76	830	45.75	810	45.90	1130	45
SHL-21			850	45.73						
SHL-21			949	45.73						
SHL-21			1046	45.73						
SHL-21 SHL-21			1332 1434	45.73 45.74						
SHL-21			1434	45.74						
SHL-22		7.36	1812	7.53	618	7.57	756	7.53	1115	7
SHL-23		28.16	1750	28.13	752	28.17	745	28.32	1106	28
SHL-24	1704	15.69	1025	15.71	943	15.72	905	15.83		
SHL-24			1310	15.72						
SHL-24			1714	15.72						
SHL-3	1724	30.77	1037	30.80	927	30.80	855	30.82		
SHL-3 SHL-3			1328 1730	30.75 30.80						
SHL-3	1746	10.77	747	10.77	905	11.07	840	10.78		
SHL-4			829	10.77			0.0			
SHL-4			930	10.76						
SHL-4			1026	10.75						
SHL-4			1052	10.77						
SHL-4			1137	10.78						
SHL-4			1313	10.77						
SHL-4			1338 1415	10.80						
SHL-4 SHL-4			1415 1715	10.75 10.77						
SHL-4 SHL-4			1715	10.77						
SHL-4 SHL-5		5.32	1815	5.36	629	5.38	801	5.48	1120	5
SHL-8D		8.03			816	8.04	802	8.02		
SHL-8S		8.22			815	8.27	802	8.28		
SHL-9		9.83	1808	9.91	613	9.95	752	9.97	1112	10
SHM-05-39A		11.93			655	11.88	721	12.00		
SHM-05-39B		18.13			654	12.66	722	12.75		
SHM-05-40X SHM-05-41A		14.55 10.71	824	10.75	700 645	14.56 10.82	726 730	14.66 10.83		
SHM-05-41A SHM-05-41A		10.71	824 919	10.75	040	10.82	730	10.83		
SHM-05-41A SHM-05-41A			1142	10.75						
SHM-05-41A			1416	10.75						
SHM-05-41A			1623	10.77						
SHM-05-41A			1828	10.78						
SHM-05-41B		10.53	825	10.55	647	10.63	729	10.63		
SHM-05-41B			920	10.55						
SHM-05-41B			1144	10.58						
SHM-05-41B			1418	10.57						
SHM-05-41B			1625 1829	10.58 10.59						
SHM-05-41B SHM-05-41C		10.75	1829 819	10.59 10.80	644	10.86	731	10.81		
SHM-05-41C		10.75	921	10.80	044	10.00	101	10.01		
SHM-05-41C			1137	10.77						
SHM-05-41C			1415	10.80						
			1622	10.81						
SHM-05-41C		1								
SHM-05-41C SHM-05-41C			1827	10.82						

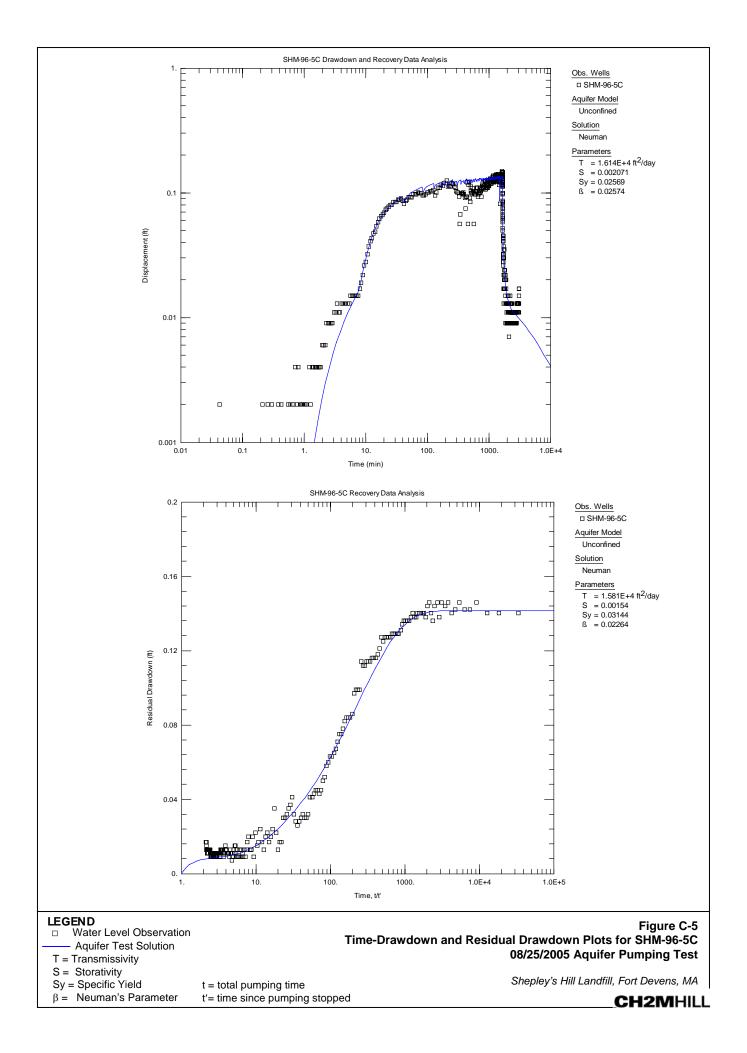

Water Level Location	24-Aug Time	Baseline Depth	25-Aug Time	Extraction Depth	26-Aug Time	Extraction Depth	29-Aug Time	Recharge Depth	30-Aug Time	Extraction Depth
SHM-05-42A			1411	5.07						
SHM-05-42A SHM-05-42A			1619 1824	5.07 5.09						
SHM-05-42B	1831	4.93	926	5.02	743	5.07	735	4.98		
SHM-05-42B			1130	5.02						
SHM-05-42B			1412	5.02						
SHM-05-42B SHM-05-42B			1620 1824	5.03 5.04						
SHM-05-42B SHM-05-45A		15.69	1824	5.04 16.11	810	16.09	749	15.82	1018	16.30
SHM-05-45B		16.29	1804	16.76	804	15.61	749	16.35	1018	16.93
SHM-05-46A		16.32	1805	15.62	812	15.49	750	15.41	1013	15.81
SHM-05-46B SHM-93-10C	1728	14.60 29.92	1805 1042	14.93 29.93	813 923	14.76 23.93	750 848	14.71 30.02	1015	15.11
SHM-93-10C SHM-93-10C	1720	29.92	1042	29.93	923	23.93	040	30.02		
SHM-93-10C			1733	29.92						
SHM-93-10D	1728	30.63	1039	30.68	925	30.64	851	30.61		
SHM-93-10D SHM-93-10D			1330 1730	30.65 30.65						
SHM-93-10E	1728	29.73	1730	29.76	924	29.64	850	28.76		
SHM-93-10E			1333	29.80						
SHM-93-10E			1736	29.76						
SHM-93-18B SHM-93-18B	1711	19.29	1020 1319	19.30 19.30	931	19.30	859	19.38		
SHM-93-18B SHM-93-18B			1723	19.30						
SHM-93-22C		8.45	1811	8.60	614	8.65	755	8.62	1114	8.81
SHM-96-22B		7.23	1813	7.41	620	7.42	758	7.38	1117	7.54
SHM-96-5B SHM-96-5C		6.39 4.83	1814 1814	6.62 6.05	625 627	6.65 6.12	800 800	9.61 9.12	1117 1119	8.66
SHM-99-31A	1804	4.83	738	4.26	713	4.28	719	4.42	1119	0.23
SHM-99-31A			909	4.21			-			
SHM-99-31A			1126	4.29						
SHM-99-31A SHM-99-31A			1404 1609	4.38 4.40						
SHM-99-31A			1803	4.41						
SHM-99-31B	1804	4.32	740	4.35	712	4.35	718	4.41		
SHM-99-31B			909	4.33						
SHM-99-31B SHM-99-31B			1127 1405	4.32 4.34						
SHM-99-31B			1610	4.34						
SHM-99-31B			1818	4.35						
SHM-99-31C	1804	4.59	742	4.64	711	4.63	718	4.71		
SHM-99-31C SHM-99-31C			909 1128	4.60 4.60						
SHM-99-31C			1406	4.61						
SHM-99-31C			1611	4.61						
SHM-99-31C SHM-99-32X	1810	10.17	1819 904	4.62 10.22	723	10.24	715	10.29		
SHM-99-32X SHM-99-32X	1010	10.17	1123	10.22	123	10.24	715	10.29		
SHM-99-32X			1359	10.23						
SHM-99-32X			1607	10.23						
SHM-99-32X SHP-01-36X		7.16	1814 710	10.25 8.07	852	8.11	825	7.72		
SHP-01-36X		1.10	810	8.08	002	0.11	020			
SHP-01-36X			911	8.07						
SHP-01-36X			1006	8.07						
SHP-01-36X SHP-01-36X			1121 1254	8.07 8.08						
SHP-01-36X			1357	8.08						
SHP-01-36X			1656	8.08						
SHP-01-37X SHP-01-37X		6.91	714 815	6.55 6.77	855	6.53	828	6.85		
SHP-01-37X SHP-01-37X			815 914	6.77						
SHP-01-37X			1011	6.80						
SHP-01-37X			1123	6.75						
SHP-01-37X SHP-01-37X			1300 1400	6.75 6.79						
SHP-01-37X SHP-01-37X			1400	6.79 6.79						
SHP-01-38A		4.39	725	4.38	901	4.36	834	4.37		
SHP-01-38A			827	4.34						
SHP-01-38A SHP-01-38A			921 1021	4.34 4.26						
SHP-01-38A SHP-01-38A			1021	4.26 4.38						
SHP-01-38A			1307	4.39						
SHP-01-38A			1408	4.38						
SHP-01-38A SHP-01-38B		4.49	1707 726	4.35 3.65	900	4.34	833	4.42		
SHP-01-38B SHP-01-38B		4.49	726 826	3.65 4.18	900	4.34	833	4.42		
SHP-01-38B			919	4.11						
SHP-01-38B			1016	4.44						
SHP-01-38B SHP-01-38B			1131 1306	4.30 4.46						
SHP-01-38B SHP-01-38B			1306	4.46 4.35						
SHP-01-38B			1706	4.34						
SHP-05-43 SHP-05-43		45.45	731	45.32	835	45.36	812	45.48		
			848	45.38						

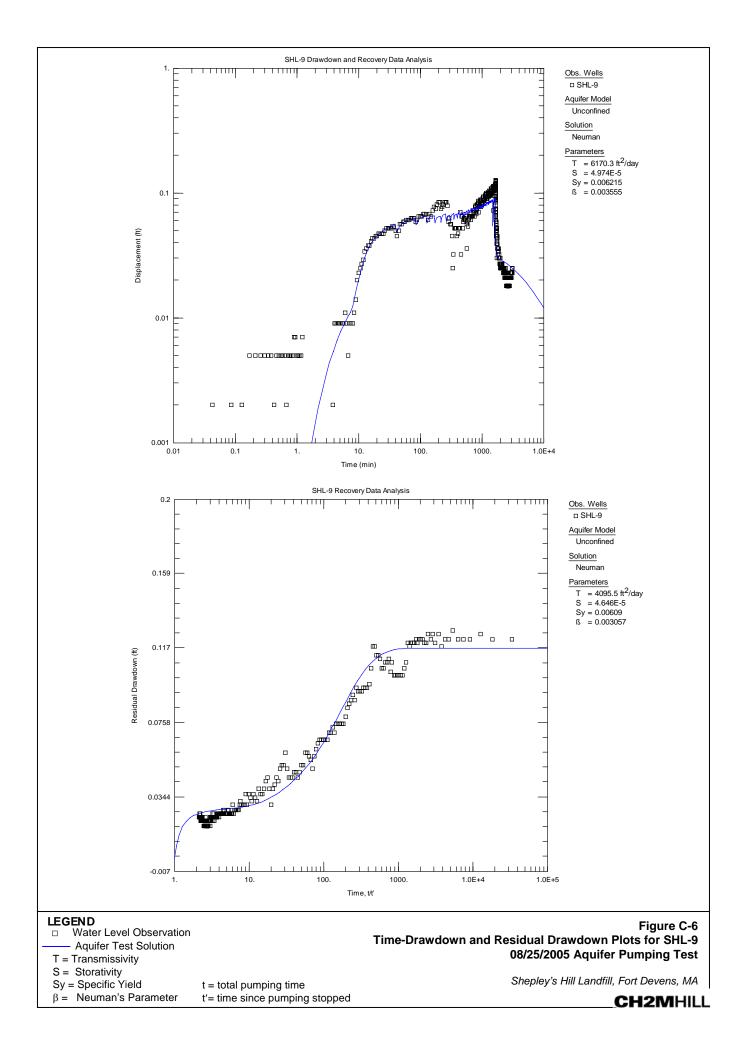
Water Level Location	24-Aug Time	Baseline Depth	25-Aug Time	Extraction Depth	26-Aug Time	Extraction Depth	29-Aug Time	Recharge Depth	30-Aug Time	Extraction Depth
SHP-05-43			1043	45.34						
SHP-05-43			1151	45.36						
SHP-05-43			1328	45.34						
SHP-05-43 SHP-05-43			1433 1734	45.34 45.35						
SHP-05-44		42.46	729	43.33	839	42.40	813	42.50		
SHP-05-44			844	42.38						
SHP-05-44			945	42.39						
SHP-05-44			1039	42.44						
SHP-05-44			1147	42.43						
SHP-05-44			1325	42.40						
SHP-05-44			1431	42.44						
SHP-05-44 SHP-05-47A		5.97	1733 742	42.40 Dry	821	Dry	806	Dry		
SHP-05-47A		5.97	858	Dry	021	Diy	800	Diy		
SHP-05-47A			957	Dry						
SHP-05-47A			1050	Dry						
SHP-05-47A			1339	Dry						
SHP-05-47A			1443	Dry						
SHP-05-47A			1745	Dry						
SHP-05-47B		3.93	742	3.84	821	3.81	806	3.87		
SHP-05-47B			859	3.83						
SHP-05-47B			957	3.86						
SHP-05-47B			1051	3.83						
SHP-05-47B SHP-05-47B			1339 1443	3.88 3.90						
SHP-05-47B SHP-05-47B			1443	3.90 3.87						
SHP-05-48A		Dry	734	Dry	719	Dry	716	Dry		
SHP-05-48A		2.9	906	Dry		2.9		2.9		
SHP-05-48A			1124	Dry						
SHP-05-48A			1401	Dry						
SHP-05-48A			1608	Dry						
SHP-05-48A			1815	Dry						
SHP-05-48B		Dry	734	Dry	720	Dry	716	Dry		
SHP-05-48B			906	Dry						
SHP-05-48B			1124	Dry						
SHP-05-48B SHP-05-48B			1401	Dry						
SHP-05-48B			1608 1815	Dry Dry						
SHP-05-49A	1823	5.93	901	Dry	734	Dry	713	Dry		
SHP-05-49A	1020	0.00	1118	Dry		2.9		2.9		
SHP-05-49A			1355	Dry						
SHP-05-49B	1823	4.28	901	4.31	733	4.65	714	4.90		
SHP-05-49B			1118	4.35						
SHP-05-49B			1355	4.38						
SHP-05-49B			1600	4.42						
SHP-05-49B	4700	00.00	1808	6.08	0.47	40.44	010	40.05		
SHP-95-27X SHP-95-27X	1700	33.02	1020	33.05	947	16.14	910	16.25		
SHP-95-27X SHP-95-27X			1306 1709	32.95 nr						
SHP-99-33A	1800	13.17	744	13.15	704	10.92				
SHP-99-33A			912	13.13	, , , ,					
SHP-99-33A			1130	13.13						
SHP-99-33A			1408	13.17						
SHP-99-33A			1613	13.19						
SHP-99-33A			1820	13.19						
SHP-99-33B	1800	12.42	744	9.25	702	12.55				
SHP-99-33B			913 1121	12.65						
SHP-99-33B SHP-99-33B			1131 1409	12.65 12.65						
SHP-99-33B SHP-99-33B			1409 1614	12.65 12.65						
SHP-99-33B			1814	12.65						
SHP-99-34A	1812	13.65	726	13.73	729	13.56	706	13.67		
SHP-99-34A			857	13.67	•					
SHP-99-34A			1121	13.68						
SHP-99-34A			1357	13.67						
SHP-99-34A			1603	13.71						
SHP-99-34A			1812	13.71						
SHP-99-34B	1812	13.33	726	13.43	726	13.25	707	13.95		
SHP-99-34B			858	13.40						
SHP-99-34B			1122	13.40						
SHP-99-34B SHP-99-34B			1358 1604	13.40 13.40						
SHP-99-34B SHP-99-34B			1804	13.40						
SHP-99-35X	1635	36.39	1013	36.40	1009	35.05	930	36.44		
SHP-99-35X		22.00	1250	36.42						
SHP-99-35X			1658	36.39						
WP-01		Dry		Dry			736	Dry		

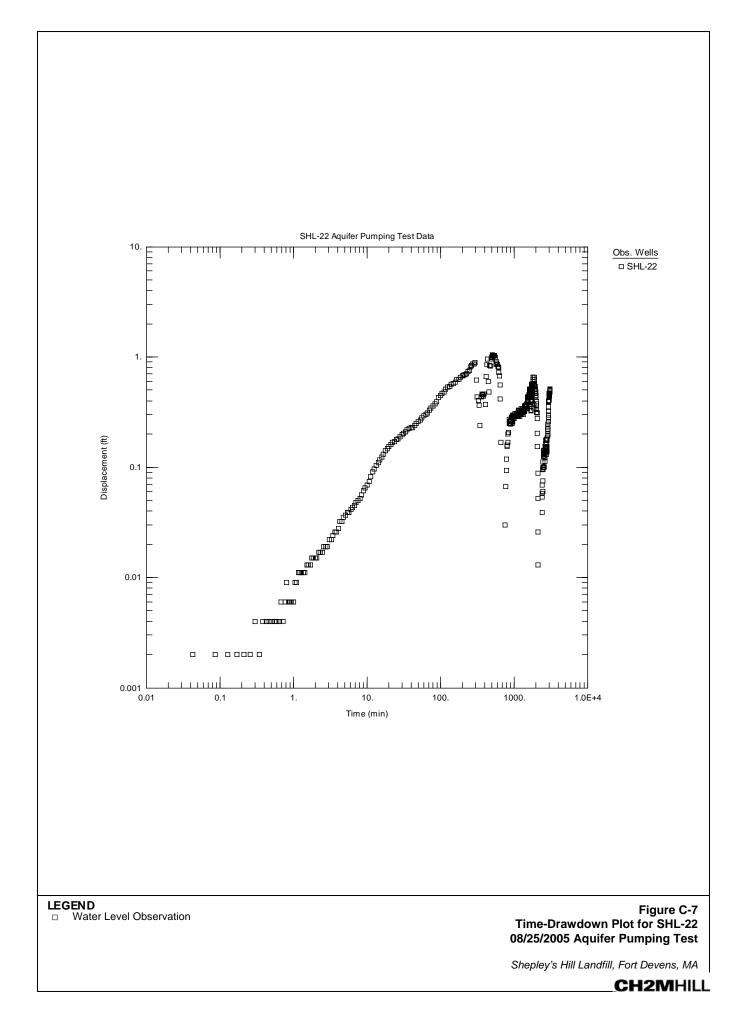

Measurement error or data collected during reduced pumping related to system backwash (short duration effect on near field monitoring).

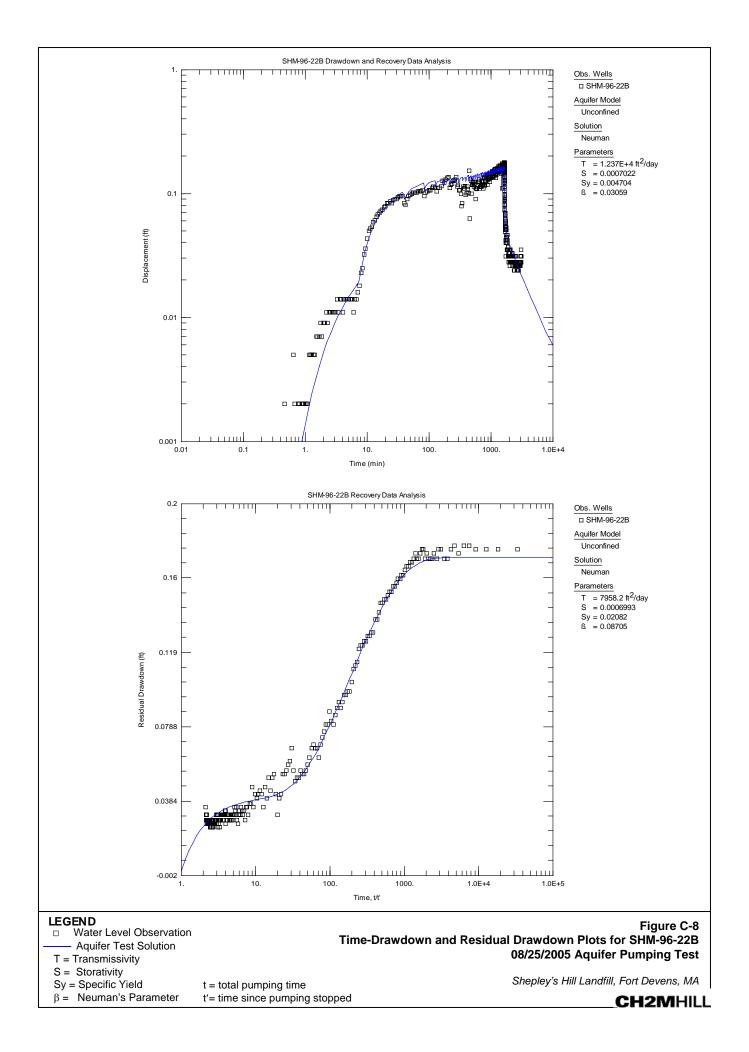

nr No reading.

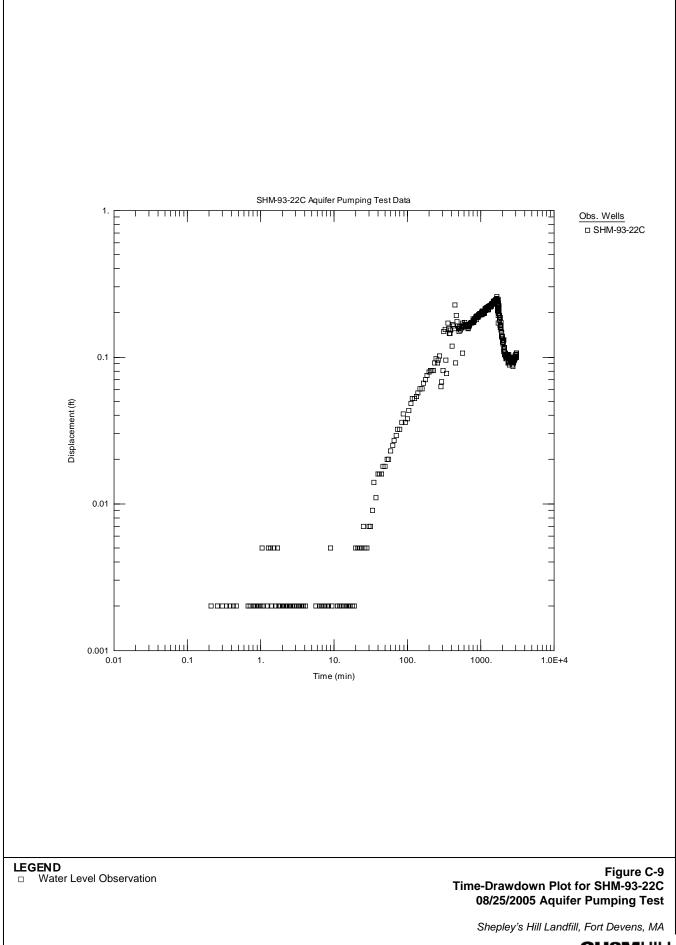

Attachment C Time-Drawdown and Recovery Data

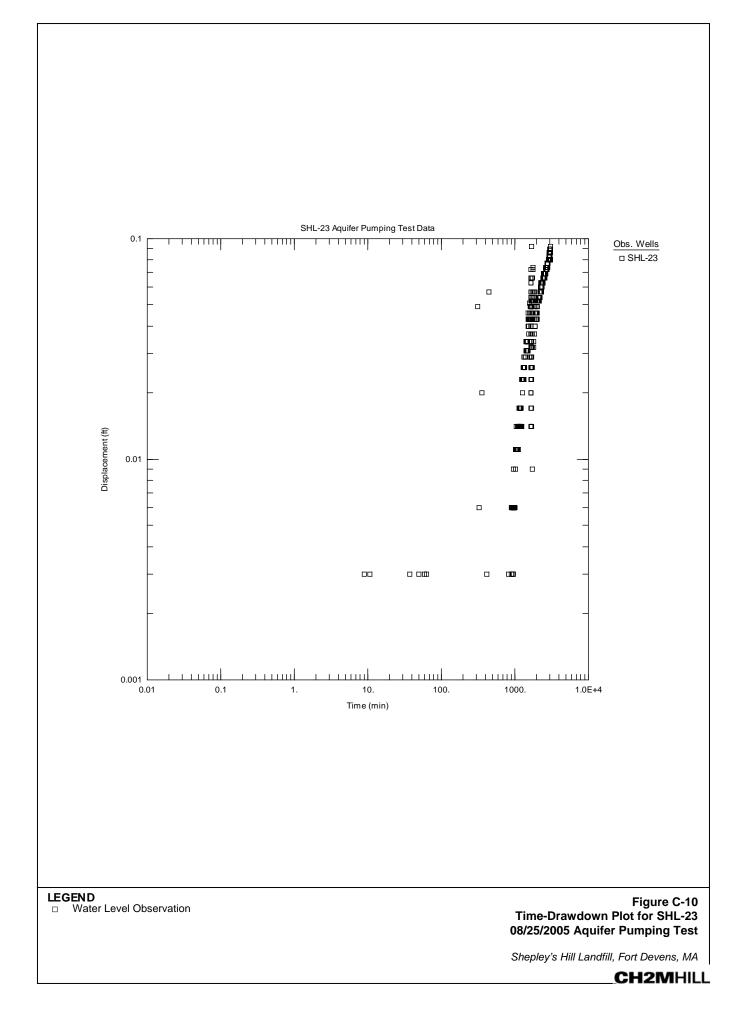


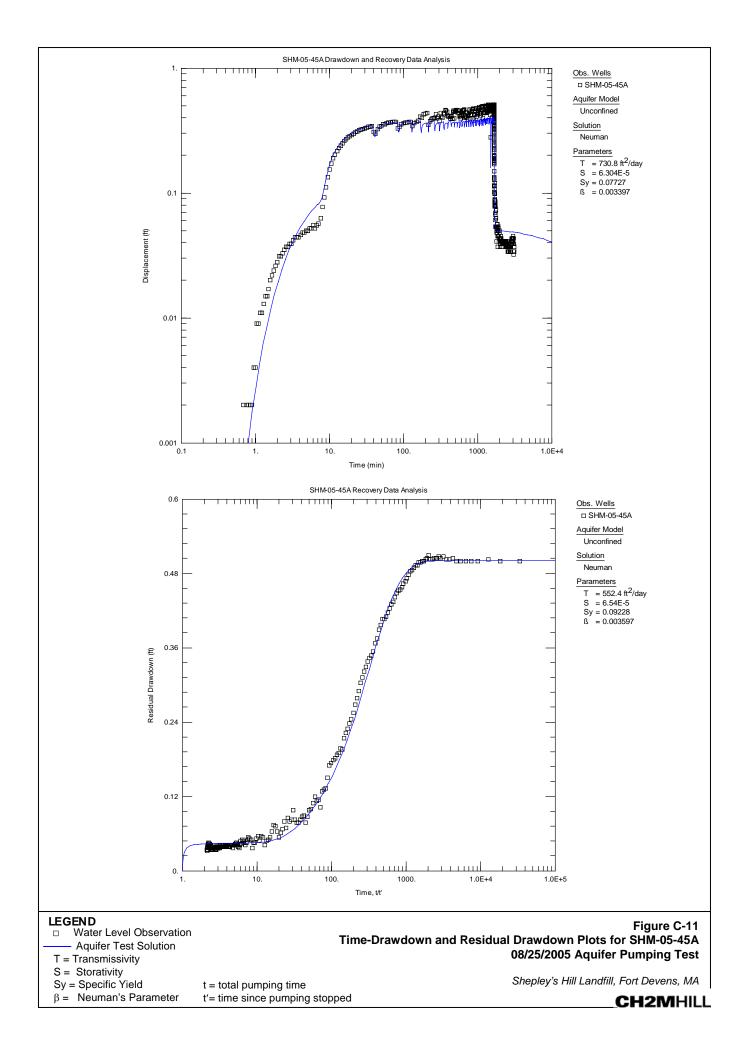

CH2MHILL

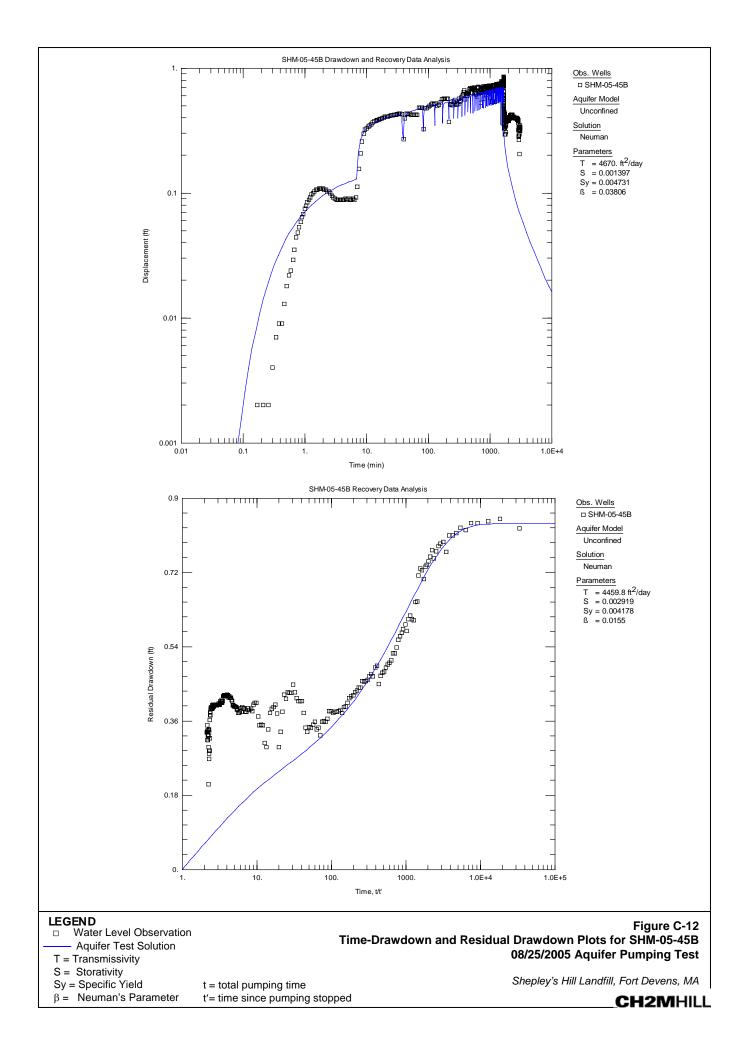


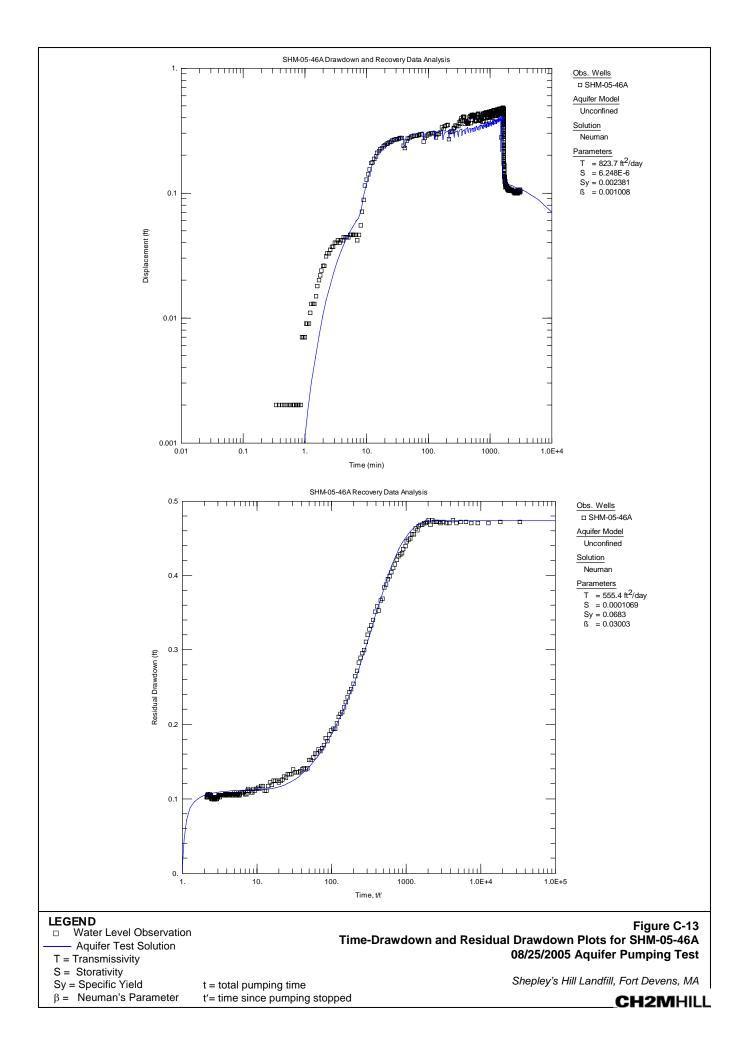


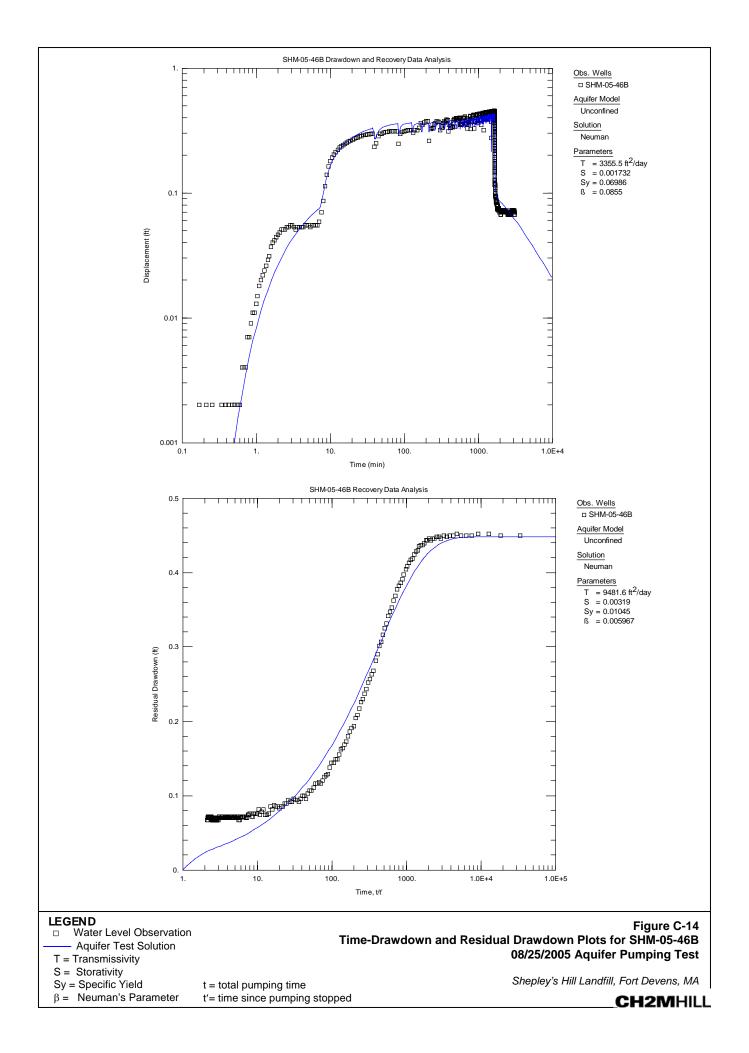


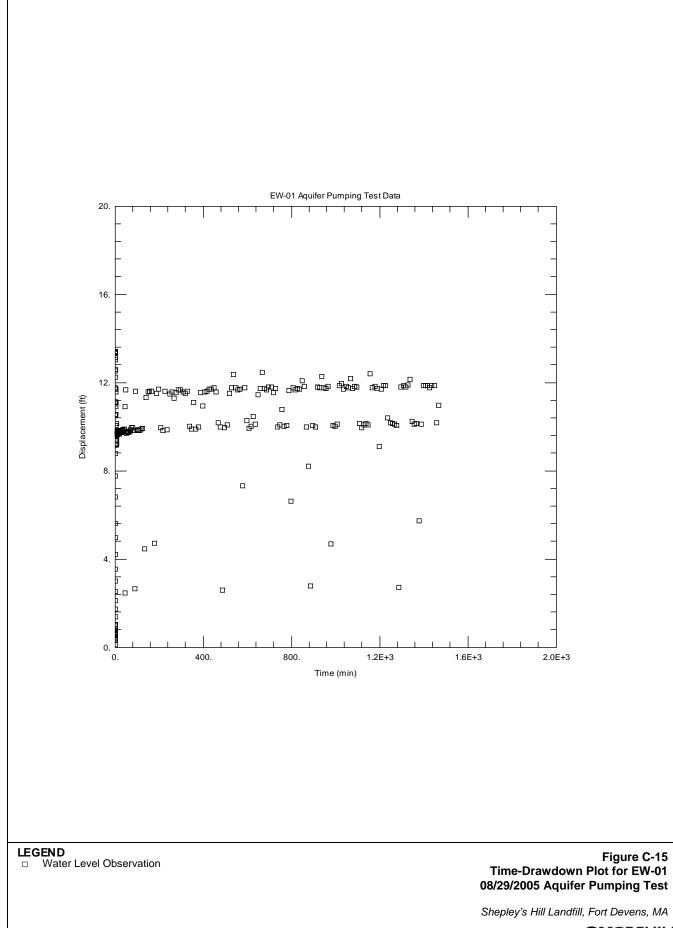


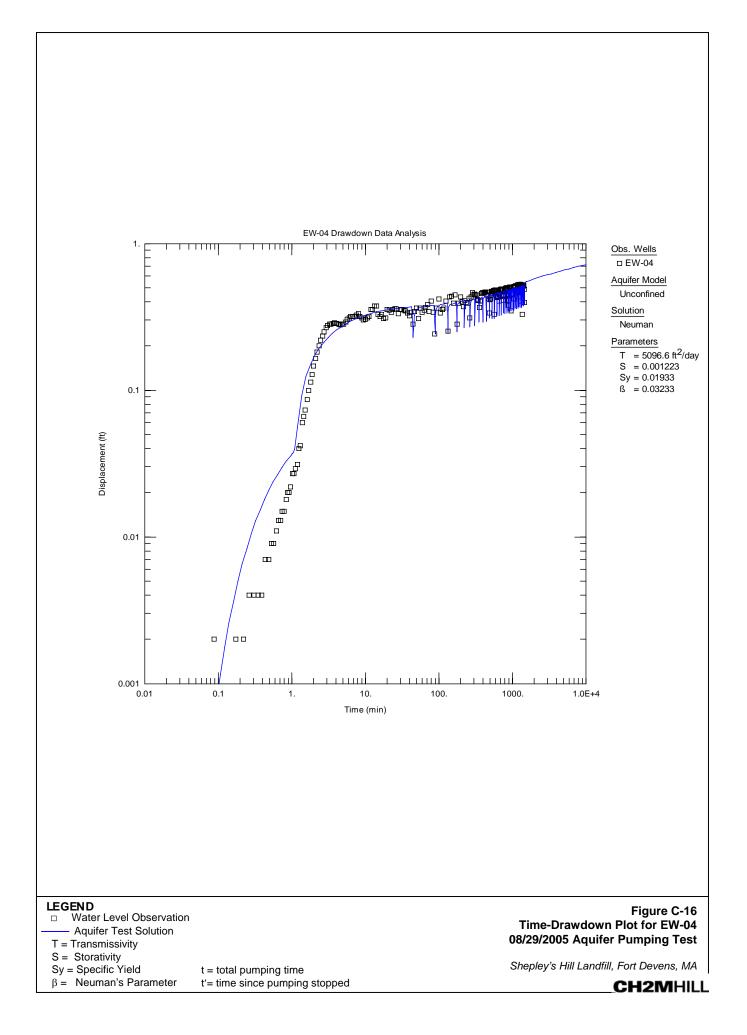


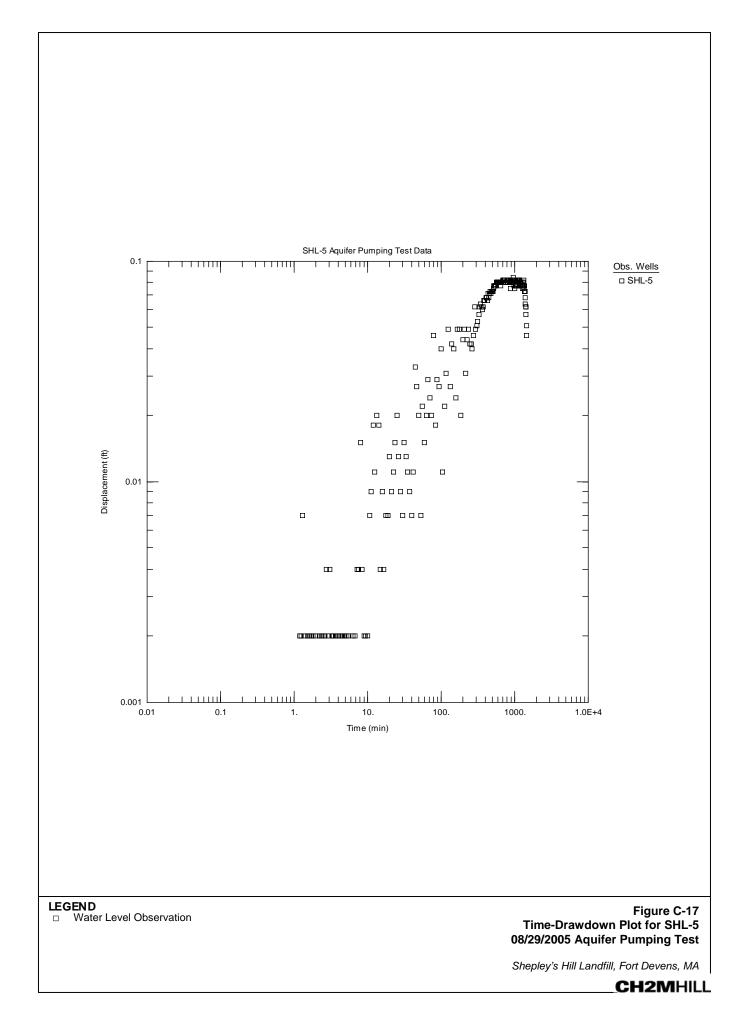


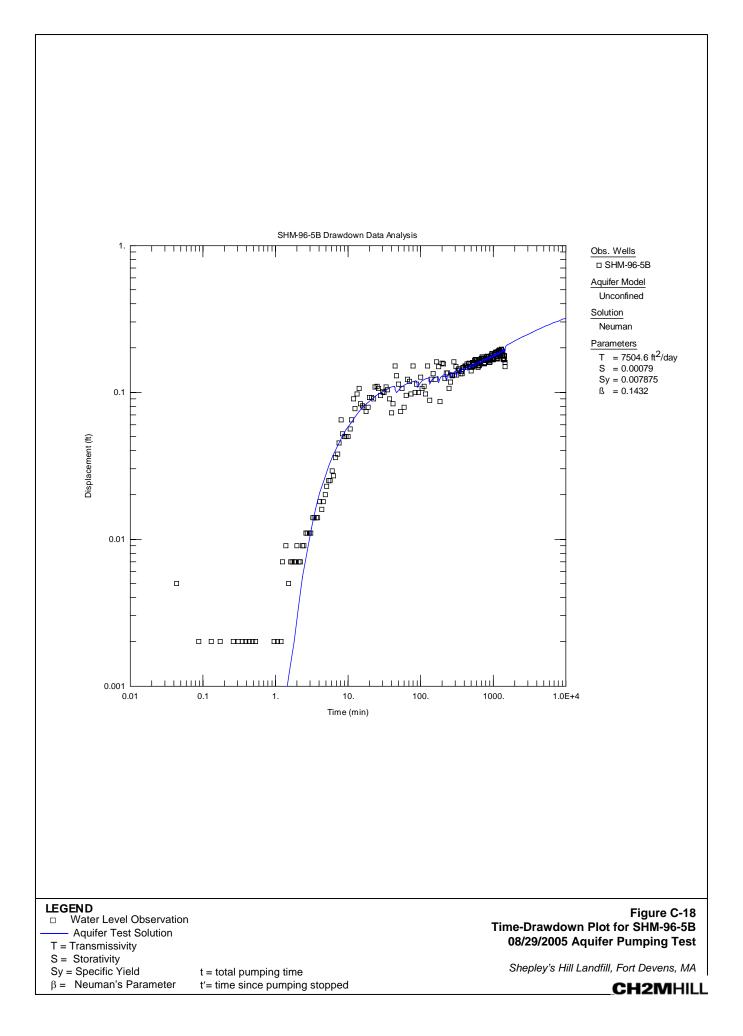


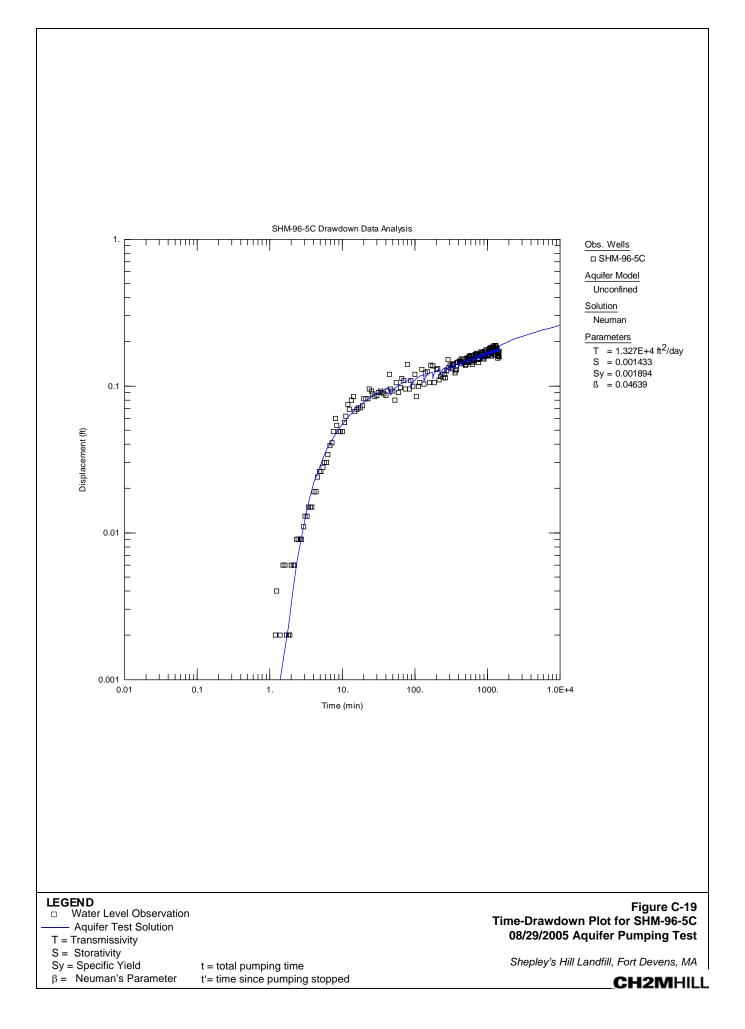

CH2MHILL

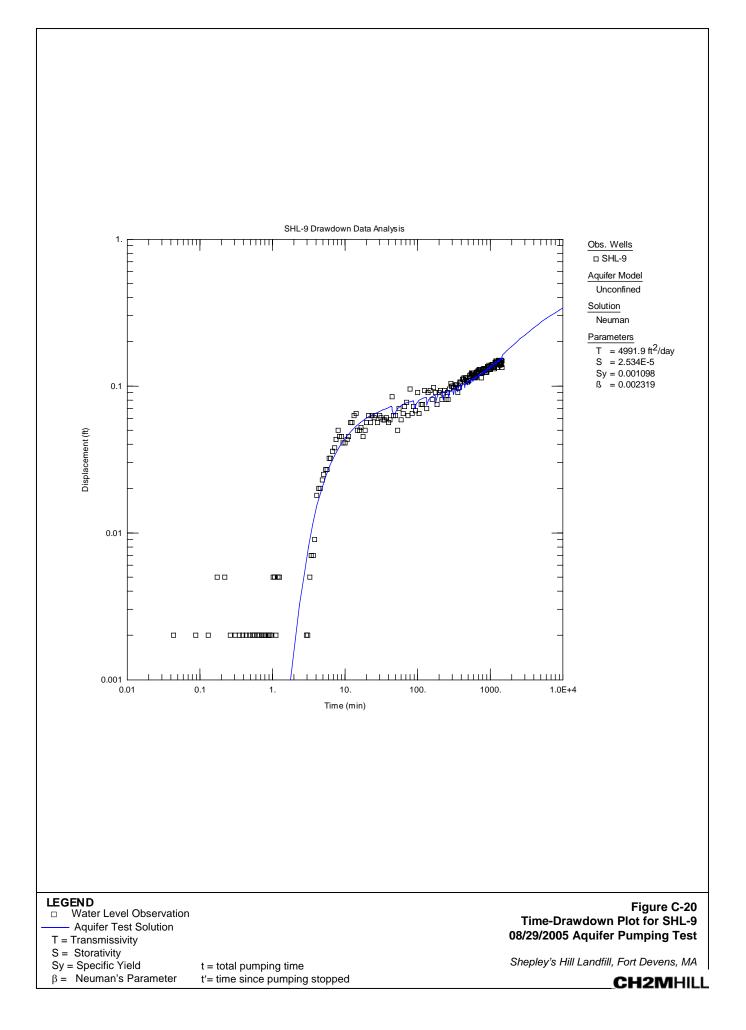


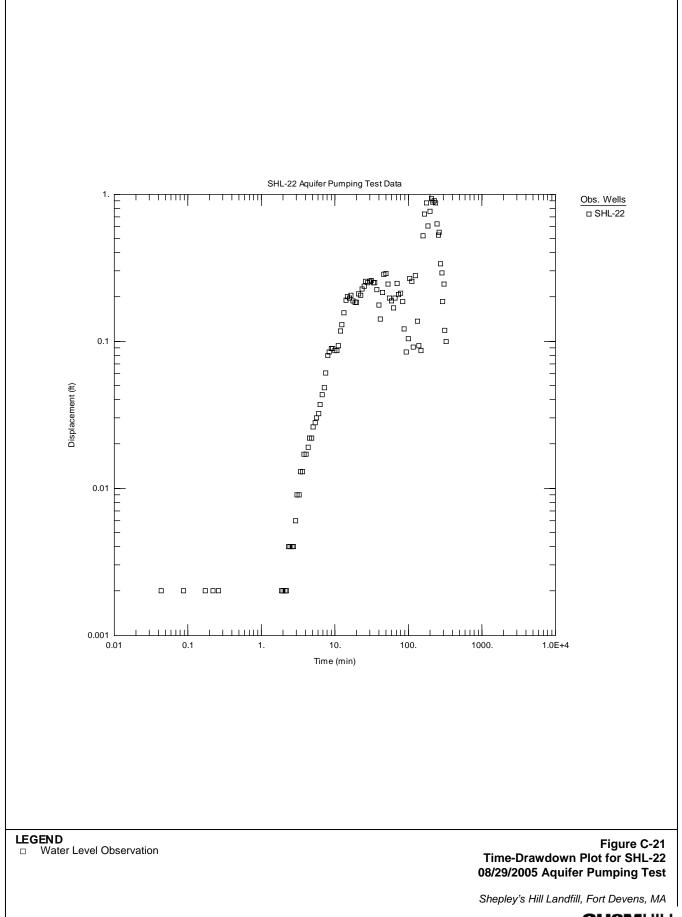


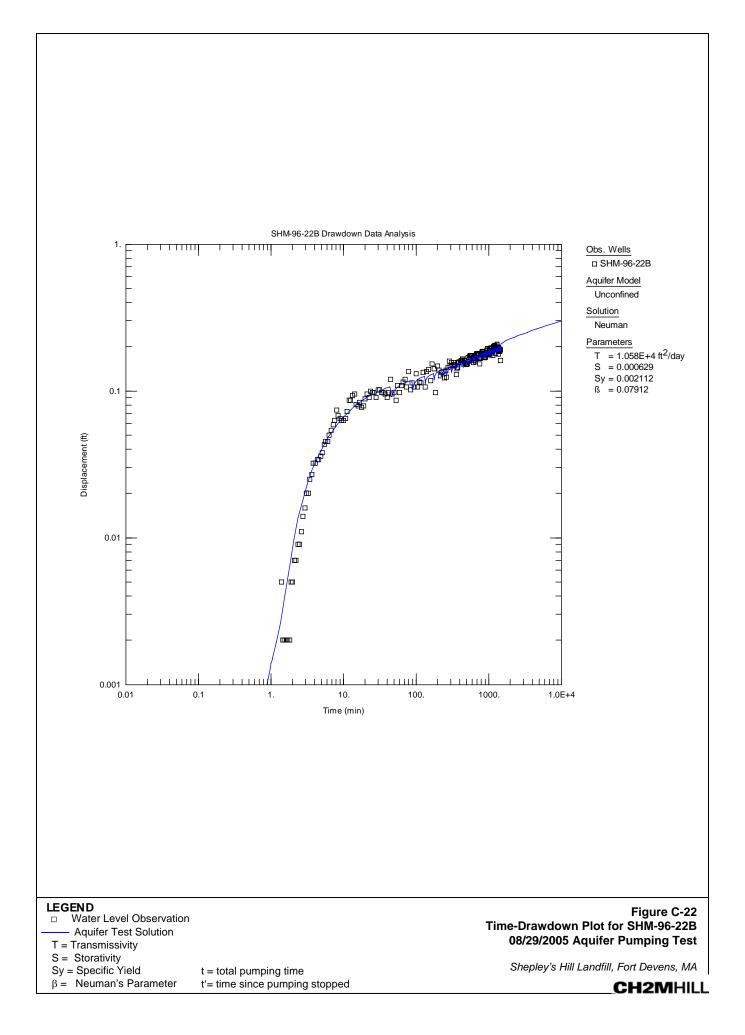


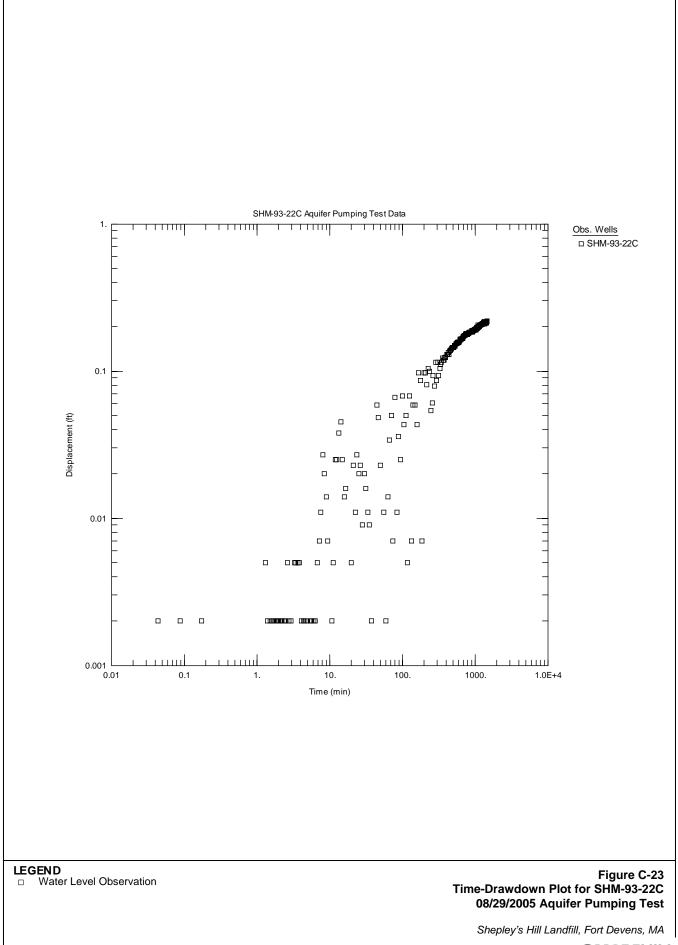


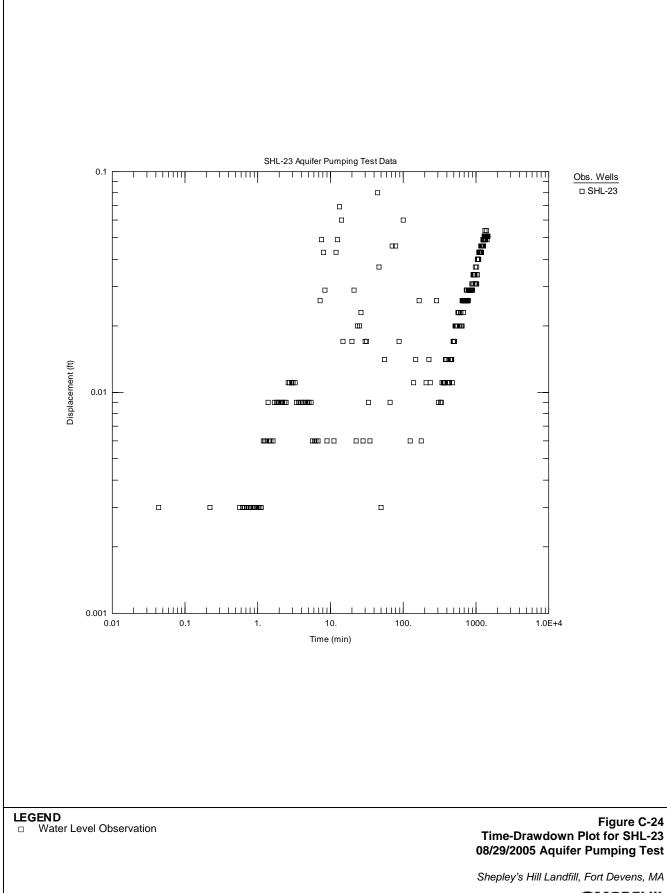




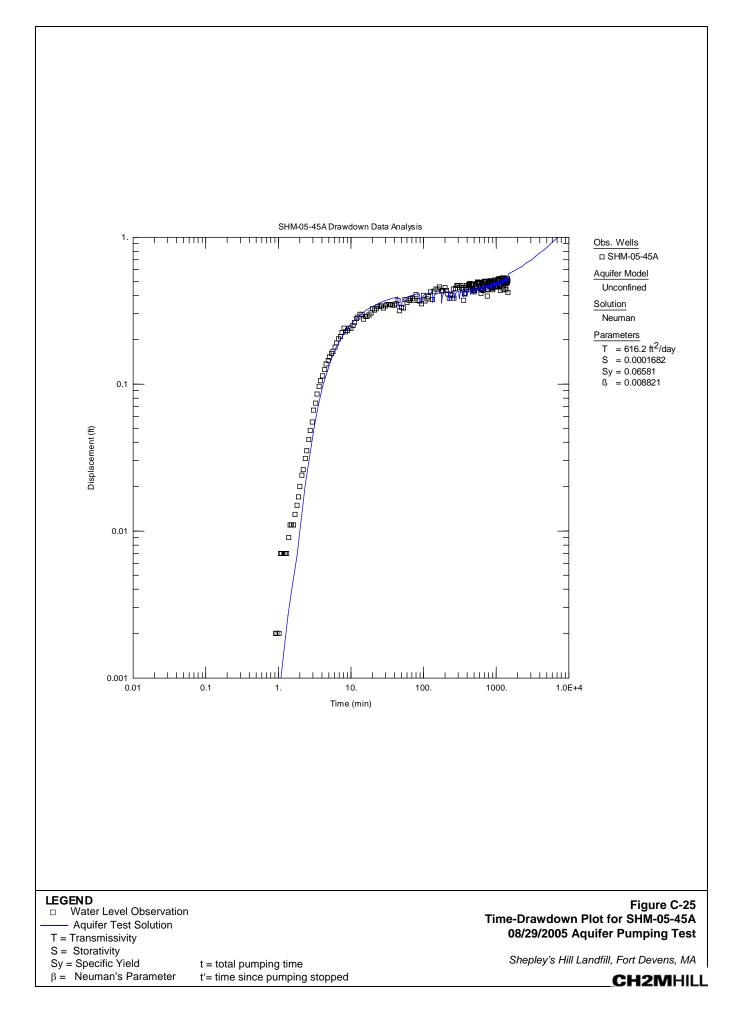


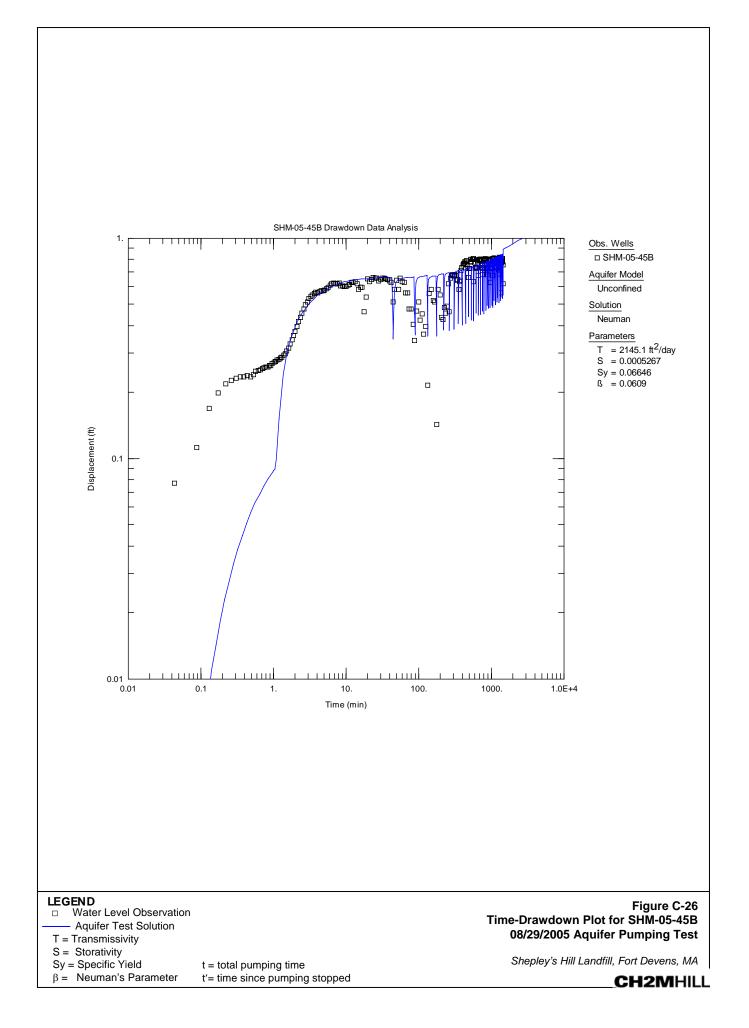


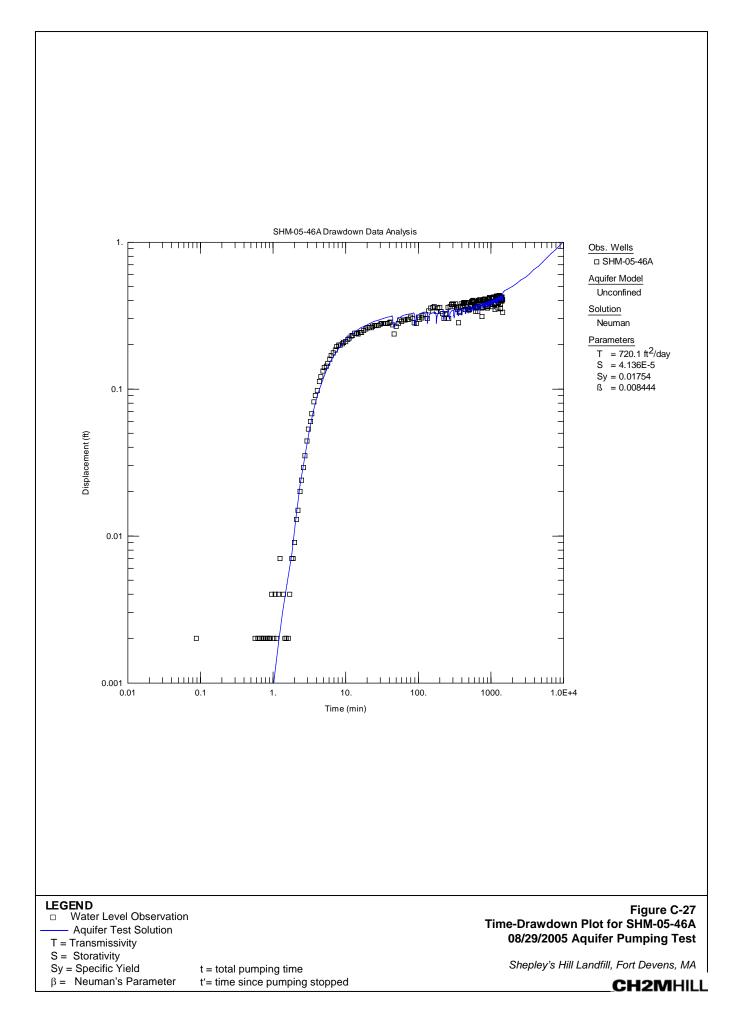


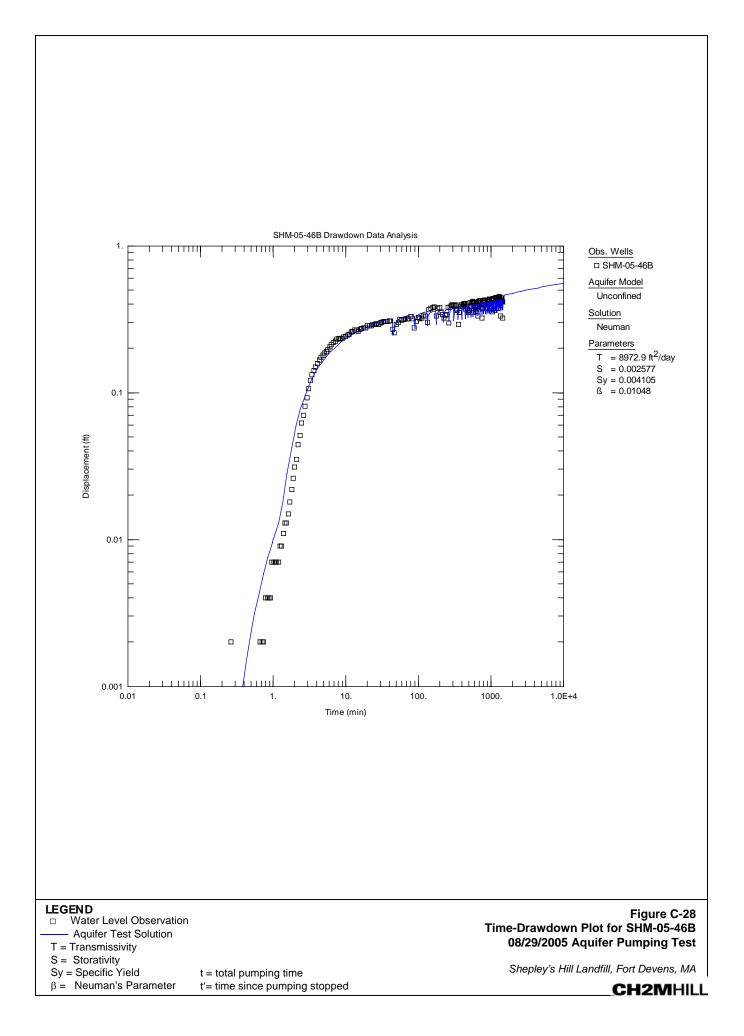


CH2MHILL






CH2MHILL



CH2MHILL

Attachment D Extraction/Recovery Test Raw and Corrected Logger and Flow Rate Data Refer to CD Labeled:

Attachment D

Extraction/Recovery Test Raw and Corrected Logger and Flow Rate Data

Attachment E Precipitation Data

UNEDITED LOCAL CLIMATOLOGICAL DATA

NOAA, National Climatic Data Center

Month: 08/2005

Station Location: LAURENCE G HANSCOM FIELD AIRPORT (BED)

Lat. 42°28'N Lon. 71°17'W

Elevation(Ground): 166 ft. above sea level

D	Temperature Degree Days D (Fahrenheit) Base 65 Degree									Snow. Grou		Precipita (In)	tion	Pressure(inche	es of Hg)	Wind: Speed= Dir=tens of de							D
a t	Max	Min.	Ave	Dep From	Avg.	Avg Wet	Heating	Cooling	Significant Weather	0600 LST	1200 LST	2400 LST	2400 LST	Avg.	Avg. Sea	Resultant	Res	Avg.	ma: 5-se		max 2-mii		a t
e	_		Ĩ	Normal		Bulb				Depth	Water Equiv	Snow Fall	Water Equiv	Station	level	Speed	Dir	Speed	Speed	Dir	Speed	Dir	е
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 7 18 9 20 21 22 23 24 25 26 27 28 29 30 31 	84 88 87 94 85 87 91 86 90 91 87 92 69 79 86 79 80 79 81 89 85 81 88 81 85 84 85 84 85 84 85 84 96 84.9	64 63 63 68 60 57 64 69 68 69 69 69 69 69 69 69 69 69 69 53 55 55 55 55 55 55 55 53 55 55 53 55 53 55 53 55 53 55 53 55 53 55 53 55 56 57 76 66 57 76 66 56 56 56 57 76 66 56 56 56 56 56 56 56 57 57 56 56 56 56 56 56 56 56 56 56 56 56 56	74 76 76 75 81 73 78 78 78 78 78 78 78 78 78 78 78 78 78	M M M M M M M M M M M M M M M M M M M	64 65 65 68 58 62 67 66 68 67 66 68 67 66 68 67 69 52 55 55 55 55 55 55 55 55 57 65 70 70 70 70 73 62.9	67 69 68 69 71 64 66 67 70 70 70 71 71 72 63 61 64 58 60 68 71 63 59 59 59 59 59 59 59 59 59 59 59 59 59	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 10 16 8 7 13 14 15 13 20 14 0 1 8 0 1 8 12 7 2 1 3 4 9 14 9 13 8.6	TS TSRA RA FG HZ VCTS TS FG HZ FG FG FG FG HZ VCTS FG HZ FG HZ FG HZ TS RA FG HZ TS RA FG HZ TS TSRA RA FG HZ VCTS RA FG FG FG HZ - FG RA FG HZ - FG RA FG HZ - FG RA FG HZ - FG RA FG HZ - - FG RA FG HZ - - - - - - - - - - - - -	M M M M M M M M M M M M M M M M M M M		M M M M M M M M M M M M M M M M M M M	Light 1.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.44 3.70	29.84 29.69 29.72 29.81 29.73 29.88 29.90 29.89 29.85 29.74 29.65 29.74 29.65 29.76 29.61 29.68 29.86 29.84 29.86 29.84 29.86 29.91 29.78 29.72 29.88 29.72 29.84 29.93 29.85 29.83 29.80 29.80 29.40 29.40	30.10 29.95 29.96 30.07 29.98 30.14 30.16 30.14 30.10 29.97 29.92 30.00 29.88 29.94 30.12 30.10 29.94 30.12 30.10 29.94 30.12 30.10 29.94 30.12 30.10 29.88 29.94 30.12 30.18 30.05 29.82 29.83 29.98 30.12 30.05 30.05	$\begin{array}{c} 4.7\\ 3.8\\ 1.6\\ 2.9\\ 6.0\\ 1.6\\ 3.3\\ 3.3\\ 7.3\\ 6.9\\ 2.2\\ 4.0\\ 5.3\\ 1.9\\ 5.4\\ 2.4\\ 4.1\\ 0.9\\ 5.1\\ 4.6\\ 6.5\\ 5.3\\ 3.0\\ 3.2\\ 2.4\\ 0.7\\ 3.5\\ 6.2\\ 6.7\\ 3.7\\ 12.5\\ 1.9\end{array}$	22 27 35 15 25 8 23 22 27 12 28 7 5 15 32 28 11 10 23 29 30 34 34 25 20 18 19 18 19 21.6	$\begin{array}{c} 6.5\\ 5.5\\ 5.1\\ 4.7\\ 7.4\\ 3.7\\ 5.2\\ 5.0\\ 7.4\\ 7.4\\ 5.3\\ 5.9\\ 6.7\\ 4.4\\ 5.8\\ 4.1\\ 5.3\\ 3.3\\ 5.2\\ 5.9\\ 6.9\\ 5.9\\ 4.4\\ 3.7\\ 4.5\\ 2.4\\ 5.4\\ 6.9\\ 7.2\\ 4.9\\ 13.6\\ 5.7\end{array}$	18 17 17 30 15 15 13 23 16 24 18 21 21 17 15 20 16 18 16 17 21 20 16 18 16 17 21 20 16 21 21 17 23 16 24 21 21 25 20 16 24 21 21 25 20 26 26 26 27 27 20 26 27 27 27 27 27 27 27 27 27 27	25 30 11 10 30 10 22 24 19 36 10 26 11 6 13 35 27 11 6 13 35 27 11 8 24 23 30 32 1 1 32 19 16 18 19 20 v Avera	14 14 15 23 14 13 10 16 14 18 15 17 15 14 12 15 14 13 15 16 12 12 16 17 18 14 26 ge	35 30 11 10 31 10 22 23 23 18 1 10 30 11 6 13 34 26 11 9 23 32 29 33 1 1 9 23 32 29 33 1 1 9 20 19 19	$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\324\\25\\26\\27\\28\\9\\30\\31\end{array}$
De	Degree Days Monthly Season to Date Total Departure Total Departure						NGC 1		Greatest 24-hr Precipitation: 1.40 Date: 01 Greatest 24-hr Snowfall: Date:							Sea Level Pr Maximum 30	0.25	25 082					
	Heat Cool		2	-2 9	0 680	0 0					16	>	Max Ten Thunders	np >=90: 6 np <=32: 0 torms : 6	ONE	Minimum .0 Min Temp <= Min Temp <= Heavy Fog	32:0	0 000	0	Precipi	tation >=.0 tation >=.1 ill >=1.0 in	0 inch:	6
	-	* EXTREME FOR THE MONTH - LAST OCCURRENCE IF MORE THAN ONE.																					

BEDFORD, MA

UNEDITED LOCAL CLIMATOLOGICAL DATA

NOAA, National Climatic Data Center

Month: 08/2005

Station Location: FITCHBURG MUNICIPAL AIRPORT (FIT)

FITCHBURG, MA

Lat. 42°33'N Lon. 71°46'W

Elevation(Ground): 339 ft. above sea level

		rature nheit)					Degre Base 65	e Days Degrees			lce on nd(ln)	Precipit (In)		Pressure(inch	nes of Hg)	Wind: Spee Dir=tens of	d=mph degree	i S				5	D
a t M	ix IN	Ain	Avg.	Dep From	Avg.	Avg Wet	Heating	Cooling	Significant Weather	0600 LST	1200 LST	2400 LST	2400 LST	Avg.	Avg. Sea	Resultant	Res	Avg.	m: 5-s	1953	max 2-mi		a t
e			1.15.	Normal	Dew pt.	Bulb	meaning	cooning		Depth	Water Equiv	Snow Fall	Water Equiv	Station	level	Speed	Dir	Speed	Speed	Dir	Speed	Dir	e
1 8	Contra de la	63	72	M	65	67	0	7	TS TSRA RA FG HZ VCTS	М		М	0.54	29.68	30.09	4.1	19	5.2	17	19	13	19	1
2 8 3 8		68 69	78 79	M M	65 65	69 69	0	13 14	TS FG HZ	M	30 200	M M	0.01 0.00	29.53 29.54	29.94 29.95	3.7 3.3	27	6.1	16	27 27	14 16	26	2
3 8 4 8		65	77	M	66	70	0	14	FG	M	2	M	0.00	29.54	30.06	3.5	29 16	5.2 5.2	20 15	14	12	27 14	3
5 9		69	80	M	66	70	0	15	TS FG HZ VCTS	M	5	M	0.00	29.57	29.98	5.5	25	7.1	29	26	20	27	5
6 8		61	73	M	56	63	ŏ	8	-	M	ा 	M	0.00	29.73	30,14	3.0	34	4.9	16	31	12	23	6
7 8		60	73	M	62	66	0	8		M		M	0.00	29.74	30.15	3.5	20	4.2	16	24	13	24	7
8 9		69	80	M	66	70	Ö	15	HZ	M	10 12	M	0.00	29.70	30.13	1.5	27	4.9	16	22	12	23	8
9 8		69	78	M	64	69	õ	13	HZ	M	8	M	T	29.66	30.08	3.8	20	5.4	20	18	15	18	9
10 8		68	79	M	65	70	Ō	14		M	12	M	0.00	29.55	29.96	2.2	20	4.9	15	15	13	15	10
11 9		71	81	М	65	70	0	16	-	М		М	0.00	29.52	29.92	3.4	26	6.2	21	32	16	31	11
12 8	9	68	79	М	64	69	0	14	-	М	-	M	0.00	29.57	29.99	1.1	14	3.2	16	18	13	16	12
13 93	*	72	83*	М	70	74	0	18	TS TSRA FG HZ	М		M	0.02	29.49	29.87	5.9	25	6.8	25	23	20	28	13
14 9	0	67	79	М	68	71	0	14	TS TSRA RA FG HZ VCTS	M		M	0.93	29.53	29.94	1.2	8	3.6	21	7	16	8	14
15 6	9	63	66	M	63	64	0	1	RA FG	M	9	M	0.23	29.69	30.11	0.7	2	3.9	15	4	12	3	15
16 7	8	56	67	M	59	63	0	2	FG	M	194	M	0.01	29.68	30.08	2.1	17	3.7	16	14	13	15	16
17 8	4	61	73	М	58	64	0	8		M		M	0.00	29.52	29.94	5.8	29	7.2	22	31	16	33	17
18 7		53	65*	М	51	57	0	0	-	M		M	0.00	29.70	30.11	1.8	27	4.1	14	30	12	30	18
19 7	7	55	66	М	56	60	0	1	-	M		M	0.00	29.75	30.16	2.2	12	3.8	15	16	13	17	19
20 7		63	71	M	63	66	0	6	FG	M		M	0.00	29.63	30.04	0.6	35	2.1	8	15	7	30	20
21 8		65	77	M	66	69	0	12	FG HZ	M	- 12	M	0.04	29.42	29.81	3.1	21	5.9	18	28	16	28	21
22 8		58	71	M	56	62	0	6	2	M	2	M	0.00	29.42	29.83	6.2	27	7.0	22	27	18	27	22
23 7		56	67	М	53	59	0	2	HZ	M		M	0.00	29.58	29.98	4.1	28	5.3	20	31	16	28	23
22 8 23 7 24 7 25 8 26 8 27 8		57	66	M	55	59	0	1	TS TSRA VCTS	M	8	M	0.12	29.71	30.12	1.4	30	4.1	22	5	17	4	24
25 8		54	67	М	54	59	0	2	-	M		М	0.00	29.78	30.19	2.6	33	5.9	21	31	17	32	25
26 8		54	69	M	53	60	0	4	*	M	- H	М	0.00	29.69	30.11	2.7	27	4.5	16	4	12	26	26
27 8		56	70	M	57	62	0	5		M		M	0.01	29.67	30.07	4.6	17	5.4	24	16	15	18	27
28 8 29 8		63	73	M	65	68	0	8	RA FG	M	8	M	0.16	29.61	30.04	4.4	17	5.2	22	16	17	16	28
29 8		68	77	M	68	71	0	12	TS FG+ FG HZ VCTS	M	5	M	0.01	29.60	30.02	6.0	16	6.4	20	15	16	16	29
30 7		71	73	M	69	70	0		RA FG	M	· 7	M	0.23	29.55 29.22	29.95	3.7	15	4.2	14 31	16 17	10 23	15	30
31 8	2 3.6 6	69	76 73.5	M	71	73	0.0	11 8.7	RA FG <monthly averages<="" td=""><td>M Totals></td><td>.H</td><td>М</td><td>0.41</td><td>29.22</td><td>30.57 30.04</td><td>9.4</td><td>17</td><td>11.0</td><td><month< td=""><td></td><td></td><td>17</td><td>31</td></month<></td></monthly>	M Totals>	.H	М	0.41	29.22	30.57 30.04	9.4	17	11.0	<month< td=""><td></td><td></td><td>17</td><td>31</td></month<>			17	31
			.0		02.1	00.2	.0		Departure From Normal>	Totalor			-1.00	22.00	50.07		20.0	0.0		ing rece	use		
									Greatest 24-hr Precipitation: 1.16 Date: 1	4-15						Sea Level	Pressu	re Date	Time				
Degre	e Da	iys	Mo	onthly	Season	n to Da	ite		Greatest 24-hr Snowfall: Date:							Maximum	0.000.07	22. 영습하다	0718				
		Т	fotal 1	Departure	e Total I	Depart	ure		Greatest Snow Depth: 0 Date: -							Minimum			0000				
Н	eatir	ıg:	0	-23	0	0							Max Te	mp >=90: 5		Min Temp <	iler:	63		Precipi	tation >=.0)1 inch	: 14
		1g: :	270	81	722	0			Nu	mber of D	iys with		Max Te	mp <=32: 0		Min Temp <	<=0 :0)		Precipi	tation >=.	10 inch	n: 7
	_						10		* EXTREME FOR THE MONT	TI LACT	ocor	DDENG		rstorms : 7	ONE	Heavy Fog	:1	K	_	Snowl	all >=1.0 i	nen	:0
	-	_	_	_		-		_	* EATREME FOR THE MONT	H - LA31	0000	anent	E IF M	ORE THAN	UNE.		-	_	_	-	_	_	_

U.S. Department of Commerce National Oceanic & Atmospheric Administration National Climatic Data Center Federal Building 151 Patton Avenue Asheville, North Carolina 28801

UNEDITED LOCAL CLIMATOLOGICAL DATA HOURLY PRECIPITATION TABLE LAURENCE G HANSCOM FIELD AIRPORT (BED) BEDFORD, MA

(08/2005)

		Α	.M.	HC	DUF	R(L.	S.T) E	ND	ING	AT				Ρ	.M.	HC	DUF	₹(L.	S.T) E	ND	ING	AT		
DT	1	2	3	4	5	6	7	8	9	10	11	12	DT	1	2	3	4	5	6	7	8	9	10	11	12	DT
1				.01	.02		12222	.06	.05	.02	14444	1.22	1				-1002	1000			****		2222	.36	.88	1
2			****	****									2													2
3									****			****	3													3
4												****	4						****					****	CHARME!	4
5	****			****	-			****			(2222)		5			100000		240022						Second B		5
6			0003551	1222	12225	12222	Т	122.225	2222	0.007	1000		6			S		1022022								6
7													7													7
8													8													8
9		Т	.01	.01			(44444)			(encode)		-	9	-	- Hereiter (-	-	-				-	Comment.	9
10								Canada (****	10												10262-28	10
11													11							Т	т					11
12													12								т	Т				12
13			.01	Т							(meaning)		13													13
14	-	****				****		-	-		100001	****	14		Terrara.	.12	.04	Т	.55	.06	.03		.01	.05	.02	14
15	22222			Т	.01	T	.01	.06	т	Т		Т	15	T											.01	15
16													16													16
17							.01						17												****	17
18		****	****	****		****					(mean)	-	18		-	-			(BRIDE)	-	****					18
19		****		-			-	-	-	-			19	12222	-			000010	10000	1000			22222	20072	200204	19
20													20												****	20
21	7777							.04	.01	.08	Т		21							****			-1			21
22		****		****									22										****			22
23		-	****	****	****					-	(*****)		23		-	Same (-	Second Second					-	10000	-	23
24			2022			92222	11000	-	-	****	****	т	24				-	Nation 1	.01	****		0000			2022	24
25							.01						25		****					****						25
26			8110										26		-	(*****)		-							Centre /	26
27						-				****		****	27		-					****		****		(1000		27
28		****		-	****			200002	Sama S		10000		28	323731	1000000	т	.01	т	.01	Т	Т	32222		12222	.01	28
29	.43	.01	.02				****		****				29		****					т	Π.					29
30								Т	.16	.19	.15	.01	30	Т	Т	т	Т	Т								30
31					.01				****				31		Т		.01	Т							.12	31

UNEDITED LOCAL CLIMATOLOGICAL DATA HOURLY PRECIPITATION TABLE FITCHBURG MUNICIPAL AIRPORT (FIT) FITCHBURG , MA (08/2005)

National Climatic Data Center Federal Building 151 Patton Avenue Asheville, North Carolina 28801

-	-	1440	2 2	1000			-				12-10-20-20			, o succus	11.5	e Stational	S 1932			9449 - 344	20 N.2.			21,22,07		
	1	A	.M.	HC	1 1/1	-11.54-54	S.T) E	ND	ING	AT				P	.M.	And Advantage	11	100 C 100	S.T) E	ND	ING	AT		
DT	-1	2	3	4	5	6	7	8	9	10	11	12	DT	1	2	3	4	5	6	7	8	9	10	11	12	DT
1	-			Т		.01	.13	.02	Т	.01		*****	1	****			****					****	****	.25	.12	1
2		.01											2													2
3				-									3													3
4		****							Serence (·****		4			-	****									4
5					****	****		****	****		****		5	(مينون)	****	.02	****									5
6	****							****					6											(77777)		6
7											(1000)		7				****			****						7
8	-						(100000))	-	Second Second	****	(-	8			(1000)				****						8
9	****	т	т										9												*****	9
10						****	****	****	****				10									1000				10
11							्तरतरः		100000	1000			11	****						****			****			11
12	****												12	(****					****			12
13	****	Т	.02	Ţ	-		See		(HANKARD		(/ interfaces)		13	((*******)				****						13
14									****				14				.26	.38	.01	.19	.03	.02	.02	.01	.01	14
15	****			.02	Т	.13	.07	3. K	0.000	T ·	17775	.01	15				****	1017	7777					1000		15
16				.01	37532		3 5557 - 1		-			0770	16					05050		****				10000		16
17	****				****				****	****			17						****				****			17
18		****							() <u></u> ()				18	S	10112123		****									18
19	****							****	****	****	****	****	19													19
20	****	17520	90000		2000			0.75773			Sectors 1	54555	20	States)	Entrate(20000	579865	30.835	2222	2000	7075	्यतस्य	7525	10000	527.7	20
21	20.00		1000		1000	****	.03		.01	3		****	21					****	****	****			****			21
22											(*****): ////////////////////////////////		22							*****				(100000)		22
23 24	14755-5	200704	236242	 	1923	2 		17 			10000000	1010	23					1000						01		23
24	10075	100,000	1000		1.5575		(1111)			(1993)	999940331	0.907476	24	a fostici (Т	Т	т	.11	Т	53551	0200	00000		.01		24
25	2777	intere.	15.55				20000	2.777.7.5		10040	6 200 13	6910	25 26			(****)		****			and and "	****		anne :		25
20						.01		() minime ()	Conserved (Calification of the second sec	Canada ()		20	(() a selected)			****			Section 1	(and a constant)	eese	26
28	0.24527-24	- 1. V.A.	10000	20000	10000	122.0	Servers) Herrichter	Concernity Statistical D	CHANNES PORTES	5-00-0 5-00-0-1	1200000000	1 44142 1 4603-5	12 2 2 2 2 2 2	т	т	т	0.1	02		01	 T		100000	Contraction of the	T	27
28 29	т							****		10000	935965		28 29	.01	- M.	1000	.01	.03	.11	.01	1		<u></u>	(1000)	Т	28
30	1		1000	T			т	01	07	10	00		30	.01 T	 T		 T	<u> </u>	557.55		1000		0000	Same Se		29 30
31	T	.04	T	4	100			.01 T	.07 T	.12	.02	1.22	31	14	.08	.01	Nakonsa.	and the second					05	05	.02	(Total)
01	1 12 11	.04	1.00	1 12 -				Sile	1816-1	.01			31	.14	.08				****	****	****		.05	.05	.02	31

Startup Testing Report Groundwater Treatment System Shepley's Hill Landfill, Devens, MA

Prepared by:

CH2M HILL 25 New Chardon Street, Suite 300 Boston, MA 02114

October 2005

Background

The Shepley's Hill Landfill Arsenic WTP in Devens, Massachusetts was designed to remove arsenic, iron and manganese from groundwater extracted from wells down-gradient of the Shepley's Hill Landfill. The general process design for the facility is to oxidize the iron in the raw water using chlorine dioxide and use the resulting ferric hydroxide formed to coagulate the arsenic in the raw water. The ferric hydroxide is then removed (along with the arsenic) using a microfilter. Chlorine dioxide was chosen as the oxidant for the system because of concerns with high manganese levels in the raw water samples used for the design basis for the facility. The chlorine dioxide is also intended to rapidly oxidize the manganese in the raw water so that it, too, can be removed by the microfilter. Further description of the design parameters for the facility is available in several technical memoranda that were produced during facility design. Start-up testing of the facility was conducted the week of August 15, 2005. The following report summarizes results of the start-up testing and recommends operational parameters and optimization concepts for the full scale operation of the facility.

Trans-membrane Pressure (TMP)

Trans-membrane Pressure (TMP) measures the pressure differential across the microfilter membranes. Prior to beginning treatment of well water, the microfilter was run using potable water to measure the clean water TMP response to increasing flow. Figure 1 summarizes the results of this testing. Following each Clean-in Place (CIP) event, clean water TMP should be measured in response to increasing flow over the capacity range of the system (0-55 gpm with one well running). The resulting flow vs. TMP curve should be compared to the data shown in Figure 1 to observe the overall degradation of the microfilter membranes over time and be able to anticipate when membrane replacement will be required (this is expected to be approximately 7- to 10-years). Also shown in Figure 1, for reference, is the flux associated with the microfilter flowrate in the TMP testing. Flux is measured in gallons per square ft of microfilter membrane per day (gfd). The microfilter for this project is a Pall Aria AP-2 with 10 microza membrane modules. Each module has 538 square feet of media surface area.

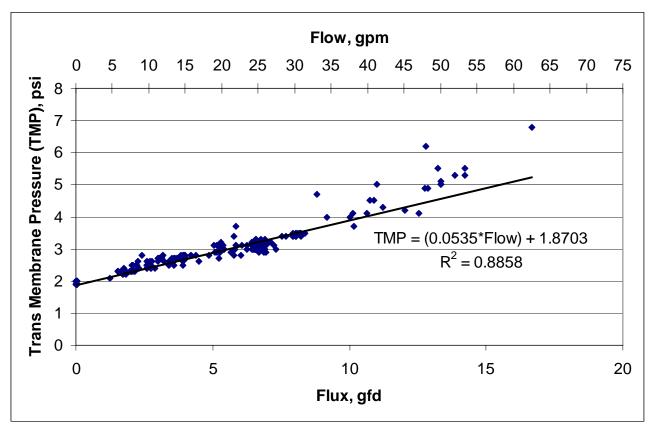


Figure 1 Clean water microfilter TMP response to increasing flow

Raw Water Characteristics

Over the course of system testing, a series of raw water samples were taken from groundwater extraction well no. 2. During start-up, groundwater extraction well no. 1 was not operable, but similar raw water quality can be expected as the wells are quite close to each other. During system operation, it is recommended that a continuous body of data be developed with raw water quality information from both well no. 1 and well no. 2. The data presented in Figures 2 through 4 are, respectively, arsenic, iron and manganese concentrations in the raw water samples taken from well no. 2. From examination of this data, average raw water characteristics are as follows:

Arsenic	5795 ug/L
Iron	76.0 mg/L
Manganese	1.57 mg/L

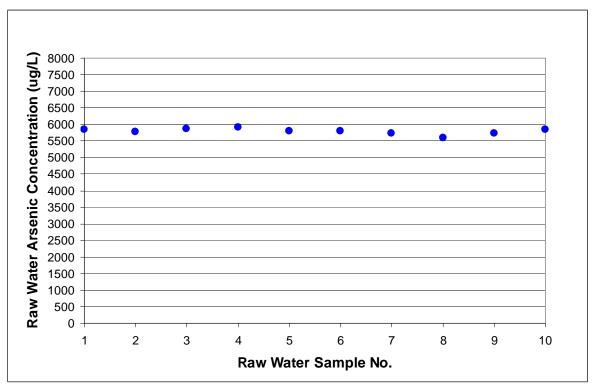


Figure 2 Raw Water Arsenic Concentration

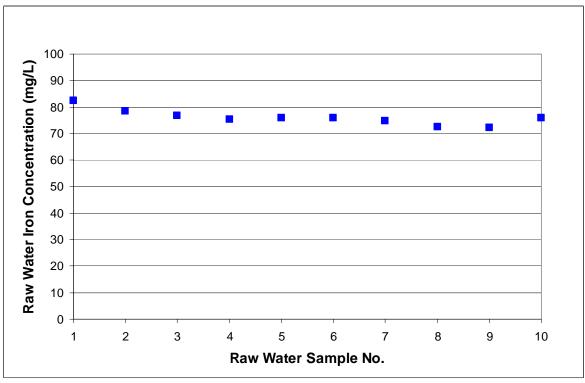


Figure 3 Raw Water Iron Concentration

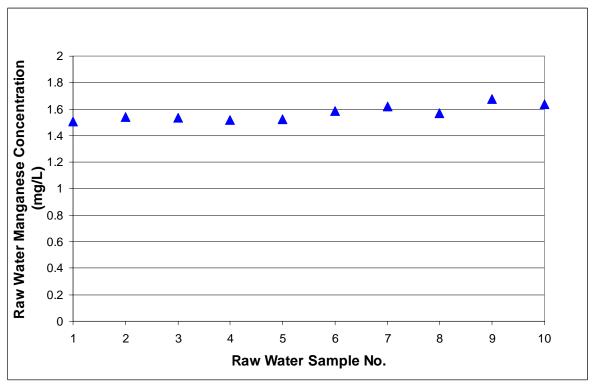
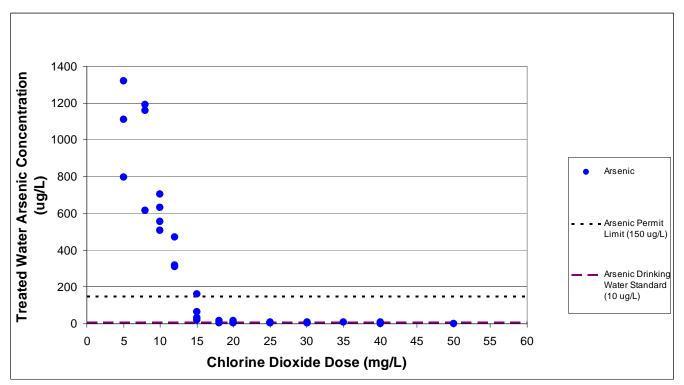


Figure 4 Raw Water Manganese Concentration

Chlorine Dioxide Dose Testing

The principal process being used in the WTP is oxidation of the iron in the raw water and subsequent utilization of the resulting ferric hydroxide (FeOH) to coagulate the arsenic. The FeOH, along with the arsenic, is then removed through the microfiltration process. Several items related to this process are noteworthy:


The relatively low pH of the raw water (approximately pH=6.8) optimizes ferric hydroxide coagulation of the arsenic. Oxidation of the iron in the raw water reduces pH to approximately pH=6.5, further increasing the effectiveness of the ferric hydroxide coagulation process.

Arsenic in the raw water is likely both As(III) and As(V). Only the As(V) has a charge and is able to coagulate with the ferric hydroxide. Any As(III) in the source water must be oxidized to As(V) prior to coagulation with ferric hydroxide being effective. Chlorine dioxide has been shown to not be effective in oxidizing As(III) to As(V), however, free chlorine has. For this reason, the chlorine dioxide generator has been set-up to slightly over-feed chlorine gas and provide some free chlorine residual in the chlorine dioxide feed. The free chlorine residual is intended to oxidize the As(III) in the raw water to As(V).

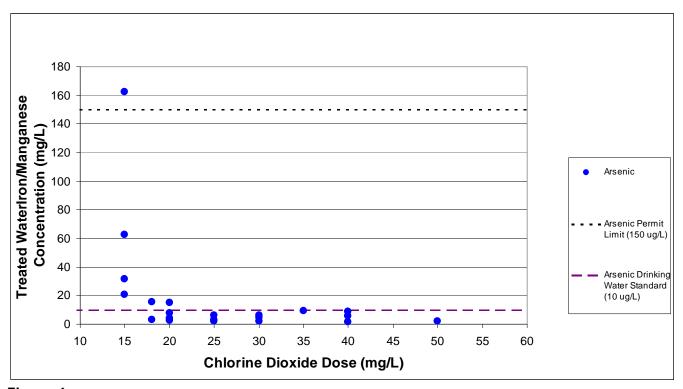

The results of varying chlorine dioxide dose on finished water arsenic, iron and manganese concentrations is presented in Table 1 and Figures 5 through 8. This is the result of very short-term dose testing during facility start-up. These data points represent 12-minute run times at the indicated conditions. All results should be further confirmed with more long-term testing.

Table 1Chlorine dioxide dose testing results

Sample	Recycle	CIO2	Treated Water Contaminant									
Number	On?	Dose	Concentr									
			Arsenic		Iron	Manganese						
		mg/L	ug/L	mg/L	mg/L	mg/L						
011	Y	5	1109.0	1.1090	37.1	1.627						
018	Ν	5	1321.0	1.3210	39.1	1.574						
033	Ν	5	796.1	0.7961	27	1.515						
017	Ν	8	1157.0	1.1570	35.9	1.566						
032	Ν	8	613.7	0.6137	24.2	1.698						
034	N	8	1190.0	1.1900	35.9	1.732						
010	Y	10	554.0	0.5540	26.2	1.833						
016	N	10	703.5	0.7035	28.3	1.602						
031	N	10	631.2	0.6312	26.9	1.69						
035	N	10	506.5	0.5065	21.6	1.816						
015	N	12	316.7	0.3167	17.9	1.541						
030	N	12	311.3	0.3113	17.2	1.786						
036	N	12	471.3	0.4713	19.4	1.663						
800	Y	15	20.6	0.0206	0.973	1.599						
014	N	15	62.7	0.0627	5.73	1.539						
029	N	15	31.7	0.0317	2.68	2.214						
037	N	15	162.5	0.1625	7.58	1.593						
028	N	18	3.2	0.0032	0.114	0.6802						
038	N	18	15.7	0.0157	0.139	1.378						
006	Y	20	4.0	0.0040	0.118	1.215						
013	N	20	15.1	0.0151	0.144	1.183						
027	N	20	2.6	0.0026	0.114	1.18						
039	N	20	7.7	0.0077	0.118	1.183						
005	Y	25	3.3	0.0033	0.119	0.4098						
026	N	25	2.2	0.0022	0.116	1.106						
043	Ν	25	6.2	0.0062	0.115	1.195						
004	Y	30	6.1	0.0061	0.151	0.0087						
025	N	30	2.1	0.0021	0.122	0.3147						
044	N	30	4.6	0.0046	0.108	0.7993						
024	N	35	9.2	0.0092	0.435	0.0651						
002	Y	40	5.8	0.0058	0.158	0.0059						
021	N	40	8.7	0.0087	0.248	1.184						
023	N	40	1.7	0.0017	0.122	0.0082						
022	N	50	1.9	0.0019	0.116	0.0049						

Figure 5 *Effects of Varying Chlorine Dioxide Dose on Finished Water Arsenic*

Figure 6 *Effects of Varying Chlorine Dioxide Dose on Finished Water Arsenic (Zoom-in)*

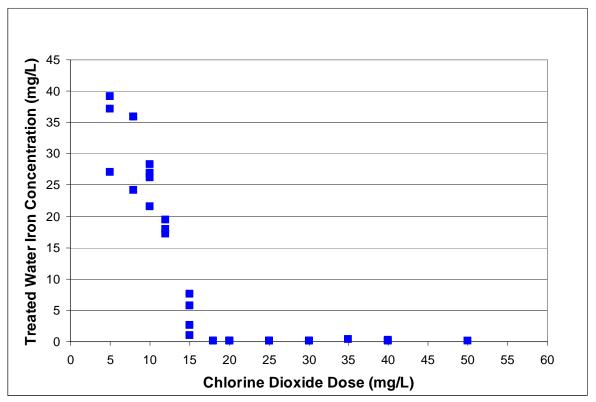
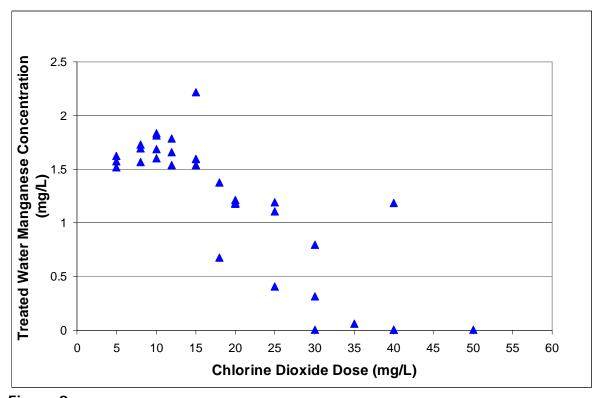



Figure 7 Effects of Varying Chlorine Dioxide Dose on Finished Water Iron

Discussion of Results

<u>Arsenic Removal</u>. Good arsenic removal to concentrations below 150 ug/L was observed with a chlorine dioxide dose of approximately 15-18 mg/L (reference Figure 6). This corresponds well to the chlorine dioxide dose required to remove the large majority of the iron in the water (reference Figure 7). Increasing chlorine dioxide dose to approximately 25 mg/L consistently resulted in finished water arsenic concentrations below 10 ug/L (reference Figure 6). Because this increased chlorine dioxide dose did not seem to make a significant difference in iron removal (and therefore ferric hydroxide formation), it seems likely that the additional arsenic removal achieved by increasing chlorine dioxide dose from the 15-18 mg/L range to the 25 mg/L range may have more to do with oxidation of the arsenic from As(III) to As (V) than any additional ferric hydroxide formation. Note that even with increasing chlorine dioxide dose, complete removal of arsenic to non-detect levels was not achieved. This may have been due to the arsenic not being completely oxidized from As(III) to As(V).

<u>Manganese</u>. Manganese levels in the raw water are much lower than expected from samples taken during the planning and design phase of this facility (initial samples contained 11 mg/L manganese). The concern regarding manganese is with regards to the effect that partially oxidized manganese may have on long-term microfilter fouling. Manganese oxidation and removal does not appear to be occurring until chlorine dioxide dose is increased to 35-40 mg/L (reference Figure 8).

Recommendation for Operation and Optimization

Raw water chemistry should be monitored during the entire duration of facility operation to observe any changes in arsenic, iron or manganese concentrations. Changes in raw water quality will affect system operation and changes in operational parameters may be necessary in response to significant changes in raw water chemistry.

Initial operation at a chlorine dioxide dose of 25 mg/L is recommended to consistently produce finished water with arsenic concentrations below 10 ug/L. If finished water arsenic concentrations of 150 ug/L are all that is necessary, a chlorine dioxide dose of 18 mg/L appears to be sufficient. Long term observation of finished water arsenic, iron and manganese levels, along with periodic raw water characterization, will confirm the short-term results observed during start-up.

It is recommended that arsenic speciation of raw water and finished water samples be performed to determine the ratio of As(III)/As(V) in both raw water and in the arsenic remaining in the finished water. If the results indicate that As(III) is present in significant quantities in the raw water and that As(III) is also significant in the remaining arsenic in the finished water, increasing the amount of over-feed of chlorine gas in the chlorine dioxide generator may assist in optimizing arsenic removal effectiveness. Should As(III) be significantly present in the raw water, it may be that overall chlorine dioxide dose could be reduced to 18 mg/L or less if sufficient free chlorine was available to oxidize all of the As(III) to As(V). If generation of chlorine dioxide with sufficient free chlorine to oxidize all

of the As(III) to As(V) is problematic, sodium hypochlorite could be used in addition to the chlorine dioxide (fed with the chemical metering pumps) to provide for the arsenic oxidation. Further investigation into this issue is recommended.

Because manganese concentrations in the raw water are significantly lower than anticipated, long term manganese fouling of the microfilter may not be an issue. Close tracking of microfilter TMP degradation is recommended and if significant non-recoverable fouling is observed, increased chlorine dioxide dose for manganese oxidation may be necessary. There is no manganese limit in the discharge permit for the facility, so allowing the manganese in the raw water to pass through the system should not be a problem unless it causes issue with long-term microfilter fouling.

Note that, due to time constraints of the field start-up, the residuals handling system was not optimized. Further optimization of the solids transfer pump (removing as much of the solids collected in the bottom of the clarifier as possible before the next reverse flow/air scrub cycle from the microfilter) and the recycle pump (throttling the recycle line such that recycle flow is spread as evenly as possible across each microfilter run between reverse flow/air scrub cycles should continue during system operation. Additionally, the dewatering characteristics of the solids which have been transferred to the filter bottom roll-off container should be examined. Pall should be contacted and can recommend polymers which are compatible with their microfilter modules. Samples of those polymers can be used with solids samples in jar testing to determine which is most effective at flocculating the ferric hydroxide solids. That polymer should be applied using the polymer feed system in order to optimize the operation of the filter bottom roll-off container and reduce residuals volumes which must be disposed of off-site as much as possible.

Overall, the results of testing during start-up of the facility are quite promising. The treatment process appears to be quite effective at arsenic removal at relatively low dose of chlorine dioxide. Continued optimization, as discussed above, is recommended during full-scale, long-term operation.