
FINAL

REMEDIAL INVESTIGATION REPORT FOR FORMER CAMP WELLFLEET FUDS – MMRP REMEDIAL INVESTIGATION THROUGH DECISION DOCUMENT

WELLFLEET, MASSACHUSETTS

CONTRACT NO.: W912DR-15-D-0015, DELIVERY ORDER 0002

US Army Corps of Engineers. BUILDING STRONG.

April 2019

FINAL

REMEDIAL INVESTIGATION REPORT

Former Camp Wellfleet FUDS Remedial Investigation Through Decision Document

Wellfleet, Massachusetts

Prepared for:

U.S. Army Corps of Engineers

Contract: W912DR-15-D-0015 Delivery Order 0002

Prepared by:

ERT, Inc. Laurel, Maryland 20701 (301) 323-0620

8B ELECTRONIC SIGNATURE

08/18/2018

Date

Thomas Bachovchin Project Manager, PG

COMPLETION OF SENIOR TECHNICAL REVIEW

This document has been produced within the framework of the ERT, Inc. (ERT) quality management system. As such, a senior technical review has been conducted. This included review of all elements addressed within the document, proposed or utilized technologies and alternatives and their applications with respect to project objectives and framework of U.S. Army Corps of Engineers regulatory constraints under the current project, within which this work has been completed.

Ronald Marnicio

08/17/2018 Date

Ronald J. Marnicio, PhD., PE Senior Technical Reviewer

COMPLETION OF INDEPENDENT TECHNICAL REVIEW

This document has been produced within the framework of ERT's quality management system. As such, an independent technical review, appropriate to the level of risk and complexity inherent in the project, has been conducted. This included a review of assumptions; alternatives evaluated; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the project objectives. Comments and concerns resulting from review of the document have been addressed and corrected as necessary.

Lynn E. Arabia

Lynn E. Arabia, CHMM Independent Technical Reviewer

08/17/2018 Date

TABLE OF CONTENTS

	CUTI	VE SUN RODU(TENTS MMARY CTION se and Scope	.1
	1.2		ty Description	
	1.3	-	r Camp Wellfleet Historical Information	
	1.4		us Former Camp Wellfleet Investigations	
		1.4.1	Archives Search Report Conclusions and Recommendations for the Forme Camp Wellfleet, USACE Rock Island District	er
		1.4.2	Camp Wellfleet, Historical Environmental Aerial Photographic Analysis, U.S Army Topographic Engineering Center (TEC) Operations Division	. 3
		1.4.3	Final Former Camp Wellfleet Engineering Evaluation and Cost Analysis, Foster Wheeler Environmental Corporation	. 3
		1.4.4	Helicopter Geophysical Survey at Former Camp Wellfleet, Oak Ridge National Laboratory	. 4
		1.4.5	Final – Revision 1 Site Specific Final Report, Ordnance and Explosives Removal Action, Former Camp Wellfleet, and Final Site Specific Final Investigation Report - Addendum, OE Removal Action, Former Camp Wellfleet, Zapata Engineering	. 4
		1.4.6	Summary of Previous Investigations	. 4
	1.5	Initial	Summary of Risk from MEC and MC	. 5
	1.6	Areas	of Investigation for the RI	. 6
	1.7	Repor	t Organization	.7
2.0	SITE 2.1		CRIPTION AND ENVIRONMENTAL SETTING Il Site Description	
		2.1.1	Surface Features	. 9
		2.1.2	Surface Water Hydrology	. 9
		2.1.3	Meteorology	. 9
		2.1.4	Geology	. 9
		2.1.5	Soils and Sediments	10
		2.1.6	Hydrogeology	10
		2.1.7	Demography and Land Use	10
		2.1.8	Ecology	10
		2.1.9	Cultural and Archaeological Resources	11
3.0	INVI 3.1		ATION APPROACH Data Needs	

		3.1.1	Geophysical Data Usability Assessment	13
		3.1.2	AOI Development	14
		3.1.3	MEC Conceptual Site Model	
		3.1.4	MEC Data Quality Objectives	17
	3.2	Chara	cterization of MEC	
		3.2.1	MEC Risk Assessment Matrices	
		3.2.2	Munitions Response Site Prioritization Protocol	
	3.3	MC D	ata Needs	
		3.3.1	MC Conceptual Site Model	
		3.3.2	MC Data Quality Objectives	19
	3.4	Chara	cterization of Munitions Constituents	20
		3.4.1	General Approach	21
		3.4.2	Comparison Criteria	
		3.4.3	Soil Sampling	
		3.4.4	Background Sampling	27
		3.4.5	Groundwater Sampling	
4.0	DAT 4.1		ALITY ASSESSMENT	
	4.2	MC D	Pata Uncertainty	
5.0	INV	ESTIG	ATION RESULTS	33
	5.1	MEC	Results	33
		5.1.1	MEC Risk Assessment Matrices	33
		5.1.2	MEC CSM Update	<i>3</i> 8
		5.1.3	MEC Data Uncertainty	
		5.1.4	MEC Fate and Transport	
	5.2	MRSF	эр	39
	5.3	MC R	esults Overview	39
		5.3.1	Site IS Surface and Subsurface Soil Sampling Results	40
		5.3.2	Site Subsurface Discreet Soil Sampling Results	40
		5.3.3	Background IS Surface and Subsurface Soil Sampling Results	40
		5.3.4	Groundwater Sampling Analytical Results	40
	5.4	AOI-S	Specific MC Results	40
		5.4.1	Background	41
		5.4.2	AOI-01	41

		5.4.3	AOI-02	
		5.4.4	AOI-03	
		5.4.5	AOI-04	
		5.4.6	AOI-05	
		5.4.7	MC CSM Update	
		5.4.8	Human Health and Ecological Risk Assessment	
6.0	CON	ICLUS	IONS AND RECOMMENDATIONS	
	6.1	Conclu	usions	
		6.1.1	MEC	
		6.1.2	МС	
	6.2	Recon	nmendations	
		6.2.1	MEC	
		6.2.2	МС	
7.0	REF	EREN	CES	

List of Appendices

Appendix A: Figures Appendix B: MEC Data Quality Objectives Appendix C: Technical Memorandum – ISM Sampling Approach Appendix D: Analytical Data Appendix E: MEC Risk Matrix Assessment Appendix F: Munitions Response Site Prioritization Protocol

Appendix G: Photo Documentation

Appendix H: Field Documentation

List of Tables

Table ES-1. RI Areas of Interest	2
Table ES-2: Summary of Risk Assessment Matrix Analysis	
Table ES-3: Summary of MRSPP Ratings	
Table 3-1. Analysis of Historical Investigation Areas	
Table 3-2. RI Areas of Interest	
Table 3-3. Soil Sampling DQO – Former Camp Wellfleet	
Table 3-4. Background Threshold Values (BTVs) for Metals	
Table 3-5. RSLs, BTVs, and PSLs for IS Method Metals in Surface and Subsurface	
Table 3-6. RSLs, Background, and PSLs for Discrete Sampling Method Metals in	
Subsurface Soil (mg/kg)	
Table 3-7. RSLs, Background, and PSLs for Discrete Sampling Method Explosives	
Subsurface Soil (mg/kg)	
Table 3-8. PSLs for Groundwater Sampling Results	
Table 3-9. Eco-SSLs for Soil Sampling Results	
Table 3-10. RI Soil Sampling	
Table 5-1: Summary of Risk Assessment Matrix Analysis – Baseline Conditions	
Table 5-2: Summary of MRSPP Ratings	
Table 6-1: MEC Risk Conclusions	

ACRONYMS AND ABBREVIATIONS

ADR	Automated Data Review
AOI	Area of Interest
ARAR	Applicable or Relevant and Appropriate Requirements
Army	U.S. Army
ASP	Ammunition Supply Point
bgs	Below Ground Surface
BTV	Background Threshold Value
CCNS	Cape Cod National Seashore
CENAB	USACE Baltimore District
CENAE	USACE New England District
CERCLA	Comprehensive Environmental Response, Compensation, and Liability
CLICLA	Act
CFR	Code of Federal Regulations
COC	Constituent of Concern
COPC	Chemicals of Potential Concern
COPEC	Chemicals of Potential Ecological Concern
CSM	Conceptual Site Model
Cu	Copper
DD	Decision Document
DERP	Defense Environmental Restoration Program
DGM	Digital Geophysical Mapping
DMM	Discarded Military Munitions
DNT	2,4-dinitrotoluene
DoD	Department of Defense
DOT	Department of Transportation
DQA	Data Quality Assessment
DQI	Data Quality Indicator
DQO	Data Quality Objectives
Eco-SSL	USEPA Ecological Soil Screening Level
EE/CA	Engineering Evaluation/Cost Analysis
EOD	Explosive Ordnance Disposal
ERT	Earth Resources Technology, Inc.
FS	Feasibility Study
ft	Feet
FUDS	Formerly Used Defense Sites
FUDSChem	FUDS Chemistry Database
g	Gram
GPS	Global Positioning System
HHRA	Human Health Risk Assessment
HI	Hazard Index
HTRW	Hazardous, Toxic and Radioactive Waste
IS	Incremental Sampling
ISM	Incremental Sampling Methodology
ITR	Independent Technical Reviewer
ITRC	Interstate Technology Regulatory Council
·	

K Estimated value, result may be biased high kg Kilogram lbs Pounds LCS Laboratory Control Sample LOD Limit of Detection LOQ Limit of Detection LUC Land Use Control m Meter MA Massachusetts MassDEP Massachusetts Department of Environmental Protection MC Munitions Constituent MCL Maximum Contaminant Level MCP Massachusetts Contingency Plan MD Munitions and Explosives of Concern mg Milligram mL Milligram mML Milligram mM Milligram mM Maganese MPPEH Material Potentially Presenting an Explosive Hazard MRSP Munitions Response Site MRSP Munitions Response Site MSS Matrix Spike MSD Matrix Spike MSD Matrix Spike MSD Natrix Spike MSD No Further Action Ni Nickel	J	Estimated value
kgKilogramlbsPoundsLCSLaboratory Control SampleLODLimit of DetectionLOQLimit of QuantificationLUCLand Use ControlmMeterMAMassachusetts Department of Environmental ProtectionMCMunitions ConstituentMCLMaximum Contaminant LevelMCPMassachusetts Contingency PlanMDMunition DebrisMECMunition DebrisMECMunition sand Explosives of ConcernmgMilligrammLMilligrammMCLMassachusetts Maximum Contaminant LevelsMMRPMilligramMLMilligramMAMaganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSPMunitions Response SiteMRSPMunitions Response SiteMSMatrix SpikeMSDMatrix SpikeMSDNatrix SpikeMSDNot DetectedNCPNational Oli and Hazardous Substances Pollution Contingency PlanNHESPNational Oceanic and Atmospheric AdministrationNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdinance and ExplosivesOROrdinace and ExplosivesORO		
IbsPoundsLCSLaboratory Control SampleLODLimit of DetectionLOQLimit of QuantificationLUCLand Use ControlmMeterMAMassachusettsMassDEPMassachusetts Department of Environmental ProtectionMCMunitions ConstituentMCLMaximum Contaminant LevelMCPMassachusetts Contingency PlanMDMunition DebrisMECMunitions and Explosives of ConcernmgMilligrammLMilliftermmMillifterMMCLMassachusetts Maximum Contaminant LevelsMMRPMilligramMLMilligramMAMaganeseMMRPMillitary Munitions Response ProgramMnManganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSDMatrix SpikeMSDMatrix SpikeMSDMatrix SpikeMSDNatrix SpikeMSDNot DetectedNPANotaloal Oil and Hazardous Substances Pollution Contingency PlanNHESPNational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORANoitonal Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNL <td< td=""><td></td><td></td></td<>		
LCSLaboratory Control SampleLODLimit of DetectionLOQLimit of QuantificationLUCLand Use ControlmMeterMAMassachusettsMassDEPMassachusetts Department of Environmental ProtectionMCMunitions ConstituentMCLMaxisubusetts Contingency PlanMDMunition DebrisMECMunition DebrisMECMunition BebrisMECMunition BebrisMECMultigrammMilligrammLMilligramMMRPMilliterMMRPMillitary Munitions Response ProgramMRSMunitions Response ProgramMRSMunitions Response Site Prioritization ProtocolMSMatrix Spike Duplicatems1Mean Sea LevelNCPNatonal Oil and Hazardous Substances Pollution Contingency PlanNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Oceanic and Atmospheric AdministrationNPSNational Attional AttionNDNo EvertieNSNone specifiedNTCRANon-time Critical Removal ActionOEOffnance and ExplosivesNDAktional Attaonal AttaoNDNo Strate Critical Removal ActionNDNo Strate Critical Removal ActionNDNo Strate Critical Removal ActionNDOfface of Research and Standards Guideline <t< td=""><td>-</td><td>6</td></t<>	-	6
LODLimit of DetectionLOQLimit of QuantificationLUCLand Use ControlmMeterMAMassachusetts Department of Environmental ProtectionMKMassachusetts Department of Environmental ProtectionMCMunitions ConstituentMCLMaximum Contaminant LevelMCPMassachusetts Contingency PlanMDMunition DebrisMECMunitions and Explosives of ConcernmgMilligrammLMillitlermmMillimeterMMCLMassachusetts Maximum Contaminant LevelsMMRPMillitary Munitions Response ProgramMnMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSPPMunitions Response SiteMRSPPMunitions Response Site Prioritization ProtocolMSMatrix Spike DuplicatemslMean Sea LevelNCPNatoral Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSL </td <td></td> <td></td>		
LOQLimit of QuantificationLUCLand Use ControlmMeterMAMassachusettsMassDEPMassachusetts Department of Environmental ProtectionMCMunitions ConstituentMCLMaxinum Contaminant LevelMCPMassachusetts Contingency PlanMDMunition DebrisMECMunitions and Explosives of ConcernmgMilligrammLMilligrammLMilligramMMCLMassachusetts Maximum Contaminant LevelsMMRPMillitermmMilligramMAMaganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSDMatrix SpikeMSDMatrix SpikeMSDMatrix SpikeNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePDProposed PlanPSLProject Delivery TeamPPProposed PlanPSLProposed PlanPACQuality Assurance Project Plan		
LUCLand Use ControlmMeterMAMassachusettsMassDEPMassachusetts Department of Environmental ProtectionMCMunitions ConstituentMCLMassachusetts Department of Environmental ProtectionMCMunition Contaminant LevelMCPMassachusetts Contingency PlanMDMunition DebrisMECMunition BebrisMECMunition BebrisMECMunition BebrisMECMunitions and Explosives of ConcernmgMilligrammLMillittermmMillittermmMillitrerMMCLMassachusetts Maximum Contaminant LevelsMMRPMillitary Munitions Response ProgramMnMaganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMSDMatrix SpikeMSDMatrix SpikeMSDMatrix SpikeNDNot DetectedNCPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePhLeadPDTProject		
mMeterMAMassachusettsMassDEPMassachusetts Department of Environmental ProtectionMCMunitions ConstituentMCLMaximum Contaminant LevelMCPMassachusetts Contingency PlanMDMunition BebrisMECMunitions and Explosives of ConcernmgMilligrammLMilliltermmMillimeterMMCLMassachusetts Maximum Contaminant LevelsMMRPMillitary Munitions Response ProgramMnMaganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSPPMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix SpikeNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNFANon-time Critical Removal ActionOEOrdnance and ExplosivesNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProposed PlanPAPPQuality Assurance Project Plan	-	
MAMassachusettsMassDEPMassachusetts Department of Environmental ProtectionMCMunitions ConstituentMCLMaximum Contaminant LevelMCPMassachusetts Contingency PlanMDMunition DebrisMECMunitions and Explosives of ConcernmgMilligrammLMilligrammMMilligramMMCLMassachusetts Maximum Contaminant LevelsMMRPMillitermmMillitary Munitions Response ProgramMnManganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMSDMatrix SpikeMSDMatrix SpikeMSDMatrix SpikeMSDNatrix SpikeNDNot DetectedNFANo Further ActionNiNickelNDAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan		
MassDEPMassachusetts Department of Environmental ProtectionMCMunitions ConstituentMCLMaximum Contaminant LevelMCPMassachusetts Contingency PlanMDMunition DebrisMECMunitions and Explosives of ConcernmgMilligrammLMillilitermmMillimeterMMCLMassachusetts Maximum Contaminant LevelsMMRPMillimeterMMRPMillinos Response ProgramMnManganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSPMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNon sepecifiedNTCRANon sepecifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan		
MCMunitions ConstituentMCLMaximum Contaminant LevelMCPMassachusetts Contingency PlanMDMunition DebrisMECMunitions and Explosives of ConcernmgMilligrammLMillimeterMMCLMassachusetts Maximum Contaminant LevelsMMRPMillitary Munitions Response ProgramMnMaganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSPMunitions Response SiteMRSDMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNational Oceanic and Atmospheric AdministrationNDNot DetectedNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNon specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan		
MCLMaximum Contaminant LevelMCPMassachusetts Contingency PlanMDMunition DebrisMECMunitions and Explosives of ConcernmgMilligrammLMilligrammLMilligramMMCLMassachusetts Maximum Contaminant LevelsMMRPMilitary Munitions Response ProgramMnMaganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSPPMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatonal Oil and Hazardous Substances Pollution Contingency PlanNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPFProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan		-
MCPMassachusetts Contingency PlanMDMunition DebrisMECMunitions and Explosives of ConcernmgMilligrammLMilligrammLMilliltermmMillimeterMMCLMassachusetts Maximum Contaminant LevelsMMRPMilitary Munitions Response ProgramMnMaganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSMMunitions Response SiteMRSMMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Oceanic and Atmospheric AdministrationNPSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLPerformance Work StatementQAPPQuality Assurance Project Plan		
MDMunition DebrisMECMunitions and Explosives of ConcernmgMilligrammLMilligrammLMillimeterMMCLMassachusetts Maximum Contaminant LevelsMMRPMillitary Munitions Response ProgramMnManganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSPMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan		
MECMunitions and Explosives of ConcernmgMilligrammLMilligrammLMillitermmMilliterMMCLMassachusetts Maximum Contaminant LevelsMMRPMilitary Munitions Response ProgramMnMaganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSPPMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan		
mgMilligrammLMillitermmMillimeterMMCLMassachusetts Maximum Contaminant LevelsMMRLMassachusetts Maximum Contaminant LevelsMMRPMilitary Munitions Response ProgramMnMaganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSPPMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan		
mLMillilitermmMillimeterMMCLMassachusetts Maximum Contaminant LevelsMMRPMilitary Munitions Response ProgramMnMaganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSMMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProjoed PlanPSPerformance Work StatementQAPPQuality Assurance Project Plan		-
mmMillimeterMMCLMassachusetts Maximum Contaminant LevelsMMRPMilitary Munitions Response ProgramMnManganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSPPMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	-	-
MMRPMilitary Munitions Response ProgramMnManganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSMMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Oceanic and Atmospheric AdministrationOREOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSQuality Assurance Project Plan		
MMRPMilitary Munitions Response ProgramMnManganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSMMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Oceanic and Atmospheric AdministrationOREOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSQuality Assurance Project Plan	MMCL	Massachusetts Maximum Contaminant Levels
MnManganeseMPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSPPMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANor-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	MMRP	
MPPEHMaterial Potentially Presenting an Explosive HazardMRSMunitions Response SiteMRSPPMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	Mn	
MRSMunitions Response SiteMRSPPMunitions Response Site Prioritization ProtocolMSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	MPPEH	0
MSMatrix SpikeMSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Oceanic and Atmospheric AdministrationNPSNational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	MRS	
MSDMatrix Spike DuplicatemslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	MRSPP	Munitions Response Site Prioritization Protocol
mslMean Sea LevelNCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	MS	Matrix Spike
NCPNational Oil and Hazardous Substances Pollution Contingency PlanNHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	MSD	Matrix Spike Duplicate
NHESPNatural Heritage & Endangered Species ProgramNDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	msl	Mean Sea Level
NDNot DetectedNFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	NCP	National Oil and Hazardous Substances Pollution Contingency Plan
NFANo Further ActionNiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	NHESP	Natural Heritage & Endangered Species Program
NiNickelNOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	ND	Not Detected
NOAANational Oceanic and Atmospheric AdministrationNPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	NFA	No Further Action
NPSNational Park ServiceNSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	Ni	Nickel
NSNone specifiedNTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	NOAA	National Oceanic and Atmospheric Administration
NTCRANon-time Critical Removal ActionOEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	NPS	National Park Service
OEOrdnance and ExplosivesORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	NS	None specified
ORNLOak Ridge National LaboratoryORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	NTCRA	Non-time Critical Removal Action
ORSGOffice of Research and Standards GuidelinePbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan		1
PbLeadPDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan	ORNL	
PDTProject Delivery TeamPPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan		
PPProposed PlanPSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan		
PSLProject Screening LevelPWSPerformance Work StatementQAPPQuality Assurance Project Plan		
PWSPerformance Work StatementQAPPQuality Assurance Project Plan		±
QAPP Quality Assurance Project Plan		
QC Quality Control	-	
	QC	Quality Control

RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation
RDX	Cyclotrimethylenetrinitramine
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
RSL	Regional Screening Level
RTK GPS	Real Time Kinematic GPS
RTS	Robotic Total Station
SU	Sampling Unit
Sb	Antimony
SU	Screening Level
SLERA	Screening Level Ecological Risk Assessment
SOP	
SUP	Standard Operating Procedure Senior Technical Reviewer
TAL	Target Analyte List
TBD	To Be Determined
TBC	To Be Considered
TNT	Trinitrotoluene
UCL	Upper Confidence Limit
UFP-QAPP	Uniform Federal Policy Quality Assurance Project Plan
μg	Microgram
USACE	U.S. Army Corps of Engineers
U.S.C.	United States Code
USEPA	U.S. Environmental Protection Agency
USGS	U.S. Geological Survey
UXO	Unexploded Ordnance
VOCs	Volatile Organic Compounds
VSP	Visual Sampling Plan
Zapata	Zapata, Inc.
Zn	Zinc
%R	Percent Recovery

GLOSSARY OF TERMS

Defense Site – All locations that are or were owned by, leased to, or otherwise possessed or used by the Department of Defense (DoD). The term does not include any operational range, operating storage or manufacturing facility, or facility that is used or was permitted for the treatment or disposal of military munitions.

Discarded Military Munitions (DMM) – Military munitions that have been abandoned without proper disposal or removed from storage in a military magazine or other storage area for the purpose of disposal. The term does not include unexploded ordnance (UXO), military munitions that are being held for future use or planned disposal, or military munitions that have been properly disposed of, consistent with applicable environmental laws and regulations. (10 United States Code (U.S.C.) 2710(e)(2)).

Explosive Hazard – A condition where danger exists because explosives are present that may react (e.g., detonate, deflagrate) in a mishap with potential unacceptable effects (e.g., death, injury, damage) to people, property, operational capability, or the environment.

Explosives Safety – A condition where operational capability and readiness, people, property, and the environment are protected from the unacceptable effects or risks of potential mishaps involving military munitions.

Incremental Sampling Methodology (ISM) – ISM is a structured composite sampling and processing protocol that reduces data variability and provides a reasonably unbiased estimate of mean contaminant concentrations in a volume of soil targeted for sampling. ISM provides representative samples of specific soil volumes defined as decision units (DUs) by collecting numerous increments of soil that are combined, processed, and subsampled according to specific protocols.

Material Potentially Presenting an Explosive Hazard (MPPEH) – Material potentially containing explosives or munitions (e.g., munitions containers and packaging material; munitions debris remaining after munitions use, demilitarization, or disposal; range-related debris); or material potentially containing a high enough concentration of explosives such that the material presents an explosive hazard (e.g., equipment, drainage systems, holding tanks, piping, or ventilation ducts that were associated with munitions production, demilitarization or disposal operations). Excluded from MPPEH are munitions within DoD's established munitions management system and other hazardous items that may present explosion hazards (e.g., gasoline cans, compressed gas cylinders) that are not munitions and are not intended for use as munitions.

Munitions and Explosives of Concern (MEC) – This term, which distinguishes specific categories of military munitions that may pose unique explosives safety risks means (A) UXO, as defined in 10 U.S.C. 101(e)(5); (B) DMM, as defined in 10 U.S.C. 2710(e)(2); or (C) munitions constituents (MC) (e.g., trinitrotoluene [TNT], cyclotrimethylenetrinitramine [RDX]), as defined in 10 U.S.C. 2710(e)(3), present in high enough concentrations to pose an explosive hazard.

Munitions Constituents (MC) – Any materials originating from UXO, DMM, or other military munitions, including explosive and nonexplosive materials, and emission, degradation, or breakdown elements of such ordnance or munitions. (10 U.S.C. 2710(e)(3)).

Munitions Debris (MD) – Remnants of munitions (e.g., fragments, penetrators, projectiles, shell casings, links, fins) remaining after munitions use, demilitarization, or disposal.

Munitions Response Area (MRA) – Any area on a defense site that is known or suspected to contain UXO, DMM, or MC. Examples include former ranges and munitions burial areas. An MRA is composed of one or more munitions response sites (32 CFR 179.3).

Munitions Response Site (MRS) – A discrete location within an MRA that is known to require a munitions response (32 CFR 179.3).

Sampling Unit (SU) – An SU is a volume of soil from which increments are collected to determine an estimate of the mean concentration for that volume.

Unexploded Ordnance (UXO) – Military munitions that (A) have been primed, fuzed, armed, or otherwise prepared for action; (B) have been fired, dropped, launched, projected, or placed in such a manner as to constitute a hazard to operations, installations, personnel, or material; and (C) remain unexploded whether by malfunction, design, or any other cause. (10 U.S.C. 101(e)(5)(A) through (C)).

UXO-Qualified Personnel – Personnel who have performed successfully in military EOD positions or are qualified to perform in the following Department of Labor, Service Contract Act, Directory of Occupations, contractor positions: UXO Technician II, UXO Technician III, UXO Safety Officer, UXO Quality Control Specialist, or Senior UXO Supervisor.

EXECUTIVE SUMMARY

INTRODUCTION AND SCOPE

ERT, Inc. (ERT) performed a Remedial Investigation (RI) for the Former Camp Wellfleet Formerly Used Defense Site (FUDS) near Wellfleet, Massachusetts, under U.S. Army Corps of Engineers (USACE) Baltimore District (CENAB) contract W912DR-15-D-0015, Delivery Order 0002. The RI identifies and assesses potential risks associated with munitions and explosives of concern (MEC) and/or munitions constituents (MC).

This RI Report describes in detail the procedures, methods, organization, and resources that ERT used to achieve the project objectives described in the Performance Work Statement (PWS) dated 11 March 2016, and the Final Work Plan (USACE, 2018). The overall purpose of this RI was to determine whether futher response actions are necessary under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Military Munitions Response Program (MMRP) processes. The objectives of the RI were to:

- Determine if MEC risks were present, and if so, define acceptable and unacceptable risk from MEC hazards;
- Determine if MC were present in concentrations greater than the Project Screening Levels (PSLs), by collecting soil and groundwater samples;
- Where sampling indicated MC concentrations greater than the PSLs, conduct a Human Health Risk Assessment (HHRA) and Screening-Level Ecological Risk Assessment (SLERA) to determine the potential MC risks at the Former Camp Wellfleet; and
- Using the MEC and MC data, determine if further actions are necessary to reduce explosive hazards and human health and ecological risks to acceptable levels.

The scope of the project includes the conduct or preparation of the following work elements required to achieve the project objectives:

- Project Management Plan, Schedule, and Technical Project Planning meetings;
- RI Work Plan and Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP);
- RI Field Work;
- RI Report, Feasibility Study (FS), Proposed Plan (PP), Decision Document (DD); and
- Administrative Record/Information Repository.

PROPERTY DESCRIPTION AND HISTORICAL INFORMATION

The Former Camp Wellfleet is in the Town of Wellfleet, Barnstable County, MA, approximately one mile east of South Wellfleet, MA on the Cape Cod peninsula. The Former Camp Wellfleet consists of a total of 1,738 acres - of which approximately 1,688 acres are located in the Cape Cod National Seashore (CCNS) and 49.2 acres in the Town of Wellfleet.

Camp Wellfleet was used by the U.S. Army and U.S. Navy for training purposes. The property was leased beginning in 1942 for an anti-aircraft artillery training base, with an artillery firing line located along the beach cliff. From January 1945 through the end of World War II, the U.S. Navy used the base as a mobile radar training school supporting Navy night fighter and Dove missile training. The Camp also was used for training by National Guard troops and Active Army Reserve anti-aircraft artillery training units.

The property was declared as excess and officially closed on 30 June 1961. The Department of the Interior then acquired the land through a Declaration of Taking in August 1961 to establish and develop the CCNS (currently owned by the National Park Service (NPS)). The Town of Wellfleet owns and manages approximately 49.2 acres.

INVESTIGATION AREAS FOR THE RI

The RI investigation for the Former Camp Wellfleet was designed based on the previous investigations conducted, including the Archive Search Report (ASR) and Engineering Evaluation/Cost Analysis (EE/CA). The ASR and EE/CA investigations identified 'Areas' that were defined as areas that were determined to have MEC, have a potential for MEC, or have no potential for MEC.

Additional research, including a CENAB provided U.S. Army Topographic Engineering Center aerial photographic and groundscar analysis, helped to further identify the investigation areas, and consequently, Areas of Interest (AOIs) were developed as the primary basis of investigation for this RI. The AOI configurations considered the original ASR and EE/CA Areas, the aerial groundscar analysis, and the results of subsequent removal actions. Review of common past activities allowed for combining some of the areas, or the screening out of Areas where there was no evidence of MEC or munitions debris (MD), resulting in six (6) AOIs (five land-based and one ocean range fan) that form the basis of the RI. Table ES-1 summarizes the AOIs and the EE/CA Areas used to develop them.

	Table ES-1. RI Areas of Interest				
AOI EE/CA Areas Conceptual Site Model Acreag					
AOI-01	Area E, as reduced	Burial/Disposal Pits, Possible Landfill	33.1		
AOI-02	Area A as expanded	Artillery Firing Points	275.0		
AOI-03	Areas D and L and the acreage between them	Ammunition Supply Points and Ground Scars	120.2		
AOI-04	Areas C, F, and J	Bomb Targets and Small Burial Area	141.8		
AOI-05	Area B, as expanded	Rocket Range and Small Arms Range	56.10		
AOI-06	Area I	Range Fan of Artillery Targets in Ocean	167,856		

INVESTIGATION ACTIVITIES

<u>MEC</u>

The five (5) land-based AOIs represent areas that had MEC or have the potential for MEC. Data from previous investigations and removal actions were evaluated and a Data Quality Objective (DQO) for MEC was developed to determine if there was sufficient data to characterize nature and extent. It was determined that there were sufficient MEC data to make nature and extent evaluations using only the existing data. For the ocean range fan AOI, MEC presence was assumed and therefore no further field investigation during this RI was required.

<u>MC</u>

The previous investigations were focused on MEC with limited analytical sampling for MC, and

it was unknown if an MC release had occurred at the site. Therefore, ERT conducted soil and groundwater sampling at the Former Camp Wellfleet to determine if an MC release had occurred.

As the five (5) land-based AOIs represent locations where MC would be expected, soil samples were collected from them in areas judgmentally considered to pose the greatest likelihood to have MC contamination present. AOI-06 is the ocean portion of the artillery range fans that is addressed by the current 3Rs (Recognize, Retreat, Report) educational program in effect at the site based on the EE/CA recommendations. No MC sampling was conducted for AOI-06.

The RI sampling program included:

- 17 incremental sampling (IS) surface soil samples (0-6 inches below ground surface);
- 3 IS subsurface soil samples (0.5-3 feet bgs);
- 8 discrete subsurface samples in the AOI-01 burial pit area (8-10 ft bgs);
- 7 paired IS surface and subsurface background soil samples (0-6 inches bgs and 0.5-3 ft bgs, respectively); and
- one groundwater sample from the NPS CNSS drinking water supply well.

All samples were submitted for laboratory analysis of select metals (antimony, copper, lead, manganese, nickel, and zinc) and select explosives (RDX, TNT, nitroglycerin, 2,4-dinitrotoluene, 2,6-dinitrotoluene, tetryl, and nitroguanidine). These analytes were chosen for their relationship to the MEC historically associated with the AOIs. The analytical data obtained during the RI were deemed valid and usable for project decision making.

RI FINDINGS

<u>MEC</u>

MEC risk was evaluated using the current USACE risk assessment methodology to define risk posed by MEC hazards using the data collected from prior MEC investigation activities at the Former Camp Wellfleet. *Decision Logic to Assess Risks Associated with Explosive Hazards, and to Develop Remedial Action Objectives for Munitions Response Sites* (USACE, 2017c), involves the use of four matrices to define acceptable and unacceptable risk from MEC hazards based on the likelihood of an encounter, the severity of incident, and the sensitivity of interaction based on expected land use activities. MEC risk was evaluated for each AOI. The findings for the Former Camp Wellfleet AOIs are summarized in Table ES-2.

	Table ES-2: Summary of Risk Assessment Matrix Analysis					
Area	Matrix 1: Likelihood of Encounter	Matrix 2: Severity of Incident	Matrix 3: Likelihood of Detonation	Matrix 4: Acceptable and Unacceptable Site Conditions		
AOI-01	Seldom (No MEC, Often Access)	D - (Improbable Severity, Seldom Likelihood)	3 - (Not Sensitive, Modest Likelihood)	Acceptable		
AOI-02	Likely (Confirmed MEC, Regular Access)	A - (Catastrophic Severity, Likely Likelihood)	2 - (Moderate Sensitivity, Modest Likelihood)	Unacceptable		

	Table ES-2: Summary of Risk Assessment Matrix Analysis				
Area	Matrix 1: Likelihood of Encounter	Matrix 2: Severity of Incident	Matrix 3: Likelihood of Detonation	Matrix 4: Acceptable and Unacceptable Site Conditions	
AOI-03	Seldom (MEC, Often Access)	C - (Modest Severity, Seldom Likelihood)	2 - (Moderate Sensitivity, Modest Likelihood)	Acceptable	
AOI-04	Seldom (No MEC, Often Access)	D - (Improbable Severity, Seldom Likelihood)	3 - (Not Sensitive, Modest Likelihood)	Acceptable	
AOI-05	Likely (MD Indicative of MEC, Regular Access)	A - (Catastrophic Severity, Likely Likelihood)	2 - (Moderate Sensitivity, Modest Likelihood)	Unacceptable	
AOI-06	Seldom (MEC Suspected, Regular Access)	B - (Catastrophic Severity, Seldom Likelihood)	2 - (Moderate Sensitivity, Modest Likelihood)	Unacceptable	

The Munitions Response Site Prioritization Protocol (MRSPP) is a methodology for prioritizing sites known or suspected to contain MEC or MC for response actions, assigning a relative priority based on various safety and environmental factors (i.e., 1 is the highest priority ranking, 8 is the lowest). The MRSPP scores for the AOIs are summarized in Table ES-3.

	Table ES-3: Summary of MRSPP Ratings					
Area	AreaEHE Rating/PriorityCHE Rating/PriorityHHE Rating/PriorityPriority Rating/Priority					
AOI-01	NLR	NKSH	NKSH	NLR		
AOI-02	A-2	NKSH	NKSH	2		
AOI-03	NLR	NKSH	NKSH	NLR		
AOI-04	NLR	NKSH	NKSH	NLR		
AOI-05	C-4	NKSH	NKSH	4		
AOI-06	C-4	NKSH	NKSH	4		

EHE – Explosive Hazard Evaluation

CHE – Chemical Warfare Materiel Hazard Evaluation

HHE – Health Hazard Evaluation

NKSH – No Known or Suspected Hazard

NLR – No Longer Required

<u>MC</u>

No site soil sampling results were greater than their PSLs or USEPA Ecological Soil Screening Level (Eco-SSLs). Based on these results, no release of MC metals or explosives that would present a risk to human health or the environment has occurred.

In addition, no site groundwater sampling results were greater than their PSLs, and all site soil sampling results were less than the impact to groundwater screening levels. Based on these results, no release of MC metals or explosives that would present a risk to human health has occurred.

CONCLUSIONS AND RECOMMENDATIONS

<u>MEC</u>

The MEC risk matrix analyses indicate AOIs that pose Acceptable MEC risk and AOIs posing Unacceptable MEC risk. Baseline conditions that are assessed to be Acceptable do not warrant further action with regard to MEC, and it is recommended that a 'No Further Action' (NFA) PP and DD be prepared to address those AOIs posing acceptable MEC risk (AOI-01, AOI-03, and AOI-04).

However, Unacceptable baseline site conditions warrant action and should proceed to the next phase of the CERCLA response process, and it is therefore recommended that an FS be conducted to address those AOIs determined to pose unacceptable explosive risks (AOI-02, AOI-05, and AOI-06). A PP and DD will also be prepared, following the FS, to address those AOIs.

<u>MC</u>

No site soil or groundwater sampling results were greater than their PSLs or Eco-SSLs. All site soil sampling results were less than the impact to groundwater screening levels. Based on these results, no release of MC metals or explosives that would present a risk to human health or the environment has occurred, and therefore, no additional soil or groundwater sampling for MC metals or explosives is warranted.

Because no reported results for soil or groundwater sampling were greater than their PSLs, there are no MC releases to soil or groundwater which present a risk to human health and/or the environment. Therefore no further action is recommended for MC at the Former Camp Wellfleet.

1.0 INTRODUCTION

ERT, Inc. (ERT) performed a Remedial Investigation (RI) and the subsequent activities and analyses associated with the process that will result in a Decision Document (DD) for the Camp Wellfleet Formerly Used Defense Site (FUDS) near Wellfleet, Massachusetts, under U.S. Army Corps of Engineers (USACE) Baltimore District (CENAB) contract W912DR-15-D-0015, Delivery Order 0002. Services completed to date include development of a Work Plan, Community Relations Plan (CRP), field investigations, and RI Report. If the RI demonstrates potential risks to receptors at the Former Camp Wellfleet, a Feasibility Study (FS) will be conducted to identify and evaluate potential remedial alternatives that are suitable for addressing any unacceptable site-specific risks associated with munitions and explosives of concern (MEC) and/or munitions constituents (MC). A Proposed Plan (PP) and DD will also be prepared in accordance with the CERCLA process.

The Department of Defense (DoD) established the Military Munitions Response Program (MMRP) under the Defense Environmental Restoration Program (DERP) to address MEC, which includes unexploded ordnance (UXO) and discarded military munitions (DMM), and MC located on current and former military installations. ERT performed the work in accordance with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) [42 USC 9601 et seq.], the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (40 CFR 300), and applicable DoD policies in managing and executing the FUDS program (ER 200-3-1). Activities involving work in areas potentially containing MEC hazards were conducted in full compliance with USACE, Department of the Army, including Engineering Manual (EM) 385-1-1, and DoD safety regulations. No MEC and/or material potentially presenting an explosive hazard (MPPEH) were encountered during this RI.

This RI Report describes in detail the procedures, methods, organization, and resources that ERT used to achieve the project objectives described in the Performance Work Statement (PWS) dated 11 March 2016, and the Final Work Plan (USACE, 2018).

1.1 Purpose and Scope

The overall purpose of this RI was to determine whether futher response actions are necessary under the CERCLA and MMRP processes. The objectives of the RI were to:

- Determine site-specific background metals concentrations;
- Determine if munitions-related MC contamination exists within surface and subsurface soil at the Former Camp Wellfleet at concentrations greater than U.S. Environmental Protection Agency (USEPA) Regional Screening Levels (RSLs) for residential soil, S-1 & GW-1 Massachusetts Contingency Plan (MCP) table 2, 310 CMR 40.0975(6)(a) levels, USEPA Ecological Soil Screening Levels (Eco-SSLs, https://www.epa.gov/chemicalresearch/interim-ecological-soil-screening-level-documents, last accessed 25 September 2018), and background metals concentrations;
- If the initial sampling indicates the presence of MC greater than RSLs, S-1 & GW-1 Massachusetts Contingency Plan (MCP) table 2, 310 CMR 40.0975(6)(a) levels, Eco-SSLS, and background concentrations, then conduct additional sampling to determine the extent of MC contamination.
- At the request of the National Park Service (NPS) Cape Cod National Seashore (CCNS), collect one groundwater sample from Supply Well B;

- Refine the CSM, as necessary;
- If the initial sampling indicates the presence of MC greater than RSLs and background concentrations, using MC data, conduct a Human Health Risk Assessment (HHRA) and Screening-Level Ecological Risk Assessment (SLERA) to determine the potential MC risks at the Former Camp Wellfleet;
- Determine whether risks due to explosive hazards are present;
- Using MEC and MC data, determine if further actions are necessary to reduce risks to acceptable levels; and
- Support completion of the CERCLA process through DD.

Previous investigations at the Former Camp Wellfleet were focused on MEC with limited analytical sampling. Therefore, it was unknown if an MC release has occurred at the site. ERT conducted sampling at the Former Camp Wellfleet to determine if an MC release has occurred.

The scope of the project includes the conduct or preparation of the following tasks or work elements required to achieve the project objectives:

- Project Management Plan (PMP) and Schedule;
- Technical Project Planning;
- RI Work Plan and Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP);
- RI Field Work;
- RI Report;
- Feasibility Study Report, if needed;
- Proposed Plan;
- Decision Document; and
- Administrative Record (AR)/Information Repository.

1.2 Property Description

The Former Camp Wellfleet consists of a total of 1,738 acres - of which approximately 1,688 acres are located in the Cape Cod National Seashore and 49.2 acres in the Town of Wellfleet, Barnstable County, MA on the Cape Cod peninsula. The U.S. Army and U.S. Navy used Camp Wellfleet for training purposes. The property was leased beginning in 1942. Camp Wellfleet was declared as excess and officially closed on 30 June 1961.

The Former Camp Wellfleet is in the Town of Wellfleet, Barnstable County, MA, approximately one mile east of South Wellfleet, MA (Figure 1-note, all figures are presented in Appendix A) on the Cape Cod peninsula. The site is accessible from U.S. Route 6, which is located just west of the site.

1.3 Former Camp Wellfleet Historical Information

Camp Wellfleet was previously used by the U.S. Army and U.S. Navy for training purposes. The approximately 1,738-acre property was leased beginning in 1942 for an anti-aircraft artillery training base, with an artillery firing line located along the beach cliff. The site was used as such by the U.S. Army until June 1944, when it temporarily closed. From January 1945 through the end of World War II, the U.S. Navy used the base as a mobile radar training school supporting Navy night fighter training based in Quonset Point, Rhode Island, and for Dove missile training. The Camp also was used for training by National Guard troops and Active Army Reserve anti-aircraft artillery training units. Camp Wellfleet was declared as excess and officially closed on 30 June 1961.

The Department of the Interior acquired the land through a Declaration of Taking in August 1961 to establish and develop the CCNS. The majority of the Former Camp Wellfleet site is currently owned by the NPS. The Town of Wellfleet owns and manages approximately 49.2 acres.

1.4 Previous Former Camp Wellfleet Investigations

Historical investigations have been performed at the site to characterize the extent of MEC. Investigation activities were performed between 1961 and 1962, and the discovery of ordnance items at various locations required the execution of risk reduction actions between 1961 and 1998. In 1991, an Inventory Project Report/Preliminary Assessment was completed, and the Camp was determined to be eligible under the FUDS program for hazardous, toxic, and radioactive waste and MMRP evaluations. Munitions used at the Former Camp Wellfleet, based on previous investigations, include MK 65 "Dove" practice bombs, 60-millimeter (mm) projectiles, 90mm projectiles, 105mm projectiles, .30 and .50 caliber ammunition, grenades, and rifle smoke grenades. MEC items including a 76mm anti-aircraft artillery round have been identified at the site to date.

1.4.1 <u>Archives Search Report Conclusions and Recommendations for the</u> <u>Former Camp Wellfleet, USACE Rock Island District</u>

An Archives Search Report (ASR) was compiled in 1994. Areas A, B, and C of the site were identified and categorized as containing MEC while Areas D, E, and F were categorized as potentially containing MEC, and Areas G and H as not containing MEC (USACE, 1994). See Figure 2 for the locations of these Areas.

1.4.2 <u>Camp Wellfleet, Historical Environmental Aerial Photographic</u> <u>Analysis, U.S Army Topographic Engineering Center (TEC)</u> <u>Operations Division</u>

An analysis of historical aerial photos and other documents was completed by the TEC in 1998. The TEC georeferenced air photographs beginning with one dated 1943 (shortly after the first structures at Camp Wellfleet were built), including many from the years Camp Wellfleet was active, and ending with a 1994 photo. The analysis included stereoscopic delineation of ground scars, excavations, new structures, and other features such as bombing targets, gun emplacements, and ammunition supply points. The TEC report was a primary source of information in the development of the Engineering Evaluation and Cost analysis (EE/CA) work plan, particularly the placement of geophysical grids.

1.4.3 <u>Final Former Camp Wellfleet Engineering Evaluation and Cost</u> <u>Analysis, Foster Wheeler Environmental Corporation</u>

Based on the conclusions of the ASR, an EE/CA investigation was recommended. Further characterization performed in support of the EE/CA resulted in the identification of additional Areas I through N. Figure 2 shows these areas overlying the TEC aerial photos. Nine hundred fifty-nine (959) anomalies were investigated during the EE/CA, within geophysical grids, as shown in Figure 2. Identified inert munitions-related items that were found included four 1,000-pound Dove missiles, and one 250-pound practice bomb. The EE/CA Action Memorandum, signed in April 2001, approved the recommended removal actions, which included Clearance to Depth for Areas A and B and Institutional Controls (ICs) without Access Restrictions for the remaining areas (USACE North Atlantic Division New England District [CENAE], 2013).

1.4.4 <u>Helicopter Geophysical Survey at Former Camp Wellfleet, Oak Ridge</u> <u>National Laboratory</u>

Oak Ridge National Laboratory (ORNL) conducted a helicopter geophysical survey of all of Camp Wellfleet in March 2002. The purpose of the survey was to detect and map unexploded ordnance (UXO) and concentrations of metallic waste or debris that could contribute to environmental degradation or otherwise pose a safety hazard. The total survey coverage was 1,738 acres. The *Arrowhead* eight-sensor magnetometry system was used, but due to vegetation, the sensor height above ground was a limiting factor in the usefulness of the data, in that typical UXO would not be detected when the sensor was 5 or more meters above ground. However, 345 single point anomalies (SPAs) were identified in the report and most were investigated intrusively. This resulted in removal actions in several focused areas of the Former Camp Wellfleet (e.g. SPA 250, 264, 266, 279, and 329).

1.4.5 <u>Final – Revision 1 Site Specific Final Report, Ordnance and Explosives</u> <u>Removal Action, Former Camp Wellfleet, and Final Site Specific Final</u> <u>Investigation Report - Addendum, OE Removal Action, Former Camp</u> <u>Wellfleet, Zapata Engineering</u>

Ordnance and Explosives (OE) removal activities were conducted from approximately 2003 through 2005. These activities included investigations of SPAs in 2003 and 2004, investigation grids in 2004, and removal action areas in 2005. SPA locations were based on selected anomalies identified by the ORNL airborne geophysical survey. Some grids were installed to further investigate SPAs and others were installed in other areas. Removal actions resulted in the excavation of over 1,600 anomalies and removal of over 3,400 pounds of MD and 5,109 pounds of metal scrap. 136 projectile flashtubes were excavated from SPA 329 and were identified at that time as UXO. A geophysical grid was installed at SPA 279, a suspected Open Burn/Open Detonation (OB/OD) area. A series of pits were installed at anomalies by an excavator and 1,040 pounds of MD was removed from one of the pits. A removal action was conducted in EE/CA Area B to the east of the large parking lot, where abundant MD (mostly rocket parts) was removed. Additionally, calcium hydride cannisters were found in one of the SPAs and one of the investigation grids.

A limited number of soil samples were collected at grid 279. These samples were analyzed for metals (i.e., arsenic, barium, cadmium, chromium, lead, mercury, nickel, selenium, and silver), explosives compounds, and extractable petroleum hydrocarbons (EPH). The reported results for all soil samples were less than screening levels for the metals, explosives, and EPH.

1.4.6 <u>Summary of Previous Investigations</u>

The following summary provides a more complete understanding of the findings of the various previous activities at the former Camp Wellfleet.

The TEC investigation of historical aerial photography summarized changes in the land use at the installation over time and identified the locations of ground scars and other features of interest. These features, which are shown in the aerial photo background of Figure 2, form the basis of Areas A through N, investigated during the EE/CA. The geophysical grids placed throughout Areas A through N are shown on Figure 2. One MEC item (rifle smoke grenade) was discovered in Area L, and various types of MD were found in many other areas.

The EE/CA Action Memorandum recommended focused removal actions which were conducted from 2003 through 2005. Prior to implementing the Action Memorandum recommendations, the aerial magnetic helicopter survey was conducted by ORNL in 2002, and it functioned to further support areas for removal. The ORNL effort identified SPAs (as shown in Figure 2), which were intrusively investigated as part of the removal actions. MD was found in several SPAs. More investigation grids were completed in 2004, mostly along the old artillery firing line, and more MD was discovered. These grids are also identified on Figure 2. Removal actions continued into 2005, focusing on grid 279, SPA 329, and the area to the east of the parking lot where abundant MD was removed.

1.5 Initial Summary of Risk from MEC and MC

Results of previous investigations at the Former Camp Wellfleet indicate that MEC had been found at the site. Table 1-1 presents a general summary of MEC and MD items identified during previous investigations, but munitions-related findings specific to the areas of investigation for this RI are described in Section 3.1.2.

With regard to more recent findings, the 2013 Five-Year Review Report (USACE, 2013) states that since May 2008, munitions-related findings include:

In July 2008 NPS contacted the State bomb squad after a marine marker, an intact 0.50 caliber shell, and an empty 0.50 caliber shell casing were found coming out of the dune face. This location is shown on Figure 2. These were considered to be MD.

In April 2009 approximately thirty 0.50 caliber shells were found coming from the dunes; however, while noted as generally being associated with Marconi Beach, no coordinate information was reported.

In July 2014, a 14-inch projectile was found and news reports indicated that the State bomb squad noted that it was a live item (considered to be MEC). While noted as generally being associated with Marconi Beach, specific details for this item are anecdotal based on news reports of the incident; no coordinate information was provided and size and type of the item was not confirmed.

The previous investigations/removals were focused across several different EE/CA Areas, and it was necessary to determine whether sufficient MEC data had been obtained to characterize MEC nature and extent for this RI. Section 1.6 describes the approach to organizing the various areas to make this determination, and Section 3.1 provides the detail for the conclusion that sufficient MEC field investigation had been conducted to determine the nature and extent characterizations of MEC at the site.

Based on this conclusion, additional MEC field investigations were not required during this RI. However, it was not known if any risks associated with MC were present at the Former Camp Wellfleet. Therefore, the RI field investigation was designed to determine if any releases of MC have occurred at the Former Camp Wellfleet, and if so, whether any MC risks exist.

Table 1-1. MEC and MD Items Found at the Former Camp Wellfleet
MEC
76mm anti-aircraft artillery Rifle Smoke Grenade
14-inch projectile*
MD
M28A1 Flash Tubes from 106mm cartridges (initially considered MEC but later determined to be MD)
250-pound practice bomb
60mm projectiles
Ammunition clips
Dove missile (practice)
Fuze shipping debris
Grenade (fragments, fuzes, spoons)
Metal fragments/burned metal debris
Rocket head/motor
Warhead fragments
Small Arms ammunition, 0.30 ball, 0.30 caliber, 0.50 cal
* - Specific information for this item is anecdotal based on news reports of the incident. Location, size, and type has not been confirmed.
NOTE: As described in more detail in Table 3-2 and Section 3.1.4, for the ocean artillery range fan, the presence of 3.5" rockets, and 90mm and 105mm high explosives (HE) MEC items is assumed based on historical evidence of munitions use where anti-aircraft and rocket firing was conducted for approximately 20 years.

1.6 Areas of Investigation for the RI

The RI investigation approach for the Former Camp Wellfleet was based primarily on the ASR and EE/CA identified 'Areas', as described in Sections 1.4.1 and 1.4.2. The ASR and EE/CA investigations defined areas that were determined to have MEC, have a potential for MEC, or no potential for MEC.

However, additional research, including the TEC aerial photo and groundscar analysis, helped to further identify the investigation areas for this RI. Consequently, the Project Delivery Team (PDT) developed Areas of Interest (AOIs) as the primary basis of investigation for the RI. The AOI term is used to be consistent with terminology used in the USACE FUDS Handbook on Delineation and Munitions Response Site Prioritization Protocol (MRSPP) Implementation.

The AOI configurations consider the original ASR and EE/CA Areas, the results of subsequent removal actions, the aerial groundscar analysis, and the FUDS Management Information System (FUDSMIS) project acreage for Camp Wellfleet. Additionally, review of Conceptual Site Model (CSM) elements and common past activities allowed for combining some of the Areas, or the screening out of Areas where there was no evidence of MEC/MD, resulting in the six (6) AOIs that form the basis of the RI. The AOIs, overlying the original 'Areas', are shown in Figure 3. Section 3.1 provides more detail on the development of the AOIs as the basis for this investigation, and how the original EE/CA Areas became the current AOIs.

The sixth AOI (AOI-06) is the ocean portion of the artillery range fan that is addressed by the current 3Rs (Recognize, Retreat, Report) educational program in effect at the site. The 3Rs educational program is part of the institutional controls recommended in the EE/CA. AOI-06 is shown as an inset in Figure 3.

By definition, the five (5) land-based AOIs are areas that have MEC or have the potential for MEC. As such, with regard to the MC investigation component, these AOIs also represent locations judgmentally considered to pose the greatest likelihood to have MC contamination present. No MC sampling was conducted for AOI-06 as there were no specific MEC items to target and MC sampling in an ocean range is not typical or practical; however, it was evaluated for MEC risk for this RI.

1.7 Report Organization

This report is organized in general accordance with the suggested RI report table of contents presented in the USEPA Guidance for Conducting RI/FS (USEPA, 1988) and the Army MMRP RI/FS Guidance (USACE, 2009).

Sections 1.0 and 2.0 present the introduction, history, and site description. Section 3.0 presents the investigation approach and Section 4.0 presents the assessment of MC data quality. Section 5.0 presents the RI results and Section 6.0 the conclusions and recommendations for the Former Camp Wellfleet. All figures are presented in Appendix A. Other appendices present MEC Data Quality Objectives (DQOs), the Incremental Sampling Technical Memorandum, Analytical Data, MEC Risk Matrix tables, MRSPP scoring, a Photographic Log, and Field Documentation.

2.0 SITE DESCRIPTION AND ENVIRONMENTAL SETTING

A site layout map is presented in Figure 2. The environmental setting for the Former Camp Wellfleet comprises beaches and dunes on the eastern side, heathlands and grasslands, and forested areas on the central portion and western side.

2.1 Overall Site Description

Cape Cod lies within the New England physiographic province, Seaboard Lowlands Section (USGS, 1999). Cape Cod was built primarily during the Ice Age (Pleistocene Epoch) by the advance and then retreat of the ice sheets that covered New England. The retreating glaciers deposited rock debris, called drift, which overlies the older bedrock. Drift consists of very fine to very coarse rock debris. This is a glaciofluvial depositional environment, with drift deposits near the Former Camp Wellfleet consisting mostly of glacial outwash materials, primarily sand and gravel. The drift thickness on Cape Cod ranges from 100 to more than 1,000 feet. Cape Cod undergoes changes due to marine erosion and deposition with approximately 7 meters of loss per year along the Atlantic Ocean and approximately 10 meters of new land created by beach and dune deposits (USGS, 2013).

2.1.1 Surface Features

The highest elevation within the uplands region of the Former Camp Wellfleet is approximately 100 feet above mean sea level on NAVD88 (USGS, 2016). The land surface is characterized by rolling hills and bluffs along the eastern side of the site (Figure 4).

2.1.2 Surface Water Hydrology

The Atlantic Ocean borders the Former Camp Wellfleet to the east. Blackfish Creek is north of Area E. There are a small unnamed lake and an unnamed stream south of Area L, and two small streams (Silver Spring Brook and Hatches Creek) near Area M. There are riverine or freshwater emergent wetlands along the stream south of Area L, a freshwater forested/shrub wetland east of Area E, and estuarine and marine wetland along the coast of the Atlantic Ocean within the Former Camp Wellfleet (USFWS, <u>https://www.fws.gov/wetlands/arcgis/rest/services/Wetlands/MapServer</u> last accessed 2 November 2016). Surface water features are shown in Figure 4.

2.1.3 <u>Meteorology</u>

The Former Camp Wellfleet is located within Cape Cod with weather consisting of four distinct seasons. The Atlantic Ocean influences the climate of Cape Cod with cold ocean temperatures delaying the onset of spring and warmer ocean temperatures delaying the onset of fall. The average temperatures in the summer and winter are in the mid-60s [Fahrenheit (°F)] and mid-40s °F, respectively. July is the warmest month of the year with an average high temperature of 78°F; January is the coldest month with an average low temperature of 39°F. Daily temperature variations between night and day average approximately $15^{\circ}F$.

The annual average precipitation is 43.36 inches. Precipitation is evenly distributed throughout the year. The wettest month of the year is March with an average precipitation of 4.49 inches and the driest month of the year is July with an average precipitation of 2.8 inches.

2.1.4 <u>Geology</u>

The sediments of Cape Cod were deposited at or near the terminus of the Laurentide ice sheet, which formed the surficial geology of Cape Cod. It consists of sandy terminal moraines and an

assortment of thick sandy till, ice-contact outwash, and glacial-lake deposits underlain by Paleozoic crystalline bedrock. Glacial deposits range in thickness from 100 feet along Cape Cod Canal to approximately 1,000 feet at the northern end of the peninsula (USGS, 1999).

2.1.5 Soils and Sediments

Soils in the Former Camp Wellfleet primarily consist of Carver Coarse Sand (very deep, excessively drained coarse sandy soils formed in glaciofluvial deposits) on the western side and rolling Hooksan Sand (very deep, excessively drained sandy soils formed from eolian sands derived from sandy marine deposits) on the eastern side. These soils generally exhibit moderate to high permeability (USDA, 1993). Figure 5 shows the soil types within the site.

Sediments underlying the Former Camp Wellfleet primarily consist of undifferentiated outwash and local ice-contact characterized by coarse sand and gravel with some clay, silt, cobbles, and boulders. Beach and dune deposits are evident along the Atlantic coastal areas of the Former Camp Wellfleet (USGS, 1995).

2.1.6 <u>Hydrogeology</u>

The Former Camp Wellfleet is underlain by the Nauset fresh water lens, which is bounded laterally and below by saltwater. The Nauset is one of four lenses that constitute the Lower Cape Cod aquifer. Surface water discharge areas separate the lenses. The Lower Cape Cod aquifer provides drinking water for the communities of Wellfleet, Eastham, Truro, and Provincetown, and for the NPS CCNS facilities throughout the Cape Cod National Seashore.

Groundwater discharge from the Lower Cape Code aquifer provides the primary source of water for the wetlands, kettle ponds, and streams throughout Lower Cape Cod. Groundwater elevation is approximately 8 ft above the local sea level (USGS, 2005) within the Former Camp Wellfleet. Groundwater in the Nauset lens flows radially toward the Atlantic Ocean (east and south), Cape Cod Bay (west), and Black Fish Creek (north) (USGS, 2005). Groundwater within the site flows east toward the Atlantic Ocean.

Precipitation recharges groundwater. Due to the high permeability of the soils, an estimated 45% of the annual precipitation becomes groundwater recharge (USGS, 1995).

2.1.7 Demography and Land Use

The Former Camp Wellfleet beach area is currently used for recreational sunbathing, surfing, fishing, hiking, and sightseeing. The remaining areas are currently used for recreational hiking, hunting, picnicking, and mushroom picking. The National Seashore Headquarters is located on the Former Camp Wellfleet within in the former cantonment area. Land use at the site is projected to remain recreational.

2.1.8 <u>Ecology</u>

The Former Camp Wellfleet is located within the CCNS National Park and is within the Town of Wellfleet. The coast, wetlands, and woodland areas contain a variety of ecosystems. The Former Camp Wellfleet is within Natural Heritage & Endangered Species Program (NHESP) Estimated Habitats of Rare Wildlife and NHESP Priority Habitats of Rare Species (Figure 4).

The field sampling program required coordination with resource agencies, including the U.S. Fish and Wildlife Service and the MA Natural Heritage & Endangered Species Program. USACE sent coordination letters to these agencies as part of the Work Plan coordination activities.

Depending on the season, there are 25 Federally-listed species known to occur at the Cape Cod National Seashore, of which three have the potential to occur in our investigation area (Northernlong Eared Bat, Red Knot, and Piping Plover). In addition, there are 32 rare or endangered species protected under the Massachusetts Endangered Species Act that are known to occur at the National Seashore.

Sixteen plant communities are within the boundary of the Former Camp Wellfleet, as shown in Figure 6. Information on plant communities is from Vegetation Classification and Mapping at Cape Cod National Seashore, Massachusetts (USDOI NPS, 2010). The NHESP classifies two areas within Former Camp Wellfleet as natural communities of biodiversity conservation interest, the Sandplain Heathlands and Coastal Atlantic White Cedar Swamp (Figure 4). RI sampling was conducted within the Coastal Pitch Pine/Scrub Oak Barren, Lower New England Red Maple-Blackgum Swamp, North Atlantic Upper Ocean Beach, Outwash Shrub Oak Barrens, Pitch Pine – Heath Barrens, Pitch Pine Dune Woodland, Pitch Pine-Oak Forest, and Sandplain Heathland plant communities.

2.1.9 <u>Cultural and Archaeological Resources</u>

The Camp Wellfleet FUDS includes the Marconi site, which is a historical and cultural resource. The field team coordinated with NPS CCNS and MA State Historic Preservation Officer to ensure that sampling locations did not impact known cultural or archaeological sites. USACE sent a coordination letter to the MA State Historic Preservation Officer as part of the Work Plan coordination activities.

3.0 INVESTIGATION APPROACH

The goal of the RI field investigation activities was to determine the nature and extent of MEC and MC contamination at the Former Camp Wellfleet, potentially caused by prior military operations, and to recommend whether further actions are warranted. This section discusses the investigation that was conducted to make these determinations for MEC and MC, respectively.

As described in Section 1.6, five land-based AOIs were developed from areas determined by previous investigations (ASR, EE/CA) to have had MEC or have the potential for MEC. These AOIs would consequently represent locations where MC might also be expected, and therefore, they form the primary basis of investigation for MEC and MC for this RI.

A more detailed summary of the development of each AOI is provided in the discussions below.

3.1 MEC Data Needs

Data were needed to assess the nature and extent of MEC contamination at the Former Camp Wellfleet. In order to demonstrate that there were sufficient data, those areas of previous military activities were developed into focused AOIs. Then a MEC CSM and MEC Data Quality Objectives (DQOs) were developed based on the descriptions of past activities conducted within these AOIs. Using the existing previous Former Camp Wellfleet investigation findings, each AOI was then tested to determine whether the DQOs were met.

3.1.1 Geophysical Data Usability Assessment

It was first necessary to assess the usability of the data from previous investigations to determine the geophysical coverage and the statistical confidence of MEC density determinations to apply to each focused AOI. The type and quality of the data from each of the key prior investigations/removal actions, as described in Section 1.4, are discussed below.

In general, while these investigations pre-dated the more current Geophysical System Verification process, either a test strip or Geophysical Proveout (GPO) was used in each of the surveys. For example, for the EE/CA (2000), a 30 m x 30 m test plot was constructed by burying inert and simulated ordnance items. The geophysicists collected G-858 gradiometer data on the test plot initially and then re-ran the collection weekly during the survey. The buried items were detected each time, demonstrating repeatability in the system and usability of the data. Figure 2 shows the grids investigated during the EE/CA. For most of the grids, 100% excavation was conducted, and those data were used for geophysical coverage calculations for this RI. For some grids, however, only a sample of anomalies was excavated. Since the MEC density calculations made to assess data for this RI assume that all anomalies within a grid were excavated, the partial EE/CA grids were not used for geophysical coverage calculations.

For the aerial magnetic helicopter survey of 2002, ORNL also used a test plot. Steel pipes were buried in the ground in a clear area, and the helicopter's sensors were passed over them. The report notes that this was performed daily, demonstrating repeatability and supporting usability of the data. Existing large metallic structures (i.e., buildings) were detected where expected, validating the locational accuracy of the survey. Metallic objects were subsequently found at nearly all single point anomalies (SPAs), supporting the reliability of the data. However, the height of the sensors above the ground, determined primarily by vegetation, limited the ability to detect anything but the largest ordnance items in most cases, so these data were not used for geophysical coverage calculations for this RI. For the 2003-2004 SPA investigations, although over 300 anomalies were investigated, the coverage associated with each individual one is only a few square feet and they were not used for geophysical coverage calculations for the RI. However, when the associated follow-on grid investigations (2004) were conducted, a full GPO was constructed and a report including test plot design and results of sensor tests was prepared and approved prior to grid data collection. A G-858 magnetometer was used for the GPO and in the grids, with a tight sensor spacing of 18 inches, producing excellent quality usable data, and all these grid data were used for geophysical coverage calculations for this RI.

The 2005 larger scale removal actions (EE/CA Area B and other SPAs) were performed using hand-held analog detectors followed by immediate excavation ("mag & dig"), which is a standard method for a removal action used today. The areas are well defined and the amount of MEC and MD is well documented, and therefore these data were used for geophysical coverage for this RI.Section 5.1.3 provides a MEC data uncertainty discussion.

3.1.2 AOI Development

Table 3-1 summarizes past activities and previous investigation findings used to adjust the EE/CAdefined Areas, combine Areas where appropriate, or screen out Areas with no evidence of MEC/MD, and then make determinations of whether they warranted further review in this RI. The determination of whether further review was required for this RI formed the basis of development of the focused AOIs. Note that the issue of whether additional field investigation was required for the AOIs once they were developed, is addressed in Section 3.1.4 below.

Table 3-1. Analysis of Historical Investigation Areas				
ASR or EE/CA Area	Description	Prior Investigation Findings	Analysis	Further Addressed in this RI?
A	Former Artillery Firing Line—firing points for 90 mm and other anti-aircraft artillery	Small arms debris, 90 mm fuze clips/cans, frag, and calcium hydroxide cannisters. Sea cliff erosion exposes ordnance including 76 mm anti- aircraft round (MEC).	MEC presence established from historical record and investigations. Area was expanded westward to capture aerial features and some ORNL survey areas.	Yes
В	Rocket Range – area also includes a small arms range	3.5-in rocket and 105 mm projectile parts and frag. Removal action completed. Small arms range now parking lot.	MEC presence possible but only MD found. Area was expanded south and westward to capture removal action areas.	Yes
C	Bomb Target Area— large Dove bomb target/impact area in mid 1940s	3 empty Dove bombs, fuze shipping spacers, grenade frag, small arms debris, flash tubes	MEC presence possible but only MD found. Combined with Area F and J based on common past activities.	Yes
D	Ammunition Supply Point—multiple U- shaped revetments possibly used to store ammunition	Fuze shipping spacers, small arms debris	MEC presence possible but only MD found. Combined with Area L, capturing aerial features in the acreage between them.	Yes

Figure 2 shows Areas A through N.

Table 3-1. Analysis of Historical Investigation Areas							
ASR or EE/CA Area	Description	Prior Investigation Findings	Analysis	Further Addressed in this RI?			
E	North Burial Site - Includes area initially considered an Open Burn/Open Detonation	Possible OB/OD area determined to be disposal pits for MD and non- munitions debris	Additional MD presence possible if other disposal pits exist. Footprint reduced to match extent of ground scars.	Yes			
F	South Burial Site – described as a known burial area in ASR	One empty Dove bomb, one empty 250 pound bomb found	MEC presence possible but only MD found. Combined with Area C and J based on common past activities.	Yes			
G	Cantonment Area – housing and living quarters for personnel	One small arms ammunition clip found	No evidence of MEC based on historical operations and previous investigations	No			
Н	Remaining Lands – acreage outside of ASR-EE/CA identified areas for investigation	One empty Dove bomb, small frag found	Minor areas of MD deleted from Area H footprint and captured by adjacent areas based on common past activities.	No			
Ι	Off-Shore Ordnance Area – off-shore artillery range fan	Not investigated previously	MEC presence assumed, but current 3Rs program sufficient to address risk	Yes			
J	Southern Bomb Target Area - large Dove bomb target/impact area in mid 1940s	Fragments of grenade spoons, frag, small arms debris found	MEC presence possible but only MD found. Combined with Area C and F based on common past activities.	Yes			
K	Old 1,000 Range – shown on an installation plan drawing, identified in 1951 aerial photo	No ordnance related debris found	No evidence of MEC based on historical operations and previous investigations	No			
L	Ground Scar Area – multiple groundscars identified from 1943 and 1947 aerial photos	One rifle smoke grenade found	MEC presence possible based on single finding. Combined with Area D, capturing aerial features in the acreage between them.	Yes			
М	Ground Scar/Impact Crater Area – identified from 1943 and 1947 aerial photos	No ordnance related debris found	No evidence of MEC based on historical operations and previous investigations	No			
N	Former Clifton Airfield – four cleared areas identified from a 1961 aerial	No ordnance related debris found	No evidence of MEC based on historical operations and previous investigations	No			

Based on the information summarized in **Table 3-1**, the EE/CA-defined areas determined to warrant further investigation in this RI, as adjusted or combined based on CSM elements, were developed into AOIs (**Table 3-2**). The CSM and munition types associated with each AOI (discussed below) is also indicated. Figure 3 shows the AOIs and their relationship to the EE/CA Areas.

Table 3-2. RI Areas of Interest						
AOI	Description	CSM	Munition Types	Acreage		
AOI-01	Area E, as reduced	Burial/Disposal Pits, Possible Landfill	No MEC. MD included 3.5" practice rockets, expended M2 anti-personnel mines, 407 M48 flashtubes, m7A3 2.36" practice rocket, and part of an inert filled M65 1,000lb "Dove" guided bomb.	33.1		
AOI-02	Area A as expanded	Artillery Firing Points	A 76mm anti-aircraft artillery (MEC), and 50 caliber ammunition, fuze cans, shipping clips for 90mm fuzes, 30 caliber ammunition cans, and unknown frag (MD).	275.0		
AOI-03	Areas D and L and the acreage between them	Ammunition Supply Points and Ground Scars	Rifle smoke grenade (MEC), and multiple fuze shipping spacers, and some small arms debris (MD).	120.2		
AOI-04	Areas C, F, and J	Bomb Targets and Small Burial Area	No MEC. MD included fuze shipping spacers, small arms debris, an empty Dove Missile/1000-pound bomb, an empty 250-pound bomb, 186 M28A1 flash tubes from 106mm projectile cartridge cases, and fragments of grenade spoons.	141.8		
AOI-05	Area B, as expanded	Rocket Range and Small Arms Range	HE frag from 3.5-inch rockets and 105mm projectiles (MD indicative of MEC), and miscellaneous MD scrap.	56.10		
AOI-06	Area I	Range Fan of Artillery Targets in Ocean	None found. Potential types: 76mm anti- aircraft artillery, 90mm and 105mm projectiles, 3.5" rockets.	167,856		

3.1.3 MEC Conceptual Site Model

A CSM is used to communicate and describe the current state of knowledge and assumptions about risks at a project site. The CSM presents the exposure pathway analysis by integrating information on the MEC source, receptors, and receptor/MEC interaction. Figure 7 provides a graphical presentation of the MEC CSM for the Former Camp Wellfleet. Using the CSM elements, the AOIs were developed based on the following:

- EE/CA Area E was reduced in size to match the extent of groundscars representing a suspected sanitary landfill (TEC Report, 1998). Previous investigation suggested this was a possible Open Burn/Open Detonation (OB/OD) Area, but subsequent excavations found only MD with evidence that some items had undergone demolition procedures. This reduced area became AOI-01, where the possibility of additional MD remains.
- The original EE/CA Area A footprint included only the beach, bluff, and a narrow area west of the bluff where the artillery firing points were located. It was developed into AOI-02 by expanding westward to include all the EE/CA investigated grids, aerial features, removal action grids, and many SPAs. The nature and quantity of MD found (90 mm fuze cans and shipping clips) in the area is consistent with the known firing points along the bluffs.

- EE/CA Area D was used as an ammunition supply point with multiple U-shaped revetments. It was combined with Area L, including with the acreage between them, into AOI-03, due to similarity of ground scars of unknown origin within the areas on the 1943 and 1947 air photos.
- EE/CA Areas C and J are centered on large diameter bomb targets observed on aerial photos from the 1940s. Area F was a known burial site according to the ASR (1994). Practice Dove bombs and one empty 250-pound bomb have been found within or adjacent to these areas, including within Area F, confirming the use as bombing targets. These three areas were therefore combined into a single AOI (AOI-04).
- EE/CA Area B was expanded to include the terrestrial portions of a rocket range and small arms range. The small arms range has been completely covered by the large parking lot now present. The southern portion includes a small 5-acre removal action area (Zapata 2006). This expanded area became AOI-05.

3.1.4 MEC Data Quality Objectives

DQOs are qualitative and quantitative statements that specify the quality and level of data required to support the decision-making processes for a project. DQOs for MEC were developed as a basis for determining whether each of the AOIs identified in Table 3-2 above, required additional field investigation during the RI.

A typical MEC DQO is to have sufficient data to state that the density of MEC within the study area is below a threshold with a confidence expressed as a percentage. The basis of the DQO at the Former Camp Wellfleet was to make use of previous/existing geophysical data in order to decide if further field investigation of nature and extent was necessary. Visual Sample Plan (VSP), a statistically-based software published by Pacific Northwest National Laboratory, was used in the analysis of the previous data collected at the Former Camp Wellfleet. The following is a summary of that analysis; a more detailed presentation is contained in Appendix B.

The VSP module used was *Sampling Goals* > *Remedial Investigation (UXO)* > *Target of Interest (TOI) Rate Estimation*. Required inputs include the area of valid geophysical coverage, and the number of MEC items found within the geophysical area. The analysis was conducted for each of the five land-based AOIs using both 80% and 95% confidence and both 1.0 TOI/acre and 5.0 TOI/acre thresholds. Results are summarized in Appendix B, Table B-1.

The DQO for determining the need for further fieldwork was determined by the PDT to be:

• For each AOI, there should be at least 80% confidence that the TOI/acre should be less than 1.0.

Table B-1 indicates that this DQO was met for AOI-02 through AOI-05, with confidence ranging from 86.5% to 99.9%, i.e., no further field work was required. Due to low geophysical coverage (less than 1 acre), the DQO was not met for AOI-01, but the PDT concurred that no further fieldwork was necessary because it is a burial pit/possible landfill, where MD was found in only one grid, along with a significant amount of non-munition related debris, and it was estimated that, assuming coverage credit for the 3 grids that were not completely excavated (but for which no MEC or MD were found in the excavated portions) the confidence calculation would likely exceed the 80% goal.

As shown in Appendix B, Table B-1, the analysis concluded that sufficient MEC data existed and that no additional field investigation for MEC was required to complete this RI. For AOI-06, the

ocean range fan, MEC presence was assumed and therefore no further field investigation for this RI was required.

3.2 Characterization of MEC

The discussions above indicate that sufficient data were available to characterize the nature and extent of MEC at each AOI, without the need for additional field investigation during this RI. Using the existing data from the previous investigations, the methodologies described below were used to make determinations of explosive risk posed by each AOI.

3.2.1 MEC Risk Assessment Matrices

MEC risk was evaluated using the current USACE risk assessment methodology to define risk posed by MEC hazards. The method, provided in the *Decision Logic to Assess Risks Associated with Explosive Hazards, and to Develop Remedial Action Objectives for Munitions Response Sites* (USACE, 2017c), involves the use of four matrices to define acceptable and unacceptable risk from MEC hazards based on the likelihood of an encounter, the severity of incident, and the sensitivity of interaction based on expected land use activities. This method is ultimately used to establish remedial action objectives and to help evaluate potential remedial action alternatives.

Section 5.1.1 provides the detail of the analysis of whether the Former Camp Wellfleet AOIs pose acceptable or unacceptable explosive risk.

3.2.2 <u>Munitions Response Site Prioritization Protocol</u>

DoD developed the Munitions Response Site Prioritization Protocol (MRSPP) as a methodology for prioritizing sites known or suspected to contain MEC or MC for response actions, assigning a relative priority based on various safety and environmental factors. The MRSPP consists of three modules to evaluate the unique characteristics of each hazard type at an MRS: the Explosive Hazard Evaluation module, the Chemical Warfare Materiel Hazard Evaluation module, and the Health Hazard Evaluation module.

Section 5.2 provides the detail of the MRSPP rankings for each Former Camp Wellfleet AOI.

3.3 MC Data Needs

Data were needed to assess the nature and extent of potential MC contamination resulting from past practices at Camp Wellfleet. Environmental sampling was conducted to determine the distribution and concentrations of metals and explosives in surface and subsurface soil. In addition, ERT collected a groundwater sample from one drinking water supply well (Supply Well B) at the request of NPS CCNS personnel. All sample data were screened against the relevant comparison criteria to evaluate potential release of MC to the environment, to achieve the RI objectives.

3.3.1 MC Conceptual Site Model

An MC CSM (Figure 8) was developed in accordance with EM-200-1-12 (USACE, 2012), to illustrate the mechanisms by which MC from past DoD activities at Camp Wellfleet could potentially migrate from affected source media to the point of exposure where contact with receptors may occur.

3.3.1.1 Receptors

Potential receptors to MC in the Former Camp Wellfleet include human populations, animal species, or habitats that may be exposed to site-related MC contamination in environmental media.

Upland habitat types within the Former Camp Wellfleet are shown in Figure 6. Soil sampling was conducted within the Coastal Pitch Pine/Scrub Oak Barren, Lower New England Red Maple-Blackgum Swamp, North Atlantic Upper Ocean Beach, Outwash Shrub Oak Barrens, Pitch Pine – Heath Barrens, Pitch Pine Dune Woodland, Pitch Pine-Oak Forest, and Sandplain Heathland plant communities.

Human receptors are primarily the following:

- Recreational Users
- Site Workers (including CCNS NPS Staff and Road/Utility Workers)
- Construction Workers

Ecological receptors include various birds, mammals, invertebrates, flora, and fauna that occur within the Former Camp Wellfleet. Wildlife species at the CCNS include twelve species of amphibians, 370 species of birds, 59 species of mammals, five species of migratory marine turtles, and 13 species of land-based reptiles (NPS website, https://www.nps.gov/caco).

There are two distinct habitat areas within the site: upland and beach. Both human and natural influences have created the upland habitat. The dominant tree species in the upland habitat include pitch pine (Pinus rigida), black oak (Quercus velutina), and white oak (Quercus alba) with smaller areas of black locust (Robinia pseudoacacia), and red maple (Acer rubrum). Sandplains, areas of glacial outwash, are also part of the uplands habitat and consist of grassland and heathland. The beach habitat consists of areas above and below the tide line. Above the tide line is a transition zone between the marine and terrestrial habitats. Below the tide line, the sand is host to nematodes, copepods, and other invertebrates (NPS website, https://www.nps.gov/caco).

3.3.1.2 Sources, Mechanisms, and Exposure

The source of potential MC at the Former Camp Wellfleet is primarily the result of historical military activities, including the firing of artillery, practice bombing, and small arms. The potential MC across the Former Camp Wellfleet includes select munitions-related metals and explosive compounds. Munitions used at Camp Wellfleet were identified from the prior investigations, as outlined in Section 1.5. The munitions-related metals were selected based on knowledge of the munitions used at Camp Wellfleet, USACE guidance (USACE, 2013), and the MIDAS search results (Final Work Plan (USACE, 2018), Appendix E, Attachment B). The previous military activities may have impacted surface and subsurface soil, which potentially results in MC being released by runoff and erosion. Where access is available and activities are such that exposure is possible, then exposure to receptors by ingestion, inhalation, and dermal contact are potentially complete pathways.

Groundwater is not currently a pathway of concern unless soil sampling results indicate a possible impact to groundwater. Groundwater at the Former Camp Wellfleet is currently used for drinking water, and therefore, at the request of CCNS NPS, ERT collected one groundwater sample from the supply well (Supply Well B).

3.3.2 MC Data Quality Objectives

MC DQOs were developed to support the determination of the nature and extent of MC contamination at the Former Camp Wellfleet and to recommend whether further actions are warranted. The DQOs for the environmental sampling are presented in **Table 3-3** (MC sampling). In addition, laboratory analytical DQOs for environmental sampling were presented in the

approved UFP-QAPP, Appendix E to the Work Plan [USACE, 2018]). All DQOs were reviewed and accepted by the PDT prior to the commencement of field activities.

Table 3-3. Soil Sampling DQO – Former Camp Wellfleet					
DQO Element	Specific DQO Statement				
Project Objective(s) Satisfied	To determine the nature and extent of MC.				
Data User Perspective(s)	To obtain representative soil data to determine if an MC release has occurred, and if a release is identified, define nature and extent of MC by additional sampling, and compare results against defined screening levels and background sampling results. If detected soil concentrations exceed both screening levels and background results, conduct an HHRA and SLERA to determine if there are human health and/or ecological risks associated with contamination present in soils due to past DoD activities.				
Contaminant or	Based on historical use of the Former Camp Wellfleet and results for MEC				
Characteristic of Interest	 and MD items found, analyze the media of interest for the following: Metals (antimony, copper, lead, manganese, nickel, and zinc) Explosives (RDX, TNT, nitroglycerin, 2,4-dinitrotoluene, 2,6-dinitrotoluene, tetryl, and nitroguanidine) 				
Media of Interest	Surface and subsurface soil, groundwater				
Required Sampling Locations or Areas	Surface and subsurface soil samples to be collected based on historical locations of MEC or MD finds, or depths of previous munitions-related activities.				
Number of Samples Required	 A. 17 incremental sampling (IS) surface soil samples (exclusive of background and QC replicates) B. 3 IS subsurface soil samples (exclusive of background and QC replicates) C. 8 discrete subsurface samples in the AOI-01 burial pit area (exclusive of QC samples) D. 7 IS surface and subsurface background soil samples (exclusive of QC replicates) 				
Reference Concentration of Interest or Other Performance Criteria	USEPA Regional Screening Levels (RSLs), S-1 Soil & GW-1 Standards as given in Massachusetts Contingency Plan (MCP) Table 2, 310 CMR 40.0975(6)(a), and background metals. Comparisons to these criteria to be utilized along with comparisons to background results, to evaluate the need for additional soil sampling to determine contaminant extent, and, subsequently as warranted, to select chemicals of potential concern (COPCs) and chemicals of potential ecological concern (COPECs) for an HHRA and SLERA.				
Sampling Methods and Depths	 A. Incremental Sampling (IS) method for surface soil in the 0-6 inches bgs interval using a step probe. B. IS subsurface soil samples will be at 0.5 ft to 3 ft bgs. IS subsurface soil samples will be collected using a step probe. C. Discrete subsurface samples will be collected from the AOI-01 burial pit area at 8-10 ft bgs, using a hand auger. 				
Analytical Methods	Metals analysis by SW-846 Method 6010C; explosives analysis via SW-846 Method 8330B				

3.4 Characterization of Munitions Constituents

MC soil sampling locations were collected from areas where previous investigations identified MEC/MD, portions of the site judgmentally considered to potentially contain the largest MC contaminant concentrations.

Although not currently a pathway of concern unless soil sampling results were to indicate a possible impact, groundwater was sampled at the request of the CCNS NPS (Supply Well B, used for drinking water).

3.4.1 General Approach

ERT's sampling approach reflected the approved Work plan procedures intended to minimize impacts to the various ecosystems and sensitive plant communities as referenced in Section 2.1.8. NPS provided oversight of the entire field operation to ensure that field staff were always aware of, and did not adversely impact, NHESP Estimated Habitats of Rare Wildlife and Priority Habitats of Rare Species.

The general approach was to collect surface and subsurface soil samples using the IS methodology. However, based on comments received from the Massachusetts Department of Environmental Protection (MassDEP) on this approach, a *Technical Memorandum* (ERT, 2018) was drafted to capture revisions to the original soil sampling plan. The revisions were largely based on MassDEP's request for additional increments using the IS methodology and a higher percentage of replicate (triplicate) sampling, as described in more detail in Section 3.4.3. In addition, discrete subsurface soil samples were recommended for the AOI-01 subsurface due to the difficulty of collecting multiple sample increments from the 8-10 foot bgs sampling interval. Upon Technical Memo concurrence, all revisions were incorporated into the Final Work Plan/UFP-QAPP (USACE, 2018), and all RI sampling was conducted accordingly.

MC sampling was conducted using a phased approach. As described in the **Table 3-3** DQOs, screening of initial sampling results against the project screening levels (PSLs) was conducted to evaluate the need for additional soil sampling to determine contaminant extent, and, subsequently as warranted, to select COPCs and COPECs for an HHRA and SLERA. Phase 2 follow-on sampling would only be conducted if the data screening determined it was warranted.

Figure 9 presents an overview of all sampling locations.

3.4.2 <u>Comparison Criteria</u>

As detailed in the Final Work Plan/UFP-QAPP, data results for IS soil samples were compared to USEPA RSLs for Residential Soil, S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2, USEPA Ecological Soil Screening Levels, and background sampling results. Data results for discrete soil samples were also compared to USEPA RSLs for Residential Soil, S-1 & GW-1 Massachusetts Contingency Plan Table 2, USEPA Ecological Soil Screening Levels, as well as MassDEP, Technical Update Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil (natural soil values) (MassDEP, 2002) (MA BKG). The Supply Well B groundwater sampling results were compared to Massachusetts Maximum Contaminant Levels (MMCLs) and the Massachusetts Drinking Water Guidelines (MassDEP, 2017).

3.4.2.1 Background Screening Concentrations

Background data were evaluated to determine outliers and distribution (Goodness of Fit). Surface and subsurface soil background data were compared using analysis of variance (ANOVA) to determine if the surface and subsurface represented statistically different populations or if the statistical characteristics were comparable (i.e., from the same population) and could be pooled. ANOVA comparisons of surface and subsurface soil sampling results for antimony and manganese indicated that the surface and subsurface results were from statistically similar populations (p > 0.05). ANOVA comparisons of surface and subsurface soil sampling results for copper, lead, nickel, and zinc indicated that the surface and subsurface soil sampling results were from statistically different populations ($p \le 0.05$).

To determine the background soil concentrations for comparison to site soil sampling results, ERT calculated the Background Threshold Values (BTVs) using the ProUCL, version 5.1, software. For each analyte for which there were no potential outliers, ERT selected the 95% upper simultaneous limit (USL) for the appropriate data distribution as the BTV. The use of the USL tends to provide a balance between false positives and false negatives provided the data represents a background data set.

For all analytes for which there were potential outliers, ERT selected the 95% upper threshold limit (UTL) with 95% coverage. The UTL was selected to cover the range of concentrations in the background population. Note that all calculated BTVs, except antimony, were less than the lower of the USEPA RSLs and the MCP screening levels. Therefore, except for antimony, the BTVs were not selected as the PSL for any of the MC metals, and the statistically different populations (surface and subsurface for the respective metals as described in the paragraph above) did not end up being meaningful to evaluating the results. Details of the statistical analysis of the background data are provided in Appendix D.1. The calculated BTVs are presented in **Table 3-4**.

Table 3-4. Background Threshold Values (BTVs) for Metals							
Analyte	Surface Soil BTV (mg/kg)	Subsurface Soil BTV (mg/kg)	Combined Surface and Subsurface Soil BTV (mg/kg)				
Antimony	NA	NA	3.4				
Copper	4.145	3.76	N/A				
Lead	23.1	4.242	N/A				
Manganese	N/A	N/A	109.8				
Nickel	1.924	2.81	N/A				
Zinc	7.69	19.19	N/A				

mg/kg - milligrams per kilogramN/A - not applicable

3.4.2.2 Project Screening Levels-Incremental Sampling Method Soil Samples

PSLs for IS surface and subsurface soil sampling results were determined by first selecting the lower of the USEPA RSLs and the MCP standards, and then comparing this value to the BTVs and selecting the larger value (**Table 3-5**). Because the BTVs were less than the USEPA RSLs and the MCPs for all metals except antimony, the PSLs for all metals, except antimony, are the lower of the USEPA RSLs and the MCP standards.

Table 3-5. RSLs, BTVs, and PSLs for IS Method Metals in Surface and Subsurface Soil							
Analyte	Unit	RSL	МСР	Surface BTV	Subsurface BTV	Surface PSL	Subsurface PSL
Antimony	mg/kg	3.1	20	3.4	3.4	3.4	3.4
Copper	mg/kg	310	NS	4.145	3.76	310	310
Lead	mg/kg	400	200	23.1	4.242	200	200
Manganese	mg/kg	180	NS	109.4	109.84	180	180

Table 3-5. RSLs, BTVs, and PSLs for IS Method Metals in Surface and Subsurface Soil							
AnalyteUnitRSLMCPSurfaceSubsurfaceSurfaceSubsurfaceSubsurfaceUnitRSLMCPBTVBTVPSLPSL							
Nickel	mg/kg	150	600	1.24	2.81	150	150
Zinc	mg/kg	2,300	1,000	7.69	19.19	1,000	1,000

RSL June 2017 USEPA RSL for Residential Soil, with hazard quotient = 0.1, except for lead, which is based on blood-lead modeling (USEPA, 2017)

3.4.2.3 Project Screening Levels-Discrete Sampling Method Soil Samples

PSLs for metals in discrete subsurface soil were determined by first selecting the lower of the USEPA RSLs and the MCP standards, and then comparing this value to the MA BKG, and then selecting the larger value. PSLs for discrete subsurface soil samples are shown in **Table 3-6**.

Table 3-6. RSLs, Background, and PSLs for Discrete Sampling Method Metalsin Subsurface Soil (mg/kg)						
Analyte	RSL	MCP	MA BKG	PSL		
Antimony	3.1	20	1	3.1		
Copper	310	NS	40	310		
Lead	400	200	100	200		
Manganese	180	NS	300	300		
Nickel	150	600	20	150		
Zinc	2,300	1,000	100	1,000		

MA BKGMassDEP, Technical Update Background Levels of Polycyclic Aromatic
Hydrocarbons and Metals in Soil. 2002NSNone Specified

3.4.2.4 Project Screening Levels-Explosives in Soil

PSLs for explosives in soil sampling results were determined by selecting the lower of the USEPA RSLs and the MCP standards. PSLs for explosives in soil (surface and subsurface by IS or discrete sampling methods) are shown in **Table 3-7**.

Table 3-7. RSLs, Background, and PSLs for Discrete Sampling MethodExplosives in Subsurface Soil (mg/kg)							
Analyte	RSL	МСР	PSL				
2,4-Dinitrotoluene	1.7	0.7	0.7				
2,6-Dinitrotoluene	0.36	NS	0.36				
Nitroglycerin	0.63	NS	0.63				
Nitroguanidine	630	NS	630				
Tetryl	16	NS	16				
TNT	3.6	NS	3.6				
RDX	6.1	1	1				

MCP S-1 & *GW-1 Massachusetts Contingency Plan Table* 2; *used for screening potential impacts to groundwater.*

3.4.2.5 Project Screening Levels-Groundwater Sample

PSLs for analytes in groundwater sampling results were determined using the Massachusetts Maximum Contaminant Levels (MMCL) and Massachusetts Office of Research and Standards Guidelines (ORSG) Drinking Water Guidelines, MassDEP, 2017. PSLs for groundwater samples are shown in **Table 3-8**. Note that no screening levels were identified for explosives in groundwater.

Table 3-8. PSLs for Groundwater Sampling Results							
Analyte	Unit	MMCL	ORSG	PSL			
Antimony	μg/L	6	NS	6			
Copper	μg/L	1,300	NS	1,300			
Lead	μg/L	15	NS	15			
Manganese	μg/L	NS	300	300			
Nickel	μg/L	NS	100	100			
Zinc	μg/L	NS	NS	NS			

µg/L micrograms per liter

MMCL Massachusetts Maximum Contaminant Levels, MassDEP, 2017

ORSG Massachusetts Drinking Water Guidelines, MassDEP, 2017

3.4.2.6 Ecological Screening Levels – Soil Samples

The ecological screening levels for analytes in site soil samples were determined using the USEPA Eco-SSLs (USEPA, 2015, 2017a, 2017b, 2017c, and 2017d). The Eco-SSLs are shown in Table 3-9. Note that no Eco-SSLs were identified for explosives.

Table 3-9. Eco-SSLs for Soil Sampling Results					
Analyte	Unit	Eco-SSL			
Antimony	mg/kg	0.27			
Copper	mg/kg	28			
Lead	mg/kg	11			
Manganese	mg/kg	220			
Nickel	mg/kg	38			
Zinc	mg/kg	49			

mg/kg milligrams per kilogram

Eco- USEPA Ecological Soil Screening Levels,

SSL https://www.epa.gov/chemical-research/interim-ecological-soilscreening-level-documents, last accessed 25 September 2018

3.4.3 Soil Sampling

Each IS soil sampling unit (SU) was a defined volume of soil from which increments were collected to determine an estimate of the mean concentration for that volume of soil. For the Former Camp Wellfleet sampling, the SUs for surface and subsurface soil were approximately 1/4 acre. Surface and subsurface IS soil sampling was conducted using a step-probe. All surface IS soil samples were collected from 0 to 0.5 ft bgs, and all subsurface soil IS samples were collected from 0.5 to 3 ft bgs. Each surface IS soil sample consisted of 50 increments, and each subsurface

IS soil sample consisted of 30 increments. Discrete subsurface soil samples were collected from 8 to 10 ft bgs using a hand auger.

The SU size, approximately 1/4 acre, was selected to provide ample coverage around significant finds, and provide a representative and reproducible estimate of the mean concentrations of MC within each SU.

ERT collected all soil samples in accordance with the Final Work Plan/UFP-QAPP (including the Technical Memo). All samples were analyzed for the select metals and explosives listed in **Table 3-3**. All soil sampling, including background sampling, is summarized in **Table 3-10** below, and all sample locations are shown in Figure 9.

	Table 3-10. RI Soil Sampling								
Sampling Unit	Previous Activities or Findings	Surface Soil Increments	Surface ISM Replicate (Triplicate) Sampling	Subsurface Soil Sampling	Rationale for Subsurface Sampling	Total Samples (including QC)			
AOI-01	AOI-01								
AOI1-SU1	Burial/Disposal Pit	50	100%	N/A	N/A	Surface – 1 in triplicate			
AOI1-SU2	Burial/Disposal Pit	50	100%	4 borings with discrete sampling of 8- 10 ft interval, random within investigation pit in the SU	Target depth of previous trenching and sampling of the OB/OD	Surface – 1 in triplicate, Subsurface – 4 (with duplicate)			
AOI1-SU3	Burial/Disposal Pit	50	100%	4 borings with discrete sampling of 8- 10 ft interval, random in SU	Target depth of previous trenching and sampling of the OB/OD	Surface – 1 in triplicate, Subsurface – 4 (with MS/MSD)			
AOI-02									
AOI2-SU1	Disturbed Ground/Ground Scars	50	100%	N/A	N/A	Surface – 1 in triplicate			
AOI2-SU2	Metal Fragment, Fuze Shipping Clip	50	100%	N/A	N/A	Surface – 1 in triplicate			
AOI2-SU3	1,000 lb Dove Practice Bomb	50	100%	N/A	N/A	Surface – 1 in triplicate			
AOI-03									
AOI3-SU1	Fuze Shipping Clips; ASP	50	100%	30 increment ISM sampling of 0.5-3 ft interval, with triplicate sampling	Target depth of previous MD finds	Surface – 1 in triplicate, Subsurface – 1 in triplicate			

		Table	3-10. RI Soil S	ampling		
Sampling Unit	Previous Activities or Findings	Surface Soil Increments	Surface ISM Replicate (Triplicate) Sampling	Subsurface Soil Sampling	Rationale for Subsurface Sampling	Total Samples (including QC)
AOI3-SU2	Fuze Shipping Spacers; ASP	50	100%	N/A	N/A	Surface – 1 in triplicate
AOI3-SU3	Rifle Smoke Grenade; Ground Scars	50	100%	N/A	N/A	Surface – 1 in triplicate
AOI-04	1	L		L	•	
AOI4-SU1	M28A1 Flash Tubes	50	100%	N/A	N/A	Surface – 1 in triplicate
AOI4-SU2	EE/CA Grid C-29 (Burn Pit)	50	100%	30 increment ISM sampling of 0.5-3 ft interval, with triplicate sampling	Target deepest observed burn pit depth	Surface – 1 in triplicate, Subsurface – 1 in triplicate
AOI4-SU3	1,000 lb Dove Practice Bomb	50	100%	N/A	N/A	Surface – 1 in triplicate
AOI4-SU4	1,000 lb Dove Practice Bomb	50	100%	N/A	N/A	Surface – 1 in triplicate
AOI4-SU5	1,000 lb Dove Practice Bomb, 250 lb Bomb, South Burial Site	50	100%	N/A	N/A	Surface – 1 in triplicate
AOI-05						
AOI5-SU1	Metal Fragments; Rocket Range	50	100%	N/A	N/A	Surface – 1 in triplicate
AOI5-SU2	Metal Fragments; Rocket Range; Zapata Removal Area	50	100%	N/A	N/A	Surface – 1 in triplicate
AOI5-SU3	5 in Rocket Venturi, 3.5 in Rocket Frag, 105mm Frag; Zapata Removal Area	50	100%	30 increment ISM sampling of 0.5-3 ft interval, with triplicate sampling	Target depth of previous MD finds	Surface – 1 in triplicate, Subsurface – 1 in triplicate

Table 3-10. RI Soil Sampling						
Sampling Unit	Previous Activities or Findings	Surface Soil Increments	Surface ISM Replicate (Triplicate) Sampling	Subsurface Soil Sampling	Rationale for Subsurface Sampling	Total Samples (including QC)
BACKGROUND						
BKG-SU1 through BKG-SU7	Background areas with no history of munitions activities	50	1 of 7 BG samples collected in triplicate	30 increment ISM sampling of 0.5-3 ft interval, with one triplicate sample	Mirror depth of site subsurface ISM samples	Surface – 1 in triplicate, Subsurface – 1 in triplicate

ISM replicate (triplicate) samples were collected using the same number of increments (50) and at the same depth (0-0.5 ft bgs for surface soil samples) and 30 increments (0.5 - 3 ft bgs for subsurface soil samples) using a different location within the SU (i.e., alternative path). Discrete subsurface soil field duplicates were collected from the same location and interval (8-10 ft bgs) as the parent sample. To reduce sample variability, all ISM samples were sieved by the laboratory; ISM sample materials analyzed for antimony, copper, lead, zinc, and explosives were also ground by the laboratory in accordance with ITRC guidance and the Final Work Plan/UFP-QAPP (including the Technical Memo).

3.4.4 <u>Background Sampling</u>

Figure 5 identifies the primary soil types of the areas to be sampled as Carver or Hooksan sands. However, further review of these two soil types indicated that they are very similar. Both soil types are coarse sands with the same soil classification: Soil Order (Entisols), Suborder (Psamments), Great Group (Quartzipsamments), and Subgroup (Typic Quartzipsamments). Both soil types are very deep, excessively drained sandy soils that may be found on level to steep terrain, and both types indicate moderate moisture content with similar physical properties of grain size and hydraulic conductivity. Therefore, compositional and distributional heterogeneity issues were not expected to be significant, and the background samples were collected, as described below, without making a distinction between the soil types.

The goal of the background soil sampling was to determine an estimate of the variability and mean of analyte concentrations in the background soil population to decrease the likelihood of false positive decisions (i.e., determining that a site soil sampling result was greater than background when it was not). To accomplish this goal, ERT collected single IS samples from six of seven of the background SUs and replicate (triplicate) IS samples from one background SU. Collecting a single replicate sample allowed validation of the selected SU size and increment number, while collecting single IS samples from multiple SUs provided a better estimate of the background concentration variability and, therefore, the BTV statistic is more likely to cover the upper range of the background soil sample population concentrations.

Background soil surface and subsurface samples (Figure 9) were collected using IS methodology at each of the seven SU background locations to develop a background dataset for metals due to determine the naturally occurring and/or anthropogenic sources not related to DoD activities. Consistent with the site IS soil sampling, background IS surface soil samples were collected in the

0-0.5 ft bgs interval and IS subsurface soil samples were collected in the 0.5-3 ft bgs interval. Each background surface IS soil sample consisted of 50 increments, and each background subsurface IS soil sample consisted of 30 increments.

3.4.5 Groundwater Sampling

As detailed in the Final Work Plan/UFP-QAPP (USACE, 2018), at the request of the CCNS NPS, ERT collected one groundwater sample from Supply Well B (Figure 9), a drinking water source. This groundwater was sampled under the oversight of NPS personnel, who directed ERT to collect the sample from a spigot in the waterline inside the wellhouse, where CCNS NPS has historically collected samples. The line was purged for approximately 20 minutes and a total of 15 gallons, and then the sample was collected directly into the laboratory supplied sample bottles. CCNS NPS indicated there was no filtering, treatment, or conditioning between the groundwater well and the spigot location from which it was collected.

The groundwater sample was analyzed for the select metals and explosives listed in Table 3-3.

4.0 DATA QUALITY ASSESSMENT

The data quality assessment (DQA) describes the evaluation of the data quality indicators (DQIs) that were used to assess the overall quality of the soil and groundwater analytical data collected during the RI field activities. The DQIs are assessed with respect to the DQOs. Project DQOs presented in Worksheet #11 of the UFP-QAPP (Work Plan Appendix E [USACE, 2018]) establish the data uses, users, and provides objective criteria by which the data quality can be measured. Moreover, the DQO process identifies the protocols, processes, procedures, and methods by which the DQOs can be met. Achievement of DQOs provides the basis for concluding that the acquired investigation data are scientifically sound, legally defensible, and adequate for their intended use.

An overview of the results of the DQA follows. The complete DQA analysis is presented in Appendix D.2 in the data validation reports. Statistical analysis of the relative standard deviations (RSDs) for IS replicates and relative percent difference calculations for discrete field duplicates are presented in Appendix D.1.

4.1 Data Quality

- The data validation process found no systematic problems, but indicated exceedances of QC limits. A total of 167 (14.6 percent) of the 1,144 results (sample and field QC samples) were qualified as estimated based on data validation review (e.g., "J" [estimated value], or "UJ" [not detected, Limit of Detection (LOD) is an estimated value due to analyte-specific quality control issues]). There were no rejected results.
- Completeness, regarding the number of regular and field QC samples collected compared to the number of regular and field QC samples that were planned to be collected, was 100 percent.
- Completeness, regarding the number of regular and field QC analytical results that were determined to be usable, was 100 percent.
- Data validation determined that the overall accuracy, based on the percentage of matrix spike (MS) and matrix spike duplicate (MSD) samples that were within the established percent recovery (%R) control limits, was acceptable. Of the 1,144 sampling results, a total of 70 results (6.1 percent) were qualified as estimated based on minor exceedances of MS/MSD %R limits.
- Data validation determined that the overall accuracy, based on the percentage of laboratory control samples (LCS) that were within the established %R control limits, was acceptable. Of the 1,144 sampling results, a total of 22 results (1.9 percent) were qualified as estimated based on minor exceedances of LCS %R limits.
- Data validation determined that the overall accuracy, based on the percentage of surrogate recoveries that were within the established %R control limits, was acceptable. Of the 1,144 sampling results, a total of 33 results (2.9 percent) were qualified as estimated based on minor exceedances of surrogate %R limits.
- Data validation determined that the overall accuracy, based on the percentage of serial dilution and/or post digestion spike recoveries that were within the established %R control limits, was acceptable. Of the 1,144 sampling results, a total of 30 results (2.6 percent) were qualified as estimated based on minor exceedances of serial dilution and/or post digestion spike %R limits.

- Overall MS/MSD duplicate precision for all samples was acceptable. Of the 1,144 sampling results, a total of three results (0.3 percent) were qualified as estimated based on minor exceedances of MS/MSD Relative Percent Difference (RPD) precision limits.
- Overall LCS replicate (either duplicate or triplicate) precision for all samples was acceptable. Of the 1,144 sampling results, a total of 16 results (1.4 percent) were qualified as estimated based on minor exceedances of LCS RPD or RSD precision limits.
- Overall column replicate precision for all samples was acceptable. Of the 1,144 sampling results, a total of 21 results (1.8 percent) were qualified as estimated based on minor exceedances of column RPD precision limits.
- Overall field replicate precision for site soil samples was 93.0 percent, based on the percentage of field replicates that met the established RSD precision limits. Of the 114 calculated RSDs, eight were greater than 35 percent (the RSD limit) but less than 50 percent.
- Overall field replicate precision for background soil samples was 91.7 percent, based on the percentage of background field replicates that met the established RSD precision limits. Of the 12 calculated RSDs, one was greater than 35 percent but less than 50 percent.
- Overall field duplicate precision for discrete subsurface soil samples was 100 percent, based on the percentage of parent/field duplicate pairs that met the established RPD precision limits.
- Representativeness was evaluated by comparing preservation and analytical procedures to those described in the UFP-QAPP, by evaluating holding times, and by examining blanks for possible contamination of samples during collection and analysis. All samples were preserved, prepared, and analyzed following methods specified in the UFP-QAPP. Therefore, representativeness was achieved.
- Comparability refers to the confidence with which one data set can be compared to another. To improve data comparability, the data set used for sampling activities for the RI was generated by employing standardized sampling, analytical, and data validation procedures. Project planning, including laboratory selection, incorporated various appropriate USEPA guidance documents, as well as direct input from USACE on field, laboratory, and data screening issues to ensure the comparability of the data. Because of the implementation of standard and consistent planning, field, analytical, and validation procedures during this investigation, the site data can be compared with confidence to historical site data of acceptable data quality. Therefore, comparability was achieved.
- All analytical limits of detection (LODs) and limits of quantitation (LOQ) for soil were less than the PSLs. The analytical LOQ (0.84 mg/kg) and LOD (0.42 mg/kg) for antimony in soil were greater than the Eco-SSL. Therefore, none of the antimony (Sb) non-detects less than the LOD or J-qualified detections less than the LOQ are usable (as individual values) for reliably demonstrating whether Sb is greater than or less than the Eco-SSL of 0.27 mg/kg. All other analytical LODs and LOQs for soil were less than the Eco-SSLs. The analytical LOQ (12 micrograms per liter [µg/L]) for antimony in groundwater was greater than the PSL (6 µg/L). Therefore, a J-qualified detection less than the LOQ does not provide reliable information regarding whether Sb contamination is greater than or less than their PSLs. Therefore, except as noted above, the sensitivity of laboratory limits to screening level benchmarks was met.

Laboratory Level IV reports are provided in Appendix D.4.

4.2 MC Data Uncertainty

As with all datasets, a level of uncertainty is typically associated with the data and its usability. In order to reduce the data uncertainties and biases, field instrument calibration, sample collection, and laboratory analyses were conducted in accordance with the standard operating procedures as outlined in the UFP-QAPP. Additionally, laboratory analytical techniques have a degree of uncertainty associated with them. These uncertainties are documented by using data qualifiers to reflect the uncertainty of the measurement. The presence of "J" and "UJ" qualified data in this dataset reflect this uncertainty. A J flag indicates the reported result is estimated, but the direction of bias, if present, is not specified or known. Note that the estimated result totals, as provided in the data validation reports (Appendix D.1), did not include sample concentrations that were qualified as estimated by the laboratory (reported results that were less than the analytical LOQ, but greater than the detection limit [DL]).

Data that are flagged with "J" or "UJ" qualifiers have more measurement uncertainty surrounding them than do non-qualified data. However, they were deemed valid and usable for purposes of this RI and these uncertainties are not likely to affect the project conclusions.

Soil and groundwater sampling laboratory limits for antimony were greater than the benchmark screening levels. When LOQs and /or LODs are greater than the screening levels, non-detect results (reported at LODs) and "J" qualified positive results cannot be quantitatively compared with the screening levels with certainty. However, all soil sampling results for antimony were less than the BTV for antimony (3.4 mg/kg) and there is no apparent source of antimony in soil that would impact groundwater. Therefore, uncertainties in the soil and groundwater antimony results are not likely to affect the project conclusions.

This Page Intentionally Left Blank

5.0 INVESTIGATION RESULTS

5.1 MEC Results

As described in Section 3.1, sufficient data from prior field investigations were available to assess the nature and extent of MEC without the need for additional field investigation during this RI. Therefore, MEC findings presented in this section are based on previous investigation results.

5.1.1 MEC Risk Assessment Matrices

MEC risk was evaluated using the current USACE risk assessment methodology to define risk posed by MEC hazards. The method involves the use of four matrices to define acceptable and unacceptable risk from MEC hazards based on the likelihood of an encounter, the severity of incident, and the sensitivity of interaction based on expected land use activities, and is ultimately used to establish remedial action objectives to evaluate potential remedial action alternatives.

Each AOI was evaluated separately. The discussions below provide a summary of the detailed completed matrix tables and analysis presented in Appendix E.

5.1.1.1 AOI-01 MEC Risk

AOI-01 is an area of burial/disposal pits.

- Matrix 1 Likelihood of Encounter: relates the site characterization data for amount of MEC to site use (including accessibility) to determine the likelihood of encountering MEC at a specific site.
 - Amount of MEC: AOI-01 was initially considered an Open Burn/Open Detonation, but findings from a removal action ultimately determined these to be disposal pits for MD and non-munitions debris. No MEC was found, and the matrix selection is that a DERP response action has been conducted to physically remove surface and subsurface MEC (but evidence that some residual hazard remains). Numerous MD items (1,040 lbs MD in a single burial pit), including 3.5" practice rockets, 3 expended M2 anti-personnel mines, 407 M48 flashtubes, 1 m7A3 2.36" practice rocket, and part of an inert filled M65 1,000lb "Dove" guided bomb.
 - Access Conditions: It is a low traffic area with rough trails and semi-dense natural vegetation that limit pedestrian access, however there are no man-made barrier restrictions. Therefore, access or frequency of use for AOI-01 was assessed as 'often', with an overall matrix score of 'Seldom'.
- Matrix 2 Severity of Incident: assesses the likelihood of encounter rating (from Matrix 1) as related to the severity of an unintentional detonation. No MEC was found and no severity is associated with MD. Therefore, the severity is assessed as 'improbable', with an overall matrix score of 'D'.
- Matrix 3 Likelihood of Detonation: relates sensitivity of the MEC items to the likelihood for energy to be imparted to an item during an encounter by specific land users. No MEC was found and no level of sensitivity is associated with MD. While accessible to park visitors, it is a largely undeveloped area, and not an area where workers perform significant maintenance operations such as excavating or grading. Therefore, the likelihood to impart energy is assessed as 'modest', with an overall matrix score of '3'.

Matrix 4 - Acceptable and Unacceptable Site Conditions: combines the results of Matrices 2 and 3 to differentiate Acceptable and Unacceptable site conditions. Due to the absence of MEC and the resulting combination of severity of incident and likelihood of detonation factors, the overall MEC hazard matrix score for AOI-01 is 'Acceptable'.

5.1.1.2 AOI-02 MEC Risk

AOI-02 is the Former Artillery Firing Line. These were firing points for 90mm and other artillery, primarily firing out to sea (the ocean range is AOI-06).

• Matrix 1 – Likelihood of Encounter:

- Amount of MEC: MEC presence has been established; while no MEC were 0 found during the EE/CA or 2004-2005 Removal Actions, a 76mm anti-aircraft artillery MEC round was found in October 2016. Remnants of packaging material were present on the item, indicating it had not been fired, and therefore it is classified as DMM. Thus, MEC amount is based on physical evidence although there is no indication that the area is a CMUA (the 76mm MEC round was not considered an isolated discovery as the EE/CA report includes documentation of many "OE" items being found in this area over the years). As this AOI includes most of the Former Camp Wellfleet FUDS shoreline, although the MEC item likely resulted from erosion of the bluffs and the subsequent migration of the item to the surface, it is also possible that munition items could wash ashore following storm events. Additionally, MD items including 50 caliber machine gun ammunition, fuze cans, shipping clips for 90mm fuzes, 30 caliber ammunition cans, calcium hydride canisters, and unknown frag, were found during previous investigations.
- Access Conditions: This is a moderate to high traffic beach area with essentially open access. Therefore, the access or frequency of use for AOI-02 is assessed as 'regular', with an overall matrix score of 'Likely'.
- Matrix 2 Severity of Incident: Detonation of the MEC item would likely result in at least partial disability or hospitalization. Therefore, the severity is assessed as 'catastrophic/critical', with an overall matrix score of 'A'.
- Matrix 3 Likelihood of Detonation: The MEC item contained some amount of high explosive (HE). It appeared to contain packaging remnants indicating it had not been fired and is was therefore considered to be DMM. As HE, the sensitivity is assessed as 'moderate'. AOI-02 is an open access area, and park workers and visitors (e.g., treasure hunters) could discover and excavate MEC, or MEC could be found following erosion from the bluffs and migration to the surface. Therefore, the likelihood to impart energy is assessed as 'modest', with an overall matrix score of '2'.
- Matrix 4 Acceptable and Unacceptable Site Conditions: Due to MEC presence and the resulting combination of severity of incident and likelihood of detonation factors, the overall MEC hazard matrix score for AOI-02 is 'Unacceptable'.

5.1.1.3 AOI-03 MEC Risk

AOI-03 is the former Ammunition Supply Point, with U-shaped revetments possibly used to store ammunition. It also includes an area of multiple ground scars identified from aerial photos.

• Matrix 1 – Likelihood of Encounter:

- Amount of MEC: A single Rifle Smoke Grenade, found in Area L during the EE/CA, is considered to be MEC (pyrotechnic). This MEC finding is considered to be an isolated discovery because no other munitions use is historically known in the area. The rifle smoke grenade was found in a grid with no other MEC or MD, approximately 1,000 feet to the south of the other grids that did contain MD (mostly shipping-related and not indicative of a CMUA). Additional MD items found included multiple fuze shipping spacers, and some small arms debris.
- Access Conditions: It is a moderate traffic area with some semi-dense natural vegetation and rough terrain that limits pedestrian access, however there are no man-made barrier restrictions to pedestrians. Therefore, the access or frequency of use for AOI-03 is assessed as 'often', with an overall matrix score of 'Seldom'.
- Matrix 2 Severity of Incident: Detonation of the Rifle Smoke Grenade would likely result in injury with emergency medical treatment, without hospitalization. Therefore, the severity is assessed as 'modest', with an overall matrix score of 'C'.
- Matrix 3 Likelihood of Detonation: The identified item contained some pyrotechnics. Therefore, the sensitivity is assessed as 'moderate'. While accessible to park visitors, it is a largely undeveloped area, and not an area where workers perform significant maintenance operations such as excavating or grading. Therefore, the likelihood to impart energy is assessed as 'modest', with an overall matrix score of '2'.
- Matrix 4 Acceptable and Unacceptable Site Conditions: Due to MEC presence and the resulting combination of severity of incident and likelihood of detonation factors, the overall MEC hazard matrix score for AOI-03 is 'Acceptable'.

5.1.1.4 AOI-04 MEC Risk

AOI-04 combines EE/CA investigation areas C, F, and J. These are bomb target areas and a burial site.

- Matrix 1 Likelihood of Encounter:
 - Amount of MEC: Only MD has been found, but not all targets were dug during previous removal actions and it is possible that suspected hazards may remain. Thus the amount of MEC matrix selection is that a removal action has occurred (associated with single point anomaly excavations) to physically remove subsurface MEC (only MD was found), but since not all targets were dug, it is possible that suspected hazards may remain. MD items included fuze shipping spacers, small arms debris, an empty Dove Missile/1000-pound bomb, an empty 250-pound bomb, 186 M28A1 flash tubes from 106mm projectile cartridge cases, and fragments of grenade spoons.
 - Access Conditions: It is a moderate traffic area with some semi-dense natural vegetation and rough terrain that limits pedestrian access, however there are no man-made barrier restrictions. Therefore, access or frequency of use for AOI-04 is assessed as 'often', with an overall matrix score of 'Seldom'.
- Matrix 2 Severity of Incident: No MEC was found and no severity is associated with MD. Therefore, the severity is assessed as 'improbable', with an overall matrix score of 'D'.

- Matrix 3 Likelihood of Detonation: No MEC was found and no level of sensitivity is associated with MD. While accessible to park visitors, it is a largely undeveloped area, and not an area where workers perform significant maintenance operations such as excavating or grading. Therefore, the likelihood to impart energy is assessed as 'modest', with an overall matrix score of '3'.
- Matrix 4 Acceptable and Unacceptable Site Conditions: Due to the absence of MEC and the resulting combination of severity of incident and likelihood of detonation factors, the overall MEC hazard matrix score for AOI-04 is 'Acceptable'.

5.1.1.5 AOI-05 MEC Risk

AOI-05 is a former Rocket Range and Small Arms Range.

- Matrix 1 Likelihood of Encounter:
 - Amount of MEC: Multiple pieces of frag from 3.5-inch rockets and 105mm projectiles are considered HE frag or MD indicative of MEC. MEC amount is based on physical evidence (MD indicative of MEC) although there is no indication that the area is a CMUA. As this AOI includes portions of the Former Camp Wellfleet FUDS shoreline, MEC finds could result from erosion of the bluffs and the subsequent migration of the item to the surface, or munition items could wash ashore following storm events. Miscellaneous MD scrap and 50 caliber bullets were also found during previous investigations.
 - Access Conditions: This is a moderate to high traffic beach area with essentially open access. Therefore, the access or frequency of use for AOI-05 is assessed as 'regular', with an overall matrix score of 'Likely'.
- Matrix 2 Severity of Incident: Detonation of possible MEC items would likely result in at least partial disability or hospitalization. Therefore, the severity is assessed as 'catastrophic/critical', with an overall matrix score of 'A'.
- Matrix 3 Likelihood of Detonation: Possible or suspected MEC items may contain some amount of HE. Therefore, the sensitivity is assessed as 'moderate'. AOI-05 is an open access area, and park workers and visitors (treasure hunters', etc) could discover and excavate MEC, or MEC could be found following erosion from the bluffs and migration to the surface. The likelihood to impart energy is assessed as 'modest', with an overall matrix score of '2'.
- Matrix 4 Acceptable and Unacceptable Site Conditions: Due to MD Indicative of MEC presence and the resulting combination of severity of incident and likelihood of detonation factors, the overall MEC hazard matrix score for AOI-05 is 'Unacceptable'.

5.1.1.6 AOI-06 MEC Risk

AOI-06 is the Range Fan of Artillery Targets in Ocean.

- Matrix 1 Likelihood of Encounter:
 - Amount of MEC: MEC presence is assumed based on historical evidence of munitions use as this is an ocean range fan where anti-aircraft and rocket firing was conducted for approximately 20 years. However, there is no documentation of munition finds by divers or fishermen. Based on historical activities, the following munition items could be present in the ocean range fan: 76mm anti-aircraft artillery, 90mm and 105mm projectiles, 3.5" rockets.

- Access Conditions: It is considered to be open access with daily use for recreational swimming, as well as fishing and diving. As there are no barriers to these waters, the access or frequency of use for AOI-06 is assessed as 'regular', with an overall matrix score of 'Seldom'.
- Matrix 2 Severity of Incident: Detonation of any of the assumed MEC items would likely result in at least partial disability or hospitalization. Therefore, the severity is assessed as 'catastrophic/critical', with an overall matrix score of 'B'.
- Matrix 3 Likelihood of Detonation: The assumed MEC items would contain some amount of HE. Therefore, the sensitivity is assessed as 'moderate'. AOI-06 is an open access area and while, recreational users are not very likely to encounter MEC, it is possible. Therefore, the likelihood to impart energy is assessed as 'modest', with an overall matrix score of '2'.
- Matrix 4 Acceptable and Unacceptable Site Conditions: Due to the assumed MEC presence and the resulting combination of severity of incident and likelihood of detonation factors, the overall MEC hazard matrix score for AOI-06 is 'Unacceptable'.

Unacceptable baseline site conditions typically proceed to the next phase of the CERCLA response process, where some type of remedial action for MEC is required, while Acceptable baseline conditions do not warrant further action with regard to MEC.

Table 5-1 summarizes the above discussions. The completed risk matrix tables for all AOIs are presented in Appendix E.

Table 5-1: Summary of Risk Assessment Matrix Analysis – Baseline Conditions					
Area	Matrix 1: Likelihood of Encounter	Matrix 2: Severity of Incident	Matrix 3: Likelihood of Detonation	Matrix 4: Acceptable and Unacceptable Site Conditions	
AOI-01	Seldom (No MEC, Often Access)	D - (Improbable Severity, Seldom Likelihood)	3 - (Not Sensitive, Modest Likelihood)	Acceptable	
AOI-02	Likely (Confirmed MEC, Regular Access)	A - (Catastrophic Severity, Likely Likelihood)	2 - (Moderate Sensitivity, Modest Likelihood)	Unacceptable	
AOI-03	Seldom (MEC, Often Access)	C - (Modest Severity, Seldom Likelihood)	2 - (Moderate Sensitivity, Modest Likelihood)	Acceptable	
AOI-04	Seldom (No MEC, Often Access)	D - (Improbable Severity, Seldom Likelihood)	3 - (Not Sensitive, Modest Likelihood)	Acceptable	
AOI-05	Likely (MD Indicative of MEC, Regular Access)	A - (Catastrophic Severity, Likely Likelihood)	2 - (Moderate Sensitivity, Modest Likelihood)	Unacceptable	
AOI-06	Seldom (MEC Suspected, Regular Access)	B - (Catastrophic Severity, Seldom Likelihood)	2 - (Moderate Sensitivity, Modest Likelihood)	Unacceptable	

5.1.2 MEC CSM Update

Detailed review of existing MEC or MD findings from previous investigations did not change the preliminary MEC CSM presented in Section 3.1.3.

5.1.3 MEC Data Uncertainty

There is uncertainty in any geophysical investigation, specific to the types of instruments used, the conditions under which they were operated, and the nature of the targets being investigated. As detailed in Section 3.1, analysis concluded that sufficient MEC data existed from the many previous investigations to make nature and extent conclusions, and that no additional field investigation for MEC was required to complete this RI. MEC data uncertainty is a function of those previous investigations; those respective reports provide discussions of uncertainty associated with those findings, and while they are not reproduced here, some of the key issues providing uncertainty are summarized below.

- The helicopter magnetometry survey was limited by vegetation, such that the sensor height above ground was a limiting factor in the usefulness of the data; some UXO targets would not be detected when the sensor was 5 meters or more above ground surface.
- Depending on the particular investigation procedures in effect at the time, not all anomalies were excavated. For example, for the EE/CA, if enough targets in a grid had been identified to make conclusions about the site, not all anomalies were investigated in that grid.
- The TEC analysis of aerial photos involves subjective interpretation that may be a source of uncertainty.
- The lack of comprehensive descriptions of past operations in a given area provides uncertainty about what may have occurred there.
- The amount of geophysical coverage required during older investigations was typically lower and might not meet today's standards, resulting in uncertainty.

However, as described in more detail in Appendix B, these uncertainties were incorporated into the analysis of whether additional data were required, using conservative assumptions about coverage to derive conclusions from the data.

5.1.4 MEC Fate and Transport

Fate and transport mechanisms for MEC at the Former Camp Wellfleet are governed by various physical factors and processes, including:

- Natural erosion of soil or sand from the high bluffs by wind and water exposing buried MEC items; and,
- Transport via removal or relocation of MEC; and
- Transport by ocean currents or sediment migration with MEC washing up on shore.

Due to the close proximity of the Atlantic Ocean to historic target locations, practice bombs may have landed on the beaches or in the Atlantic Ocean. At these locations, MEC or MD would be subject to ocean currents that could facilitate the movement of these items out to sea or laterally along the beach.

Subsurface MEC or MD has the potential to migrate to the surface based on the significant coastal erosion in a beach environment. This commonly results in the exposure of buried items by the removal of the overlying sand or soil. Note that the MEC item found in AOI -02 was a result of the erosion of the high bluff with the item ultimately found in the beach area.

An additional concern at public park areas such as the Former Camp Wellfleet is the movement of potential MEC items by the public. For example, treasure hunters and clam diggers can discover MEC or MD items and remove them as souvenirs or simply move and discard them in other areas.

5.2 MRSPP

DoD developed the MRSPP as a methodology for prioritizing sites known or suspected to contain MEC or MC for response actions, assigning a relative priority based on various safety and environmental factors. The MRSPP consists of three modules to evaluate the unique characteristics of each hazard type at an MRS:

- The Explosive Hazard Evaluation (EHE) Module addresses explosive hazards posed by MEC and MC in high enough concentrations to pose an explosive hazard;
- The Chemical Warfare Materiel (CWM) Hazard Evaluation (CHE) Module addresses hazards associated with the effects of CWM; and
- The Health Hazard Evaluation (HHE) Module addresses chronic health and environmental hazards posed by MC and incidental non-munitions-related contaminants.

Each of the modules is assigned a rating from "G" (lowest) to "A" (highest), with alternative ratings of Evaluation Pending (insufficient information available), No Known or Suspected Hazard (NKSH), or No Longer Required (NLR) (cleanup is complete). The highest of the three module ratings is used to assign a priority ranking, ranging from 1 to 8, with Priority 1 having the highest relative priority and Priority 8 having the lowest.

Presented in detail in Appendix F, the MRSPP ratings for each AOI are summarized in **Table 5-2** below. CWM was not associated with any AOI. Where the MEC Risk Assessment Matrices determined 'acceptable' conditions, the EHE module was rated as NLR. Where MC sampling was conducted, but the results indicate no exceedance of levels of concern (Section 5.3), the HHE module was rated as NKSH.

Table 5-2: Summary of MRSPP Ratings				
Area	EHE Rating/Priority	CHE Rating/Priority	HHE Rating/Priority	Priority Ranking
AOI-01	NLR	NKSH	NKSH	NLR
AOI-02	A-2	NKSH	NKSH	2
AOI-03	NLR	NKSH	NKSH	NLR
AOI-04	NLR	NKSH	NKSH	NLR
AOI-05	C-4	NKSH	NKSH	4
AOI-06	C-4	NKSH	NKSH	4

5.3 MC Results Overview

MC soil sampling locations were collected from areas where previous investigations identified MEC/MD, portions of the site judgmentally considered to potentially contain the largest MC contaminant concentrations. Section 3.4.3 details the MC sampling approach, including locations,

rationale, quantity, depth, and sample type (see Figure 9 for an overview of all sample locations). The analytical parameters included select metals (antimony, copper, lead, manganese, nickel, and zinc) and select explosives (RDX, TNT, nitroglycerin, 2,4-dinitrotoluene, 2,6-dinitrotoluene, tetryl, and nitroguanidine).

This discussion reviews the sampling results by type while the next section reviews the AOI-specific sampling results.

5.3.1 Site IS Surface and Subsurface Soil Sampling Results

With regard to soil samples collected from the site using the IS methodology, including surface and subsurface, all MC metals were detected in at least one IS site sample. Nitroguanidine was the only explosive compound detected. However, there were no reported results greater than the PSLs in any soil sample. In addition, no calculated 95 percent upper confidence limit of the mean (95% UCL) for the IS soil sampling data was greater than the PSLs. All results for the site IS soil samples are presented in Appendix D.3, Table D-1.

5.3.2 Site Subsurface Discreet Soil Sampling Results

With regard to discrete subsurface soil samples collected from AOI-01 using a hand auger to take discrete samples, all MC metals were detected in at least one discrete subsurface soil site sample. However, there were no reported results greater than the PSLs in any discrete subsurface soil samples. There were no reported detections of explosive compounds in the discrete subsurface soil samples. All results for the site discrete subsurface soil samples are presented in Appendix D.3, Table D-2.

5.3.3 <u>Background IS Surface and Subsurface Soil Sampling Results</u>

All MC metals were detected in the surface and subsurface background IS samples. The reported result for antimony in one background surface soil IS sample was greater than the PSL. Nitroguanidine was the only explosive compound detected in background soil. However, there were no reported nitroguanidine results greater than the PSL soil in any background soil sample. In addition, nitroguanidine is a component of triple-base smokeless powder and, since hunting is allowed on the project site, it is possible that the nitroguanidine is from a non-DoD source. Also, concentrations of metals in all three replicates from this location were similar, as indicated by the RSD (Appendix D). Therefore, other than the low-level detection of nitroguanidine, these sample results appear to be from the background and not affected by historical DoD site uses.

All results for the background IS soil samples are presented in Appendix D.3, Table D-3.

5.3.4 Groundwater Sampling Analytical Results

With regard to the one groundwater sample collected from drinking water Supply Well B, antimony, copper, lead, manganese, and zinc were reported at concentrations greater than the detection limit, but less than the PSLs. There were no detections of nickel or any of the explosive compounds in the groundwater sample. All results for the groundwater sample are presented in Appendix D.3, Table D-4.

5.4 AOI-Specific MC Results

The results of MC sampling for the background and for each AOI are discussed in the sections below.

5.4.1 <u>Background</u>

ERT collected IS surface and subsurface soil samples from seven SUs within the background sampling area. The result for antimony (3.4 mg/kg) in the surface soil sample collected from BKG-SU4-SA was greater than the PSL (the adjusted USEPA RSL for residential soil [hazard quotient (HQ) of 0.1 (3.1 mg/kg)]), but less than the unadjusted USEPA RSL for residential soil [HQ of 1 (31 mg/kg)]. All other reported results for MC metals in background surface and subsurface soil samples were less than the PSL.

The only detected explosive compound, nitroguanidine (0.730 J mg/kg), in a surface soil IS sample (BKG-SU2-SA-REP1) was less than the PSL (630 mg/kg). Neither of the other two replicates samples (BKG-SU2-SA-REP2 and BKG-SU2-SA-REP3) reported a detection of nitroguanidine. There were no additional reported detections of explosives in background surface or subsurface soil samples.

Figure 10 shows the individual sample locations.

5.4.2 <u>AOI-01</u>

ERT collected IS surface soil samples from three SUs within the burial pits, and eight discrete subsurface soil samples from two SUs. Figure 11 shows the individual sample locations. All results were less than the PSLs and the Eco-SSLs.

5.4.3 <u>AOI-02</u>

ERT collected IS surface soil samples from three SUs. As described in Table 3-10, SU locations were based on TEC ground scars and/or previous munitions debris finds. Figure 12 shows the individual sample locations. All results were less than the PSLs and the Eco-SSLs.

5.4.4 AOI-03

ERT collected IS surface soil samples from three SUs and IS subsurface soil samples from one SU. As described in Table 3-10, SU locations were based on previous munitions debris finds. Figure 13 shows the individual sample locations. All results were less than the PSLs and the Eco-SSLs.

5.4.5 <u>AOI-04</u>

ERT collected IS surface soil samples from five SUs and IS subsurface soil samples from one SU. As described in Table 3-10, SU locations were based on the location of a possible burn pit or previous munitions debris finds. Figure 14 shows the individual sample locations. All results were less than the PSLs and the Eco-SSLs.

5.4.6 <u>AOI-05</u>

ERT collected IS surface soil samples from three SUs and IS subsurface soil samples from one SU. As described in Table 3-10, SU locations were based on previous munitions debris finds. Figure 15 shows the individual sample locations. All results were less than the PSLs and the Eco-SSLs.

5.4.7 <u>MC CSM Update</u>

The preliminary CSM described in Section 3.3.1 identified contaminant sources and transport mechanisms, potential human or ecological receptors, and exposure scenarios. Many pathways were assessed as potentially complete. However, a complete pathway requires a source of

contaminants, and based on site sampling results, no MC contaminant source was identified. The updated CSM, Figure 16, shows that there are no complete pathways for MC based on the sample results.

5.4.8 Human Health and Ecological Risk Assessment

Screening of initial MC sampling results against the PSLs and the Eco-SSLs was conducted and it was determined that additional soil sampling was not warranted. The screening indicated that there were no MC releases, and therefore, no HHRA or SLERA were conducted.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The goal of the RI was to determine the nature and extent of MEC and MC contamination at the Former Camp Wellfleet, potentially caused by prior military operations, and to recommend whether further actions are warranted.

6.1 Conclusions

6.1.1 <u>MEC</u>

No additional field investigations were required to determine the nature and extent of MEC. Using existing data from previous investigations and removal actions, MEC risk was evaluated using the current USACE risk assessment methodology to define risk posed by MEC hazards. As discussed in Section 5.1, the method involves the use of four matrices to define acceptable and unacceptable risk from MEC hazards and is ultimately used to establish remedial action objectives to evaluate potential remedial action alternatives. Table 6-1 summarizes the conclusions of the MEC risk analysis for each AOI.

Table 6-1: MEC Risk Conclusions				
AOI	Acreage	MEC Risk	Further Action Warranted?	
AOI-01	33.1	Acceptable	No	
AOI-02	275.0	Unacceptable	Yes	
AOI-03	120.2	Acceptable	No	
AOI-04	141.8	Acceptable	No	
AOI-05	56.10	Unacceptable	Yes	
AOI-06	167,856	Unacceptable	Yes	

Baseline conditions that are assessed to be Acceptable do not warrant further action with regard to MEC. However, Unacceptable baseline site conditions warrant further action and proceed to the next phase of the CERCLA response process.

6.1.2 <u>MC</u>

ERT conducted the MC field sampling activities in April 2018. IS soil sampling included collecting surface soil from 17 SUs, subsurface soil from three SUs, and surface and subsurface soil from seven background SUs. Eight discrete subsurface soil samples were collected from AOI-01. One groundwater sample was collected from Supply Well B.

No site soil sampling results were greater than their PSLs or Eco-SSLs. Based on these results, no release of MC metals or explosives that would present a risk to human health has occurred, and therefore, no additional soil sampling for MC metals or explosives is warranted.

No site groundwater sampling results were greater than their PSLs. Based on these results, no release of MC metals or explosives that would present a risk to human health has occurred. In addition, all site soil sampling results were less than the impact to groundwater screening levels, and therefore, no additional groundwater sampling for MC metals or explosives is warranted.

6.2 **Recommendations**

6.2.1 <u>MEC</u>

The MEC risk matrix analyses, as summarized in Table 6-1, indicate AOIs with Acceptable MEC risk and AOIs posing Unacceptable MEC risk. Baseline conditions that are assessed to be Acceptable do not warrant further action with regard to MEC, and it is recommended that a 'No Further Action' (NFA) PP and DD be prepared to address those AOIs posing acceptable MEC risk (AOI-01, AOI-03, and AOI-04).

However, Unacceptable baseline site conditions warrant further action, and it is therefore recommended that a Feasibility Study be conducted to address those AOIs determined to pose unacceptable explosive risks (AOI-02, AOI-05, and AOI-06). An FS will evaluate remedial alternatives to address unacceptable MEC risk for these AOIs. A PP and DD will also be required as part of the CERCLA response process.

6.2.2 <u>MC</u>

The RI indicates that there are no MC releases to soil or groundwater, and it is recommended that the NFA PP and DD be prepared to address the MC results at the Former Camp Wellfleet.

7.0 **REFERENCES**

- Department of Defense (DoD), 2012. Defense Environmental Restoration Program (DERP) Management, Manual Number 4715.20. 9 March.
- ERT, 2018. Technical Memorandum, Additional Information in Support of USACE Proposed IS Approach for Camp Wellfleet. April.
- Foster Wheeler, 2000. *Final Former Camp Wellfleet Engineering Evaluation and Cost Analysis* (*EE/CA*). May.

Interstate Technology Regulatory Council (ITRC), 2012. *Technical and Regulatory Guidance, Incremental Sampling Methodology*. February.

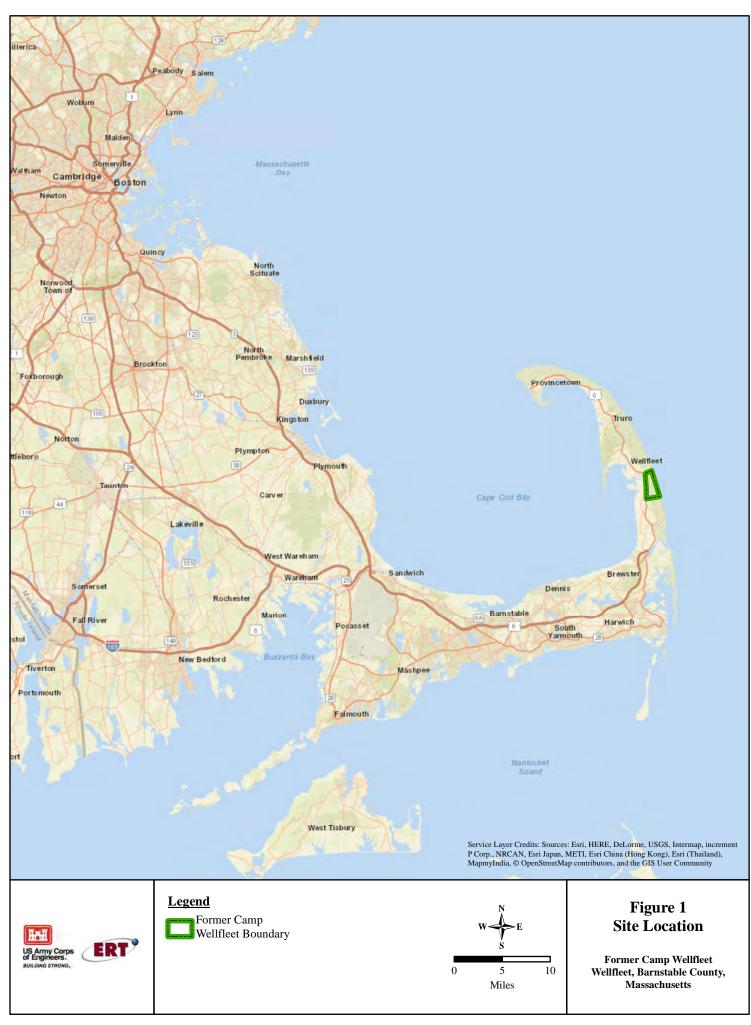
- U.S. Army Corps of Engineers (USACE), 1994. Archive Search Report Conclusions and Recommendations for the Former Camp Wellfleet, Wellfleet Massachusetts. 19 December.
- USACE, 2008b. Implementation of Incremental Sampling of Soil for the Military Munitions Response Program, Environmental and Munitions Center of Expertise Interim Guidance Document 09-02. July.
- USACE, 2009. US Army Munitions Response RI/FS Guidance. November 2009.
- USACE, 2012. Conceptual Site Models, EM 200-1-12. December.
- USACE, 2013. First Five-Year Review Report for Former Camp Wellfleet. May.
- USACE, 2018. Final Remedial Investigation Work Plan for Former Camp Wellfleet FUDS-MMRP RI through DD, Wellfleet, MA. April
- U.S Department of Agriculture (USDA) Soil Conservation Service, 1993. Soil Survey of Barnstable County, Massachusetts. March
- U. S. Environmental Protection Agency (USEPA), 1988. USEPA's Guidance for Conducting RI/FS Under CERCLA (October 1988).
- USEPA, 2005. Ecological Screening Levels for Antimony Interim Final, OSWER Directive 9285.7-73. February
- USEPA, 2007a. Ecological Screening Levels for Copper Interim Final, OSWER Directive 9285.7-73. February
- USEPA, 2007b. *Ecological Screening Levels for Nickel Interim Final, OSWER Directive* 9285.7-73. March
- USEPA, 2007c. Ecological Screening Levels for Manganese Interim Final, OSWER Directive 9285.7-73. April
- USEPA, 2007d. Ecological Screening Levels for Zinc Interim Final, OSWER Directive 9285.7-73. June

U.S. Geological Survey (USGS), 1995. Ground Water Atlas of the United State, Connecticut, Maine, Massachusetts, New Hampshire, New York, Rhode Island, Vermont, HA 730M.

USGS, 1999. Water Quality Assessment of the New England Coastal Basins in Maine Massachusetts, New Hampshire, and Rhode Island: Environmental Settings and Implications for Water Quality Biota. Water-Resources Investigations Report 98-4249.

USGS, 2005. Potential Changes in Ground-Water Flow and their Effects on the Ecology and Water Resources of the Cape Cod National Seashore, Massachusetts. June.

USGS, 2013. Massachusetts Shoreline Change Mapping and Analysis Project, 2013 Update.

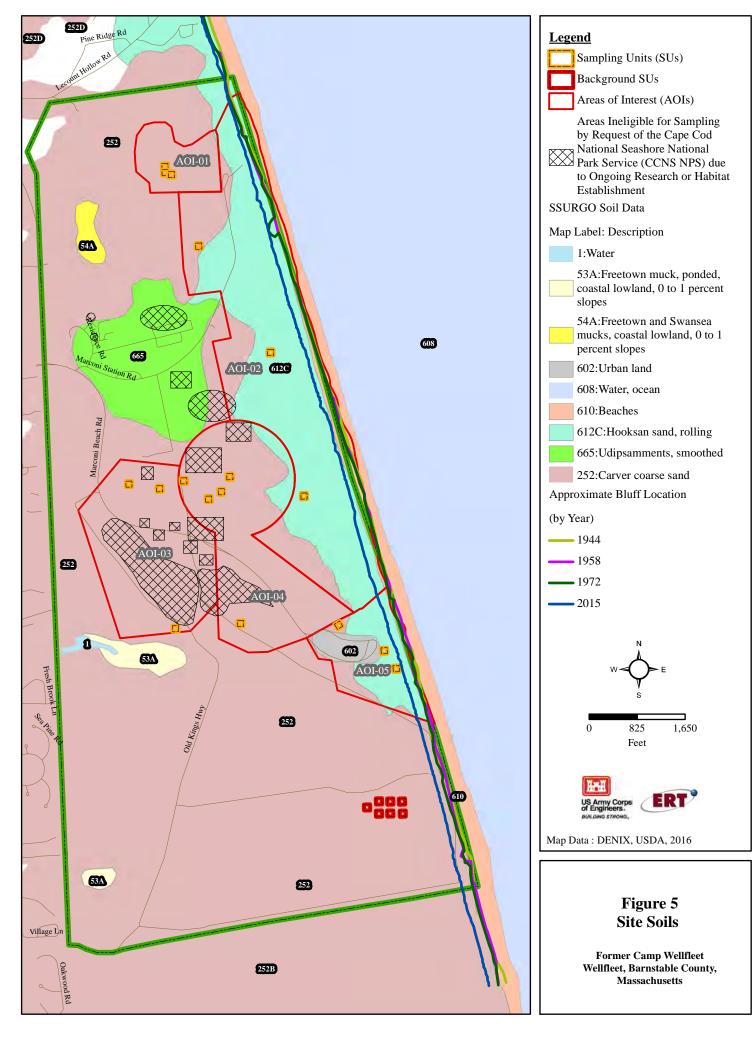

USGS, 2016. USGS NED 1/3 arc-second Contours for Providence E, Massachusetts 20160315 1 x 1 degree Shapefile. March.

- Zapata Engineering (Zapata), 2003. Site Specific Letter Report for Area C (Phase I), Former Camp Wellfleet. July.
- Zapata Engineering (Zapata), 2006. Site Specific Final Investigation Report Addendum, Ordnance and Explosive Removal Action, Former Camp Wellfleet, Volumes I and II. April.
- Zapata Engineering (Zapata), 2006. Site Specific Final Report Revision 1, Ordnance and Explosive Removal Action, Former Camp Wellfleet, Volumes I and II. April.


APPENDIX A: FIGURES

- Figure 1: Site Location
- Figure 2: Previous Investigation/Removal Action Areas
- Figure 3: Site Layout
- Figure 4: Natural Features
- Figure 5: Site Soils
- Figure 6: Plant Communities
- Figure 7: MEC CSM for Former Camp Wellfleet
- Figure 8: Preliminary Munitions Constituent Conceptual Site Model (CSM)
- Figure 9: Overview of Soil Sampling Locations
- Figure 10: Background Surface and Subsurface Soil Sampling Units
- Figure 11: AOI-01 Soil Sampling Locations
- Figure 12: AOI-02 Soil Sampling Locations
- Figure 13: AOI-03 Soil and Groundwater
- Figure 14: AOI-04 Soil Sampling Locations
- Figure 15: AOI-05 Soil Sampling Locations
- Figure 16: Final Munitions Constituent CSM

This Page Intentionally Left Blank


This Page Intentionally Left Blank

Captain Boltany Rd	Old Katas Huy			
a a a a a a a a a a a a a a a a a a a			Cross	Reference AOIs to
				EE/CA Areas
			Area of Interest	Former Area
d		_	AOI-01	Area E, as reduced
			AOI-02	Area A as expanded
age Ln			AOI-03	Areas D and L and th between them
		_	AOI-04	Areas C, F, and J
alewoo		- Contra	AOI-05	Area B, as expanded
wood Rd			AOI-06	Area I

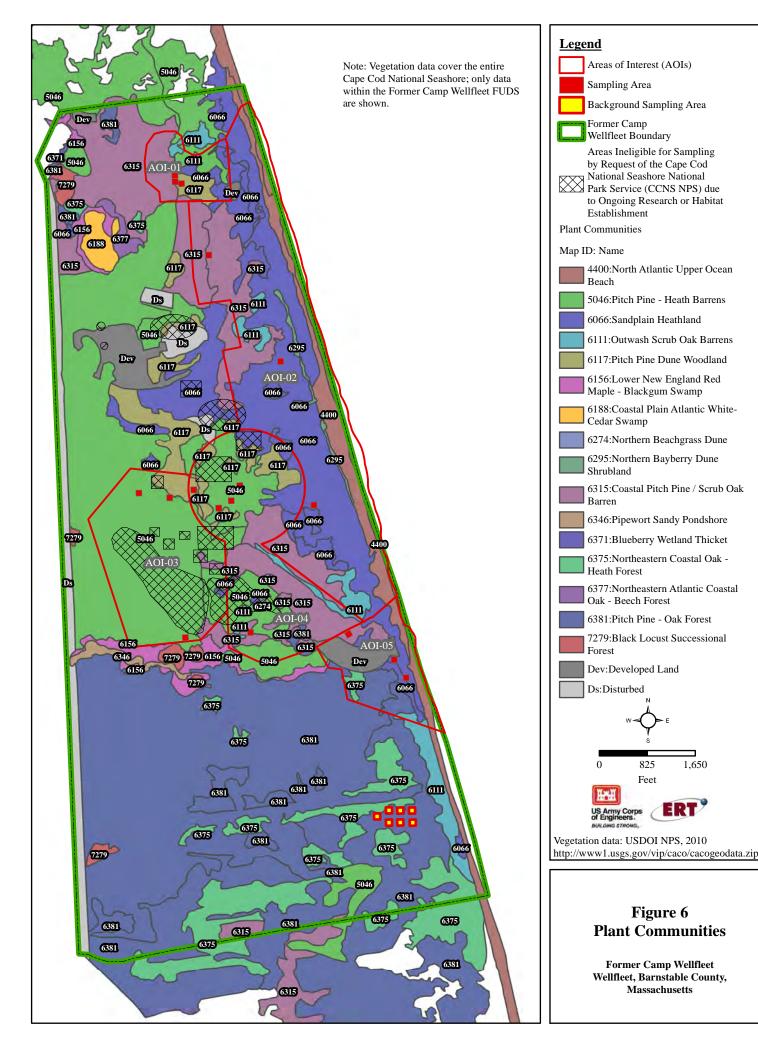
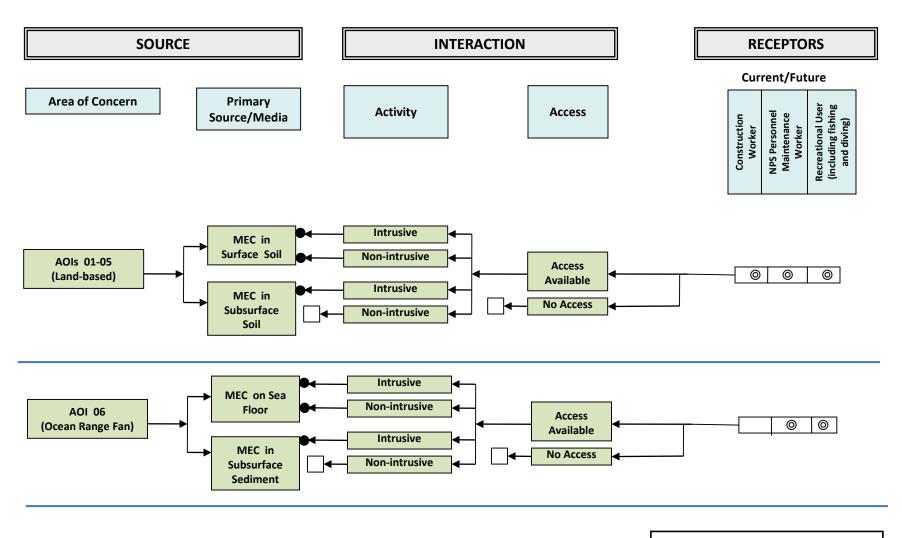
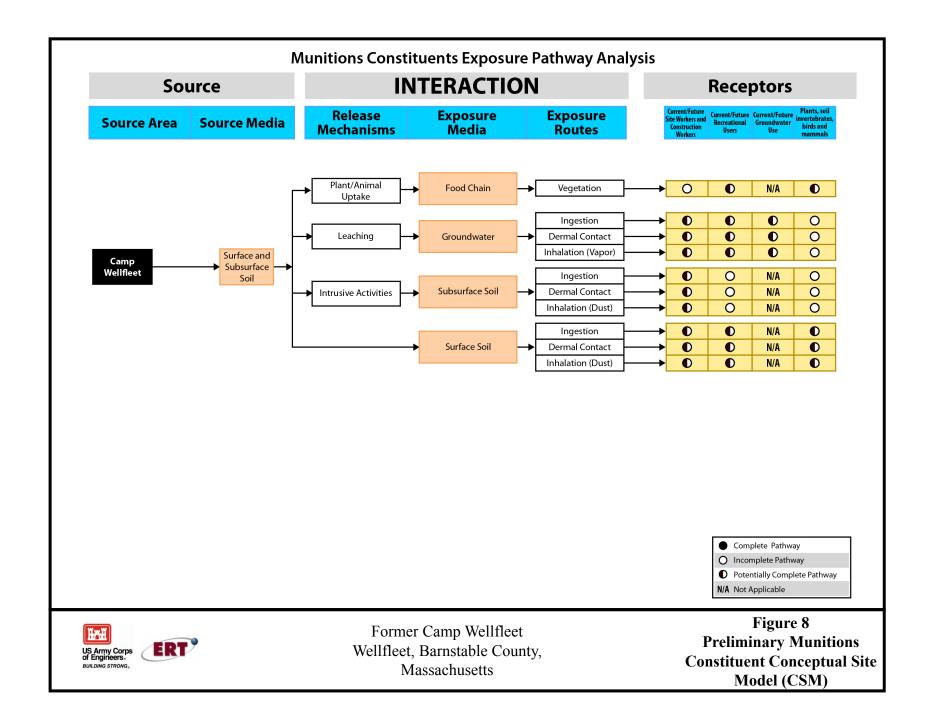
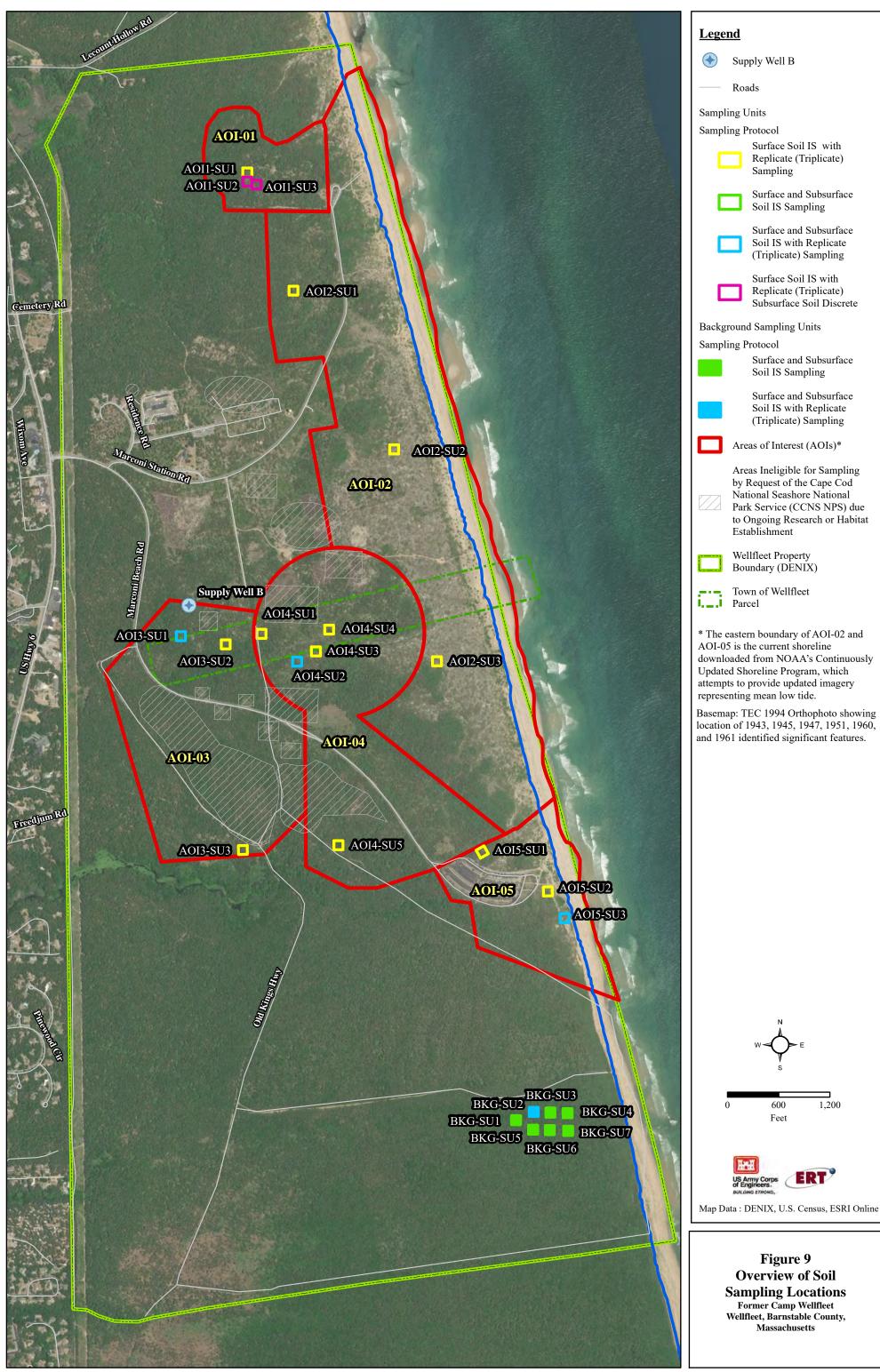
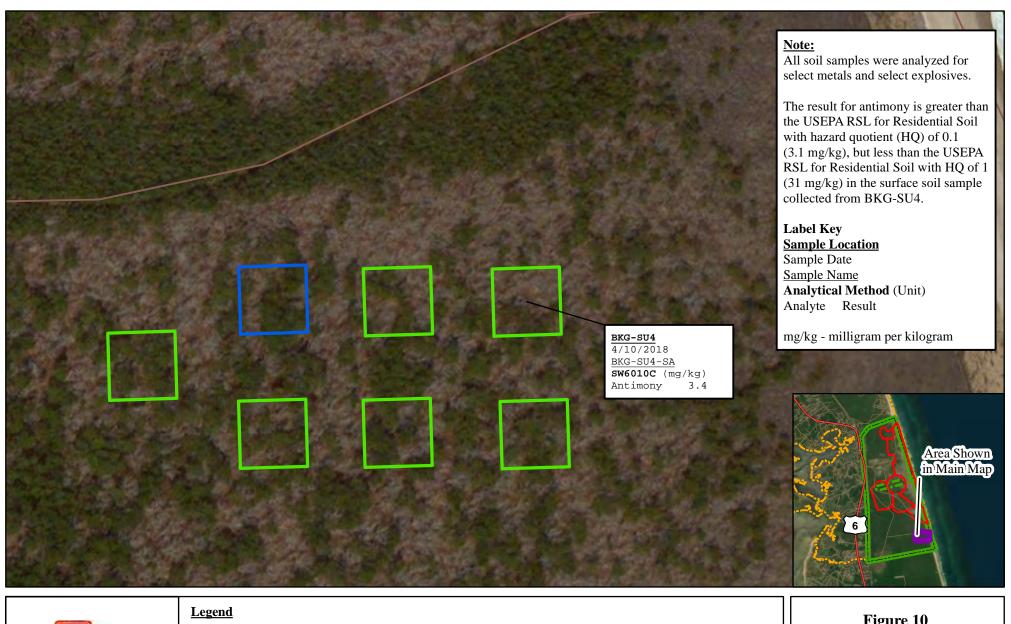
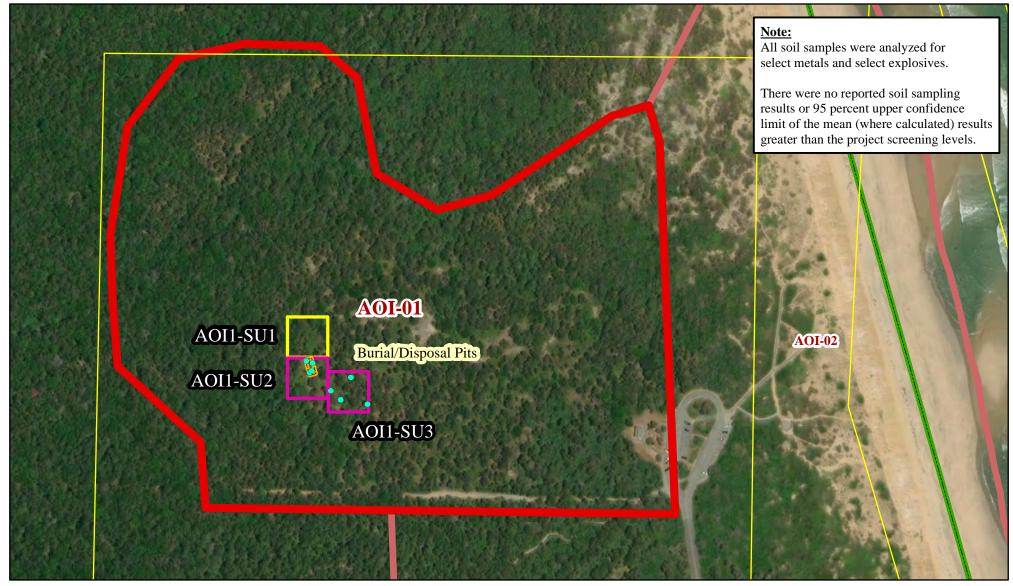
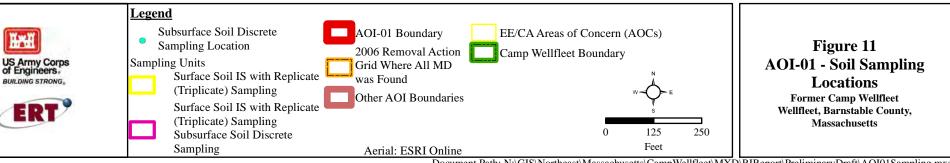





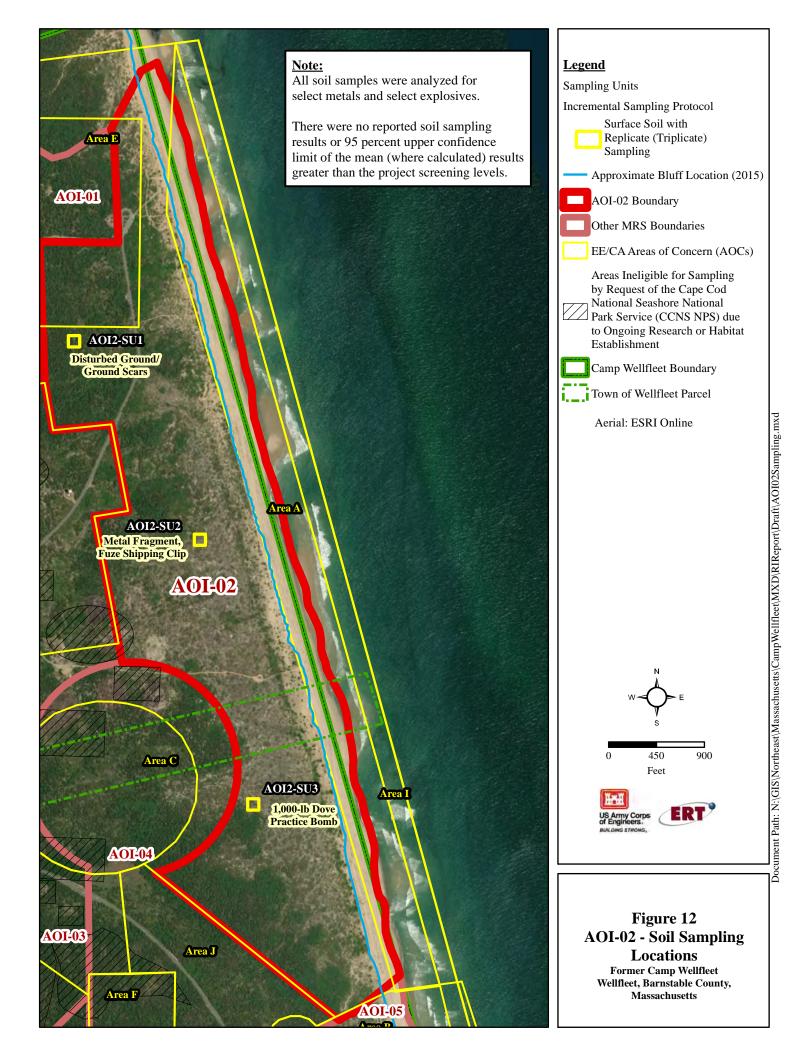
Figure 7. MEC CSM for Former Camp Wellfleet

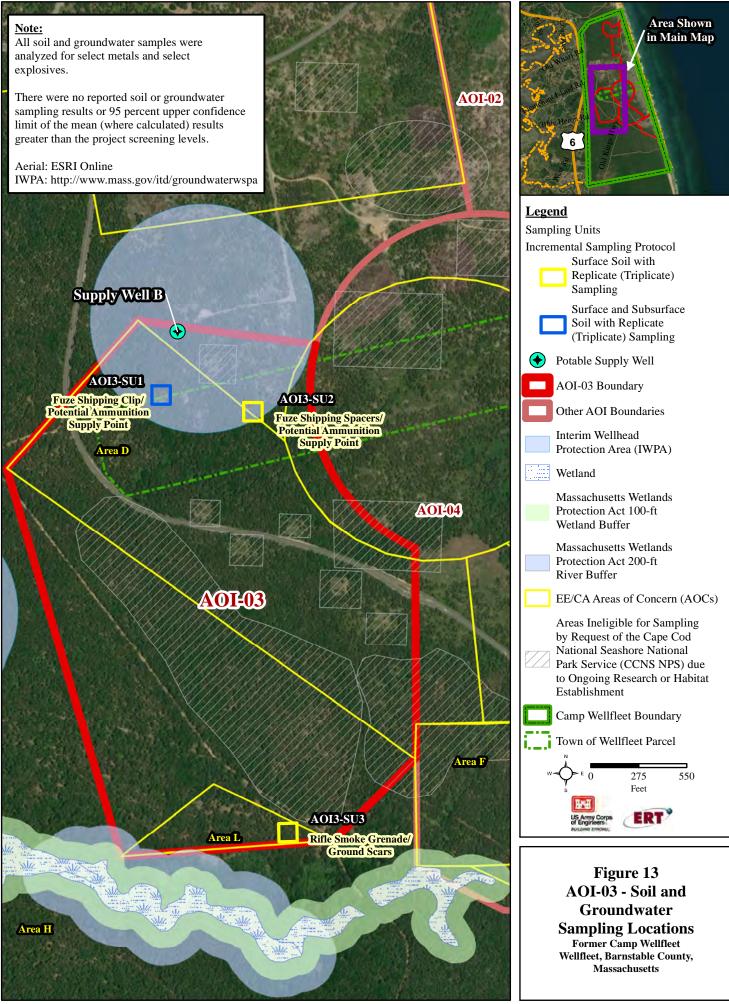


Complete Exposure Route Incomplete Exposure Route Potential Receptor Migration Pathway

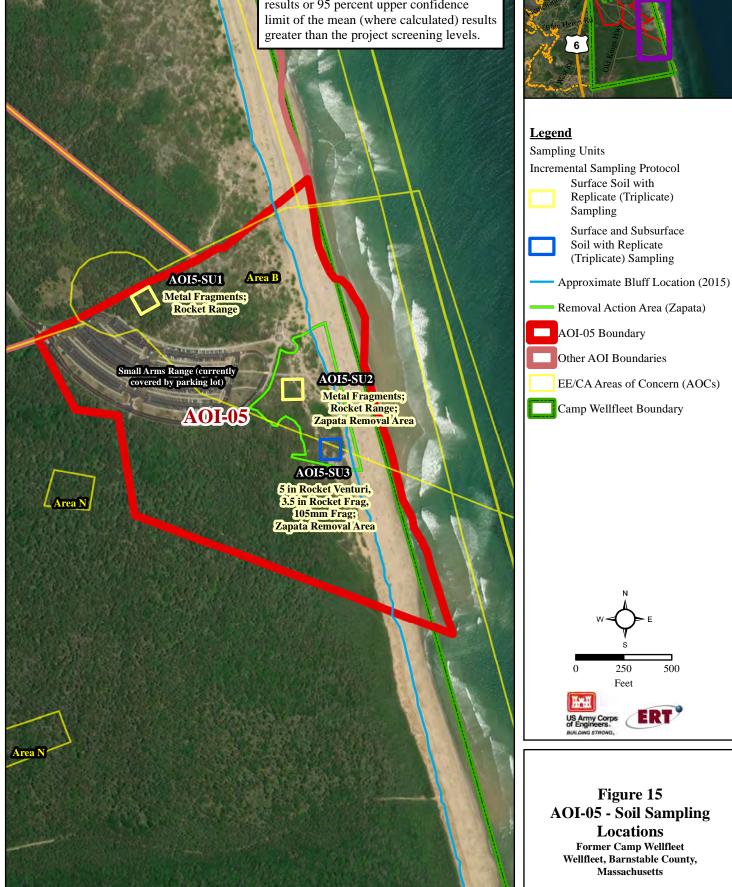

leet\MXD\RIReport\Draft\SamplingLocationsOverview.mxc

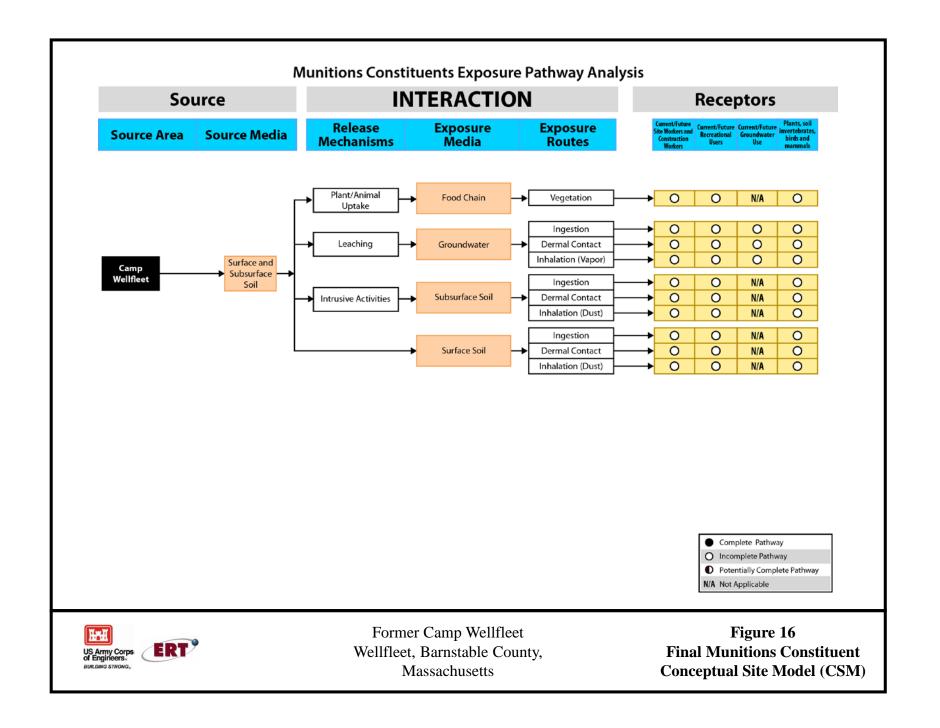



ĨH


Document Path: N:\GIS\Northeast\Massachusetts\CampWellfleet\MXD\RIReport\Draft\Background_SUs.mxd

Document Path: N:\GIS\Northeast\Massachusetts\CampWellfleet\MXD\RIReport\PreliminaryDraft\AOI01Sampling.mxd




All soil samples were analyzed for select metals and select explosives.

There were no reported soil sampling results or 95 percent upper confidence

Area Shown

in Main Map

APPENDIX B: MEC DATA QUALITY OBJECTIVES

MEC Data Quality Objectives

DQOs are qualitative and quantitative statements that specify the quality and level of data required to support the decision-making processes for a project. A typical MEC DQO is to have sufficient data to state that the density of MEC within the study area is below a threshold with a confidence expressed as a percentage.

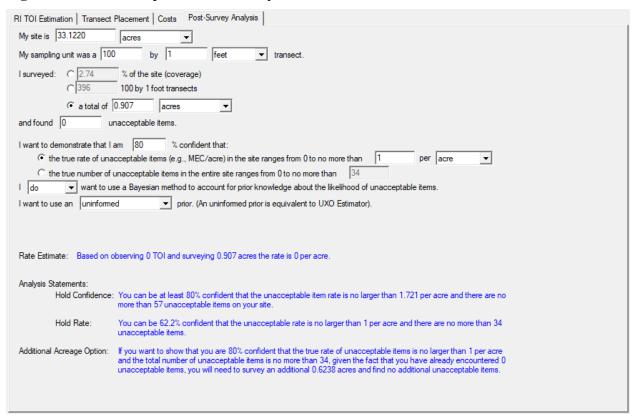
For the Former Camp Wellfleet, the DQO was designed to determine whether nature and extent of MEC could be characterized using only previous/existing geophysical data, or whether each of the AOIs required additional field investigation during the RI.

The DQO for determining the need for further fieldwork was determined by the PDT to be: *for each AOI, there should be at least 80% confidence that the TOI/acre should be less than 1.0.*

Visual Sample Plan (VSP), a statistically-based software published by Pacific Northwest National Laboratory, was used in the analysis of the previous data collected at the Former Camp Wellfleet. The module within the program used was *Sampling Goals* > *Remedial Investigation (UXO)* > *Target of Interest (TOI) Rate Estimation*. Required inputs include a map of the AOI, the area of "valid" geophysical coverage, and the number of MEC items found within the area. Valid geophysical coverage means that all geophysical anomalies within the area (e.g., grid) were intrusively investigated.

With regard to quality of geophysical coverage in the previous work, during the EE/CA, only up to 20 anomalies per grid were excavated, thus, assuming greater than 20 anomalies, not all were excavated and that particular grid could not be used for valid geophysical coverage. The quality of the helicopter geophysical coverage by ORNL, although over 100% of the Former Camp Wellfleet, is considered to be negligible due to the sensor height being too great to detect typical UXO with equivalent sensitivity to a ground-based sensor. With regard to MEC removal actions, all anomalies were dug in areas where removal actions took place, so all removal action grids are valid coverage.

The Post-survey Analysis within the VSP module, was run (Figure B-1 below presents a screen capture of the analysis of AOI-01 as an example). The area of the AOI calculated and the valid geophysical coverage is entered as total acres surveyed, along with the number of unacceptable items (MEC) found. The desired confidence is entered as a percentage along with the rate of unacceptable items (MEC/acre) to test. The resulting analysis statements indicate the MEC density at the entered confidence, as well as the confidence at a given MEC density (the rate).


This analysis was conducted for each of the five AOIs using both 80% and 95% confidence and both 1.0 TOI/acre and 5.0 TOI/acre. Table B-1 shows the likely upper bound of the TOI/acre in each AOI, holding the confidence at 95%. The density varies from 3.228 in AOI-01 to 0.4454 in AOI-05, approximately inversely proportional to valid coverage. The table then shows the confidence in the density in adjacent columns, with TOI/acre held at 5.0 and 1.0.

The DQO (at least 80% confidence that the TOI/acre should be less than 1.0 per AOI) was met in AOI-02 through AOI-5, with confidence ranging from 86.5% to 99.9%, i.e., no further field work was required. Due to low geophysical coverage (less than 1 acre), the DQO was not met in AOI-01, but the PDT concurred that no further fieldwork was necessary because it is a burial pit/possible landfill, where MD was found in only one grid, along with a significant amount of non-munition related debris, and it was estimated that, assuming coverage credit for the 3 grids that were not

completely excavated (but for which no MEC or MD were found in the excavated portions) the confidence calculation would likely exceed the 80% goal.

Statistical coverage notes on the table list grids and removal action areas that were used for valid coverage acres. The last column on the table lists grids where not all targets were dug, but in all cases no MEC or MD were found. Thus, these grids qualitatively add confidence that the TOI density is lower than that predicted using only the valid coverage area.

Figure B-1. Screen capture of VSP analysis module.

As shown in Appendix B, Table B-1, column K, it was concluded that sufficient MEC data existed and that no additional field investigation for MEC was required to complete this RI.

Appendix B, Table B-1 Former Camp Wellfleet MEC DQOs

						Density	Confide	ence (%)			Additional Coverage notes (the grids listed in this column were
				Summary of	coverage acres	TOI/ac at 95%					not counted as coverage acres, since not all targets were
AOI	EE/CA Area	area (acres)	TOI	MEC/MD Finds	\a	confidence	< 5.0 TOI/ac	< 1.0 TOI/ac	Additional MEC Field Investigation Warranted?	Statistical Coverage notes	investigated in the grids)
AOI-01	E (as altered)	33.1	0	0 MEC. 1040 lbs MD in single burial pit \b	0.9068	3.228	99.1%	62.2%			No MEC or MD were found in EECA grids E-48, E49, E-50 (not all targets dug). These grids were not included in the confidence goal calculation, but if they had been, it is likley that the 80% confidence goal would have been met.
AOI-02	A (as expanded)	275.0	1	1 MEC (76 mm round). Multiple MD finds \c	4.7715	0.9872	100.0%	95.3%	No further MEC field investigation recommended	Includes EECA grids A-1, A-2, A-3, A-4, A-5, A-7, A-8, A-10 through A-13, A-16, E-54, and many RA grids	No MEC or MD were found in EECA grids E-52, A-6, A-9, A-14, A- 15 (not all targets dug)
AOI-03	D, L, and area between	120.2	1	1 MEC (Rifle Smoke Grenade). Multiple MD finds \d	1.9606	1.964	100.0%	70.1%	Although the confidence that the TOI/ac is less than 1 is slightly below the DQO, the single MEC item is considered to be an isolated find and no further investigation was recommended.	Includes EECA grids D-34, D-35, D-36, D-37, D-39, D-40, D-41, D-43, and L-71	No MEC or MD were found in EECA grids D-38, D-42, D-44, D-45, D-46, L-70 (not all targets dug)
AOI-04	C, F, J	141.8	0	0 MEC. Multiple MD finds \e	4.722	0.6202	100.0%	99.2%	No further MEC field investigation recommended	Includes RA area 100' radius around SPA 329 and EECA grids C-25, C-26, C-32, C-33, J-57 through J- 68, and F-54 through F-56	No MEC or MD were found in EECA grids C-22, C-23, C-24, C-27, C-28, C-29, C-30, C-31 (not all targets dug)
AOI-05	B (as expanded)	56.1	0	0 MEC. Multiple MD finds \f	6.244	0.4454	100.0%	99.9%	INO further MFC field investigation recommended	Includes B EECA grids (B-17, B-19, B-21), many RA grids, and large RA area (which overlies B-20)	No MEC or MD were found in EECA grid B-18 (not all targets dug)
AOI-06	I	167856.0			Ocean portio	n of Artillery Range	Fan has not beer	n investigated	The RI assumes that MEC is potentially present in the ocean range fan, since antiaircraft and rocket firing at targets over the ocean was conducted for approximately 20 years. It is likely that the current 3Rs education program will be sufficient to address the risk from MEC presence in the ocean. Both MassDEP and NPS (property owner) have been satisfied with this MEC risk managment approach.		Land portion of fan is covered by AOI-2 and AOI-5

Notes:

The MEC DQO is that sufficient data coverage exists to state that we are 80% confident that there is < 1 Target of Interest per acre in the AOI.

\a - Coverage conservatively assumes that only grids where 100% of targets were dug count as coverage. Many EE/CA grids did not meet this criterion, although all RA grids did.

\b - pit # 4: 43 M29 3.5" practice rockets, 3 expended M2 anti-personnel mines, 407 M48 flashtubes, 1 m7A3 2.36" practice rocket, and a large portion of an inert filled M65 1000lb "Dove" guided bomb

\c - No MEC were found during the EE/CA or Zapata Removal Actions, but a 76 mm round was found within this area (Marconi Beach) in October 2016 and was considered to be MEC. MD includes 50 caliber machine gun ammunition, fuze cans, shipping clips for 90 mm fuzes, and 30 caliber ammunition cans, calcium hydride canisters, and unknown frag.

\d - Single, isolated Rifle Smoke Grenade found in grid L-71 is considered MEC (pyrotechnic). Abundant fuze shipping spacers, some small arms debris.

\e - MD includes abundant fuze shipping spacers, some small arms debris, one empty Dove Missile/1000-pound bomb, one empty 250-pound bomb, 186 M28A1 flash tubes from 106mm projectile cartridge cases, fragments of grenade spoons

\f - MD includes abundant frag from 3.5" Rockets (motors, nose caps, warhead fragments, etc), frag from 105 mm projectiles, frag from unknown projectiles, 50 cal bullet

- VSP version 7.9 was used for this analysis, using TOI Estimation/Comparison, Post-survey Analysis, using Bayesian method with uninformed prior knowledge.

- This analysis does not include the negligible coverage (in terms of minimal acreage) of the intrusive investigation of Single Point Anomalies (SPAs) identified by the ORNL airmag survey of 2002.

APPENDIX C: TECHNICAL MEMORANDUM – ISM SAMPLING APPROACH

TECHNICAL MEMORANDUM Additional Information in Support of the USACE Proposed IS Approach for Camp Wellfleet

US Army Corps of Engineers, <u>Revised</u> April 10, 2018

<u>General</u>

The intent of this technical memo is to provide additional information for MassDEP's consideration with regard to the overall sampling approach for Camp Wellfleet. The current USACE sample design is based on previous Camp Wellfleet history and findings.

The past history of Camp Wellfleet investigations does not indicate munitions-related findings suggestive of significant areas of MC contamination. Therefore, the Camp Wellfleet investigation is proposed as a phased approach, where presence/absence, or SI-level sampling will be conducted in Phase 1, and nature and extent sampling will be conducted in a Phase 2, if necessary.

The specific issues described below focus on establishing a surface soil interval or depth, and justifying the number of replicates required to obtain defensible surface soil IS data.

Surface Soil Depth Interval (0-6 inches)

While USACE had initially proposed a 0-12 inch depth interval based on ecological risk concerns, further research supports the use of 0-6 inches for surface soil sampling. The EPA ecological risk sampling guidance recommends sampling the 'A' horizon (which is considered to be the most biologically active), typically 10-12 inches. Most of the Camp Wellfleet sample areas are mapped as either Carver or Hooksan soils. Official NRCS descriptions of these soils indicate that an 'A' layer is present to 3-7 inches (Carver) and 6 inches (Hooksan). At Wellfleet, many of the sample locations are in forested areas or heathland where soils should tend to have a developed 'A' horizon.

Based on review of site soil classification and EPA Eco Risk guidance, USACE proposes a 0-6 inch surface sampling depth that is appropriate for a CERCLA compliant ecological and human health risk assessment.

Based on MassDEP's April 6, 2018 email, concurrence has been obtained for this surface soil interval.

Number of Increments for IS Surface Soil Sampling

USACE proposed 50 increments per surface soil IS as appropriate and sufficient for all sampling units (SUs). Most guidance suggests a typical increment range of 30-100. USACE believes that using 50 increments is justified based on previous site history and findings. During the multiple previous investigations, only one item categorized as MEC has been found. As described below, the limited MC sampling did not indicate significant MC issues. Further, 50 increments is a

reasonable approach for a site where the property owner has asked that the sampling impact footprint be minimized due to sensitive plant communities.

Additional rationale for using 50 increments follows:

Demonstrated Low Variability Conditions

In general, no munitions-related items suggesting significant MC contamination have been found. Previous MC sampling was limited, but samples were collected at the OB/OD area, a presumed likely contaminant area. MassDEP's suggested sampling table categorizes AOI-01 as a likely area of high potential variability, based on the reported use as an Open Burn/Open Detonation (OB/OD. However, the historical sampling data indicate a low variability (indicating low heterogeneity). Based on the 10 subsurface soil sampling results from the potential OB/OD in AOI-01, the coefficient of variation (CV) for detected metals is approximately 0.6. The ITRC ISM guidance suggests that anything less than 1.5 CV is indicative of low variability.

USACE concludes that since this area of expected high variability and significant MC contamination did not exhibit high variability, it is reasonable to assume that the remainder of Camp Wellfleet site soils would be no more variable. Therefore, the proposed surface soil sampling protocol using IS with 50 increments will adequately characterize sampling units within Camp Wellfleet.

Sample Mass

50 increments in the 0-6 inch interval, will result in approximately 1.5 kilograms (kg) of soil mass for laboratory processing and sample analysis. According to IG 09-02, "*The number of increments must be balanced with the mass of each individual increment to yield a total sample mass to sufficiently average the compositional heterogeneity of particles. Adequate total sample mass for typical soil-size particles (< 2 mm) is <u>empirically demonstrated to be 1 to 2 kg</u>." Thus, 50 increments represents the amount of soil that is recommended for this type of analysis.*

% Relative Standard Deviation (RSD):

Some of the following is taken from the ITRC ISM guidance, the USACE Engineer Research and Development Center [ERDC], TR-13-5, August 2013 [Clausen, *et al*, 2013]), and the *Interim Final Technical Guidance Manual for the Implementation of the Hawai'i State Contingency Plan* (State of Hawai'i, Department of Health, November 12, 2008).

% RSD provides a measure of the precision of the ISM used to estimate the mean contaminant concentration for the SU in terms of combined field and laboratory error. While increasing the number of increments may help obtain low % RSD, this is only one of many factors to consider.

An RSD of less than or equal to 35 percent (%) is considered to indicate good reproducibility and reliable data for decision making. However, it is important to note that, as TR-13-5 states, "However, the RSD is not a measure of data usability. The RSD is a descriptive statistic that measures precision based on the variance and standard deviation. Higher RSD means poorer data quality; however, higher RSD does not always mean poorer data usability (emphasis added). For example, the amount of acceptable variability for replicate samples will usually depend on the magnitude of the analyte concentrations relative to the levels of interest (e.g., regulatory, or

risk-based thresholds or action levels). Larger variability can be tolerated when samples' concentrations are much smaller or larger than the project screening levels of interest as opposed to when the concentrations are near the decision limits. However, in general, the amount of variability that is acceptable should be determined by the tolerances for decision errors and the magnitude of the analyte concentrations relative to the levels of interest (e.g., regulatory or risk-based thresholds)" (Clausen, et al, 2013).

This indicates that the data can be usable even if the RSD is larger than 35%. Replicate results that are greater than 35% require evaluation to assess the likely sources of error and use of the appropriate statistical methods for calculation of the 95% UCL of the mean contaminant concentrations.

Based on MassDEP's April 6, 2018 email, concurrence has been obtained for using 50 increments for IS for surface soil.

Revised Replicate Sampling Approach

MassDEP forwarded a suggested sampling table (March 20, 2018) recommending a higher frequency of replicate sampling than USACE had originally proposed. MassDEP based this on individual Conceptual Site Models (CSMs) for the different SUs within a given AOI. For example, in AOI 04, this involves considering 'burn pit' or 'burial site' to represent different CSMs.

USACE understands that an increased number of replicates will provide more useful information about the site rather than simply increasing the number of increments. That is, collecting more replicate samples within an SU will provide a better estimate of the mean and a better estimate of the UCL, and will reduce the probability of false positives and will provide more options for doing statistical analysis of the data. Therefore, USACE agreed to replicate sampling based upon the CSM model, but this approach did not increase the replicate sampling frequency to 100%.

However, in an April 6 email, MassDEP cited the following from *ERDC*, *Incremental Sampling Methodology (ISM) for Metallic Residues*, *August 2013*:

"It is critical to determine during project planning the number of replicate ISM samples required for each DU. At least three independent replicate ISM samples are typically needed to assess the total variability of the mean metal concentrations or to perform a calculation of the upper confidence of the mean (UCL). Three replicates are acceptable in situations where large deviations from normality of the sample population are not expected (ITRC 2012)."

Following internal discussion, USACE will collect surface soil samples using ISM with 100% replicates (as described in the table below).

Subsurface Sampling Approach

Based on discussion with MassDEP on a conference call on April 9, a soil sampling approach for the subsurface soil at Camp Wellfleet has been developed. It is USACE's understanding that MassDEP allows discretion for USACE to conduct a subsurface sampling investigation that is defensible in terms of achieving the project objectives. To that end, USACE will conduct the following subsurface soil sampling investigation at Camp Wellfleet:

Five locations have previously been identified as being appropriate for subsurface sampling. Each targeted horizon is based on previous MD finds or munitions-related activity.

To ensure the most defensible data, USACE proposes ISM for the targeted 0.5-3 ft horizon for the subject SUs in AOI-3 (SU1), AOI-4 (SU2), and AOI-5 (SU3). 30 increments for each of these SUs will be collected at the 0.5-3 ft depth interval, using ISM. Each of these will be collected in triplicate (replicate). For background, each of the 7 background SUs will also be sampled by collecting 30 increments at 0.5-3 ft using ISM.

However, for AOI-1, the site of the OB/OD area, SU2 and SU3 will be sampled at the deepest depth of the OB/OD trenches (10 ft) by collecting 4 discrete borings from within each SU, at the 8-10 ft interval. A field duplicate and MS/MSD samples will also be collected. Because most MD items within AOI-01 were found within the removal investigation pit, the SU2 borings will be randomly located within the investigation pit in this SU. The SU3 borings will also be randomly located within the SU.

The metals data will be screened against the MassDEP Identified Background Levels in Soil, USEPA RSLs, and S-1 & GW-1 table 2 MCP standards. The rationale reflects the difficulty in obtaining anything other than discrete samples at these depths on this site where the property owner prohibits powered sampling equipment and requires the minimization of sampling footprints. Note that 10 discrete samples were previously collected during the removal action from within this OB/OD area and analyzed for RCRA metals and explosive compounds. No release of RCRA metals or explosive compounds was identified. Therefore, the discrete samples USACE will collect are intended to represent confirmation of the previous findings.

	AOI-01										
Sampling Unit	CSM	Potential Variability	Sampling Unit Size (Acres)	Number of Surface Soil Increments	Surface ISM Replicate (Triplicate) Sampling	Subsurface Soil Sampling	Rationale for Subsurface Sampling	Total Samples (including QC)			
AOI1-SU1	Potential OB/OD	Low (based on previous MC data)	1/4	50	100%	N/A	N/A	Surface – 1 in triplicate			
AOI1-SU2	Potential OB/OD	Low	1/4	50	100%	4 borings with discrete sampling of 8-10 ft interval, random within investigation pit in the SU	Target depth of previous trenching and sampling of the OB/OD	Surface – 1 in triplicate Subsurface – 4 + duplicate			
AOI1-SU3	Potential OB/OD	Low	1/4	50	100%	4 borings with discrete sampling of 8-10 ft interval, random within SU	Target depth of previous trenching and sampling of the OB/OD	Surface – 1 in triplicate Subsurface – 4 + MS/MSD			
		100% replicate om discrete bo		to specified dep	th.	•	•				

	AOI-02										
Sampling Unit	CSM	Potential Variability	Sampling Unit Size (Acres)	Number of Surface Soil Increments	Surface ISM Replicate (Triplicate) Sampling	Subsurface Soil Sampling	Rationale for Subsurface Sampling	Total Samples (including QC)			
AOI2-SU1	Disturbed	Unknown –	1/4	50	100%	N/A	N/A	Surface – 1 in triplicate			
	Ground/Ground	no data to									
	Scars	support									
AOI2-SU2	Metal	Unknown	1/4	50	100%	N/A	N/A	Surface – 1 in triplicate			
	Fragment, Fuze										
	Shipping Clip										
AOI2-SU3	1,000 lb Dove	Unknown	1/4	50	100%	N/A	N/A	Surface – 1 in triplicate			
	Practice Bomb										
Surface soil	is ISM with 100%	% replicate sar	npling.								

	AOI-03										
Sampling Unit	CSM	Potential Variability	Sampling Unit Size (Acres)	Number of Surface Soil Increments	Surface ISM Replicate (Triplicate) Sampling	Subsurface Soil Sampling	Rationale for Subsurface Sampling	Total Samples (including QC)			
AOI3-SU1	Fuze Shipping Clips; ASP	Unknown	1/4	50	100%	30 increment ISM sampling of 0.5-3 ft interval	Target depth of previous MD finds	Surface – 1 in triplicate Subsurface – 1 in triplicate			
AOI3-SU2	Fuze Shipping Spacers; ASP	Unknown	1/4	50	100%	N/A	N/A	Surface – 1 in triplicate			
AOI3-SU3	Rifle Smoke Grenade; Ground Scars	Unknown	1/4	50	100%	N/A	N/A	Surface – 1 in triplicate			
		% replicate sam 100% replicate					1				

	AOI-04										
Sampling Unit	CSM	Potential Variability	Sampling Unit Size (Acres)	Number of Surface Soil Increments	Surface ISM Replicate (Triplicate) Sampling	Subsurface Soil Sampling	Rationale for Subsurface Sampling	Total Samples (including QC)			
AOI4-SU1	M28A1 Flash Tubes	Unknown	1/4	50	100%	N/A	N/A	Surface – 1 in triplicate			
AOI4-SU2	EE/CA C-29 (Burn Pit)	Unknown	1/4	50	100%	30 increment ISM sampling of 0.5-3 ft interval	Target deepest observed depth of burn pit	Surface – 1 in triplicate Subsurface – 1 in triplicate			
AOI4-SU3	1,000 lb Dove Practice Bomb	Unknown	1/4	50	100%	N/A	N/A	Surface – 1 in triplicate			
AOI4-SU4	1,000 lb Dove Practice Bomb	Unknown	1/4	50	100%	N/A	N/A	Surface – 1 in triplicate			
AOI4-SU5	1,000 lb Dove Practice Bomb, 250 lb Bomb, South Burial Site	Unknown	1/4	50	100%	N/A	N/A	Surface – 1 in triplicate			
	s ISM with 100% oil is ISM with 10			I	1	1	1				

Sampling Unit	CSM		~ ~ ~					
	CSIVI	Potential Variability	Sampling Unit Size (Acres)	Number of Surface Soil Increments	Surface ISM Replicate (Triplicate) Sampling	Subsurface Soil Sampling	Rationale for Subsurface Sampling	Total Samples (including QC)
F	Metal Fragments; Rocket Range	Unknown	1/4	50	100%	N/A	N/A	Surface – 1 in triplicate
F F Z	Metal Fragments; Rocket Range; Zapata Removal Area	Unknown	1/4	50	100%	N/A	N/A	Surface – 1 in triplicate
AOI5-SU3 F 1 U Z	5 in Rocket Venturi, 3.5 in Rocket Frag, 105mm Frag, Unknown Metal Frag; Zapata Removal Area	Unknown	1/4	50	100%	30 increment ISM sampling of 0.5-3 ft interval	Target depth of previous MD finds	Surface – 1 in triplicate Subsurface – 1 in triplicate

APPENDIX D: ANALYTICAL DATA

APPENDIX D.1: STATISTICAL ANALYSIS

1	Statistical Analysis of Background and Site Soil Sampling Data for the
2	Former Camp Wellfleet FUDS Remedial Investigation Through
3	Decision Document
4	
5	Wellfleet, Massachusetts
6	
7	

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

15 16

1			TABLE OF CONTENTS	
2	TAB	LE O	F CONTENTS	vii
3	1.0	Intr	oduction	1
4	2.0	Ana	lysis of Background Data	
5		2.1	Outliers by Horizon (Surface/Subsurface Soil)	
6		2.2	Goodness of Fit by Horizon (Surface/Subsurface Soil)	1
7		2.3	Analysis of Variance (ANOVA)	2
8		2.4	Outliers in Combined Data Sets	2
9		2.5	GOF in Combined Data Sets	2
10		2.6	Background Threshold Values	2
11	3.0		lysis of Relative Standard Deviation, Relative Percent Difference, and 95	
12 13	Upp	er Con 3.1	nfidence Limit of the Mean RSD Calculations and Results	
14		3.2	RPD Calculations and Results	
15		3.3	95% Upper Confidence Limit of the Mean	4
16 17	4.0	REF	FERENCES	7
18			List of Attachments	
19	Attac	chment	t A: ProUCL Input Data and Output	
20				

1		List of Tables
2	Table D-1.	Outlier Tests by Horizon for Selected Uncensored Variables - All Site Data
3	Table D-2.	Goodness-of-Fit Test Statistics by Horizon for Full Site Data Sets
4	Table D-3.	Classical Oneway ANOVA Complete Site Data
5	Table D-4.	Nonparametric Oneway ANOVA (Kruskal-Wallis Test) for Lead
6 7	Table D-5.	Outlier Tests for Combined Surface and Subsurface Sampling Results for Antimony and Manganese
8 9	Table D-6.	Goodness-of-Fit Test Statistics for Combined Surface and Subsurface Soil Data for Antimony and Manganese
10 11	Table D-7.	Nonparametric Background Statistics for Combined Surface and Subsurface Soil Antimony
12	Table D-8.	Normal Background Statistics by Horizon for Copper, Nickel, and Zinc
13	Table D-9 H	Background Statistics by Horizon for Lead
14 15	Table D-10.	Lognormal Background Statistics for Combined Surface and Subsurface Soil Manganese
16	Table D-11.	Summary of Statistical Analysis of Background Threshold Values
17 18	Table D-12.	Site Data Replicate Relative Standard Deviation and Upper Confidence Limit Calculations
19 20	Table D-13.	Relative Standard Deviation Calculations for Background Surface and Subsurface Soil
21 22	Table D-14.	Relative Percent Difference Calculations for Site Subsurface Soil Discrete Method Samples
23		

1		ACRONYMS AND ABBREVIATIONS
2	ANOVA	Analysis of Variance
3	BTV	Background Threshold Value
4	DoD	Department of Defense
5	ERT	Earth Resources Technology, Inc.
6	GOF	Goodness of Fit
7	ISM	Incremental Sampling Method
8	ITRC	Interstate Technology & Regulatory Council
9	kg	Kilogram
10	MC	Munitions Constituent
11	mg	Milligram
12	ND	Not Detected
13	PSL	Project Screening Level
14	RI	Remedial Investigation
15	RPD	Relative Percent Difference
16	RSD	Relative Standard Deviation
17	SU	Sampling Unit
18	UCL	Upper Confidence Limit
19	USL	Upper Simultaneous Limit
20	UTL	Upper Threshold Limit
21	UFP-QAPP	Uniform Federal Policy Quality Assurance Project Plan
22	USEPA	U.S. Environmental Protection Agency
23		

1	
2	
$\frac{2}{3}$	
4	
5	
6	
7	
8	
9	
10	
10	
12	
12	
14	
15	
16	
17	This Page Intentionally Left Blank
18	

1 1.0 Introduction

2 ERT, Inc. (ERT) performed a statistical analysis of the site and background surface and subsurface 3 soil samples collected for the Former Camp Wellfleet Remedial Investigation (RI). Background 4 soil samples were collected using the Incremental Sampling Methodology (ISM). Site soil samples 5 were collected using both discrete methods and ISM sampling. Section 2 documents the 6 development of the background threshold values (BTVs), used for screening site soil sampling 7 results. Section 3 documents the relative standard deviation (RSD) and relative percent difference 8 (RPD) calculations for the site and background soil sampling results and 95 percent (%) Upper 9 Confidence Limit calculations for the site soil sampling results. Details of the sampling and 10 analysis can be found in the RI Report.

11 2.0 **Analysis of Background Data**

12 ERT conducted background soil sampling to determine the concentrations of select munitions

13 constituent (MC) metals due to naturally occurring and anthropogenic (non-Department of 14 Defense [DoD]) sources. All MC metals were detected in every background soil sample collected

15 (uncensored data). Note that ERT used the arithmetic mean of the results for the replicates

16 collected for sampling units (SUs) BKG-SU2-SA and BKG-SU2-SB for the background data

17 statistical analysis. ERT performed the statistical analysis using ProUCL version 5.1 software and

technical guidance (USEPA, 2015). This section presents the results of the statistical analysis for 18

19 the development of the BTVs. ProUCL output and other summary tables are provided in the tables

- 20 at the end of this report.
- 21 ERT used the following steps in the statistical analysis of metals in background soil:
- 22 1. Evaluate outliers for each analyte grouped by horizon (surface soil and subsurface soil),
- 23 2. Evaluate goodness of fit (GOF) for each analyte grouped by horizon,
- 24 3. Evaluate the Analysis of Variance (ANOVA) to compare surface soil to subsurface soil,
- 25 4. Combine surface and subsurface sampling results based on ANOVA results,
- 26 5. Evaluate outliers in combined data sets,
- 27 6. Evaluate GOF in combined data sets,
- 28 7. Calculate the grouped or combined data set BTVs.
- 29 Each of the steps is discussed below.

30 2.1 **Outliers by Horizon (Surface/Subsurface Soil)**

31 ERT analyzed the background MC metals data to determine potential outliers in the background data set using the "Outlier Tests, Full (w/o NDs)" tool in ProUCL. Outlier analysis was used to 32 33 determine the appropriate statistic for the BTVs (see Section 2.7). During the initial outlier 34 evaluation, data were grouped by horizon; each data set had seven measurements for each MC 35 metal. The results of the outlier tests showed potential upper tail outliers at all significance levels for antimony in surface soil, copper in subsurface soil, lead in surface soil, and manganese in 36 37 surface soil. The ProUCL output of the outlier evaluations is provided in Table D-1.

38

2.2 Goodness of Fit by Horizon (Surface/Subsurface Soil)

After analyzing the outliers in the background MC metals data, ERT ran the "Goodness-of-Fit 39 Tests, Full (w/o NDs), G.O.F. Statistics" to evaluate the potential data distribution(s) for each 40 analyte and each horizon. With the exception of lead in the surface soil samples, all data appeared 41

normal, gamma, and/or lognormal at the 0.05 significance level. The ProUCL output of the GOF
 tests is provided in Table D-2.

3

2.3 Analysis of Variance (ANOVA)

In accordance with the Uniform Federal Policy – Quality Assurance Project Plan (UFP-QAPP)
(Appendix Final E of the Final Work Plan, ERT, 2012), ERT performed a statistical comparison
(ANOVA at p=0.05) of the background surface soil ISM samples to the background subsurface
soil ISM samples to determine if the if the background surface soil and background subsurface soil
are likely from the same population. Using the GOF results from step 2 to evaluate the
distributions of each metal, ERT performed "Oneway ANOVA, Classical" (all metals except lead)
or "Oneway ANOVA, Nonparametric" (lead).

11 The results of the ANOVA indicated that the mean/median characteristics of the surface and 12 subsurface data are comparable for antimony and manganese. Therefore, the data for surface and 13 subsurface soil for antimony will be combined for further analysis and the data for surface and 14 subsurface soil for manganese will be combined for further analysis (step 4). The ProUCL output 15 of the ANOVA is provided in Table D-3 (Classical One-Way ANOVA) and Table D-4 16 (Nonparametric One-Way ANOVA [lead]).

17 **2.4 Outliers in Combined Data Sets**

18 Based on the results of the ANOVA, ERT performed an examination of the combined antimony

and the combined manganese data set to evaluate potential outliers within the combined data sets. The results of the outlier tests showed potential upper tail outliers at all significance levels for antimony and manganese in the combined surface/subsurface soil. Outlier analysis was used to determine the appropriate statistic for the BTVs (see Section 2.7). The ProUCL output of the outlier evaluations is provided in Table D-5.

24 **2.5 GOF in Combined Data Sets**

Based on the results of the ANOVA, ERT performed an analysis of the GOF for the combined antimony and combined manganese data sets. The manganese combined data set appeared either gamma or lognormal at the 0.05 significance level. The antimony data do not follow a discernible distribution at the 0.05 significance level. The ProUCL output of the GOF evaluations is provided in Table D-6.

30 2.6 Background Threshold Values

To determine the background soil concentrations for comparison to site soil sampling results, ERT
 calculated the BTVs using the ProUCL, version 5.1, software.

For each analyte for which there were no potential outliers (copper in surface soil, lead in subsurface soil, nickel in surface and subsurface soil, and zinc in surface and subsurface soil), ERT selected the 95% upper simultaneous limit (USL) for the normal data distribution as the BTV. The use of the USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and many onsite observations need to be compared with the

38 BTV.

The use of the USL may be inappropriate for background data sets that contain outliers. For all analytes for which there were potential outliers (antimony in the combined data, copper in

- 1 subsurface soil, lead in surface soil, and manganese in the combined data), ERT selected the 95%
- 2 upper threshold limit (UTL) with 95% coverage for the lognormal distribution as the BTV. The
- 3 UTL was selected to cover the range of concentrations in the background population.
- 4 ProUCL outputs for the BTV analysis are provided in Tables D-7 through D-10. A summary of
- 5 the ANOVA results, selected distributions, selected BTV statistic, and rationale for the selected
- 6 BTV statistic is provided in Table D-11.
- 7 It should be noted that other data distributions and/or alternate upper limit statistics could have 8 been selected for this analysis. However, the outcome of the analysis would not have been affected
- by these alternatives. Only the BTV for antimony (3.4 mg/kg) was greater than the lower of the
- 10 USEPA Regional Screening Levels for Residential Soil and the Massachusetts Contingency Plan
- 11 screening levels. All site soil sampling results were less than the lower of the USEPA Regional
- 12 Screening Levels for Residential Soil and the Massachusetts Contingency Plan screening levels.
- 13 Therefore, selecting the BTVs as the Project Screening Level (PSL) for any of the MC metals
- 14 would not have been meaningful to evaluating the site sampling results. See Section 3.4.2 of the
- 15 RI Report for the selected PSLs.

Analysis of Relative Standard Deviation, Relative Percent Difference, and 95% Upper Confidence Limit of the Mean

- 18 ERT calculated the ISM replicate sample RSDs and the discrete sample field duplicate RPDs as 19 part of the evaluation of data precision.
- 20 ERT also calculated the 95% Upper Confidence Limit of the Mean (UCL) for ISM replicate
 21 samples. In accordance with the UFP-QAPP (Appendix Final E of the Final Work Plan, ERT,
 22 2012), the method for calculating the UCL (Student's t or Chebyshev) is based on the calculated
- 23 RSD.
- 24 This section presents the results of the RSD, RPD, and UCL calculations.
- 25 **3.1 RSD Calculations and Results**

26 ERT calculated the RSD for the replicate ISM soil samples collected at the Former Camp Wellfleet in accordance with the Interstate Technology Regulatory Council (ITRC) Incremental Sampling 27 Methodology Technical and Regulatory Guidance (ITRC, 2012). The RSD reflects the total sum 28 29 of field and laboratory error in the data (i.e., field sampling error, lab processing/subsampling error, 30 and lab analysis error). The standard deviation is a well-known measure of the variation from the mean among a group of samples. The lower the standard deviation (i.e., the closer the replicate 31 32 data are to the mean) the more precise the site data are as an estimate of average contaminant 33 concentration in the SU under investigation. When the mean concentration of a contaminant 34 reported for a set of ISM replicate samples is close to the PSLs, a lower standard deviation for the 35 replicates provides stronger evidence that the true SU mean is less than the action level. A low 36 standard deviation for soil sample data is achieved by minimizing error in sample collection, 37 processing, and analysis to the extent feasible. The RSD represents the ratio of the standard 38 deviation of the replicate set over the mean of the replicate set, expressed as a percentage:

$$RSD (\%) = \frac{replicate standard deviation}{replicate mean} * 100\%$$

An RSD less than 35% is considered to reflect good precision for estimates of the average (ITRC 1 2 2012). Good precision implies that the sampling method used, including the SU size, number, 3 spacing, and size/shape of increments collected were adequate to capture and reflect small-scale 4 heterogeneity of contaminant distribution within the SU and that error in the laboratory processing 5 and analysis methods was low. Of the 114 calculated RSDs, eight (7%) were greater than 35% 6 but less than 50%. All other RSDs were less than or equal to 35%. The calculated RSDs for site 7 replicate samples are provided in Table D-12 and the calculated RSDs for background replicate 8 samples are provided in Table D-13.

9

3.2 **RPD Calculations and Results**

10 ERT calculated the RPDs for the discrete subsurface soil samples collected from AOI1 (parent 11 sample AOI1-SU2-SO04-8-10 and field duplicate Wellfleet-FD1). RPDs are calculated using the

12 following equation:

13
$$RPD = \frac{|A - B|}{mean} * 100$$

14 Where:

15 A = result of parent sample

16 B = result of duplicate sample

17 mean = mean of parent and duplicate results

18 The RPDs for the detected metals in subsurface soil ranged from 6.06% to 15.79% and were less

that the RPD quality control limit of 20%. The calculated RPD results for discrete subsurface soil

20 sampling results are provided in Table D-14.

21 The majority (93%) of the RSD results were within project limits and no RSD results were greater

than 50% and all RPDs were within project limits therefore, the RSD and RPD results indicate that there were no systematic field sampling and/or laboratory processing errors associated with the

24 data. The demonstrated precision implies that the sampling method used, including the SU size,

25 increment number, spacing, and size/shape of increments collected were adequate to capture and

reflect small-scale heterogeneity of contaminant distribution within the SUs and that error in the laboratory processing and analysis methods was low.

28 **3.3 95%** Upper Confidence Limit of the Mean

To compare the site sampling results to the PSLs, ERT calculated the 95% UCL using the ITRC "ISM Calculator for 1-sided Upper Confidence Limit (UCL) for the Mean". Each replicate data

30 and 31 set was entered into the ISM calculator with alpha = 0.05 and the calculated UCL was recorded in

Table D-12. Details on calculation of the UCLs are provided in the UFP-QAPP (Appendix Final

33 E of the Final Work Plan, ERT, 2012).

- 34 ERT selected the Chebychev UCL for all replicates even though the RSD results may have
- 35 indicated that the Student's t method would have also been appropriate. The Chebychev method
- 36 does not assume a normal distribution and provides a more conservative estimate of the 95% UCL
- 37 for comparison to the PSLs than does the Student's t method.

- 1 No individual replicate, calculated mean, or calculated 95% UCL result was greater than the PSLs
- 2 for site soil sampling.

3

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	This Page Intentionally Left Blank
19	

4.0 **REFERENCES**

ERT, Inc. (ERT). Final Remedial Investigation Work Plan Former Camp Wellfleet FUDS Remedial Investigation Through Decision Document. April.

Interstate Technology & Regulatory Council (ITRC), 2012. *Technical and Regulatory Guidance Incremental Sampling Methodology*. February.

United States Environmental Protection Agency (USEPA), Office of Research and Development, 2015. *ProUCL Version 5.1.002 Technical Guide Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations*. October.

Tables

	А	В	С	D Table D-1	E Outlier Tests by Horizon for Selec	F sted Uncens	G G	H I	J	К	
1				cted Options							
2	Det	to/Time of C		-	12/13/2018 1:55:18 PM						
3	Dai		omputation	From File	ProUCL_input.xls						
4	Eull Droginian OEE										
5			ΓU		UFF						
6											
7		Divor	n's Outlier Te	et for Antimo	ny (subsurface)						
8		DIXO									
9	Number of (Observation	s = 7								
10	10% critical										
11	5% critical v										
12	1% critical v										
13											
14	1. Observa	tion Value (0.38 is a Pote	ential Outlier	(Upper Tail)?						
15 16					···· /						
17	Test Statisti	c: 0.174									
17											
19	For 10% sig	nificance le	vel, 0.38 is no	ot an outlier.							
20	For 5% sign	ificance lev	el, 0.38 is not	an outlier.							
21	For 1% sign	ificance lev	el, 0.38 is not	an outlier.							
22											
23	2. Observat	tion Value 0	.15 is a Pote	ntial Outlier ((Lower Tail)?						
24											
25	Test Statisti	c: 0.087									
26											
27			vel, 0.15 is no								
28			el, 0.15 is not								
29	For 1% sign	ificance lev	el, 0.15 is not	an outlier.							
30											
31											
32		DIX	on's Outlier	lest for Antin	nony (surface)						
33	Number of (Deconvotion	<u>- 7</u>								
34	10% critical										
35	5% critical v										
36	1% critical v										
37											
38 39	1. Observa	tion Value 3	3.4 is a Poter	ntial Outlier (Upper Tail)?						
39 40					,						
40	Test Statisti	c: 0.914									
41											
42	For 10% sig	nificance le	vel, 3.4 is an	outlier.							
43	For 5% sign	ificance lev	el, 3.4 is an o	utlier.							
44	For 1% sign	ificance lev	el, 3.4 is an o	utlier.							
46											
47	2. Observat	tion Value 0	.16 is a Pote	ntial Outlier ((Lower Tail)?						
48											
49	Test Statisti	c: 0.015									
50											
51	For 10% sig	nificance le	vel, 0.16 is no	ot an outlier.							
	For 5% sign	ificance lev	el, 0.16 is not	an outlier.							
								· · · ·	•	J	

	A B C D E	F	G	Н	I	J	К
53	For 1% significance level, 0.16 is not an outlier.						
54							
55	Diver's Outling Test for Conner (subsurface)						
56	Dixon's Outlier Test for Copper (subsurface)						
57	Number of Observations = 7						
58	10% critical value: 0.434						
59	5% critical value: 0.507						
60	1% critical value: 0.637						
61							
62	1. Observation Value 3 is a Potential Outlier (Upper Tail)?						
63 64							
65	Test Statistic: 0.647						
66							
67	For 10% significance level, 3 is an outlier.						
68	For 5% significance level, 3 is an outlier.						
69	For 1% significance level, 3 is an outlier.						
70							
71	2. Observation Value 1.3 is a Potential Outlier (Lower Tail)?						
72							
73	Test Statistic: 0.000						
74							
75	For 10% significance level, 1.3 is not an outlier.						
76	For 5% significance level, 1.3 is not an outlier.						
77	For 1% significance level, 1.3 is not an outlier.						
78							
79	Diverse Auties Test for Connex (auteos)						
80	Dixon's Outlier Test for Copper (surface)						
81	Number of Observations = 7						
02	10% critical value: 0.434						
83	5% critical value: 0.507						
84	1% critical value: 0.637						
85 86							
80	1. Observation Value 3.6 is a Potential Outlier (Upper Tail)?						
88							
89	Test Statistic: 0.105						
90							
91	For 10% significance level, 3.6 is not an outlier.						
92	For 5% significance level, 3.6 is not an outlier.						
93	For 1% significance level, 3.6 is not an outlier.						
94							
95	2. Observation Value 1.7 is a Potential Outlier (Lower Tail)?						
96							
97	Test Statistic: 0.368						
98							
99	For 10% significance level, 1.7 is not an outlier.						
100	For 5% significance level, 1.7 is not an outlier.						
101	For 1% significance level, 1.7 is not an outlier.						
102							
103	Diverse Outlier Test for Load (subsurface)						
104							

	A B C D E	F	G	Н		J	K
105							
106	Number of Observations = 7						
107	10% critical value: 0.434						
	5% critical value: 0.507						
	1% critical value: 0.637						
110							
111	1. Observation Value 4.1 is a Potential Outlier (Upper Tail)?						
112							
113	Test Statistic: 0.286						
114							
114	For 10% significance level, 4.1 is not an outlier.						
116	For 5% significance level, 4.1 is not an outlier.						
117	For 1% significance level, 4.1 is not an outlier.						
117							
118	2. Observation Value 2.7 is a Potential Outlier (Lower Tail)?						
119							
120	Test Statistic: 0.429	+					
121							
122	For 10% significance level, 2.7 is not an outlier.						
123	For 5% significance level, 2.7 is not an outlier.						
124	For 1% significance level, 2.7 is not an outlier.						
125							
126							
127	Diversity Outling Test feed and (surface)						
128	Dixon's Outlier Test for Lead (surface)						
129							
130	Number of Observations = 7						
101	10% critical value: 0.434						
132	5% critical value: 0.507						
133	1% critical value: 0.637						
134							
135	1. Observation Value 23.1 is a Potential Outlier (Upper Tail)?						
136							
137	Test Statistic: 0.921						
138							
139	For 10% significance level, 23.1 is an outlier.						
140	For 5% significance level, 23.1 is an outlier.						
141	For 1% significance level, 23.1 is an outlier.						
142							
	2. Observation Value 5.4 is a Potential Outlier (Lower Tail)?						
144							
145	Test Statistic: 0.006						
146							
	For 10% significance level, 5.4 is not an outlier.						
148	For 5% significance level, 5.4 is not an outlier.						
149	For 1% significance level, 5.4 is not an outlier.						
150							
151		1					
152	Dixon's Outlier Test for Manganese (subsurface)						
153							
153	Number of Observations = 7						
154	10% critical value: 0.434	+					
155	5% critical value: 0.507						
100		I	1	1	1	1	

	A B C D E	F	G	Н	J	K
157	1% critical value: 0.637					
158						
159	1. Observation Value 83.2 is a Potential Outlier (Upper Tail)?					
160						
161	Test Statistic: 0.425					
162						
105	For 10% significance level, 83.2 is not an outlier.					
104	For 5% significance level, 83.2 is not an outlier.					
165	For 1% significance level, 83.2 is not an outlier.					
166						
167	2. Observation Value 18.2 is a Potential Outlier (Lower Tail)?					
168						
169	Test Statistic: 0.022					
170						
171	For 10% significance level, 18.2 is not an outlier.					
172	For 5% significance level, 18.2 is not an outlier.					
173	For 1% significance level, 18.2 is not an outlier.					
174						
175						
176	Dixon's Outlier Test for Manganese (surface)					
177						
178	Number of Observations = 7					
179	10% critical value: 0.434					
180	5% critical value: 0.507					
181	1% critical value: 0.637					
182						
183	1. Observation Value 35 is a Potential Outlier (Upper Tail)?					
184						
185	Test Statistic: 0.637					
186						
187	For 10% significance level, 35 is an outlier.					
188	For 5% significance level, 35 is an outlier.					
189	For 1% significance level, 35 is an outlier.					
190						
191	2. Observation Value 7.7 is a Potential Outlier (Lower Tail)?					
192						
193	Test Statistic: 0.121					
194						
195	For 10% significance level, 7.7 is not an outlier.					
190	For 5% significance level, 7.7 is not an outlier.					
197	For 1% significance level, 7.7 is not an outlier.					
198						
199						
200	Dixon's Outlier Test for Nickel (subsurface)					
201						
202	Number of Observations = 7					
203	10% critical value: 0.434					
204	5% critical value: 0.507					
205	1% critical value: 0.637					
206						
207	1. Observation Value 2.7 is a Potential Outlier (Upper Tail)?					
208						

200 Fish Statistic U230 Image: Statisti		A B C D E	F	G	Н	I	J	K
21 FOR Singuificance level, 2.7 and an outler. Image: Singuificance level, 2.7 and an outler. Image: Singuificance level, 2.7 ls not an outler. Image: Singuificance level, 1.7 ls not an outler. Im	209	Test Statistic: 0.230						
Control Control <t< td=""><td>210</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	210							
21 For TA's significance level, 2 7 is not an outlier. Image: Conservation Value 1.7 is a Potential Outlier (Lower Tail)? Image: Conservation Value 1.7 is not an outlier.	211	-						
21 2. Observation Value 1.7 is a Polantial Outlier (Lower Tail)? Image: Constraint of the end of the	212							
212 Conservation Value 1.7 is a Potential Outlier (Lower Tail)? Image: Conservation Value 1.7 is not an outlier. Image: Conservation Value 1.7 is not an outlier. 218 For 5% significance level, 1.7 is not an outlier. Image: Conservation Value 2.0 is not	213	For 1% significance level, 2.7 is not an outlier.						
212 Conservation Value 1.7 is a Potential Outlier (Lower Tail)? Image: Conservation Value 1.7 is not an outlier. Image: Conservation Value 1.7 is not an outlier. 218 For 5% significance level, 1.7 is not an outlier. Image: Conservation Value 2.0 is not	214							
p.y Test Statistic 0		2. Observation Value 1.7 is a Potential Outlier (Lower Tail)?						
p.y Test Statistic 0	216							
210 For 5% significance level, 1.7 is not an outlier. Image: Control of the set of the		Test Statistic: 0.300						
Image: statistic or s	218							
22 For 1% significance level, 1.7 is not an outlier.								
22	220							
223 Discove Outlier Test for Nickei (surface) Image: Control of	221	For 1% significance level, 1.7 is not an outlier.						
223Dixon's Quiler Test for Nickel (surface)III <th< td=""><td>222</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	222							
224 Image: Control of Observations = 7 Image: Control value: 0.434 Image: Control value: 0.434 225 Nortical value: 0.637 Image: Control value: 0.637 Image: Control value: 0.637 236 Image: Control value: 0.637 Image: Control value: 0.637 Image: Control value: 0.637 237 Image: Control value: 1.7 is a Potential Outlier (Upper Tail)? Image: Control value: 1.7 is a Potential Outlier (Upper Tail)? Image: Control value: 1.7 is not an outlier. 238 Image: Control value: 1.7 is not an outlier. Image: Control value: 1.7 is not an outlier. Image: Control value: 1.7 is not an outlier. 237 For 15% significance level, 1.7 is not an outlier. Image: Control value: 1.7 is not an outlier. Image: Control value: 1.7 is not an outlier. 238 Image: Control value: 0.69 is not an outlier. Image: Control value: 0.69 is not an outlier. Image: Control value: 0.69 is not an outlier. 240 Image: Control value: 0.69 is not an outlier. Image: Control value: 0.69 is not an outlier. Image: Control value: 0.69 is not an outlier. 241 Test Statistic: 0.188 Image: Control value: 0.69 is not an outlier. Image: Control value: 0.69 is not an outlier. 242 Image: Control value: 0.69 is not an outlier. Image: Control value: 0.69 is	223							
228 Number of Observations = 7 Image: 0.434 Image: 0	224	Dixon's Outlier Test for Nickel (surface)						
220 10% critical value: 0.434 <td>225</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	225							
22 S% critical value: 0.507 <td< td=""><td>226</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	226							
220 1% critical value: 0.637 Image: 0.637 Image: 0.637 Image: 0.637 230 Image: 0.637 Image: 0.637 Image: 0.637 Image: 0.637 231 1. Observation Value 1.7 is a Potential Outlier (Upper Tail)? Image: 0.64 Image: 0.64 Image: 0.64 232 Image: 0.64 Image: 0.64 Image: 0.64 Image: 0.64 Image: 0.64 233 Test Statistic: 0.198 Image: 0.64 Image: 0.64 Image: 0.64 Image: 0.64 234 Image: 0.67 Significance level, 1.7 is not an outlier. Image: 0.64 Image: 0.64 Image: 0.64 235 For 1% significance level, 1.7 is not an outlier. Image: 0.64 Image: 0.64 Image: 0.64 Image: 0.64 234 For 1% significance level, 0.69 is a Potential Outlier (Lower Tail)? Image: 0.64 Image: 0.64<								
223 230 231 232 231 <td>220</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	220							
232 1 1 1 1 1 1 1 1 233 Test Statistic: 0.198 Image: 1.7 is not an outlier. Image: 1.7 is not an outlier. <td>229</td> <td>1% critical value: 0.637</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	229	1% critical value: 0.637						
232 1 1 1 1 1 1 1 1 233 Test Statistic: 0.198 Image: 1.7 is not an outlier. Image: 1.7 is not an outlier. <td>230</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	230							
232 1 1 1 1 1 1 1 1 233 Test Statistic: 0.198 Image: 1.7 is not an outlier. Image: 1.7 is not an outlier. <td>231</td> <td>1. Observation Value 1.7 is a Potential Outlier (Upper Tail)?</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	231	1. Observation Value 1.7 is a Potential Outlier (Upper Tail)?						
233 Test Statistic: 0.198 Image: Statistic: 0.198 Image: Statistic: 0.198 234 Image: Statistic: 0.198 Image: Statistic: 0.198 Image: Statistic: 0.198 235 For 10% significance level, 1.7 is not an outlier. Image: Statistic: 0.198 Image: Statistic: 0.198 236 Image: Statistic: 0.198 Image: Statistic: 0.198 Image: Statistic: 0.198 Image: Statistic: 0.198 240 Image: Statistic: 0.188 Image: Statistic: 0.188 Image: Statistic: 0.188 Image: Statistic: 0.188 242 Image: Statistic: 0.188 Image: Statistic: 0.188 Image: Statistic: 0.188 Image: Statistic: 0.188 243 For 10% significance level, 0.69 is not an outlier. Image: Statistic: 0.188 Image: Statistic: 0.188 Image: Statistic: 0.188 244 For 10% significance level, 0.69 is not an outlier. Image: Statistic: 0.188 Image: Statistic: 0.181 Image: Stat	232							
235 For 10% significance level, 1.7 is not an outlier. Image: Control of the second seco	233	Test Statistic: 0.198						
238 For 5% significance level, 1.7 is not an outlier. Image: Constraint of the second se	234							
237 For 1% significance level, 1.7 is not an outlier. Image: Constraint on the image:	235							
238	236							
233 2. Observation Value 0.69 is a Potential Outlier (Lower Tail)? Image: Constraint of the second sec	237	For 1% significance level, 1.7 is not an outlier.						
240	238							
241 Test Statistic: 0.188 Image: Constraint of the second se	239	2. Observation Value 0.69 is a Potential Outlier (Lower Tail)?						
242	240							
243 For 10% significance level, 0.69 is not an outlier. Image: constraint of the second	241	Test Statistic: 0.188						
244 For 5% significance level, 0.69 is not an outlier. Image: Constraint of the second s	242							
245 For 1% significance level, 0.69 is not an outlier. Image: Constraint of the second s	243	-						
243 1 1 1 1 1 244 Dixon's Outlier Test for Zinc (subsurface) 1 1 1 1 248 Dixon's Outlier Test for Zinc (subsurface) 1 1 1 1 249 1 1 1 1 1 1 250 Number of Observations = 7 1 1 1 1 1 251 10% critical value: 0.434 1								
247 Image: constraint of the second seco	245	For 1% significance level, 0.69 is not an outlier.						
248Dixon's Outlier Test for Zinc (subsurface)Image: constraint of the subsurface of th	246							
249 Image: Constraint of Constraints and the constraint of Constraints of Constraints and the constraint of Constraints of Co	247							
250 Number of Observations = 7 Image: Constraint of Observation set of Constraint	248	Dixon's Outlier Test for Zinc (subsurface)						
250 10% critical value: 0.434 10% critical value: 0.507 10% critical value: 0.507 253 1% critical value: 0.637 10% critical value: 0.637 10% critical value: 0.637 254 10% critical value: 0.637 10% critical value: 0.637 10% critical value: 0.637 254 10% critical value: 0.637 10% critical value: 0.637 10% critical value: 0.637 255 1. Observation Value 17 is a Potential Outlier (Upper Tail)? 10% critical value: 0.637 10% critical value: 0.637 256 10% critical value: 0.049 10% critical value: 0.049 10% critical value: 0.049 10% critical value: 0.049 258 10% critical value: 0.049 10% critical value: 0.049 10% critical value: 0.049 10% critical value: 0.049 258 10% significance level, 17 is not an outlier. 10% critical value: 0.049 10% critical value: 0.049 259 For 10% significance level, 17 is not an outlier. 10% critical value: 0.049 10% critical value: 0.040	249							
2512535% critical value: 0.5072542531% critical value: 0.63725425425512551255	250							
2521% critical value: 0.63711112531% critical value: 0.63711112541Observation Value 17 is a Potential Outlier (Upper Tail)?1112551Observation Value 17 is a Potential Outlier (Upper Tail)?11125611111257Test Statistic: 0.049111125811111259For 10% significance level, 17 is not an outlier.111	251							
253 254 254 255 2	252							
2551. Observation Value 17 is a Potential Outlier (Upper Tail)?256257257Test Statistic: 0.049258259For 10% significance level, 17 is not an outlier.259	253	1% critical value: 0.637						
250 1 1 1 1 256 1 1 1 1 257 Test Statistic: 0.049 1 1 1 258 1 1 1 1 259 For 10% significance level, 17 is not an outlier. 1 1 1								
257 Test Statistic: 0.049 258 259 For 10% significance level, 17 is not an outlier.	255	1. Observation Value 17 is a Potential Outlier (Upper Tail)?						
257 258 258 259 259 For 10% significance level, 17 is not an outlier. 1 1								
259 For 10% significance level, 17 is not an outlier.	257	Test Statistic: 0.049						
259 For 10% significance level, 17 is not an outlier.	258							
260 For 5% significance level, 17 is not an outlier.	259	For 10% significance level, 17 is not an outlier.						
	260	For 5% significance level, 17 is not an outlier.						

	A B C D E	F	G	Н	J	K
261	For 1% significance level, 17 is not an outlier.					
262						
263	2. Observation Value 6.7 is a Potential Outlier (Lower Tail)?					
264						
265	Test Statistic: 0.029					
266						
267	For 10% significance level, 6.7 is not an outlier.					
268	For 5% significance level, 6.7 is not an outlier.					
269	For 1% significance level, 6.7 is not an outlier.					
270						
271						
272	Dixon's Outlier Test for Zinc (surface)					
273						
274	Number of Observations = 7					
275	10% critical value: 0.434					
276	5% critical value: 0.507					
277	1% critical value: 0.637					
278						
279	1. Observation Value 7.4 is a Potential Outlier (Upper Tail)?					
280						
281	Test Statistic: 0.235					
282						
283	For 10% significance level, 7.4 is not an outlier.					
284	For 5% significance level, 7.4 is not an outlier.					
285	For 1% significance level, 7.4 is not an outlier.					
286						
287	2. Observation Value 5.7 is a Potential Outlier (Lower Tail)?					
288						
289	Test Statistic: 0.412					
290						
291	For 10% significance level, 5.7 is not an outlier.					
292	For 5% significance level, 5.7 is not an outlier.					
293	For 1% significance level, 5.7 is not an outlier.					
294						
204						,

	A B C Table D-2.	D E Goodness-of-Fit Tes	F t Statistics by	G Horizon for F	H Iull Site Data	 Sots	J	K	L
1	User Selected Options					10013			
2		ProUCL 5.112/19/20	18 10·15·12 Δ	M					
3		ProUCL_input.xls	10 10:10:12						
4		OFF							
5		0.95							
6	Confidence Coefficient	0.95							
7									
8	Antimony (subsurface)								
9									
10	Raw St	atistics							
11		per of Valid Observation	ons 7						
12		of Distinct Observati							
13		Minim							
14		Maxim							
15		Mean of Raw D							
16	Standar	d Deviation of Raw D							
17			hat 9.762						
18		Theta							
19			star 5.673						
20 21		Thetas							
21	Mean o	of Log Transformed D	ata -1.377						
22		of Log Transformed D							
23 24									
24 25	Normal GOF	Test Results							
25 26									
20		Correlation Coefficier	it R 0.981						
27	S	hapiro Wilk Test Stati	stic 0.941						
29	Shapiro	Wilk Critical (0.05) Va	lue 0.803						
30	Approxima	ate Shapiro Wilk P Va	lue 0.837						
31		Lilliefors Test Stati	stic 0.16						
32	Lillie	fors Critical (0.05) Va	lue 0.304						
33	Data appear Normal at (0.05) Signifi	cance Level							
34									
35	Gamma GOF	Test Results							
36									
37		Correlation Coefficier	it R 0.965						
38		A-D Test Stati							
39		A-D Critical (0.05) Va							
40		K-S Test Stati							
41		K-S Critical(0.05) Va							
42	Data appear Gamma Distributed at ((0.05) Significance L	evel						
43									
44	Lognormal GO	F Test Results							
45									
46		Correlation Coefficier							
47		hapiro Wilk Test Stati							
48		Wilk Critical (0.05) Va							
49	Approxima	ate Shapiro Wilk P Va							
50		Lilliefors Test Stati							
51		fors Critical (0.05) Va	lue 0.304						
52	Data appear Lognormal at (0.05) Sig	inificance Level							

	A	В		С	D	E	F	G	Н	J	K	L
53												
54	Antimony ((surface)										
55												
56				Raw St								
57						Observations						
58				Number	of Distinct	Observations						
59						Minimum						
60						Maximum						
61						of Raw Data						
62				Standar	d Deviation	of Raw Data						
63						Khat						
64						Theta hat						
65						Kstar						
66						Theta star						
67					-	sformed Data						
68		Stand	dard De	eviation of	of Log Trans	sformed Data	1.019					
69												
70			Norm	al GOF	Test Resul	ts						
71					-							
72						Coefficient R						
73					-	Test Statistic						
74						(0.05) Value						
75			Ap	oproxima	-	Wilk P Value						
76						Test Statistic				 		
77	.					(0.05) Value	0.304			 		
78	Data not N	lormal at (0	J.05) Sig	gnifican	ce Level							
79			0		T D	u.,						
80			Gamn	na GOF	Test Resu	Its						
81					0	0 # + D	0.000					
82						Coefficient R Test Statistic						
83						(0.05) Value						
84						Test Statistic						
85						(0.05) Value						
86	Data not G	amma Diet	tributed		5) Significa		0.521					
87			linduteu									
88			Lognor	mal GO	F Test Res	ulte						
89			Lognon									
90					Correlation	Coefficient R	0.857					
91						Test Statistic						
92			S		-	(0.05) Value						
93				-		Wilk P Value						
94					-	Test Statistic						
95				Lillie		(0.05) Value						
96 07	Data appea	ar Approxir	mate_Lo			Significance						
97 98										1		
98 99	Copper (sı	ubsurface)										
99 100		,										
101				Raw St	atistics							
101	<u> </u>					Observations	7					
102						Observations						
103						Minimum						
104								1	1			I

105	A		В		С	D	E Maximum	F 3	G	Н	I	J	К	
106						Mean	of Raw Data	1.814						
107					Standa	rd Deviation	of Raw Data	0.573						
108							Khat	13.86						
109							Theta hat	0.131						
110							Kstar	8.014						
111							Theta star	0.226						
112						-	formed Data	0.559						
113			Stan	ndard D	Deviation	of Log Trans	sformed Data	0.282						
114														
115				Nor	mal GOF	Test Resul	ts							
116														
117							Coefficient R	0.885						
118						•	Test Statistic	0.801						
119					-		(0.05) Value	0.803						
120					Approxim	-	Wilk P Value	0.028						
121							Test Statistic	0.298						
122	<u> </u>		•				(0.05) Value	0.304						
123	Data app	bear A	pproxi	imate I	Normal at	t (0.05) Sign	ificance Leve							
124				0.0.0		Test Desu	4							
125				Gan	nma GOF	Test Resu	ITS							
126						Correlation	Coefficient R	0.000						
127							Test Statistic	0.923						
128							(0.05) Value	0.541						
129							(0.03) Value Test Statistic	0.254						
130							(0.05) Value	0.234						
131	Data anr	oor (amma	Dietri			ficance Level	0.512						
132			amma											
133				Loan	ormal GO	F Test Res	ults							
134				_•g										
135						Correlation	Coefficient R	0.927						
136							Test Statistic	0.871						
137						-	(0.05) Value	0.803						
138					Approxim	ate Shapiro	Wilk P Value	0.159						
139 140						•	Test Statistic	0.242						
140					Lillie	efors Critical	(0.05) Value	0.304						
	Data apr	ear L	.ognorn	nal at		gnificance L								
142														
	Copper (surfa	ce)											
145														
145					Raw St	tatistics								
147					Numb	per of Valid (Observations	7						
148					Number	of Distinct (Observations	7						
149							Minimum	1.7						
150							Maximum	3.6						
151						Mean	of Raw Data	2.833						
152					Standa	rd Deviation	of Raw Data	0.677						
153				_			Khat	18.05						
154							Theta hat	0.157						
155							Kstar	10.41						
156							Theta star	0.272						
										-				

	A	В	C Mean o	D of Log Transt	E formed Data	F 1.013	G	Н	I	J	K	L
157		Standa	Ind Deviation of	-		0.265						
158						0.200						
159			Normal GOF	Test Result	<u>م</u>							
160												
161				Correlation (Coefficient R	0.965						
162					Fest Statistic	0.926						
163				-	(0.05) Value	0.803						
164			-		Wilk P Value	0.583						
165			1-1	-	est Statistic	0.225						
166 167			Lillie		(0.05) Value	0.304						
167	Data appear	Normal at										
169			. , .									
170		(Gamma GOF	Test Result	s							
171												
172				Correlation C	Coefficient R	0.942						
172				A-D T	est Statistic	0.4						
173				A-D Critical	(0.05) Value	0.707						
175				K-S T	est Statistic	0.251						
176				K-S Critical(0.05) Value	0.312						
177	Data appear	Gamma D	istributed at ((0.05) Signifi	icance Level							
178												
179		La	ognormal GO	F Test Resu	ilts							
180												
181				Correlation C	Coefficient R	0.944						
182			S	hapiro Wilk T	est Statistic	0.891						
183			Shapiro	Wilk Critical	(0.05) Value	0.803						
184			Approxima	ate Shapiro V	Wilk P Value	0.295						
185				Lilliefors T	est Statistic	0.244						
186			Lillie	fors Critical	(0.05) Value	0.304						
187	Data appear	Lognorma	l at (0.05) Sig	inificance Le	evel							
188												
189	Lead (subsur	face)										
190												
191			Raw St									
192					bservations	7						
193			Number	of Distinct C	bservations)	6						
194					Minimum	2.7						
195					Maximum	4.1						
196					of Raw Data	3.419						
197			Standar	d Deviation		0.425						
198					Khat	73.79						
199					Theta hat	0.0463						
200	 				Kstar	42.26						
201			N <i>A</i>	flor Tree (Theta star	0.0809						
202		Stored -		-	formed Data	1.222						
203	 	Standa	rd Deviation of	Log Transi	iormed Data	0.127						
204			Normal COF	Toot Beauty								
205			Normal GOF	Test Result	5							
206				Correlation	Poofficiant D	0.051						
207					Coefficient R	0.951						
208	<u> </u>		S	napiro Wilk I	est Statistic	0.931						

	A B C D E	F	G	Н		J	K	L
209	Shapiro Wilk Critical (0.05) Value	0.803						
210	Approximate Shapiro Wilk P Value	0.377						
211	Lilliefors Test Statistic	0.247						
212	Lilliefors Critical (0.05) Value	0.304						
213	Data appear Normal at (0.05) Significance Level							
214								
215	Gamma GOF Test Results							
216								
217	Correlation Coefficient R	0.953						
218	A-D Test Statistic	0.418						
219	A-D Critical (0.05) Value	0.708						
220	K-S Test Statistic	0.254						
221	K-S Critical(0.05) Value	0.311						
222	Data appear Gamma Distributed at (0.05) Significance Level							
223								
224	Lognormal GOF Test Results							
225	Correlation Coefficient R	0.044						
226	Correlation Coefficient R Shapiro Wilk Test Statistic	0.944						
227		0.919						
228	Shapiro Wilk Critical (0.05) Value Approximate Shapiro Wilk P Value	0.803						
229	Lilliefors Test Statistic	0.298						
230	Lilliefors Critical (0.05) Value	0.268						
231	Data appear Lognormal at (0.05) Significance Level	0.304						
232	Data appear Lognormal at (0.05) Significance Lever							
233	Lead (surface)							
234								
235	Raw Statistics							
236	Number of Valid Observations	7						
237	Number of Distinct Observations	7						
238	Minimum	5.4						
239	Maximum	23.1						
240	Mean of Raw Data	8.357						
241	Standard Deviation of Raw Data	6.52						
242	Khat	3.36						
243	Theta hat	2.487						
244	Kstar	2.016						
245	Theta star	4.146						
246	Mean of Log Transformed Data	1.967						
247	Standard Deviation of Log Transformed Data	0.524						
248 240	~							
249	Normal GOF Test Results							
250 251								
251 252	Correlation Coefficient R	0.702						
252 253	Shapiro Wilk Test Statistic	0.521						
253 254	Shapiro Wilk Critical (0.05) Value	0.803						
254 255	Approximate Shapiro Wilk P Value	1.9609E-5						
255 256	Lilliefors Test Statistic	0.452						
250 257	Lilliefors Critical (0.05) Value	0.304						
257	Data not Normal at (0.05) Significance Level							
258 259								
259 260	Gamma GOF Test Results							
200								

	A B C D E	F	G	Н		J	K	L
261								
262	Correlation Coefficient R	0.828						
263	A-D Test Statistic	1.573						
264	A-D Critical (0.05) Value	0.711						
265	K-S Test Statistic	0.428						
266	K-S Critical(0.05) Value	0.313						
267	Data not Gamma Distributed at (0.05) Significance Level							
268								
269	Lognormal GOF Test Results							
270								
271	Correlation Coefficient R	0.753						
272	Shapiro Wilk Test Statistic	0.592						
273	Shapiro Wilk Critical (0.05) Value	0.803						
274	Approximate Shapiro Wilk P Value	1.2887E-4						
275	Lilliefors Test Statistic	0.395						
276	Lilliefors Critical (0.05) Value	0.304						
277	Data not Lognormal at (0.05) Significance Level							
278								
279	Non-parametric GOF Test Results							
280								
281	Data do not follow a discernible distribution at (0.05) Level of	Significanc						
282								
283	Manganese (subsurface)							
284								
285	Raw Statistics							
286	Number of Valid Observations	7						
287	Number of Distinct Observations	7						
288	Minimum	18.2						
289	Maximum	83.2						
290	Mean of Raw Data	35.51						
291	Standard Deviation of Raw Data	24.8						
292	Khat	3.101						
293	Theta hat	11.45						
294	Kstar	1.867						
295	Theta star	19.02						
296	Mean of Log Transformed Data	3.4						
297	Standard Deviation of Log Transformed Data	0.595						
298								
299	Normal GOF Test Results							
300		0.000						
301	Correlation Coefficient R	0.869						
302	Shapiro Wilk Test Statistic	0.756						
303	Shapiro Wilk Critical (0.05) Value	0.803						
304	Approximate Shapiro Wilk P Value	0.014						
305	Lilliefors Test Statistic	0.296						
306	Lilliefors Critical (0.05) Value	0.304						
307	Data appear Approximate Normal at (0.05) Significance Leve	I						
308								
309	Gamma GOF Test Results							
310		0.050						
311	Correlation Coefficient R	0.956						
312	A-D Test Statistic	0.752						

	A B C D E	F	G	Н	I	J	K	L
313	A-D Critical (0.05) Value	0.712						
314	K-S Test Statistic	0.315						
315	K-S Critical(0.05) Value	0.314						
316	Data not Gamma Distributed at (0.05) Significance Level							
317								
318	Lognormal GOF Test Results							
319								
320	Correlation Coefficient R	0.911						
321	Shapiro Wilk Test Statistic	0.819						
322	Shapiro Wilk Critical (0.05) Value	0.803						
323	Approximate Shapiro Wilk P Value	0.0792						
324	Lilliefors Test Statistic	0.297						
325	Lilliefors Critical (0.05) Value	0.304						
326	Data appear Lognormal at (0.05) Significance Level							
327								
	Manganese (surface)							
329								
330	Raw Statistics							
331	Number of Valid Observations	7						
332	Number of Distinct Observations	7						
333	Minimum	7.7						
334	Maximum	35						
335	Mean of Raw Data	16.37						
336	Standard Deviation of Raw Data	8.86						
337	Khat	5.061						
338	Theta hat	3.234						
339	Kstar	2.987						
340	Theta star	5.479						
341	Mean of Log Transformed Data	2.693						
342	Standard Deviation of Log Transformed Data	0.469						
343								
344	Normal GOF Test Results							
345								
346	Correlation Coefficient R	0.885						
347	Shapiro Wilk Test Statistic	0.808						
348	Shapiro Wilk Critical (0.05) Value	0.803						
349	Approximate Shapiro Wilk P Value	0.0286						
350	Lilliefors Test Statistic	0.302						
351	Lilliefors Critical (0.05) Value	0.304						
	Data appear Normal at (0.05) Significance Level							
353							<u> </u>	
354	Gamma GOF Test Results							
355							<u> </u>	
356	Correlation Coefficient R	0.944						
357	A-D Test Statistic	0.389						
358	A-D Critical (0.05) Value	0.71						
359	K-S Test Statistic	0.234						
360	K-S Critical(0.05) Value	0.313						
	Data appear Gamma Distributed at (0.05) Significance Level							
362								
362	Lognormal GOF Test Results							
	-							
364								

	A B C D E	F	G	Н		J	K	L
365	Correlation Coefficient R	0.963						
366	Shapiro Wilk Test Statistic	0.948						
367	Shapiro Wilk Critical (0.05) Value	0.803						
368	Approximate Shapiro Wilk P Value	0.561						
369	Lilliefors Test Statistic	0.212						
370	Lilliefors Critical (0.05) Value	0.304						
371	Data appear Lognormal at (0.05) Significance Level							
372								
373	Nickel (subsurface)							
374	David Otabiation							
375	Raw Statistics Number of Valid Observations	7						
376	Number of Distinct Observations	6						
377	Mumber of Disunct Observations	1.7						
378	Maximum	2.7						
379	Mean of Raw Data	2.7						
380	Standard Deviation of Raw Data	0.324						
381	Standard Deviation of Raw Data	52.97						
382	Theta hat	0.0412						
383	Kstar	30.36						
384	Theta star	0.0718						
385	Mean of Log Transformed Data	0.771						
386	Standard Deviation of Log Transformed Data	0.149						
387		0.110						
388	Normal GOF Test Results							
389								
390	Correlation Coefficient R	0.977						
391	Shapiro Wilk Test Statistic	0.964						
392	Shapiro Wilk Critical (0.05) Value	0.803						
393 394	Approximate Shapiro Wilk P Value	0.791						
394 395	Lilliefors Test Statistic	0.191						
396	Lilliefors Critical (0.05) Value	0.304						
397	Data appear Normal at (0.05) Significance Level							
398								
398	Gamma GOF Test Results							
400								
401	Correlation Coefficient R	0.981						
402	A-D Test Statistic	0.25						
403	A-D Critical (0.05) Value	0.708						
404	K-S Test Statistic	0.171						
405	K-S Critical(0.05) Value	0.311						
406	Data appear Gamma Distributed at (0.05) Significance Level							
407								
408	Lognormal GOF Test Results							
409								
410	Correlation Coefficient R	0.979						
411	Shapiro Wilk Test Statistic	0.968						
412	Shapiro Wilk Critical (0.05) Value	0.803						
413	Approximate Shapiro Wilk P Value	0.815						
414	Lilliefors Test Statistic	0.166						
415	Lilliefors Critical (0.05) Value	0.304						
416	Data appear Lognormal at (0.05) Significance Level							
· · · · · ·								

	А	В		(С	D			E	F	G	Н	I	J	K	L
417																
418	Nickel (sur	face)														
419																
420				F		atistics										
421						er of Va				7						
422				N	lumber	of Disti	nct C			6						
423								Mir	nimum	0.69						
424									kimum	1.7						
425								of Rav		1.167						
426				S	Standar	d Devia	ation	of Rav		0.391						
427									Khat	10.32						
428								The	eta hat	0.113						
429									Kstar	5.993						
430									ta star	0.195						
431						of Log T				0.105						
432		Sta	andar	rd Dev	viation o	of Log T	rans	formed	d Data	0.341						
433																
434			N	Norma	I GOF	Test R	esult	ts								
435						~										
436						Correla				0.952						
437						napiro V				0.888						
438						Wilk Cri				0.803						
439				Арр	oroxima	ate Sha				0.375						
440								Test St		0.237						
441	.			<u> </u>		fors Cri			Value	0.304						
442	Data appea	ar Norma	al at ((0.05)	Signifi	cance I	Leve									
443				<u></u>	- 005	T D										
444			G	amm	a GOF	Test R	esui	IS								
445						0	·:	0 45 -	i.e.et D	0.05						
446						Correla		Test St		0.95 0.464						
447						, A-D Cri				0.464						
448								Test St		0.708						
449						K-S Cri				0.230						
450	Data appea	r Gamn	na Die	etribut												
451				Suibu		0.00) 0	''y'''	licance	Leve							
452				anorm	nal GO	F Test	Resi	ulte								
453				gnom		1 1001	1,000									
454						Correla	tion (Coeffic	ient R	0.96						
455						hapiro V				0.906						
456				Sł		Wilk Cri				0.803						
457					-	ate Sha										
458				· 'Pł				Test St		0.239						
459					Lillie					0.304						
460	Data appea	Lilliefors Critical (0.05) Va Data appear Lognormal at (0.05) Significance Level														
461		ata appear Lognormal at (0.05) Significance Level														
462	Zinc (subsu	urface)														
403	(1														
464				F	Raw St	atistics	;									
465						er of Va		Observ	ations	7						
466				N		of Disti				7						
467									nimum	6.7						
468																

	А		В			С		D	E Maximur	F n 17		G	Н	I	J	К	L	┭
469								Maar	Maximur of Raw Dat									
470						Ctonde			of Raw Dat					<u> </u>				
471					;	Standa	ra Dev	lation										
472									Kha									
473									Theta ha									_
474									Ksta									
475						M = = ==	- 61	T	Theta sta									
476			Stor	dore			-		formed Dat									_
477			Stan	luarc	u De	viation		Trans	ionneu Dai	a 0.367	'							
478				N	lorm	al GOF	Teet	Doculi	he									_
479				IN			1631	Nesun	13									_
480							Correl	lation (Coefficient	R 0.927	,							
481									Test Statisti									
482		Shapiro Wilk Critical (0.05) Valu																_
483		Approximate Shapiro Wilk P Valu																_
484					, .p	proxim		-	Test Statisti									
485						Lillie			(0.05) Valu									_
486	Data app	ear N	lormal	at ((0.05)													_
407						,			-									-
488				G	amm	na GOF	Test	Resul	ts						 			_
489															 			_
490							Corre	lation (Coefficient	R 0.948	3							
491									Test Statisti									_
492							A-D C		(0.05) Valu									-
493 494									Test Statisti									-
494 495							K-S C	ritical	(0.05) Valu	e 0.312	2				 			_
	Data app	ear C	amma	a Dis	stribu				icance Lev									-
497																		
498				Log	gnorr	mal GC	F Tes	t Resi	ults									_
499																		_
500							Corre	lation (Coefficient	R 0.952	2							
501						S	hapiro	Wilk	Test Statisti	c 0.879)							
502					S	hapiro	Wilk C	Critical	(0.05) Valu	e 0.803	3							
503					Ap	proxim	ate Sh	apiro	Wilk P Valu	e 0.375	5							
504							Lilli	efors 7	Test Statisti	c 0.186	6							_
505						Lillie	efors C	Critical	(0.05) Valu	e 0.304	ŀ							
	Data app	ear L	.ognorr	mal a	at (0	.05) Sig	gnifica	nce L	evel	- .								1
507				_														
	Zinc (surf	lace)																
509																		
510						Raw S												
511									Observation									
512					١	Number	r of Dis	stinct (Observation									
513									Minimur									
514		Maxin																
515		Mean of Raw I																
516		Standard Deviation of Raw								a 0.535 It 174.9	5							
517																		
518								Theta ha		1								
519									Ksta									
520									Theta sta	r 0.0665	5							

	A		В		С		D		E	F	G	Н		J	K	L
521							-		ed Data	1.893						
522			Standa	Ird Dev	viation	of Lo	g Trans	sform	ed Data	0.0824						
523																
524			I	Norma	al GOF	Tes	t Resul	lts								
525																
526									ficient R							
527						•			Statistic							
528					•			•	5) Value							
529				Ар	proxim		-		P Value							
530									Statistic							
531								-	5) Value	0.304						
532	Data appea	ar N	lormal at	(0.05)	Signif	icano	e Leve	əl								
533																
534			(Gamm	a GOF	= Tes	t Resu	llts								
535																
536						Corr			ficient R	0.969						
537									Statistic							
538						A-D		-	5) Value	0.708						
539							K-S	Test	Statistic	0.192						
540) Value							
541	Data appea	ar G	amma Di	istribu	ted at	(0.05	i) Signi	ifican	ce Leve	J						
542																
543			Lo	ognorr	nal GC)F Te	est Res	sults								
544																
545						Corr	elation	Coeff	icient R							
546					S	hapir	o Wilk	Test	Statistic							
547					•			•	5) Value							
548				Ар	proxim		-		P Value	0.552						
549						Li	lliefors	Test	Statistic	0.186						
550					Lillie	efors	Critical	I (0.05	5) Value	0.304						
	Data appea	ar L	ognormal	l at (0.	05) Si	gnific	ance L	evel								
													· · · ·	· ·		

	A B	С	D	E	F	G	Н		J	K	L
1				neway ANO	-						
2	Date/Time of Co	•		12/19/2018	10:22:39 AM						
3			ProUCL_in	put.xls							
4	Ful	I Precision	OFF								
5											
6											
7	Anti	mony									
8											
9		Group		Mean	SD	Variance					
10		surface	7	0.724	1.183	1.4					
11		subsurface		0.266	0.0879	0.00773					
12	Grand Statist	ics (All data)	14	0.495	0.841	0.707					
13											
14		sical One-W									
15	Source	SS	DOF	MS	V.R.(F Stat						
16	Between Groups	0.736	1	0.736	1.045	0.327					
17	Within Groups	8.449	12	0.704							
18	Total	9.185	13								
19											
20	Pooled Standar		0.839								
21		R-Sq	0.0801								
22			-					-			
23	Note: A p-value <= 0.05							ces in			
24	mean/median character		-	-			-				
25	A p-value > 0.05 (or oth	er selected l	evel) sugge	sts that mea	n/median ch	aracteristics	of the variou	is groups ar	e comparab	le.	
26											
27						- <u> </u>					
28	Co	pper									
29					00						
30		Group		Mean	SD	Variance					
31		surface		2.833	0.677	0.458					
32		subsurface		1.814	0.573	0.328					
33	Grand Statist	ics (All data)	14	2.324	0.801	0.642					
34		alaal 0 = - 14	ov Anal!	of	Table						
35		sical One-W	• •								
36	Source	SS 2 621	DOF 1	MS 3.631	V.R.(F Stat						
37	Between Groups	3.631 4.718	1 12		9.236	0.0103					
38	Within Groups		12	0.393							
39	Total	8.349	13								
40	Pooled Standar	d Deviation	0.627								
41		R-Sq	0.627								
42		п-оч	0.430								
43	Note: A p-value <= 0.05	(or some of	har calentar		acte that the	re are cianifi	ant differen	ces in			
44	mean/median character							669 111			
45	A p-value > 0.05 (or oth								e comparab	6	
46		SI SSIECIEU I	even suyye					o aroupa ar			
47											
48	Mano	anese									
49											
50		Group	Ohs	Mean	SD	Variance					
51		surface		16.37	8.86	78.5					
52		Suitace	1	10.37	0.00	70.0					

	A B	С	D	E	F	G	Н	I	J	K	L
53		subsurfa	ce 7	35.51	24.8	614.9					
54	Grand Sta	atistics (All dat	ta) 14	25.94	20.46	418.8					
55				-	-	1	-				
56	C	Classical One-	Way Analysis	of Variance	Table						
57	Sour	rce SS	DOF	MS	V.R.(F Stat) P-Value					
58	Between Grou	ips 1283	1	1283	3.701	0.0784					
59	Within Grou	ips 4161	12	346.7							
60	То	tal 5444	13							-	
61		1			-					-	
62	Pooled Star	ndard Deviatio	n 18.62								
63		R-S	q 0.236							-	
64							<u>.</u>				
65	Note: A p-value <= 0	0.05 (or some	other selecte	d level) sugg	jests that the	ere are signifi	cant differen	ices in			
66	mean/median chara	cteristics of th	ie various gro	ups at 0.05 c	or other selec	cted level of s	significance				
	A p-value > 0.05 (or	other selecte	d level) sugge	ests that mea	an/median ch	naracteristics	of the variou	us groups ar	e comparab	le.	
68											
69											
70		Nickel									
71											
72		Gro	up Obs	Mean	SD	Variance					
73		surfa	ce 7	1.167	0.391	0.152					
74		subsurfa	ce 7	2.181	0.324	0.105					
75	Grand Sta	atistics (All dat	ta) 14	1.674	0.629	0.396					
76			i		-	-!					
77	C	Classical One-	Way Analysis	of Variance	Table						
78	Sour	rce SS	DOF	MS	V.R.(F Stat) P-Value					
79	Between Grou	ips 3.601	1	3.601	27.96	1.9219E-4					
80	Within Grou	ips 1.545	12	0.129							
81	То	otal 5.146	13								
82											
83	Pooled Star	ndard Deviatio	n 0.359								
84		R-S	q 0.7								
85				·							
00	Note: A p-value <= (-			-	-		ices in			
07	mean/median chara		-	-			-				
88	A p-value > 0.05 (or	other selecte	d level) sugge	ests that mea	an/median ch	naracteristics	of the variou	us groups ar	e comparab	le.	
89											
90											
91		Zinc		_						ļ	
92											
93			up Obs	Mean	SD	Variance				<u> </u>	
94		surfa		6.657	0.535	0.286				ļ	
95		subsurfa		10.74	4.357	18.98	<u> </u>			<u> </u>	
96	Grand Sta	atistics (All dat	ta) 14	8.7	3.659	13.39				<u> </u>	
97											
98		Classical One-									
99	Sour		DOF	MS	V.R.(F Stat	·					
100	Between Grou	-	1	58.43	6.064	0.0299				ļ	
101	Within Grou		12	9.635							
102	То	otal 174	13								
103											
104	Pooled Star	ndard Deviatio	n 3.104								
											_

	А	В	С	D	E	F	G	Н		J	K	L
105			R-Sq	0.336								
106												
			(or some ot									
			istics of the									
109	A p-value >	0.05 (or oth	er selected l	evel) sugges	sts that mea	n/median cha	aracteristics	of the variou	us groups are	e comparabl	е.	
110												

	А	В	С	D	E	F	G	Н	I	J	K	L
1			Table D-4.	Nonparame	etric Oneway	ANOVA (Kr	uskal-Wallis	Test) for Le	ad			
2	Date	e/Time of Co	mputation	ProUCL 5.1	12/19/2018 1	0:28:57 AM						
3			From File	ProUCL_inp	out.xls							
4		Full	I Precision	OFF								
5												
6												
7		Le	ad									
8	Group Obs Median Ave Rank Z											
9		Group	Obs	Median	Ave Rank							
10	s	ubsurface	7	3.4	4							
11		surface	7	5.8	11	3.13						
12		Overall	14	4.75	7.5							
13												
14	K	K-W (H-Stat)	DOF	P-Value	(Approx. Ch	isquare)						
15		9.8	1	0.00175								
16		9.822	1	0.00172	(Adjusted	l for Ties)						
17												
10					l level) sugge							
13					ips at 0.05 or							
20	A p-value >	0.05 (or oth	er selected I	evel) sugges	sts that mear	n/median cha	aracteristics	of the vario	us groups	s are compara	bl	
21												

	A E	В	С	D Table D-5.	E Outlier Test	F Is for Combin	G ned Surface	H and Subsurf	l ace Samplir	J na Results fa	K r Antimony a	L and Mangan
1			User Selec	ted Options						.g	,	
2	Date/Time	e of Co		ProUCL 5.1	12/19/2018 1	0:32:20 AM						
4					ProUCL_ing							
4 5			Ful		OFF							
6												
7												
8	Dixc	on's Ou	utlier Test fo	r Antimony								
9												
10	Number of Observ	ations	= 14									
11	10% critical value:	: 0.492										
	5% critical value: 0	0.546										
13	1% critical value: 0	0.641										
14												
15	1. Observation Va	alue 3.	.4 is a Poten	ntial Outlier (Upper Tail)?							
16												
17	Test Statistic: 0.93	35										
18												
19	For 10% significan											
20	For 5% significanc											
21	For 1% significanc	ce leve	l, 3.4 is an o	utlier.								
22												
23	2. Observation Va	alue 0.	15 is a Poter	ntial Outlier ((Lower Tail)							
24		07										
25	Test Statistic: 0.08	87										
26	Far 100/ airrifiaar		al 0 15 ia na									
27	For 10% significan For 5% significanc											
28	For 1% significance											
29			1, 0.15 15 110									
30												
31	Dixor	n's Out	lier Test for	Manganese								
32				g								
33	Number of Observ	/ations	= 14									
34 35	10% critical value:											
35	5% critical value: 0	0.546										
37	1% critical value: 0											
38												
39	1. Observation Va	alue 83	3.2 is a Pote	ential Outlier	(Upper Tail)							
40												
41	Test Statistic: 0.68	88										
42												
	For 10% significan											
44	For 5% significanc											
45	For 1% significanc	ce leve	l, 83.2 is an	outlier.								
46												
47	2. Observation Va	alue 7.	7 is a Potent	tial Outlier (L	ower Tail)?							
48												
49	Test Statistic: 0.19	98										
50		<u>.</u>										
51	For 10% significan											
52	For 5% significance	ce leve	i, 7.7 is not a	an outlier.								

	A	В	С	D	E	F	G	Н	_	J	K	L
53	For 1% sign	ificance leve	l, 7.7 is not a	n outlier.								
54												

	А	В	C Table D-6.	D	E	F	G	H		J Coll Data for d	K	L
1			Table D-6.	Manganese		tatistics for o	Combined St	Inace and S	Subsurface a	Soil Data for /	Antimony and	1
2		User Sele	cted Options									
3	Dat	te/Time of C	omputation	ProUCL 5.1	12/19/2018	10:34:16 AM						
4			From File	ProUCL_ing	out.xls							
5		Fu	II Precision	OFF								
6		Confidence	Coefficient	0.95								
7												
8												
	Antimony											
10												
11			Raw St	tatistics								
12			Numb	per of Valid C	Observations	14						
13			Number	of Distinct C	Observations	13						
14					Minimum	0.15						
15					Maximum	3.4						
16				Mean	of Raw Data							
17			Standar	rd Deviation	of Raw Data							
18					Khat	1.206						
19					Theta hat							
20					Kstar	0.995						
21					Theta star	0.497						
22			Mean	of Log Trans	formed Data	-1.172						
23		Standa	rd Deviation	of Log Trans	formed Data	0.764						
24												
25			Normal GOF	Test Result	S							
26												
27				Correlation (
28				hapiro Wilk								
29				Wilk Critical								
30			Approxima	ate Shapiro \								
31					Fest Statistic							
32	.			ofors Critical	(0.05) Value	0.226						
33	Data not No	ormal at (0.0)5) Significan	ce Level								
34			0	Test								
35			Gamma GOF		ts							
36				Corrolation	Coofficient D	0 700						
37				Correlation (Fest Statistic							
38				A-D A-D Critical								
39					(0.05) Value							
40				K-S								
41	Data not Gr	amma Dietri	buted at (0.0			0.234						
42			54100 at (0.0									
43		11	ognormal GO	F Test Res	ults							
44			- g Simia GO									
45				Correlation (Coefficient R	0.83						
46				hapiro Wilk 1								
47				Wilk Critical								
48			-									
49		Approximate Shapiro Wilk P Valu Lilliefors Test Statisti										
50			Lillie	efors Critical								
51			Linc		(3.00) 1000	0.220						

	A B C D E	F	G	Н	J	K	L
52	Data not Lognormal at (0.05) Significance Level						
53							
	Non-parametric GOF Test Results						
55							
	Data do not follow a discernible distribution at (0.05) Level of	Significanc					
57							
	Manganese						
59							
60	Raw Statistics						
61	Number of Valid Observations	14					
62	Number of Distinct Observations	14					
63	Minimum	7.7					
64	Maximum	83.2					
65	Mean of Raw Data	25.94					
66	Standard Deviation of Raw Data	20.46					
67	Khat	2.545					
68	Theta hat	10.19					
69	Kstar	2.047					
70	Theta star	12.67					
71	Mean of Log Transformed Data	3.047					
72	Standard Deviation of Log Transformed Data	0.632					
73	I						
74	Normal GOF Test Results						
75							
76	Correlation Coefficient R	0.854					
70	Shapiro Wilk Test Statistic	0.744				ļļ	
78	Shapiro Wilk Critical (0.05) Value	0.874					
79	Approximate Shapiro Wilk P Value	6.9832E-4					
80	Lilliefors Test Statistic	0.31				ļļ	
81	Lilliefors Critical (0.05) Value	0.226					
	Data not Normal at (0.05) Significance Level						
83							
84	Gamma GOF Test Results						
85							
86	Correlation Coefficient R	0.952					
87	A-D Test Statistic	0.69					
88	A-D Critical (0.05) Value	0.744					
89	K-S Test Statistic	0.259				ļļ	
90	K-S Critical(0.05) Value	0.231				ļ	
	Data follow Appr. Gamma Distribution at (0.05) Significance L	_evel				ļ,	
92						ļļ	
92 93	Lognormal GOF Test Results					ļ	
93 94							
94 95	Correlation Coefficient R	0.97					
95 96	Shapiro Wilk Test Statistic	0.947				ļ	
96 97	Shapiro Wilk Critical (0.05) Value	0.874					
97 98	Approximate Shapiro Wilk P Value	0.453					
	Lilliefors Test Statistic	0.216					
99 100	Lilliefors Critical (0.05) Value	0.226					
100	Data appear Lognormal at (0.05) Significance Level	-					
101							

	A	В	С	D	E	F	G	Н		J	K	L
1				Nonparame	tric Backgro	und Statistic	cs for Combi	ned Surface	and Subsur	face Soil Ant	timony	
2			cted Options									
3	Dat	te/Time of Co			12/19/2018 1	0:43:18 AM						
4			From File	ProUCL_inp	out.xls							
5		-	II Precision	OFF								
6		Confidence		95%								
7		-	Coverage	95%								
8	Number o	of Bootstrap	Operations	2000								
9												
10	Antimony											
11												
12	General Sta	atistics				1	1					
13			Total	Number of C		14			Numbe	r of Distinct C		13
14					Minimum	0.15				F	irst Quartile	0.213
15				Sec	cond Largest	0.44					Median	0.275
16					Maximum	3.4				Т	hird Quartile	0.34
17					Mean	0.495					SD	0.841
18					t of Variation	1.698					Skewness	3.673
19				Mean of	logged Data	-1.172				SD of	logged Data	0.764
20												
21					ical Values f	-	Ind Threshol	d Values (B	ΓVs)			
22			Tole	rance Factor	K (For UTL)	2.614				d2m	ax (for USL)	2.372
23												
24					nparametric							
25					Data do not f	ollow a Disc	ernible Distr	ibution (0.05	5)			
26								· <u> </u>				
27					rametric Upp		r Backgroun	d Threshold				
28					of Statistic, r	14				JTL with 95	-	3.4
29		Ap	oprox, f used	to compute a	achieved CC	0.737				efficient achie	•	0.512
30							Approxin			to achieve s	-	59
31	95	5% Percentil	e Bootstrap l	JIL with 95		3.4		95% BCA	A Bootstrap	JTL with 95	-	3.4
32					95% UPL	3.4					% Percentile	0.422
33					byshev UPL	3.105					% Percentile	1.476
34				95% Che	byshev UPL	4.287				999	% Percentile	3.015
35					95% USL	3.4						
36									<u> </u>			
37				-				•		ize starts exc	-	
38		Therefore	e, one may us			-		-		lata set free	of outliers	
39					ts of observa							
40										ovided the da		
41		re	presents a ba	ackground da	ata set and w	hen many or	nsite observa	tions need to	be compar	ed with the B	TV.	
42												

	A	В	С	D	E	F	G	H		J	K	L
1			Table D-8.	Normal Bac	kground Sta	tistics by Ho	rizon for Co	pper, Nicke	, and Zinc			
2				T								
3			ected Options									
4	Da	te/Time of C		ProUCL 5.1		0:42:43 AM						
5			From File	ProUCL_inp	ut.xls							
6			III Precision	OFF								
7		Confidence		95%								
8			Coverage	95%								
9	New or	r Future K Ol	bservations	1								
10												
11	Copper (su	ibsurface)										
12												
13	General St	atistics									1	
14			Total	Number of O		7			Number	r of Distinct Obs		5
15					Minimum	1.3				Firs	t Quartile	1.5
16				Sec	ond Largest	1.9					Median	1.7
17					Maximum	3				Third	d Quartile	1.85
18					Mean	1.814					SD	0.573
19					of Variation	0.316					Skewness	1.729
20				Mean of I	ogged Data	0.559				SD of log	iged Data	0.282
21												
22						or Backgrou	nd Threshol	d Values (B	TVs)			
23			Tole	rance Factor	K (For UTL)	3.399				d2max	(for USL)	1.938
24												
25						Normal C	GOF Test					
26				hapiro Wilk T		0.801			•	lk GOF Test		
27			5% SI	hapiro Wilk C	ritical Value	0.803		Data No	ot Normal at §	5% Significance	Level	
28				Lilliefors T	est Statistic	0.298			Lilliefors	GOF Test		
29			5	% Lilliefors C		0.304				t 5% Significand	ce Level	
30				Data	appear App	roximate No	rmal at 5% S	Significance	Level			
31												
32				Ва	ackground S	tatistics Ass	uming Norm	al Distributi	on			
33			95% l	JTL with 959	•	3.761					centile (z)	2.548
34				ę	95% UPL (t)	3.004				95% Perc	. ,	2.756
35					95% USL	2.924				99% Perc	centile (z)	3.147
36												
37				•			•	•	•	ize starts excee	-	
38		Therefore	e, one may us					•	•	data set free of	outliers	
39						ations collect		-				
40							-			ovided the data		
41		re	presents a ba	ackground da	ta set and w	hen many on	site observa	tions need to	o be compare	ed with the BTV.		
42												
43	Copper (su	irface)										
44												
45	General St	atistics										
46			Total	Number of O		7			Number	r of Distinct Obs		7
47					Minimum	1.7				Firs	t Quartile	2.415
48				Sec	ond Largest	3.4					Median	3.1
49					Maximum	3.6				Third	d Quartile	3.3
50					Mean	2.833					SD	0.677
51					of Variation	0.239					Skewness	-0.675
				Mean of I	ogged Data	1.013				SD of log	ged Data	0.265

	A B C D E	F	G	Н		J	K	L
53	Critical Values fe	or Pookarou	nd Threshold		T\/a\			
54			na i nresnola	i values (B	ivs)	400	ov (for LICL)	1 0 2 9
55	Tolerance Factor K (For UTL)	3.399				dzn	nax (for USL)	1.938
56		Normal (GOF Test					
57	Shapiro Wilk Test Statistic	0.926			Shopiro W	/ilk GOF Tes	•	
58	5% Shapiro Wilk Critical Value	0.926		Data ann	-	at 5% Signific		
59	5% Shapiro Wilk Chucal Value	0.803		Data app		GOF Test		
60	5% Lilliefors Critical Value	0.225		Data ann		at 5% Signific		
61			Ell Cignifica		ear Normai a	at 5% Signific	ance Level	
62		ar Normai at	5% Significa	ance Level				
63	Background S	totiotico Aco	uming Norm	ol Diotributi	an			
64	95% UTL with 95% Coverage	5.134			on	0.0%	Percentile (z)	3.7
65	95% OTE with 95% Coverage 95% UPL (t)	4.239					Percentile (z)	
66	95% OPL (I) 95% USL	4.239					Percentile (z)	
67	95% USL	4.140				99%	Percentile (2)	4.400
68	Noto: The use of USI tends to viold a comparati	vo optimete	of PT\/ com		the comple		anding 20	
69	Note: The use of USL tends to yield a conservati		-				-	
70	Therefore, one may use USL to estimate a BTV and consists of observa	-			-			
71								
72	The use of USL tends to provide a balan		-					
73	represents a background data set and wh	nen many on	Isite observat	ions need t	o be compai	red with the E	DIV.	
74								
75	Nickel (subsurface)							
76	Concerci Statistica							
77	General Statistics Total Number of Observations	7			Numbe	er of Distinct	<u> Theory etiens</u>	6
78	Minimum	1.7			NUMDE		First Quartile	
79	Second Largest	2.47					Median	
80	Maximum	2.47					hird Quartile	
81	Mean	2.7					SD	
82	Coefficient of Variation	0.149					Skewness	
83	Mean of logged Data	0.771				SD of	logged Data	
84		0.771				50 0	logged Data	0.143
85	Critical Values fe	or Backgrou	nd Threshold	l Values (B	T\/e)			
86	Tolerance Factor K (For UTL)	3.399		T T dideo (D	1.43)	d2n	nax (for USL)	1.938
87		5.000				421		
88		Normal (GOF Test					
89	Shapiro Wilk Test Statistic	0.964			Shapiro W	/ilk GOF Tes	t	
90	5% Shapiro Wilk Critical Value	0.803		Data ann	=	at 5% Signific		
91	Lilliefors Test Statistic	0.191				GOF Test	2010	
92	5% Lilliefors Critical Value	0.304		Data app		at 5% Signific	ance Level	
93			5% Significa					
94								
95	Background S	tatistics Ass	umina Norm	al Distributi	on			
96	95% UTL with 95% Coverage	3.283				90%	Percentile (z)	2.597
97	95% UPL (t)	2.855					Percentile (z)	
98	95% USL	2.81					Percentile (z)	
99						,,		
100	Note: The use of USL tends to yield a conservati	ve estimate	of BTV. espec	cially when	the sample	size starts ex	ceedina 20	
101	Therefore, one may use USL to estimate a BTV			•			•	
102	and consists of observa							
103	The use of USL tends to provide a balan					rovided the d	ata	
104		20 2000000						

Model (surface)		A B C D E	F		L		
3000 Native (surface) Surface (surface) Canceral Statistics Canceral Statistics Canceral Statistics Canceral Statistics Surface (Surface) Surface (Surface)	105	represents a background data set and wh	nen many or	isite observations need to be compared with the BTV.			
Description Second Data Number of Observations 7 Number of Distinct Observations 6 111 Total Number of Observations 7 Number of Distinct Observations 6 111 Maximum 0.69 First Output 8 112 Second Largersi 15 Modiani 15 113 Maximum 1.7 Third Quartie 1.5 0.331 113 Coefficient of Variation 0.353 Skewness 0.27 114 Coefficient of Variation 0.353 Skewness 0.27 115 Coefficient of Variation 0.358 Schaptor Vilk 1.938 115 Coefficient of Variation 0.358 Schaptor Vilk 1.938 116 Critical Values for Eackground Threshold Values (BTVs) 1.938 27 117 Toterance Factor K (For UTL) 3.389 Q2max (for USL) 1.938 118 Otterance Factor K (For UTL) 0.583 Data appear Normal at 5% Significance Level 118 Data suppear Normal at 5% Significance Level 1.563		Nickel (surface)					
Big Control Number of Distinct Observations 7 Number of Distinct Observations 6 111 Total Number of Distinct Observations 7 Number of Distinct Observations 6.89 112 Second Largest 1.5 Markan 1.7 112 Markan 1.7 Third Quartile 1.5 0.391 113 Ocentricent of Variation 0.335 Store St	107						
100 Total Number of Observations 7 Number of Distinct Observations 6 111 Minimum 0.69 First Quartife 0.89 112 Second Legest 1.5 Modian 1 113 Maximum 1.7 Third Quartife 1.5 114 Mean 1.167 SD 0.391 115 Coefficient of Variation 0.325 Stewardse 0.271 116 Mean of togged Dats 0.105 SD of logged Dats 0.341 117 Tolerance Factor K (For UTL) 3.390 dZmax (for USL) 1.938 118 Tolerance Factor K (For UTL) 3.390 dZmax (for USL) 1.938 119 Tolerance Factor K (For UTL) 3.391 dZmax (for USL) 1.938 112 Stappio Wilk Test Statistic 0.883 Data appear Normal at 5% Significance Level 1.201 112 Stappio Wilk Test Statistic 0.237 Lillefors forst 1.668 112 Stappior Wilk Test Statistic 0.237 Data appear Normal at 5% Significance Level		General Statistics					
International Nome First Quartile 0.89 111 Minimum 1.5 Median 1 113 Maximum 1.7 Third Quartile 1.5 0.31 113 Maximum 1.7 Third Quartile 0.231 0.335 Sikewness 0.271 114 Ocefficient of Variation 0.335 Sikewness 0.271 0.331 Sikewness 0.271 116 Orderance Factor K (For UTL) 3.39 d2max (for USL) 1.938 117 Tolerance Factor K (For UTL) 3.39 d2max (for USL) 1.938 118 Orderance Factor K (For UTL) 3.39 d2max (for USL) 1.938 119 Tolerance Factor K (For UTL) 3.39 d2max (for USL) 1.938 112 Normal GOF Test 1.55 ULL (for GOF Test) 1.938 1.938 112 Obsta appear Normal at 5% Significance Level 2.044 Data appear Normal at 5% Significance Level 1.688 112 Obsta appear Normal at 5% Significance Level 1.824 99% Percentile (2	109		7	Number of Distinct Observations	6		
Image: 11 Second Largest 1.5 Median 1.1 113 Maximum 1.7 Third Quartile 1.5 114 Maximum 1.7 Third Quartile 1.5 113 Coefficient of Variation 0.335 Skewness 0.271 116 Mean of logged Data 0.105 S.D of logged Data 0.341 117 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 118 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 119 Tolerance Factor K (For UTL) 3.39 d2max (for USL) 1.938 112 Skesthpiro Wilk Test Statistic 0.838 Shaptor Wilk GOF Test 1.5 112 Skesthpiro Wilk Tots Statistic 0.304 Data appear Normal at 5% Significance Level 1.5 123 Skesthpiro Wilk Test Statistic 0.303 Data appear Normal at 5% Significance Level 1.668 124 Beckground Statistics Assuming Normal Distribution 1.668 1.5 1.609 133 SS% UPL (01 1.58					-		
Image Maximum 1.7 Third Quartile 1.5 113 Mean 1.167 SD 0.391 114 Confident of Varialon 0.33 SRewmass 0.231 115 Confident of Varialon 0.339 SD of logged Data 0.341 117 SD of logged Data 0.341 3.39 SD of logged Data 0.341 117 Tolerance Factor K (For UTL) 3.39 SD of logged Data 0.341 118 Critical Values for Background Threshold Values (BTVe) 1.398 1.398 119 Tolerance Factor K (For UTL) 3.39 Data appear Numit AGN Significance Level 1.938 112 Shapiro Wik Test Statistic 0.334 Data appear Normal aGN Significance Level 1.938 112 Data appear Normal aGN Significance Level 1.938 1.938 1.938 113 Data appear Normal aGN Significance Level 1.938 1.938 1.938 113 Data appear Normal aGN Significance Level 1.938 1.939 1.938 1.938							
Instruction Mean 1.167 SD 0.391 114 Coefficient of Variation 0.35 Stewness 0.27 116 Mean of logged Data 0.105 SD of logged Data 0.341 117 Critical Values for Background Threshold Values (BTVs) 1.338 0.341 118 Critical Values for Background Threshold Values (BTVs) 1.338 119 Tolerance Factor K (For UTL) 3.399 d/max (for USL) 1.338 112 Critical Values for Background Threshold Values (BTVs) 1.338 1.338 112 Normal GOF Test 1.338 Shapiro Wilk GOF Test 1.338 112 Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 1.23 112 Shapiro Wilk Critical Value 0.304 Data appear Normal at 5% Significance Level 1.23 112 Background Statistics Assuming Normal Distribution 1.809 1.809 1.809 113 Defs w UFL (ii) 1.978 Distribution 1.809 123 Note: The use of USL tends to provide a conservative scale of the conspare					-		
Ins Coefficient of Variation 0.335 Skewness 0.27 116 Mean of logged Data 0.105 SD of logged Data 0.341 117 Critical Values for Background Threshold Values (BTVe) 1.338 0.341 118 Toterance Factor K (For UTL) 3.399 dZmax (for USL) 1.938 120 Normal GOF Test 1.938 1.938 1.938 121 Shapiro Wilk Test Statistic 0.888 Shapiro Wilk GOF Test 1.938 122 Shapiro Wilk Test Statistic 0.829 Data appear Normal at 5%. Significance Level 1.938 123 Shapiro Wilk Test Statistic 0.304 Data appear Normal at 5%. Significance Level 1.668 124 Lilliefors Critical Value 0.304 Data appear Normal at 5%. Significance Level 1.668 125 Data appear Normal at 5%. Significance Level 1.688 1.824 90% Percentile (z) 1.688 126 Data appear Normal at 5%. Significance Level 1.809 1.809 1.809 1.809 125 Background Statelics Asuringpersite Mark Mark Mark Mark Mark Mark Mark Mark							
Ins Mean of logged Data 0.105 SD of logged Data 0.341 117							
Instruction Instruction Instruction 117 Critical Values for Background Threshold Values (BTVs) 1.938 118 Telerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 120 Normal GOF Test 1.938 1.938 1.938 121 Normal GOF Test 1.938 1.938 1.938 122 Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 1.938 123 5% Shapiro Wilk Critical Value 0.304 Data appear Normal at 5% Significance Level 1.668 126 Data appear Normal at 5% Significance Level 1.809 95% Percentile (2) 1.668 127 Background Statistics Assuming Normal Distribution 1.824 99% Percentile (2) 1.809 130 95% UFL (0) 1.928 99% Percentile (2) 2.076 131 95% UFL (0) 1.928 99% Percentile (2) 2.076 132 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. 1.809 133 Note: The use of USL tends to yield a conservati							
Bit Critical Values for Background Threshold Values (BTVs) 3.399 d2max (for USL) 1.338 119 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.338 120 3.399 d2max (for USL) 1.338 1.338 1.338 1.338 1.339 1.339 1.339 1.339 1.339 1.339 1.339 1.339 1.339 1.339 1.339 1.339 1.359			0.105		0.541		
Instruction Control Construction Constr		Critical Values fr	or Backgrou	nd Threshold Values (RTVs)			
Instrume Normal COF Test 121 Normal COF Test 122 Shapiro Wilk Cotical Value 0.888 Shapiro Wilk GOF Test 123 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 124 Lilliefors Test Statistic 0.237 Lilliefors GOF Test 125 5% UIL Wilk Test Statistic 0.237 Lilliefors GOF Test 126 Data appear Normal at 5% Significance Level 127 Statistics Assuming Normal Distribution 158 128 Background Statistics Assuming Normal Distribution 158 129 95% UFL with 95% Coverage 2.494 95% Percentile (z) 1.668 130 95% USL 1.924 95% Percentile (z) 2.076 131 95% USL 1.924 95% Percentile (z) 2.076 132 Therefore, one may use USL test as consists of observations collected from clean unimpacted locations. 154 154 136 The use of USL tends to provide a balance between false positives and false negatives providea the data 7 137 represents a background data set and wh	118				1 0 2 9		
Normal GOF Test 121 Normal GOF Test 122 Shapiro Wilk Critical Value 0.888 Shapiro Wilk GOF Test 123 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 124 Lilliefors Test Statistic 0.237 Lilliefors GOF Test 126 Data appear Normal at 5% Significance Level Image: Significance Level 127 Data appear Normal at 5% Significance Level Image: Significance Level 128 Data appear Normal at 5% Significance Level Image: Significance Level 129 95% UTL with 95% Coverage 2.494 90% Percentile (z) 1.688 130 95% USL 1.924 99% Percentile (z) 2.076 131 95% USL 1.924 99% Percentile (z) 2.076 133 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20	119		5.555		1.950		
12 Shapiro Wilk GoF Test Shapiro Wilk GOF Test 123 5% Shapiro Wilk Critical Value 0.838 Data appear Normal at 5% Significance Level 124 Lilliefors Test Statistic 0.304 Data appear Normal at 5% Significance Level 125 5% Lilliefors Critical Value 0.304 Data appear Normal at 5% Significance Level 126 Data appear Normal at 5% Significance Level 1.668 129 95% UTL with 95% Coverage 2.494 90% Percentile (z) 1.668 130 95% USL 1.924 90% Percentile (z) 1.809 131 95% USL 1.924 90% Percentile (z) 1.809 133 95% USL 1.924 90% Percentile (z) 1.809 134 Pherefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and afos negatives provided the data 1 135 and consists of observations collected from clean unimpacted locations. 1 1 136 The use of USL tends to provide a balance between false positives and false negatives provided the data 1 1 137 represents a background data set and when many o	120		Normal (
123 6% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 124 Lillefors Test Statistic 0.237 Lillefors GOF Test 125 5% Lillefors Critical Value 0.304 Data appear Normal at 5% Significance Level 126 Data appear Normal at 5% Significance Level 0.803 Data appear Normal at 5% Significance Level 127 Background Statistics Assuming Normal Distribution 1.668 1.668 129 95% UTL with 95% Coverage 2.494 90% Percentile (2) 1.668 130 95% UPL (1 1.978 95% Percentile (2) 2.076 131 95% UPL (1 1.978 95% Percentile (2) 2.076 132 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. 1.34 134 Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. 7 138 Ciseared Statistics 7 Number of Distinct Observations 7 141 General Statistics 7 Number of Distinct Observations 7	121	Chanica Will Toot Chariatia		-			
123 Lilliefors CoF Test 124 Lilliefors Critical Value 0.304 Data appear Normal at 5%. Significance Level 125 5%. Lilliefors Critical Value 0.304 Data appear Normal at 5%. Significance Level 126 Data appear Normal at 5%. Significance Level 1.668 127 Background Statistics Assuming Normal Distribution 128 95%. UTL with 95%. Coverage 2.494 90%. Percentile (z) 1.668 130 95%. UPL (t) 1.978 95%. Percentile (z) 1.809 131 95%. USL 1.924 99%. Percentile (z) 1.809 132 Onte: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. 1.34 133 Note: The use of USL tends to yield a conservative satism conservations collected from clean unimpacted locations. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers 136 The use of USL tends to provide a balacince between false positives and false negatives provided the data 1.74 137 represents a background data set and when many onsite observations need to be compared with the BTV. 1.83 138 The use of		•		-			
12a 5% Lillefors Critical Value 0.304 Data appear Normal at 5% Significance Level 12b Data appear Normal at 5% Significance Level 126 127 Background Statistics Assuming Normal Distribution 156 128 95% UTL with 95% Coverage 2.494 90% Percentile (z) 1.668 130 95% USL 1.924 99% Percentile (z) 2.076 131 95% USL 1.924 99% Percentile (z) 2.076 132 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. 1.34 133 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. 1.34 134 Therefore, one may use USL to estimate a BTV only when the data set represents a background data set and when many onsite observations need to be compared with the BTV. 1.38 135 General Statistics 7 Number of Distinct Observations 7 140 Second Largest 16.5 Median 9 141 General Statistics Subtract on the state of USL for the state of USL of the state		-					
Iza Data appear Normal at 5% Significance Level 126 Background Statistics Assuming Normal Distribution 128 Background Statistics Assuming Normal Distribution 129 95% UTL with 95% Coverage 2.494 90% Percentile (z) 1.688 130 95% USL 1.924 95% Percentile (z) 2.076 131 95% USL 1.924 99% Percentile (z) 2.076 132 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the same size starts exceeding 20. 1.34 Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers 1.35 and consists of observations collected from clean unimpacted locations. 1.35 136 The use of USL tends to provide a balance between false positives and false negatives provided the data 1.37 represents a background data set and when many onsite observations need to be compared with the BTV. 1.38 139 Zinc (subsurface) 7 Number of Distinct Observations 7 141 General Statistics 7 Number of Distinct Observations 7 142 Total Number of Observations 7 Number of Distinct Observations <t< td=""><td>124</td><td></td><td></td><td></td><td></td></t<>	124						
International and a set of BTV, especially when the sample size starts exceeding 20. International and consists of observations collected from clean unimpacted locations. International and consists of observations collected from clean unimpacted locations. International and consists of observations collected from clean unimpacted locations. International and consists of observations collected from clean unimpacted locations. International and consists of observations collected from clean unimpacted locations. International and consists of observations collected from clean unimpacted locations. International and consists of observations collected from clean unimpacted locations. International and consists of observations collected from clean unimpacted locations. International and consists of observations and consists of observations collected from clean unimpacted locations. International and consists of observations aneed to be compared with the BTV.	125						
128 Background Statistics Auswing Normal Distribution 1.000 1.0	126		ar Normai at	5% Significance Level			
129 95% UTL with 95% Overage 2.494 90% Percentile (z) 1.668 130 95% UPL (t) 1.978 95% Percentile (z) 1.809 131 95% USL 1.924 99% Percentile (z) 2.076 132 95% USL 1.924 99% Percentile (z) 2.076 132	127	Deskeround O	hatiatian Ann	uning Neural Distribution			
129 95% UPL (t) 1.978 95% Percentile (z) 1.809 130 95% USL 1.924 99% Percentile (z) 2.076 132	128			-	1.009		
131 95% USL 1.924 99% Percentile (z) 2.076 131 95% USL 1.924 99% Percentile (z) 2.076 132 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. 134 Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers and consists of observations collected from clean unimpacted locations. 136 136 The use of USL tends to provide a balance between false positives and false negatives provided the data 137 137 represents a background data set and when many onsite observations need to be compared with the BTV. 138 138 Interestite Collected from Clean unimpacted locations. 7 140 Interestite Collected from Clean unimpacted locations. 7 141 General Statistics 7 Number of Distinct Observations 7 142 Total Number of Observations 7 Number of Distinct Observations 7 143 Maximum 17 Thrird Quartile 13.8 144 Second Largest 16.5 Median 9 145 Maximum 17 Third Quartile 13.8 146 Mean	129						
131 132 132 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. 134 Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers 135 and consists of observations collected from clean unimpacted locations. 136 The use of USL tends to provide a balance between false positives and false negatives provided the data 137 represents a background data set and when many onsite observations need to be compared with the BTV. 138	130						
Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. 134 Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers 135 and consists of observations collected from clean unimpacted locations. 136 The use of USL tends to provide a balance between false positives and false negatives provided the data 137 represents a background data set and when many onsite observations need to be compared with the BTV. 138 Zinc (subsurface) 7 Number of Distinct Observations 7 138 139 Zinc (subsurface) 7 Qeneral Statistics 7 Number of Distinct Observations 7 143 General Statistics 7 Number of Distinct Observations 7 144 Second Largest 16.5 Median 9 144 Coefficient of Variation 0.406 <th co<="" td=""><td>131</td><td>95% USL</td><td>1.924</td><td>99% Percentile (z)</td><td>2.076</td></th>	<td>131</td> <td>95% USL</td> <td>1.924</td> <td>99% Percentile (z)</td> <td>2.076</td>	131	95% USL	1.924	99% Percentile (z)	2.076	
Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers 134 Therefore, one may use USL to estimate a BTV only when the data set represents a background data set and consists of observations collected from clean unimpacted locations. 136 The use of USL tends to provide a balance between false positives and false negatives provided the data 137 represents a background data set and when many onsite observations need to be compared with the BTV. 138 Close of USL tends to provide a balance between false positives and false negatives provided the data 139 Close of USL tends to provide a balance between false positives and false negatives provided the data 138 139 Close of USL tends to provide a balance between false positives and false negatives provided the data 139 Close of USL tends to provide a balance between false positives and false negatives provided the data 130 Close of USL tends to provide a balance between false positives and false negatives provided the data 139 Close of USL tends to provide a balance between false positives and false negatives provided the data 140 Close false false false false false false false false fa	132	Note: The use of LICI tends to visit a sense wet					
135 and consists of observations collected from clean unimpacted locations. 136 The use of USL tends to provide a balance between false positives and false negatives provided the data 137 represents a background data set and when many onsite observations need to be compared with the BTV. 138 Zinc (subsurface) 140 General Statistics 141 General Statistics 142 Total Number of Observations 7 143 Minimum 6.7 144 Second Largest 16.5 145 Maximum 17 146 Mean of 10.74 SD of logged Data 147 Coefficient of Variation 0.406 148 Mean of logged Data 2.308 149 Statistice 0.815 149 Oterration 0.406 149 Statistice 0.834 151 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 152 Shapiro Wilk Test Statistic 0.834 Shapiro Wilk GOF Test 153 Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level	133						
The use of USL tends to provide a balance between false positives and false negatives provided the data represents a background data set and when many onsite observations need to be compared with the BTV. Zinc (subsurface) Zinc (subsurface) General Statistics 7 Number of Distinct Observations 7 General Statistics 7 Number of Distinct Observations 7 142 Total Number of Observations 7 Number of Distinct Observations 7 143 Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th colspan<="" td=""><td>134</td><td></td><td>•</td><td>· ·</td><td></td></th>	<td>134</td> <td></td> <td>•</td> <td>· ·</td> <td></td>	134		•	· ·		
1.00 represents a background data set and when many onsite observations need to be compared with the BTV. 137 represents a background data set and when many onsite observations need to be compared with the BTV. Jane (subsurface) Jane (subsurface) General Statistics 7 Number of Distinct Observations 7 Qeneral Statistics 7 Number of Distinct Observations 7 Number of Distinct Observations 7 Addition of Observations 7 Number of Distinct Observations 7 142 Total Number of Observation 7 Network of Median 9 138 144 Coefficient of Variation 0.406 Statistics 143 Coefficient of Variation 0.406 0.387 144 Coefficient of Variation <th <="" colspan="2" td=""><td>135</td><td></td><td></td><td>•</td><td></td></th>	<td>135</td> <td></td> <td></td> <td>•</td> <td></td>		135			•	
137 138 138 Zinc (subsurface) 140 141 General Statistics 7 142 Total Number of Observations 7 143 Minimum 6.7 144 Second Largest 16.5 145 Median 9 145 Maximum 17 146 Mean 10.74 147 Coefficient of Variation 0.406 148 Mean of logged Data 2.308 149 Critical Values for Background Threshold Values (BTVs) 1.938 149 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 152 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 152 Tolerance Factor K (For UTL) 3.399 Data appear Normal at 5% Significance Level 153 Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level	136						
139 Zinc (subsurface) 140 General Statistics 141 General Statistics 142 Total Number of Observations 7 143 Minimum 6.7 144 Second Largest 16.5 145 Median 9 146 Maximum 17 147 Operation of Variation 0.406 148 Coefficient of Variation 0.406 149 Coefficient of Variation 0.406 150 Critical Values for Background Threshold Values (BTVs) 1.938 151 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 152 Intervent Coefficient on Critical Value 0.834 <td< td=""><td>137</td><td>represents a background data set and wh</td><td>ien many or</td><td>isite observations need to be compared with the BTV.</td><td></td></td<>	137	represents a background data set and wh	ien many or	isite observations need to be compared with the BTV.			
139 139 141 General Statistics 142 Total Number of Observations 7 143 Minimum 6.7 Number of Distinct Observations 7 144 Second Largest 16.5 Median 9 144 Second Largest 16.5 Median 9 145 Maximum 17 Third Quartile 13.8 146 Mean 10.74 Sbay 4.357 147 Coefficient of Variation 0.406 Skewness 0.815 148 Mean of logged Data 2.308 SD of logged Data 0.387 149 Intervent Threshold Values (BTVs) 0.387 0.387 151 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 152 Intervent GOF Test Intervent GOF Test Intervent GOF Test Intervent GOF Test 153 Shapiro Wilk Test Statistic 0.834 Shapiro Wilk GOF Test Intervent GOF Test 154 Shapiro Wilk Critical Value	138	7:					
Att General Statistics 142 Total Number of Observations 7 Number of Distinct Observations 7 143 Minimum 6.7 First Quartile 7.45 144 Second Largest 16.5 Median 9 145 Maximum 17 Third Quartile 13.8 146 Mean of Normal Of Variation 0.406 Skewness 0.815 147 Coefficient of Variation 0.406 Sbe of Noged Data 0.387 148 Mean of logged Data 2.308 SD of logged Data 0.387 149 Statistics 1.938 1.938 151 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 152 Shapiro Wilk Test Statistic 0.834 Shapiro Wilk GOF Test 1.938 152 Shapiro Wilk Critical Value 0.834 Shapiro Wilk GOF Test 1.938 153 Shapiro Wilk Critical Value 0.834 Shapiro Wilk GOF Test 1.938 154 Shapiro Wilk Critical Value 0.834 </td <td>139</td> <td></td> <td></td> <td></td> <td></td>	139						
141 Total Number of Observations 7 Number of Distinct Observations 7 143 Minimum 6.7 First Quartile 7.45 144 Second Largest 16.5 Median 9 145 Maximum 17 Third Quartile 13.8 146 Mean 10.74 Sb 4.357 147 Coefficient of Variation 0.406 Skewness 0.815 148 Mean of logged Data 2.308 SD of logged Data 0.387 149 Statistic 3.399 d2max (for USL) 1.938 152 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 152 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 152 Shapiro Wilk Test Statistic 0.834 Shapiro Wilk GOF Test 1.938 153 Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 1.938 154 Shapiro Wilk Critical Value 0.807 Data appear Normal at 5% Significance Level	140	Openand Statistics					
142 Minimum 6.7 First Quartile 7.45 143 Minimum 6.7 Median 9 144 Second Largest 16.5 Median 9 145 Maximum 17 Third Quartile 13.8 146 Mean 10.74 SD 4.357 147 Coefficient of Variation 0.406 Skewness 0.815 148 Mean of logged Data 2.308 SD of logged Data 0.387 149 Stevenses 0.387 149 Jass Jass Jass 150 Critical Values for Background Threshold Values (BTVs) 1.938 Jass 151 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 152 Shapiro Wilk GOF Test Jass Jass Jass 153 Shapiro Wilk Test Statistic 0.834 Shapiro Wilk GOF Test Jass 154 Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Si	141		7	Number of Distinct Observations	7		
143 Second Largest 16.5 Median 9 144 Maximum 17 Third Quartile 13.8 145 Maximum 17 Third Quartile 13.8 146 Mean 10.74 SD 4.357 147 Coefficient of Variation 0.406 Skewness 0.815 148 Mean of logged Data 2.308 SD of logged Data 0.387 149 Otritical Values for Background Threshold Values (BTVs) 1.938 151 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 152 153 Shapiro Wilk Test Statistic 0.834 Shapiro Wilk GOF Test 154 Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 155 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level	142						
Internation Internation <thinternation< th=""> <thinternation< th=""></thinternation<></thinternation<>	143						
145 Mean 10.74 SD 4.357 146 Mean 10.74 SD 4.357 147 Coefficient of Variation 0.406 Skewness 0.815 148 Mean of logged Data 2.308 SD of logged Data 0.387 149 0.387 150 Critical Values for Background Threshold Values (BTVs) 1.938 151 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 152 1.938 1.938 152 1.938 153 Shapiro Wilk Test Statistic 0.834 Shapiro Wilk GOF Test 154 Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 155 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level	144				-		
146Coefficient of Variation0.406Skewness0.815147Mean of logged Data2.308SD of logged Data0.387148Mean of logged Data2.308SD of logged Data0.387149Interst Critical Values for Background Threshold Values (BTVs)150Critical Values for Background Threshold Values (BTVs)1.938151Tolerance Factor K (For UTL)3.399d2max (for USL)1.938152Interst Statistic0.834Shapiro Wilk GOF Test1.938153Shapiro Wilk Test Statistic0.834Shapiro Wilk GOF TestInterst Statistic154Shapiro Wilk Critical Value0.803Data appear Normal at 5% Significance LevelInterst Statistic1555% Shapiro Wilk Critical Value0.803Data appear Normal at 5% Significance LevelInterst Statistic155111111111111111111111111155111111111111111111111551111111111111111111115511111111111111111111155111111111111111111111551111111111111111111115511111111111111111111155111111111111111111111551111111111111111111115511111111111111111111155 <td>145</td> <td></td> <td></td> <td></td> <td></td>	145						
147Mean of logged Data2.308SD of logged Data0.387148Mean of logged Data2.308SD of logged Data0.387149Critical Values for Background Threshold Values (BTVs)150Critical Values for Background Threshold Values (BTVs)1.938151Tolerance Factor K (For UTL)3.399d2max (for USL)1.938152Image: Shapiro Wilk Test Statistic0.834Shapiro Wilk GOF Test153Shapiro Wilk Test Statistic0.834Shapiro Wilk GOF Test154Shapiro Wilk Critical Value0.803Data appear Normal at 5% Significance Level1555% Shapiro Wilk Critical Value0.997Lillefore OCE Test	146						
146 147 149 150 150 Critical Values for Background Threshold Values (BTVs) 151 Tolerance Factor K (For UTL) 152 3.399 153 Mormal GOF Test 154 Shapiro Wilk Test Statistic 155 5% Shapiro Wilk Critical Value 0.803 155 Data appear Normal at 5% Significance Level	147	Many of laws of Data					
Critical Values for Background Threshold Values (BTVs) 151 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 152 Image: Strate Stra	148	Mean of logged Data	2.308	SD of logged Data	0.387		
Normal GOF Test Normal GOF Test 154 Shapiro Wilk Test Statistic 0.834 Shapiro Wilk GOF Test 155 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level	149		- D. 1				
ISI Normal GOF Test 153 Shapiro Wilk Test Statistic 154 Shapiro Wilk Test Statistic 155 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level	150		-		1.000		
Normal GOF Test Shapiro Wilk Test Statistic 0.834 Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level	151	I olerance Factor K (For UTL)	3.399	d2max (for USL)	1.938		
Shapiro Wilk Test Statistic 0.834 Shapiro Wilk GOF Test 155 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level	152						
154 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 155 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level	153			-			
	154			-			
Lilliefors lest Statistic 0.227 Lilliefors GOF Test	155	•					
	156	Lilliefors Test Statistic	0.227	Lilliefors GOF Test			

	А	В	С		D	_	E	F	G	Н	<u> </u>	J	K		L
157				5%	Lilliefors			0.304		••	ar Normal a	at 5% Signific	cance Leve	1	
158						Data	appea	ar Normal at	t 5% Significa	ance Level					
159															
160						•			suming Norm	al Distributio	n				
161			9	95% UT	L with 9		-	25.55					Percentile (• •	16.33
162						95% U	. ,	19.79					Percentile (• •	17.91
163						95%	6 USL	19.19				99%	Percentile ((Z)	20.88
164		Netes The		101 44											
165									of BTV, espender he data set re	,	•		•		
166				•					ted from clear		-				
167		т							false positive			rovidod tho c	lata		
168						•			nsite observat		• ·				
169			presenta		kyrounu (JIV.		
170	Zinc (surfa	<u></u>													
171															
172	General St	atistics													
1/3			<u> </u>	Total N	umber of	Observ	ations	7			Numbe	er of Distinct (Observatio	ns	6
174	. <u></u>						nimum	5.7					First Quart		6.45
175					S	econd La		7					Media		6.8
176							ximum	7.4					Third Quart	ile	6.9
177							Mean	6.657						SD	0.535
178					Coefficie	ent of Var	riation	0.0804					Skewne	ss	-0.673
179 180					Mean o	of logged	d Data	1.893				SD of	f logged Da		0.0824
181															
182					C	ritical Va	alues fo	or Backgrou	und Threshold	J Values (BT	Vs)				
183				Tolera	nce Facto	or K (For	r UTL)	3.399				d2n	nax (for US	L)	1.938
184															
185								Normal (GOF Test						
186				Sha	apiro Wilk	< Test St	atistic	0.959			Shapiro Wi	ilk GOF Tes	t		
187			5	5% Sha	piro Wilk	Critical	Value	0.803		Data appea	ar Normal a	at 5% Signific	ance Leve	l	
188					Lilliefors	s Test St	atistic	0.177			Lilliefors	GOF Test			
189				5%	Lilliefors	Critical	Value	0.304	-	Data appea	ar Normal a	at 5% Signific	cance Leve	1	
190						Data	appea	ar Normal at	t 5% Significa	ance Level					
191															
192						Backgro	ound St	tatistics Ass	suming Norm	al Distributio	'n				
193			9	95% UT	L with 9		0	8.475				90%	Percentile ((z)	7.343
194						95% U	JPL (t)	7.768				95%	Percentile ((z)	7.537
195						95%	6 USL	7.694				99%	Percentile ((z)	7.902
196															
197					-				of BTV, espe				-		
198		Therefore	e, one ma	-				-	he data set re		-	data set free	e of outliers		
199									ted from clear						
200									false positive						
201		re	presents	s a bacl	kground	aata set	and wh	ten many or	nsite observat	ions need to	be compare	ed with the E	51V.		
202															

Image: second control of the second contro	1	A	В	C Table D-9.	D Background	E Statistics b	F y Horizon f o	G r Lead	Н	I	J	k	(L		
3 Date-Time of Computation ProVICE, 51/27/92/36/10-44:14 AM 4 From Fine, NPProperties, Company 37/32-Camp: Welliter/05_PIR Report/07AFT_REV DraftRevised Appendices/Appe		l	Jser Select	ed Options												
Prom Prom File Professional OFF International Confidence Coefficient 95% International Internatinde<		Date/	Time of Cor	mputation	ProUCL 5.1	12/19/2018 1	0:44:14 AM									
6 Full Praction OFF 6 Contidence Conflicient 95% 7 Converage 95% 8 New or Futur K Obervations 1 9 Number of Bootstrap Operations 2000 10 Identified (underfice) 315 11 Identified (underfice) 315 12 Identified (underfice) 3.315 13 General Statistics 3.315 14 Total Number of Observations 7 Number of Distinct Observations 6 13 General Statistics 3.315 Maximu 3.11 Maximu 3.11 14 Total Number of Distinct Observations 7.1 Number of Distinct Observations 6.425 15 General Statistic 3.71 Maximu 3.11 Maximu 3.16 16 Coefficient V Ariation 0.12 Stations (BTVe) 0.125 16 Coefficient V Kinton ULI 3.39 d'amax (for USL) 9.18 17 Total more Factor K (For ULI 3.39 <				From File	N:\Projects_	_Ongoing\37	52-Camp We	ellfleet\05_RI	Report\DRA	FT\REV	/ Draft\Re	vised Apper	ndices∖	Appendix D		
Confidence Coefficient 95% Rew or Future K Observations 1 Number of Bootsrap Operations 200 Image: Statistic Statis Statistic Statistic Statistic Statis Statistic			Full	Precision	OFF											
A New or Future K Observations 1 9 Number of Bootstrap Operations 200 10 Image: Control of Bootstrap Operations 200 11 Image: Control of Bootstrap Operations 200 12 Image: Control of Bootstrap Operations 1 13 Image: Control of Bootstrap Operations 1 14 Total Number of Observations 1 15 Image: Control of Bootstrap Operations 3 16 Second Largest 3 17 Mean of logged Data 3 1 18 Ocefficient of Variation 0.124 Ostrop of logged Data 0.127 19 Ocefficient of Variation 0.124 Ostrop of logged Data 0.127 12 Ottored Values for Beckground Threshold Values (BTVs) 1.938 0.127 12 Ottored Values 0.030 Data appar Normal at 5% Significonce Level 13 Tolerance Factor K (For UTL) 3.39 Data appar Normal at 5% Significonce Level 14 Ottored Statistic 0.341 Data appar Normal at 5% Significonce Level<		C	onfidence C	Coefficient	95%											
a Number of Bootstrap Operations 2000 Image: Ima			(Coverage	95%											
B Rumber of Bootstrap Operations 200 Image: Control Cont		New or Fr	uture K Obs	servations	1											
International statistics International statistics International statistics Image: I		Number of I	Bootstrap O	perations	2000											
International statistics International statistics International statistics International statistics																
International statistica International statistica <thinternational statistica<="" th=""> <thinternat< td=""><td></td><td>Lead (subsur</td><td>face)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thinternat<></thinternational>		Lead (subsur	face)													
International and the state of th	12															
Int Minimum 2.7 First Quartile 3.315 15 General Antipagest 3.7 Media 3.41 17 Maximum 4.1 Third Quartile 3.55 18 Oenfficient of Variation 0.124 Skowness -0.06 20 Mean of logged Data 0.122 Sb of logged Data 0.127 21 Critical Values for Background Threshold Values (BTVs) 0.127 1.938 23 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 24 Critical Values for Background Threshold Values (BTVs) 1.938 1.938 24 Critical Value 0.803 Data appear Normal at 5% Significance Level 25 Shapiro Wilk Test Statistic 0.247 Lillefors GOF Test 2.396 26 Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 3.965 27 Shapiro Wilk CoF Test Significance Level 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965 3.965	13	General Statis	stics													
15 Minimum 2.7 First Quartile 3.315 16 Second Largest 3.7 Median 3.41 7 Maximum 4.1 Third Quartile 3.55 18 Mean of logged Data 3.419 Odd 0.425 19 Coafficient of Variation 0.124 Sb of logged Data 0.127 20 Mean of logged Data 1.222 Sb of logged Data 0.123 21				Total	Number of C	Observations	7			Numb	per of Dist	inct Observa	ations	6		
Int Second Largest 3.7 Median 3.45 17 Maximum 4.1 Third Quartile 3.55 18 General SA19 0.425 0.425 19 Coefficient of Variation 0.124 Skewness -0.106 20 Mean of logged Data 1.222 SD of logged Data 0.127 21 Critical Values for Background Threshold Values (BTVs) 1.938 1.938 23 Tolerance Factor K (For UTL) 3.399 dZmax (for USL) 1.938 24						Minimum	2.7					First Qu	uartile	3.315		
11 Maximum 4.1 Third Quartile 3.15 18 Coefficient of Variation 0.124 Skowness 0.102 20 Mean of logged Data 1.222 Sb of logged Data 0.127 21 Critical Values for Background Threshold Values (BTVs) 1.338 3.399 dZmax (for USL) 1.938 23 Tolerance Factor K (For UTL) 3.399 dZmax (for USL) 1.938 24 Vormal Streshold Values (BTVs) 1.938 25 Shapiro Wilk Test Statistic 0.931 Shapiro Wilk GOF Test 1.938 26 Shapiro Wilk Triceal Value 0.803 Data appear Normal at 5% Significance Level 1.938 27 Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 1.938 28 Culture to the statistic 0.941 Data appear Normal at 5% Significance Level 3.963 30 OBata appear Streshot Time Normal at 5% Significance Level 33 OBata Streshot Normal At 5% Significance Level 4.407 34 <td col<="" td=""><td></td><td></td><td></td><td></td><td>Sec</td><td>cond Largest</td><td>3.7</td><td></td><td></td><td></td><td></td><td>M</td><td>edian</td><td>3.4</td></td>	<td></td> <td></td> <td></td> <td></td> <td>Sec</td> <td>cond Largest</td> <td>3.7</td> <td></td> <td></td> <td></td> <td></td> <td>M</td> <td>edian</td> <td>3.4</td>					Sec	cond Largest	3.7					M	edian	3.4	
18 19(1) <td></td> <td></td> <td></td> <td></td> <td></td> <td>Maximum</td> <td>4.1</td> <td></td> <td></td> <td></td> <td></td> <td>Third Qu</td> <td>uartile</td> <td>3.55</td>						Maximum	4.1					Third Qu	uartile	3.55		
19 Coefficient of Variation 0.124 Stewness -0.106 20 Mean of logged Data 1.22 SD of logged Data 0.127 21 Critical Values for Background Threshold Values (BTVs) 1.938 2 23 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 24 V V 1.938 1.938 26 Shapiro Wilk Test Statistic 0.931 Shapiro Wilk GOF Test V 27 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level V 28 Culliferors Critical Value 0.304 Data appear Normal at 5% Significance Level V 30 Data appear Normal at 5% Significance Level 0.304 Data appear Normal at 5% Significance Level V 31 Background Statistics 0.304 Data appear Normal at 5% Significance Level 4.402 33 95% UTL with 95% Coverage 4.462 99% Percentile (z) 4.407 34 A-D Test Statistic 0.708 Detected data appear Gamma Distributed at 5% Significance Level						Mean	3.419						SD	0.425		
20 Mean of logged Data 1.222 SD of logged Data 0.127 21 Critical Values for Background Threshold Values (BTVs) 1.338 23 Tolerance Factor K (For UTL) 3.393 d2max (for USL) 1.338 24 Vormal UThreshold Values (BTVs) 1.338 24 Vormal UTL 1.338 25 Vormal UTL 1.338 26 Shapiro Wilk Test Statistic 0.331 Shapiro Wilk GOF Test Vormal at 5% Significance Level 28 Utiliefors Est Statistic 0.247 Utiliefors GOF Test 29 Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 29 Of Situat Statistic Otat appear Normal at 5% Significance Level 30 Data appear Normal at 5% Significance Level 31 Background Statistics Situat Statistic Otat appear Normal at 5% Significance Level 4.407 32 Background Statistic Otat appear Normal at 5% Significance Level 4.407 <t< td=""><td></td><td></td><td></td><td></td><td>Coefficient</td><td>t of Variation</td><td>0.124</td><td></td><td></td><td></td><td></td><td>Skew</td><td>vness</td><td>-0.106</td></t<>					Coefficient	t of Variation	0.124					Skew	vness	-0.106		
21 Critical Values for Background Threshold Values (BTVs) 23 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 24 1.938 1.938 26 Shapiro Wilk Critical Value 0.931 Shapiro Wilk GOF Test 27 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 28 Lilliefors Test Statistic 0.247 Lilliefors GOF Test 29 5% Lilliefors Critical Value 0.304 Data appear Normal at 5% Significance Level 30 Data appear Normal at 5% Significance Level 31 Background Stattstics Assuming Normal Distribution 3.963 3.963 3.963 32 Background Stattstics Assuming Normal Distribution 3.963 3.963 4.070 4.071 33 95% UTL with 95% Coverage 4.862 90% Percentile (z) 3.963 4.177 34 OSSS 0.708 Detected data appea					Mean of	logged Data	1.222				S	OD of logged	Data	0.127		
22 Critical Values for Background Threshold Values (BTVs) 1.938 23 Colerance Factor K (For UTI) 3.989 d2max (for USL) 1.938 24																
23 Tolerance Factor K (For UTL) 3.399 d2max (for USL) 1.938 24 25 Normal GOF Test 26 Shapiro Wilk Test Statistic 0.931 Shapiro Wilk GOF Test 27 5% Shapiro Wilk Test Statistic 0.931 Onta appear Normal at 5% Significance Level Illiefors GOF Test 28 Lilliefors Test Statistic 0.247 Lilliefors GOF Test Illiefors GOF Test 29 5% Lilliefors Critical Value 0.304 Data appear Normal at 5% Significance Level Illiefors GOF Test 30 Data appear Normal at 5% Significance Level 3.393 3.393 3.393 3.393 31 Background Statistics Assuming Normal Distribution 3.393 3.424 90% Percentile (z) 3.393 33 95% UTL with 95% Coverage 4.862 90% Percentile (z) 4.117 35 Gamma GOF Test 4.242 99% Percentile (z) 4.117 36 A.D Test Statistic 0.254 Kolmogorov-Smimov Gamma GOF Test 4.007 38 A.D Test Statistic 0.254 Kolmogorov-Smimov Gamma GOF Test					Crit	ical Values f	or Backgrou	Ind Threshold	d Values (B1	∕∕s)						
24 Normal GOF Test 26 Shapiro Wilk Test Statistic 0.931 Shapiro Wilk GOF Test 27 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 28 Lilliefors Test Statistic 0.247 Lilliefors GOF Test 29 5% Lilliefors Critical Value 0.304 Data appear Normal at 5% Significance Level 30 Data appear Normal at 5% Significance Level 31 Statistics Assuming Normal Distribution 3.95% UTL with 9% Coverage 4.862 90% Percentile (2) 3.953 32 Background Statistic A.242 99% Percentile (2) 4.117 35 95% UTL with 9% Coverage 4.862 90% Percentile (2) 4.407 36 95% UTL with 9% Coverage 4.862 90% Percentile (2) 4.407 36 Gamma GOF Test 4.407 4.407 4.407 38 A-D Test Statistic 0.418 Anderson-Darling Gamma GOF Test 4.407 41 5% A-D Critical Value 0.254 Kolmogorov-Smirnov Gamma GOF Test 4.242				Toler	ance Factor	K (For UTL)	3.399					d2max (for	USL)	1.938		
25 Normal GOF Test 26 Shapiro Wilk Test Statistic 0.931 Shapiro Wilk GOF Test 27 SS Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 28 Cililiefors Test Statistic 0.247 Lilliefors GOF Test 29 SS Lilliefors Critical Value 0.304 Data appear Normal at 5% Significance Level 29 SS Lilliefors Critical Value Normal At 5% Significance Level Image: Significance Level 31 Other Statistics Assuming Normal Distribution 3.963 3.963 34 OSS Percentile (2) 3.963 35 OSS Percentile (2) 3.963 36 OSS Percentile (2) 3.963 36 OSS Percentile (2) 3.963 37 OSS Percentile (2) 3.963 38 OSS Percentile (2) 3.963 39 OSS UPL (1) 4.301 OSS Percentile (2) 4.962 39 OSS Cortical Value 0.708 Detected data appear Gamma Distributed at 5% Significance Level 40 K-S Test Statistic 0.211								·								
26 Shapiro Wilk Critical Value 0.931 Shapiro Wilk GOF Test 27 5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level 28 3 0.304 Data appear Normal at 5% Significance Level																
22 Lilliefors Test Statistic 0.247 Lilliefors GOF Test 28 1 0.304 Data appear Normal at 5% Significance Level 30 Data appear Normal at 5% Significance Level 3 31 95% UTL with 95% Coverage 4.862 90% Percentile (z) 3.963 33 95% UTL with 95% Coverage 4.862 90% Percentile (z) 4.117 35 95% USL 4.242 99% Percentile (z) 4.407 36 95% USL 4.242 99% Percentile (z) 4.407 36 A-D Test Statistic 0.418 Anderson-Darling Gamma GOF Test 4.407 39 5% A-D Critical Value 0.708 Detected data appear Gamma Distributed at 5% Significance Level 4.407 41 5% K-S Critical Value 0.311 Detected data appear Gamma Distributed at 5% Significance Level 4.41 42 Detected data appear Gamma Distributed at 5% Significance Level 4.226 4.226 44 Comma Statistics 6.311 Detected data appear Gamma Distributed at 5% Significance Level 4.226 45 K hat (MLE) 7.379<	26			S	hapiro Wilk T	Fest Statistic	0.931			Shapiro V	Wilk GOF	Test				
20 5% Lilliefors Critical Value 0.304 Data appear Normal at 5% Significance Level 30 Ota appear Normal at 5% Significance Level 5% Significance Level 31 Background Stistics Assuming Normal Distribution 3.95% 3.963 33 95% UTL with 95% Coverage 4.862 90% Percentile (z) 3.963 34 95% UTL with 95% Coverage 4.862 90% Percentile (z) 4.117 35 95% UTL with 95% USL 4.242 99% Percentile (z) 4.407 36 State Statistic 4.242 99% Percentile (z) 4.407 36 State Statistic 0.418 Anderson-Darling Gamma OF Test 4.407 38 A-D Test Statistic 0.254 Kolmogorov-Smirnov Gamma GOF Test 5% Significance Level 40 K-S Test Statistic 0.254 Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.311 Detected data appear Gamma Distributed at 5% Significance Level 42.26 41 Otelected data appear Gamma Distributed at 5% Significance Level 0.331 Detected data appear Gamma Distributed at 5% Significance Level 42.26 42 <td>27</td> <td></td> <td></td> <td>5% Sł</td> <td>napiro Wilk C</td> <td>Critical Value</td> <td>0.803</td> <td></td> <td>Data appe</td> <td>ar Normal</td> <td>at 5% Sig</td> <td>gnificance Le</td> <td>evel</td> <td></td>	27			5% Sł	napiro Wilk C	Critical Value	0.803		Data appe	ar Normal	at 5% Sig	gnificance Le	evel			
29 Data apper Normal at 5% Significance Level 30 Obta apper Normal at 5% Significance Level 31 Background Statistics Assuming Normal Distribution 32 Background Statistics Assuming Normal Distribution 34 95% UTL with 95% Coverage 4.862 90% Percentile (z) 4.117 35 95% USL 4.242 99% Percentile (z) 4.407 36 95% USL 4.242 99% Percentile (z) 4.407 36 95% USL 4.242 99% Percentile (z) 4.407 36 Garma GOF Test 4.242 99% Percentile (z) 4.407 38 A-D Test Statistic 0.418 Anderson-Darling Gamma GOF Test 5 39 5% A-D Critical Value 0.254 Kolmogorov-Smirnov Gamma GOF Test 5 41 5% K-S Critical Value 0.311 Detected data appear Gamma Distributed at 5% Significance Level 4 42 Detected data appear Gamma Distributed at 5% Significance Level 42.26 6 43 Garma Statistics 42.26 0.0463 Theta star (bias corrected MLE) 0.0809	28				Lilliefors T	Fest Statistic	0.247			Lilliefor	rs GOF T	est				
30 31 31 33 95% UTL with 95% Coverage 4.862 90% Percentile (z) 3.963 34 95% UTL with 95% Coverage 4.862 90% Percentile (z) 4.117 35 95% UTL with 95% USL 4.242 99% Percentile (z) 4.407 36 95% USL 4.242 99% Percentile (z) 4.407 36 34 0.018 Anderson-Darling Gamma GOF Test 4.407 38 A-D Test Statistic 0.418 Anderson-Darling Gamma GOF Test 5.99 39 5% A-D Critical Value 0.708 Detected data appear Gamma Distributed at 5% Significan-cc Level 4.90 41 5% K-S Critical Value 0.311 Detected data appear Gamma Distributed at 5% Significan-cc Level 4.91 42 Detected data appear Gamma Distributed at 5% Significan-cc Level 4.92 4.226 43 Camma Statistics 4.226 4.92 4.92 44 Camma Statistics 4.226 4.92 4.92 4.92 45 K hat (MLE) 73.79 K star (bias corrected MLE)	29			5'	% Lilliefors C	Critical Value	0.304		Data appe	ar Normal	at 5% Sig	gnificance Le	evel			
32 Background Statistics Assuming Normal Distribution 33 95% UTL with 95% Coverage 4.862 90% Percentile (z) 3.963 34 95% UTL with 95% UPL (t) 4.301 95% Percentile (z) 4.117 35 95% USL 4.242 99% Percentile (z) 4.407 36 95% USL 4.242 99% Percentile (z) 4.407 36 0 95% USL 0.418 Anderson-Darling Gamma GOF Test 4.407 38 A-D Test Statistic 0.418 Anderson-Darling Gamma GOF Test Level 39 9 5% A-D Critical Value 0.708 Detected data appear Gamma Distributed at 5% Significance Level 40 K-S Test Statistic 0.254 Kolmogorov-Smirnov Gamma GOF Test Level 41 9 Detected data appear Gamma Distributed at 5% Significance Level Level Level 42 Detected data appear Gamma Distributed at 5% Significance Level Level Level 43 0 0.0463 Theta star (bias corrected MLE) 0.0809 44 MLE Mean (bias corrected MLE) 0.0	30					Data appe	ar Normal a	t 5% Signific	ance Level							
32 95% UTL with 95% Coverage 4.862 90% Percentile (z) 3.963 34 95% UTL (i) 4.301 95% Percentile (z) 4.117 35 95% USL 4.242 99% Percentile (z) 4.407 36 95% USL 4.242 99% Percentile (z) 4.407 36 37 Gamma GOF Test 4.407 38 A-D Test Statistic 0.418 Anderson-Darling Gamma GOF Test 4.97 39 5% A-D Critical Value 0.708 Detected data appear Gamma Distributed at 5% Significance Level 4.97 40 K-S Test Statistic 0.254 Kolmogorov-Smirnov Gamma GOF Test 4.97 41 5% K-S Critical Value 0.311 Detected data appear Gamma Distributed at 5% Significance Level 4.97 42 Detected data appear Gamma Distributed at 5% Significance Level 4.26 0.0809 43 Gamma Statistics 4.26 0.0463 Theta star (bias corrected MLE) 0.0809 44 Gamma Statistics 591.6 4.26 591.6 591.6 48	31															
33 95% UPL (t) 4.301 95% Percentile (z) 4.117 34 95% UPL (t) 4.242 99% Percentile (z) 4.407 36 95% USL 4.242 99% Percentile (z) 4.407 36 99% Percentile (z) 4.407 36 4.407 37 4.407 38 A-D Test Statistic 0.418 Anderson-Darling Gamma GOF Test 39 5% A-D Critical Value 0.708 Detected data appear Gamma Distributed at 5% Significance Level 40 K-S Test Statistic 0.254 Kolmogorov-Smirnov Gamma GOF Test 41 5% K-S Critical Value 0.311 Detected data appear Gamma Distributed at 5% Significance Level 42 Detected data appear Gamma Distributed at 5% Significance Level 43 73.79 K star (bias corrected MLE) 0.0809 44 1033 nu star (bias corrected MLE) 0.0809 47	32				B	ackground S		suming Norm	al Distributio	n						
34 4.407 35 99% Percentile (2) 4.407 36	33			95% L		-							. ,			
33 33 36 36 37 Gamma GOF Test 38 A-D Test Statistic 0.418 Anderson-Darling Gamma GOF Test 39 5% A-D Critical Value 0.708 Detected data appear Gamma Distributed at 5% Significance Level 40 K-S Test Statistic 0.254 Kolmogorov-Smirnov Gamma GOF Test 41 5% K-S Critical Value 0.311 Detected data appear Gamma Distributed at 5% Significance Level 42 Detected data appear Gamma Distributed at 5% Significance Level 4 43 Camma Statistics 4 44 Camma Statistics 42.26 45 K hat (MLE) 73.79 K star (bias corrected MLE) 42.26 46 Theta hat (MLE) 0.0463 Theta star (bias corrected MLE) 42.26 47 nu hat (MLE) 1033 nu star (bias corrected MLE) 591.6 48 MLE Mean (bias corrected) 3.419 MLE Sd (bias corrected) 0.526 49 Statistics Aswing Gamma Distribution 0.526 591.6 0.526 49 Statistics Aswing Gamma Distribution 0.526 591.6 0.526	34												. ,			
37 Gamma GOF Test 38 A-D Test Statistic 0.418 Anderson-Darling Gamma GOF Test 39 Contract Statistic 0.708 Detected data appear Gamma Distributed at 5% Significance Level 40 K-S Test Statistic 0.254 Kolmogorov-Smirnov Gamma GOF Test 41 Contract Stress Statistic 0.254 Kolmogorov-Smirnov Gamma GOF Test 42 Detected data appear Gamma Distributed at 5% Significance Level	35					95% USL	4.242				9	9% Percent	ile (z)	4.407		
37 A-D Test Statistic 0.418 Anderson-Darling Gamma GOF Test 38 5% A-D Critical Value 0.708 Detected data appear Gamma Distributed at 5% Significance Level 40 K-S Test Statistic 0.254 Kolmogorov-Smirnov Gamma GOF Test 41 5% K-S Critical Value 0.311 Detected data appear Gamma Distributed at 5% Significance Level 42 Detected data appear Gamma Distributed at 5% Significance Level Level 43 Camma Distributed at 5% Significance Level 42 44 Gamma Statistics 42.26 45 K hat (MLE) 73.79 K star (bias corrected MLE) 42.26 46 Theta hat (MLE) 0.0463 Theta star (bias corrected MLE) 0.0809 47 nu hat (MLE) 1033 nu star (bias corrected) 0.526 48 MLE Mean (bias corrected) 3.419 MLE Sd (bias corrected) 0.526 49 Camma Distribution 595% Wilson Hilferty (WH) Approx. Gamma UPL 4.373 90% Percentile 4.107 50 Background Statistics Assuming Gamma Distribution 50% Percentile 4.107 4.072	36															
3800000395% A-D Critical Value0.708Detected data appear Gamma Distributed at 5% Significance Level40K-S Test Statistic0.254Kolmogorov-Smirnov Gamma GOF Test415% K-S Critical Value0.311Detected data appear Gamma Distributed at 5% Significance Level42Detected data appear Gamma Distributed at 5% Significance Level0.311Detected data appear Gamma Distributed at 5% Significance Level43CGamma Statistics444C73.79k star (bias corrected MLE)42.2645MLE Mat (MLE)0.0463Theta star (bias corrected MLE)0.080947nu hat (MLE)1033nu star (bias corrected)591.648MLE Mean (bias corrected)3.419MLE Sd (bias corrected)0.52649Statistics Assuming Gamma Distribution59% Wilson Hilferty (WH) Approx. Gamma UPL4.37390% Percentile4.1075195% Wilson Hilferty (WH) Approx. Gamma UPL4.9044.90490% Percentile4.107	37							GOF Test								
33 K-S Test Statistic 0.254 Kolmogorov-Smirnov Gamma GOF Test 41 5% K-S Critical Value 0.311 Detected data appear Gamma Distributed at 5% Significance Level 42 Detected data appear Gamma Distributed at 5% Significance Level 44 43 Camma Statistics 44 Gamma Statistics 45 K hat (MLE) 73.79 K star (bias corrected MLE) 42.26 46 Theta hat (MLE) 0.0463 Theta star (bias corrected MLE) 0.0809 47 nu hat (MLE) 1033 nu star (bias corrected) 591.6 48 MLE Mean (bias corrected) 3.419 MLE Sd (bias corrected) 0.526 49 50 Background Statistics Assuming Gamma Distribution 51 95% Wilson Hilferty (WH) Approx. Gamma UPL 4.373 90% Percentile 4.107 51 95% Wilson Hilferty (WH) Approx. Gamma UPL 4.304 4.304 4.304 4.304	38										-					
4010101010415% K-S Critical Value0.311Detected data appear Gamma Distributed at 5% Significance Level42Detected data appear Gamma Distributed at 5% Significance Level434444Camma Statistics45K hat (MLE)73.79K star (bias corrected MLE)42.2646MLE Man (bias corrected MLE)0.0463Theta star (bias corrected MLE)0.080947MLE Mean (bias corrected)1033nu star (bias corrected)591.648MLE Mean (bias corrected)3.419MLE Sd (bias corrected)0.52649595050505050Background Statistics Assuming Gamma Distribution90% Percentile4.1075195% Wilson Hilferty (WH) Approx. Gamma UPL4.37390% Percentile4.107	39							Detected						ce Level		
41 Detected data appear Gamma Distributed at 5% Significance Level 42 Detected data appear Gamma Distributed at 5% Significance Level 43 44 44 Gamma Statistics 45 K hat (MLE) 73.79 46 Theta hat (MLE) 0.0463 47 Invasional MLE Mean (bias corrected) 591.6 48 MLE Mean (bias corrected) 3.419 49 MLE Sd (bias corrected) 0.526 49 Sakkground Statistics Assuming Gamma Distribution 0.526 50 Background Statistics Assuming Gamma Distribution 4.107 51 95% Wilson Hilferty (WH) Approx. Gamma UPL 4.373 90% Percentile 4.107	40															
42 Control Control 43 44 Gamma Statistics 44 Gamma Statistics 45 K hat (MLE) 73.79 K star (bias corrected MLE) 42.26 46 Theta hat (MLE) 0.0463 Theta star (bias corrected MLE) 0.0809 47 nu hat (MLE) 1033 nu star (bias corrected) 591.6 48 MLE Mean (bias corrected) 3.419 MLE Sd (bias corrected) 0.526 49 50 Background Statistics Assuming Gamma Distribution 51 95% Wilson Hilferty (WH) Approx. Gamma UPL 4.373 90% Percentile 4.107 51 95% Wilson Hilferty (WH) Approx. Gamma UPL 4.394 4.094 90% 90% Percentile 4.107	41											d at 5% Sigr	nificanc	e Level		
44 Gamma Statistics 45 K hat (MLE) 73.79 K star (bias corrected MLE) 42.26 46 Theta hat (MLE) 0.0463 Theta star (bias corrected MLE) 0.0809 47 nu hat (MLE) 1033 nu star (bias corrected MLE) 591.6 48 MLE Mean (bias corrected) 3.419 MLE Sd (bias corrected) 0.526 49 4.107 50 Background Statistics Assuming Gamma Distribution 90% Percentile 4.107 51 95% Wilson Hilferty (WH) Approx. Gamma UPL 4.373 90% Percentile 4.107	42				Detected	l data appea	r Gamma Di	stributed at 5	5% Significar	nce Level						
44 45 k star (bias corrected MLE) 42.26 46 Theta hat (MLE) 0.0463 Theta star (bias corrected MLE) 0.0809 47 nu hat (MLE) 1033 nu star (bias corrected MLE) 591.6 48 MLE Mean (bias corrected) 3.419 MLE Sd (bias corrected) 0.526 49 50 Background Statistics Assuming Gamma Distribution 51 95% Wilson Hilferty (WH) Approx. Gamma UPL 4.373 90% Percentile 4.107	43															
4546Theta hat (MLE)0.0463Theta star (bias corrected MLE)0.080947nu hat (MLE)1033nu star (bias corrected)591.648MLE Mean (bias corrected)3.419MLE Sd (bias corrected)0.5264950Background Statistics Assuming Gamma Distribution90% Percentile4.1075195% Wilson Hilferty (WH) Approx. Gamma UPL4.37390% Percentile4.107	44							Statistics								
461033nu star (bias corrected)591.647MLE Mean (bias corrected)3.419MLE Sd (bias corrected)0.52648MLE Mean (bias corrected)3.419MLE Sd (bias corrected)0.5264950Background Statistics Assuming Gamma Distribution5195% Wilson Hilferty (WH) Approx. Gamma UPL4.37390% Percentile4.107510 FF(1) Lin	45										•		,			
47 MLE Mean (bias corrected) 3.419 MLE Sd (bias corrected) 0.526 49 30 3.419 <td>46</td> <td></td> <td></td> <td></td> <td></td> <td>, ,</td> <td></td> <td></td> <td></td> <td>Theta</td> <td></td> <td></td> <td></td> <td></td>	46					, ,				Theta						
40 49 50 Background Statistics Assuming Gamma Distribution 51 95% Wilson Hilferty (WH) Approx. Gamma UPL 4.373 90% Percentile 4.107	47					. ,						•	,			
Background Statistics Assuming Gamma Distribution 51 95% Wilson Hilferty (WH) Approx. Gamma UPL 4.373 90% Percentile 4.107	48			ML	E Mean (bia	as corrected)	3.419				MLE S	d (bias corre	ected)	0.526		
S0 S0 51 95% Wilson Hilferty (WH) Approx. Gamma UPL 4.373 90% Percentile 4.107	49															
	50							uming Gamr	na Distributi	on						
52 95% Hawkins Wixley (HW) Approx. Gamma UPL 4.384 95% Percentile 4.327	51															
	52	9	5% Hawkin	s Wixley (H	W) Approx. C	Gamma UPL	4.384					95% Perc	entile	4.327		

A B C D E 95% WH Approx. Gamma UTL with 95% Coverage	F 5.078	G	Н		J K 99% Percentile	L 4.759
95% HW Approx. Gamma UTL with 95% Coverage	5.112					
95% WH USL	4.303				95% HW USL	4.312
	Lognorma	GOF Test				
Shapiro Wilk Test Statistic	0.919		Shap	iro Wilk Logr	normal GOF Test	
5% Shapiro Wilk Critical Value	0.803		Data appear	Lognormal a	at 5% Significance Level	
Lilliefors Test Statistic	0.268		Lill	efors Logno	rmal GOF Test	
5% Lilliefors Critical Value	0.304		Data appear	Lognormal a	at 5% Significance Level	
Data appear	Lognormal	at 5% Signif	icance Level			
Background Sta	tistics assu	ming Lognor	mal Distribut	ion		
95% UTL with 95% Coverage	5.227				90% Percentile (z)	3.995
95% UPL (t)	4.42				95% Percentile (z)	4.184
95% USL	4.342				99% Percentile (z)	4.562
I						
Nonparametric	Distribution	Free Backg	round Statist	ics		
Data appea	ar Normal at	5% Signific	ance Level			
Nonparametric Upp	er Limits for	r Backgroun	d Threshold	Values		
Order of Statistic, r	7			95% U	TL with 95% Coverage	4.1
Approx, f used to compute achieved CC	0.368	Approxima	te Actual Cor	fidence Coe	fficient achieved by UTL	0.302
		Approxin	nate Sample	Size needed	to achieve specified CC	59
95% Percentile Bootstrap UTL with 95% Coverage	4.1		95% BCA	Bootstrap U	TL with 95% Coverage	4.1
95% UPL	4.1				90% Percentile	3.86
90% Chebyshev UPL	4.781				95% Percentile	3.98
95% Chebyshev UPL	5.398				99% Percentile	4.076
95% USL	4.1				L. L	
'						
Note: The use of USL tends to yield a conservative	ve estimate	of BTV, espe	ecially when t	he sample siz	ze starts exceeding 20.	
Therefore, one may use USL to estimate a BTV	only when th	ne data set re	epresents a b	ackground da	ata set free of outliers	
and consists of observa	tions collect	ed from clea	n unimpacted	l locations.		
The use of USL tends to provide a balan	ce between	false positive	es and false i	negatives pro	vided the data	
represents a background data set and wh	nen many or	isite observa	tions need to	be compare	d with the BTV.	
Lead (surface)						
				Number		7
						5.55
-						5.8
Maximum						6.55
Mean					SD	6.52
						2.614
Mean of logged Data	1.967				SD of logged Data	0.524
		nd Threshol	d Values (BT	Vs)		
Tolerance Factor K (For UTL)	3.399				d2max (for USL)	1.938
		GOF Test				
•						
5% Shapiro Wilk Critical Value	0.803		Data Not	Normal at 5	% Significance Level	
	95% WH Approx. Gamma UTL with 95% Coverage 95% HW Approx. Gamma UTL with 95% Coverage 95% WH USL Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear 8ackground Sta 95% UTL with 95% Coverage 95% UTL with 95% Coverage 95% USL Nonparametric Data appear Nonparametric Upp Order of Statistic, r Approx, f used to compute achieved CC 95% Percentile Bootstrap UTL with 95% Coverage 95% UPL 95% Coverage 95% Percentile Bootstrap UTL with 95% Coverage 95% Percentile Bootstrap UTL with 95% Coverage 95% Coverage 95% Coverage 95% Coverage 95% Coverage 95% Coverage 95% Coverage 95% UPL 90% Chebyshev UPL 95% Chebys	95% WH Approx. Gamma UTL with 95% Coverage 5.078 95% HW Approx. Gamma UTL with 95% Coverage 5.112 95% WH USL 4.303 Lognorma Shapiro Wilk Test Statistic 0.919 5% Shapiro Wilk Critical Value 0.803 Lilliefors Test Statistic 0.268 5% Lilliefors Critical Value 0.304 Data appear Lognormal Background Statistics assu 95% UTL with 95% Coverage 5.227 95% USL 4.342 95% USL 4.342 Nonparametric Distribution Data appeer Normal at Nonparametric Distribution Data appeer Normal at Nonparametric Distribution Data appeer Normal at Sign UPL () 4.42 95% UPL 4.11 95% UPL 4.1 95% Percentile Bootstrap UTL with 95% UPL 4.1 95% Chebyshev UPL 5.388 95% USL 4.1 95% Chebyshev UPL 5.388 95% USL	95% WH Approx. Gamma UTL with 95% Coverage 5.078 95% HW Approx. Gamma UTL with 95% Coverage 5.112 95% WH USL 4.303 Lognormal GOF Test Shapiro Wilk Test Statistic 0.919 5.028 5% Shapiro Wilk Critical Value 0.803 1.111 100 0.268 5% 5% UIL with 95% USL 0.304 Data appear Lognormal at 5% Signific Background Statistics assuming Lognor 95% UTL with 95% USL 4.42 95% USL 4.342 1.412 Nonparametric Distribution Free Backgroun Order of Statistic, r 7 Approxin Approx, f used to compute achieved CC 0.368 Approxin 95% VPL 4.1 90% Chebyshev UPL 4.781 95% Chebyshev UPL 4.781 95% USL 4.1 90% Chebyshev UPL 5.398 95% USL 4.1 95% Chebyshev UPL 5.398 95% USL 4.1 95% Chebyshev UPL 5.398 95% USL 4.1	95% WH Approx. Gamma UTL with 95% Coverage 5.078 95% HW Approx. Gamma UTL with 95% Coverage 5.112 95% HW Approx. Gamma UTL with 95% Coverage 5.112 95% WH USL 4.303 Determine 0.919 Shapiro Wilk Critical Value 0.803 0.803 Data appear 11iliefors Test Statisti 0.268 Lilli 5% Shapiro Wilk Critical Value 0.304 Data appear Data appear Data appear Data appear Data appear Data appear Data appear Background Statistics assuming Lognormal Distribut 95% USL 4.342 95% USL 4.342 1.342 Nonparametric Distribution Free Background Statist Data appear Normal at 5% Significance Level Nonparametric Upper Limits for Background Threshold 'I 0.368 Approximate Actual Cor Approx, f used to compute achieved CC 0.368 Approximate Actual Cor 95% DFL 4.1 95% BCA 95% USL 95% Chetysher UPL 4.781 95% BCA 95% USL 95% Chetysher UPL 5.398 95% USL 4.1 95% Chetysher UPL 95% USL to estim	99% WH Approx. Gamma UTL with 95% Coverage 5.078 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	95% WH Approx. Camma UTL with 95% Coverage 5.778 95% HW Approx. Camma UTL with 95% Coverage 5.172 95% HW Approx. Camma UTL with 95% Coverage 5.172 95% HW Approx. Camma UTL with 95% Coverage 5.172 95% HW Approx. Camma UTL with 95% Coverage 5.172 95% HW Approx. Camma UTL with 95% Coverage 5.27 95% Shapiro With Certical Value 6.033 Data appear Lognormal GOF Test Shapiro With Certical Value 6.344 Data appear Lognormal GOF Test 95% Lillefors Test Statistic 0.288 Lillefors Test Statistic 0.288 Between the 95% Coverage 5.27 95% UTL with 95% Coverage 5.27 95% VTL with 95% Coverage 5.27 95% UTL with 95% Coverage 5.27 95% UTL with 95% Coverage 5.27 95% UTL with 95% Coverage 5.27 95% VTL with 95% Coverage 5.27 95% UTL with 95% Coverage 5.27 95% UTL with 95% Coverage 5.27 95% UTL with 95% Coverage 5.27 95% VTL with 95% Coverage 5.27 95% UTL with 95% Coverage 5.27 95% VTL with 95% Coverage 5.21 Nonparametric Uper Limits for Beckground Threshold Values Corder of statistic, r 7 Set VTL with 95% Coverage 5.21 Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size stats exceeding 20. Therefore, one may use USL to estimate a DTV only when the data with respectives provided the data represents a background data set and when many onsite observations and cancel code of using appear 95% USL 4.1 1 Notice The use of USL tends to yield a conservative estimate of BTV, especially when the sample size stats exceeding 20. Therefore, one may use USL to estimate a DTV only when the data set represents a background data set and when many onsite observations and consister Softwark one Collecter of the da

	А		В		С			D		E est Sta			F).452		G			Η			ofor		J F Tes	.		Κ		L	
105						50				ritical).304				Г						Signif						
106						57		meio	130				mal at	5%	Signi	ficanc			NOLIN	NOTTIN	arat	J /0	Jigini	icai					
107										Du				0.0	Olgin	nound													
108									Ba	ackaro	und S	Statis	tics As	sun	nina N	lorma	al Di	stribu	ution										
109					95	5% U	TL	with		% Cove			0.52										90	% F	Perce	entile	(z)	16.7	1
110										95% U	-		1.9	_												entile	• •	19.0	
111										95%	. ,		0.99	_												entile	• •	23.5	
112																											()		
113 114												G	amma	GC	OF Te	st													
115								A	-D T	est Sta	atistic	-	.573					And	erso	n-Da	arling	g Ga	mma	GO	FT	est			
116							5	% A-	-D C	ritical	Value	().711			Dat	ta N	ot Ga	mma	a Dis	tribu	ited a	at 5%	Sig	nific	ance	Leve	əl	
117								K	S-S T	est Sta	atistic	().428				l	Colmo	ogor	ov-Sr	mirn	iov G	amm	a G	iOF	Test			
118							5	% K·	-S C	ritical	Value	().313			Dat	ta N	ot Ga	mma	a Dis	tribu	ited a	at 5%	Sig	nific	ance	Leve	əl	
119									Da	ta Not	Gam	ma D	istribu	ted	at 5%	Sign	ifica	ance l	Leve										
120																													
121												G	iamma	a Sta	atistic	s													
122										k hat (MLE)	3	3.36								k	star	(bias	cor	rect	ed MI	_E)	2.01	16
123									Thet	a hat (MLE)	2	2.487	+						Tł	heta	star	(bias	cor	rect	ted MI	_E)	4.14	46
124									n	u hat (MLE)	4	7.05									nı	ı star	(bia	as co	orrect	ed)	28.2	2
125						ML	ΕN	lean	(bia	s corre	ected)	8	8.357									ML	E Sd	(bia	as co	orrect	ed)	5.88	37
126																											·		
127									Ba	ckgro	und S	tatist	ics As	sun	ning G	iamm	a D	istribu	ution)									
128		9	5% Wils	on H	ilfert	y (Wł	H) A	Appro	ox. G	iamma	UPL	2	1.47											90	% P	ercen	tile	16.2	2
129		95	% Hawk	ins V	Vixle	y (HV	N) A	Appro	ox. G	amma	I UPL	2	1.41											95	% P	ercen	tile	19.7	7
130		95% V	VH App	rox. C	Gamr	ma U	TL	with	959	% Cove	erage	3	6.08											99	% P	ercen	tile	27.6	5
131		95% H	IW App	rox. C	Gamr	ma U	ΤL	with	959	% Cove	erage	3	7.28																
132									95	5% WH	IUSL	2	0.22											9	5% I	HW U	SL	20.1	
133																													
134													gnorma	al G	OF T	est													
135							•			est Sta).592						•			-	mal C						
136					59	% Sh	•			ritical			0.803				Da			•			•			e Leve	əl		
137										est Sta).395								-		al GC						
138						5%	6 Li	lliefo	ors C	ritical).304							gnorr	mala	at 5%	6 Sigr	hifica	ance	e Leve	əl		
139										Data	Not L	.ogno	ormal a	at 59	% Sig	nifica	nce	Leve											
140									_																				
141						-0/ 11	- ,						s assi	umi	ng Lo	gnorm	nal I	Distrit	butio	n				0/ 5			()		
142					95	o% U	IL'	with					2.38	+												entile		13.9	
143									Ç	95% U			1.21	_												entile	• •	16.9	
144										90%	USL		9.72										99	70 F	-erc	entile	(2)	24.1	<i>'</i>
145									Ne	narar	notria	Dict	ributior	n F-	ne Pr	okara		1 2+~+	ietic										
146										•										3									
147		Data										VOID	a D180	ceri		ກອເປເມ	Juli	л (U.	00)										
148								No	nner	ametri	ic Upr	ner I	imits fo	or P	lackar	hund	The	acho	Id \/•	aluee									
149									-	of Stati					aunyi	Junu	111	GOLIO	iu Vč			ודו	with	95	% ^	Covera	ane	23.1	
150			Δ	pprov	κ.f.u	sed t	0 0			chieve).368	4	Approx	vimate	ο Α c	tual C	Confi								-	0.30	
151			~	-PPi 07	., i u	550 0	5 00	mpt	d			`		+	••	oxima										•		59	
152		95%	Percenti	le Ro	otstr	an H	<u>ті</u> ,	with	959	% Cov	erade	2	3.1	+	, .ppi			-								Covera		23.1	
153		00701	0.0011		5.50	20 92			50				3.1	+			0.		J. 1 L		up	512				ercen	-	13.3	
154							ç	0% (Chel	byshev			9.27	+												ercen		18.2	
155										byshev			8.74	+												ercen		22.1	
156							0		21101	.,	0, L	5	J., T											55		5.001		<u></u> . I	

	А	В	С	D	E	F	G	Н		J	K	L				
157					95% USL	23.1										
158																
159		Note: The use of USL tends to yield a conservative estimate of BTV, especially when the sample size starts exceeding 20. Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers														
160																
161	and consists of observations collected from clean unimpacted locations.															
162		Tł	ne use of US	L tends to pr	ovide a balar	nce between	false positive	es and false	negatives pr	ovided the da	ata					
163		rep	presents a ba	ckground da	ta set and w	hen many or	isite observa	tions need to	be compare	ed with the B	TV.					
164																

	A B		С	D	E	F	G	Н		J	K		L		
1			Table D-10.	Lognormal	Background	Statistics for	r Combined	Surface and	Subsurface	Soil Mangar	nese				
2			cted Options												
3	Date/Time	of Co	omputation	ProUCL 5.1	12/19/2018	10:47:27 AM									
4			From File	ProUCL_inp	out.xls										
5		Fu	II Precision	OFF											
6	Confide	ence	Coefficient	95%											
7			Coverage	95%											
8	New or Future			1											
9	Number of Boots	strap	Operations	2000											
10															
11	Manganese														
12															
13	General Statistics														
14			Total	Number of C	bservations				Number	r of Distinct C	bservations				
15					Minimum					F	irst Quartile	14	1.34		
16				Sec	cond Largest	55.6					Median	18	.9		
17					Maximum	83.2				TI	hird Quartile	28	8.05		
18					Mean	25.94					SD	20).46		
19				Coefficient	t of Variation	0.789					Skewness	2.	.083		
20		Mean of logged Data 3.047 SD of logged Data 0.632													
21		Mean of logged Data 3.047 SD of logged Data 0.632 Critical Values for Background Threshold Values (BTVs)													
22				Crit	ical Values	for Backgrou	nd Threshol	d Values (B	ΓVs)						
23			Tole	rance Factor	K (For UTL)	2.614				d2m	ax (for USL)	2.	.372		
24															
25						-	GOF Test								
26			S	hapiro Wilk 1	Fest Statistic	0.947		Shap	oiro Wilk Log	normal GOF	Test				
27			5% SI	napiro Wilk C	Critical Value				•	at 5% Signifi					
28				Lilliefors 7	Fest Statistic	0.216		Lill	iefors Logno	ormal GOF T	est				
29			5	% Lilliefors C	Critical Value	0.226		Data appea	r Lognormal	at 5% Signifi	cance Level				
30					Data appea	r Lognormal	at 5% Signif	icance Leve							
31															
32					-	atistics assu	ming Lognor	mal Distribu	tion						
33			95% l	JTL with 95	-						ercentile (z)				
34					95% UPL (t)						ercentile (z)				
35					95% USL	94.18				99% P	ercentile (z)	91	.52		
36															
37				-			-	-	-	ize starts exc	-				
38	Ther	refore	e, one may us			-		-	-	lata set free	of outliers				
39						ations collect		•							
40							-			ovided the da					
41		re	presents a ba	ackground da	ata set and w	when many on	isite observa	tions need to	be compare	ed with the B	TV.				
42															

Table D-11. Summary of Statistical Analysis of Background Threshold Values

	ANOVA			Selected BTV	BTV	
Analyte	Results	Horizon	Distribution	Statistic	(mg/kg)	Rationale
Antimony	Similar	Data Combined	Normal	95% UTL with	3.4	Data set may contain outlier therefore, use of USL is not indicated. UTL selected to
				95% Coverage		cover background population.
Copper	Not Similar	Surface	Normal	95% USL	4.145	
						Data set is free of outliers. The use of USL tends to provide a balance between false
						positives and false negatives provided the data represents a background data set and
						when many onsite observations need to be compared with the BTV.
		Subsurface	Normal	95% UTL with	3.76	Data set may contain outlier therefore, use of USL is not indicated. UTL selected to
				95% Coverage		cover background population.
Lead	Not Similar	Surface	Non-	95% UTL with	23.1	Data set may contain outlier therefore, use of USL is not indicated. UTL selected to
			Parametric	95% Coverage		cover background population.
		Subsurface	Normal	USL	4.242	
						Data set is free of outliers. The use of USL tends to provide a balance between false
						positives and false negatives provided the data represents a background data set and
						when many onsite observations need to be compared with the BTV.
Manganese	Similar	Data Combined	Lognormal	95% UTL with	109.8	Data set may contain outlier therefore, use of USL is not indicated. UTL selected to
				95% Coverage		cover background population.
Nickel	Not Similar	Surface	Normal	95% USL	1.924	Data sets are free of outliers. The use of USL tends to provide a balance between
		Subsurface	Normal	95% USL	2.81	false positives and false negatives provided the data represents a background data set
Zinc	Not Similar	Surface	Normal	95% USL	7.694	Data sets are free of outliers. The use of USL tends to provide a balance between
		Subsurface	Normal	95% USL	19.19	false positives and false negatives provided the data represents a background data set

mg/kg - milligrams per kilogram USL - upper simultaneous limit UTL - upper threshold limit

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI1-SU1-SA-REP1	AOI1-SU1-SA-REP2	AOI1-SU1-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35 1	mg/kg	0.17	ND	0.19	0.18	NC	NC	NC
	Copper	310	NS	310	35 1	mg/kg	3.00	6.00	8.40	5.80	2.71	46.65	12.61
SW6010	Lead	400	200	200	35 1	mg/kg	6.50	9.00	10.70	8.73	2.11	24.19	14.04
S W 0010	Manganese	180	NS	180	35 1	mg/kg	15.50	10.50	11.50	12.50	2.65	21.17	19.16
	Nickel	150	600	150	35 1	mg/kg	0.89	0.68	0.94	0.84	0.14	16.49	1.18
	Zinc	2300	1,000	1,000	35 1	mg/kg	20.00	16.50	14.90	17.13	2.61	15.22	23.70
SW8330	Nitroguanidine	630	NS	630	35 1	mg/kg	0.87	0.89	0.50	0.75	0.22	29.15	1.31

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI1-SU2-SA-REP1	AOI1-SU2-SA-REP2	AOI1-SU2-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35	mg/kg	0.16	0.15	0.14	0.15	0.01	6.67	0.18
	Copper	310	NS	310	35	mg/kg	1.60	3.10	2.50	2.40	0.75	31.46	4.30
SW6010	Lead	400	200	200	35	mg/kg	5.00	6.00	8.30	6.43	1.69	26.30	10.69
SW0010	Manganese	180	NS	180	35	mg/kg	10.50	14.80	12.70	12.67	2.15	16.98	18.08
	Nickel	150	600	150	35	mg/kg	0.62	0.64	0.68	0.65	0.03	4.72	0.72
	Zinc	2300	1,000	1,000	35	mg/kg	8.60	9.90	7.70	8.73	1.11	12.66	11.52
SW8330	Nitroguanidine	630	NS	630	35	mg/kg	ND	ND	0.71	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI1-SU3-SA-REP1	AOI1-SU3-SA-REP2	AOI1-SU3-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35 n	ng/kg	ND	0.15	0.15	NC	NC	NC	NC
	Copper	310	NS	310	35 n	ng/kg	0.76	0.88	0.88	0.84	0.07	8.25	1.01
SW6010	Lead	400	200	200	35 n	ng/kg	4.10	5.30	5.60	5.00	0.79	15.87	7.00
S W 0010	Manganese	180	NS	180	35 n	ng/kg	13.30	13.40	13.10	13.27	0.15	1.15	13.65
	Nickel	150	600	150	35 n	ng/kg	0.78	0.77	0.70	0.75	0.04	5.81	0.86
	Zinc	2300	1,000	1,000	35 n	ng/kg	7.50	7.70	7.70	7.63	0.12	1.51	7.92
SW8330	Nitroguanidine	630	NS	630	35 n	ng/kg	0.69	0.55	0.63	0.62	0.07	11.27	0.80

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI2-SU1-SA-REP1	AOI2-SU1-SA-REP2	AOI2-SU1-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35 r	mg/kg	ND	ND	ND	NC	NC	NC	NC
	Copper	310	NS	310	35 r	mg/kg	0.71	0.58	0.95	0.75	0.19	25.14	1.22
SW6010	Lead	400	200	200	35 1	mg/kg	3.00	2.50	2.20	2.57	0.40	15.75	3.58
S W 0010	Manganese	180	NS	180	35 1	mg/kg	9.20	8.90	9.60	9.23	0.35	3.80	10.12
	Nickel	150	600	150	35 r	mg/kg	0.37	0.42	0.47	0.42	0.05	11.90	0.55
	Zinc	2300	1,000	1,000	35 r	mg/kg	1.90	1.70	1.50	1.70	0.20	11.76	2.50
SW8330	Nitroguanidine	630	NS	630	35 r	mg/kg	ND	ND	0.46	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	МСР	PSL	Limit (%)	UNITS	AOI2-SU2-SA-REP1	AOI2-SU2-SA-REP2	AOI2-SU2-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35	mg/kg	0.23	0.25	0.16	0.21	0.05	22.15	0.33
	Copper	310	NS	310	35	mg/kg	1.90	1.80	2.10	1.93	0.15	7.90	2.32
SW6010	Lead	400	200	200	35	mg/kg	2.90	3.60	3.40	3.30	0.36	10.93	4.21
S W 0010	Manganese	180	NS	180	35	mg/kg	17.50	18.00	9.40	14.97	4.83	32.25	27.12
	Nickel	150	600	150	35	mg/kg	1.20	1.30	0.45	0.98	0.46	47.25	2.15
	Zinc	2300	1,000	1,000	35	mg/kg	6.40	6.50	3.90	5.60	1.47	26.31	9.31
SW8330	Nitroguanidine	630	NS	630	35	mg/kg	ND	ND	ND	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI2-SU3-SA-REP1	AOI2-SU3-SA-REP2	AOI2-SU3-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35 1	mg/kg	0.15	0.27	ND	NC	NC	NC	NC
	Copper	310	NS	310	35 1	mg/kg	1.20	2.50	1.50	1.73	0.68	39.27	3.45
SW6010	Lead	400	200	200	35 1	mg/kg	3.10	5.80	3.80	4.23	1.40	33.10	7.76
S W 0010	Manganese	180	NS	180	35 1	mg/kg	8.90	12.40	15.10	12.13	3.11	25.62	19.96
	Nickel	150	600	150	35 1	mg/kg	0.74	0.99	0.90	0.88	0.13	14.44	1.20
	Zinc	2300	1,000	1,000	35 1	mg/kg	6.00	3.80	3.00	4.27	1.55	36.41	8.18
SW8330	Nitroguanidine	630	NS	630	35 1	mg/kg	ND	ND	ND	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI3-SU1-SA-REP1	AOI3-SU1-SA-REP2	AOI3-SU1-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35	mg/kg	0.20	0.14	0.16	0.17	0.03	18.33	0.24
	Copper	310	NS	310	35	mg/kg	1.40	1.60	1.50	1.50	0.10	6.67	1.75
SW6010	Lead	400	200	200	35	mg/kg	3.40	3.60	3.50	3.50	0.10	2.86	3.75
5 W 0010	Manganese	180	NS	180	35	mg/kg	20.30	28.20	21.70	23.40	4.22	18.01	34.01
	Nickel	150	600	150	35	mg/kg	0.89	0.60	0.58	0.69	0.17	25.14	1.13
	Zinc	2300	1,000	1,000	35	mg/kg	14.00	15.70	14.90	14.87	0.85	5.72	17.01
SW8330	Nitroguanidine	630	NS	630	35	mg/kg	ND	ND	ND	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI3-SU1-SB-REP1	AOI3-SU1-SB-REP2	AOI3-SU1-SB-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35 r	mg/kg	ND	ND	0.16	NC	NC	NC	NC
	Copper	310	NS	310	35 r	mg/kg	1.40	1.40	1.60	1.47	0.12	7.87	1.76
SW6010	Lead	400	200	200	35 1	mg/kg	3.50	3.60	3.70	3.60	0.10	2.78	3.85
S W 0010	Manganese	180	NS	180	35 r	mg/kg	26.10	28.90	25.80	26.93	1.71	6.35	31.24
	Nickel	150	600	150	35 r	mg/kg	0.98	0.97	0.94	0.96	0.02	2.16	1.02
	Zinc	2300	1,000	1,000	35 r	mg/kg	14.50	14.80	15.90	15.07	0.74	4.89	16.92
SW8330	Nitroguanidine	630	NS	630	35 r	mg/kg	ND	ND	ND	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI3-SU2-SA-REP1	AOI3-SU2-SA-REP2	AOI3-SU2-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35 1	mg/kg	0.16	0.23	0.14	0.18	0.05	26.75	0.30
	Copper	310	NS	310	35 1	mg/kg	0.69	0.78	0.70	0.72	0.05	6.82	0.85
SW6010	Lead	400	200	200	35 1	mg/kg	2.40	3.10	2.60	2.70	0.36	13.35	3.61
S W 0010	Manganese	180	NS	180	35 1	mg/kg	10.10	10.40	11.70	10.73	0.85	7.92	12.87
	Nickel	150	600	150	35 1	mg/kg	0.68	0.66	0.55	0.63	0.07	11.11	0.81
	Zinc	2300	1,000	1,000	35 1	mg/kg	4.90	4.90	2.00	3.93	1.67	42.57	8.15
SW8330	Nitroguanidine	630	NS	630	35 1	mg/kg	0.54	0.81	0.58	0.64	0.15	22.65	1.01

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI3-SU3-SA-REP1	AOI3-SU3-SA-REP2	AOI3-SU3-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35	mg/kg	0.22	0.20	0.23	0.22	0.02	7.05	0.26
	Copper	310	NS	310	35	mg/kg	1.50	1.50	1.60	1.53	0.06	3.77	1.68
SW6010	Lead	400	200	200	35	mg/kg	3.00	3.00	3.00	3.00	0.00	0.00	3.00
5 W 0010	Manganese	180	NS	180	35	mg/kg	15.00	15.00	16.20	15.40	0.69	4.50	17.14
	Nickel	150	600	150	35	mg/kg	0.86	0.39	0.50	0.58	0.25	42.14	1.20
	Zinc	2300	1,000	1,000	35	mg/kg	13.40	13.30	13.70	13.47	0.21	1.55	13.99
SW8330	Nitroguanidine	630	NS	630	35	mg/kg	ND	ND	ND	NC	NC	NC	C NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI4-SU1-SA-REP1	AOI4-SU1-SA-REP2	AOI4-SU1-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35	mg/kg	0.17	0.22	0.21	0.20	0.03	13.23	0.27
	Copper	310	NS	310	35	mg/kg	0.84	1.50	0.98	1.11	0.35	31.42	1.98
SW6010	Lead	400	200	200	35	mg/kg	3.00	2.60	3.10	2.90	0.26	9.12	3.57
S W 0010	Manganese	180	NS	180	35	mg/kg	12.20	10.90	9.70	10.93	1.25	11.44	14.08
	Nickel	150	600	150	35	mg/kg	1.00	0.93	0.87	0.93	0.07	6.97	1.10
	Zinc	2300	1,000	1,000	35	mg/kg	3.20	2.50	3.40	3.03	0.47	15.58	4.22
SW8330	Nitroguanidine	630	NS	630	35	mg/kg	0.59	0.32	0.62	0.51	0.16522712	32.40	0.93

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI4-SU2-SA-REP1	AOI4-SU2-SA-REP2	AOI4-SU2-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35 r	ng/kg	ND	ND	ND	NC	NC	NC	NC
	Copper	310	NS	310	35 r	ng/kg	0.67	0.73	0.77	0.72	0.05	6.96	0.85
SW6010	Lead	400	200	200	35 r	ng/kg	3.30	6.90	3.40	4.53	2.05	45.23	9.69
S W 0010	Manganese	180	NS	180	35 r	ng/kg	37.00	32.50	42.20	37.23	4.85	13.04	49.45
	Nickel	150	600	150	35 r	ng/kg	1.40	0.97	1.10	1.16	0.22	19.07	1.71
	Zinc	2300	1,000	1,000	35 r	ng/kg	7.00	8.00	4.20	6.40	1.97	30.78	11.36
SW8330	Nitroguanidine	630	NS	630	35 r	ng/kg	0.42	0.50	ND	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI4-SU2-SB-REP1	AOI4-SU2-SB-REP2	AOI4-SU2-SB-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35	mg/kg	ND	ND	ND	NC	NC	NC	NC
	Copper	310	NS	310	35	mg/kg	0.80	0.77	0.85	0.81	0.04	5.01	0.91
SW6010	Lead	400	200	200	35	mg/kg	1.70	1.90	1.70	1.77	0.12	6.54	2.06
S W 0010	Manganese	180	NS	180	35	mg/kg	71.80	68.90	63.00	67.90	4.48	6.60	79.19
	Nickel	150	600	150	35	mg/kg	1.70	2.30	1.40	1.80	0.46	25.46	2.95
	Zinc	2300	1,000	1,000	35	mg/kg	4.00	6.30	3.80	4.70	1.39	29.56	8.20
SW8330	Nitroguanidine	630	NS	630	35	mg/kg	ND	ND	ND	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI4-SU3-SA-REP1	AOI4-SU3-SA-REP2	AOI4-SU3-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35 1	mg/kg	0.22	0.22	ND	NC	NC	NC	NC
	Copper	310	NS	310	35 1	mg/kg	0.82	1.10	0.99	0.97	0.14	14.54	1.33
SW6010	Lead	400	200	200	35 1	mg/kg	3.00	4.50	4.20	3.90	0.79	20.35	5.90
S W 0010	Manganese	180	NS	180	35 1	mg/kg	80.70	74.40	72.80	75.97	4.18	5.50	86.48
	Nickel	150	600	150	35 1	mg/kg	1.30	1.40	1.40	1.37	0.06	4.22	1.51
	Zinc	2300	1,000	1,000	35 1	mg/kg	2.90	3.60	3.20	3.23	0.35	10.86	4.12
SW8330	Nitroguanidine	630	NS	630	35 1	mg/kg	0.37	0.48	0.47	0.44	0.06	13.82	0.59

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI4-SU4-SA-REP1	AOI4-SU4-SA-REP2	AOI4-SU4-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35 1	mg/kg	ND	0.16	0.14	NC	NC	NC	NC
	Copper	310	NS	310	35 1	mg/kg	0.73	0.99	0.85	0.86	0.13	15.19	1.18
SW6010	Lead	400	200	200	35 1	mg/kg	3.90	6.60	5.00	5.17	1.36	26.28	8.58
S W 0010	Manganese	180	NS	180	35 1	mg/kg	18.10	17.80	18.60	18.17	0.40	2.22	19.18
	Nickel	150	600	150	35 1	mg/kg	0.57	0.74	0.61	0.64	0.09	13.89	0.86
	Zinc	2300	1,000	1,000	35 1	mg/kg	5.50	6.10	3.20	4.93	1.53	31.03	8.79
SW8330	Nitroguanidine	630	NS	630	35 1	mg/kg	ND	ND	ND	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%) UN	NITS	AOI4-SU5-SA-REP1	AOI4-SU5-SA-REP2	AOI4-SU5-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35 mg	g/kg	ND	ND	0.15	NC	NC	NC	NC
	Copper	310	NS	310	35 mg	g/kg	1.40	1.50	1.40	1.43	0.06	4.03	1.58
SW6010	Lead	400	200	200	35 mg	g/kg	3.70	3.80	3.60	3.70	0.10	2.70	3.95
S W 0010	Manganese	180	NS	180	35 mg	g/kg	11.60	9.70	10.10	10.47	1.00	9.57	12.99
	Nickel	150	600	150	35 mg	g/kg	1.30	1.20	1.40	1.30	0.10	7.69	1.55
	Zinc	2300	1,000	1,000	35 mg	g/kg	15.80	18.20	15.40	16.47	1.51	9.20	20.28
SW8330	Nitroguanidine	630	NS	630	35 mg	g/kg	0.20	ND	ND	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI5-SU1-SA-REP1	AOI5-SU1-SA-REP2	AOI5-SU1-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35	mg/kg	0.24	0.28	0.19	0.24	0.05	19.05	0.35
	Copper	310	NS	310	35	mg/kg	1.70	1.60	1.30	1.53	0.21	13.58	2.06
SW6010	Lead	400	200	200	35	mg/kg	3.10	3.00	2.50	2.87	0.32	11.21	3.68
S W 0010	Manganese	180	NS	180	35	mg/kg	13.20	12.60	12.40	12.73	0.42	3.27	13.78
	Nickel	150	600	150	35	mg/kg	1.10	0.75	0.75	0.87	0.20	23.32	1.38
	Zinc	2300	1,000	1,000	35	mg/kg	13.90	13.50	11.10	12.83	1.51	11.80	16.64
SW8330	Nitroguanidine	630	NS	630	35	mg/kg	ND	ND	ND	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	MCP	PSL	Limit (%)	UNITS	AOI5-SU2-SA-REP1	AOI5-SU2-SA-REP2	AOI5-SU2-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35 m	ng/kg	0.30	0.19	0.25	0.25	0.06	22.33	0.39
	Copper	310	NS	310	35 m	ng/kg	1.60	1.60	1.60	1.60	0.00	0.00	1.60
SW6010	Lead	400	200	200	35 m	ng/kg	3.00	2.90	3.00	2.97	0.06	1.95	3.11
S W 0010	Manganese	180	NS	180	35 m	ng/kg	15.70	20.80	17.70	18.07	2.57	14.22	24.53
	Nickel	150	600	150	35 m	ng/kg	1.00	1.30	0.98	1.09	0.18	16.40	1.54
	Zinc	2300	1,000	1,000	35 m	ng/kg	13.70	13.50	13.50	13.57	0.12	0.85	13.86
SW8330	Nitroguanidine	630	NS	630	35 m	ng/kg	ND	ND	ND	NC	NC	NC	C NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	МСР	PSL	Limit (%)	UNITS	AOI5-SU3-SA-REP1	AOI5-SU3-SA-REP2	AOI5-SU3-SA-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35	mg/kg	0.14	0.23	0.17	0.18	0.05	25.46	0.30
	Copper	310	NS	310	35	mg/kg	1.20	1.20	1.60	1.33	0.23	17.32	1.91
SW6010	Lead	400	200	200	35	mg/kg	1.90	1.70	2.10	1.90	0.20	10.53	2.40
5 W 0010	Manganese	180	NS	180	35	mg/kg	17.00	17.80	19.00	17.93	1.01	5.61	20.47
	Nickel	150	600	150	35	mg/kg	0.87	1.10	0.97	0.98	0.12	11.77	1.27
	Zinc	2300	1,000	1,000	35	mg/kg	5.60	7.90	3.20	5.57	2.35	42.22	11.48
SW8330	Nitroguanidine	630	NS	630	35	mg/kg	ND	ND	0.21	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

					RSD QC						Standard		
Method	Analyte	RSL	МСР	PSL	Limit (%)	UNITS	AOI5-SU3-SB-REP1	AOI5-SU3-SB-REP2	AOI5-SU3-SB-REP3	Mean	Deviation	RSD	UCL
	Antimony	3.1	20	3.1	35	mg/kg	ND	0.14	ND	NC	NC	NC	NC
	Copper	310	NS	310	35	mg/kg	5.90	3.90	3.60	4.47	1.25	27.99	7.61
SW6010	Lead	400	200	200	35	mg/kg	2.30	2.40	2.40	2.37	0.06	2.44	2.51
5 W 0010	Manganese	180	NS	180	35	mg/kg	18.10	17.70	15.10	16.97	1.63	9.60	21.07
	Nickel	150	600	150	35	mg/kg	1.10	1.20	0.96	1.09	0.12	11.09	1.39
	Zinc	2300	1,000	1,000	35	mg/kg	5.30	5.20	5.80	5.43	0.32	5.92	6.24
SW8330	Nitroguanidine	630	NS	630	35	mg/kg	ND	ND	ND	NC	NC	NC	NC

UCL results were calculated using the ITRC ISM Calculator for 1-sided

Upper Confidence Limit (UCL) for the Mean.

https://www.itrcweb.org/ISM-1/documents/Calculate_95UCL_for_ISM.xls

ND - not detected

NC - not calculated - SDs, RSDs, and UCLs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

UCL - 95% upper confidence limit of the mean (Chebychev method)

RSL - USEPA Residential Screening Level for Soil, November 2017

MCP - S-1 & GW-1 Massachusetts Contingency Plan table 2,

310 CMR 40.0975(6)(a); used for screening potential impacts to groundwater.

PSL - project screening level (lowest value of RSL and MCP)

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Highlighted RSD values are greater than the RSD QC limit.

No individual results, mean values, or 95% UCLs were greater than

Table D-13. Relative Standard Deviation Calculations for Background Surface and Subsurface Soil

		RSD Limit													
Method	Analyte	(%)	Units	BKG-SU2-SA-REP1	BKG-SU2-SA-REP2	BKG-SU2-SA-REP3	Mean	SD	RPD	BKG-SU2-SB-REP1	BKG-SU2-SB-REP2	BKG-SU2-SB-REP3	Mean	SD	RPD
	Antimony	35.00	mg/kg	0.30	0.24	0.20	0.25	0.05	20.40	0.41	0.34	0.21	0.32	0.10	31.72
	Copper	35.00	mg/kg	2.70	2.20	2.40	2.43	0.25	10.34	2.10	1.60	1.70	1.80	0.26	14.70
SW6010	Lead	35.00	mg/kg	5.90	6.40	6.60	6.30	0.36	5.72	3.60	3.50	2.90	3.33	0.38	11.36
5 W 0010	Manganese	35.00	mg/kg	17.60	16.60	15.50	16.57	1.05	6.34	75.90	76.80	96.90	83.20	11.87	14.27
	Nickel	35.00	mg/kg	0.95	1.30	0.76	1.00	0.27	27.30	2.40	2.30	2.70	2.47	0.21	8.44
	Zinc	35.00	mg/kg	6.80	5.80	4.50	5.70	1.15	20.23	8.20	7.90	17.20	11.10	5.28	47.61
SW8330	Nitroguanidine	35.00	mg/kg	0.73	ND	ND	NC	NC	NC	ND	ND	ND	NC	NC	NC
	2,4,6-Trinitrotoluene	35.00	mg/kg	ND	ND	ND	NC	NC	NC	ND	ND	ND	NC	NC	NC
11	2,4-Dinitrotoluene	35.00	mg/kg	ND	ND	ND	NC	NC	NC	ND	ND	ND	NC	NC	NC
SW8330B	2,6-Dinitrotoluene	35.00	mg/kg	ND	ND	ND	NC	NC	NC	ND	ND	ND	NC	NC	NC
SW0550D	Nitroglycerin	35.00	mg/kg	ND	ND	ND	NC	NC	NC	ND	ND	ND	NC	NC	NC
	RDX	35.00	mg/kg	ND	ND	ND	NC	NC	NC	ND	ND	ND	NC	NC	NC
	Tetryl	35.00	mg/kg	ND	ND	ND	NC	NC	NC	ND	ND	ND	NC	NC	NC

RSD results that are highlighted are greater than the RSD QC Limit.

ND - not detected

NC - not calculated - SDs and RSDs are calcuated only when

there are three or more detected results.

mg/kg - milligrams per kilogram

RSD - Relative Standard Deviation (percent)

SD - Standard Deviation

Table D-14. Relative Percent Difference Calculations for Site Subsurface Soil Discrete Method Samples

		RPD QC				
Method	Analyte Name	Limit (%)	UNITS	AOI1-SU2-SO04-8-10	WELLFLEET-FD1	RPD
	Antimony	20	mg/kg	ND	0.18	NC
	Copper	20	mg/kg	0.35	0.41	15.79
SW6010C	Lead	20	mg/kg	1.2	1.1	8.70
SW0010C	Manganese	20	mg/kg	11.9	10.7	10.62
	Nickel	20	mg/kg	0.58	0.67	14.40
	Zinc	20	mg/kg	4.8	5.1	6.06

RPD - relative percent difference

ND - not detected

NC - not calculated

FD - field duplicate

mg/kg - milligram per kilogram

% - percent

Attachment 1

ProUCL Input Data

This Page Intentionally Left Blank

ProUCL Input Data for Background Threshold Value Analysis

Location	Group	Antimony	D_Antimony	Copper	D_Copper	Lead	D_Lead	Manganese	D_Manganese	Nickel	D_Nickel	Zinc	D_Zinc
BKG-SU1-SA	Surface	0.44	1	3.6	1	6.8	1	17.6	1	0.88	1	6.8	1
BKG-SU2-SA_Mean	Surface	0.25	1	2.43	1	6.30	1	16.57	1	1.00	1	5.70	1
BKG-SU3-SA	Surface	0.21	1	1.7	1	5.5	1	35	1	1.7	1	6.5	1
BKG-SU4-SA	Surface	3.4	1	3.1	1	23.1	1	13.6	1	1.5	1	6.8	1
BKG-SU5-SA	Surface	0.16	1	2.4	1	5.6	1	7.7	1	0.9	1	6.4	1
BKG-SU6-SA	Surface	0.27	1	3.2	1	5.4	1	11	1	1.5	1	7.4	1
BKG-SU7-SA	Surface	0.34	1	3.4	1	5.8	1	13.1	1	0.69	1	7	1
BKG-SU1-SB	Subsurface	0.17	1	1.7	1	3.4	1	55.6	1	2.1	1	17	1
BKG-SU2-SB_Mean	Subsurface	0.32	1	1.80	1	3.33	1	83.20	1	2.47	1	11.10	1
BKG-SU3-SB	Subsurface	0.38	1	3	1	4.1	1	18.2	1	1.7	1	7.9	1
BKG-SU4-SB	Subsurface	0.28	1	1.7	1	3.3	1	19.6	1	2	1	16.5	1
BKG-SU5-SB	Subsurface	0.15	1	1.3	1	2.7	1	21	1	2.2	1	6.7	1
BKG-SU6-SB	Subsurface	0.22	1	1.9	1	3.4	1	30.4	1	2.7	1	9	1
BKG-SU7-SB	Subsurface	0.34	1	1.3	1	3.7	1	20.6	1	2.1	1	7	1

APPENDIX D.2: DATA VALIDATION REPORTS

This Page Intentionally Left Blank

Facility:	D01MA0033-04, CP Wellfleet - Art, Sm Arms, Rocket
Event:	Phase I Sampling 2018
SDG:	135311EDD
Guidance Document:	Camp Wellfleet - Art, Sm Arms, Rocket
Prime Contractor:	ERT, Inc., Laurel, MD
Project Manager:	Tom Bachovchin
Contract Laboratory:	CT Laboratories LLC, Baraboo, WI
Data Review Contractor:	HSW Engineering, Inc.
Data Review Level:	Stage 2B Review
Primary Data Reviewer:	Cindy Westergard, Senior Scientist
Second Reviewer:	Nigel Lewis, Project Scientist
Date Submitted:	July 12, 2018

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW8330	SW8330B
BKG-SU1-SA	104579	Solid	Field Sample/N	X	X	X
BKG-SU1-SA	106694	Solid	Field Sample/N	Х		
BKG-SU2-SA-REP1	104578	Solid	Field Triplicate/FT	Х	Х	Х
BKG-SU2-SA-REP1	106693	Solid	Field Triplicate/FT	Х		
BKG-SU2-SA-REP2	104451	Solid	Field Triplicate/FT	Х	Х	Х
BKG-SU2-SA-REP2	106687	Solid	Field Triplicate/FT	Х		
BKG-SU2-SA-REP3	104574	Solid	Field Triplicate/FT	Х	Х	Х
BKG-SU2-SA-REP3	106689	Solid	Field Triplicate/FT	Х		
BKG-SU2-SB-REP1	104617	Solid	Field Triplicate/FT	Х	Х	Х
BKG-SU2-SB-REP1	106701	Solid	Field Triplicate/FT	Х		
BKG-SU2-SB-REP2	104614	Solid	Field Triplicate/FT	Х	Х	Х
BKG-SU2-SB-REP2	106698	Solid	Filed Triplicate/FT	Х		
BKG-SU2-SB-REP3	105388	Solid	Field Triplicate/FT	Х	Х	Х
BKG-SU2-SB-REP3	106702	Solid	Field Triplicate/FT	Х		
BKG-SU3-SA	104576	Solid	Field Sample/N	Х	Х	Х
BKG-SU3-SA	106691	Solid	Field Sample/N	Х		
BKG-SU3-SB	104577	Solid	Field Sample/N	Х	Х	Х
BKG-SU3-SB	106692	Solid	Field Sample/N	Х		
BKG-SU4-SA	104581	Solid	Field Sample/N	Х	Х	Х
BKG-SU4-SA	106696	Solid	Field Sample/N	Х		

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW8330	SW8330B
BKG-SU5-SA	104575	Solid	Field Sample/N	Х	Х	Х
BKG-SU5-SA	106690	Solid	Field Sample/N	Х		
BKG-SU5-SB	104616	Solid	Field Sample/N	Х	Х	Х
BKG-SU5-SB	106700	Solid	Field Sample/N	Х		
BKG-SU6-SA	104573	Solid	Field Sample/N	Х	Х	Х
BKG-SU6-SA	106688	Solid	Field Sample/N	Х		
BKG-SU6-SB	104615	Solid	Field Sample/N	Х	Х	Х
BKG-SU6-SB	106699	Solid	Field Sample/N	Х		
BKG-SU7-SA	104580	Solid	Field Sample/N	Х	Х	Х
BKG-SU7-SA	106695	Solid	Field Sample/N	Х		
BKG-SU7-SB	104613	Solid	Field Sample/N	Х	Х	Х
BKG-SU7-SB	106697	Solid	Field Sample/N	Х		

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Camp Wellfleet - Art, Sm Arms, Rocket and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by ERT, Inc., Laurel, MD; analyses were performed by CT Laboratories LLC, Baraboo, WI and were reported under sample delivery group (SDG) 135311EDD. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank Blank - Negative LCS Recovery MS Recovery MS RPD Prep Hold Time Surrogate Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 22 results (10.58%) out of the 208 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected. Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Sixteen ISM samples were received by CT Laboratories, Baraboo, Wisconsin, and analyzed for a select list of explosives and metals (an additional sample, BKG-SU2-SB-REP3, was received a day after the first 15 samples were received and, per the client's request, was added to this sample delivery group). The samples were received intact and at acceptable temperatures. The samples were dried, sieved, subsampled, and ground following the homogenization procedure specified for the project.

The analyses were performed in accordance with DOD QSM 5. Qualifiers applied by the laboratory are defined in each laboratory report.

Some samples were collected as three field replicates (i.e., triplicates) and identified with suffixes of -REP1, -REP2, and -REP3. As replicate samples are an intrinsic part of the ISM process and this project, the extent of variability among triplicate results will be evaluated by the project team. Triplicate results were reviewed by the validator to confirm the overall reasonableness of the results, with no issues of concern noted.

Analytical Method Data Reviewer Comment

SW6010C The dried/sieved fraction of each ISM was subsampled for nickel and manganese prior to undergoing grinding via the puck mill, to avoid potential contamination of the samples with these metals from the puck mill. Analyses of antimony, copper, lead, and zinc were performed with the fully-homogenized, puck-milled fractions. The samples were analyzed as part of three analytical runs (#148189, #148244, and #148423).

A trace amount of copper (0.07 mg/Kg) was detected in the method blank (MDL is 0.07 mg/Kg). The concentrations of copper reported for the samples exceeded the artifact threshold value in all instances such that no qualification of the sample data, based on the detection in the method blank, was necessary.

The laboratory performed MS/MSD analyses with additional volumes of samples BKG-SU3-SA, BKG-SU3-SB, and BKG-SU2-REP3 (this last sample for antimony, copper, lead, and zinc only). In the MS/MSD analyses of sample BKG-SU3-SA, the laboratory reported low recoveries of antimony and lead. In the MS/MSD analyses of sample BKG-SU3-SB, the laboratory reported elevated recoveries of manganese and low recoveries of antimony, copper, and lead. In the MS/MSD analyses of sample BKG-SU2-SB-REP3, the laboratory reported low recoveries of antimony. The results for these analytes for the parent samples were qualified in accordance with the qualification scheme specified by the eQAPP.

In all instances, the results of the serial dilutions (SDs) either were not valid (because the on-instrument result for the parent sample was less than 50 times the limit of quantitation, or LOQ) or were not within acceptance limits. Post-digestion spike (PDS) recoveries were evaluated and, if acceptable, the sample results for the metals were not qualified. For example, the result for nickel reported for the SD performed with additional volumes of the digestate of sample BKG-SU3-SA was not valid due to the low concentration detected in the parent sample (1.7 mg/Kg vs. an LOQ of 0.12 mg/Kg); however, because the PDS recovery (88%) was within acceptance limits (80-120%), the result for nickel reported for sample BKG-SU3-SA did not require qualification, based on the combined evaluation of the SD and PDS results. In the SD analysis of this same sample for manganese, the SD result (18%) was valid but not within acceptance limits (+/-10%), but because the PDS recovery (114%) was within acceptance limits, the result for manganese for sample BKG-SU3-SA likewise did not require qualification, based on the combined evaluation of the SD and PDS results. Similarly, the SD result reported for manganese for sample BKG-SU3-SB (16%) was valid but not within acceptance limits (+/-10%); however, in this instance, the PDS recovery (137%) also was not acceptable. The detection of manganese reported for parent sample BKG-SU3-SB (18.2 mg/Kg) therefore was classified as less than fully quantitative and coded with a "J" validation qualifier with bias indicator of "+". This validation logic was used to evaluate all such results and qualify sample data as appropriate.

The list of reason codes for data qualification for this project does not include a distinct code for indicating when PDS recoveries are not within control limits. Therefore, when the serial dilution (SD) result for a given metal was invalid or not within control limits and the subsequent PDS recovery also was not within control limits, the sample result was qualified with a validation qualifier of "J" (detections) or "UJ" (non-detections) with reason codes of "A/M" ("A" signifying an invalid or failed SD analysis and "M" indicating a spike recovery that was not within limits -- in this case, a PDS). If the MS and/or MSD recovery was not within control limits and the SD + PDS results also were not within control limits, the data were qualified with "J" or "UJ" with reason codes of "M/A" (as opposed to "A/M" or "M/A/M" as, in the case of the latter, the FUDSchem system will not allow a reason code to be entered twice).

The laboratory analyzed several samples in duplicate or triplicate. The results for the parent samples were classified as less than fully quantitative when both or all three results were greater than five times the LOQ and the %RPD of the duplicate or triplicate, relative to the parent sample, exceeded 20% (limited to detections of zinc reported for samples BKG-SU5-SA, BKG-SU3-SA, BKG-SU3-SB, and BKG-SU2-SB-REP1, the results for which were coded with "J" validation qualifiers with reason codes of "D1").

SW8330	Surrogate recoveries of less than the lower recovery limit (32%) were reported for six samples (BKG-SU2-SA-REP3, BKG-SU2-SA-REP1, BKG-SU2-SB-REP2, BKG-SU1-SA, BKG-SU7-SA, and BKG-SU4-SA). The laboratory attributed the low recoveries to matrix interference. The results for nitroguanidine reported for these six samples were classified as less than fully quantitative and coded with validation qualifiers of "J" (detections) or "UJ" (non-detections) with reason code "I". No other quality issues were noted.
SW8330B	A slightly elevated recovery was reported for the surrogate in the analysis of sample BKG- SU6-SA (125% vs. a control limit of 78-119%). The absence of target analytes precluded the need for qualification of the explosives data for this sample. Surrogate recoveries for all other samples were within acceptance limits, and no other quality issues associated with the analyses for explosives by Method 8330B were noted.

Cindy Fee Westergard

July 11, 2018

Reviewed by Cindy Westergard, Senior Scientist, HSW Engineering, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of a minimum of 10% of the reported sample results and method quality control data between the two deliverables.

July 11, 2018

Reviewed by Nigel Lewis, Project Scientist, HSW Engineering, Inc.

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6010C, Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
108338 (LB)/ 108338	Copper	0.08000	< 0.07	< 0.4	mg/kg	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW6010C, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
BKG-SU2-SB-REP3 (MS)/ 109659	Antimony	38.23	79 - 114	30 - 125	percent	J/UJ	М	
BKG-SU2-SB-REP3 (SD)/ 109660	Antimony	39.21	79 - 114	30 - 125	percent	J/UJ	М	
BKG-SU3-SA (MS)/ 108343	Antimony	42.59	79 - 114	30 - 125	percent	J/UJ	М	
BKG-SU3-SA (MS)/ 108343	Lead	62.15	81 - 112	30 - 125	percent	J/UJ	М	
BKG-SU3-SA (SD)/ 108344	Antimony	48.96	79 - 114	30 - 125	percent	J/UJ	М	
BKG-SU3-SA (SD)/ 108344	Lead	65.46	81 - 112	30 - 125	percent	J/UJ	М	
BKG-SU3-SB (MS)/ 107594	Manganese	146.5	84 - 114	30 - 125	percent	J/None	М	
BKG-SU3-SB (SD)/ 107595	Manganese	143.9	84 - 114	30 - 125	percent	J/None	М	
BKG-SU3-SB (MS)/ 108346	Antimony	37.33	79 - 114	30 - 125	percent	J/UJ	М	
BKG-SU3-SB (MS)/ 108346	Lead	74.51	81 - 112	30 - 125	percent	J/UJ	М	
BKG-SU3-SB (MS)/ 108346	Copper	78.13	81 - 117	30 - 117	percent	J/UJ	М	
BKG-SU3-SB (SD)/ 108347	Antimony	38.12	79 - 114	30 - 125	percent	J/UJ	М	
BKG-SU3-SB (SD)/ 108347	Lead	76.86	81 - 112	30 - 125	percent	J/UJ	М	
BKG-SU3-SB (SD)/ 108347	Copper	80.47	81 - 117	30 - 117	percent	J/UJ	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW6010C

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
BKG-SU2-SB-REP1	FT	Antimony	0.810	0.410 J	0.410 J	-	mg/kg	M/TR
BKG-SU2-SB-REP2	FT	Antimony	0.830	0.340 J	0.340 J	-	mg/kg	M/TR
BKG-SU2-SB-REP3	FT	Lead	0.240	2.90 M	2.90 J	-	mg/kg	A/M
BKG-SU2-SB-REP3	FT	Antimony	0.780	0.210 J	0.210 J	-	mg/kg	M/TR
BKG-SU3-SA	Ν	Lead	0.250	5.50 M	5.50 J	-	mg/kg	M/A
BKG-SU3-SA	Ν	Antimony	0.800	0.210 J	0.210 J	-	mg/kg	M/TR
BKG-SU3-SA	Ν	Copper	0.400	1.70 M	1.70 J	-	mg/kg	A/M
BKG-SU3-SB	Ν	Manganese	0.150	18.2 M	18.2 J	+	mg/kg	M/A
BKG-SU3-SB	Ν	Lead	0.260	4.10	4.10 J	-	mg/kg	М

Qualified Results associated with the MS Recovery for SW6010C

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
BKG-SU3-SB	Ν	Antimony	0.820	0.380 J	0.380 J	-	mg/kg	M/TR
BKG-SU3-SB	N	Copper	0.410	3.00 M	3.00 J	-	mg/kg	M/A

Analytes not found in project samples are reported as not detected at the limit of detection (LOD).

Quality Control Outliers for test method SW8330, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
BKG-SU1-SA (N)/ 104579	1,2-Dinitrobenzene	27.00	32 - 136	10 - 136	percent	J/UJ	I	
BKG-SU2-SA-REP1 (FT)/ 104578	1,2-Dinitrobenzene	15.00	32 - 136	10 - 136	percent	J/UJ	I	
BKG-SU2-SA-REP3 (FT)/ 104574	1,2-Dinitrobenzene	20.00	32 - 136	10 - 136	percent	J/UJ	I	
BKG-SU2-SB-REP2 (FT)/ 104614	1,2-Dinitrobenzene	28.00	32 - 136	10 - 136	percent	J/UJ	I	
BKG-SU4-SA (N)/ 104581	1,2-Dinitrobenzene	27.00	32 - 136	10 - 136	percent	J/UJ	I	
BKG-SU7-SA (N)/ 104580	1,2-Dinitrobenzene	25.00	32 - 136	10 - 136	percent	J/UJ	I	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Surrogate for SW8330

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
BKG-SU1-SA	N	Nitroguanidine	0.220	0.110 U	0.110 UJ	-	mg/kg	l
BKG-SU2-SA-REP1	FT	Nitroguanidine	0.240	0.730	0.730 J	-	mg/kg	I
BKG-SU2-SA-REP3	FT	Nitroguanidine	0.240	0.110 U	0.110 UJ	-	mg/kg	l
BKG-SU2-SB-REP2	FT	Nitroguanidine	0.230	0.110 U	0.110 UJ	-	mg/kg	l
BKG-SU4-SA	Ν	Nitroguanidine	0.250	0.120 U	0.120 UJ	-	mg/kg	I
BKG-SU7-SA	N	Nitroguanidine	0.250	0.120 U	0.120 UJ	-	mg/kg	I

Analytes not found in project samples are reported as not detected at the limit of detection (LOD).

Table of All Qualified Results

Test Method: SW6010C	Extract	ion Method: SW3050						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
BKG-SU2-SB-REP1	FT	Antimony	0.810	0.410 J	0.410 J	-	mg/kg	M/TR
BKG-SU2-SB-REP2	FT	Antimony	0.830	0.340 J	0.340 J	-	mg/kg	M/TR
BKG-SU2-SB-REP3	FT	Lead	0.240	2.90 M	2.90 J	-	mg/kg	A/M
BKG-SU2-SB-REP3	FT	Antimony	0.780	0.210 J	0.210 J	-	mg/kg	M/TR
BKG-SU3-SA	Ν	Lead	0.250	5.50 M	5.50 J	-	mg/kg	M/A
BKG-SU3-SA	Ν	Antimony	0.800	0.210 J	0.210 J	-	mg/kg	M/TR
BKG-SU3-SA	Ν	Copper	0.400	1.70 M	1.70 J	-	mg/kg	A/M
BKG-SU3-SB	Ν	Manganese	0.150	18.2 M	18.2 J	+	mg/kg	M/A
BKG-SU3-SB	Ν	Lead	0.260	4.10	4.10 J	-	mg/kg	М
BKG-SU3-SB	Ν	Antimony	0.820	0.380 J	0.380 J	-	mg/kg	M/TR
BKG-SU3-SB	Ν	Copper	0.410	3.00 M	3.00 J	-	mg/kg	M/A
Test Method: SW8330	Extractio	on Method: METHOD						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
BKG-SU1-SA	N	Nitroguanidine	0.220	0.110 U	0.110 UJ	-	mg/kg	I
BKG-SU2-SA-REP1	FT	Nitroguanidine	0.240	0.730	0.730 J	-	mg/kg	I
BKG-SU2-SA-REP3	FT	Nitroguanidine	0.240	0.110 U	0.110 UJ	-	mg/kg	I
BKG-SU2-SB-REP2	FT	Nitroguanidine	0.230	0.110 U	0.110 UJ	-	mg/kg	I

0.250

0.250

0.120 U

0.120 U

0.120 UJ

0.120 UJ

-

-

mg/kg

mg/kg

I

I

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Nitroguanidine

Nitroguanidine

Ν

Ν

BKG-SU4-SA

BKG-SU7-SA

Table of All Trace Results

Test Method: SW6010C	Extract	ion Method: SW3050						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
BKG-SU1-SA	N	Antimony	0.830	0.440 J	0.440 J		mg/kg	TR
BKG-SU2-SA-REP1	FT	Antimony	0.840	0.300 J	0.300 J		mg/kg	TR
BKG-SU2-SA-REP2	FT	Antimony	0.820	0.240 J	0.240 J		mg/kg	TR
BKG-SU2-SA-REP3	FT	Antimony	0.830	0.200 J	0.200 J		mg/kg	TR
BKG-SU2-SB-REP1	FT	Antimony	0.810	0.410 J	0.410 J	-	mg/kg	M/TR
BKG-SU2-SB-REP2	FT	Antimony	0.830	0.340 J	0.340 J	-	mg/kg	M/TR
BKG-SU2-SB-REP3	FT	Antimony	0.780	0.210 J	0.210 J	-	mg/kg	M/TR
BKG-SU3-SA	N	Antimony	0.800	0.210 J	0.210 J	-	mg/kg	M/TR
BKG-SU3-SB	N	Antimony	0.820	0.380 J	0.380 J	-	mg/kg	M/TR
BKG-SU5-SA	N	Antimony	0.810	0.160 J	0.160 J		mg/kg	TR
BKG-SU5-SB	N	Antimony	0.800	0.150 J	0.150 J		mg/kg	TR
BKG-SU6-SA	N	Antimony	0.840	0.270 J	0.270 J		mg/kg	TR
BKG-SU6-SB	Ν	Antimony	0.830	0.220 J	0.220 J		mg/kg	TR
BKG-SU7-SA	Ν	Antimony	0.790	0.340 J	0.340 J		mg/kg	TR
BKG-SU7-SB	N	Antimony	0.830	0.340 J	0.340 J		mg/kg	TR

Modified Qualifiers for	test metho	od SW6010C					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
BKG-SU2-SB-REP1	FT	Zinc	0.300	8.20 Y	8.20	8.20 J	D1
BKG-SU2-SB-REP3	FT	Lead	0.240	2.90 M	2.90	2.90 J	A/M
BKG-SU2-SB-REP3	FT	Zinc	0.290	17.2 M	17.2	17.2 J	A/M
BKG-SU3-SA	Ν	Copper	0.400	1.70 M	1.70	1.70 J	A/M
BKG-SU3-SA	Ν	Lead	0.250	5.50 M	5.50 J	5.50 J	M/A
BKG-SU3-SA	Ν	Zinc	0.300	6.50 Y	6.50	6.50 J	D1
BKG-SU3-SB	N	Copper	0.410	3.00 M	3.00 J	3.00 J	M/A
BKG-SU3-SB	Ν	Zinc	0.310	7.90 Y	7.90	7.90 J	D1
BKG-SU3-SB	N	Manganese	0.150	18.2 M	18.2 J	18.2 J	M/A
BKG-SU5-SA	N	Zinc	0.300	6.40 Y	6.40	6.40 J	D1

Table of Results with Modified Qualifiers

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
А	Serial dilution
D1	Lab Replicate RPD
I	Surrogate recovery outside project limits.
L	Lab Blank
М	MS Recovery
TR	Trace Level Detect

Flag Code and Definitions

Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
В	Blank contamination: The analyte was found in an associated blank above one half the RL, as well as in the sample.
UB	The analyte was also detected in an associated laboratory or field blank at a concentration comparable to the concentration in the sample. The reported result has been requalified as not detected.

Review Questions

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were CCVs run at the required frequency and within acceptance criteria?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?				A trace amount of copper (0.07 mg/Kg) was detected in the method blank (MDL is 0.07 mg/Kg). The concentrations of copper reported for the samples exceeded the artifact thresholdvalue in all instances such than no qualification of the sample data, based on the detection in the method blank, was necessary.
Were target analytes in the field blank less than MDL?			•	A field blank was not included with this sample delivery group.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		The laboratory performed MS/MSD analyses with additional volumes of samples BKG-SU3- SA, BKG-SU3-SB, and BKG-SU2-SB-REP3 (this last sample for antimony, copper, lead, and zinc only). The recovery data met validation acceptance criteria in most instances.
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Evaluation of field triplicates is performed by the project team, outside of the scope of this validation effort.
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data rejected during the verification process?		•		

Review Questions

Method: SW8330 (Nitroaromatics and Nitramines by HPLC)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	A field blank was not submitted.
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	An LCSD was not analyzed or reported.
Was a project specific MS or MS/MSD pair prepared with each batch?	•			Additional volumes of samples BKG-SU3-SA and -SB were used.
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		The MS/MSD analyses provided an adequate means of assessing analytical precision.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Triplicate samples were collected at locations BKG-SU2-SA and -SB. Nitroguanidine was detected in sample BKG-SU2-SA-REP1 (0.73 mg/Kg) but not in either of the other two of these triplicate samples. Note that evaluation of field triplicates is performed by the project team, outside of the
				scope of this validation process.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?		•		Low surrogate recoveries were reported for six of the samples. The results were classified as less than fully quantitative and coded with "J" (sample BKG-SU2-SA-REP1) or "UJ" validation qualifiers (the other five samples).
Were column comparison differences with project acceptance limits?	•			Nitroguanidine was detected only in one sample (BKG-SU2-SA-REP1).
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Review Questions

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•	NO		Comment
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	A field blank was not submitted as part of this sample delivery group.
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	LCSDs were not reported.
Was a project specific MS or MS/MSD pair prepared with each batch?	•			Additional volumes of samples BKG-SU3-SA and -SB were used.
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		The MS/MSD analyses provided an adequate means of assessing analytical precision.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Triplicate samples were collected at locations BKG-SU2-SA and -SB. No target 8330B analytes were detected in any of these samples. Evaluation of field triplicates is performed by the project team, outside of the scope of this validation effort.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?	•			A slightly elevated recovery was reported for the surrogate in the analysis of sample BKG-SU6- SA (125% vs. a control limit of 78-119%). The absence of target analytes precluded the need for qualification of the sample data.
Were column comparison differences with project acceptance limits?	•			No target explosives were detected in any of the samples by Method 8330B.
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Summary of Qualified Data

SDG	Client Sample ID	Lab Sample ID	SACODE	LOGDATE	Test Method	EXMCODE	MATRIX	Analyte Name	PARLABEL	CAS	DB Result	UNITS	DB Reporting Limit	Limit Of Detection	Display Result	Qualifier*	Reason Code
135311EDD	108338	108338	LB	4/20/2018 11:46:00 AM	SW6010C	SW3050	SQ	Copper	CU	7440-50-8	0.08	mg/kg	0.4	0.07	0.0800	J	TR
135311EDD	BKG-SU1-SA	104579	N	4/10/2018 3:00:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.44	mg/kg	0.83	0.42	0.440	J	TR
135311EDD	BKG-SU1-SA	104579	N	4/10/2018 3:00:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0	mg/kg	0.22	0.11	0.110	UJ	I
135311EDD	BKG-SU2-SA-REP1	104578	FT	4/10/2018 4:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.3	mg/kg	0.84	0.42	0.300	J	TR
135311EDD	BKG-SU2-SA-REP1	104578	FT	4/10/2018 4:30:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.73	mg/kg	0.24	0.12	0.730	J	1
135311EDD	BKG-SU2-SA-REP2	104451	FT	4/10/2018 4:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.24	mg/kg	0.82	0.41	0.240	J	TR
135311EDD	BKG-SU2-SA-REP3	104574	FT	4/10/2018 4:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.2	mg/kg	0.83	0.41	0.200	J	TR
135311EDD	BKG-SU2-SA-REP3	104574	FT	4/10/2018 4:30:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0	mg/kg	0.24	0.11	0.110	UJ	I
135311EDD	BKG-SU2-SB-REP1	104617	FT	4/10/2018 3:35:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.41	mg/kg	0.81	0.4	0.410	J	M/TR
135311EDD	BKG-SU2-SB-REP1	104617	FT	4/10/2018 3:35:00 PM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	8.2	mg/kg	0.3	0.15	8.20	J	D1
135311EDD	BKG-SU2-SB-REP2	104614	FT	4/10/2018 3:35:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.34	mg/kg	0.83	0.42	0.340	J	M/TR
135311EDD	BKG-SU2-SB-REP2	104614	FT	4/10/2018 3:35:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0	mg/kg	0.23	0.11	0.110	UJ	I
135311EDD	BKG-SU2-SB-REP3	105388	FT	4/10/2018 4:50:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.21	mg/kg	0.78	0.39	0.210	J	M/TR
135311EDD	BKG-SU2-SB-REP3	105388	FT	4/10/2018 4:50:00 PM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	2.9	mg/kg	0.24	0.12	2.90	J	A/M
135311EDD	BKG-SU2-SB-REP3	105388	FT	4/10/2018 4:50:00 PM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	17.2	mg/kg	0.29	0.15	17.2	J	A/M
135311EDD	BKG-SU3-SA	104576	N	4/10/2018 4:40:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.21	mg/kg	0.8	0.4	0.210	J	M/TR
135311EDD	BKG-SU3-SA	104576	N	4/10/2018 4:40:00 PM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	1.7	mg/kg	0.4	0.2	1.70	J	A/M
135311EDD	BKG-SU3-SA	104576	N	4/10/2018 4:40:00 PM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	5.5	mg/kg	0.25	0.12	5.50	J	M/A
135311EDD	BKG-SU3-SA	104576	N	4/10/2018 4:40:00 PM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	6.5	mg/kg	0.3	0.15	6.50	J	D1
135311EDD	BKG-SU3-SB	104577	N	4/10/2018 11:45:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.38	mg/kg	0.82	0.41	0.380	J	M/TR
135311EDD	BKG-SU3-SB	104577	N	4/10/2018 11:45:00 AM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	3	mg/kg	0.41	0.21	3.00	J	M/A
135311EDD	BKG-SU3-SB	104577	N	4/10/2018 11:45:00 AM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	4.1	mg/kg	0.26	0.13	4.10	J	M
135311EDD	BKG-SU3-SB	106692	N	4/10/2018 11:45:00 AM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	18.2	mg/kg	0.15	0.077	18.2	J	M/A
135311EDD	BKG-SU3-SB	104577	N	4/10/2018 11:45:00 AM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	7.9	mg/kg	0.31	0.15	7.90	J	D1
135311EDD	BKG-SU4-SA	104581	N	4/10/2018 11:30:00 AM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0	mg/kg	0.25	0.12	0.120	UJ	1
135311EDD	BKG-SU5-SA	104575	N	4/10/2018 1:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.16	mg/kg	0.81	0.4	0.160	J	TR
135311EDD	BKG-SU5-SA	104575	N	4/10/2018 1:30:00 PM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	6.4	mg/kg	0.3	0.15	6.40	J	D1
135311EDD	BKG-SU5-SB	104616	N	4/11/2018 1:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.15	mg/kg	0.8	0.4	0.150	J	TR
135311EDD	BKG-SU6-SA	104573	N	4/10/2018 3:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.27	mg/kg	0.84	0.42	0.270	J	TR
135311EDD	BKG-SU6-SB	104615	N	4/10/2018 11:15:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.22	mg/kg	0.83	0.41	0.220	J	TR
135311EDD	BKG-SU7-SA	104580	N	4/10/2018 1:45:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.34	mg/kg	0.79	0.4	0.340	J	TR
135311EDD	BKG-SU7-SA	104580	N	4/10/2018 1:45:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0	mg/kg	0.25	0.12	0.120	UJ	I
135311EDD	BKG-SU7-SB	104613	N	4/10/2018 1:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.34	mg/kg	0.83	0.41	0.340	J	TR

*Includes detections that are less than the limits of quantitation (LOQs) but otherwise unqualified as a result of the validation (i.e., validation qualifiers of "J" with reason code "TR" only).

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW8330	SW8330B
AOI3-SU3-SA-REP1	105168	Solid	Field Triplicate/FT	Х	Х	Х
AOI3-SU3-SA-REP1	106707	Solid	Field Triplicate/FT	Х		
AOI3-SU3-SA-REP2	105169	Solid	Field Triplicate/FT	Х	Х	Х
AOI3-SU3-SA-REP2	106708	Solid	Field Triplicate/FT	Х		
AOI3-SU3-SA-REP3	105170	Solid	Field Triplicate/FT	Х	Х	Х
AOI3-SU3-SA-REP3	106709	Solid	Field Triplicate/FT	Х		
AOI5-SU1-SA-REP1	105171	Solid	Field Triplicate/FT	Х	Х	Х
AOI5-SU1-SA-REP1	106710	Solid	Field Triplicate/FT	Х		
AOI5-SU1-SA-REP2	105172	Solid	Field Triplicate/FT	Х	Х	Х
AOI5-SU1-SA-REP2	106711	Solid	Field Triplicate/FT	Х		
AOI5-SU1-SA-REP3	105173	Solid	Field Triplicate/FT	Х	Х	Х
AOI5-SU1-SA-REP3	106712	Solid	Field Triplicate/FT	Х		
AOI5-SU2-SA-REP1	105174	Solid	Field Triplicate/FT	Х	Х	Х
AOI5-SU2-SA-REP1	106713	Solid	Field Triplicate/FT	Х		
AOI5-SU2-SA-REP2	105175	Solid	Field Triplicate/FT	Х	Х	Х
AOI5-SU2-SA-REP2	106714	Solid	Field Triplicate/FT	Х		
AOI5-SU2-SA-REP3	105176	Solid	Field Triplicate/FT	Х	Х	Х
AOI5-SU2-SA-REP3	106715	Solid	Field Triplicate/FT	Х		
BKG-SU1-SB	105166	Solid	Field Sample/N	Х	Х	Х
BKG-SU1-SB	106705	Solid	Field Sample/N	Х		

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW8330	SW8330B
BKG-SU4-SB	105167	Solid	Field Sample/N	Х	Х	Х
BKG-SU4-SB	106706	Solid	Field Sample/N	Х		

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Camp Wellfleet - Art, Sm Arms, Rocket and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by ERT, Inc., Laurel, MD; analyses were performed by CT Laboratories LLC, Baraboo, WI and were reported under sample delivery group (SDG) 135364EDD. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank Blank - Negative LCS Recovery MS Recovery MS RPD Prep Hold Time Surrogate Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 9 results (6.29%) out of the 143 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected. Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Eleven ISM samples were received by CT Laboratories, Baraboo, Wisconsin, and analyzed for a select list of explosives and metals. The samples were received intact and at acceptable temperatures. The samples were dried, sieved, subsampled, and ground following the homogenization procedure specified for the project. The analyses were performed in accordance with requirements given in DOD QSM 5. Qualifiers applied by the laboratory are defined in the laboratory report.

Some samples were collected as three field replicates (i.e., triplicates), identified with suffixes of -REP1, -REP2, and -REP3. As replicate samples are an intrinsic part of the ISM process and this project, the extent of variability among triplicate results will be evaluated by the project team. Triplicate results were reviewed by the validator to confirm the overall reasonableness of the results, with no issues of concern noted.

Analytical Method	Data Reviewer Comment
SW6010C	The dried/sieved fraction of each ISM was subsampled for nickel and manganese prior to undergoing grinding via a puck mill, to avoid potential contamination of the samples with these metals from the puck mill. Analyses for antimony, copper, lead, and zinc were performed with the fully-homogenized, puck-milled fractions. The samples were analyzed as part of two analytical runs (#148190 and #148401).
	The laboratory performed MS/MSD analyses with additional volumes of sample BKG-SU1-SB. The laboratory reported low MS/MSD recoveries of antimony (38% / 43%) and a slightly low MS recovery of zinc (80%). The detections of antimony and zinc reported for parent sample BKG-SU1-SB were classified as less than fully quantitative and coded with "J" validation qualifiers with reason codes of "M".
	The laboratory reported the MS recovery of manganese as 114% in the laboratory report and as 114.3% in the electronic data deliverable (EDD). The automated data review module flagged this recovery as an outlier; however, after rounding to three significant digits, the recovery was equal to the control limit (114%). Therefore, the "J" qualifier, bias indicator of "+", and reason code "M" applied to the detection of manganese reported for parent sample BKG-SU1-SB (55.6 mg/Kg) by the FUDSchem automated data review (ADR) module were removed by the validator.
	The laboratory performed serial dilution (SD) and post-digestion spike (PDS) analyses of sample BKG-SU1-SB. SD results for all target metals excluding zinc were either invalid (i.e., the concentration of the analyte in the parent sample was less than 50 times the limit of quantitation, or LOQ) or deemed to have failed (i.e., not within +/-10% difference as compared to the instrument reading obtained for the parent sample). PDS recoveries reported for lead (76%), manganese (76%), and zinc (50%) also failed (i.e., each was less than the acceptance range of 80-120%). The detections of these three metals were classified as less than fully quantitative and coded with "J" validation qualifiers.
	The list of reason codes for data qualification for this project does not include a distinct code for indicating when PDS recoveries are not within control limits. Therefore, when the SD result for a given metal was invalid or not within control limits and the subsequent PDS recovery also was not within control limits, the sample result was qualified with a validation qualifier of "J" (detections) or "UJ" (non-detections) with reason codes of "A/M" ("A" signifying an invalid or failed SD analysis and "M" indicating a spike recovery that was not within limits in this case, a PDS). If the MS and/or MSD recovery was not within control limits and the SD + PDS results also were not within control limits, the data were qualified with "J" or "UJ" with reason codes of "M/A" (rather than "M/A/M", as the FUDSchem system will not allow a reason code to be entered twice).
	The laboratory performed unspiked laboratory triplicate analyses of samples BKG-SU1-SB, AOI3-SU3-SA-REP2, and AOI5-SU2-SA-REP2. The results met validation acceptance criteria for analytical precision, with no qualification of the sample data necessary, based or this particular quality control element.
SW8330	As noted in the laboratory case narrative and confirmed by the validation, low surrogate recoveries were reported for samples AOI3-SU3-SA-REP2, AOI3-SU3-SA-REP3, AOI5-SU1-SA-REP1, AOI5-SU2-SA-REP1, and AOI5-SU2-SA-REP3. The low recoveries were attributed by the laboratory to matrix interferences. The results for nitroguanidine reported for these five samples (all of which were findings of non-detect) were classified as less than fully quantitative and coded with "UJ" validation qualifiers with reason codes of "I". No othe quality issues were noted.
SW8330B	No analytical issues requiring qualification of sample data were noted.

Cindy Fee Westergard

July 11, 2018

Reviewed by Cindy Westergard, Senior Scientist, HSW Engineering, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of a minimum of 10% of the reported sample results and method quality control data between the two deliverables.

July 11, 2018

Reviewed by Nigel Lewis, Project Scientist, HSW Engineering, Inc.

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6010C, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
BKG-SU1-SB (SD)/ 107611	Manganese	114.3	84 - 114	30 - 125	percent	J/None	М	
BKG-SU1-SB (MS)/ 109652	Antimony	37.99	79 - 114	30 - 125	percent	J/UJ	М	
BKG-SU1-SB (MS)/ 109652	Zinc	79.92	82 - 113	30 - 125	percent	J/UJ	М	
BKG-SU1-SB (SD)/ 109653	Antimony	43.30	79 - 114	30 - 125	percent	J/UJ	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW6010C

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
BKG-SU1-SB	N	Manganese	0.150	55.6 M	55.6 J	-	mg/kg	A/M
BKG-SU1-SB	Ν	Antimony	0.850	0.170 J	0.170 J	-	mg/kg	M/TR
BKG-SU1-SB	N	Zinc	0.320	17.0 M	17.0 J	-	mg/kg	M/A

Analytes not found in project samples are reported as not detected at the limit of detection (LOD).

Quality Control Outliers for test method SW8330, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
AOI3-SU3-SA-REP2 (FT)/ 105169	1,2-Dinitrobenzene	11.00	32 - 136	10 - 136	percent	J/UJ	I	
AOI3-SU3-SA-REP3 (FT)/ 105170	1,2-Dinitrobenzene	20.00	32 - 136	10 - 136	percent	J/UJ	I	
AOI5-SU1-SA-REP1 (FT)/ 105171	1,2-Dinitrobenzene	16.00	32 - 136	10 - 136	percent	J/UJ	I	
AOI5-SU2-SA-REP1 (FT)/ 105174	1,2-Dinitrobenzene	30.00	32 - 136	10 - 136	percent	J/UJ	I	
AOI5-SU2-SA-REP3 (FT)/ 105176	1,2-Dinitrobenzene	12.00	32 - 136	10 - 136	percent	J/UJ	I	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Surrogate for SW8330

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI3-SU3-SA-REP2	FT	Nitroguanidine	0.230	0.110 U	0.110 UJ	-	mg/kg	I
AOI3-SU3-SA-REP3	FT	Nitroguanidine	0.240	0.120 U	0.120 UJ	-	mg/kg	I
AOI5-SU1-SA-REP1	FT	Nitroguanidine	0.240	0.120 U	0.120 UJ	-	mg/kg	I
AOI5-SU2-SA-REP1	FT	Nitroguanidine	0.240	0.110 U	0.110 UJ	-	mg/kg	I
AOI5-SU2-SA-REP3	FT	Nitroguanidine	0.240	0.120 U	0.120 UJ	-	mg/kg	I

Table of All Qualified Results

Test Method: SW6010C	Extract	ion Method: SW3050						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
BKG-SU1-SB	N	Manganese	0.150	55.6 M	55.6 J	-	mg/kg	A/M
BKG-SU1-SB	N	Antimony	0.850	0.170 J	0.170 J	-	mg/kg	M/TR
BKG-SU1-SB	Ν	Zinc	0.320	17.0 M	17.0 J	-	mg/kg	M/A
Test Method: SW8330	Extractio	n Method: METHOD						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI3-SU3-SA-REP2	FT	Nitroguanidine	0.230	0.110 U	0.110 UJ	-	mg/kg	I
AOI3-SU3-SA-REP3	FT	Nitroguanidine	0.240	0.120 U	0.120 UJ	-	mg/kg	I
AOI5-SU1-SA-REP1	FT	Nitroguanidine	0.240	0.120 U	0.120 UJ	-	mg/kg	1
AOI5-SU2-SA-REP1	FT	Nitroguanidine	0.240	0.110 U	0.110 UJ	-	mg/kg	I
AOI5-SU2-SA-REP3	FT	Nitroguanidine	0.240	0.120 U	0.120 UJ	-	mg/kg	1

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of All Trace Results

Test Method: SW6010C	Extract	ion Method: SW3050					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
AOI3-SU3-SA-REP1	FT	Antimony	0.780	0.220 J	0.220 J	mg/kg	TR
AOI3-SU3-SA-REP2	FT	Antimony	0.780	0.200 J	0.200 J	mg/kg	TR
AOI3-SU3-SA-REP3	FT	Antimony	0.800	0.230 J	0.230 J	mg/kg	TR
AOI5-SU1-SA-REP1	FT	Antimony	0.850	0.240 J	0.240 J	mg/kg	TR
AOI5-SU1-SA-REP2	FT	Antimony	0.840	0.280 J	0.280 J	mg/kg	TR
AOI5-SU1-SA-REP3	FT	Antimony	0.800	0.190 J	0.190 J	mg/kg	TR
AOI5-SU2-SA-REP1	FT	Antimony	0.820	0.300 J	0.300 J	mg/kg	TR
AOI5-SU2-SA-REP2	FT	Antimony	0.790	0.190 J	0.190 J	mg/kg	TR
AOI5-SU2-SA-REP3	FT	Antimony	0.790	0.250 J	0.250 J	mg/kg	TR
BKG-SU1-SB	N	Antimony	0.850	0.170 J	0.170 J	- mg/kg	M/TR
BKG-SU4-SB	N	Antimony	0.800	0.280 J	0.280 J	mg/kg	TR

Table of Results with Modified Qualifiers

Modified Qualifiers for test method SW6010C										
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason			
BKG-SU1-SB	N	Lead	0.260	3.40 M	3.40	3.40 J	A/M			
BKG-SU1-SB	N	Zinc	0.320	17.0 M	17.0 J	17.0 J	M/A			
BKG-SU1-SB	N	Manganese	0.150	55.6 M	55.6 J	55.6 J	A/M			

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
A	Serial dilution
I	Surrogate recovery outside project limits.
М	MS Recovery
TR	Trace Level Detect

Flag Coc	le and Definitions
Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
В	Blank contamination: The analyte was found in an associated blank above one half the RL, as well as in the sample.
UB	The analyte was also detected in an associated laboratory or field blank at a concentration comparable to the concentration in the sample. The reported result has been requalified as not detected.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were CCVs run at the required frequency and within acceptance criteria?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	A field blank was not included with the samples comprising this sample delivery group.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a MS/MSD pair prepared with each batch?	•			Additional volumes of sample BKG-SU1-SB were used.
Were MS/MSD recoveries within project acceptance limits?		•		
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Field triplicates were collected at three sampling locations. Evaluation of field triplicates is performed by the project team, outside of the scope of this validation effort.
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data rejected during the verification process?		•		

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	A field blank was not submitted.
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	An LCSD was not analyzed.
Was a project specific MS or MS/MSD pair prepared with each batch?	•			Additional volumes of sample BKG-SU1-SB were used.
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		Not reported.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	The sampling team collected triplicate samples at three locations. No nitroguanidine was detected in any of these samples, nor in any other samples comprising this sample delivery group. Note that evaluation of field triplicates is performed by the project team, outside of the scope of this validation effort.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?		•		Low surrogate recoveries were reported for five samples; these findings of non-detect were qualified with UJ validation qualifiers.
Were column comparison differences with project acceptance limits?	•			The target analyte was not detected in any of the samples.
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	A field blank was not included with this sample delivery group.
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	An LCSD was not reported.
Was a project specific MS or MS/MSD pair prepared with each batch?	•			Additional volumes of sample BKG-SU1-SB were used.
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		Not reported.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Samples were collected in triplicate at three locations; no target explosives were detected in any of these samples. Note that evaluation of field triplicates is performed by the project team, outside of the scope of this validation effort.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?	•			
Were column comparison differences with project acceptance limits?	•			No target analytes were detected.
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Summary of Qualified Data

SDG	Client Sample ID	Lab Sample	SACODE	LOGDATE	Test Method	EXMCODE	MATRIX	Analyte Name	PARLABEL	CAS	DB Result	UNITS	DB Reporting	Limit Of Detection	Display	Qualifier*	Reason Code
		ID			Wethod								Limit	Detection	Result		Code
135364EDD	AOI3-SU3-SA-REP1	105168	FT	4/12/2018 12:15:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.22	mg/kg	0.78	0.39	0.220	J	TR
135364EDD	AOI3-SU3-SA-REP2	105169	FT	4/12/2018 12:15:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.2	mg/kg	0.78	0.39	0.200	J	TR
135364EDD	AOI3-SU3-SA-REP2	105169	FT	4/12/2018 12:15:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0	mg/kg	0.23	0.11	0.110	UJ	I
135364EDD	AOI3-SU3-SA-REP3	105170	FT	4/12/2018 12:15:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.23	mg/kg	0.8	0.4	0.230	J	TR
135364EDD	AOI3-SU3-SA-REP3	105170	FT	4/12/2018 12:15:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0	mg/kg	0.24	0.12	0.120	UJ	I
135364EDD	AOI5-SU1-SA-REP1	105171	FT	4/12/2018 2:00:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.24	mg/kg	0.85	0.42	0.240	J	TR
135364EDD	AOI5-SU1-SA-REP1	105171	FT	4/12/2018 2:00:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0	mg/kg	0.24	0.12	0.120	UJ	1
135364EDD	AOI5-SU1-SA-REP2	105172	FT	4/12/2018 2:00:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.28	mg/kg	0.84	0.42	0.280	J	TR
135364EDD	AOI5-SU1-SA-REP3	105173	FT	4/12/2018 2:00:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.19	mg/kg	0.8	0.4	0.190	J	TR
135364EDD	AOI5-SU2-SA-REP1	105174	FT	4/12/2018 3:00:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.3	mg/kg	0.82	0.41	0.300	J	TR
135364EDD	AOI5-SU2-SA-REP1	105174	FT	4/12/2018 3:00:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0	mg/kg	0.24	0.11	0.110	UJ	1
135364EDD	AOI5-SU2-SA-REP2	105175	FT	4/12/2018 3:00:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.19	mg/kg	0.79	0.39	0.190	J	TR
135364EDD	AOI5-SU2-SA-REP3	105176	FT	4/12/2018 3:00:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.25	mg/kg	0.79	0.4	0.250	J	TR
135364EDD	AOI5-SU2-SA-REP3	105176	FT	4/12/2018 3:00:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0	mg/kg	0.24	0.12	0.120	UJ	I
135364EDD	BKG-SU1-SB	105166	N	4/12/2018 9:45:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.17	mg/kg	0.85	0.42	0.170	J	M/TR
135364EDD	BKG-SU1-SB	105166	N	4/12/2018 9:45:00 AM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	3.4	mg/kg	0.26	0.13	3.40	J	A/M
135364EDD	BKG-SU1-SB	106705	N	4/12/2018 9:45:00 AM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	55.6	mg/kg	0.15	0.075	55.6	J	A/M
135364EDD	BKG-SU1-SB	105166	N	4/12/2018 9:45:00 AM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	17	mg/kg	0.32	0.16	17.0	J	M/A
135364EDD	BKG-SU4-SB	105167	N	4/12/2018 9:45:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.28	mg/kg	0.8	0.4	0.280	J	TR

*Includes detections that are less than the limits of quantitation (LOQs) but otherwise unqualified as a result of the validation (i.e., validation qualifiers of "J" with reason code "TR" only).

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW8330	SW8330B
AOI3-SU1-SA-REP1	105949	Solid	Field Triplicate/FT	Х	Х	Х
AOI3-SU1-SA-REP1	106739	Solid	Field Triplicate/FT	Х		
AOI3-SU1-SA-REP2	105950	Solid	Field Triplicate/FT	Х	Х	Х
AOI3-SU1-SA-REP2	106740	Solid	Field Triplicate/FT	Х		
AOI3-SU1-SA-REP3	105951	Solid	Field Triplicate/FT	Х	Х	Х
AOI3-SU1-SA-REP3	106741	Solid	Field Triplicate/FT	Х		
AOI3-SU1-SB-REP1	105952	Solid	Field Triplicate/FT	Х	Х	Х
AOI3-SU1-SB-REP1	106742	Solid	Field Triplicate/FT	Х		
AOI3-SU1-SB-REP2	105953	Solid	Field Triplicate/FT	Х	Х	Х
AOI3-SU1-SB-REP2	106743	Solid	Field Triplicate/FT	Х		
AOI3-SU1-SB-REP3	105954	Solid	Field Triplicate/FT	Х	Х	Х
AOI3-SU1-SB-REP3	106744	Solid	Field Triplicate/FT	Х		
AOI4-SU5-SA-REP1	105946	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU5-SA-REP1	106736	Solid	Field Triplicate/FT	Х		
AOI4-SU5-SA-REP2	105947	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU5-SA-REP2	106737	Solid	Field Triplicate/FT	Х		
AOI4-SU5-SA-REP3	105948	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU5-SA-REP3	106738	Solid	Field Triplicate/FT	Х		
WELLB-GW-1	105955	Water	Field Sample/N	Х	Х	Х

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Camp Wellfleet - Art, Sm Arms, Rocket and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by ERT, Inc., Laurel, MD; analyses were performed by CT Laboratories LLC, Baraboo, WI and were reported under sample delivery group (SDG) 135399EDD. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank Blank - Negative LCS Recovery LCS RPD MS Recovery MS RPD Prep Hold Time Surrogate Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 12 results (9.23%) out of the 130 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected. Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Nine ISM samples and one groundwater sample were received by CT Laboratories, Baraboo, Wisconsin, and analyzed for a select list of explosives and metals. The samples were received intact and at acceptable temperatures. The ISM samples were dried, sieved, subsampled, and ground following the homogenization procedure specified for the project. All analyses were performed in accordance with requirements given in DOD QSM 5. Qualifiers used by the laboratory are defined in the laboratory report.

All of the ISM samples were collected as three field replicates (i.e., triplicates), identified with suffixes of -REP1, -REP2, and -REP3. As replicate samples are an intrinsic part of the ISM process and this project, the extent of variability among triplicate results will be evaluated by the project team. Triplicate results were reviewed by the validator to confirm the overall reasonableness of the results, with no issues of concern noted.

Analytical Method	Data Reviewer Comment
SW6010C	The dried/sieved fraction of each ISM sample was subsampled for nickel and manganese prior to undergoing grinding via a puck mill, to avoid potential contamination of the samples with these metals from the puck mill. Analyses for antimony, copper, lead, and zinc were performed with the fully-homogenized, puck-milled fractions. The ISM samples were analyzed as part of two analytical runs (#148191 and #148402); the groundwater sample was analyzed as part of analytical run #148087.
	A low level of lead was detected in the method blank for soil; however, the concentration was less than one-tenth the concentrations detected in the soil samples. No qualification of the sample data was necessary.
	The laboratory performed MS/MSD analyses with additional volumes of water sample WELLB-GW-1, with a slightly low recovery reported for copper in the analysis of the MSD (85.2% vs. a lower acceptance limit of 86%). The detection of copper reported for the parent sample (20.8 ug/L) was classified as less than fully quantitative and coded with a "J" validation qualifier.
	The laboratory performed MS/MSD analyses with additional volumes of soil sample AOI4-SU5-SA-REP1. The laboratory reported low MS/MSD recoveries of antimony (39% / 37%) and lead (77% / 74%); all other recoveries were within acceptance limits. The %RPDs for antimony and lead and the four other target metals were within acceptance limits. The finding of non-detect for antimony and detection of lead reported for parent sample AOI4-SU5-SA-REP1 were classified as less than fully quantitative and coded with "J" and "UJ" validation qualifiers, respectively. The FUDSchem automated data review (ADR) module also applied these qualifiers to the other two field replicates collected at this location (AOI4-SU5-SA-REP2 and -REP3).
	The laboratory performed serial dilution (SD) and post-digestion spike (PDS) analyses of sample AOI4-SU5-SA-REP1. With the exception of the SD result reported for manganese, all SD results were indicated with as being either invalid (due to the concentration of the analyte in the parent sample being less than 50 times the limit of quantitation, or LOQ) or not within the acceptance limit (+/-10%D). The PDS analyses of these sample digestates yielded recoveries of copper, lead, and zinc that also were not within acceptance limits (80-120%). The detections of copper, lead, and zinc reported for sample AOI4-SU5-SA-REP1 were classified as less than fully quantitative and coded with "J" validation qualifiers. As the SD result for antimony was invalid but the PDS recovery was acceptable, additional qualification of the result for antimony reported for the parent sample (previously qualified due to low MS/MSD recoveries), based on the combined SD + PDS findings, was not necessary.
	The list of reason codes for data qualification for this project does not include a distinct code for indicating when PDS recoveries are not within control limits. Therefore, when the serial dilution (SD) result for a given metal was invalid or not within control limits and the subsequent PDS recovery also was not within control limits, the sample result was qualified with a validation qualifier of "J" (detections) or "UJ" (non-detections) with reason codes of "A/M" ("A" signifying an invalid or failed SD analysis and "M" indicating a spike recovery that was not within limits in this case, a PDS). If the MS and/or MSD recovery was not within control limits, the data were qualified with "J" or "UJ" with reason codes of "M/A" (rather than "M/A/M", as the FUDSchem system will not allow a reason code to be entered twice).

SW8330	The laboratory reported low surrogate recoveries in the analysis of samples AOI4-SU5-SA- REP1, AOI4-SU5-SA-REP2, and AOI3-SU1-SA-REP3, attributing the low recoveries to matrix interference. The detection of nitroguanidine reported for sample AO14-SU5-SA- REP1 and findings of non-detect reported for samples AOI4-SU5-SA-REP2 and AOI3-SU1- SA-REP3 were classified as less than fully quantitative and coded with "J" or "UJ" validation qualifiers with reason codes of "I".
	Nitroguanidine was detected in both the primary and confirmation analyses of sample AOI4-SU5-SA-REP1, but the values yielded a relative percent difference (%RPD) of greater than 40%. The detection of nitroguanidine reported for the parent sample, previously qualified due to a low surrogate recovery (as well as due to its detection at less than the LOQ), was additionally qualified based on the discrepancy between detections on the two analytical columns (i.e., reason code "P1").
	No additional quality issues were noted.
SW8330B	A detection of 2,6-dinitrotoluene was reported for the method blank associated with the soil samples. As the analyte was not detected in any of the soil samples, no qualification of the sample data for 2,6-dinitrotoluene was necessary. No other quality issues requiring qualification of sample data were noted.
	An LCS/LCSD was analyzed for the water matrix as insufficient volumes were available for aqueous MS/MSD analyses. The recoveries of tetryl exceeded control limits; however, as the analyte was not detected in the water sample, no qualification of the sample data for this analyte was necessary.
	One instance in which a surrogate was elevated slightly above the acceptance limit was reported (sample WELLB-GW-1). This minor quality control excursion was not relevant as no target analytes were detected in the sample.

Cindy Fee Westergard

July 11, 2018

Reviewed by Cindy Westergard, Senior Scientist, HSW Engineering, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of a minimum of 10% of the reported sample results and method quality control data between the two deliverables.

July 11, 2018

Reviewed by Nigel Lewis, Project Scientist, HSW Engineering, Inc.

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6010C, Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
109643 (LB)/ 109643	Lead	0.09600	< 0.04	< 0.25	mg/kg	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW6010C, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
AOI4-SU5-SA-REP1 (MS)/ 109647	Antimony	38.87	79 - 114	30 - 125	percent	J/UJ	М	
AOI4-SU5-SA-REP1 (MS)/ 109647	Lead	76.52	81 - 112	30 - 125	percent	J/UJ	М	
AOI4-SU5-SA-REP1 (SD)/ 109648	Antimony	36.69	79 - 114	30 - 125	percent	J/UJ	М	
AOI4-SU5-SA-REP1 (SD)/ 109648	Lead	74.19	81 - 112	30 - 125	percent	J/UJ	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW6010C

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI4-SU5-SA-REP1	FT	Antimony	0.790	0.390 U	0.390 UJ	-	mg/kg	М
AOI4-SU5-SA-REP1	FT	Lead	0.250	3.70 M	3.70 J	-	mg/kg	M/A
AOI4-SU5-SA-REP2	FT	Antimony	0.800	0.400 U	0.400 UJ	-	mg/kg	М
AOI4-SU5-SA-REP2	FT	Lead	0.250	3.80	3.80 J	-	mg/kg	М
AOI4-SU5-SA-REP3	FT	Antimony	0.790	0.150 J	0.150 J	-	mg/kg	M/TR
AOI4-SU5-SA-REP3	FT	Lead	0.250	3.60	3.60 J	-	mg/kg	М

Quality Control Outliers for test method SW6010C, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
WELLB-GW-1 (SD)/ 106282	Copper	85.20	86 - 114	30 - 125	percent	J/UJ	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW6010C

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
WELLB-GW-1	Ν	Copper	7.00	20.8	20.8 J	-	ug/l	М

Quality Control Outliers for test method SW8330, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
AOI3-SU1-SA-REP3 (FT)/ 105951	1,2-Dinitrobenzene	31.00	32 - 136	10 - 136	percent	J/UJ	I	
AOI4-SU5-SA-REP1 (FT)/ 105946	1,2-Dinitrobenzene	17.00	32 - 136	10 - 136	percent	J/UJ	I	
AOI4-SU5-SA-REP1 (MS)/ 109240	1,2-Dinitrobenzene	18.20	32 - 136	10 - 136	percent	J/UJ	I	
AOI4-SU5-SA-REP1 (SD)/ 109241	1,2-Dinitrobenzene	18.00	32 - 136	10 - 136	percent	J/UJ	I	
AOI4-SU5-SA-REP2 (FT)/ 105947	1,2-Dinitrobenzene	18.00	32 - 136	10 - 136	percent	J/UJ	I	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Surrogate for SW8330

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI3-SU1-SA-REP3	FT	Nitroguanidine	0.250	0.120 U	0.120 UJ	-	mg/kg	I
AOI4-SU5-SA-REP1	FT	Nitroguanidine	0.240	0.200 JP,Y	0.200 J	-	mg/kg	I/TR/P1
AOI4-SU5-SA-REP2	FT	Nitroguanidine	0.230	0.110 U	0.110 UJ	-	mg/kg	I

Quality Control Outliers for test method SW8330B, Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
109181 (LB)/ 109181	2,6-Dinitrotoluene	0.1580	< 0.06	< 0.3	mg/kg	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8330B, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
107530 (BS)/ 107530	Tetryl	129.2	64 - 128	20 - 128	percent	J/None	С	
107531 (BD)/ 107531	2,6-Dinitrotoluene	127.2	77 - 127	20 - 127	percent	J/None	С	
107531 (BD)/ 107531	Tetryl	135.4	64 - 128	20 - 128	percent	J/None	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Table of All Qualified Results

Test Method: SW6010C	Extract	ion Method: SW3010						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
WELLB-GW-1	Ν	Copper	7.00	20.8	20.8 J	-	ug/l	М
Test Method: SW6010C	Extract	ion Method: SW3050						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI4-SU5-SA-REP1	FT	Antimony	0.790	0.390 U	0.390 UJ	-	mg/kg	М
AOI4-SU5-SA-REP1	FT	Lead	0.250	3.70 M	3.70 J	-	mg/kg	M/A
AOI4-SU5-SA-REP2	FT	Antimony	0.800	0.400 U	0.400 UJ	-	mg/kg	М
AOI4-SU5-SA-REP2	FT	Lead	0.250	3.80	3.80 J	-	mg/kg	М
AOI4-SU5-SA-REP3	FT	Antimony	0.790	0.150 J	0.150 J	-	mg/kg	M/TR
AOI4-SU5-SA-REP3	FT	Lead	0.250	3.60	3.60 J	-	mg/kg	М
Test Method: SW8330	Extractio	n Method: METHOD						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI3-SU1-SA-REP3	FT	Nitroguanidine	0.250	0.120 U	0.120 UJ	-	mg/kg	I
AOI4-SU5-SA-REP1	FT	Nitroguanidine	0.240	0.200 JP,Y	0.200 J	-	mg/kg	I/TR/P1
AOI4-SU5-SA-REP2	FT	Nitroguanidine	0.230	0.110 U	0.110 UJ	-	mg/kg	I

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of All Trace Results

Test Method: SW6010C	Extract	ion Method: SW3010						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
WELLB-GW-1	N	Antimony	12.0	3.80 J	3.80 J		ug/L	TR
WELLB-GW-1	Ν	Lead	4.00	3.30 J	3.30 J		ug/L	TR
Test Method: SW6010C	Extract	ion Method: SW3050						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI3-SU1-SA-REP1	FT	Antimony	0.780	0.200 J	0.200 J		mg/kg	TR
AOI3-SU1-SA-REP2	FT	Antimony	0.790	0.140 J	0.140 J		mg/kg	TR
AOI3-SU1-SA-REP3	FT	Antimony	0.780	0.160 J	0.160 J		mg/kg	TR
AOI3-SU1-SB-REP3	FT	Antimony	0.800	0.160 J	0.160 J		mg/kg	TR
AOI4-SU5-SA-REP3	FT	Antimony	0.790	0.150 J	0.150 J	-	mg/kg	M/TR
Test Method: SW8330	Extractio	n Method: METHOD						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI4-SU5-SA-REP1	FT	Nitroguanidine	0.240	0.200 JP,Y	0.200 J	-	mg/kg	I/TR/P1

Table of Results with Modified Qualifiers

Modified Qualifiers for	test metho	od SW6010C					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
AOI4-SU5-SA-REP1	FT	Copper	0.390	1.40 M	1.40	1.40 J	A/M
AOI4-SU5-SA-REP1	FT	Lead	0.250	3.70 M	3.70 J	3.70 J	M/A
AOI4-SU5-SA-REP1	FT	Zinc	0.300	15.8 M	15.8	15.8 J	A/M
Modified Qualifiers for	test metho	od SW8330					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
AOI4-SU5-SA-REP1	FT	Nitroguanidine	0.240	0.200 JP,Y	0.200 J	0.200 J	I/TR/P1

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
А	Serial dilution
С	LCS Recovery
I	Surrogate recovery outside project limits.
L	Lab Blank
М	MS Recovery
P1	Column RPD
TR	Trace Level Detect

Flag Code and Definitions

Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
В	Blank contamination: The analyte was found in an associated blank above one half the RL, as well as in the sample.
UB	The analyte was also detected in an associated laboratory or field blank at a concentration comparable to the concentration in the sample. The reported result has been requalified as not detected.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were CCVs run at the required frequency and within acceptance criteria?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?		•		A low level of lead was detected in the method blank for soil; however, the concentration was less than one-tenth the concentrations detected in the soil samples.
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a MS/MSD pair prepared with each batch?	•			Additional volumes of samples AOI4-SU5-SA- REP1 and WELLB-GW-1 were used.
Were MS/MSD recoveries within project acceptance limits?		•		Refer to the Test Method comments for details.
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Evaluation of field triplicates is performed by the project team, outside of the scope of this validation effort.
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data rejected during the verification process?		•		

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•		-	
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			No nitroguanidine was detected in the method blanks.
Were target analytes in the field blank less than MDL?			•	
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			Reported for the water matrix only.
Was a project specific MS or MS/MSD pair prepared with each batch?	•			Insufficient sample volumes were available for project-specific MS/MSD analyses of the aqueous sample. MS/MSD data were provided in association with the soil samples.
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		Unspiked laboratory duplicate or triplicate analyses were not reported.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Field triplicates were collected at three sampling locations. Evaluation of field triplicates is performed by the project team, outside of the scope of this validation effort.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?		•		Low surrogates were reported for three samples.
Were column comparison differences with project acceptance limits?		•		A discrepancy was noted for sample AO14-SU5- SA-REP1.
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Method: SW8330B (Nitroaromatics and Nitramines by HPLC	.)			
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?		•		A detection of 2,6-dinitrotoluene was reported for the method blank associated with the soil samples. As this analyte was not detected in any of the soil samples, no qualification of the sample data was necessary.
Were target analytes in the field blank less than MDL?			•	
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			An LCS/LCSD was analyzed for the water matrix as insufficient volumes were available for aqueous MS/MSD analyses. The recoveries of tetryl exceeded control limits; however, as the analyte was not detected in the water sample, no qualification of the sample data for this analyte was necessary.
Was the LCS/LCSD RPD within project acceptance limits?	•			Aqueous LCS/LCSD only.
Was a project specific MS or MS/MSD pair prepared with each batch?	•			Performed for soil only. Additional volumes of sample AO14-SU5-SA-REP1 were used.
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		Not required.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Field triplicates were collected at three locations. Evaluation of field triplicates is performed by the project team, outside of the scope of this validation effort.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?	•			One instance in which a surrogate was elevated slightly above the acceptance limit (sample WELLB-GW-1) was not relevant as no target analytes were detected in the sample.
Were column comparison differences with project acceptance limits?	•			
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Have all Laboratory Case Narrative comments/findings been addressed in the data review process?

Summary of Qualified Data

SDG	Client Sample ID	Lab Sample ID	SACODE	LOGDATE	Test Method	EXMCODE	MATRIX	Analyte Name	PARLABEL	CAS	DB Result	UNITS	DB Reporting Limit	Limit Of Detection	Display Result	Qualifier*	Reason Code
135399EDD	109181	109181	LB	4/24/2018 3:30:00 PM	SW8330B	METHOD	SQ	2,6-Dinitrotoluene	DNT26	606-20-2	0.158	mg/kg	0.3	0.06	0.158	J	TR
135399EDD	109643	109643	LB	4/25/2018 9:47:00 AM	SW6010C	SW3050	SQ	Lead	PB	7439-92-1	0.096	mg/kg	0.25	0.04	0.0960	J	TR
135399EDD	AOI3-SU1-SA-REP1	105949	FT	4/13/2018 2:15:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.2	mg/kg	0.78	0.39	0.200	J	TR
135399EDD	AOI3-SU1-SA-REP2	105950	FT	4/13/2018 2:15:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.14	mg/kg	0.79	0.4	0.140	J	TR
135399EDD	AOI3-SU1-SA-REP3	105951	FT	4/13/2018 2:15:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.16	mg/kg	0.78	0.39	0.160	J	TR
135399EDD	AOI3-SU1-SA-REP3	105951	FT	4/13/2018 2:15:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0	mg/kg	0.25	0.12	0.120	UJ	I
135399EDD	AOI3-SU1-SB-REP3	105954	FT	4/13/2018 3:45:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.16	mg/kg	0.8	0.4	0.160	J	TR
135399EDD	AOI4-SU5-SA-REP1	105946	FT	4/13/2018 12:20:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0	mg/kg	0.79	0.39	0.390	UJ	M
135399EDD	AOI4-SU5-SA-REP1	105946	FT	4/13/2018 12:20:00 PM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	1.4	mg/kg	0.39	0.2	1.40	J	A/M
135399EDD	AOI4-SU5-SA-REP1	105946	FT	4/13/2018 12:20:00 PM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	3.7	mg/kg	0.25	0.12	3.70	J	M/A
135399EDD	AOI4-SU5-SA-REP1	105946	FT	4/13/2018 12:20:00 PM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	15.8	mg/kg	0.3	0.15	15.8	J	A/M
135399EDD	AOI4-SU5-SA-REP1	105946	FT	4/13/2018 12:20:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.2	mg/kg	0.24	0.11	0.200	J	I/TR/P1
135399EDD	AOI4-SU5-SA-REP1	109240	MS	4/13/2018 12:20:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	1.83	mg/kg	0.251	0.12	1.83	J	I
135399EDD	AOI4-SU5-SA-REP1	109241	SD	4/13/2018 12:20:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	1.85	mg/kg	0.248	0.119	1.85	J	1
135399EDD	AOI4-SU5-SA-REP2	105947	FT	4/13/2018 12:20:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0	mg/kg	0.8	0.4	0.400	UJ	M
135399EDD	AOI4-SU5-SA-REP2	105947	FT	4/13/2018 12:20:00 PM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	3.8	mg/kg	0.25	0.12	3.80	J	M
135399EDD	AOI4-SU5-SA-REP2	105947	FT	4/13/2018 12:20:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0	mg/kg	0.23	0.11	0.110	UJ	I
135399EDD	AOI4-SU5-SA-REP3	105948	FT	4/13/2018 12:20:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.15	mg/kg	0.79	0.39	0.150	J	M/TR
135399EDD	AOI4-SU5-SA-REP3	105948	FT	4/13/2018 12:20:00 PM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	3.6	mg/kg	0.25	0.12	3.60	J	М
135399EDD	WELLB-GW-1	105955	N	4/13/2018 8:05:00 AM	SW6010C	SW3010	WP	Antimony	SB	7440-36-0	3.8	ug/L	12	6	3.80	J	TR
135399EDD	WELLB-GW-1	105955	N	4/13/2018 8:05:00 AM	SW6010C	SW3010	WP	Copper	CU	7440-50-8	20.8	ug/L	7	3.5	20.8	J	М
135399EDD	WELLB-GW-1	105955	N	4/13/2018 8:05:00 AM	SW6010C	SW3010	WP	Lead	PB	7439-92-1	3.3	ug/L	4	2	3.30	J	TR

*Includes detections that are less than the limits of quantitation (LOQs) but otherwise unqualified as a result of the validation (i.e., validation qualifiers of "J" with reason code "TR" only).

Facility:	D01MA0033-04, CP Wellfleet - Art, Sm Arms, Rocket
Event:	Phase I Sampling 2018
SDG:	135443EDD
Guidance Document:	Camp Wellfleet - Art, Sm Arms, Rocket
Prime Contractor:	ERT, Inc., Laurel, MD
Project Manager:	Tom Bachovchin
Contract Laboratory:	CT Laboratories LLC, Baraboo, WI
Data Review Contractor:	HSW Engineering, Inc.
Data Review Level:	Stage 2B Review
Primary Data Reviewer:	Cindy Westergard, Senior Scientist
Second Reviewer:	Nigel Lewis, Project Scientist
Date Submitted:	July 12, 2018
	-

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW8330	SW8330B
AOI3-SU2-SA-REP1	107218	Solid	Field Triplicate/FT	Х	Х	Х
AOI3-SU2-SA-REP1	107219	Solid	Field Triplicate/FT	Х		
AOI3-SU2-SA-REP2	107220	Solid	Field Triplicate/FT	Х	Х	Х
AOI3-SU2-SA-REP2	107221	Solid	Field Triplicate/FT	Х		
AOI3-SU2-SA-REP3	107222	Solid	Field Triplicate/FT	Х	Х	Х
AOI3-SU2-SA-REP3	107223	Solid	Field Triplicate/FT	Х		
AOI4-SU1-SA-REP1	107196	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU1-SA-REP1	107197	Solid	Field Triplicate/FT	Х		
AOI4-SU1-SA-REP2	107198	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU1-SA-REP2	107199	Solid	Field Triplicate/FT	Х		
AOI4-SU1-SA-REP3	107200	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU1-SA-REP3	107201	Solid	Field Triplicate/FT	Х		
AOI4-SU2-SA-REP1	107095	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU2-SA-REP1	107096	Solid	Field Triplicate/FT	Х		
AOI4-SU2-SA-REP2	107097	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU2-SA-REP2	107098	Solid	Field Triplicate/FT	Х		
AOI4-SU2-SA-REP3	107099	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU2-SA-REP3	107100	Solid	Field Triplicate/FT	Х		
AOI4-SU2-SB-REP1	107101	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU2-SB-REP1	107102	Solid	Field Triplicate/FT	Х		

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW8330	SW8330B
AOI4-SU2-SB-REP2	107103	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU2-SB-REP2	107104	Solid	Field Triplicate/FT	Х		
AOI4-SU2-SB-REP3	107105	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU2-SB-REP3	107106	Solid	Field Triplicate/FT	Х		
AOI4-SU3-SA-REP1	107202	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU3-SA-REP1	107203	Solid	Field Triplicate/FT	Х		
AOI4-SU3-SA-REP2	107204	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU3-SA-REP2	107205	Solid	Field Triplicate/FT	Х		
AOI4-SU3-SA-REP3	107216	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU3-SA-REP3	107217	Solid	Field Triplicate/FT	Х		
AOI4-SU4-SA-REP1	107188	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU4-SA-REP1	107190	Solid	Field Triplicate/FT	Х		
AOI4-SU4-SA-REP2	107191	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU4-SA-REP2	107192	Solid	Field Triplicate/FT	Х		
AOI4-SU4-SA-REP3	107194	Solid	Field Triplicate/FT	Х	Х	Х
AOI4-SU4-SA-REP3	107195	Solid	Field Triplicate/FT	Х		

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Camp Wellfleet - Art, Sm Arms, Rocket and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by ERT, Inc., Laurel, MD; analyses were performed by CT Laboratories LLC, Baraboo, WI and were reported under sample delivery group (SDG) 135443EDD. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank Blank - Negative LCS Recovery MS Recovery MS RPD Prep Hold Time Surrogate Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 38 results (16.24%) out of the 234 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected. Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Eighteen ISM samples were received by CT Laboratories, Baraboo, Wisconsin, and analyzed for a select list of explosives and metals. The samples were received intact and at acceptable temperatures. The ISM samples were dried, sieved, subsampled, and ground following the homogenization procedure specified for the project. All analyses were performed in accordance with requirements given in DOD QSM 5. Qualifiers used by the laboratory are defined in the laboratory report.

This laboratory deliverable was selected by the validator for validation of Stage 4 deliverables. No errors were detected by the validator as a result of this in-depth review. Documentation of the Stage 4 validation is included as an attachment to this data validation report.

The samples were collected as three field replicates (i.e., triplicates) from each of six sampling locations and identified with suffixes of -REP1, -REP2, and -REP3. As replicate samples are an intrinsic part of the ISM process and this project, the extent of variability among triplicate results will be evaluated by the project team. Triplicate results were reviewed by the validator to confirm the overall reasonableness of the results, with no issues of concern noted.

Analytical Method Data Reviewer Comment

SW6010C The dried/sieved fraction of each ISM sample was subsampled for nickel and manganese prior to undergoing grinding via a puck mill, to avoid potential contamination of the samples with these metals from the puck mill. Analyses for antimony, copper, lead, and zinc were performed with the fully-homogenized, puck-milled fractions. The ISM samples were analyzed as part of four analytical runs (#148366, #148403, #148405, and #148405).

A low level of lead was detected in one of the two method blanks associated with the fullyhomogenized, puck-milled fractions; however, the concentration was less than one-tenth the concentrations detected in the associated soil samples. No qualification of the sample data was necessary.

The laboratory performed MS/MSD analyses with additional volumes of samples AOI3-SU2-SA-REP1, AOI4-SU2-SB-REP1, and AOI4-SU2-SA-REP1 (this last MS/MSD pair, for antimony, copper, lead, and zinc only; the first two MS/MSD pairs for all six target metals). The laboratory reported low MS/MSD recoveries of antimony in the analysis of all three of these MS/MSD pairs, ranging from 51% (MS of sample AOI3-SU2-SA-REP1) to 68% (MSD of sample AOI4-SU2-SB-REP1) vs. a lower acceptance limit of 79%. A low recovery of manganese was reported for the MS of sample AOI4-SU2-SB-REP1 (74% vs. a lower limit of 84%), while low recoveries of zinc were reported for the MS/MSD of sample AOI3-SU2-SA-REP1 (80% and 81%) and MS of sample AOI4-SU2-SA-REP1 (72%); the lower acceptance limit for zinc is 82%. The %RPD reported for the MS/MSD analyses of sample AOI4-SU2-SA-REP1 (29%) also was not within acceptance limits (20%). The results for these analytes in the parent samples and corresponding field triplicates were coded with validation qualifiers of "UJ" (non-detections of antimony reported for four of the nine samples) or "J" (detections of antimony, manganese, and zinc reported in all other instances for the nine samples) by the FUDSchem automated data review (ADR) module.

The laboratory performed serial dilution (SD) and post-digestion spike (PDS) analyses of samples AOI3-SU2-SA-REP1, AOI4-SU2-SB-REP1, and AOI4-SU2-SA-REP1 (this last sample, for antimony, copper, lead, and zinc only; the first two samples for all six target metals). In all instances, the SD results either were invalid (i.e., the concentration of the analyte in the parent sample was less than 50 times the limit of quantitation, or LOQ) or were not within the acceptance limit (+/-10%D). Subsequent analyses of PDS samples yielded acceptable results in several instances such that qualification of the sample data was not necessary. The laboratory reported low recoveries of manganese in the PDS analyses of samples AOI3-SU2-SA-REP1 (61%) and AOI4-SU2-SB-REP1 (54%), copper in the PDS analysis of sample AOI4-SU2-SA-REP1 (76%), and lead and zinc in the PDS analysis of sample AOI3-SU2-SA-REP1 (both 78%). The results for these analytes in the affected parent samples were classified as less than fully quantitative and coded with "J" validation qualifiers (all were detections).

The list of reason codes for data qualification for this project does not include a distinct code for indicating when PDS recoveries are not within control limits. Therefore, when the SD result for a given metal was invalid or not within control limits and the subsequent PDS recovery also was not within control limits, the sample result was qualified with a validation qualifier of "J" (detections) or "UJ" (non-detections) with reason codes of "A/M" ("A" signifying an invalid or failed SD analysis and "M" indicating a spike recovery that was not within limits -- in this case, a PDS). If the MS and/or MSD recovery was not within control limits and the SD + PDS results also were not within control limits, the data were qualified with "J" or "UJ" with reason codes of "M/A" (and not "M/A/M", as the FUDSchem system will not allow a reason code to be entered twice).

The laboratory performed duplicate or triplicate analyses of samples AOI3-SU2-SA-REP1, AOI4-SU1-SA-REP3, AOI4-SU2-SA-REP1, AOI4-SU2-SB-REP1, and AOI4-SU4-SA-REP1. Sample results were qualified when the detection of the analyte was at least five times as great as the LOQ and the %RPD exceeded 20%. Following this logic, qualification was limited to detections of lead and zinc reported for sample AOI3-SU2-SA-REP1 and for zinc reported for samples AOI4-SU2-SA-REP1 and AOI4-SU4-SU2-SA-REP1.

SW8330	The ISM samples were analyzed for nitroguanidine as part of two analytical runs. Eleven of these ISM samples had positive detections of nitroguanidine. In each case, the detection of nitroguanidine in the primary analysis differed by greater than 40% relative percent difference (%RPD) from the amount of nitroguanidine detected in the confirmation analysis. The laboratory attributed the discrepancies to interferences occurring in the confirmation analyses. The detections of nitroguanidine reported for these samples were classified as less than fully quantitative and coded with "J" validation qualifiers with reason codes of "P1". No other quality issues were noted.
SW8330B	The ISM samples were analyzed for explosives by Method 8330B as part of two preparation batches and two analytical runs (batch #66551 / run #148897 and batch #66553 / run #148966). The laboratory control sample (LCS) prepared in batch #66551 yielded a low recovery of tetryl (42% vs. an acceptance range of 68-135%). The recovery of tetryl was acceptable in the analysis of the LCS prepared in batch #66553. Tetryl is known to be problematic as it decomposes upon exposure to heat, light, and moisture. The findings of non-detect reported for the six ISM samples included in preparation batch #66551 (AOI4-SU2-SA-REP1, AOI4-SU2-SA-REP2, AOI4-SU2-SA-REP3, AOI4-SU2-SB-REP1, AOI4-SU2-SB-REP2, and AOI4-SU2-SB-REP3) were classified as less than fully quantitative, based on the LCS recovery, and coded with "UJ" validation qualifiers with reason code "C".
	The laboratory performed MS/MSD analyses with additional volumes of samples AOI4-SU2-SA-REP1, AOI4-SU2-SB-REP1, and AOI3-SU2-SA-REP1. The MS performed with sample AOI3-SU2-SA-REP1 had low recoveries (about 50%) for all analytes on the initial analysis. This MS was re-analyzed on the confirmation column with more acceptable recoveries. The laboratory concluded that the primary analysis had a mis-injection due to the cap septum having been pushed into the vial; therefore, the confirmation analysis results were reported. Using these data, the laboratory reported elevated recoveries of tetryl in the MS analysis of sample AOI4-SU2-SB-REP1 (145% vs. an upper limit of 135%) and of 2,4-dinitrotoluene in the MS analysis of sample AOI3-SU2-SA-REP1 (125% vs. an upper limit of 117%); an elevated %RPD also was reported for 2,4-dinitrotoluene in the MS/MSD analysis of sample AOI3-SU2-SA-REP1. The MS of sample AOI3-SU2-SA-REP1 also had a high recovery for 26-dinitrotoluene (26-DNT). The absence of tetryl in parent sample AOI4-SU2-SB-REP1 precluded the need for qualification of the sample result. While the absence of 2,4-dinitrotoluene reported for parent sample AOI3-SU2-SA-REP1 likewise precluded qualification of the sample result based on the slightly elevated MS recovery, the finding of non-detect was qualified with a "UJ" validation qualifier with reason code "D", due to evidence of diminished analytical precision.
	No other quality issues were noted.

Cindy Fee Westergard

July 11, 2018

Reviewed by Cindy Westergard, Senior Scientist, HSW Engineering, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of a minimum of 10% of the reported sample results and method quality control data between the two deliverables.

July 11, 2018

Reviewed by Nigel Lewis, Project Scientist, HSW Engineering, Inc.

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6010C, Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
109697 (LB)/ 109697	Lead	0.06700	< 0.04	< 0.25	mg/kg	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW6010C, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

							-	
Sample ID/			Warning				Reason	
Lab Sample ID	Analyte	Result	Limits	Limits	Units	Qualifier	Code	Comment
AOI3-SU2-SA-REP1 (MS)/ 109693	Antimony	50.73	79 - 114	30 - 125	percent	J/UJ	М	
AOI3-SU2-SA-REP1 (MS)/ 109693	Zinc	80.31	82 - 113	30 - 125	percent	J/UJ	М	
AOI3-SU2-SA-REP1 (SD)/ 109694	Antimony	54.38	79 - 114	30 - 125	percent	J/UJ	М	
AOI3-SU2-SA-REP1 (SD)/ 109694	Zinc	81.15	82 - 113	30 - 125	percent	J/UJ	М	
AOI4-SU2-SA-REP1 (MS)/ 109663	Antimony	56.40	79 - 114	30 - 125	percent	J/UJ	М	
AOI4-SU2-SA-REP1 (MS)/ 109663	Zinc	72.33	82 - 113	30 - 125	percent	J/UJ	М	
AOI4-SU2-SA-REP1 (SD)/ 109664	Antimony	64.64	79 - 114	30 - 125	percent	J/UJ	М	
AOI4-SU2-SB-REP1 (MS)/ 109086	Manganese	74.33	84 - 114	30 - 125	percent	J/UJ	М	
AOI4-SU2-SB-REP1 (MS)/ 109673	Antimony	66.40	79 - 114	30 - 125	percent	J/UJ	М	
AOI4-SU2-SB-REP1 (SD)/ 109674	Antimony	68.40	79 - 114	30 - 125	percent	J/UJ	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW6010C

Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
FT	Manganese	0.160	10.1 M	10.1 J	-	mg/kg	A/M
FT	Zinc	0.310	4.90 Y,M	4.90 J	-	mg/kg	M/A/D1
FT	Antimony	0.830	0.160 J	0.160 J	-	mg/kg	M/TR
FT	Zinc	0.310	4.90	4.90 J	-	mg/kg	М
FT	Antimony	0.840	0.230 J	0.230 J	-	mg/kg	M/TR
FT	Zinc	0.310	2.00	2.00 J	-	mg/kg	М
FT	Antimony	0.830	0.140 J	0.140 J	-	mg/kg	M/TR
FT	Zinc	0.300	7.00 Y	7.00 J	-	mg/kg	M/D1
FT	Antimony	0.800	0.130 J	0.130 J	-	mg/kg	M/TR
FT	Zinc	0.310	8.00	8.00 J	-	mg/kg	M/D1
FT	Antimony	0.840	0.420 U	0.420 UJ	-	mg/kg	М
FT	Zinc	0.310	4.20	4.20 J	-	mg/kg	M/D1
FT	Antimony	0.840	0.420 U	0.420 UJ	-	mg/kg	М
FT	Manganese	0.160	71.8 M	71.8 J	-	mg/kg	M/A
FT	Antimony	0.810	0.400 U	0.400 UJ	-	mg/kg	M
	FT FT	FTManganeseFTZincFTAntimonyFTZincFTAntimonyFTZincFTAntimonyFTZincFTAntimonyFTZincFTAntimonyFTZincFTAntimonyFTZincFTAntimonyFTZincFTAntimonyFTZincFTAntimonyFTZincFTManganese	FT Manganese 0.160 FT Zinc 0.310 FT Antimony 0.830 FT Zinc 0.310 FT Zinc 0.310 FT Antimony 0.830 FT Zinc 0.310 FT Antimony 0.840 FT Zinc 0.300 FT Zinc 0.300 FT Zinc 0.300 FT Zinc 0.300 FT Zinc 0.310 FT Zinc 0.310 FT Zinc 0.310 FT Zinc 0.310 FT Antimony 0.840 FT Zinc 0.310 FT Antimony 0.840 FT Antimony 0.840 FT Manganese 0.160	FT Manganese 0.160 10.1 M FT Zinc 0.310 4.90 Y,M FT Antimony 0.830 0.160 J FT Antimony 0.830 0.160 J FT Zinc 0.310 4.90 FT Zinc 0.310 4.90 FT Antimony 0.840 0.230 J FT Zinc 0.310 2.00 FT Antimony 0.830 0.140 J FT Zinc 0.300 7.00 Y FT Antimony 0.800 0.130 J FT Zinc 0.310 8.00 FT Zinc 0.310 8.00 FT Zinc 0.310 4.20 U FT Antimony 0.840 0.420 U FT Zinc 0.310 4.20 FT Antimony 0.840 0.420 U FT Antimony 0.840 0.420 U FT Antimony <t< td=""><td>FT Manganese 0.160 10.1 M 10.1 J FT Zinc 0.310 4.90 Y,M 4.90 J FT Antimony 0.830 0.160 J 0.160 J FT Zinc 0.310 4.90 Y,M 4.90 J FT Antimony 0.830 0.160 J 0.160 J FT Zinc 0.310 4.90 4.90 J FT Antimony 0.840 0.230 J 0.230 J FT Antimony 0.840 0.230 J 0.200 J FT Zinc 0.310 2.00 2.00 J FT Antimony 0.830 0.140 J 0.140 J FT Zinc 0.300 7.00 Y 7.00 J FT Zinc 0.300 7.00 Y 7.00 J FT Zinc 0.310 8.00 8.00 J FT Zinc 0.310 8.00 4.20 UJ FT Antimony 0.840 0.420 U 0.420 UJ FT<!--</td--><td>FT Manganese 0.160 10.1 M 10.1 J - FT Zinc 0.310 4.90 Y,M 4.90 J - FT Antimony 0.830 0.160 J 0.160 J - FT Antimony 0.830 0.160 J 0.160 J - FT Zinc 0.310 4.90 4.90 J - FT Antimony 0.840 0.230 J 0.230 J - FT Antimony 0.840 0.230 J 0.230 J - FT Antimony 0.840 0.200 2.00 J - FT Zinc 0.310 2.00 2.00 J - FT Antimony 0.830 0.140 J 0.140 J - FT Zinc 0.300 7.00 Y 7.00 J - FT Zinc 0.310 8.00 8.00 J - FT Zinc 0.310 8.00 8.00 J - FT Antimony 0.840 0.420 U 0.420 UJ - FT Antimony<td>FT Manganese 0.160 10.1 M 10.1 J - mg/kg FT Zinc 0.310 4.90 Y,M 4.90 J - mg/kg FT Antimony 0.830 0.160 J 0.160 J - mg/kg FT Antimony 0.830 0.160 J 0.160 J - mg/kg FT Zinc 0.310 4.90 4.90 J - mg/kg FT Zinc 0.310 4.90 4.90 J - mg/kg FT Antimony 0.840 0.230 J 0.230 J - mg/kg FT Zinc 0.310 2.00 2.00 J - mg/kg FT Zinc 0.300 7.00 Y 7.00 J - mg/kg FT Zinc 0.300 7.00 Y 7.00 J - mg/kg FT Zinc 0.310 8.00 8.00 J - mg/kg FT Zinc 0.310 8.00 8.00 J - mg/kg FT Antimony 0.840 0.420 U</td></td></td></t<>	FT Manganese 0.160 10.1 M 10.1 J FT Zinc 0.310 4.90 Y,M 4.90 J FT Antimony 0.830 0.160 J 0.160 J FT Zinc 0.310 4.90 Y,M 4.90 J FT Antimony 0.830 0.160 J 0.160 J FT Zinc 0.310 4.90 4.90 J FT Antimony 0.840 0.230 J 0.230 J FT Antimony 0.840 0.230 J 0.200 J FT Zinc 0.310 2.00 2.00 J FT Antimony 0.830 0.140 J 0.140 J FT Zinc 0.300 7.00 Y 7.00 J FT Zinc 0.300 7.00 Y 7.00 J FT Zinc 0.310 8.00 8.00 J FT Zinc 0.310 8.00 4.20 UJ FT Antimony 0.840 0.420 U 0.420 UJ FT </td <td>FT Manganese 0.160 10.1 M 10.1 J - FT Zinc 0.310 4.90 Y,M 4.90 J - FT Antimony 0.830 0.160 J 0.160 J - FT Antimony 0.830 0.160 J 0.160 J - FT Zinc 0.310 4.90 4.90 J - FT Antimony 0.840 0.230 J 0.230 J - FT Antimony 0.840 0.230 J 0.230 J - FT Antimony 0.840 0.200 2.00 J - FT Zinc 0.310 2.00 2.00 J - FT Antimony 0.830 0.140 J 0.140 J - FT Zinc 0.300 7.00 Y 7.00 J - FT Zinc 0.310 8.00 8.00 J - FT Zinc 0.310 8.00 8.00 J - FT Antimony 0.840 0.420 U 0.420 UJ - FT Antimony<td>FT Manganese 0.160 10.1 M 10.1 J - mg/kg FT Zinc 0.310 4.90 Y,M 4.90 J - mg/kg FT Antimony 0.830 0.160 J 0.160 J - mg/kg FT Antimony 0.830 0.160 J 0.160 J - mg/kg FT Zinc 0.310 4.90 4.90 J - mg/kg FT Zinc 0.310 4.90 4.90 J - mg/kg FT Antimony 0.840 0.230 J 0.230 J - mg/kg FT Zinc 0.310 2.00 2.00 J - mg/kg FT Zinc 0.300 7.00 Y 7.00 J - mg/kg FT Zinc 0.300 7.00 Y 7.00 J - mg/kg FT Zinc 0.310 8.00 8.00 J - mg/kg FT Zinc 0.310 8.00 8.00 J - mg/kg FT Antimony 0.840 0.420 U</td></td>	FT Manganese 0.160 10.1 M 10.1 J - FT Zinc 0.310 4.90 Y,M 4.90 J - FT Antimony 0.830 0.160 J 0.160 J - FT Antimony 0.830 0.160 J 0.160 J - FT Zinc 0.310 4.90 4.90 J - FT Antimony 0.840 0.230 J 0.230 J - FT Antimony 0.840 0.230 J 0.230 J - FT Antimony 0.840 0.200 2.00 J - FT Zinc 0.310 2.00 2.00 J - FT Antimony 0.830 0.140 J 0.140 J - FT Zinc 0.300 7.00 Y 7.00 J - FT Zinc 0.310 8.00 8.00 J - FT Zinc 0.310 8.00 8.00 J - FT Antimony 0.840 0.420 U 0.420 UJ - FT Antimony <td>FT Manganese 0.160 10.1 M 10.1 J - mg/kg FT Zinc 0.310 4.90 Y,M 4.90 J - mg/kg FT Antimony 0.830 0.160 J 0.160 J - mg/kg FT Antimony 0.830 0.160 J 0.160 J - mg/kg FT Zinc 0.310 4.90 4.90 J - mg/kg FT Zinc 0.310 4.90 4.90 J - mg/kg FT Antimony 0.840 0.230 J 0.230 J - mg/kg FT Zinc 0.310 2.00 2.00 J - mg/kg FT Zinc 0.300 7.00 Y 7.00 J - mg/kg FT Zinc 0.300 7.00 Y 7.00 J - mg/kg FT Zinc 0.310 8.00 8.00 J - mg/kg FT Zinc 0.310 8.00 8.00 J - mg/kg FT Antimony 0.840 0.420 U</td>	FT Manganese 0.160 10.1 M 10.1 J - mg/kg FT Zinc 0.310 4.90 Y,M 4.90 J - mg/kg FT Antimony 0.830 0.160 J 0.160 J - mg/kg FT Antimony 0.830 0.160 J 0.160 J - mg/kg FT Zinc 0.310 4.90 4.90 J - mg/kg FT Zinc 0.310 4.90 4.90 J - mg/kg FT Antimony 0.840 0.230 J 0.230 J - mg/kg FT Zinc 0.310 2.00 2.00 J - mg/kg FT Zinc 0.300 7.00 Y 7.00 J - mg/kg FT Zinc 0.300 7.00 Y 7.00 J - mg/kg FT Zinc 0.310 8.00 8.00 J - mg/kg FT Zinc 0.310 8.00 8.00 J - mg/kg FT Antimony 0.840 0.420 U

Qualified Results associated with the MS Recovery for SW6010C

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI4-SU2-SB-REP2	FT	Manganese	0.150	68.9	68.9 J	-	mg/kg	Μ
AOI4-SU2-SB-REP2	FT	Antimony	0.830	0.130 J	0.130 J	-	mg/kg	M/TR
AOI4-SU2-SB-REP3	FT	Manganese	0.150	63.0	63.0 J	-	mg/kg	М
AOI4-SU2-SB-REP3	FT	Antimony	0.820	0.410 U	0.410 UJ	-	mg/kg	М

Analytes not found in project samples are reported as not detected at the limit of detection (LOD).

Quality Control Outliers for test method SW6010C, MS RPD

The objective of matrix spikes/matrix spike duplicates (MS/MSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. MS/MSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Matrix spikes/matrix spike duplicates results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
AOI4-SU2-SA-REP1 (SD)/ 109664	Zinc	29.05	< 20	< 20	rpd	J/UJ	D	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8330B, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
109209 (BS)/ 109209	Tetryl	41.73	68 - 135	20 - 135	percent	J/UJ	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for SW8330B

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI4-SU2-SA-REP1	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI4-SU2-SA-REP2	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI4-SU2-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI4-SU2-SB-REP1	FT	Tetryl	0.300	0.150 UQ,M	0.150 UJ		mg/kg	С
AOI4-SU2-SB-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ		mg/kg	С
AOI4-SU2-SB-REP3	FT	Tetryl	0.290	0.150 UQ	0.150 UJ		mg/kg	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD).

Quality Control Outliers for test method SW8330B, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
AOI3-SU2-SA-REP1 (MS)/ 109233	2,6-Dinitrotoluene	125.0	79 - 117	20 - 117	percent	J/None	Μ	
AOI4-SU2-SB-REP1 (MS)/ 109215	Tetryl	144.9	68 - 135	20 - 135	percent	J/None	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8330B, MS RPD

The objective of matrix spikes/matrix spike duplicates (MS/MSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. MS/MSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Matrix spikes/matrix spike duplicates results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
AOI3-SU2-SA-REP1 (SD)/ 109234	2,6-Dinitrotoluene	39.23	< 20	< 20	rpd	J/None	D	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Table of All Qualified Results

Test Method: SW6010C	Extract	ion Method: SW3050						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI3-SU2-SA-REP1	FT	Manganese	0.160	10.1 M	10.1 J	-	mg/kg	A/M
AOI3-SU2-SA-REP1	FT	Zinc	0.310	4.90 Y,M	4.90 J	-	mg/kg	M/A/D1
AOI3-SU2-SA-REP1	FT	Antimony	0.830	0.160 J	0.160 J	-	mg/kg	M/TR
AOI3-SU2-SA-REP2	FT	Zinc	0.310	4.90	4.90 J	-	mg/kg	М
AOI3-SU2-SA-REP2	FT	Antimony	0.840	0.230 J	0.230 J	-	mg/kg	M/TR
AOI3-SU2-SA-REP3	FT	Zinc	0.310	2.00	2.00 J	-	mg/kg	М
AOI3-SU2-SA-REP3	FT	Antimony	0.830	0.140 J	0.140 J	-	mg/kg	M/TR
AOI4-SU2-SA-REP1	FT	Zinc	0.300	7.00 Y	7.00 J	-	mg/kg	M/D1
AOI4-SU2-SA-REP1	FT	Antimony	0.800	0.130 J	0.130 J	-	mg/kg	M/TR
AOI4-SU2-SA-REP2	FT	Zinc	0.310	8.00	8.00 J	-	mg/kg	M/D1
AOI4-SU2-SA-REP2	FT	Antimony	0.840	0.420 U	0.420 UJ	-	mg/kg	М
AOI4-SU2-SA-REP3	FT	Zinc	0.310	4.20	4.20 J	-	mg/kg	M/D1
AOI4-SU2-SA-REP3	FT	Antimony	0.840	0.420 U	0.420 UJ	-	mg/kg	М
AOI4-SU2-SB-REP1	FT	Manganese	0.160	71.8 M	71.8 J	-	mg/kg	M/A
AOI4-SU2-SB-REP1	FT	Antimony	0.810	0.400 U	0.400 UJ	-	mg/kg	М
AOI4-SU2-SB-REP2	FT	Manganese	0.150	68.9	68.9 J	-	mg/kg	М
AOI4-SU2-SB-REP2	FT	Antimony	0.830	0.130 J	0.130 J	-	mg/kg	M/TR
AOI4-SU2-SB-REP3	FT	Manganese	0.150	63.0	63.0 J	-	mg/kg	М
AOI4-SU2-SB-REP3	FT	Antimony	0.820	0.410 U	0.410 UJ	-	mg/kg	М
Test Method: SW8330B	Extract	ion Method: METHOD						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI4-SU2-SA-REP1	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI4-SU2-SA-REP2	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI4-SU2-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI4-SU2-SB-REP1	FT	Tetryl	0.300	0.150 UQ,M	0.150 UJ		mg/kg	С
AOI4-SU2-SB-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ		mg/kg	С
AOI4-SU2-SB-REP3	FT	Tetryl	0.290	0.150 UQ	0.150 UJ		mg/kg	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of All Trace Results

Test Method: SW6010C	Extract	ion Method: SW3050						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI3-SU2-SA-REP1	FT	Antimony	0.830	0.160 J	0.160 J	-	mg/kg	M/TR
AOI3-SU2-SA-REP2	FT	Antimony	0.840	0.230 J	0.230 J	-	mg/kg	M/TR
AOI3-SU2-SA-REP3	FT	Antimony	0.830	0.140 J	0.140 J	-	mg/kg	M/TR
AOI4-SU1-SA-REP1	FT	Antimony	0.810	0.170 J	0.170 J		mg/kg	TR
AOI4-SU1-SA-REP2	FT	Antimony	0.800	0.220 J	0.220 J		mg/kg	TR
AOI4-SU1-SA-REP3	FT	Antimony	0.820	0.210 J	0.210 J		mg/kg	TR
AOI4-SU2-SA-REP1	FT	Antimony	0.800	0.130 J	0.130 J	-	mg/kg	M/TR
AOI4-SU2-SB-REP2	FT	Antimony	0.830	0.130 J	0.130 J	-	mg/kg	M/TR
AOI4-SU3-SA-REP1	FT	Antimony	0.830	0.220 J	0.220 J		mg/kg	TR
AOI4-SU3-SA-REP2	FT	Antimony	0.810	0.220 J	0.220 J		mg/kg	TR
AOI4-SU3-SA-REP3	FT	Antimony	0.830	0.130 J	0.130 J		mg/kg	TR
AOI4-SU4-SA-REP1	FT	Antimony	0.820	0.130 J	0.130 J		mg/kg	TR
AOI4-SU4-SA-REP2	FT	Antimony	0.770	0.160 J	0.160 J		mg/kg	TR
AOI4-SU4-SA-REP3	FT	Antimony	0.840	0.140 J	0.140 J		mg/kg	TR

Table of Results with Modified Qualifiers

Modified Qualifiers for te	st metho	od SW6010C					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
AOI3-SU2-SA-REP1	FT	Lead	0.260	2.40 Y,M	2.40	2.40 J	A/M/D1
AOI3-SU2-SA-REP1	FT	Zinc	0.310	4.90 Y,M	4.90 J	4.90 J	M/A/D1
AOI3-SU2-SA-REP1	FT	Manganese	0.160	10.1 M	10.1	10.1 J	A/M
AOI4-SU2-SA-REP1	FT	Copper	0.400	0.670 M	0.670	0.670 J	A/M
AOI4-SU2-SA-REP1	FT	Zinc	0.300	7.00 Y	7.00 J	7.00 J	M/D1
AOI4-SU2-SA-REP2	FT	Zinc	0.310	8.00	8.00 J	8.00 J	M/D1
AOI4-SU2-SA-REP3	FT	Zinc	0.310	4.20	4.20 J	4.20 J	M/D1
AOI4-SU2-SB-REP1	FT	Manganese	0.160	71.8 M	71.8 J	71.8 J	M/A
Modified Qualifiers for te	st metho	od SW8330					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
AOI3-SU2-SA-REP1	FT	Nitroguanidine	0.240	0.540 P	0.540	0.540 J	P1
AOI3-SU2-SA-REP2	FT	Nitroguanidine	0.240	0.810 P	0.810	0.810 J	P1
AOI3-SU2-SA-REP3	FT	Nitroguanidine	0.240	0.580 P	0.580	0.580 J	P1
AOI4-SU1-SA-REP1	FT	Nitroguanidine	0.250	0.590 P	0.590	0.590 J	P1
AOI4-SU1-SA-REP2	FT	Nitroguanidine	0.240	0.320 P	0.320	0.320 J	P1
AOI4-SU1-SA-REP3	FT	Nitroguanidine	0.240	0.620 P	0.620	0.620 J	P1
AOI4-SU2-SA-REP1	FT	Nitroguanidine	0.250	0.420 P	0.420	0.420 J	P1
AOI4-SU2-SA-REP2	FT	Nitroguanidine	0.250	0.500 P	0.500	0.500 J	P1
AOI4-SU3-SA-REP1	FT	Nitroguanidine	0.240	0.370 P	0.370	0.370 J	P1
AOI4-SU3-SA-REP2	FT	Nitroguanidine	0.240	0.480 P	0.480	0.480 J	P1
AOI4-SU3-SA-REP3	FT	Nitroguanidine	0.250	0.470 P	0.470	0.470 J	P1
							-

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition	
А	Serial dilution	
С	LCS Recovery	
D	MS RPD	
D1	Lab Replicate RPD	
L	Lab Blank	
М	MS Recovery	
P1	Column RPD	
TR	Trace Level Detect	

Flag Code and Definitions

Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
В	Blank contamination: The analyte was found in an associated blank above one half the RL, as well as in the sample.
UB	The analyte was also detected in an associated laboratory or field blank at a concentration comparable to the concentration in the sample. The reported result has been requalified as not detected.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were CCVs run at the required frequency and within acceptance criteria?	•			
Was a method blank prepared and analyzed with each patch?	•			
Were target analytes in the method blank less than MDL?				Lead was detected above the MDL in one method blank sample (0.06700 mg/kg). Detections of lead in the samples associated with this blank exceeded the artifact threshold value such that no qualification of any sample data, based on the blank detection, was necessary.
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each patch?	•			
Were LCS/LCSD recoveries within project acceptance imits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a MS/MSD pair prepared with each batch?	•			Additional volumes of samples AO13-SU2-SA- REP1, AO14-SU2-SB-REP1, and AO14-SU2- SA-REP1 were used (this last sample, for antimony, copper, lead, and zinc only).
Were MS/MSD recoveries within project acceptance limits?		•		Data for the parent samples were classified as less than fully quantitative and coded with validation qualifiers of "J" (detections) or "UJ" (non-detections).
Was the MS/MSD RPD within project acceptance limits?		•		Elevated %RPDs were reported for zinc in the MS/MSD analyses of sample AO14-SU2-SA- REP1 and for antimony in the MS/MSD analyses of sample AO14-SU2-SB-REP1.
f a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Evaluation of field triplicates is performed by the project team, outside of the scope of this validation effort.
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data rejected during the verification process?		•		

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a project specific MS or MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		MS/MSD data allowed an adequate means of assessing analytical precision.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Field triplicates were collected at three locations In general, the results for each of these sets of triplicates were in agreement. This quality element will be reviewed by the project team outside of this validation process.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?	•			
Were column comparison differences with project acceptance limits?				Eleven of the ISM samples had positive detections of nitroguanidine. In each case, the detection of the analyte in the primary analysis differed by greater than 40% from the amount of nitroguanidine detected in each of these samples in the confirmation analyses (%RPDs >40%). The laboratory attributed the discrepancies to interferences occurring in the confirmation analyses. The detections of nitroguanidine reported for these eleven samples were classified as less than fully quantitative and coded with "J" validation qualifiers with reason codes of "P1".
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		The recovery of tetryl reported for the LCS for one of the two analytical batches (42%) was less than the lower control limit (68%). The findings of non-detect reported for the six ISM samples included in this batch were qualified with "UJ" validation qualifiers.
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a project specific MS or MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		
Was the MS/MSD RPD within project acceptance limits?		•		An elevated %RPD (39% vs. 20%) was reported for 2,6-DNT for the MS/MSD analyses performed with sample AOI3-SU2-SA-REP1.
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		MS/MSD analyses allowed an assessment of analytical precision.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Field duplicates and triplicates are evaluated outside of the scope of this analytical data validation effort.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?	•			
Were column comparison differences with project acceptance limits?	•			No target analytes reported by Method 8330B were detected.
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Summary of Qualified Data

SDG	Client Sample ID	Lab Sample ID	SACODE	LOGDATE	Test Method	EXMCODE	MATRIX	Analyte Name	PARLABEL	CAS	DB Result	UNITS	DB Reporting Limit	Limit Of Detection	Display Result	Qualifier*	Reason Code
135443EDD	AOI3-SU2-SA-REP1		FT	4/14/2018 11:40:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.16	mg/kg	0.83	0.41	0.160	J	M/TR
135443EDD	AOI3-SU2-SA-REP1	107218	FT	4/14/2018 11:40:00 AM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	2.4	mg/kg	0.26	0.13	2.40	J	A/M/D1
135443EDD	AOI3-SU2-SA-REP1	107219	FT	4/14/2018 11:40:00 AM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	10.1	mg/kg	0.16	0.078	10.1	J	A/M
135443EDD	AOI3-SU2-SA-REP1	107218	FT	4/14/2018 11:40:00 AM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	4.9	mg/kg	0.31	0.16	4.90	J	M/A/D1
135443EDD	AOI3-SU2-SA-REP1	107218	FT	4/14/2018 11:40:00 AM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.54	mg/kg	0.24	0.12	0.540	J	P1
135443EDD	AOI3-SU2-SA-REP2	107220	FT	4/14/2018 11:40:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.23	mg/kg	0.84	0.42	0.230	J	M/TR
135443EDD	AOI3-SU2-SA-REP2	107220	FT	4/14/2018 11:40:00 AM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	4.9	mg/kg	0.31	0.16	4.90	J	M
135443EDD	AOI3-SU2-SA-REP2	107220	FT	4/14/2018 11:40:00 AM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.81	mg/kg	0.24	0.12	0.810	J	P1
135443EDD	AOI3-SU2-SA-REP3	107222	FT	4/14/2018 11:40:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.14	mg/kg	0.83	0.42	0.140	J	M/TR
135443EDD	AOI3-SU2-SA-REP3	107222	FT	4/14/2018 11:40:00 AM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	2	mg/kg	0.31	0.16	2.00	J	M
135443EDD	AOI3-SU2-SA-REP3	107222	FT	4/14/2018 11:40:00 AM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.58	mg/kg	0.24	0.12	0.580	J	P1
135443EDD	AOI4-SU1-SA-REP1	107196	FT	4/14/2018 1:00:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.17	mg/kg	0.81	0.4	0.170	J	TR
135443EDD	AOI4-SU1-SA-REP1	107196	FT	4/14/2018 1:00:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.59	mg/kg	0.25	0.12	0.590	J	P1
135443EDD	AOI4-SU1-SA-REP2	107198	FT	4/14/2018 1:00:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.22	mg/kg	0.8	0.4	0.220	J	TR
135443EDD	AOI4-SU1-SA-REP2	107198	FT	4/14/2018 1:00:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.32	mg/kg	0.24	0.12	0.320	J	P1
135443EDD	AOI4-SU1-SA-REP3	107200	FT	4/14/2018 1:00:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.21	mg/kg	0.82	0.41	0.210	J	TR
135443EDD	AOI4-SU1-SA-REP3	107200	FT	4/14/2018 1:00:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.62	mg/kg	0.24	0.11	0.620	J	P1
135443EDD	AOI4-SU2-SA-REP1	107095	FT	4/14/2018 8:35:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.13	mg/kg	0.8	0.4	0.130	J	M/TR
135443EDD	AOI4-SU2-SA-REP1	107095	FT	4/14/2018 8:35:00 AM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	0.67	mg/kg	0.4	0.2	0.670	J	A/M
135443EDD	AOI4-SU2-SA-REP1	107095	FT	4/14/2018 8:35:00 AM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	7	mg/kg	0.3	0.15	7.00	J	M/D1
135443EDD	AOI4-SU2-SA-REP1	107095	FT	4/14/2018 8:35:00 AM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.42	mg/kg	0.25	0.12	0.420	J	P1
135443EDD	AOI4-SU2-SA-REP1	107095	FT	4/14/2018 8:35:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	С
135443EDD	AOI4-SU2-SA-REP2	107097	FT	4/14/2018 8:35:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0	mg/kg	0.84	0.42	0.420	UJ	M
135443EDD	AOI4-SU2-SA-REP2	107097	FT	4/14/2018 8:35:00 AM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	8	mg/kg	0.31	0.16	8.00	J	M/D1
135443EDD	AOI4-SU2-SA-REP2	107097	FT	4/14/2018 8:35:00 AM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.5	mg/kg	0.25	0.12	0.500	J	P1
135443EDD	AOI4-SU2-SA-REP2	107097	FT	4/14/2018 8:35:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.29	0.15	0.150	UJ	С
135443EDD	AOI4-SU2-SA-REP3	107099	FT	4/14/2018 8:35:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0	mg/kg	0.84	0.42	0.420	UJ	M
135443EDD	AOI4-SU2-SA-REP3	107099	FT	4/14/2018 8:35:00 AM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	4.2	mg/kg	0.31	0.16	4.20	J	M/D1
135443EDD	AOI4-SU2-SA-REP3	107099	FT	4/14/2018 8:35:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	С
135443EDD	AOI4-SU2-SB-REP1	107101	FT	4/14/2018 10:00:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0	mg/kg	0.81	0.4	0.400	UJ	М
135443EDD	AOI4-SU2-SB-REP1	107102	FT	4/14/2018 10:00:00 AM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	71.8	mg/kg	0.16	0.078	71.8	J	M/A
135443EDD	AOI4-SU2-SB-REP1	107101	FT	4/14/2018 10:00:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	C
135443EDD	AOI4-SU2-SB-REP2	107103	FT	4/14/2018 10:00:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.13	mg/kg	0.83	0.41	0.130	J	M/TR
135443EDD	AOI4-SU2-SB-REP2	107104	FT	4/14/2018 10:00:00 AM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	68.9	mg/kg	0.15	0.075	68.9	J	M
135443EDD	AOI4-SU2-SB-REP2	107103	FT	4/14/2018 10:00:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	С
	AOI4-SU2-SB-REP3		FT	4/14/2018 10:00:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0	mg/kg	0.82	0.41	0.410	UJ	М
	AOI4-SU2-SB-REP3		FT	4/14/2018 10:00:00 AM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	63	mg/kg	0.15	0.075	63.0	J	М
135443EDD	AOI4-SU2-SB-REP3		FT	4/14/2018 10:00:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.29	0.15	0.150	UJ	С
135443EDD	AOI4-SU3-SA-REP1		FT	4/14/2018 2:20:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.22	mg/kg	0.83	0.42	0.220	J	TR
135443EDD	AOI4-SU3-SA-REP1	107202	FT	4/14/2018 2:20:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.37	mg/kg	0.24	0.11	0.370	J	P1
	AOI4-SU3-SA-REP2		FT	4/14/2018 2:20:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.22	mg/kg	0.81	0.41	0.220	J	TR
	AOI4-SU3-SA-REP2		FT	4/14/2018 2:20:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.48	mg/kg	0.24	0.12	0.480	J	P1
	AOI4-SU3-SA-REP3		FT	4/14/2018 2:20:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.13	mg/kg	0.83	0.41	0.130	J	TR
135443EDD	AOI4-SU3-SA-REP3	107216	FT	4/14/2018 2:20:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.47	mg/kg	0.25	0.12	0.470	J	P1
	AOI4-SU4-SA-REP1		FT	4/14/2018 3:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.13	mg/kg	0.82	0.41	0.130	J	TR
	AOI4-SU4-SA-REP2		FT	4/14/2018 3:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.16	mg/kg	0.77	0.39	0.160	J	TR
135443EDD	AOI4-SU4-SA-REP3	107194	FT	4/14/2018 3:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.14	mg/kg	0.84	0.42	0.140	J	TR

*Includes detections that are less than the limits of quantitation (LOQs) but otherwise unqualified as a result of the validation (i.e., validation qualifiers of "J" with reason code "TR" only).

Stage 4 Validation Nitroguanidine by EPA Method 8330 Laboratory Deliverable 135443

Nitroguanidine (NQ) 12/14/2017 14:40: (Primary Column)		NQ (RT ~ 2.4 min)	(Target analyte)	Amount (ug/mL) 0.000 0.040 0.080 0.200 0.500 1.00	Area Counts 0 27675 52755 96004	Response Factor (RF) 0 691875 659437.5	378514.23	10812.63	zero 389326.86	zero 0	y = (389327 * x) + b				1	
р. 236 аmple Results (Primary Column) AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU3-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP	ample ID	(RT ~ 2.4 min)		0.040 0.080 0.200 0.500 1.00	27675 52755 96004	0 691875					, ,				1	
ample Results (Primary Column) ERT Sample ID AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP Nitroguanidine (NQ) 5/7/2018 11:11:5 Confirmation Column) p. 249 AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP	ample ID			0.080 0.200 0.500 1.00	52755 96004				1							-
Mitroguanidine (NQ) S/7/2018 11:11:5 Mitroguanidine (NQ) AOI4-SU4-SA-REP AOI4-SU3-SA-REP A	ample ID			0.200 0.500 1.00	96004	659437.5	1									
Column) ERI Sample ID AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP Onfirmation Column) 5/7/2018 11:11:50 p. 249 AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP	ample ID			0.500 1.00												
Column) ERI Sample ID AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP Onfirmation Column) 5/7/2018 11:11:50 p. 249 AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP	ample ID			1.00	102054	480020										
Column) ERI Sample ID AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP Joinfirmation Column) 5/7/2018 11:11:50 p. 249 AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP	ample ID				193654	387308										
Column) ERI Sample ID AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP Diffirmation Column) 5/7/2018 11:11:50 p. 249 AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP	ample ID				381630	381630										
Column) ERI Sample ID AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP Onfirmation Column) 5/7/2018 11:11:50 p. 249 AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP	ample ID			2.00	762099	381049.5										
Column) ERI Sample ID AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU1-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP AOI4-SU3-SA-REP Onfirmation Column) 5/7/2018 11:11:50 p. 249 AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP	ample ID			2.50	964894	385957.6										
A0I4-SU4-SA-REP A0I4-SU4-SA-REP A0I4-SU1-SA-REP A0I4-SU1-SA-REP A0I4-SU1-SA-REP A0I4-SU1-SA-REP A0I4-SU3-SA-REP A0I4-SU3-SA-REP A0I4-SU4-SA-REP A0I4-SU4-SA-REP A0I4-SU4-SA-REP A0I4-SU4-SA-REP A0I4-SU4-SA-REP		Lab Sample ID	Chromatogram Used	Known concentration (ug/mL)	Area Counts	Mass (g)	Extract Volume (mL)	Percent Solids	Dilution Volume (mL)							
A0I4-SU4-SA-REP A0I4-SU4-SA-REP A0I4-SU1-SA-REP A0I4-SU1-SA-REP A0I4-SU1-SA-REP A0I4-SU1-SA-REP A0I4-SU3-SA-REP A0I4-SU3-SA-REP 5/7/2018 11:11:50 confirmation Column) p. 249 A0I4-SU4-SA-REP A0I4-SU4-SA-REP A0I4-SU4-SA-REP A0I4-SU4-SA-REP		ICV		0.500	176194						0.453					
AQI4-SU4-SA-REP AQI4-SU1-SA-REP AQI4-SU1-SA-REP AQI4-SU1-SA-REP AQI4-SU1-SA-REP AQI4-SU3-SA-REP AQI4-SU3-SA-REP AQI4-SU3-SA-REP D D D D D D D D D D D D D D D D D D D		107188	After manual integ.		89348	5.20	10.0	0.998	20.0		0.229		L on confirmation col			
AQI4-SU1-SA-REP AQI4-SU1-SA-REP AQI4-SU1-SA-REP AQI4-SU1-SA-REP AQI4-SU3-SA-REP AQI4-SU3-SA-REP ST/7/2018 11:11:5 Confirmation Column) p. 249 AQI4-SU4-SA-REP AQI4-SU4-SA-REP AQI4-SU4-SA-REP AQI4-SU4-SA-REP		107191	After manual integ.		90551	5.07	10.0	0.998	20.0		0.233		L on confirmation col			
AQI4-SUI-SA-REP AQI4-SUI-SA-REP AQI4-SUI-SA-REP AQI4-SUI-SA-REP AQI4-SUI-SA-REP AQI4-SUI-SA-REP p. 249 AQI4-SUI-SA-REP AQI4-SUI-SA-REP AQI4-SUI-SA-REP AQI4-SUI-SA-REP		107194	After manual integ.		113785	5.19	10.0	0.998	20.0		0.292		L on confirmation col	umn)		
AQI4-SU1-SA-REP AQI4-SU3-SA-REP AQI4-SU3-SA-REP AQI4-SU3-SA-REP ST/2018 11:11:5 Confirmation Column) p. 249 AQI4-SU4-SA-REP AQI4-SU4-SA-REP AQI4-SU4-SA-REP AQI4-SU4-SA-REP AQI4-SU4-SA-REP		107196	After manual integ.		58355	5.05	10.0	0.998	20.0		0.150	0.59				
A0I4-SU3-SA-REP A0I4-SU3-SA-REP Nitroguanidine (NQ) 5/7/2018 11:11:50 Confirmation Column) p. 249 A0I4-SU4-SA-REP A0I4-SU4-SA-REP A0I4-SU4-SA-REP		107198	After manual integ.		32357	5.12	10.0	0.998	20.0		0.083	0.33			L	
AOI4-SU3-SA-REP Nitroguanidine (NQ) 5/7/2018 11:11:51 Onfirmation Column) p. 249 AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP AOI4-SU4-SA-REP		107200	After manual integ.		64240	5.31	10.0	0.997	20.0		0.165	0.62			I	
Nitroguanidine (NQ) 5/7/2018 11:11:5 Confirmation Column) p. 249 ACI4-SU4-SA-REP ACI4-SU4-SA-REP ACI4-SU4-SA-REP ACI4-SU4-SA-REP		107202	After manual integ.		37328	5.22	10.0	0.998	20.0		0.096	0.37			L	
Confirmation Column) p. 249 ADI4-SU4-SA-REP ADI4-SU4-SA-REP ADI4-SU4-SA-REP ADI4-SU4-SA-REP	J3-SA-REP2	107204	After manual integ.		48801	5.16	10.0	0.998	20.0		0.125	0.49			I	
Confirmation Column) p. 249 A014-5U4-5A-REP A014-5U4-5U4-5A-REP A014-5U4-5U4-5A-REP A014-5U4-5U4-5A-REP A014-5U4-5U4-5A-REP A014-5U4-5U4-5U4-5A-REP A014-5U4-5U4-5U4-5A-REP A014-5U4-5U4-5U4-5U4-5U4-5U4-5U4-5U4-5U4-5U				In	itial Calibration (ICA		Slope (m)	Intercept (b)	(NA)	(NA)	Regression Equation (ug/mL)					
p. 249 AOI4-5U4-5A-REP AOI4-5U4-5A-REP AOI4-5U4-5A-REP AOI4-5U4-5A-REP	8 11:11:50	NQ	(Target analyte)	Amount (ug/mL)	Area	RF	368205.03	4895.53			y = (368205.03 * x) +	4895.53				
AQI4-SU4-SA-REP AQI4-SU4-SA-REP AQI4-SU4-SA-REP AQI4-SU4-SA-REP		(RT ~2.7 min)		0.000	0	0									L	
AOI4-SU4-SA-REP AOI4-SU4-SA-REP				0.040	18335	458375									I	
AOI4-SU4-SA-REP AOI4-SU4-SA-REP				0.080	31285	391062.5									L	
AOI4-SU4-SA-REP AOI4-SU4-SA-REP				0.200	82431	412155									I	
AOI4-SU4-SA-REP AOI4-SU4-SA-REP				0.500	184371	368742									I	
AOI4-SU4-SA-REP AOI4-SU4-SA-REP				1.00	379812 767427	379812									I	
AOI4-SU4-SA-REP AOI4-SU4-SA-REP				2.00 2.50	902559	383713.5 361023.6										
AOI4-SU4-SA-REP AOI4-SU4-SA-REP				2.30	202009	301023.0										
AOI4-SU4-SA-REP AOI4-SU4-SA-REP						Mass (g)	Extract Volume (mL)	Percent Solids	Dilution Volume (mL)							
AOI4-SU4-SA-REP AOI4-SU4-SA-REP		ICV		0.500	207020						0.549					
AOI4-SU4-SA-REP	J4-SA-REP1	107188	(No reinteg. nec.)		(ND)						(ND)		Confirmed ND from	n chromatogram; no p	peak at 2.70 min.	
		107191	After manual integ.		(ND)						(ND)		Confirmed ND from	n chromatogram; no p	peak at 2.70 min.	_
AOIA CUIA CA DED	J4-SA-REP2	107194	After manual integ.		(ND)						(ND)			n chromatogram; no p		
	J4-SA-REP2 J4-SA-REP3	107196	After manual integ.		16209	5.05	10.0	0.998	20.0		0.031	0.12		hting used; confirmat		
AOI4-SU1-SA-REP	J4-SA-REP2 J4-SA-REP3 J1-SA-REP1	107198	After manual integ.		10506	5.12	10.0	0.998	20.0		0.015	0.06		hting used; confirmat		
AOI4-SU1-SA-REP	J4-SA-REP2 J4-SA-REP3 J1-SA-REP1 J1-SA-REP2	107200	After manual integ.		22068	5.31	10.0	0.997	20.0		0.047	0.18		hting used; confirmat		
AOI4-SU3-SA-REP	J4-SA-REP2 J4-SA-REP3 J1-SA-REP1 J1-SA-REP2 J1-SA-REP3	107202	After manual integ.		9919	5.22	10.0	0.998	20.0		0.014	0.05	Least-squares weighting used; confirmation is approximate.			
AOI4-SU3-SA-REP	J4-SA-REP2 J4-SA-REP3 J1-SA-REP1 J1-SA-REP2 J1-SA-REP3 J3-SA-REP1	107204	After manual integ.		15391	5.16	10.0	0.998	20.0		0.029	0.11	Least-squares weig	hting used; confirmat	tion is approximate.	
sults highlighed in green were calculated by	J4-SA-REP2 J4-SA-REP3 J1-SA-REP1 J1-SA-REP2 J1-SA-REP3 J3-SA-REP1	1	6	I												

Stage 4 Validation Metals by EPA Method 6010 Laboratory Deliverable 135443

Analysis Run #		A0	A1	For each metal, t	he first row is th	e standard (ug/L)	and the second i	s the instrument i	response.						Regre Equa
148405 (p. 1181)	Sb 206.833			0	1000	10	50	10000							
	50 206.833	-0.000065	0.000030	-0.00007	0.02997	0.00020	0.00152	0.29712							0.000
	Ch 217 501			0	1000	20	10	100	5	10000					
	Sb 217.581	0.000022	0.000023	0.00002	0.02359	0.00053	0.00024	0.00235	0.00025	0.23420					0.000
				0	1000	50	100	10	10000	5	20	1	100000		
	Cu 2247	0.000008	0.000136	0.00001	0.12945	0.00682	0.01324	0.00137	1.2366	0.00109	0.00278	0.00024	13.809		0.000
				0	1000	100	10000	100000							
	Cu 3247	0.000285	0.000003	0.00031	0.00333	0.00060	0.03045	0.33765							0.000
		0.000200	0.000000	0	1000	10000	100	10	100000						0.000
	Pb 2169		0.000026	0.00008	0.0266	0.25367	0.00283	0.0030	2.8781						0.000
			0.000020	0.00008	10	100	5	1000	10000						0.000
	Pb 2203		0.000040	0.00014	0.00052	0.00427	0.00041	0.0403	0.37970						0.000
			0.000040	10000		1000	100000	10	100						0.000
	Zn 2062		0.000100	1.8907	0										0.000
			0.000190		-0.00007	0.19605	18.652	0.00200	0.01995						0.000
	Zn 2138			10000	0	1000	10	100							
			0.000006	0.0545	0.0000	0.00580	0.00006	0.00060		+				+	0.000
				+				4	-		40000			+	-
148308 (p. 771)	Mn 257.610		0.000000	0	10	50	20	100	5	1000	10000			+	
			0.000009	0	0.001	0.0048	0.002	0.0096	0.0008	0.00929	0.08715			+	0.000
	Mn 259.373			0	10000	1000	100000								
			0.00008	0.00001	0.08339	0.00851	0.88945								0.000
	Ni 221.647			0	10000	100	1000								
			0.000122	-0.00007	1.2154	0.01297	0.12608								0.000
	Ni 231.604			0	50	10	100	5	1000	1	10000				
	11251.004	-0.000018	0.000168	-0.00002	0.00892	0.00173	0.01791	0.00141	0.1744	0.00016	1.671				0.000
148366 (p. 920)	Mn 257.610		0	10	50	20	100	5	1000	10000					
	1011 257.010	0.00001	0	0.0001	0.0005	0.00021	0.00097	0.00009	0.00949	0.08873					0.000
	Mn 259.373		0	10000	1000	100000									
	10111 233.373	0.000006	0.00001	0.06374	0.0065	0.69024									0.000
	Ni 221.647		0	10000	100	1000									
	NI 221.047	0.000202	0.00017	2.0078	0.02141	0.20998									0.000
			0	50	10	100	5	1000	1	10000					
	Ni 231.604	0.000204	0.00001	0.01048	0.00205	0.02066	0.00166	0.20315	0.00025	1.949					0.000
				Sb, Cu, Pb, Zn			Instr	rument Readings	(ug/L)				Result	s (mg/Kg)	
EBT Comple ID	Lab Comple ID	Dorsont Colida	Drop Datch #	Applytical Dup #	Daga Na	Sb2175	Cu2247	Db 2202	Zn2138	Mass (g)		Sb	C 11	Dh	
ERT Sample ID	Lab Sample ID	Percent Solids	Prep Batch #	Analytical Run #	Page No.			Pb2203		Mass (g)	F.V. (mL)		Cu	Pb	
AOI4-SU4-SA-REP1	107188	0.998	66568	148405	1290	4.99	28.6	150	215	1.95	50	0.13	0.73	3.85	5
AOI4-SU4-SA-REP2	107191	0.998	66568	148405	1293	6.65	41.1	272	252	2.08	50	0.16	0.99	6.55	6
AOI4-SU4-SA-REP3	107194	0.998	66568	148405	1294	5.21	32.5	193	123	1.92	50	0.14	0.85	5.04	3
AOI4-SU1-SA-REP1	107196	0.998	66568	148405	1295	6.83	33.2	121	126	1.99	50	0.17	0.84	3.05	3
AOI4-SU1-SA-REP2	107198	0.998	66568	148405	1296	8.66	58.3	104	99.0	2.00	50	0.22	1.46	2.61	2
AOI4-SU1-SA-REP3	107200	0.997	66568	148405	1297	8.11	38.4	120	134	1.96	50	0.21	0.98	3.07	3
AOI4-SU3-SA-REP1	107202	0.998	66568	148405	1298	8.63	31.7	116	110	1.93	50	0.22	0.82	3.01	2
AOI4-SU3-SA-REP2	107204	0.998	66568	148405	1299	8.84	45.0	175	141	1.97	50	0.22	1.14	4.45	3
							lasta in	dia an (sun (tr)		+			(+	_
				Mn, Zn			Instrument Read	aings (ug/L)		+	-	Results	(mg/Kg)	+	
ERT Sample ID	Lab Sample ID	Percent Solids	Prep Batch #	Analytical Run #	Page No.	Mn2576	Mn2593	Ni2316		Mass (g)	F.V. (mL)	Mn	Ni		
AOI4-SU4-SA-REP1	107190	0.993	66534	148308	907	707	815	22.2		1.97	50	18.1	0.57		
AOI4-SU4-SA-REP1 AOI4-SU4-SA-REP2	107192	0.993	66534	148308	908	688	797	28.7		1.97	50	17.8	0.74		
AOI4-SU4-SA-REP3	107192	0.994	66534	148308	913	721	799	23.8		1.94	50	17.8	0.61		
	107195	0.995	66534	148308	914	467	656	38.9		1.93	50	12.2	1.01		
	107199	0.995	66534	148308	915	407	605	35.4		1.93	50	10.9	0.93		
AOI4-SU1-SA-REP1		0.000			1029	380	396	34.1		1.91	50	9.7	0.87		
AOI4-SU1-SA-REP1 AOI4-SU1-SA-REP2		0,998	66538	148366						±	50	5.7			1
AOI4-SU1-SA-REP1 AOI4-SU1-SA-REP2 AOI4-SU1-SA-REP3	107201	0.998	66538 66538	148366 148366			3070	50.6		1.91	50	80.69	1.33		
AOI4-SU1-SA-REP1 AOI4-SU1-SA-REP2			66538 66538 66538	148366 148366 148366	1025 1032 1033			50.6 55.5		1.91 1.95	50 50	80.69 74.40	1.33 1.43		

Facility:	D01MA0033-04, CP Wellfleet - Art, Sm Arms, Rocket
Event:	Phase I Sampling 2018
SDG:	135444EDD
Guidance Document:	Camp Wellfleet - Art, Sm Arms, Rocket
Prime Contractor:	ERT, Inc., Laurel, MD
Project Manager:	Tom Bachovchin
Contract Laboratory:	CT Laboratories LLC, Baraboo, WI
Data Review Contractor:	HSW Engineering, Inc.
Data Review Level:	Stage 2B Review
Primary Data Reviewer:	Cindy Westergard, Senior Scientist
Second Reviewer:	Nigel Lewis, Project Scientist
Date Submitted:	July 12, 2018

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW8330	SW8330B
AOI1-SU1-SA-REP1	107143	Solid	Field Triplicate/FT	Х	Х	Х
AOI1-SU1-SA-REP1	107144	Solid	Field Triplicate/FT	Х		
AOI1-SU1-SA-REP2	107147	Solid	Field Triplicate/FT	Х	Х	Х
AOI1-SU1-SA-REP2	107148	Solid	Field Triplicate/FT	Х		
AOI1-SU1-SA-REP3	107149	Solid	Field Triplicate/FT	Х	Х	Х
AOI1-SU1-SA-REP3	107151	Solid	Field Triplicate/FT	Х		
AOI1-SU2-SA-REP1	107128	Solid	Field Triplicate/FT	Х	Х	Х
AOI1-SU2-SA-REP1	107132	Solid	Field Triplicate/FT	Х		
AOI1-SU2-SA-REP2	107133	Solid	Field Triplicate/FT	Х	Х	Х
AOI1-SU2-SA-REP2	107134	Solid	Field Triplicate/FT	Х		
AOI1-SU2-SA-REP3	107135	Solid	Field Triplicate/FT	Х	Х	Х
AOI1-SU2-SA-REP3	107136	Solid	Field Triplicate/FT	Х		
AOI1-SU2-SO01-8-10	107124	Solid	Field Sample/N	Х	Х	Х
AOI1-SU2-SO02-8-10	107125	Solid	Field Sample/N	Х	Х	Х
AOI1-SU2-SO03-8-10	107126	Solid	Field Sample/N	Х	Х	Х
AOI1-SU2-SO04-8-10	107127	Solid	Field Sample/N	Х	Х	Х
AOI1-SU3-SA-REP1	107137	Solid	Field Triplicate/FT	Х	Х	Х
AOI1-SU3-SA-REP1	107138	Solid	Field Triplicate/FT	Х		
AOI1-SU3-SA-REP2	107139	Solid	Field Triplicate/FT	Х	Х	Х
AOI1-SU3-SA-REP2	107140	Solid	Field Triplicate/FT	Х		

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW8330	SW8330B
AOI1-SU3-SA-REP3	107141	Solid	Field Triplicate/FT	Х	Х	Х
AOI1-SU3-SA-REP3	107142	Solid	Field Triplicate/FT	Х		
AOI1-SU3-SO01-8-10	107123	Solid	Field Sample/N	Х	Х	Х
AOI1-SU3-SO02-8-10	107122	Solid	Field Sample/N	Х	Х	Х
AOI1-SU3-SO03-8-10	107121	Solid	Field Sample/N	Х	Х	Х
AOI1-SU3-SO04-8-10	107120	Solid	Field Sample/N	Х	Х	Х
WELLFLEET-FD1	107154	Solid	Field Duplicate/FD	Х	Х	Х

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Camp Wellfleet - Art, Sm Arms, Rocket and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by ERT, Inc., Laurel, MD; analyses were performed by CT Laboratories LLC, Baraboo, WI and were reported under sample delivery group (SDG) 135444EDD. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank Blank - Negative Field Duplicate RPD LCS Recovery MS Recovery MS RPD Prep Hold Time Surrogate Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 22 results (9.40%) out of the 234 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected. Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Nine ISM soil samples and nine discrete soil samples were received by CT Laboratories, Baraboo, Wisconsin, and analyzed for a select list of explosives and metals. The samples were received intact and at a temperature within method specified acceptance limits. The ISM samples were dried, sieved, subsampled, and ground following the homogenization procedure specified for the project. The analyses were performed in accordance with requirements given in DOD QSM 5. Qualifiers used by the laboratory are defined in the laboratory report.

The ISM samples were collected as three field replicates (i.e., triplicates) from each of three locations and identified with suffixes of -REP1, -REP2, and -REP3. As replicate samples are an intrinsic part of the ISM process and this project, the extent of variability among triplicate results will be evaluated by the project team. Triplicate results were reviewed by the validator to confirm the overall reasonableness of the results, with no issues of concern noted.

Analytical Method	Data Reviewer Comment
SW6010C	The dried/sieved fraction of each ISM sample was subsampled for nickel and manganese before the sample underwent grinding via a puck mill, to avoid potential contamination of the samples with these metals from the puck mill. Analyses for antimony, copper, lead, and zinc were performed with the fully-homogenized, puck-milled fractions. The ISM samples were analyzed as part of two analytical runs (#148308 and #148444).
	The recovery of nickel reported for the laboratory control sample (LCS) associated with the nine discrete soil samples was 113.2% and, after rounding to three significant digits, was equal to the control limit of 113%. The recovery was indicated as acceptable in the laboratory report; however, the ADR review module interpreted the recovery as having exceeded the control limit and applied "J" validation qualifiers with reason code "C" to the detections of this analyte reported for all nine discrete soil samples. The qualifiers were deemed unwarranted by the validator and were removed.
	The laboratory performed MS/MSD, serial dilution (SD), and post-digestion spike (PDS) analyses with additional volumes of sample AOI1-SU3-SO01-8-10. With the exception of an elevated MSD recovery of manganese (127% vs. an upper control limit of 114%), all recoveries were within project control limits for analytical accuracy and analytical precision. The detection of manganese reported for the parent sample was classified as less than fully quantitative and coded with a "J" validation qualifier with reason code "M". While all results reported for the SD were indicated either to have been invalid or to have failed, all recoveries reported for the PDS were within acceptance limits, precluding the need for additional qualification.
	A field duplicate was collected at location AOI1-SU2-S004-8-10 and identified as WELLFLEET-FD1. The detections of target metals reported for these two soil samples met validation acceptance criteria for cumulative precision.
	The laboratory performed triplicate analyses of samples AOI1-SU3-SA-REP2, AOI1-SU3-SO01-8-10, and WELLFLEET-FD1. Sample results were qualified when the detection of the analyte was at least five times as great as the limit of quantitation (LOQ) and the %RPD exceeded 20%. Following this logic, qualification was limited to detections of manganese and nickel reported for sample AOI1-SU3-SA-REP2, manganese and zinc reported for samples AOI1-SU3-SA-REP2.

.	
SW8330	The ISM samples were analyzed for nitroguanidine as part of two analytical runs (#148455 and #148749). Nitroguanidine was detected in seven of these samples, with the results produced by the primary and confirmation analyses differing by more than 40% in each case (i.e., %RPD >40%). The laboratory attributed the discrepancies to interferences occurring in the confirmation analyses. The detections of nitroguanidine reported for these seven samples were classified as less than fully quantitative and coded with "J" validation qualifiers with reason codes of "P1".
	Low surrogate recoveries reported for the MS/MSD analyses of sample AOI1-SU2-SA- REP1 did not warrant qualification of sample data as the recoveries of the target analyte (nitroguanidine) met validation acceptance criteria for analytical accuracy and analytical precision. No other quality issues requiring qualification of sample data for nitroguanidine were noted.
SW8330B	The samples were analyzed for explosives by Method 8330B as part of two preparation batches and two analytical runs (batch #66453 / run #148964 and batch #66552 / run #148898). The laboratory control sample (LCS) prepared in batch #66552 yielded a low recovery of tetryl (37% vs. an acceptance range of 68-135%). The recovery of tetryl was acceptable in the analysis of the LCS prepared in batch #66453. Tetryl is known to be problematic as it decomposes upon exposure to heat, light, and moisture. The findings of non-detect reported for the nine ISM samples, all of which were included in preparation batch #66552, were classified as less than fully quantitative, based on the LCS recovery, and coded with "UJ" validation qualifiers with reason code "C".
	The laboratory performed MS/MSD analyses with additional volumes of discrete sample AOI1-SU3-SO01-8-10 and ISM sample AOI1-SU2-SA-REP1. Slightly elevated recoveries of tetryl were reported for the MS/MSD analyses of sample AOI1-SU3-SO01-8-10 (both 136% vs. an upper control limit of 135%). The absence of the analyte in the parent sample precluded the need for qualification of the result. Similarly, an elevated surrogate reported for sample WELLFLEET-FD1 (142% vs. an upper control limit of 119%) did not result in qualification of any of the explosives data for this sample as no target explosives were detected.

Cindy Fee Westergard

July 11, 2018

Reviewed by Cindy Westergard, Senior Scientist, HSW Engineering, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of a minimum of 10% of the reported sample results and method quality control data between the two deliverables.

July 11, 2018

Reviewed by Nigel Lewis, Project Scientist, HSW Engineering, Inc.

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6010C, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
109682 (BS)/ 109682	Nickel	113.2	83 - 113	40 - 150	percent	J/None	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW6010C, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
AOI1-SU3-SO01-8-10 (SD)/ 109678	Manganese	127.4	84 - 114	30 - 125	percent	J/None	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW6010C

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result Bias	Units	Reason
AOI1-SU3-SO01-8-10	Ν	Manganese	0.150	8.70 Y	8.70 J	mg/kg	M/D1

Analytes not found in project samples are reported as not detected at the limit of detection (LOD).

Quality Control Outliers for test method SW8330, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
AOI1-SU2-SA-REP1 (MS)/ 109256	1,2-Dinitrobenzene	29.60	32 - 136	10 - 136	percent	J/UJ	I	
AOI1-SU2-SA-REP1 (SD)/ 109257	1,2-Dinitrobenzene	29.00	32 - 136	10 - 136	percent	J/UJ	I	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8330B, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
109222 (BS)/ 109222	Tetryl	36.83	68 - 135	20 - 135	percent	J/UJ	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for SW8330B

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI1-SU1-SA-REP1	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU1-SA-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU1-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU2-SA-REP1	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU2-SA-REP2	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU2-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU3-SA-REP1	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU3-SA-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU3-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD).

Quality Control Outliers for test method SW8330B, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
AOI1-SU3-SO01-8-10 (MS)/ 107265	Tetryl	136.3	68 - 135	20 - 135	percent	J/None	М	
AOI1-SU3-SO01-8-10 (SD)/ 107266	Tetryl	135.7	68 - 135	20 - 135	percent	J/None	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Table of All Qualified Results

Test Method: SW6010C	Extract	ion Method: SW3050						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI1-SU3-SO01-8-10	Ν	Manganese	0.150	8.70 Y	8.70 J		mg/kg	M/D1
Test Method: SW8330B	Extract	ion Method: METHOD						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI1-SU1-SA-REP1	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU1-SA-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU1-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU2-SA-REP1	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU2-SA-REP2	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU2-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU3-SA-REP1	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU3-SA-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI1-SU3-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of All Trace Results

Test Method: SW6010C	Extract	ion Method: SW3050					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
AOI1-SU1-SA-REP1	FT	Antimony	0.840	0.170 J	0.170 J	mg/kg	TR
AOI1-SU1-SA-REP2	FT	Antimony	0.800	0.130 J	0.130 J	mg/kg	TR
AOI1-SU1-SA-REP3	FT	Antimony	0.810	0.190 J	0.190 J	mg/kg	TR
AOI1-SU2-SA-REP1	FT	Antimony	0.800	0.160 J	0.160 J	mg/kg	TR
AOI1-SU2-SA-REP2	FT	Antimony	0.820	0.150 J	0.150 J	mg/kg	TR
AOI1-SU2-SA-REP3	FT	Antimony	0.820	0.140 J	0.140 J	mg/kg	TR
AOI1-SU2-SO01-8-10	Ν	Antimony	0.800	0.220 J	0.220 J	mg/kg	TR
AOI1-SU2-SO02-8-10	Ν	Copper	0.430	0.320 J	0.320 J	mg/kg	TR
AOI1-SU2-SO03-8-10	N	Copper	0.410	0.340 J	0.340 J	mg/kg	TR
AOI1-SU2-SO04-8-10	N	Copper	0.410	0.350 J	0.350 J	mg/kg	TR
AOI1-SU3-SA-REP2	FT	Antimony	0.800	0.150 J	0.150 J	mg/kg	TR
AOI1-SU3-SA-REP3	FT	Antimony	0.830	0.150 J	0.150 J	mg/kg	TR
AOI1-SU3-SO01-8-10	N	Copper	0.400	0.270 J	0.270 J	mg/kg	TR
WELLFLEET-FD1	FD	Antimony	0.800	0.180 J	0.180 J	mg/kg	TR

Table of Results with Modified Qualifiers

Modified Qualifiers for t	est metho	od SW6010C					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
AOI1-SU2-SO01-8-10	Ν	Nickel	0.120	0.710	0.710 J	0.710	
AOI1-SU2-SO02-8-10	Ν	Nickel	0.130	0.550	0.550 J	0.550	
AOI1-SU2-SO03-8-10	Ν	Nickel	0.120	0.530	0.530 J	0.530	
AOI1-SU2-SO04-8-10	Ν	Nickel	0.120	0.580	0.580 J	0.580	
AOI1-SU3-SA-REP2	FT	Manganese	0.160	13.4 Y	13.4	13.4 J	D1
AOI1-SU3-SA-REP2	FT	Nickel	0.130	0.770 Y	0.770	0.770 J	D1
AOI1-SU3-SO01-8-10	N	Manganese	0.150	8.70 Y	8.70 J	8.70 J	M/D1
AOI1-SU3-SO01-8-10	N	Nickel	0.120	0.510	0.510 J	0.510	
AOI1-SU3-SO01-8-10	N	Zinc	0.300	4.80 Y	4.80	4.80 J	D1
AOI1-SU3-SO02-8-10	N	Nickel	0.120	0.820	0.820 J	0.820	
AOI1-SU3-SO03-8-10	N	Nickel	0.120	0.840	0.840 J	0.840	
AOI1-SU3-SO04-8-10	N	Nickel	0.120	0.840	0.840 J	0.840	
WELLFLEET-FD1	FD	Manganese	0.150	10.7 Y	10.7	10.7 J	D1
WELLFLEET-FD1	FD	Nickel	0.120	0.670	0.670 J	0.670	
WELLFLEET-FD1	FD	Zinc	0.300	5.10 Y	5.10	5.10 J	D1
Modified Qualifiers for t	est metho	od SW8330					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
AOI1-SU1-SA-REP1	FT	Nitroguanidine	0.250	0.870 P	0.870	0.870 J	P1
AOI1-SU1-SA-REP2	FT	Nitroguanidine	0.250	0.890 P	0.890	0.890 J	P1
AOI1-SU1-SA-REP3	FT	Nitroguanidine	0.240	0.500 P	0.500	0.500 J	P1
AOI1-SU2-SA-REP3	FT	Nitroguanidine	0.240	0.710 P	0.710	0.710 J	P1
AOI1-SU3-SA-REP1	FT	Nitroguanidine	0.250	0.690 P	0.690	0.690 J	P1
AOI1-SU3-SA-REP2	FT	Nitroguanidine	0.240	0.550 P	0.550	0.550 J	P1
AOI1-SU3-SA-REP3	FT	Nitroguanidine	0.250	0.630 P	0.630	0.630 J	P1

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
С	LCS Recovery
D1	Lab Replicate RPD
Ι	Surrogate recovery outside project limits.
М	MS Recovery
P1	Column RPD
TR	Trace Level Detect

Flag Code and Definitions

Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
В	Blank contamination: The analyte was found in an associated blank above one half the RL, as well as in the sample.
UB	The analyte was also detected in an associated laboratory or field blank at a concentration comparable to the concentration in the sample. The reported result has been requalified as not detected.

Automated Data Review Report Summary for 135444EDD

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were CCVs run at the required frequency and within acceptance criteria?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		An elevated MSD recovery was reported for manganese (sample AOI1-SU3-SO01-8-10 was used).
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			A field duplicate, identified as WELLFLEET-FD1, was collected at location AOI1-SU2-S004-8-10.
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data rejected during the verification process?		•		

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•	NO		Comment
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			
Were target analytes in the field blank less than MDL?	•			
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a project specific MS or MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			A field duplicate was collected at location AOII- SU2-SO04-8-10 and identified as sample WELLFLEET-FD1. No nitroguanidine was detected in either of these samples. Data for field triplicates are evaluated outside of
				the scope of this validation process.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?	•			
Were column comparison differences with project acceptance limits?		•		In all seven instances in which nitroguanidine was detected, the %RPD for the concentrations detected on the primary and confirmatory columns exceeded 40%.
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Method: SW8330B (Nitroaromatics and Nitramines by HPLC)			
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a project specific MS or MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		The recoveries of tetryl in the MS/MSD analyses of sample AOI1-SU3-SO01-8-10 slightly exceeded the upper control limit; however, the absence of the analyte in the parent sample precluded the need for qualification of the result
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?	•			A field duplicate was collected at location AOII- SU2-S004-8-10 and identified as sample WELLFLEET-FD1. No target explosives were detected in either of these two samples. Field triplicates are evaluated outside of the
				scope of this validation process.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?		•		
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?		•		The recovery of the surrogate in the analysis of sample WELLFLEET-FD1 was slightly greater than the upper control limit; however, no target explosives were detected in this sample.
Were column comparison differences with project acceptance limits?	•			
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Summary of Qualified Data

SDG	Client Sample ID	Lab Sample ID	SACODE	LOGDATE	Test Method	EXMCODE	MATRIX	Analyte Name	PARLABEL	CAS	DB Result	UNITS	DB Reporting Limit	Limit Of Detection	Display Result	Qualifier*	Reason Code
135444EDD	AOI1-SU1-SA-REP1	107143	FT	4/17/2018 2:45:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.17	mg/kg	0.84	0.42	0.170	J	TR
135444EDD	AOI1-SU1-SA-REP1	107143	FT	4/17/2018 2:45:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.87	mg/kg	0.25	0.12	0.870	J	P1
135444EDD	AOI1-SU1-SA-REP1	107143	FT	4/17/2018 2:45:00 PM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.29	0.15	0.150	UJ	С
135444EDD	AOI1-SU1-SA-REP2	107147	FT	4/17/2018 2:45:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.13	mg/kg	0.8	0.4	0.130	J	TR
135444EDD	AOI1-SU1-SA-REP2	107147	FT	4/17/2018 2:45:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.89	mg/kg	0.25	0.12	0.890	J	P1
135444EDD	AOI1-SU1-SA-REP2	107147	FT	4/17/2018 2:45:00 PM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	С
135444EDD	AOI1-SU1-SA-REP3	107149	FT	4/17/2018 2:45:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.19	mg/kg	0.81	0.4	0.190	J	TR
135444EDD	AOI1-SU1-SA-REP3	107149	FT	4/17/2018 2:45:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.5	mg/kg	0.24	0.11	0.500	J	P1
135444EDD	AOI1-SU1-SA-REP3	107149	FT	4/17/2018 2:45:00 PM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	С
135444EDD	AOI1-SU2-SA-REP1	107128	FT	4/17/2018 11:20:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.16	mg/kg	0.8	0.4	0.160	J	TR
135444EDD	AOI1-SU2-SA-REP1	107128	FT	4/17/2018 11:20:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.29	0.15	0.150	UJ	С
135444EDD	AOI1-SU2-SA-REP2	107133	FT	4/17/2018 11:20:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.15	mg/kg	0.82	0.41	0.150	J	TR
135444EDD	AOI1-SU2-SA-REP2	107133	FT	4/17/2018 11:20:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.29	0.15	0.150	UJ	С
135444EDD	AOI1-SU2-SA-REP3	107135	FT	4/17/2018 11:20:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.14	mg/kg	0.82	0.41	0.140	J	TR
135444EDD	AOI1-SU2-SA-REP3	107135	FT	4/17/2018 11:20:00 AM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.71	mg/kg	0.24	0.12	0.710	J	P1
135444EDD	AOI1-SU2-SA-REP3	107135	FT	4/17/2018 11:20:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	С
135444EDD	AOI1-SU2-SO01-8-10	107124	N	4/17/2018 9:45:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.22	mg/kg	0.8	0.4	0.220	J	TR
135444EDD	AOI1-SU2-SO02-8-10	107125	N	4/17/2018 10:15:00 AM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	0.32	mg/kg	0.43	0.21	0.320	J	TR
135444EDD	AOI1-SU2-SO03-8-10	107126	N	4/17/2018 10:40:00 AM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	0.34	mg/kg	0.41	0.21	0.340	J	TR
135444EDD	AOI1-SU2-SO04-8-10	107127	N	4/17/2018 11:05:00 AM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	0.35	mg/kg	0.41	0.2	0.350	J	TR
135444EDD	AOI1-SU3-SA-REP1	107137	FT	4/17/2018 12:50:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.69	mg/kg	0.25	0.12	0.690	J	P1
135444EDD	AOI1-SU3-SA-REP1	107137	FT	4/17/2018 12:50:00 PM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.29	0.15	0.150	UJ	С
135444EDD	AOI1-SU3-SA-REP2	107139	FT	4/17/2018 12:50:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.15	mg/kg	0.8	0.4	0.150	J	TR
135444EDD	AOI1-SU3-SA-REP2	107140	FT	4/17/2018 12:50:00 PM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	13.4	mg/kg	0.16	0.078	13.4	J	D1
135444EDD	AOI1-SU3-SA-REP2	107140	FT	4/17/2018 12:50:00 PM	SW6010C	SW3050	SO	Nickel	NI	7440-02-0	0.77	mg/kg	0.13	0.063	0.770	J	D1
135444EDD	AOI1-SU3-SA-REP2	107139	FT	4/17/2018 12:50:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.55	mg/kg	0.24	0.12	0.550	J	P1
135444EDD	AOI1-SU3-SA-REP2	107139	FT	4/17/2018 12:50:00 PM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	С
135444EDD	AOI1-SU3-SA-REP3	107141	FT	4/17/2018 12:50:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.15	mg/kg	0.83	0.41	0.150	J	TR
135444EDD	AOI1-SU3-SA-REP3	107141	FT	4/17/2018 12:50:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.63	mg/kg	0.25	0.12	0.630	J	P1
135444EDD	AOI1-SU3-SA-REP3	107141	FT	4/17/2018 12:50:00 PM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	C
135444EDD	AOI1-SU3-SO01-8-10	107123	N	4/17/2018 11:30:00 AM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	0.27	mg/kg	0.4	0.2	0.270	J	TR
135444EDD	AOI1-SU3-SO01-8-10	107123	N	4/17/2018 11:30:00 AM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	8.7	mg/kg	0.15	0.075	8.70	J	M/D1
135444EDD	AOI1-SU3-SO01-8-10	107123	N	4/17/2018 11:30:00 AM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	4.8	mg/kg	0.3	0.15	4.80	J	D1
135444EDD	WELLFLEET-FD1	107154	FD	4/17/2018 11:05:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.18	mg/kg	0.8	0.4	0.180	J	TR
135444EDD	WELLFLEET-FD1	107154	FD	4/17/2018 11:05:00 AM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	10.7	mg/kg	0.15	0.075	10.7	J	D1
135444EDD	WELLFLEET-FD1	107154	FD	4/17/2018 11:05:00 AM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	5.1	mg/kg	0.3	0.15	5.10	J	D1

*Includes detections that are less than the limits of quantitation (LOQs) but otherwise unqualified as a result of the validation (i.e., validation qualifiers of "J" with reason code "TR" only).

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW8330	SW8330B
AOI2-SU1-SA-REP1	107797	Solid	Field Triplicate/FT	Х	Х	Х
AOI2-SU1-SA-REP1	107798	Solid	Field Triplicate/FT	Х		
AOI2-SU1-SA-REP2	107799	Solid	Field Triplicate/FT	Х	Х	Х
AOI2-SU1-SA-REP2	107800	Solid	Field Triplicate/FT	Х		
AOI2-SU1-SA-REP3	107801	Solid	Field Triplicate/FT	Х	Х	Х
AOI2-SU1-SA-REP3	107802	Solid	Field Triplicate/FT	Х		
AOI2-SU2-SA-REP1	107791	Solid	Field Triplicate/FT	Х	Х	Х
AOI2-SU2-SA-REP1	107792	Solid	Field Triplicate/FT	Х		
AOI2-SU2-SA-REP2	107793	Solid	Field Triplicate/FT	Х	Х	Х
AOI2-SU2-SA-REP2	107794	Solid	Field Triplicate/FT	Х		
AOI2-SU2-SA-REP3	107795	Solid	Field Triplicate/FT	Х	Х	Х
AOI2-SU2-SA-REP3	107796	Solid	Field Triplicate/FT	Х		
AOI2-SU3-SA-REP1	107785	Solid	Field Triplicate/FT	Х	Х	Х
AOI2-SU3-SA-REP1	107786	Solid	Field Triplicate/FT	Х		
AOI2-SU3-SA-REP2	107787	Solid	Field Triplicate/FT	Х	Х	Х
AOI2-SU3-SA-REP2	107788	Solid	Field Triplicate/FT	Х		
AOI2-SU3-SA-REP3	107789	Solid	Field Triplicate/FT	Х	Х	Х
AOI2-SU3-SA-REP3	107790	Solid	Field Triplicate/FT	Х		
AOI5-SU3-SA-REP1	107803	Solid	Field Triplicate/FT	Х	Х	Х
AOI5-SU3-SA-REP1	107804	Solid	Field Triplicate/FT	Х		

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW8330	SW8330B
AOI5-SU3-SA-REP2	107805	Solid	Field Triplicate/FT	Х	Х	Х
AOI5-SU3-SA-REP2	107806	Solid	Field Triplicate/FT	Х		
AOI5-SU3-SA-REP3	107807	Solid	Field Triplicate/FT	Х	Х	Х
AOI5-SU3-SA-REP3	107808	Solid	Field Triplicate/FT	Х		

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Camp Wellfleet - Art, Sm Arms, Rocket and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by ERT, Inc., Laurel, MD; analyses were performed by CT Laboratories LLC, Baraboo, WI and were reported under sample delivery group (SDG) 135478EDD. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank Blank - Negative LCS Recovery MS Recovery MS RPD Prep Hold Time Surrogate Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 43 results (27.56%) out of the 156 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected. Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Twelve ISM samples were received by CT Laboratories, Baraboo, Wisconsin, and analyzed for a select list of explosives and metals. The samples were received intact and at a temperature within method specified acceptance limits. The ISM samples were dried, sieved, subsampled, and ground following the homogenization procedure specified for the project. The analyses were performed in accordance with requirements given in DOD QSM 5. Qualifiers used by the laboratory are defined in the laboratory report.

The ISM samples were collected as three field replicates (i.e., triplicates) from each of four locations and identified with suffixes of -REP1, -REP2, and -REP3. As replicate samples are an intrinsic part of the ISM process and this project, the extent of variability among triplicate results will be evaluated by the project team. Triplicate results were reviewed by the validator to confirm the overall reasonableness of the results, with no issues of concern noted.

Analytical Method	Data Reviewer Comment
SW6010C	The dried/sieved fraction of each ISM sample was subsampled for nickel and manganese prior to the sample undergoing grinding via a puck mill, to avoid potential contamination of the samples with these metals from the puck mill. Analyses for antimony, copper, lead, and zinc were performed with the fully-homogenized, puck-milled fractions. The ISM samples were analyzed as part of two analytical runs (#148308 and #148444).
	The laboratory performed MS/MSD, serial dilution(SD), and post-digestion spike (PDS) analyses with additional volumes of samples AOI2-SU2-SA-REP1 and AOI5-SU3-SA-REP1. Low recoveries were reported for antimony in the MS and MSD (52% and 51%) and for copper in the MS (80%) of sample AOI2-SU2-SA-REP1; all other recoveries reported for the MS/MSD analyses of sample AOI2-SU2-SA-REP1 and all %RPDs were within control limits. The laboratory also reported low recoveries of antimony in the MS analyses of sample AOI5-SU3-SA-REP1 (70% and 67%) and of copper, lead, and zinc in the MSD (analyzed twice, in association with two analytical runs). The results for these metals in the parent samples were classified as less than fully quantitative and coded with "J" validation qualifiers (all were detections). The results for antimony and zinc reported for parent sample AOI5-SU3-SA-REP1 also were qualified due to elevated MS/MSD %RPDs.
	All results reported for the SDs were indicated either to have been invalid or to have failed. Low PDS recoveries were reported for manganese, nickel, copper, and lead in the PDS analyses of both samples and for zinc in the PDS analysis of sample AOI2-SU2-SA-REP1. These low PDS recoveries were used as additional reasons for the application of J validation qualifiers to the results for these four metals for the parent sample.
	The list of reason codes for data qualification for this project does not include a distinct code for indicating when PDS recoveries are not within control limits. Therefore, when the SD result for a given metal was invalid or not within control limits and the subsequent PDS recovery also was not within control limits, the sample result was qualified with a validation qualifier of "J" (detections) or "UJ" (non-detections) with reason codes of "A/M" ("A" signifying an invalid or failed SD analysis and "M" indicating a spike recovery that was not within limits in this case, a PDS). If the MS and/or MSD recovery was not within control limits and the SD + PDS results also were not within control limits, the data were qualified with "J" or "UJ" with reason codes of "M/A" (rather than "M/A/M", as the FUDSchem system will not allow a reason code to be entered twice).
	The laboratory performed triplicate analyses of samples AOI2-SU2-SA-REP1, AOI2-SU3-SA-REP1, AOI5-SU3-SA-REP1, and AOI5-SU3-SA-REP2. Sample results were qualified when the detection of the analyte was at least five times as great as the limit of quantitation (LOQ) and the %RPD exceeded 20%. Following this logic, qualification was limited to detections of zinc reported for sample AOI5-SU3-SA-REP1, manganese and nickel reported for sample AOI2-SU3-SA-REP1, and manganese, nickel, and zinc reported for sample AOI2-SU3-SA-REP1.
SW8330	Nitroguanidine was detected in two of the twelve ISM samples, with the results produced by the primary and confirmation analyses differing by more than 40% relative percent difference (%RPD) in both instances. The laboratory attributed the discrepancies to interferences occurring in the confirmation analyses. The detections of nitroguanidine reported for these two samples were classified as less than fully quantitative and coded with "J" validation qualifiers with reason codes of "P1". All other data review acceptance criteria were met.

SW8330B The laboratory control sample (LCS) yielded a low recovery of tetryl (51% vs. an acceptance range of 68-135%). This analyte is known to be problematic as it decomposes upon exposure to heat, light, and moisture. The findings of non-detect reported for tetryl for all of the ISM samples were classified as less than fully quantitative, based on the LCS recovery, and coded with "UJ" validation gualifiers with reason code "C".

As noted in the laboratory case narrative, the initial analysis of sample AOI2-SU1-SA-REP2 (laboratory sample number 107799) yielded a surrogate recovery of 2.4% and no analyte detections above the MDL. The sample was re-shaken, re-filtered, and re-analyzed, with a surrogate recovery of 4.9% and possible detection of 2.6-dinitrotoluene. The sample was re-prepped on 5/10/2018, with no recovery of the surrogate. The laboratory made note of a chromatographic peak that eluted nearly a full minute earlier than the surrogate and some baseline noise, but no detections of target analytes. The second analysis (re-shaken and re-filtered) was reported and confirmation analysis of that vial was performed. The confirmation analysis had a large peak just outside the surrogate window that had a slight shoulder split off of it. This gave a surrogate value of about 2%. Another large peak eluted at the time of 2,4-dinitrotoluene, but this did not match the primary run. While the final reported surrogate recovery of 4.9% (rounded to 5.0% in the laboratory report) was very low, the repeat analyses (all with similar findings of non-detect) were deemed sufficient to warrant gualification of the results for explosives reported for sample AOI2-SU1-SA-REP2 (all of which were findings of non-detect) with "UJ" validation qualifiers, rather than "R" (rejected).

No other quality issues warranting additional qualification of the sample data for explosives by Method 8330B were noted.

Cindy Fee Westergard

July 11, 2018

Reviewed by Cindy Westergard, Senior Scientist, HSW Engineering Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of a minimum of 10% of the reported sample results and method quality control data between the two deliverables.

July 11, 2018

Reviewed by Nigel Lewis, Project Scientist, HSW Engineering Inc.

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6010C, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
AOI2-SU2-SA-REP1 (MS)/ 109701	Antimony	51.46	79 - 114	30 - 125	percent	J/UJ	М	
AOI2-SU2-SA-REP1 (SD)/ 109702	Antimony	52.47	79 - 114	30 - 125	percent	J/UJ	М	
AOI2-SU2-SA-REP1 (SD)/ 109702	Copper	80.16	81 - 117	30 - 117	percent	J/UJ	М	
AOI5-SU3-SA-REP1 (MS)/ 109705	Antimony	69.85	79 - 114	30 - 125	percent	J/UJ	М	
AOI5-SU3-SA-REP1 (SD)/ 109706	Lead	75.10	81 - 112	30 - 125	percent	J/UJ	М	
AOI5-SU3-SA-REP1 (SD)/ 109706	Zinc	77.39	82 - 113	30 - 125	percent	J/UJ	М	
AOI5-SU3-SA-REP1 (SD)/ 109706	Copper	77.10	81 - 117	30 - 117	percent	J/UJ	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW6010C

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI2-SU2-SA-REP1	FT	Antimony	0.810	0.230 J	0.230 J	-	mg/kg	M/TR
AOI2-SU2-SA-REP1	FT	Copper	0.400	1.90 M	1.90 J	-	mg/kg	M/A
AOI2-SU2-SA-REP1	FT	Lead	0.250	2.90 M	2.90 J	-	mg/kg	A/M
AOI2-SU2-SA-REP1	FT	Zinc	0.300	6.40 M,Y	6.40 J	-	mg/kg	A/M
AOI2-SU2-SA-REP2	FT	Antimony	0.810	0.250 J	0.250 J	-	mg/kg	M/TR
AOI2-SU2-SA-REP2	FT	Copper	0.410	1.80	1.80 J	-	mg/kg	М
AOI2-SU2-SA-REP3	FT	Antimony	0.790	0.160 J	0.160 J	-	mg/kg	M/TR
AOI2-SU2-SA-REP3	FT	Copper	0.400	2.10	2.10 J	-	mg/kg	М
AOI5-SU3-SA-REP1	FT	Antimony	0.830	0.140 JY	0.140 J	-	mg/kg	M/D/TR
AOI5-SU3-SA-REP1	FT	Copper	0.420	1.20 M	1.20 J	-	mg/kg	M/A
AOI5-SU3-SA-REP1	FT	Lead	0.260	1.90 M	1.90 J	-	mg/kg	M/A
AOI5-SU3-SA-REP1	FT	Zinc	0.310	5.60 Y	5.60 J	-	mg/kg	М
AOI5-SU3-SA-REP2	FT	Antimony	0.830	0.230 J	0.230 J	-	mg/kg	M/D/TR
AOI5-SU3-SA-REP2	FT	Copper	0.420	1.20	1.20 J	-	mg/kg	М
AOI5-SU3-SA-REP2	FT	Lead	0.260	1.70	1.70 J	-	mg/kg	М
AOI5-SU3-SA-REP2	FT	Zinc	0.310	7.90	7.90 J	-	mg/kg	М
AOI5-SU3-SA-REP3	FT	Antimony	0.840	0.170 J	0.170 J	-	mg/kg	M/D/TR
AOI5-SU3-SA-REP3	FT	Copper	0.420	1.60	1.60 J	-	mg/kg	М
AOI5-SU3-SA-REP3	FT	Lead	0.260	2.10	2.10 J	-	mg/kg	М

Qualified Results associated with the MS Recovery for SW6010C

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI5-SU3-SA-REP3	FT	Zinc	0.320	3.20	3.20 J	-	mg/kg	Μ

Analytes not found in project samples are reported as not detected at the limit of detection (LOD).

Quality Control Outliers for test method SW6010C, MS RPD

The objective of matrix spikes/matrix spike duplicates (MS/MSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. MS/MSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Matrix spikes/matrix spike duplicates results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
AOI5-SU3-SA-REP1 (SD)/ 109706	Antimony	23.61	< 20	< 20	rpd	J/UJ	D	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS RPD for SW6010C

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI5-SU3-SA-REP1	FT	Antimony	0.830	0.140 JY	0.140 J	-	mg/kg	M/D/TR
AOI5-SU3-SA-REP2	FT	Antimony	0.830	0.230 J	0.230 J	-	mg/kg	M/D/TR
AOI5-SU3-SA-REP3	FT	Antimony	0.840	0.170 J	0.170 J	-	mg/kg	M/D/TR

Analytes not found in project samples are reported as not detected at the limit of detection (LOD).

Quality Control Outliers for test method SW8330B, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
109270 (BS)/ 109270	Tetryl	51.01	68 - 135	20 - 135	percent	J/UJ	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for SW8330B

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI2-SU1-SA-REP1	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU1-SA-REP2	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	C/I
AOI2-SU1-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU2-SA-REP1	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU2-SA-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU2-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU3-SA-REP1	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU3-SA-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU3-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI5-SU3-SA-REP1	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI5-SU3-SA-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI5-SU3-SA-REP3	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD).

Table of All Qualified Results

Test Method: SW6010C	Extract	ion Method: SW3050						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI2-SU2-SA-REP1	FT	Antimony	0.810	0.230 J	0.230 J	-	mg/kg	M/TR
AOI2-SU2-SA-REP1	FT	Copper	0.400	1.90 M	1.90 J	-	mg/kg	M/A
AOI2-SU2-SA-REP1	FT	Lead	0.250	2.90 M	2.90 J	-	mg/kg	A/M
AOI2-SU2-SA-REP1	FT	Zinc	0.300	6.40 M,Y	6.40 J	-	mg/kg	A/M
AOI2-SU2-SA-REP2	FT	Antimony	0.810	0.250 J	0.250 J	-	mg/kg	M/TR
AOI2-SU2-SA-REP2	FT	Copper	0.410	1.80	1.80 J	-	mg/kg	М
AOI2-SU2-SA-REP3	FT	Antimony	0.790	0.160 J	0.160 J	-	mg/kg	M/TR
AOI2-SU2-SA-REP3	FT	Copper	0.400	2.10	2.10 J	-	mg/kg	М
AOI5-SU3-SA-REP1	FT	Antimony	0.830	0.140 JY	0.140 J	-	mg/kg	M/D/TR
AOI5-SU3-SA-REP1	FT	Copper	0.420	1.20 M	1.20 J	-	mg/kg	M/A
AOI5-SU3-SA-REP1	FT	Lead	0.260	1.90 M	1.90 J	-	mg/kg	M/A
AOI5-SU3-SA-REP1	FT	Zinc	0.310	5.60 Y	5.60 J	-	mg/kg	М
AOI5-SU3-SA-REP2	FT	Antimony	0.830	0.230 J	0.230 J	-	mg/kg	M/D/TR
AOI5-SU3-SA-REP2	FT	Copper	0.420	1.20	1.20 J	-	mg/kg	М
AOI5-SU3-SA-REP2	FT	Lead	0.260	1.70	1.70 J	-	mg/kg	М
AOI5-SU3-SA-REP2	FT	Zinc	0.310	7.90	7.90 J	-	mg/kg	М
AOI5-SU3-SA-REP3	FT	Antimony	0.840	0.170 J	0.170 J	-	mg/kg	M/D/TR
AOI5-SU3-SA-REP3	FT	Copper	0.420	1.60	1.60 J	-	mg/kg	М
AOI5-SU3-SA-REP3	FT	Lead	0.260	2.10	2.10 J	-	mg/kg	М
AOI5-SU3-SA-REP3	FT	Zinc	0.320	3.20	3.20 J	-	mg/kg	М
Test Method: SW8330B	Extract	ion Method: METHOD						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI2-SU1-SA-REP1	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU1-SA-REP2	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	C/I
AOI2-SU1-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU2-SA-REP1	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU2-SA-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU2-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU3-SA-REP1	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU3-SA-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI2-SU3-SA-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI5-SU3-SA-REP1	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI5-SU3-SA-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI5-SU3-SA-REP3	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	-	mg/kg	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of All Trace Results

Test Method: SW6010C	Extract	ion Method: SW3050						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI2-SU2-SA-REP1	FT	Antimony	0.810	0.230 J	0.230 J	-	mg/kg	M/TR
AOI2-SU2-SA-REP2	FT	Antimony	0.810	0.250 J	0.250 J	-	mg/kg	M/TR
AOI2-SU2-SA-REP3	FT	Antimony	0.790	0.160 J	0.160 J	-	mg/kg	M/TR
AOI2-SU3-SA-REP1	FT	Antimony	0.780	0.150 J	0.150 J		mg/kg	TR
AOI2-SU3-SA-REP2	FT	Antimony	0.770	0.270 J	0.270 J		mg/kg	TR
AOI5-SU3-SA-REP1	FT	Antimony	0.830	0.140 JY	0.140 J	-	mg/kg	M/D/TR
AOI5-SU3-SA-REP2	FT	Antimony	0.830	0.230 J	0.230 J	-	mg/kg	M/D/TR
AOI5-SU3-SA-REP3	FT	Antimony	0.840	0.170 J	0.170 J	-	mg/kg	M/D/TR
Test Method: SW8330	Extractio	n Method: METHOD						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI5-SU3-SA-REP3	FT	Nitroguanidine	0.250	0.210 JP	0.210 J		mg/kg	TR/P1

Table of Results with Modified Qualifiers

Modified Qualifiers for t	ost mothe	A SW6010C					
FieldSample ID		Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
AOI2-SU2-SA-REP1	FT	Copper	0.400	1.90 M	1.90 J	1.90 J	M/A
AOI2-SU2-SA-REP1	FT	Lead	0.250	2.90 M	2.90	2.90 J	A/M
AOI2-SU2-SA-REP1	FT	Zinc	0.300	6.40 M,Y	6.40	6.40 J	A/M
AOI2-SU2-SA-REP1	FT	Manganese	0.150	17.5 Y,M	17.5	17.5 J	A/M
AOI2-SU2-SA-REP1	FT	Nickel	0.120	1.20 Y,M	1.20	1.20 J	A/M
AOI5-SU3-SA-REP1	FT	Copper	0.420	1.20 M	1.20 J	1.20 J	M/A
AOI5-SU3-SA-REP1	FT	Lead	0.260	1.90 M	1.90 J	1.90 J	M/A
AOI5-SU3-SA-REP1	FT	Manganese	0.150	17.0 M	17.0	17.0 J	A/M
AOI5-SU3-SA-REP1	FT	Nickel	0.120	0.870 M	0.870	0.870 J	A/M
Modified Qualifiers for t	est metho	od SW8330					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
AOI2-SU1-SA-REP3	FT	Nitroguanidine	0.240	0.460 P	0.460	0.460 J	P1
AOI5-SU3-SA-REP3	FT	Nitroguanidine	0.250	0.210 JP	0.210 J	0.210 J	TR/P1
Modified Qualifiers for t	est metho	od SW8330B					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
AOI2-SU1-SA-REP2	FT	2,4,6-Trinitrotoluene	0.190	0.0970 U	0.0970 U	0.0970 UJ	I
AOI2-SU1-SA-REP2	FT	2,4-Dinitrotoluene	0.290	0.150 U	0.150 U	0.150 UJ	I
AOI2-SU1-SA-REP2	FT	2,6-Dinitrotoluene	0.290	0.150 U	0.150 U	0.150 UJ	I
AOI2-SU1-SA-REP2	FT	Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX)	0.290	0.150 U	0.150 U	0.150 UJ	I
AOI2-SU1-SA-REP2	FT	Nitroglycerin	0.580	0.290 U	0.290 U	0.290 UJ	I
AOI2-SU1-SA-REP2	FT	Tetryl	0.290	0.150 UQ	0.150 UJ	0.150 UJ	C/I

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
А	Serial dilution
С	LCS Recovery
D	MS RPD
I	Surrogate recovery outside project limits.
М	MS Recovery
P1	Column RPD
TR	Trace Level Detect

Flag Code and Definitions

Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
В	Blank contamination: The analyte was found in an associated blank above one half the RL, as well as in the sample.
UB	The analyte was also detected in an associated laboratory or field blank at a concentration comparable to the concentration in the sample. The reported result has been requalified as not detected.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were CCVs run at the required frequency and within acceptance criteria?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?				Low recoveries were reported for antimony in the MS and MSD (52% and 51%) and for copper in the MS (80%) of sample AOI2-SU2-SA-REP1; all other recoveries reported for the MS/MSD analyses of sample AOI2-SU2-SA-REP1 and all %RPDs were within control limits. The laboratory also reported low recoveries of antimony in the MS analyses of sample AOI5- SU3-SA-REP1 (70% and 67%) and of copper, lead, and zinc in the MSD (analyzed twice, in association with two analytical runs). The results for these metals in the parent samples were classified as less than fully quantitative and coded with "J" validation qualifiers (all were detections).
Was the MS/MSD RPD within project acceptance limits?		•		The results for antimony and zinc reported for parent sample AOI5-SU3-SA-REP1 also were qualified due to elevated MS/MSD %RPDs.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Field triplicates were collected. These results are evaluated outside of the scope of this validation process.
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data rejected during the verification process?		•		

Method: SW8330 (Nitroaromatics and Nitramines by HPLC) Review Questions	Yes	No	NA	Comment
	res	INO	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a project specific MS or MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Evaluated outside of the scope of this validation process.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?	•			
Were column comparison differences with project acceptance limits?				Nitroguanidine was detected in two of the twelve ISM samples, with the results produced by the primary and confirmation analyses differing by more than 40% in both instances (i.e., %RPD >40%). The laboratory attributed the discrepancies to interferences occurring in the confirmation analyses. The detections of nitroguanidine reported for these two samples were classified as less than fully quantitative and coded with "J" validation qualifiers with reason codes of "P1".
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a project specific MS or MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Evaluation of field triplicates is performed by the project team, outside of the scope of this validation effort.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?		•		Slightly high in two instances, but no target explosives were detected in any of the project samples.
Were column comparison differences with project acceptance limits?	•			
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Summary of Qualified Data

SDG	Client Sample ID	Lab Sample ID	SACODE	LOGDATE	Test Method	EXMCODE	MATRIX	Analyte Name	PARLABEL	CAS	DB Result	UNITS	DB Reporting Limit	Limit Of Detection	Display Result	Qualifier*	Reason Code
135478EDD	AOI2-SU1-SA-REP1	107797	FT	4/18/2018 8:45:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	с
135478EDD	AOI2-SU1-SA-REP2	107799	FT	4/18/2018 8:45:00 AM	SW8330B	METHOD	SO	2,4,6-Trinitrotoluene	TNT	118-96-7	0	mg/kg	0.19	0.097	0.0970	UJ	1
135478EDD	AOI2-SU1-SA-REP2	107799	FT	4/18/2018 8:45:00 AM	SW8330B	METHOD	SO	2.4-Dinitrotoluene	DNT24	121-14-2	0	mg/kg	0.29	0.15	0.150	UJ	
135478EDD	AOI2-SU1-SA-REP2	107799	FT	4/18/2018 8:45:00 AM	SW8330B	METHOD	SO	2,6-Dinitrotoluene	DNT26	606-20-2	0	mg/kg	0.29	0.15	0.150	UJ	1
135478EDD	AOI2-SU1-SA-REP2	107799	FT	4/18/2018 8:45:00 AM	SW8330B	METHOD	SO	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	RDX	121-82-4	0	mg/kg	0.29	0.15	0.150	UJ	1
135478EDD	AOI2-SU1-SA-REP2	107799	FT	4/18/2018 8:45:00 AM	SW8330B	METHOD	SO	Nitroglycerin	NTG	55-63-0	0	mg/kg	0.58	0.29	0.290	UJ	1
135478EDD	AOI2-SU1-SA-REP2	107799	FT	4/18/2018 8:45:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.29	0.15	0.150	UJ	C/I
135478EDD	AOI2-SU1-SA-REP3	107801	FT	4/18/2018 8:45:00 AM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.46	mg/kg	0.24	0.12	0.460	i i	P1
135478EDD	AOI2-SU1-SA-REP3	107801	FT	4/18/2018 8:45:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	C
135478EDD	AOI2-SU2-SA-REP1	107791	FT	4/18/2018 10:00:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.23	mg/kg	0.81	0.4	0.230	1	M/TR
135478EDD	AOI2-SU2-SA-REP1	107791	FT	4/18/2018 10:00:00 AM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	1.9	mg/kg	0.4	0.2	1.90	1	M/A
135478EDD	AOI2-SU2-SA-REP1	107791	FT	4/18/2018 10:00:00 AM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	2.9	mg/kg	0.25	0.13	2.90	J	A/M
135478EDD	AOI2-SU2-SA-REP1	107792	FT	4/18/2018 10:00:00 AM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	17.5	mg/kg	0.15	0.074	17.5	1	A/M
135478EDD	AOI2-SU2-SA-REP1	107792	FT	4/18/2018 10:00:00 AM	SW6010C	SW3050	SO	Nickel	NI	7440-02-0	1.2	mg/kg	0.12	0.06	1.20	J	A/M
135478EDD	AOI2-SU2-SA-REP1	107791	FT	4/18/2018 10:00:00 AM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	6.4	mg/kg	0.3	0.15	6.40	1	A/M
135478EDD	AOI2-SU2-SA-REP1	107791	FT	4/18/2018 10:00:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	C
135478EDD	AOI2-SU2-SA-REP2	107793	FT	4/18/2018 10:00:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.25	mg/kg	0.81	0.41	0.250	J	M/TR
135478EDD	AOI2-SU2-SA-REP2	107793	FT	4/18/2018 10:00:00 AM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	1.8	mg/kg	0.41	0.2	1.80	1	M
135478EDD	AOI2-SU2-SA-REP2	107793	FT	4/18/2018 10:00:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	C
135478EDD	AOI2-SU2-SA-REP3	107795	FT	4/18/2018 10:00:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.16	mg/kg	0.79	0.4	0.160	1	M/TR
135478EDD	AOI2-SU2-SA-REP3	107795	FT	4/18/2018 10:00:00 AM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	2.1	mg/kg	0.4	0.2	2.10	1	M
135478EDD	AOI2-SU2-SA-REP3	107795	FT	4/18/2018 10:00:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	C
135478EDD	AOI2-SU3-SA-REP1	107785	FT	4/18/2018 11:00:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.15	mg/kg	0.78	0.39	0.150	1	TR
135478EDD	AOI2-SU3-SA-REP1	107785	FT	4/18/2018 11:00:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	c
135478EDD	AOI2-SU3-SA-REP2	107787	FT	4/18/2018 11:00:00 AM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.27	mg/kg	0.77	0.39	0.270	1	TR
135478EDD	AOI2-SU3-SA-REP2	107787	FT	4/18/2018 11:00:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	C
135478EDD	AOI2-SU3-SA-REP3	107789	FT	4/18/2018 11:00:00 AM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	C
135478EDD	AOI5-SU3-SA-REP1	107803	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.14	mg/kg	0.83	0.42	0.140	1	M/D/TR
135478EDD	AOI5-SU3-SA-REP1	107803	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	1.2	mg/kg	0.42	0.21	1.20	, i	M/A
135478EDD	AOI5-SU3-SA-REP1	107803	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	1.9	mg/kg	0.26	0.13	1.90	1	M/A
135478EDD	AOI5-SU3-SA-REP1	107804	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	17	mg/kg	0.15	0.076	17.0	1	A/M
135478EDD	AOI5-SU3-SA-REP1	107804	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Nickel	NI	7440-02-0	0.87	mg/kg	0.12	0.061	0.870	J	A/M
135478EDD	AOI5-SU3-SA-REP1	107803	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	5.6	mg/kg	0.31	0.16	5.60	1	M
135478EDD	AOI5-SU3-SA-REP1	107803	FT	4/18/2018 12:30:00 PM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	C
135478EDD	AOI5-SU3-SA-REP2	107805	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.23	mg/kg	0.83	0.42	0.230	1	M/D/TR
135478EDD	AOI5-SU3-SA-REP2	107805	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	1.2	mg/kg	0.42	0.21	1.20	1	M
135478EDD	AOI5-SU3-SA-REP2	107805	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	1.7	mg/kg	0.26	0.13	1.70	1	M
135478EDD	AOI5-SU3-SA-REP2	107805	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	7.9	mg/kg	0.31	0.16	7.90	1	M
135478EDD	AOI5-SU3-SA-REP2	107805	FT	4/18/2018 12:30:00 PM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	C
135478EDD	AOI5-SU3-SA-REP3	107807	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.17	mg/kg	0.84	0.42	0.130	1	M/D/TR
135478EDD	AOI5-SU3-SA-REP3	107807	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	1.6	mg/kg	0.42	0.42	1.60	j	M
135478EDD	AOI5-SU3-SA-REP3	107807	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	2.1	mg/kg	0.26	0.13	2.10	1	M
135478EDD	AOI5-SU3-SA-REP3	107807	FT	4/18/2018 12:30:00 PM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	3.2	mg/kg	0.32	0.15	3.20	1	M
135478EDD	AOI5-SU3-SA-REP3	107807	FT	4/18/2018 12:30:00 PM	SW8330	METHOD	SO	Nitroguanidine	NO2GUAN	556-88-7	0.21	mg/kg	0.32	0.10	0.210	J	TR/P1
135478EDD	AOI5-SU3-SA-REP3	107807	FT	4/18/2018 12:30:00 PM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0.21	mg/kg	0.29	0.12	0.150	IJ	C

*Includes detections that are less than the limits of quantitation (LOQs) but otherwise unqualified as a result of the validation (i.e., validation qualifiers of "J" with reason code "TR" only).

Facility:	D01MA0033-04, CP Wellfleet - Art, Sm Arms, Rocket
Event:	Phase I Sampling 2018
SDG:	135509EDD
Guidance Document:	Camp Wellfleet - Art, Sm Arms, Rocket
Prime Contractor:	ERT, Inc., Laurel, MD
Project Manager:	Tom Bachovchin
Contract Laboratory:	CT Laboratories LLC, Baraboo, WI
Data Review Contractor:	HSW Engineering, Inc.
Data Review Level:	Stage 2B Review
Primary Data Reviewer:	Cindy Westergard, Senior Scientist
Second Reviewer:	Nigel Lewis, Project Scientist
Date Submitted:	July 12, 2018

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW8330	SW8330B
AOI5-SU3-SB-REP1	108379	Solid	Field Triplicate/FT	Х	Х	Х
AOI5-SU3-SB-REP1	108380	Solid	Field Triplicate/FT	Х		
AOI5-SU3-SB-REP2	108381	Solid	Field Triplicate/FT	Х	Х	Х
AOI5-SU3-SB-REP2	108382	Solid	Field Triplicate/FT	Х		
AOI5-SU3-SB-REP3	108383	Solid	Field Triplicate/FT	Х	Х	Х
AOI5-SU3-SB-REP3	108385	Solid	Field Triplicate/FT	Х		

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Camp Wellfleet - Art, Sm Arms, Rocket and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by ERT, Inc., Laurel, MD; analyses were performed by CT Laboratories LLC, Baraboo, WI and were reported under sample delivery group (SDG) 135509EDD. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank Blank - Negative LCS Recovery MS Recovery MS RPD Prep Hold Time Surrogate Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 21 results (53.85%) out of the 39 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected. Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Three ISM samples were received by CT Laboratories, Baraboo, Wisconsin, and analyzed for a select list of explosives and metals (one liquid investigation-derived waste (IDW) sample was received, along with a trip blank; however, these two samples did not require validation). The ISM samples were received intact and at a temperature within method specified acceptance limits. The samples were dried, sieved, subsampled, and ground following the homogenization procedure specified for the project. The analyses were performed in accordance with requirements given in DOD QSM 5. The qualifiers used by the laboratory are defined in the laboratory report.

The ISM samples were collected as three field replicates (i.e., triplicates) from a single sampling location and identified with suffixes of -REP1, -REP2, and -REP3. As replicate samples are an intrinsic part of the ISM process and this project, the extent of variability among triplicate results will be evaluated by the project team. Triplicate results were reviewed by the validator to confirm the overall reasonableness of the results, with no issues of concern noted.

Analytical Method	Data Reviewer Comment
SW6010C	The dried/sieved fraction of each ISM sample was subsampled for nickel and manganese prior to the sample undergoing grinding via the puck mill, to avoid potential contamination of the samples with these metals from the puck mill. Analyses for antimony, copper, lead, and zinc were performed with the fully-homogenized, puck-milled fractions. The ISM samples were prepared and analyzed as part of two preparation batches and two analytical runs (batch #66570 / run #148424 and batch #66544 / run #148368).
	Low levels of manganese (0.052 mg/Kg) and nickel (0.045 mg/Kg) were detected in the method blank. The detections of these analytes in the three ISM samples exceeded the artifact threshold values such that no qualification of the results was necessary.
	The laboratory performed MS/MSD, serial dilution (SD), and post-digestion spike (PDS) analyses with additional volumes of sample AOI5-SU3-SB-REP1. Low recoveries were reported for antimony and manganese in the analysis of the MS and MSD (60%/66% and 80%/78%, respectively) and for copper (71%), lead (80%), and zinc (74%) in the MS; all other recoveries reported for the MS/MSD analyses and all %RPDs were within control limits. The results for these metals in the parent sample were classified as less than fully quantitative and coded with validation qualifiers of "UJ" (antimony only) or "J" (all others). The automated data review (ADR) module of FUDSchem also extended qualification to the corresponding replicate results, based on the MS/MSD recoveries.
	All results reported for the SD were indicated either to have been invalid or to have failed. Low PDS recoveries were reported for manganese, copper, lead, and zinc in the PDS analysis. These low PDS recoveries were used as additional reasons for the application of "J" validation qualifiers to the parent samples.
	The list of reason codes for data qualification for this project does not include a distinct code for indicating when PDS recoveries are not within control limits. Therefore, when the serial dilution (SD) result for a given metal was invalid or not within control limits and the subsequent PDS recovery also was not within control limits, the sample result was qualified with a validation qualifier of "J" (detections) or "UJ" (non-detections) with reason codes of "A/M" ("A" signifying an invalid or failed SD analysis and "M" indicating a spike recovery that was not within limits in this case, a PDS). If the MS and/or MSD recovery was not within control limits, the data were qualified with "J" or "UJ" with reason codes of "M/A" (rather than "M/A/M", as the FUDSchem system will not allow a reason code to be entered twice).
	The laboratory performed duplicate analyses of sample AOI5-SU3-SB-REP1 for manganese and nickel and triplicate analyses of this sample for antimony, copper, lead, and zinc. With the exception of zinc, all results met project acceptance limits for cumulative precision. The detection of zinc reported for sample AOI5-SU3-SB-REP1 (5.3 mg/Kg), previously qualified due to MS and PDS recoveries, was additionally qualified due to the diminished cumulative precision evidenced by the laboratory triplicate analyses (i.e., reason code "D1" included).
SW8330	No quality issues requiring qualification of sample data for nitroguanidine were noted. The analyte was not detected in any of the three ISM samples.
SW8330B	The laboratory control sample (LCS) yielded a low recovery of tetryl (35% vs. an acceptance range of 68-135%). This analyte is known to be problematic as it decomposes upon exposure to heat, light, and moisture. The findings of non-detect reported for tetryl for all three ISM samples were classified as less than fully quantitative, based on the LCS recovery, and coded with "UJ" validation qualifiers with reason code "C".
	No other quality issues warranting additional qualification of the sample data for explosives by Method 8330B (all findings of non-detect) were noted.

Cindy Fee Westergard

July 11, 2018

Reviewed by Cindy Westergard, Senior Scientist, HSW Engineering, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of a minimum of 10% of the reported sample results and method quality control data between the two deliverables.

July 11, 2018

Reviewed by Nigel Lewis, Project Scientist, HSW Engineering, Inc.

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6010C, Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
109155 (LB)/ 109155	Nickel	0.04500	< 0.021	< 0.12	mg/kg	U/None	L	
109155 (LB)/ 109155	Manganese	0.05200	< 0.025	< 0.15	mg/kg	U/None	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW6010C, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
AOI5-SU3-SB-REP1 (MS)/ 109153	Manganese	79.51	84 - 114	30 - 125	percent	J/UJ	М	
AOI5-SU3-SB-REP1 (SD)/ 109154	Manganese	77.96	84 - 114	30 - 125	percent	J/UJ	М	
AOI5-SU3-SB-REP1 (MS)/ 109713	Antimony	59.51	79 - 114	30 - 125	percent	J/UJ	М	
AOI5-SU3-SB-REP1 (MS)/ 109713	Copper	70.97	81 - 117	30 - 117	percent	J/UJ	М	
AOI5-SU3-SB-REP1 (MS)/ 109713	Zinc	73.68	82 - 113	30 - 125	percent	J/UJ	М	
AOI5-SU3-SB-REP1 (MS)/ 109713	Lead	80.16	81 - 112	30 - 125	percent	J/UJ	М	
AOI5-SU3-SB-REP1 (SD)/ 109714	Antimony	66.40	79 - 114	30 - 125	percent	J/UJ	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW6010C

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI5-SU3-SB-REP1	FT	Manganese	0.150	18.1 M	18.1 J	-	mg/kg	M/A
AOI5-SU3-SB-REP1	FT	Antimony	0.790	0.390 U	0.390 UJ	-	mg/kg	М
AOI5-SU3-SB-REP1	FT	Copper	0.390	5.90 M	5.90 J	-	mg/kg	M/A
AOI5-SU3-SB-REP1	FT	Lead	0.250	2.30 M	2.30 J	-	mg/kg	M/A
AOI5-SU3-SB-REP1	FT	Zinc	0.300	5.30 Y,M	5.30 J		mg/kg	M/A/D1
AOI5-SU3-SB-REP2	FT	Manganese	0.150	17.7	17.7 J	-	mg/kg	М
AOI5-SU3-SB-REP2	FT	Antimony	0.820	0.140 J	0.140 J	-	mg/kg	M/TR
AOI5-SU3-SB-REP2	FT	Copper	0.410	3.90	3.90 J	-	mg/kg	М
AOI5-SU3-SB-REP2	FT	Lead	0.260	2.40	2.40 J	-	mg/kg	М
AOI5-SU3-SB-REP2	FT	Zinc	0.310	5.20	5.20 J	-	mg/kg	М
AOI5-SU3-SB-REP3	FT	Manganese	0.150	15.1	15.1 J	-	mg/kg	М
AOI5-SU3-SB-REP3	FT	Antimony	0.790	0.400 U	0.400 UJ	-	mg/kg	М
AOI5-SU3-SB-REP3	FT	Copper	0.400	3.60	3.60 J	-	mg/kg	М
AOI5-SU3-SB-REP3	FT	Lead	0.250	2.40	2.40 J	-	mg/kg	М
AOI5-SU3-SB-REP3	FT	Zinc	0.300	5.80	5.80 J	-	mg/kg	М

Analytes not found in project samples are reported as not detected at the limit of detection (LOD).

Quality Control Outliers for test method SW8330B, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
109294 (BS)/ 109294	Tetryl	34.72	68 - 135	20 - 135	percent	J/UJ	С	
109294 (BS)/ 109294	2,4,6- Trinitrotoluene	70.83	71 - 120	20 - 120	percent	J/UJ	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for SW8330B

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI5-SU3-SB-REP1	FT	2,4,6-Trinitrotoluene	0.200	0.100 U	0.100 UJ	-	mg/kg	С
AOI5-SU3-SB-REP1	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI5-SU3-SB-REP2	FT	2,4,6-Trinitrotoluene	0.200	0.100 U	0.100 UJ	-	mg/kg	С
AOI5-SU3-SB-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI5-SU3-SB-REP3	FT	2,4,6-Trinitrotoluene	0.200	0.100 U	0.100 UJ	-	mg/kg	С
AOI5-SU3-SB-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD).

Table of All Qualified Results

Test Method: SW6010C	Extract	ion Method: SW3050						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI5-SU3-SB-REP1	FT	Manganese	0.150	18.1 M	18.1 J	-	mg/kg	M/A
AOI5-SU3-SB-REP1	FT	Antimony	0.790	0.390 U	0.390 UJ	-	mg/kg	М
AOI5-SU3-SB-REP1	FT	Copper	0.390	5.90 M	5.90 J	-	mg/kg	M/A
AOI5-SU3-SB-REP1	FT	Lead	0.250	2.30 M	2.30 J	-	mg/kg	M/A
AOI5-SU3-SB-REP1	FT	Zinc	0.300	5.30 Y,M	5.30 J		mg/kg	M/A/D1
AOI5-SU3-SB-REP2	FT	Manganese	0.150	17.7	17.7 J	-	mg/kg	М
AOI5-SU3-SB-REP2	FT	Antimony	0.820	0.140 J	0.140 J	-	mg/kg	M/TR
AOI5-SU3-SB-REP2	FT	Copper	0.410	3.90	3.90 J	-	mg/kg	М
AOI5-SU3-SB-REP2	FT	Lead	0.260	2.40	2.40 J	-	mg/kg	М
AOI5-SU3-SB-REP2	FT	Zinc	0.310	5.20	5.20 J	-	mg/kg	М
AOI5-SU3-SB-REP3	FT	Manganese	0.150	15.1	15.1 J	-	mg/kg	М
AOI5-SU3-SB-REP3	FT	Antimony	0.790	0.400 U	0.400 UJ	-	mg/kg	М
AOI5-SU3-SB-REP3	FT	Copper	0.400	3.60	3.60 J	-	mg/kg	М
AOI5-SU3-SB-REP3	FT	Lead	0.250	2.40	2.40 J	-	mg/kg	М
AOI5-SU3-SB-REP3	FT	Zinc	0.300	5.80	5.80 J	-	mg/kg	М
Test Method: SW8330B	Extract	ion Method: METHOD						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
AOI5-SU3-SB-REP1	FT	2,4,6-Trinitrotoluene	0.200	0.100 U	0.100 UJ	-	mg/kg	С
AOI5-SU3-SB-REP1	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI5-SU3-SB-REP2	FT	2,4,6-Trinitrotoluene	0.200	0.100 U	0.100 UJ	-	mg/kg	С
AOI5-SU3-SB-REP2	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С
AOI5-SU3-SB-REP3	FT	2,4,6-Trinitrotoluene	0.200	0.100 U	0.100 UJ	-	mg/kg	С
AOI5-SU3-SB-REP3	FT	Tetryl	0.300	0.150 UQ	0.150 UJ	-	mg/kg	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of All Trace Results

Test Method: SW6010C	Extract	xtraction Method: SW3050									
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason			
AOI5-SU3-SB-REP2	FT	Antimony	0.820	0.140 J	0.140 J	-	mg/kg	M/TR			

Table of Results with Modified Qualifiers

Modified Qualifiers for	Modified Qualifiers for test method SW6010C											
FieldSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason					
AOI5-SU3-SB-REP1	FT	Copper	0.390	5.90 M	5.90 J	5.90 J	M/A					
AOI5-SU3-SB-REP1	FT	Lead	0.250	2.30 M	2.30 J	2.30 J	M/A					
AOI5-SU3-SB-REP1	FT	Zinc	0.300	5.30 Y,M	5.30 J	5.30 J	M/A/D1					
AOI5-SU3-SB-REP1	FT	Manganese	0.150	18.1 M	18.1 J	18.1 J	M/A					

Analytes not found in project samples are reported as not detected at the limit of detection (LOD). Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
А	Serial dilution
С	LCS Recovery
D1	Lab Replicate RPD
L	Lab Blank
М	MS Recovery
TR	Trace Level Detect

Flag Code and Definitions

Flag	Definition
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
J	Estimated: The analyte was positively identified, the quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
В	Blank contamination: The analyte was found in an associated blank above one half the RL, as well as in the sample.
UB	The analyte was also detected in an associated laboratory or field blank at a concentration comparable to the concentration in the sample. The reported result has been requalified as not detected.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were CCVs run at the required frequency and within acceptance criteria?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?		•		Low levels of manganese (0.052 mg/Kg) and nickel (0.045 mg/Kg) were detected in the method blank. The detections of these analytes in the three ISM samples exceeded the artifact threshold values such that no qualification of the results was necessary.
Were target analytes in the field blank less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?		•		An LCSD was not required or reported.
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		Manganese, zinc and lead were recovered below the acceptance criteria. Detected results in the parent sample (AOI5-SU3-SB-REP1) were coded with a "J" qualifier.
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?		•		
Were QAPP specified laboratory PQLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data rejected during the verification process?		•		

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?		•		
Was a project specific MS or MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Evaluated outside of the scope of this validation process.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?	•			
Were column comparison differences with project acceptance limits?	•			No nitroguanidine was detected in any of the samples.
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•	110		Comment
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was a blank prepared and analyzed with each batch?	•			
Were target analytes in the blank less than MDL?	•			
Were target analytes in the field blank less than MDL?			•	
Was an LCS or LCS/LCSD pair analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		Tetryl was recovered below control limits in the LCS. The findings of non-detect reported for the samples for this analyte were classified as less than fully quantitative and coded with "UJ" validation qualifiers.
Was the LCS/LCSD RPD within project acceptance limits?			•	
Was a project specific MS or MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
Was a project-specific duplicate analyzed, and the RPD within QAPP acceptance limits?		•		
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Data for field triplicates is evaluated by the project team, outside of the scope of this validation effort.
Were QAPP specified laboratory reporting limits achieved?	•			
Were surrogate recoveries within project acceptance limits?	•			
Were column comparison differences with project acceptance limits?	•			No target explosives were detected in any of the samples.
Was the intial calibration within criteria?	•			
Was a second source check standard analyzed and within all applicable criteria?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			

Summary of Qualified Data

SDG	Client Sample ID	Lab Sample ID	SACODE	LOGDATE	Test Method	EXMCODE	MATRIX	Analyte Name	PARLABEL	CAS	DB Result	UNITS	DB Reporting Limit	Limit Of Detection	Display Result	Qualifier*	Reason Code
135509EDD	109155	109155	LB	4/24/2018 9:45:00 AM	SW6010C	SW3050	SQ	Manganese	MN	7439-96-5	0.052	mg/kg	0.15	0.025	0.0520	J	TR
135509EDD	109155	109155	LB	4/24/2018 9:45:00 AM	SW6010C	SW3050	SQ	Nickel	NI	7440-02-0	0.045	mg/kg	0.12	0.021	0.0450	J	TR
135509EDD	AOI5-SU3-SB-REP1	108379	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0	mg/kg	0.79	0.39	0.390	UJ	M
135509EDD	AOI5-SU3-SB-REP1	108379	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	5.9	mg/kg	0.39	0.2	5.90	J	M/A
135509EDD	AOI5-SU3-SB-REP1	108379	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	2.3	mg/kg	0.25	0.12	2.30	J	M/A
135509EDD	AOI5-SU3-SB-REP1	108380	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	18.1	mg/kg	0.15	0.073	18.1	J	M/A
135509EDD	AOI5-SU3-SB-REP1	108379	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	5.3	mg/kg	0.3	0.15	5.30	J	M/A/D1
135509EDD	AOI5-SU3-SB-REP1	108379	FT	4/18/2018 2:40:00 PM	SW8330B	METHOD	SO	2,4,6-Trinitrotoluene	TNT	118-96-7	0	mg/kg	0.2	0.1	0.100	UJ	С
135509EDD	AOI5-SU3-SB-REP1	108379	FT	4/18/2018 2:40:00 PM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	С
135509EDD	AOI5-SU3-SB-REP2	108381	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0.14	mg/kg	0.82	0.41	0.140	J	M/TR
135509EDD	AOI5-SU3-SB-REP2	108381	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	3.9	mg/kg	0.41	0.21	3.90	J	M
135509EDD	AOI5-SU3-SB-REP2	108381	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	2.4	mg/kg	0.26	0.13	2.40	J	M
135509EDD	AOI5-SU3-SB-REP2	108382	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	17.7	mg/kg	0.15	0.077	17.7	J	M
135509EDD	AOI5-SU3-SB-REP2	108381	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	5.2	mg/kg	0.31	0.15	5.20	J	M
135509EDD	AOI5-SU3-SB-REP2	108381	FT	4/18/2018 2:40:00 PM	SW8330B	METHOD	SO	2,4,6-Trinitrotoluene	TNT	118-96-7	0	mg/kg	0.2	0.1	0.100	UJ	C
135509EDD	AOI5-SU3-SB-REP2	108381	FT	4/18/2018 2:40:00 PM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	С
135509EDD	AOI5-SU3-SB-REP3	108383	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Antimony	SB	7440-36-0	0	mg/kg	0.79	0.4	0.400	UJ	M
135509EDD	AOI5-SU3-SB-REP3	108383	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Copper	CU	7440-50-8	3.6	mg/kg	0.4	0.2	3.60	J	M
135509EDD	AOI5-SU3-SB-REP3	108383	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Lead	PB	7439-92-1	2.4	mg/kg	0.25	0.12	2.40	J	M
135509EDD	AOI5-SU3-SB-REP3	108385	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Manganese	MN	7439-96-5	15.1	mg/kg	0.15	0.077	15.1	J	M
135509EDD	AOI5-SU3-SB-REP3	108383	FT	4/18/2018 2:40:00 PM	SW6010C	SW3050	SO	Zinc	ZN	7440-66-6	5.8	mg/kg	0.3	0.15	5.80	J	M
135509EDD	AOI5-SU3-SB-REP3	108383	FT	4/18/2018 2:40:00 PM	SW8330B	METHOD	SO	2,4,6-Trinitrotoluene	TNT	118-96-7	0	mg/kg	0.2	0.1	0.100	UJ	С
135509EDD	AOI5-SU3-SB-REP3	108383	FT	4/18/2018 2:40:00 PM	SW8330B	METHOD	SO	Tetryl	TETRYL	479-45-8	0	mg/kg	0.3	0.15	0.150	UJ	С

*Includes detections that are less than the limits of quantitation (LOQs) but otherwise unqualified as a result of the validation (i.e., validation qualifiers of "J" with reason code "TR" only).

APPENDIX D.3: DATA SUMMARY TABLES

This Page Intentionally Left Blank

	Angleta Nama	DCI	E., COL	DTV	UNITO			AOH SHI SA DED2			
Method	Analyte Name	PSL	Eco-SSL	BTV	UNITS	AOI1-SU1-SA-REP1	AOI1-SU1-SA-REP2	AOI1-SU1-SA-REP3	AOI1-SU2-SA-REP1	AOI1-SU2-SA-REP2	AOI1-SU2-SA-REP3
SW6010C	Antimony	3.1	0.27	3.4	mg/kg	0.170 J	0.130 J	0.190 J	0.160 J	0.150 J	0.140 J
SW6010C	Copper	310	28	4.145	mg/kg	3.00	6.00	8.40	1.60	3.10	2.50
SW6010C	Lead	200	11	23.1	mg/kg	6.50	9.00	10.7	5.00	6.00	8.30
SW6010C	Manganese	180	220	109.8	mg/kg	15.5	10.5	11.5	10.5	14.8	12.7
SW6010C	Nickel	150	38	1.924	mg/kg	0.890	0.680	0.940	0.620	0.640	0.680
SW6010C	Zinc	1,000	46	7.69	mg/kg	20.0	16.5	14.9	8.60	9.90	7.70
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.870 J	0.890 J	0.500 J	0.120 U	0.120 U	0.710 J
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.0980 U	0.100 U	0.100 U	0.0980 U	0.0980 U	0.0990 U
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U					
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U					
	Hexahydro-1,3,5-trinitro-										
SW8330B	1,3,5-triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U					
SW8330B	Nitroglycerin	0.63	NSL	NSL	mg/kg	0.290 U	0.300 U	0.300 U	0.290 U	0.290 U	0.300 U
SW8330B	Tetryl	16	NSL	NSL	mg/kg	0.150 UJ					

Qualifiers

- J The reported result is an estimated value
- U Not Detected (limit of detection [LOD] shown)
- UJ Not Detected (LOD is estimated)
- PSL Project Screening Level is the lowest value of the USEPA Regional Screening Level (RSL) for Residential Soil, or the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2
- BTV Background Threshold Value
- Eco-SSLUSEPA Ecological Soil Screening Levels,
"https://www.epa.gov/chemical-research/interim-ecological-soil-
screening-level-documents", last accessed 25 September 2018NSLNo screening level identified
- mg/kg milligrams per kilogram

Detected results are bolded.

PSL Exceedances	of screening leve	el are shaded
I DL LACCUAIICO	or servening ieve	are shaucu.

Eco-SSL exceedances are underlined.

BTV exceedances are printed in blue font.

Method	Analyte Name	PSL	Eco-SSL	BTV	UNITS	AOI1-SU3-SA-REP1	AOI1-SU3-SA-REP2	AOI1-SU3-SA-REP3	AOI2-SU1-SA-REP1	AOI2-SU1-SA-REP2	AOI2-SU1-SA-REP3
wittillu	Analyte Name	IBL	ECO-SSL	DIV	01115	AOII-SUS-SA-KEI I	AOII-SUS-SA-KEI Z	AOII-SUS-SA-KEIS	A012-SUI-SA-KEI I	AOIZ-SUI-SA-KEIZ	AOIZ-SUI-SA-REI S
SW6010C	Antimony	3.1	0.27	3.4	mg/kg	<u>0.400 U</u>	0.150 J	0.150 J	<u>0.390 U</u>	<u>0.390 U</u>	<u>0.400 U</u>
SW6010C	Copper	310	28	4.145	mg/kg	0.760	0.880	0.880	0.710	0.580	0.950
SW6010C	Lead	200	11	23.1	mg/kg	4.10	5.30	5.60	3.00	2.50	2.20
SW6010C	Manganese	180	220	109.8	mg/kg	13.3	13.4 J	13.1	9.20	8.90	9.60
SW6010C	Nickel	150	38	1.924	mg/kg	0.780	0.770 J	0.700	0.370	0.420	0.470
SW6010C	Zinc	1,000	46	7.69	mg/kg	7.50	7.70	7.70	1.90	1.70	1.50
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.690 J	0.550 J	0.630 J	0.110 U	0.110 U	0.460 J
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.0980 U	0.0990 U	0.100 U	0.100 U	0.0970 UJ	0.100 U
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U	0.150 U	0.150 UJ	0.150 U
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U	0.150 U	0.150 UJ	0.150 U
SW8330B	Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U	0.150 U	0.150 UJ	0.150 U
SW8330B SW8330B		0.63	NSL	NSL	mg/kg	0.130 U 0.290 U	0.130 U 0.300 U	0.130 U	0.130 U 0.300 U	0.130 UJ	0.130 U
SW8330B SW8330B	Nitroglycerin Tetryl	16		NSL NSL	mg/kg mg/kg	0.290 U 0.150 UJ	0.300 U 0.150 UJ				0.150 UJ

Qualifiers

- J The reported result is an estimated value
- U Not Detected (limit of detection [LOD] shown)
- UJ Not Detected (LOD is estimated)
- PSL Project Screening Level is the lowest value of the USEPA Regional Screening Level (RSL) for Residential Soil, or the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2
- BTV Background Threshold Value
- Eco-SSLUSEPA Ecological Soil Screening Levels,
"https://www.epa.gov/chemical-research/interim-ecological-soil-
screening-level-documents", last accessed 25 September 2018NSLNo screening level identified
- mg/kg milligrams per kilogram

Detected results are bolded.

PSL Exceedances	of screening level a	re shaded.
I OL LACCOUNTED	or sereening rever a	i e sinaucu.

Eco-SSL exceedances are underlined.

BTV exceedances are printed in blue font.

Method	Analyte Name	PSL	Eco-SSL	BTV	UNITS	AOI2-SU2-SA-REP1	AOI2-SU2-SA-REP2	AOI2-SU2-SA-REP3	AOI2-SU3-SA-REP1	AOI2-SU3-SA-REP2	AOI2-SU3-SA-REP3
SW6010C	Antimony	3.1	0.27	3.4	mg/kg	0.230 J	0.250 J	0.160 J	0.150 J	0.270 J	<u>0.410 U</u>
SW6010C	Copper	310	28	4.145	mg/kg	1.90 J	1.80 J	2.10 J	1.20	2.50	1.50
SW6010C	Lead	200	11	23.1	mg/kg	2.90 J	3.60	3.40	3.10	5.80	3.80
SW6010C	Manganese	180	220	109.8	mg/kg	17.5 J	18.0	9.40	8.90	12.4	15.1
SW6010C	Nickel	150	38	1.924	mg/kg	1.20 J	1.30	0.450	0.740	0.990	0.900
SW6010C	Zinc	1,000	46	7.69	mg/kg	6.40 J	6.50	3.90	6.00	3.80	3.00
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.120 U	0.120 U	0.120 U	0.120 U	0.110 U	0.120 U
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.0990 U	0.100 U	0.0990 U	0.100 U	0.0990 U	0.0990 U
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U					
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U					
	Hexahydro-1,3,5-trinitro-										
SW8330B	1,3,5-triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U					
SW8330B	Nitroglycerin	0.63	NSL	NSL	mg/kg	0.300 U					
SW8330B	Tetryl	16	NSL	NSL	mg/kg	0.150 UJ					

Qualifiers

- J The reported result is an estimated value
- U Not Detected (limit of detection [LOD] shown)
- UJ Not Detected (LOD is estimated)
- PSL Project Screening Level is the lowest value of the USEPA Regional Screening Level (RSL) for Residential Soil, or the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2
- BTV Background Threshold Value
- Eco-SSLUSEPA Ecological Soil Screening Levels,
"https://www.epa.gov/chemical-research/interim-ecological-soil-
screening-level-documents", last accessed 25 September 2018NSLNo screening level identified
- mg/kg milligrams per kilogram

Detected results are bolded.

PSL Exceedances	of screening leve	el are shaded
I DL LACCUAIICO	or servening ieve	are shaucu.

Eco-SSL exceedances are underlined.

BTV exceedances are printed in blue font.

		DCI	E COL								
Method	Analyte Name	PSL	Eco-SSL	BTV	UNITS	AOI3-SU1-SA-REP1	AOI3-SU1-SA-REP2	AOI3-SU1-SA-REP3	AOI3-SU2-SA-REP1	AOI3-SU2-SA-REP2	AOI3-SU2-SA-REP3
SW6010C	Antimony	3.1	0.27	3.4	mg/kg	0.200 J	0.140 J	0.160 J	0.160 J	0.230 J	0.140 J
SW6010C	Copper	310	28	4.145	mg/kg	1.40	1.60	1.50	0.690	0.780	0.700
SW6010C	Lead	200	11	23.1	mg/kg	3.40	3.60	3.50	2.40 J	3.10	2.60
SW6010C	Manganese	180	220	109.8	mg/kg	20.3	28.2	21.7	10.1 J	10.4	11.7
SW6010C	Nickel	150	38	1.924	mg/kg	0.890	0.600	0.580	0.680	0.660	0.550
SW6010C	Zinc	1,000	46	7.69	mg/kg	14.0	15.7	14.9	4.90 J	4.90 J	2.00 J
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.120 U	0.110 U	0.120 UJ	0.540 J	0.810 J	0.580 J
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.0980 U	0.0970 U	0.100 U	0.0980 U	0.0980 U	0.0990 J
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U	0.150 J				
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U	0.150 J				
SW8330B	Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U	0.150 J				
SW8330B	Nitroglycerin	0.63	NSL	NSL		0.290 U	0.290 U	0.300 U	0.290 U	0.300 U	0.300 J
SW8330B	Tetryl	16	NSL	NSL		0.150 U	0.150 J				

Qualifiers

- J The reported result is an estimated value
- U Not Detected (limit of detection [LOD] shown)
- UJ Not Detected (LOD is estimated)
- PSL Project Screening Level is the lowest value of the USEPA Regional Screening Level (RSL) for Residential Soil, or the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2
- BTV Background Threshold Value
- Eco-SSLUSEPA Ecological Soil Screening Levels,
"https://www.epa.gov/chemical-research/interim-ecological-soil-
screening-level-documents", last accessed 25 September 2018NSLNo screening level identified
- mg/kg milligrams per kilogram

Detected results are bolded.

PSL Exceedances of screening level are shaded.	
--	--

Eco-SSL exceedances are underlined.

BTV exceedances are printed in blue font.

	Angledo Norreg	DCI	E., CCI	DTV							
Method	Analyte Name	PSL	Eco-SSL	BTV	UNITS	AOI3-SU3-SA-REP1	AOI3-SU3-SA-REP2	AOI3-SU3-SA-REP3	AOI4-SU1-SA-REP1	AOI4-SU1-SA-REP2	AOI4-SU1-SA-REP3
SW6010C	Antimony	3.1	0.27	3.4	mg/kg	0.220 J	0.200 J	0.230 J	0.170 J	0.220 J	0.210 J
SW6010C	Copper	310	28	4.145	mg/kg	1.50	1.50	1.60	0.840	1.50	0.980
SW6010C	Lead	200	11	23.1	mg/kg	3.00	3.00	3.00	3.00	2.60	3.10
SW6010C	Manganese	180	220	109.8	mg/kg	15.0	15.0	16.2	12.2	10.9	9.70
SW6010C	Nickel	150	38	1.924	mg/kg	0.860	0.390	0.500	1.00	0.930	0.870
SW6010C	Zinc	1,000	46	7.69	mg/kg	13.4	13.3	13.7	3.20	2.50	3.40
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.110 U	0.110 UJ	0.120 UJ	0.590 J	0.320 J	0.620 J
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.0990 U	0.0970 U	0.0990 U	0.0970 U	0.0990 U	0.100 U
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U					
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U					
	Hexahydro-1,3,5-trinitro-										
SW8330B	1,3,5-triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U					
SW8330B	Nitroglycerin	0.63	NSL	NSL	mg/kg	0.300 U	0.290 U	0.300 U	0.290 U	0.300 U	0.300 U
SW8330B	Tetryl	16	NSL	NSL	mg/kg	0.150 U					

Qualifiers

- J The reported result is an estimated value
- U Not Detected (limit of detection [LOD] shown)
- UJ Not Detected (LOD is estimated)
- PSL Project Screening Level is the lowest value of the USEPA Regional Screening Level (RSL) for Residential Soil, or the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2
- BTV Background Threshold Value
- Eco-SSLUSEPA Ecological Soil Screening Levels,
"https://www.epa.gov/chemical-research/interim-ecological-soil-
screening-level-documents", last accessed 25 September 2018NSLNo screening level identified
- mg/kg milligrams per kilogram

Detected results are bolded.

Eco-SSL exceedances are underlined.

BTV exceedances are printed in blue font.

	Anglata Norma	DCI	Eac SSI	DTV	UNITS			AOIA SU2 CA DED2			A OLA SU2 CA DED2
Method	Analyte Name	PSL	Eco-SSL	BTV	UNITS	AOI4-SU2-SA-REP1	AOI4-SU2-SA-REP2	AOI4-SU2-SA-REP3	AOI4-SU3-SA-REP1	AOI4-SU3-SA-REP2	AOI4-SU3-SA-REP3
SW6010C	Antimony	3.1	0.27	3.4	mg/kg	0.130 J	<u>0.420 UJ</u>	<u>0.420 UJ</u>	0.220 J	0.220 J	0.130 J
SW6010C	Copper	310	28	4.145	mg/kg	0.670 J	0.730	0.770	0.820	1.10	0.990
SW6010C	Lead	200	11	23.1	mg/kg	3.30	6.90	3.40	3.00	4.50	4.20
SW6010C	Manganese	180	220	109.8	mg/kg	37.0	32.5	42.2	80.7	74.4	72.8
SW6010C	Nickel	150	38	1.924	mg/kg	1.40	0.970	1.10	1.30	1.40	1.40
SW6010C	Zinc	1,000	46	7.69	mg/kg	7.00 J	8.00 J	4.20 J	2.90	3.60	3.20
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.420 J	0.500 J	0.120 U	0.370 J	0.480 J	0.470 J
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.0990 U	0.0980 U	0.0990 U	0.0980 U	0.0980 U	0.100 U
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U					
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U					
	Hexahydro-1,3,5-trinitro-										
SW8330B	1,3,5-triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U					
SW8330B	Nitroglycerin	0.63	NSL	NSL	mg/kg	0.300 U	0.290 U	0.300 U	0.290 U	0.290 U	0.300 U
SW8330B	Tetryl	16	NSL	NSL	mg/kg	0.150 UJ	0.150 UJ	0.150 UJ	0.150 U	0.150 U	0.150 U

Qualifiers

- J The reported result is an estimated value
- U Not Detected (limit of detection [LOD] shown)
- UJ Not Detected (LOD is estimated)
- PSL Project Screening Level is the lowest value of the USEPA Regional Screening Level (RSL) for Residential Soil, or the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2
- BTV Background Threshold Value
- Eco-SSLUSEPA Ecological Soil Screening Levels,
"https://www.epa.gov/chemical-research/interim-ecological-soil-
screening-level-documents", last accessed 25 September 2018NSLNo screening level identified
- mg/kg milligrams per kilogram

Detected results are bolded.

Eco-SSL exceedances are underlined.

BTV exceedances are printed in blue font.

Method	Analyte Name	PSL	Eco-SSL	BTV	UNITS	AOI4-SU4-SA-REP1	AOI4-SU4-SA-REP2	AOI4-SU4-SA-REP3	AOI4-SU5-SA-REP1	AOI4-SU5-SA-REP2	AOI4-SU5-SA-REP3
i i i ci		1.51	LCONNE	DIV	CININ						
SW6010C	Antimony	3.1	0.27	3.4	mg/kg	0.130 J	0.160 J	0.140 J	<u>0.390 UJ</u>	<u>0.400 UJ</u>	0.150 J
SW6010C	Copper	310	28	4.145	mg/kg	0.730	0.990	0.850	1.40 J	1.50	1.40
SW6010C	Lead	200	11	23.1	mg/kg	3.90	6.60	5.00	3.70 J	3.80 J	3.60 J
SW6010C	Manganese	180	220	109.8	mg/kg	18.1	17.8	18.6	11.6	9.70	10.1
SW6010C	Nickel	150	38	1.924	mg/kg	0.570	0.740	0.610	1.30	1.20	1.40
SW6010C	Zinc	1,000	46	7.69	mg/kg	5.50	6.10	3.20	15.8 J	18.2	15.4
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.120 U	0.120 U	0.120 U	0.200 J	0.110 UJ	0.120 U
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.0980 U	0.0990 U	0.0990 U	0.0960 U	0.0960 U	0.0970 U
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U	0.140 U	0.140 U	0.150 U
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U	0.140 U	0.140 U	0.150 U
SW8330B	Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U	0.140 U	0.140 U	0.150 U
SW8330B	Nitroglycerin	0.63	NSL	NSL		0.290 U	0.300 U	0.300 U	0.290 U	0.290 U	0.290 U
SW8330B	Tetryl	16	NSL	NSL		0.150 U	0.150 U	0.150 U	0.140 U	0.140 U	0.150 U

Qualifiers

- J The reported result is an estimated value
- U Not Detected (limit of detection [LOD] shown)
- UJ Not Detected (LOD is estimated)
- PSL Project Screening Level is the lowest value of the USEPA Regional Screening Level (RSL) for Residential Soil, or the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2
- BTV Background Threshold Value
- Eco-SSLUSEPA Ecological Soil Screening Levels,
"https://www.epa.gov/chemical-research/interim-ecological-soil-
screening-level-documents", last accessed 25 September 2018NSLNo screening level identified
- mg/kg milligrams per kilogram

Detected results are bolded.

PSL Exceedances of screening level are shaded.	
--	--

Eco-SSL exceedances are underlined.

BTV exceedances are printed in blue font.

Method	Analyte Name	PSL	Eco-SSL	BTV	UNITS	AOI5-SU1-SA-REP1	AOI5-SU1-SA-REP2	AOI5-SU1-SA-REP3	AOI5-SU2-SA-REP1	AOI5-SU2-SA-REP2	AOI5-SU2-SA-REP3
Wittillu	Analyte Maine	IBL	ECO-BBL	DIV	UNIIS	A013-501-5A-RELLI	A013-501-5A-REI 2	A013-SUI-SA-REI 5	A013-502-5A-REI I	A013-502-5A-REI 2	A013-502-5A-REI 5
SW6010C	Antimony	3.1	0.27	3.4	mg/kg	0.240 J	<u>0.280 J</u>	0.190 J	<u>0.300 J</u>	0.190 J	0.250 J
SW6010C	Copper	310	28	4.145	mg/kg	1.70	1.60	1.30	1.60	1.60	1.60
SW6010C	Lead	200	11	23.1	mg/kg	3.10	3.00	2.50	3.00	2.90	3.00
SW6010C	Manganese	180	220	109.8	mg/kg	13.2	12.6	12.4	15.7	20.8	17.7
SW6010C	Nickel	150	38	1.924	mg/kg	1.10	0.750	0.750	1.00	1.30	0.980
SW6010C	Zinc	1,000	46	7.69	mg/kg	13.9	13.5	11.1	13.7	13.5	13.5
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.120 UJ	0.120 U	0.120 U	0.110 UJ	0.120 U	0.120 UJ
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.0970 U	0.0990 U	0.0980 U	0.0990 U	0.0970 U	0.100 U
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U					
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U					
SW8330B	Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U					
SW8330B	Nitroglycerin	0.63	NSL	NSL	00	0.290 U	0.300 U	0.290 U	0.300 U	0.290 U	0.300 U
SW8330B	Tetryl	16	NSL	NSL		0.150 U					

Qualifiers

- J The reported result is an estimated value
- U Not Detected (limit of detection [LOD] shown)
- UJ Not Detected (LOD is estimated)
- PSL Project Screening Level is the lowest value of the USEPA Regional Screening Level (RSL) for Residential Soil, or the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2
- BTV Background Threshold Value
- Eco-SSLUSEPA Ecological Soil Screening Levels,
"https://www.epa.gov/chemical-research/interim-ecological-soil-
screening-level-documents", last accessed 25 September 2018NSLNo screening level identified
- mg/kg milligrams per kilogram

Detected results are bolded.

PSL Exceedances	of screening level	l are shaded.
I OL LACCOUNTED	JI Sel centing leve	i ai e silaaca.

Eco-SSL exceedances are underlined.

BTV exceedances are printed in blue font.

Method	Analyte Name	PSL	Eco-SSL	BTV	UNITS	AOI5-SU3-SA-REP1	AOI5-SU3-SA-REP2	AOI5-SU3-SA-REP3
1.100mou		101	Let SSL		entris			
SW6010C	Antimony	3.1	0.27	3.4	mg/kg	0.140 J	0.230 J	0.170 J
SW6010C	Copper	310	28	4.145	mg/kg	1.20 J	1.20 J	1.60 J
SW6010C	Lead	200	11	23.1	mg/kg	1.90 J	1.70 J	2.10 J
SW6010C	Manganese	180	220	109.8	mg/kg	17.0 J	17.8	19.0
SW6010C	Nickel	150	38	1.924	mg/kg	0.870 J	1.10	0.970
SW6010C	Zinc	1,000	46	7.69	mg/kg	5.60 J	7.90 J	3.20 J
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.120 U	0.110 U	0.210 J
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.0990 U	0.0990 U	0.0970 U
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U
SW8330B	Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U
SW8330B	Nitroglycerin	0.63	NSL	NSL	mg/kg	0.300 U	0.300 U	0.290 U
SW8330B	Tetryl	16	NSL	NSL	mg/kg	0.150 UJ	0.150 UJ	0.150 UJ

Qualifiers

J	The reported result is an estimated value						
U	Not Detected (limit of detection [LOD] shown)						
UJ	Not Detected (LOD is estimated)						
PSL	Project Screening Level is the lowest value of the USEPA						
	Regional Screening Level (RSL) for Residential Soil, or						
	the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2						
BTV	Background Threshold Value						
Eco-SSL	USEPA Ecological Soil Screening Levels,						
	"https://www.epa.gov/chemical-research/interim-ecological-soil-						
	screening-level-documents", last accessed 25 September 2018						
NSL	No screening level identified						
mg/kg	milligrams per kilogram						
Detected results are bolded.							
PSL Excee	dances of screening level are shaded.						

Eco-SSL exceedances are underlined.

BTV exceedances are printed in blue font.

Method	Analyte Name	PSL	Eco-SSL	BTV	UNITS	AOI3-SU1-SB-REP1	AOI3-SU1-SB-REP2	AOI3-SU1-SB-REP3	AOI4-SU2-SB-REP1	AOI4-SU2-SB-REP2	AOI4-SU2-SB-REP3
SW6010C	Antimony	3.1	0.27	3.4	mg/kg	<u>0.400 U</u>	<u>0.410 U</u>	0.160 J	<u>0.400 UJ</u>	0.130 J	<u>0.410 UJ</u>
SW6010C	Copper	310	28	3.76	mg/kg	1.40	1.40	1.60	0.800	0.770	0.850
SW6010C	Lead	200	11	4.242	mg/kg	3.50	3.60	3.70	1.70	1.90	1.70
SW6010C	Manganese	180	220	109.8	mg/kg	26.1	28.9	25.8	71.8 J	68.9 J	63.0 J
SW6010C	Nickel	150	38	2.81	mg/kg	0.980	0.970	0.940	1.70	2.30	1.40
SW6010C	Zinc	1,000	46	19.19	mg/kg	14.5	14.8	15.9	4.00	6.30	3.80
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.120 U					
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.0980 U	0.0980 U	0.0980 U	0.0990 U	0.0990 U	0.0970 U
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U					
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U					
SW8330B	Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U					
SW8330B	Nitroglycerin	0.63	NSL	NSL	mg/kg	0.290 U	0.290 U	0.290 U	0.300 U	0.300 U	0.290 U
SW8330B	Tetryl	16	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U	0.150 UJ	0.150 UJ	0.150 UJ

Qualifiers

- J The reported result is an estimated value
- U Not Detected (limit of detection [LOD] shown)
- UJ Not Detected (LOD is estimated)
- PSL Project Screening Level is the lowest value of the USEPA

Regional Screening Level (RSL) for Residential Soil, or

the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2

- BTV Background Threshold Value
- Eco-SSL USEPA Ecological Soil Screening Levels, "https://www.epa.gov/chemical-research/interim-ecological-soilscreening-level-documents", last accessed 25 September 2018
- NSL No screening level identified
- mg/kg milligrams per kilogram

Detected results are bolded.

PSL Exceedances of screening level are shaded.

Eco-SSL exceedances are underlined.

BTV exceedances are printed in blue font.

Method	Analyte Name	PSL	Eco-SSL	BTV	UNITS	AOI5-SU3-SB-REP1	AOI5-SU3-SB-REP2	AOI5-SU3-SB-REP3
SW6010C	Antimony	3.1	0.27	3.4	mg/kg	<u>0.390 UJ</u>		
SW6010C	Copper	310	28	3.76	mg/kg	5.90 J	3.90 J	3.60 J
SW6010C	Lead	200	11	4.242	mg/kg	2.30 J	2.40 J	2.40 J
SW6010C	Manganese	180	220	109.8	mg/kg	18.1 J	17.7 J	15.1 J
SW6010C	Nickel	150	38	2.81	mg/kg	1.10	1.20	0.960
SW6010C	Zinc	1,000	46	19.19	mg/kg	5.30 J	5.20 J	5.80 J
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.120 U	0.120 U	0.120 U
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.100 UJ	0.100 UJ	0.100 UJ
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U
SW8330B	Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U
SW8330B	Nitroglycerin	0.63	NSL	NSL	mg/kg	0.300 U	0.300 U	0.300 U
SW8330B	Tetryl	16	NSL	NSL	mg/kg	0.150 UJ	0.150 UJ	0.150 UJ

Qualifiers

- J The reported result is an estimated value
- U Not Detected (limit of detection [LOD] shown)
- UJ Not Detected (LOD is estimated)
- PSL Project Screening Level is the lowest value of the USEPA

Regional Screening Level (RSL) for Residential Soil, or

- the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2W Background Threshold Value
- BTV
 Background Threshold Value

 Eco-SSL
 USEPA Ecological Soil Screening Levels,

 "https://www.epa.gov/chemical-research/interim-ecological-soil-screening-level-documents", last accessed 25 September 2018
- NSL No screening level identified
- mg/kg milligrams per kilogram

Detected results are bolded.

PSL Exceedances of screening level are shaded.

Eco-SSL exceedances are underlined.

BTV exceedances are printed in blue font.

Appendix D, Table D-2 Former Camp Wellfleet Site Soil Discrete Borings Sampling Results

				MA						WELLFLEET-FD1 parent sample	
Method	Analyte Name	PSL	Eco-SSL	BKG	UNITS	AOI1-SU2-SO01-8-10	AOI1-SU2-SO02-8-10	AOI1-SU2-SO03-8-10	AOI1-SU2-SO04-8-10	AOI1-SU2-SO04-8-10	AOI1-SU3-SO01-8-10
SW6010C	Antimony	3.1	0.27	1	mg/kg	0.220 J	<u>0.430 U</u>	<u>0.410 U</u>	<u>0.410 U</u>	0.180 J	<u>0.400 U</u>
SW6010C	Copper	310	28	40	mg/kg	0.430	0.320 J	0.340 J	0.350 J	0.410	0.270 J
SW6010C	Lead	200	11	100	mg/kg	1.10	1.00	1.10	1.20	1.10	0.910
SW6010C	Manganese	180	220	300	mg/kg	7.60	10.1	10.4	11.9	10.7 J	8.70 J
SW6010C	Nickel	150	38	20	mg/kg	0.71	0.55	0.53	0.58	0.67	0.51
SW6010C	Zinc	1,000	46	100	mg/kg	5.10	1.90	1.60	4.80	5.10 J	4.80 J
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.120 U	0.120 U				
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.100 U	0.0990 U				
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U	0.150 U				
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U	0.150 U				
	Hexahydro-1,3,5-trinitro-1,3,5-										
SW8330B	triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U	0.150 U				
SW8330B	Nitroglycerin	0.63	NSL	NSL	mg/kg	0.300 U	0.300 U				
SW8330B	Tetryl	16	NSL	NSL	mg/kg	0.150 U	0.150 U				

Qualifiers

- J The reported result is an estimated value
- U Not Detected (limit of detection [LOD] shown)
- UJ Not Detected (LOD is estimated)
- PSL Project Screening Level is the lowest value of the USEPA Regional Screening Level (RSL) for Residential Soil, or the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2
- MA BKG Massachusettes background concentrations for metals in soil
- Eco-SSL USEPA Ecological Soil Screening Levels, "https://www.epa.gov/chemical-research/interim-ecological-soilscreening-level-documents", last accessed 25 September 2018
- NSL No screening level identified
- mg/kg milligrams per kilogram

Detected results are bolded.

PSL Exceedances of screening level are shaded.

Eco-SSL exceedances are underlined.

MA BKG exceedances are printed in blue font.

Appendix D, Table D-2 Former Camp Wellfleet Site Soil Discrete Borings Sampling Results

				MA				
Method	Analyte Name	PSL	Eco-SSL		UNITS	AOI1-SU3-SO02-8-10	AOI1-SU3-SO03-8-10	AOI1-SU3-SO04-8-10
SW6010C	Antimony	3.1	0.27	1	mg/kg	<u>0.410 U</u>	<u>0.410 U</u>	<u>0.400 U</u>
SW6010C	Copper	310	28	40	mg/kg	0.440	1.10	0.620
SW6010C	Lead	200	11	100	mg/kg	1.30	3.10	2.60
SW6010C	Manganese	180	220	300	mg/kg	13.6	11.8	14.7
SW6010C	Nickel	150	38	20	mg/kg	0.82	0.84	0.84
SW6010C	Zinc	1,000	46	100	mg/kg	4.60	4.20	10.0
SW8330	Nitroguanidine	630	NSL	NSL	mg/kg	0.120 U	0.120 U	0.120 U
SW8330B	2,4,6-Trinitrotoluene	3.6	NSL	NSL	mg/kg	0.100 U	0.0990 U	0.100 U
SW8330B	2,4-Dinitrotoluene	0.7	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U
SW8330B	2,6-Dinitrotoluene	0.36	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U
	Hexahydro-1,3,5-trinitro-1,3,5-							
SW8330B	triazine (RDX)	1	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U
SW8330B	Nitroglycerin	0.63	NSL	NSL	mg/kg	0.300 U	0.300 U	0.300 U
SW8330B	Tetryl	16	NSL	NSL	mg/kg	0.150 U	0.150 U	0.150 U

Qualifiers

- J The reported result is an estimated value
- U Not Detected (limit of detection [LOD] shown)
- UJ Not Detected (LOD is estimated)
- PSL Project Screening Level is the lowest value of the USEPA Regional Screening Level (RSL) for Residential Soil, or the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2
- MA BKG Massachusettes background concentrations for metals in soil
- Eco-SSL USEPA Ecological Soil Screening Levels,
 - "https://www.epa.gov/chemical-research/interim-ecological-soil-
 - screening-level-documents", last accessed 25 September 2018
- NSL No screening level identified
- mg/kg milligrams per kilogram

Detected results are bolded.

PSL Exceedances of screening level are shaded.

Eco-SSL exceedances are underlined.

MA BKG exceedances are printed in blue font.

Appendix D, Table D-3 Former Camp Wellfleet ISM Background Sampling Results

Method	Analyte Name	PSL	UNITS	BKG-SU1-SA	BKG-SU1-SB	BKG-SU2-SA-REP1	BKG-SU2-SA-REP2	BKG-SU2-SA-REP3	BKG-SU2-SB-REP1	BKG-SU2-SB-REP2	BKG-SU2-SB-REP3
	Antimony	3.1	mg/kg	0.440 J	0.170 J	0.300 J	0.240 J	0.200 J	0.410 J	0.340 J	0.210 J
	Copper	310	mg/kg	3.60	1.70	2.70	2.20	2.40	2.10	1.60	1.70
SW6010C	Lead	200	mg/kg	6.80	3.40 J	5.90	6.40	6.60	3.60	3.50	2.90 J
5000100	Manganese	180	mg/kg	17.6	55.6 J	17.6	16.6	15.5	75.9	76.8	96.9
	Nickel	150	mg/kg	0.880	2.10	0.950	1.30	0.760	2.40	2.30	2.70
	Zinc	1,000	mg/kg	6.80	17.0 J	6.80	5.80	4.50	8.20 J	7.90	17.2 J
SW8330	Nitroguanidine	630	mg/kg	0.110 UJ	0.120 U	0.730 J	0.120 U	0.110 UJ	0.120 U	0.110 UJ	0.120 U
	2,4,6-Trinitrotoluene	3.6	mg/kg	0.0990 U	0.0980 U	0.0990 U	0.0970 U	0.0950 U	0.0970 U	0.0990 U	0.0960 U
	2,4-Dinitrotoluene	0.7	mg/kg	0.150 U	0.150 U	0.150 U	0.150 U	0.140 U	0.140 U	0.150 U	0.140 U
	2,6-Dinitrotoluene	0.36	mg/kg	0.150 U	0.150 U	0.150 U	0.150 U	0.140 U	0.140 U	0.150 U	0.140 U
SW8330B	Hexahydro-1,3,5-trinitro-1,3,5-										
	triazine (RDX)	1	mg/kg	0.150 U	0.150 U	0.150 U	0.150 U	0.140 U	0.140 U	0.150 U	0.140 U
	Nitroglycerin	0.63	mg/kg	0.300 U	0.290 U	0.300 U	0.290 U	0.280 U	0.290 U	0.300 U	0.290 U
	Tetryl	16	mg/kg	0.150 U	0.150 U	0.150 U	0.150 U	0.140 U	0.140 U	0.150 U	0.140 U

Qualifiers

J The reported result is an estimated value

U Not Detected (limit of detection [LOD] shown)

UJ Not Detected (LOD is estimated)

PSL Project Screening Level is the lowest value of the USEPA Regional Screening Level (RSL) for Residential Soil, or the S-1 & GW-1 Massachusetts Contingency Plan (MCP) Table 2 milligrams per kilogram

Detected results are bolded.

Exceedances of screening level are shaded.

Appendix D, Table D-3 Former Camp Wellfleet ISM Background Sampling Results

Method	Analyte Name	PSL	UNITS	BKG-SU3-SA	BKG-SU3-SB	BKG-SU4-SA	BKG-SU4-SB	BKG-SU5-SA	BKG-SU5-SB	BKG-SU6-SA	BKG-SU6-SB	BKG-SU7-SA	BKG-SU7-SB
	Antimony	3.1	mg/kg	0.210 J	0.380 J	3.40	0.280 J	0.160 J	0.150 J	0.270 J	0.220 J	0.340 J	0.340 J
	Copper	310	mg/kg	1.7	3.00 J	3.10	1.70	2.40	1.30	3.20	1.90	3.40	1.30
SW6010C	Lead	200	mg/kg	5.50 J	4.10 J	23.1	3.30	5.60	2.70	5.40	3.40	5.80	3.70
5000100	Manganese	180	mg/kg	35.0	18.2 J	13.6	19.6	7.70	21.0	11.0	30.4	13.1	20.6
	Nickel	150	mg/kg	1.70	1.70	1.50	2.00	0.900	2.20	1.50	2.70	0.690	2.10
	Zinc	1,000	mg/kg	6.50 J	7.90 J	6.80	16.5	6.40 J	6.70	7.40	9.00	7.00	7.00
SW8330	Nitroguanidine	630	mg/kg	0.120 U	0.120 U	0.120 UJ	0.110 U	0.110 U	0.120 U	0.110 U	0.110 U	0.120 UJ	0.110 U
	2,4,6-Trinitrotoluene		mg/kg	0.0980 U	0.100 U	0.0960 U	0.0980 U	0.0980 U	0.0970 U	0.0950 U	0.100 U	0.0960 U	0.100 U
	2,4-Dinitrotoluene	0.7	mg/kg	0.150 U	0.150 U	0.140 U	0.150 U	0.150 U	0.150 U	0.140 U	0.150 U	0.140 U	0.150 U
	2,6-Dinitrotoluene	0.36	mg/kg	0.150 U	0.150 U	0.140 U	0.150 U	0.150 U	0.150 U	0.140 U	0.150 U	0.140 U	0.150 U
SW8330B	Hexahydro-1,3,5-trinitro-1,3,5-												
	triazine (RDX)	1	mg/kg	0.150 U	0.150 U	0.140 U	0.150 U	0.150 U	0.150 U	0.140 U	0.150 U	0.140 U	0.150 U
	Nitroglycerin	0.63	mg/kg	0.300 U	0.300 U	0.290 U	0.290 U	0.290 U	0.290 U	0.280 U	0.300 U	0.290 U	0.300 U
	Tetryl	16	mg/kg	0.150 U	0.150 U	0.140 U	0.150 U	0.150 U	0.150 U	0.140 U	0.150 U	0.140 U	0.150 U

Qualifiers

J	The reported result is an estimated value
U UJ	Not Detected (limit of detection [LOD] shown) Not Detected (LOD is estimated)
PSL mg/kg	Project Screening Level is the lowest value of the USEF milligrams per kilogram

Detected results are bolded.

Exceedances of screening level are shaded.

Appendix D, Table D-4 Former Camp Wellfleet Groundwater (Drinking Water Supply Well) Sampling Results

Method	Analyte Name	PSL	UNITS	WELLB-GW-1
	Antimony	6	μg/L	3.80 J
	Copper	1,300	μg/L	20.8 J
SW6010C	Lead	15	μg/L	3.30 J
5 11 00100	Manganese	300	μg/L	5.70
	Nickel	100	μg/L	3.00 U
	Zinc	NS	μg/L	18.1
SW8330	Nitroguanidine	NS	μg/L	60.0 U
	2,4,6-Trinitrotoluene	NS	µg/L	0.220 U
	2,4-Dinitrotoluene	NS	μg/L	0.110 U
	2,6-Dinitrotoluene	NS	μg/L	0.110 U
SW8330B	Hexahydro-1,3,5-trinitro-1,3,5-triazine			
	(RDX)	NS	µg/L	0.110 U
	Nitroglycerin	NS	μg/L	0.430 U
	Tetryl	NS	μg/L	0.220 U

Qualifiers

•	
J	The reported result is an estimated value
U	Not Detected (limit of detection [LOD] shown)
PSL	Project Screening Level (either the Massachusetts Maximum Contaminant
	Levels or Massachusetts Drinking Water Guidelines, MassDEP, 2017)
NS	No Screening Level Identified
	e e
µg/L	micrograms per liter

Detected results are bolded.

Exceedances of screening level are shaded.

APPENDIX D.4: LABORATORY LEVEL IV REPORTS

(provided on CD only)

This Page Intentionally Left Blank

APPENDIX E: MEC RISK MATRIX ASSESSMENT

This Page Intentionally Left Blank

MEC Risk Assessment Matrices – AOI-01

Matrix 1 – Likelihood of Encounter. This matrix relates the site characterization data for amount of MEC to site use (including accessibility) to determine the likelihood of encountering MEC at a specific site.

		A	ccess Conditions	(frequency of us	se)
	lihood of Encounter, Matrix 1: ount of MEC vs. Access Conditions	Regular (e.g., daily use, open access)	Often (e.g., less regular or periodic use, some access)	Intermittent (e.g., some irregular use, or access limited)	Rare (e.g., very limited use, access prevented)
	• MEC is visible on the surface and detected in the subsurface.	Frequent	Frequent	Likely	Occasional
	• The area is identified as a Concentrated Munitions Use Area (CMUA) where MEC is known or suspected (e.g., MD indicative of MEC is identified) to be present in surface and subsurface.	Frequent	Likely	Occasional	Seldom
	 MEC presence based on physical evidence (e.g., MD indicative of MEC), although the area is not a CMUA, or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 1.0/acre at 95% confidence). 	Likely	Occasional	Seldom	Unlikely
Amount of MEC	 MEC presence is based on isolated historical discoveries (e.g., EOD report) prior to investigation, or A DERP response action has been conducted to physically remove MEC and known or suspected hazard remains to support this selection, (e.g., surface removal where subsurface not addressed) or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 0.5/acre at 95% confidence). 	Occasional	Seldom	Unlikely	Unlikely
	 MEC presence is suspected based on historical evidence of munitions use only, or A DERP response action has been conducted to physically remove surface and subsurface MEC (evidence that some residual hazard remains to support this selection), or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 0.25/acre at 95% confidence). 	Seldom	Seldom	Unlikely	Unlikely
	 Investigation of the MRS did not identify evidence of MEC presence, or A DERP response action has been conducted that will achieve UU/UE. 	Unlikely	Unlikely	Unlikely	Unlikely

Matrix 1. Likelihood of Encounter

Amount of MEC Justification:

AOI-01 is an area of burial/disposal pits. This area was initially considered an Open Burn/Open Detonation, but findings from a removal action conducted to physically remove subsurface MEC ultimately determined these to be disposal pits for MD and non-munitions debris. No MEC was found, and the matrix selection is that a DERP response action has been conducted to physically remove surface and subsurface MEC (but evidence that some residual hazard remains to support this selection).

No MEC was found in AOI-01. The following MD items were found in the subsurface of AOI-01:

• MD: Numerous items (1,040 lbs MD in single burial pit), including 3.5" practice rockets, 3 expended M2 anti-personnel mines, 407 M48 flashtubes, 1 m7A3 2.36" practice rocket, and part of an inert filled M65 1,000lb "Dove" guided bomb.

Access Condition Justification:

AOI-01 is a low traffic area. While accessible by park visitors, the rough trails make traversing by vehicle difficult. Pedestrian traffic is common on the unpaved trails. There is some semidense natural vegetation that limits pedestrian access, however there are no man-made barrier restrictions. Therefore, access or frequency of use for AOI-01 is assessed as *Often*.

Matrix 1 Result: Seldom

Matrix 2 – Severity of Incident. This matrix assesses the likelihood of encounter rating (from Matrix 1) as related to the <u>severity</u> of an unintentional detonation.

Seve	Severity of Explosive Incident,		Like	lihood of Encou	nter	
Mat Seve	rix 2: erity vs. Likelihood of ounter	Frequent: Regular, or inevitable occurrences	Likely: Several or numerous occurrences	Occasional: Sporadic or intermittent occurrences	Seldom: Infrequent, rare occurrences	Unlikely: Not probable
s items	Catastrophic/Critical: May result in 1 or more deaths, permanent total or partial disability, or hospitalization	A	A	В	В	D
Severity Associated with Specific Munitions items	Modest: May result in 1 (or more) injury resulting in emergency medical treatment, without hospitalization	В	В	В	С	D
y Associated with	Minor: May result in 1 or more injuries requiring first aid or medical treatment	В	С	С	С	D
Severit	Improbable: No injury is anticipated	D	D	D	D	D

Matrix 2. Severity of Incident

"A" indicates conditions most likely to result in determination of an unacceptable risk.

"D" indicates conditions most likely to result in determination of an acceptable scenarios.

Severity Justification:

No MEC was found and no severity is associated with MD. Therefore, the severity is assessed as *Improbable*.

Matrix 2 Result: D

Matrix 3 – Likelihood of Detonation. This matrix relates sensitivity of the MEC items to the likelihood for energy to be imparted to an item during an encounter by specific land users.

		Likelih	ood to Impart Energy on	an Item					
Muniti	ood of Detonation, Matrix 3: ons Sensitivity vs. Likelihood gy to be Imparted	<i>High</i> e.g., areas planned for development, or seasonally tilled	<i>Modest</i> e.g., undeveloped, wildlife refuge, parks	<i>Inconsequential</i> e.g., not anticipated, prevented, mitigated					
llity to	High (e.g., classified as sensitive)	1	1	3					
Susceptibility to onation	<i>Moderate</i> (e.g., high explosive (HE) or pyrotechnics)	1	2	3					
4	<i>Low</i> (e.g., propellant or bulk secondary explosives)	1	3	3					
Sensitivity: De	Not Sensitive	2	3	3					

Matrix 3. Likelihood of Detonation

Sensitivity Justification:

No MEC was found and no level of sensitivity is associated with MD. Therefore, the sensitivity is assessed as *Not Sensitive*.

Likelihood to Impart Energy Justification:

AOI-01 is a low traffic area. While accessible to park visitors, it is a largely undeveloped area, and the rough trails make traversing by vehicle difficult. It is not an area where workers perform significant maintenance operations such as excavating or grading. Therefore, the likelihood to impart energy is assessed as *Modest*.

Matrix 3 Result: 3

Matrix 4 – Acceptable and Unacceptable Site Conditions. This final matrix combines the results of Matrices 2 and 3 to differentiate Acceptable and Unacceptable site conditions.

Matrix 4: Acceptable and Unacceptable Site Conditions

Acceptab	le and		Result Fro	m Matrix 2		
Unaccepta Condit		А	В	С	D	
E m	1	Unacceptable	Unacceptable	Unacceptable	Acceptable	
Result from Matrix 3	2	Unacceptable	Unacceptable	Acceptable	Acceptable	
Res	3	Unacceptable	Acceptable	Acceptable	Acceptable	

Matrix 2 Result: D

Matrix 3 Result: 3

Matrix 4 Result: Acceptable

The risk matrices demonstrate that AOI-01 currently has an acceptable risk from MEC hazards on due to the absence of MEC and the resulting combination of severity of incident and likelihood of detonation factors.

Therefore, the baseline site condition for AOI-01 is assessed to be Acceptable.

Acceptable baseline conditions do not need to proceed to the next phase of the CERCLA response process, as no further action is warranted.

MEC Risk Assessment Matrices – AOI-02

Matrix 1 – Likelihood of Encounter. This matrix relates the site characterization data for amount of MEC to site use (including accessibility) to determine the likelihood of encountering MEC at a specific site.

			A	ccess Conditions	(frequency of us	se)
		d of Encounter, Matrix 1: of MEC vs. Access Conditions	Regular (e.g., daily use, open access)	Often (e.g., less regular or periodic use, some access)	Intermittent (e.g., some irregular use, or access limited)	Rare (e.g., very limited use, access prevented)
	•	MEC is visible on the surface and detected in the subsurface.	Frequent	Frequent	Likely	Occasional
	•	The area is identified as a Concentrated Munitions Use Area (CMUA) where MEC is known or suspected (e.g., MD indicative of MEC is identified) to be present in surface and subsurface.	Frequent	Likely	Occasional	Seldom
	•	MEC presence based on physical evidence (e.g., MD indicative of MEC), although the area is not a CMUA, or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 1.0/acre at 95% confidence).	Likely	Occasional	Seldom	Unlikely
Amount of MEC	•	MEC presence is based on isolated historical discoveries (e.g., EOD report) prior to investigation, or A DERP response action has been conducted to physically remove MEC and known or suspected hazard remains to support this selection, (e.g., surface removal where subsurface not addressed) or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 0.5/acre at 95% confidence).	Occasional	Seldom	Unlikely	Unlikely
	•	MEC presence is suspected based on historical evidence of munitions use only, or A DERP response action has been conducted to physically remove surface and subsurface MEC (evidence that some residual hazard remains to support this selection), or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 0.25/acre at 95% confidence).	Seldom	Seldom	Unlikely	Unlikely
	•	Investigation of the MRS did not identify evidence of MEC presence, or A DERP response action has been conducted that will achieve UU/UE.	Unlikely	Unlikely	Unlikely	Unlikely

Matrix 1. Likelihood of Encounter

Amount of MEC Justification:

AOI-02 is the Former Artillery Firing Line. These were firing points for 90mm and other artillery, primarily firing out to sea (the ocean range is AOI-06). MEC presence has been established; while no MEC were found during the EE/CA or Removal Actions, a 76mm anti-aircraft artillery round was found within this area (Marconi Beach) in October 2016 and was determined to be MEC.

The MEC item found was a result of the erosion of the high bluff with the item ultimately found in the beach area. As this AOI includes most of the Former Camp Wellfleet FUDS shoreline, it may also see munition items washing ashore following storm events.

MEC amount is based on physical evidence although there is no indication that the area is a CMUA. The 76mm MEC round was not considered an isolated discovery as the EE/CA report includes documentation of many "OE" items being found in this area over the years.

Although the MEC item was found on the surface, the MEC density as shown in the DQO table in Appendix B is below the project-specific threshold of 1 TOI/acre.

The following MEC and MD items were found in the surface or subsurface of AOI-02:

- MEC: 76mm anti-aircraft artillery. Remnants of packaging material were present on the item, indicating it had not been fired, and thus it is classified as discarded military munitions (DMM).
- MD: 50 caliber machine gun ammunition, fuze cans, shipping clips for 90mm fuzes, and 30 caliber ammunition cans, calcium hydride canisters, and unknown frag.

Access Condition Justification:

This AOI is a moderate to high traffic beach access area. It contains unpaved and paved trails and paved roads. While most of the northern part of AOI-02 contains high volume pedestrian and vehicle traffic associated with beach access, the central and southern portions contain a low volume of traffic because there are few trails and a high density of natural vegetation that limits pedestrian access. However, the southern beach areas are essentially open access through adjacent AOI-05. As there are no barriers to the beach, the access or frequency of use for AOI-02 is assessed as *Regular*.

Matrix 1 Result: Likely

Matrix 2 – Severity of Incident. This matrix assesses the likelihood of encounter rating (from Matrix 1) as related to the <u>severity</u> of an unintentional detonation.

Seve	erity of Explosive Incident,	Likelihood of Encounter				
Mat Seve	rix 2: erity vs. Likelihood of ounter	Frequent: Regular, or inevitable occurrences	Likely: Several or numerous occurrences	Occasional: Sporadic or intermittent occurrences	Seldom: Infrequent, rare occurrences	Unlikely: Not probable
items	Catastrophic/Critical: May result in 1 or more deaths, permanent total or partial disability, or hospitalization	A	A	В	В	D
Severity Associated with Specific Munitions items	Modest: May result in 1 (or more) injury resulting in emergency medical treatment, without hospitalization	В	В	В	С	D
/ Associated with §	Minor: May result in 1 or more injuries requiring first aid or medical treatment	В	С	С	С	D
Severit	Improbable: No injury is anticipated	D	D	D	D	D

Matrix 2.	Severity	of Incident
-----------	----------	-------------

"A" indicates conditions most likely to result in determination of an unacceptable risk.

"D" indicates conditions most likely to result in determination of an acceptable scenarios.

Severity Justification:

Detonation of the identified MEC item while being handled by a human would likely result in at least partial disability or hospitalization. Therefore, the severity is assessed as *Catastrophic/Critical*.

Matrix 2 Result: A

Matrix 3 – Likelihood of Detonation. This matrix relates sensitivity of the MEC items to the likelihood for energy to be imparted to an item during an encounter by specific land users.

		Likelihood to Impart Energy on an Item				
Likelihood of Detonation, Matrix 3: Munitions Sensitivity vs. Likelihood of Energy to be Imparted		HighModeste.g., areas planned fore.g., undeveloped,development, orwildlife refuge, parksseasonally tilled		<i>Inconsequential</i> e.g., not anticipated, prevented, mitigated		
llity to	High (e.g., classified as sensitive)	1	1	3		
Susceptibility to onation	<i>Moderate</i> (e.g., high explosive (HE) or pyrotechnics)	1	2	3		
_	<i>Low</i> (e.g., propellant or bulk secondary explosives)	1	3	3		
Sensitivity: De	Not Sensitive	2	3	3		

Matrix 3. Likelihood of Detonation

Sensitivity Justification:

The identified MEC item contained some amount of HE. Therefore, the sensitivity is assessed as *Moderate*.

Likelihood to Impart Energy Justification:

AOI-02 is a regular, open access area. Park workers performing maintenance operations such as excavating or grading, could encounter MEC. Park visitors (treasure hunters, etc.) could use metal detectors to discover and excavate MEC, or MEC could be found following erosion from the bluffs and migration to the surface. Therefore, the likelihood to impart energy is assessed as *Modest*.

Matrix 3 Result: 2

Matrix 4 – Acceptable and Unacceptable Site Conditions. This final matrix combines the results of Matrices 2 and 3 to differentiate Acceptable and Unacceptable site conditions.

Matrix 4: Acceptable and Unacceptable Site Conditions

Acceptable and Unacceptable Site Conditions		Result From Matrix 2						
		A B		С	D			
E m	1	Unacceptable	Unacceptable	Unacceptable	Acceptable			
Result from Matrix 3	2	Unacceptable	Unacceptable	Acceptable	Acceptable			
Res	3	Unacceptable	Acceptable	Acceptable	Acceptable			

Matrix 2 Result: A

Matrix 3 Result: 2

Matrix 4 Result: Unacceptable

The risk matrices demonstrate that AOI-02 currently has an unacceptable risk from MEC hazards due to the combination of severity of incident and likelihood of detonation factors.

Therefore, the baseline site condition for AOI-02 is assessed to be Unacceptable.

Unacceptable initial conditions typically proceed to the next phase of the CERCLA response process, where remedial action is warranted. Evaluation of the matrices indicates that the unacceptable risk for this area could be reduced to an acceptable risk by reducing/eliminating the likelihood for humans to encounter the MEC in this area.

MEC Risk Assessment Matrices – AOI-03

Matrix 1 – Likelihood of Encounter. This matrix relates the site characterization data for amount of MEC to site use (including accessibility) to determine the likelihood of encountering MEC at a specific site.

		A		(frequency of us	se)
	lihood of Encounter, Matrix 1: ount of MEC vs. Access Conditions	Regular (e.g., daily use, open access)	Often (e.g., less regular or periodic use, some access)	Intermittent (e.g., some irregular use, or access limited)	Rare (e.g., very limited use, access prevented)
	• MEC is visible on the surface and detected in the subsurface.	Frequent	Frequent	Likely	Occasional
Amount of MEC	• The area is identified as a Concentrated Munitions Use Area (CMUA) where MEC is known or suspected (e.g., MD indicative of MEC is identified) to be present in surface and subsurface.	Frequent	Likely	Occasional	Seldom
	 MEC presence based on physical evidence (e.g., MD indicative of MEC), although the area is not a CMUA, or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 1.0/acre at 95% confidence). 	Likely	Occasional	Seldom	Unlikely
	 MEC presence is based on isolated historical discoveries (e.g., EOD report) prior to investigation, or A DERP response action has been conducted to physically remove MEC and known or suspected hazard remains to support this selection, (e.g., surface removal where subsurface not addressed) or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 0.5/acre at 95% confidence). 	Occasional	Seldom	Unlikely	Unlikely
	 MEC presence is suspected based on historical evidence of munitions use only, or A DERP response action has been conducted to physically remove surface and subsurface MEC (evidence that some residual hazard remains to support this selection), or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 0.25/acre at 95% confidence). 	Seldom	Seldom	Unlikely	Unlikely
	 Investigation of the MRS did not identify evidence of MEC presence, or A DERP response action has been conducted that will achieve UU/UE. 	Unlikely	Unlikely	Unlikely	Unlikely

Matrix 1. Likelihood of Encounter

Amount of MEC Justification:

AOI-03 is the former Ammunition Supply Point, with multiple U-shaped revetments possibly used to store ammunition. It also includes an area of multiple ground scars identified from 1943 and 1947 aerial photos.

A single Rifle Smoke Grenade, found in Area L during the EE/CA, is considered to be MEC (pyrotechnic). Additionally, abundant MD was found during previous investigations. This MEC finding is considered to be an isolated discovery because no other munitions use is historically known in the area. The rifle smoke grenade was found in a grid with no other MEC or MD, approximately 1,000 feet to the south of the other grids that did contain MD (mostly shipping-related and not indicative of a CMUA).

The following MEC and MD items were found in the surface or subsurface of AOI-03:

- MEC: Rifle Smoke Grenade.
- MD: Multiple fuze shipping spacers, some small arms debris.

Access Condition Justification:

AOI-03 is a moderate traffic area. It contains unpaved trails and a paved road. The unpaved trails see moderate pedestrian traffic, and the paved road sees vehicle traffic. There is a gate limiting vehicle traffic onto unpaved trails, and there is some semi-dense natural vegetation and rough terrain that limits pedestrian access, however there are no man-made barrier restrictions to pedestrians. Therefore, access or frequency of use for AOI-03 is assessed as *Often*.

Matrix 1 Result: Seldom

Matrix 2 – Severity of Incident. This matrix assesses the likelihood of encounter rating (from Matrix 1) as related to the <u>severity</u> of an unintentional detonation.

Sova	rity of Explosive Incident,	Likelihood of Encounter				
Mat Seve	rix 2: erity vs. Likelihood of ounter	Frequent: Regular, or inevitable occurrences	Likely: Several or numerous occurrences	Occasional: Sporadic or intermittent occurrences	Seldom: Infrequent, rare occurrences	Unlikely: Not probable
s items	Catastrophic/Critical: May result in 1 or more deaths, permanent total or partial disability, or hospitalization	A	A	В	В	D
Severity Associated with Specific Munitions items	Modest: May result in 1 (or more) injury resulting in emergency medical treatment, without hospitalization	В	В	В	С	D
/ Associated with §	Minor: May result in 1 or more injuries requiring first aid or medical treatment	В	С	С	С	D
Severit	Improbable: No injury is anticipated	D	D	D	D	D

Matrix 2. Severity of Incident

"A" indicates conditions most likely to result in determination of an unacceptable risk.

"D" indicates conditions most likely to result in determination of an acceptable scenarios.

Severity Justification:

Detonation of the Rifle Smoke Grenade item while being handled by a human would likely result in injury with emergency medical treatment, without hospitalization. Therefore, the severity is assessed as *Modest*.

Matrix 2 Result: C

Matrix 3 – Likelihood of Detonation. This matrix relates sensitivity of the MEC items to the likelihood for energy to be imparted to an item during an encounter by specific land users.

		Likelihood to Impart Energy on an Item					
Likelihood of Detonation, Matrix 3: Munitions Sensitivity vs. Likelihood of Energy to be Imparted		HighModeste.g., areas planned fore.g., undeveloped,development, orwildlife refuge, parksseasonally tilled		<i>Inconsequential</i> e.g., not anticipated, prevented, mitigated			
llity to	High (e.g., classified as sensitive)	1	1	3			
Susceptibility to onation	<i>Moderate</i> (e.g., high explosive (HE) or pyrotechnics)	1	2	3			
_	<i>Low</i> (e.g., propellant or bulk secondary explosives)	1	3	3			
Sensitivity: De	Not Sensitive	2	3	3			

Matrix 3. Likelihood of Detonation

Sensitivity Justification:

The identified MEC item contained some pyrotechnics. Therefore, the sensitivity is assessed as *Moderate*.

Likelihood to Impart Energy Justification:

AOI-03 is a moderate traffic area with periodic use and some access. It is largely an undeveloped portion of a park, and not an area where workers perform significant maintenance operations such as excavating or grading. Therefore, the likelihood to impart energy is assessed as *Modest*.

Matrix 3 Result: 2

Matrix 4 – Acceptable and Unacceptable Site Conditions. This final matrix combines the results of Matrices 2 and 3 to differentiate Acceptable and Unacceptable site conditions.

Matrix 4: Acceptable and Unacceptable Site Conditions

Acceptable and Unacceptable Site Conditions		Result From Matrix 2					
		A B		С	D		
E m	1	Unacceptable	Unacceptable	Unacceptable	Acceptable		
Result from Matrix 3	2	Unacceptable	Unacceptable	Acceptable	Acceptable		
Res	3	Unacceptable	Acceptable	Acceptable	Acceptable		

Matrix 2 Result: C

Matrix 3 Result: 2

Matrix 4 Result: Acceptable

The risk matrices demonstrate that AOI-03 currently has an acceptable risk from MEC hazards due to the combination of severity of incident and likelihood of detonation factors.

Therefore, the baseline site condition for AOI-03 is assessed to be Acceptable.

Unacceptable initial conditions typically proceed to the next phase of the CERCLA response process, where remedial action is warranted. Evaluation of the matrices indicates that the unacceptable risk for this area could be reduced to an acceptable risk by reducing/eliminating the likelihood for humans to encounter the MEC in this area.

MEC Risk Assessment Matrices – AOI-04

Matrix 1 – Likelihood of Encounter. This matrix relates the site characterization data for amount of MEC to site use (including accessibility) to determine the likelihood of encountering MEC at a specific site.

				(frequency of us	se)
	lihood of Encounter, Matrix 1: ount of MEC vs. Access Conditions	Regular (e.g., daily use, open access)	Often (e.g., less regular or periodic use, some access)	Intermittent (e.g., some irregular use, or access limited)	Rare (e.g., very limited use, access prevented)
	MEC is visible on the surface and detected in the subsurface.	Frequent	Frequent	Likely	Occasional
Amount of MEC	 The area is identified as a Concentrated Munitions Use Area (CMUA) where MEC is known or suspected (e.g., MD indicative of MEC is identified) to be present in surface and subsurface. 	Frequent	Likely	Occasional	Seldom
	 MEC presence based on physical evidence (e.g., MD indicative of MEC), although the area is not a CMUA, or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 1.0/acre at 95% confidence). 	Likely	Occasional	Seldom	Unlikely
	 MEC presence is based on isolated historical discoveries (e.g., EOD report) prior to investigation, or A DERP response action has been conducted to physically remove MEC and known or suspected hazard remains to support this selection, (e.g., surface removal where subsurface not addressed) or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 0.5/acre at 95% confidence). 	Occasional	Seldom	Unlikely	Unlikely
	 MEC presence is suspected based on historical evidence of munitions use only, or A DERP response action has been conducted to physically remove surface and subsurface MEC (evidence that some residual hazard remains to support this selection), or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 0.25/acre at 95% confidence). 	Seldom	Seldom	Unlikely	Unlikely
	 Investigation of the MRS did not identify evidence of MEC presence, or A DERP response action has been conducted that will achieve UU/UE. 	Unlikely	Unlikely	Unlikely	Unlikely

Matrix 1. Likelihood of Encounter

Amount of MEC Justification:

AOI-04 combines EE/CA investigation areas C, F, and J. These are bomb target areas and a burial site. The amount of MEC is that a removal action has occurred (associated with single point anomaly excavations) to physically remove subsurface MEC (only MD was found), but since not all targets were dug, it is possible that suspected hazards may remain.

No MEC was found in AOI-04. The following MD items were found in the surface and subsurface of AOI-04:

MD: Numerous items including abundant fuze shipping spacers, some small arms debris, one empty Dove Missile/1000-pound bomb, one empty 250-pound bomb, 186 M28A1 flash tubes from 106mm projectile cartridge cases, and fragments of grenade spoons.

Access Condition Justification:

AOI-04 is a moderate traffic area. It contains unpaved trails and a paved road. The unpaved trails see moderate pedestrian traffic, and the paved road sees vehicle traffic. There is some semi-dense natural vegetation and rough terrain that limits pedestrian access, however there are no man-made barrier restrictions. Therefore, access or frequency of use for AOI-04 is assessed as *Often*.

Matrix 1 Result: Seldom

Matrix 2 – Severity of Incident. This matrix assesses the likelihood of encounter rating (from Matrix 1) as related to the <u>severity</u> of an unintentional detonation.

Sour	erity of Explosive Incident,	Likelihood of Encounter				
Mat Seve	rix 2: erity vs. Likelihood of ounter	Frequent: Regular, or inevitable occurrences	Likely: Several or numerous occurrences	Occasional: Sporadic or intermittent occurrences	Seldom: Infrequent, rare occurrences	Unlikely: Not probable
s items	Catastrophic/Critical: May result in 1 or more deaths, permanent total or partial disability, or hospitalization	A	A	В	В	D
Severity Associated with Specific Munitions items	Modest: May result in 1 (or more) injury resulting in emergency medical treatment, without hospitalization	В	В	В	С	D
y Associated with	Minor: May result in 1 or more injuries requiring first aid or medical treatment	В	С	С	С	D
Severit	Improbable: No injury is anticipated	D	D	D	D	D

Matrix 2. Severity of Incident

"A" indicates conditions most likely to result in determination of an unacceptable risk.

"D" indicates conditions most likely to result in determination of an acceptable scenarios.

Severity Justification:

No MEC was found and no severity is associated with MD. Therefore, the severity is assessed as *Improbable*.

Matrix 2 Result: D

Matrix 3 – Likelihood of Detonation. This matrix relates sensitivity of the MEC items to the likelihood for energy to be imparted to an item during an encounter by specific land users.

		Likelihood to Impart Energy on an Item						
Muniti	ood of Detonation, Matrix 3: ons Sensitivity vs. Likelihood rgy to be Imparted	<i>High</i> e.g., areas planned for development, or seasonally tilled	areas planned for e.g., undeveloped, e.g., not ar lopment, or wildlife refuge, parks prevented,					
lity to	High (e.g., classified as sensitive)	1	1	3				
ty: Susceptibility to Detonation	<i>Moderate</i> (e.g., high explosive (HE) or pyrotechnics)	1	2	3				
L L	<i>Low</i> (e.g., propellant or bulk secondary explosives)	1	3	3				
Sensitivity: De	Not Sensitive	2	3	3				

Matrix 3. Likelihood of Detonation

Sensitivity Justification:

No MEC was found and no level of sensitivity is associated with MD. Therefore, the sensitivity is assessed as *Not Sensitive*.

Likelihood to Impart Energy Justification:

AOI-04 is a moderate traffic area. There is some semi-dense natural vegetation and rough terrain that limits pedestrian access, however there are no man-made barrier restrictions. It is not an area where workers perform significant maintenance operations such as excavating or grading. Therefore, the likelihood to impart energy is assessed as *Modest*.

Matrix 3 Result: 3

Matrix 4 – Acceptable and Unacceptable Site Conditions. This final matrix combines the results of Matrices 2 and 3 to differentiate Acceptable and Unacceptable site conditions.

Matrix 4: Acceptable and Unacceptable Site Conditions

Acceptable and Unacceptable Site Conditions		Result From Matrix 2					
		А	В	С	D		
E m	1	Unacceptable	Unacceptable	Unacceptable	Acceptable		
Result from Matrix 3	2	Unacceptable	Unacceptable	Acceptable	Acceptable		
Res	3	Unacceptable	Acceptable	Acceptable	Acceptable		

Matrix 2 Result: D

Matrix 3 Result: 3

Matrix 4 Result: Acceptable

The risk matrices demonstrate that AOI-04 currently has an acceptable risk from MEC hazards on due to the absence of MEC and the resulting combination of severity of incident and likelihood of detonation factors.

Therefore, the baseline site condition for AOI-04 is assessed to be Acceptable.

Acceptable baseline conditions do not need to proceed to the next phase of the CERCLA response process, as no further action is warranted.

MEC Risk Assessment Matrices – AOI-05

Matrix 1 – Likelihood of Encounter. This matrix relates the site characterization data for amount of MEC to site use (including accessibility) to determine the likelihood of encountering MEC at a specific site.

			ccess Conditions	(frequency of us	se)
	lihood of Encounter, Matrix 1: ount of MEC vs. Access Conditions	Regular (e.g., daily use, open access)	Often (e.g., less regular or periodic use, some access)	Intermittent (e.g., some irregular use, or access limited)	Rare (e.g., very limited use, access prevented)
	 MEC is visible on the surface and detected in the subsurface. 	Frequent	Frequent	Likely	Occasional
	 The area is identified as a Concentrated Munitions Use Area (CMUA) where MEC is known or suspected (e.g., MD indicative of MEC is identified) to be present in surface and subsurface. 	Frequent	Likely	Occasional	Seldom
	 MEC presence based on physical evidence (e.g., MD indicative of MEC), although the area is not a CMUA, or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 1.0/acre at 95% confidence). 	Likely	Occasional	Seldom	Unlikely
Amount of MEC	 MEC presence is based on isolated historical discoveries (e.g., EOD report) prior to investigation, or A DERP response action has been conducted to physically remove MEC and known or suspected hazard remains to support this selection, (e.g., surface removal where subsurface not addressed) or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 0.5/acre at 95% confidence). 	Occasional	Seldom	Unlikely	Unlikely
	 MEC presence is suspected based on historical evidence of munitions use only, or A DERP response action has been conducted to physically remove surface and subsurface MEC (evidence that some residual hazard remains to support this selection), or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 0.25/acre at 95% confidence). 	Seldom	Seldom	Unlikely	Unlikely
	 Investigation of the MRS did not identify evidence of MEC presence, or A DERP response action has been conducted that will achieve UU/UE. 	Unlikely	Unlikely	Unlikely	Unlikely

Matrix 1. Likelihood of Encounter

Amount of MEC Justification:

AOI-05 is a former Rocket Range and Small Arms Range. The small arms range has been completely covered by the large paved parking lot. The southern portion includes a small 5-acre removal action area. Multiple pieces of frag from 3.5" rockets and 105mm projectiles found during the previous investigations or removal action are considered HE frag or MD indicative of MEC.

MEC amount is based on physical evidence (MD indicative of MEC) although there is no indication that the area is a CMUA.

As this AOI includes portions of the Former Camp Wellfleet FUDS shoreline, MEC finds could result from erosion of the bluffs and the subsequent migration of the item to the surface, or munition items could wash ashore following storm events.

In addition to the presence of MD indicative of MEC, the MEC density as shown in the DQO table in Appendix B is well below the project-specific threshold of 1 TOI/acre.

The following MD indicative of MEC items and MD items were found in the surface or subsurface of AOI-05:

- MD Indicative of MEC: HE frag from 3.5" Rockets and 105mm projectiles.
- MD: 50 cal bullet, miscellaneous scrap.

Access Condition Justification:

AOI-05 is a high traffic beach access area. It contains unpaved and paved trails, a paved road and a large paved parking lot. While there is some semi-dense natural vegetation that limits pedestrian access, there are no man-made barrier restrictions. Access to the beach is open with daily use. Therefore, the access or frequency of use for AOI-05 is assessed as *Regular*.

Matrix 1 Result: Likely

Matrix 2 – Severity of Incident. This matrix assesses the likelihood of encounter rating (from Matrix 1) as related to the <u>severity</u> of an unintentional detonation.

Seve	erity of Explosive Incident,	Likelihood of Encounter				
Mat Seve	rix 2: erity vs. Likelihood of ounter	Frequent: Regular, or inevitable occurrences	Likely: Several or numerous occurrences	Occasional: Sporadic or intermittent occurrences	Seldom: Infrequent, rare occurrences	Unlikely: Not probable
s items	Catastrophic/Critical: May result in 1 or more deaths, permanent total or partial disability, or hospitalization	A	А	В	В	D
Severity Associated with Specific Munitions items	Modest: May result in 1 (or more) injury resulting in emergency medical treatment, without hospitalization	В	В	В	С	D
y Associated with	Minor: May result in 1 or more injuries requiring first aid or medical treatment	В	С	С	С	D
Severit	Improbable: No injury is anticipated	D	D	D	D	D

Matrix 2. Severity of Incident

"A" indicates conditions most likely to result in determination of an unacceptable risk.

"D" indicates conditions most likely to result in determination of an acceptable scenarios.

Severity Justification:

Detonation of suspected MEC items while being handled by a human would likely result in at least partial disability or hospitalization. Therefore, the severity is assessed as *Catastrophic/Critical*.

Matrix 2 Result: A

Matrix 3 – Likelihood of Detonation. This matrix relates sensitivity of the MEC items to the likelihood for energy to be imparted to an item during an encounter by specific land users.

		Likelihood to Impart Energy on an Item						
Muniti	ood of Detonation, Matrix 3: ons Sensitivity vs. Likelihood gy to be Imparted	<i>High</i> e.g., areas planned for development, or seasonally tilled	g., areas planned for e.g., undeveloped, e velopment, or wildlife refuge, parks p					
llity to	High (e.g., classified as sensitive)	1	1	3				
Susceptibility to onation	<i>Moderate</i> (e.g., high explosive (HE) or pyrotechnics)	1	2	3				
	<i>Low</i> (e.g., propellant or bulk secondary explosives)	1	3	3				
Sensitivity: De	Not Sensitive	2	3	3				

Matrix 3. Likelihood of Detonation

Sensitivity Justification:

The suspected MEC items would contain some amount of HE. Therefore, the sensitivity is assessed as *Moderate*.

Likelihood to Impart Energy Justification:

AOI-05 is a regular, open access area. Park workers performing maintenance operations such as excavating or grading, could encounter MEC. Park visitors (treasure hunters', etc) could use metal detectors to discover and excavate MEC, or MEC could be found following erosion from the bluffs and migration to the surface. Therefore, the likelihood to impart energy is assessed as *Moderate*.

Matrix 3 Result: 2

Matrix 4 – Acceptable and Unacceptable Site Conditions. This final matrix combines the results of Matrices 2 and 3 to differentiate Acceptable and Unacceptable site conditions.

Matrix 4: Acceptable and Unacceptable Site Conditions

Acceptable and Unacceptable Site Conditions		Result From Matrix 2					
		А	В	С	D		
E m	1	Unacceptable	Unacceptable	Unacceptable	Acceptable		
Result from Matrix 3	2	Unacceptable	Unacceptable	Acceptable	Acceptable		
Res	3	Unacceptable	Acceptable	Acceptable	Acceptable		

Matrix 2 Result: A

Matrix 3 Result: 2

Matrix 4 Result: Unacceptable

The risk matrices demonstrate that AOI-05 currently has an unacceptable risk from MEC hazards due to the combination of severity of incident and likelihood of detonation factors.

Therefore, the baseline site condition for AOI-05 is assessed to be Unacceptable.

Unacceptable initial conditions typically proceed to the next phase of the CERCLA response process, where remedial action is warranted. Evaluation of the matrices indicates that the unacceptable risk for this area could be reduced to an acceptable risk by reducing/eliminating the likelihood for humans to encounter the MEC in this area.

MEC Risk Assessment Matrices – AOI-06

Matrix 1 – Likelihood of Encounter. This matrix relates the site characterization data for amount of MEC to site use (including accessibility) to determine the likelihood of encountering MEC at a specific site.

		A		(frequency of us	se)
	lihood of Encounter, Matrix 1: ount of MEC vs. Access Conditions	Regular (e.g., daily use, open access)	Often (e.g., less regular or periodic use, some access)	Intermittent (e.g., some irregular use, or access limited)	Rare (e.g., very limited use, access prevented)
	MEC is visible on the surface and detected in the subsurface.	Frequent	Frequent	Likely	Occasional
	• The area is identified as a Concentrated Munitions Use Area (CMUA) where MEC is known or suspected (e.g., MD indicative of MEC is identified) to be present in surface and subsurface.	Frequent	Likely	Occasional	Seldom
	 MEC presence based on physical evidence (e.g., MD indicative of MEC), although the area is not a CMUA, or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 1.0/acre at 95% confidence). 	Likely	Occasional	Seldom	Unlikely
Amount of MEC	 MEC presence is based on isolated historical discoveries (e.g., EOD report) prior to investigation, or A DERP response action has been conducted to physically remove MEC and known or suspected hazard remains to support this selection, (e.g., surface removal where subsurface not addressed) or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 0.5/acre at 95% confidence). 	Occasional	Seldom	Unlikely	Unlikely
	 MEC presence is suspected based on historical evidence of munitions use only, or A DERP response action has been conducted to physically remove surface and subsurface MEC (evidence that some residual hazard remains to support this selection), or The MEC concentration is below a project-specific threshold to support this selection (e.g., less than 0.25/acre at 95% confidence). 	Seldom	Seldom	Unlikely	Unlikely
	 Investigation of the MRS did not identify evidence of MEC presence, or A DERP response action has been conducted that will achieve UU/UE. 	Unlikely	Unlikely	Unlikely	Unlikely

Matrix 1. Likelihood of Encounter

Amount of MEC Justification:

AOI-06 is the Range Fan of Artillery Targets in Ocean. This RI assumes that MEC is potentially present in the ocean range fan, since anti-aircraft and rocket firing at targets over the ocean was conducted for approximately 20 years (i.e., historical evidence only). However, there is no known documentation of MEC or MD findings by fishermen or divers in the area.

This AOI could also be a source of MEC/MD to AOI-02 and AOI-05 if munition items wash ashore following storm events, but there is no strong evidence of this occurring on a frequent basis and the more likely source of MEC findings on the beach is erosion of the bluffs.

The following MEC items might conservatively be expected to be in the ocean range fan:

• MEC: 76mm anti-aircraft artillery, 90mm and 105mm projectiles, 3.5" rockets.

Access Condition Justification:

AOI-06 is the Ocean portion of the Artillery Range Fan. It is considered to be open access and daily use for recreational swimming, as well as fishing and diving. As there are no barriers to these waters, the access or frequency of use for AOI-06 is assessed as *Regular*.

Matrix 1 Result: Seldom

Matrix 2 – Severity of Incident. This matrix assesses the likelihood of encounter rating (from Matrix 1) as related to the <u>severity</u> of an unintentional detonation.

Severity of Explosive Incident,		Likelihood of Encounter				
Mat Seve	rix 2: erity vs. Likelihood of ounter	Frequent: Regular, or inevitable occurrences	Likely: Several or numerous occurrences	Occasional: Sporadic or intermittent occurrences	Seldom: Infrequent, rare occurrences	Unlikely: Not probable
s items	Catastrophic/Critical: May result in 1 or more deaths, permanent total or partial disability, or hospitalization	A	A	В	В	D
Severity Associated with Specific Munitions items	Modest: May result in 1 (or more) injury resulting in emergency medical treatment, without hospitalization	В	В	В	С	D
y Associated with	Minor: May result in 1 or more injuries requiring first aid or medical treatment	В	С	С	С	D
Severit	Improbable: No injury is anticipated	D	D	D	D	D

Matrix 2. Severity of Incident

"A" indicates conditions most likely to result in determination of an unacceptable risk.

"D" indicates conditions most likely to result in determination of an acceptable scenarios.

Severity Justification:

Detonation of the identified MEC items while being handled by a human would likely result in at least partial disability or hospitalization. Therefore, the severity is assessed as *Catastrophic/Critical*.

Matrix 2 Result: B

Matrix 3 – Likelihood of Detonation. This matrix relates sensitivity of the MEC items to the likelihood for energy to be imparted to an item during an encounter by specific land users.

		Likelihood to Impart Energy on an Item				
Muniti	ood of Detonation, Matrix 3: ons Sensitivity vs. Likelihood gy to be Imparted	<i>High</i> e.g., areas planned for development, or seasonally tilled	reas planned for e.g., undeveloped, e.g., not a ppment, or wildlife refuge, parks prevented			
llity to	High (e.g., classified as sensitive)	1	1	3		
Susceptibility to onation	<i>Moderate</i> (e.g., high explosive (HE) or pyrotechnics)	1	2	3		
	<i>Low</i> (e.g., propellant or bulk secondary explosives)	1	3	3		
Sensitivity: De	Not Sensitive	2	3	3		

Matrix 3. Likelihood of Detonation

Sensitivity Justification:

The identified MEC items would contain some amount of HE. Therefore, the sensitivity is assessed as *Moderate*.

Likelihood to Impart Energy Justification:

AOI-06 is an open access and daily use area for recreational swimming, as well as fishing and diving. However, recreational users are not very likely to encounter MEC, although it is possible. Therefore, the likelihood to impart energy is assessed as *Modest*.

Matrix 3 Result: 2

Matrix 4 – Acceptable and Unacceptable Site Conditions. This final matrix combines the results of Matrices 2 and 3 to differentiate Acceptable and Unacceptable site conditions.

Matrix 4: Acceptable and Unacceptable Site Conditions

Acceptable and Unacceptable Site Conditions		Result From Matrix 2					
		А	В	С	D		
E m	1	Unacceptable	Unacceptable	Unacceptable	Acceptable		
Result from Matrix 3	2	Unacceptable	Unacceptable	Acceptable	Acceptable		
Res	3	Unacceptable	Acceptable	Acceptable	Acceptable		

Matrix 2 Result: A

Matrix 3 Result: 2

Matrix 4 Result: Unacceptable

The risk matrices demonstrate that AOI-06 currently has an unacceptable risk from MEC hazards due to the combination of severity of incident and likelihood of detonation factors.

Therefore, the baseline site condition for AOI-06 is assessed to be Unacceptable.

Unacceptable initial conditions typically proceed to the next phase of the CERCLA response process, where remedial action is warranted. Evaluation of the matrices indicates that the unacceptable risk for this area could be reduced to an acceptable risk by reducing/eliminating the likelihood for humans to encounter the MEC in this area.

APPENDIX F: MUNITIONS RESPONSE SITE PRIORITIZATION PROTOCOL

This Page Intentionally Left Blank

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the **MRS Summary**, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non munitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: Area of Interest (AOI)-01 Component: U.S. Army Corps of Engineers Formerly Used Defense Site (FUDS) Program Installation/Property Name: Former Camp Wellfleet Location (City, County, State): Town of Wellfleet, Barnstable County, Massachusetts Site Name/Project Name (Project No.): Former Camp Wellfleet FUDS

Date Information Entered/Updated: 08/13/2018

Point of Contact (Name/Phone): Gina Kaso, CENAE PM (978-318-8180)

Project Phase (check only one):

-	D PA		⊠ RI	G FS	🗖 RD
	🛛 RA-C	🗆 RI	🛛 RA-O	□RC	

Media Evaluated (check all that apply):

□ Groundwater	Sediment (human receptor)
☑ Surface soil – Subsurface Soil	□ Surface Water (ecological receptor)
□ Sediment (ecological receptor)	□ Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

Camp Wellfleet training activities occurred from 1942 to 1961. It is currently owned and managed by the National Park Service (NPS) as part of the Cape Cod National Seashore.

AOI-01 is an area of burial/disposal pits. This area was initially considered an Open Burn/Open Detonation, but findings from a removal action conducted to physically remove subsurface MEC ultimately determined these to be disposal pits for MD and non-munitions debris. MEC presence is possible if other disposal pits exist in the AOI (see RI Section 3.1.1).

No MEC was found in AOI-01. The following MD items were found in the subsurface of AOI-01: Numerous items (1,040 lbs MD in single burial pit), including 3.5" practice rockets, 3 expended M2 anti-personnel mines, 407 M48 flashtubes, 1 m7A3 2.36" practice rocket, and part of an inert filled M65 1,000lb "Dove" guided bomb.

However, using the MEC risk assessment matrix methodology (RI Appendix E), no unacceptable MEC risks are posed by this AOI.

For MC characterization, Incremental Soil (IS) sampling of surface soil was conducted from three sampling units (SUs) within the burial pits, and eight discrete subsurface soil samples from two SUs. Analytical parameters included select metals (antimony, copper, lead, manganese, nickel, and zinc) and select explosives (RDX, TNT, nitroglycerin, 2,4-dinitrotoluene, 2,6-dinitrotoluene, tetryl, and nitroguanidine (See RI Sections 3.3 and 3.4).

MC sampling results indicated two metals above background in soil, but the screen against project screening levels showed no MC releases, no risks to human health and the environment, and therefore, no HHRA or SLERA were conducted.

Description of Pathways for Human and Ecological Receptors:

The source of potential MC is primarily the result of historical military activities, including the firing of artillery, practice bombing, and small arms. Exposure to receptors by ingestion, inhalation, and dermal contact are potentially complete

pathways. Groundwater is not a pathway of concern unless MC soil sampling results indicate a possible impact to groundwater.

Potential for contact with MEC includes walking over surface MEC, handling/collecting MEC, or contact with subsurface MEC due to any intrusive activities (see RI Section 3.1.2).

Description of Receptors (Human and Ecological):

Potential receptors to MC in the Former Camp Wellfleet include human populations, animal species, or habitats that may be exposed to site-related MC in soil or groundwater. Human receptors include Recreational Users (including fishermen), Site Workers (including NPS Staff and Road/Utility Workers), and Construction Workers. Ecological receptors include various birds, mammals, invertebrates, flora, and fauna that occur within the Former Camp Wellfleet (see RI Section 3.3.1).

However, a complete pathway requires a source of contaminants, and based on site sampling results, no MC contaminant source was identified. The updated CSM (RI Figure 16) shows that there are no complete pathways for MC based on the sample results.

While no MEC has been found, potential for MEC in burial pits was scored. However, based on the MEC risk matrix methodology assessment of no unacceptable explosive risks (RI Section 5.1.1), this AOI has been given the **alternative rating of No Longer Required**.

There is no physical or historical evidence indicating that CWM was present at this AOI. Therefore, **the CHE module** has been assigned the alternative rating of No Known or Suspected CWM Hazard.

MC sampling results indicated two metals above background in soil, but the screening against project screening levels showed no MC releases, and no risks to human health and the environment, and accordingly, **the HHE module has been assigned the alternative rating of No Known or Suspected MC Hazard.**

The overall Priority Rating for AOI-01 is 'No Longer Required', based on the EHE module.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an 	30
	explosive hazard.	
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	sed) DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability.	
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 Llove not been demograd by burning or detenation 	
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	
Riot control	• UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	 Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.) 	2
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	25

provided.

While no MEC was found in AOI-01, the table is scored based on potential MEC (potential DMM in burn pit).

The following MD items were found in the subsurface of AOI-01: Numerous items (1,040 lbs MD in single burial pit), including 3.5" practice rockets, 3 expended M2 anti-personnel mines, 407 M48 flashtubes, 1 m7A3 2.36" practice rocket, and part of an inert filled M65 1,000lb "Dove" guided bomb (see RI Table 3-1).

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms *former range, practice munitions, small arms range, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones. 	10
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
ormer practice munitions ange• The MRS is a former military range on which only practice munitions without sensitive fuzes were used.		6
 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 		5
Former burial pit or other disposal area	 The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment. 	5
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	 The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range. 	4
Former missile or air defense artillery emplacements	 The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range. 	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	The MRS is a former military range where only small arms ammunitian was used. (There must be suidened that he other types)	
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).		5

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

AOI-01 is an area of burial/disposal pits. This area was initially considered an Open Burn/Open Detonation, but findings from a removal action conducted to physically remove subsurface MEC ultimately determined these to be disposal pits for MD and non-munitions debris (see RI Section 3.1.1).

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with <u>all</u> the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score		
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25		
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20		
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 			
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10		
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5		
Subsurface, physical constraint	 There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM. 	2		
Small arms (regardless of location)				
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0		
LOCATION OF MUNITIONS	LOCATION OF MUNITIONS DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).			
 DIRECTIONS: Document any MRS-specific data used in selecting the <i>Location of Munitions</i> classifications in the space provided. There is physical evidence of munitions in the form of the recovered MD. See RI Section 3.1.2. 				

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	 There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible). 	
Barrier to MRS access is incomplete	There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
Barrier to MRS access is complete but not monitored	• There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	
Barrier to MRS access is complete and monitored	• There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	
DIRECTIONS: Document any	TIONS: Document any MRS-specific data used in selecting the Fase of Access classification in the space	

DIRECTIONS: Document any MRS-specific data used in selecting the *Ease of Access* classification in the space provided.

While AOI-01 is accessible by park visitors, the rough trails make traversing by vehicle difficult. Pedestrian traffic is common on the unpaved trails. There is some semi-dense natural vegetation that acts as a natural barrier to limit pedestrian access, however there are no man-made barrier restrictions. See RI Figures 3 & 4, and Section 2.1.

EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description		
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	5	
Scheduled for transfer from DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied. 	3	
DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year. 	0	
STATUS OF PROPERTY DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).		5	
DIRECTIONS: Document any MRS-specific data used in selecting the Status of Property classification in the space provided.			
This is a FUDS, owned and managed by the NPS, with a smaller portion owned and managed by the Town of Wellfleet (see RI Sections 1.2 and 1.3).			

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score	
> 500 persons per square mile	 There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located. 	5	
100–500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	3	
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1	
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Population Density</i> classification in the space provided.			
	The population density per square mile in the county in which the Former Camp Wellfleet is located is approximately 548: https://www.census.gov/quickfacts/fact/table/barnstablecountymassachusetts/PST045217		

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	
16 to 25 inhabited structures	 There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	
11 to 15 inhabited structures	 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	
6 to 10 inhabited structures	 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2
1 to 5 inhabited structures	 There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	
POPULATION NEAR HAZARD	ULATION NEAR HAZARD DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	

DIRECTIONS: Document any MRS-specific data used in selecting the **Population Near Hazard** classification in the space provided.

There are many more than 26 or more inhabited structures using Google Earth to calculate the total number of inhabited structures within the two-mile radius for this AOI. Inhabited structures include homes, commercial buildings, motels/hotels, and beach houses for use by recreational visitors.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score	
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	5	
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4	
Agricultural, forestry	• Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3	
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 		
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.		
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record the single highest scorefrom above in the box to the right (maximum score = 5).		
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Types of Activities/Structures</i> classifications in the space provided.			

Types of activities/structures within 2 miles include NPS buildings, homes, commercial buildings, motels/hotels, and beach houses for use by recreational visitors. See RI Figures 1 & 3, and Section 2.1.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score	
Ecological and cultural resources present	 There are both ecological and cultural resources present on the MRS. 	5	
Ecological resources present	There are ecological resources present on the MRS.	3	
Cultural resources present	There are cultural resources present on the MRS.	3	
No ecological or cultural resources present	 There are no ecological resources or cultural resources present on the MRS. 	0	
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3	
DIRECTIONS: Document any MRS-specific data used in selecting the Ecological and/or Cultural Resources classification in the space provided.			
Ecological receptors include various birds, mammals, invertebrates, flora, and fauna that occur within the Former Camp Wellfleet. Wildlife species at the Cape Cod National Seashore include twelve species of amphibians, 370 species of birds, 59 species of mammals, five species of migratory marine turtles, and 13 species of land-based reptiles (NPS website, https://www.nps.gov/caco)(see RI Section 3.3.1).			

Table 10 Determining the EHE Module Rating

Source	Score	Val	lue
--------	-------	-----	-----

DIRECTIONS:					
DIRECTIONS.	Munitions Type	Table 1	25		
 From Tables 1–9, record the data element scores in the Score 	Source of Hazard	Table 2	5	30	
boxes to the right.	Accessibility Factor Data Eler	Accessibility Factor Data Elements			
2. Add the Score boxes for each of the	Location of Munitions	Table 3	10	23	
three factors and record this number	Ease of Access	Table 4	8		
in the Value boxes to the right.	Status of Property	Table 5	5		
Add the three Value boxes and record this number in the EHE	Receptor Factor Data Elemen	its			
Module Total box below.	Population Density	Table 6	5		
4. Circle the appropriate range for the	Population Near Hazard	Table 7	5		
EHE Module Total below.	Types of Activities/Structures	Table 8	5	18	
Circle the EHE Module Rating that corresponds to the range selected	Ecological and /or Cultural Resources	Table 9	3		
and record this value in the EHE Module Rating box found at the	EHE MODULE TOTAL 71				
bottom of the table.	EHE Module Total	EHE Mo	odule R	ating	
Note:	92 to 100	А			
An alternative module rating may be assigned when a module letter rating is	82 to 91	В			
inappropriate. An alternative module rating	71 to 81	С			
is used when more information is needed to score one or more data elements,	60 to 70	D			
contamination at an MRS was previously addressed, or there is no reason to suspect	48 to 59	E			
contamination was ever present at an MRS.	38 to 47	F			
	less than 38	G			
		Evaluation Pending		l'un m	
	Alternative Module Ratings	Evalua	ation Penc	aing	
	Alternative Module Ratings		ation Penc	0	
	Alternative Module Ratings	No Lor No Know		ired bected	

Based on the MEC risk matrix methodology assessment of no unacceptable explosive risks (RI Section 5.1.1) for this AOI, the Alternative Rating of No Longer Required has been given.

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms *CWM/UXO, CWM/DMM, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	 The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO. 	25
CWM, explosive configuration that are undamaged DMM• The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.		20
CWM/DMM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS are: Nonexplosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container). 	15
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M- 2/E11. 	12
CAIS (chemical agent identification sets)	 CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the CWM Configuration classification	s in the space
There is no physical or histor	ical evidence indicating that CWM was present at AOI-01. See RI Section	n 1.5.

Tables 12 through 19 are intentionally omittedPer Active Army Guidance (U.S. Army, 2009)

Table 20 Determining the CHE Module Rating

DIRECTIONS:

1. From Tables 11–19, record the data element scores in the **Score** boxes to the right.

2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.

3. Add the three **Value** boxes and record this number in the **CHE Module Total** box below.

4. Circle the appropriate range for the **CHE Module Total** below.

5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

CWM Hazard Factor Data Elements				
CWM Configuration	Table 11	0		
Sources of CWM	Table 12		0	
Accessibility Factor Data Ele	ements			
Location of CWM	Table 13			
Ease of Access	Table 14			
Status of Property	Table 15			
Receptor Factor Data Element	nts			
Population Density	Table 16			
Population Near Hazard	Table 17			
Types of Activities/Structures	Table 18			
Ecological and /or Cultural Resources	Table 19			
CHE MODULE TOTAL 0				
CHE Module Total	CHE N	CHE Module Rating		
92 to 100		А		
82 to 91		В		
71 to 81		С		
60 to 70		D		
48 to 59	E			
38 to 47	F			
less than 38	G			
Alternative Module Ratings	Evaluation Pending			
	No Lo	onger Requ	uired	
	No Known or Suspected Hazard			
CHE MODULE RATING	No Known or Suspected CWM Hazard			

Table 21 HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (μg/L)	Comparison Value (µg/L)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHF = E [Maximum Concentration of C	ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{i} \frac{1}{i}$	minontl
2 > CHF	L (Low) [Comparison Value for Contar		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).		
Migratory Pathway Factor DIRECTIONS: Circle the value that corresponds most closely to the groundwater migratory pathway at the MRS.			
Classification	Description		Value
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.		
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		Μ
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the groundwater receptors at the MRS.			
Classification		cription	Value
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture (equivalent to Class I or IIA aquifer).		Н
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).		
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).		
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
	No Knowr	or Suspected Groundwater MC Hazard	

Groundwater was not a pathway of concern for this AOI and was not sampled (see RI Section 3.3.1).

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
CHF Scale	CHF Value	Sum The Ratios			
CHF > 100		H (High)			
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of Co$			
2 > CHF	L (Low)		innentj		
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right			
HAZARD FACTOR	(maximum value = H).				
	Migratory Pathway Factor				
DIRECTIONS: Circle t		the surface water migratory pathway at the	MRS.		
Classification	Description		Value		
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.		Н		
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М		
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
DIRECTIONS: Circle t	he value that corresponds most closely to	the surface water receptors at the MRS.			
Classification	Description		Value		
Identified	Identified receptors have access to surface water to which contamination has moved or can move.		Н		
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.		М		
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.		L		
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
No Known or Suspected Surface Water (Human Endpoint) MC Hazard					

Surface water was not a pathway of concern and was not sampled (see RI Section 3.3.1).

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant Maximum Concentration (mg/kg)		Comparison Value (mg/kg)	Ratios		
CHF Scale	CHF Value	Sum The Ratios			
CHF > 100	H (High)	- [Maximum Concentration of Co	ontaminantl		
100 > CHF > 2	M (Medium)	$CHF = \sum$ [Maximum Concentration of Con			
2 > CHF	L (Low)	[Comparison Value for Conta	minantj		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right maximum value = H).				
	Migratory Pathw	vay Factor			
DIRECTIONS: Circle th	ne value that corresponds most closely to	o the sediment migratory pathway at the MRS	5.		
Classification	Description		Value		
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.		Н		
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М		
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).				
MIGRATORY PATHWAY	DIRECTIONS: Record the single highest value from above in the box to the				
FACTOR	right (maximum value =	= H).			
DIRECTIONS: Circle th	<u>Receptor Factor</u> DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.				
Classification	Description				
Identified	Identified receptors have access to sediment to which contamination has moved or can move.		Н		
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.		М		
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.		L		
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum val				
No Known or Suspected Sediment (Human Endpoint) MC Hazard					

Sediment was not a pathway of concern and was not sampled (see RI Section 3.3.1).

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios	
CHF Scale	CHF Value	Sum the Ratios		
CHF > 100	H (High)	 IMaximum Concentration of C 	ontaminantl	
100 > CHF > 2	M (Medium)	CHF = E [Maximum Concentration of C	ontariniantj	
2 > CHF	L (Low)	[Comparison Value for Conta	aminantj	
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right		
HAZARD FACTOR	(maximum value = H).			
	Migratory Pathw	vay Factor		
DIRECTIONS: Circle th		the surface water migratory pathway at the	MRS.	
Classification	Des	cription	Value	
Evident		Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.		
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY	DIRECTIONS: Record the single high	nest value from above in the box to the		
FACTOR	right (maximum value =	= H).		
DIRECTIONS: Circle tl	Receptor Fa	actor the surface water receptors at the MRS.		
Classification	Des	cription	Value	
Identified	Identified receptors have access to surface water to which contamination has moved or can move.			
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =			
No Known or Suspected Surface Water (Ecological Endpoint) MC Hazard				

Surface water was not a pathway of concern and was not sampled (see RI Section 3.3.1).

Table 25
HHE Module: Sediment – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)	Maximum Concentration of Co	ontaminant]
100 > CHF > 2	M (Medium)	$CHF = \sum$ [Comparison Value for Conta	
2 > CHF	L (Low)		minang
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	e from above in the box to the right	
	Migratory Path	way Factor	
DIRECTIONS: Circle th	he value that corresponds most closely	to the sediment migratory pathway at the MRS	S.
Classification	Des	scription	Value
Evident		Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.	
Potential		ntly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or	М
Confined		nant migration from the source via the sediment to a presence of geological structures or physical controls).	L
MIGRATORY PATHWAY	DIRECTIONS: Record the single hig	hest value from above in the box to the	

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

right (maximum value = H).

FACTOR

Classification	Description	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	
	No Known or Suspected Sediment (Ecological Endpoint) MC Hazard	

Sediment was not a pathway of concern and was not sampled (see RI Section 3.3.1).

Table 26 HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record CHF Value. If there is no known or suspected MC hazard with present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comp	parison Value (mg/kg)	Ratios
Copper	8.40	3,100	0.003	
Zinc	20.0	23,000	0.0009	
CHF Scale	CHF Value		Sum the Ratios	0.004
CHF > 100	H (High)		[Maximum Concentration of Co	ntaminant]
100 > CHF > 2	M (Medium)	CHF = \sum		
2 > CHF	L (Low)		[Comparison Value for Conta	iminant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	e from above	in the box to the right	L
DIRECTIONS: Circle the value	<u>Migratory Pathwa</u> ue that corresponds most closely to the s		igratory pathway at the MRS.	
Classification	Description		Value	
Evident	Analytical data or observable evidence indicates th moving toward, or has moved to a point of exposure		n in the surface soil is present at,	Н
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e. tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			Μ
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to the presence of geological structures or physical controls.)			L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =		om above in the box to the	
	Receptor Fac			
DIRECTIONS: Circle the value	ue that corresponds most closely to the s	urface soil re	eceptors at the MRS.	
Classification	Description		Value	
Identified	Identified receptors have access to surface soil to	which contamina	ation has moved or can move.	Н
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.			Μ
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
	No Known or	Suspected	Surface Soil MC Hazard	

Soil sampling included IS surface soil samples from three SUs within the burial pits, and eight discrete subsurface soil samples from two SUs.

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do no fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway,** and **Receptor Factors** for the media (from Tables 21-26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A-G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)	
Groundwater (Table 21)					NA	
Surface Water/Human Endpoint (Table 22)					NA	
Sediment/ Human Endpoint (Table 23)					NA	
Surface Water/Ecological Endpoint (Table 24)					NA	
Sediment/Ecological Endpoint (Table 25)					NA	
Surface Soil (Table 26)	L	М	М		MML	
DIRECTIONS (cont.)):		HHE MC	DULE RATING	E	
4. Select the single higher			HHE Ratings (for reference only)			
highest; G is the lowes HHE Module Rating		letter in the	Combination		Rating	
	50%.		ННН		A	
Note:			HHM		В	
An alternative module rat	ing may be assig	gned when a	HHL			
module letter rating is ina module rating is used wh	ppropriate. An a	alternative	HMM HML		C	
to score one or more me					_	
was previously addressed			MMM		D	
suspect contamination wa	as ever present a	at all wirds.	HLL		_	
			MML		E	
				MLL	F	
			LLL	G		
				Evaluation Pending		
				No Longer Required		
			Alternative Module Ratings		No Known or Suspected MC Hazard	

MC sampling results indicated two metals above background in soil, but the RI screen against project screening levels showed no MC releases, no risks to human health and the environment, and accordingly, the HHE module has been assigned the alternative rating of No Known or Suspected MC Hazard.

Table 29 MRS Priority

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS Rating at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		А	1		
A	2	В	2	А	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	Е	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending		Evaluation	Pending	Evaluation Pending	
No Longer Required		No Longer	Required	No Longe	r Required
No Known or Suspected Explosive Hazard		No Known or CWM H		No Known or Suspected MC Hazard	
MRS PRIORITY or ALTERNATIVE MRS RATING			No Longe	r Required	

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the **MRS Summary**, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non munitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: Area of Interest (AOI)-02 Component: U.S. Army Corps of Engineers Formerly Used Defense Site (FUDS) Program Installation/Property Name: Former Camp Wellfleet Location (City, County, State): Town of Wellfleet, Barnstable County, Massachusetts Site Name/Project Name (Project No.): Former Camp Wellfleet FUDS Date Information Entered/Updated: 08/13/2018 Point of Contact (Name/Phone): Gina Kaso, CENAE PM (978-318-8180) Project Phase (check only one): ⊠ RI FS **RD** RA-C 🗆 RI RA-O LTM Media Evaluated (check all that apply): □ Groundwater □ Sediment (human receptor) ☑ Surface soil – Subsurface Soil □ Surface Water (ecological receptor) □ Surface Water (human receptor) Sediment (ecological receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

Camp Wellfleet training activities occurred from 1942 to 1961. It is currently owned and managed by the National Park Service (NPS) as part of the Cape Cod National Seashore.

AOI-02 is the Former Artillery Firing Line. These were firing points for 90mm and other artillery, primarily firing out to sea (the ocean range is AOI-06). MEC presence has been established; while no MEC were found during the EE/CA or Zapata Removal Actions, a 76mm anti-aircraft artillery round was found within this area (Marconi Beach) in October 2016 and was determined to be MEC. The MEC item found was a result of the erosion of the high bluff with the item ultimately found in the beach area (see RI Section 3.1.1). As this AOI includes most of the Former Camp Wellfleet FUDS shoreline, it may also see munition items washing ashore following storm events.

The following MEC and MD items were found in the surface or subsurface of AOI-02:

MEC: 76mm anti-aircraft artillery. MD: 50 caliber machine gun ammunition, fuze cans, shipping clips for 90mm fuzes, and 30 caliber ammunition cans, calcium hydride canisters, and unknown frag. The item was considered to be DMM based on remnants of packaging.

For MC characterization, Incremental Soil (IS) sampling of surface soil was conducted from three sampling units (SUs). As described in RI Table 3-9, SU locations were based on TEC ground scars and/or previous munitions debris finds. Analytical parameters included select metals (antimony, copper, lead, manganese, nickel, and zinc) and select explosives (RDX, TNT, nitroglycerin, 2,4-dinitrotoluene, 2,6-dinitrotoluene, tetryl, and nitroguanidine (See RI Sections 3.3 and 3.4).

All results for all samples for this AOI were less than the background indicating that there were no MC releases, no risks to human health and the environment, and therefore, no HHRA or SLERA were conducted.

Description of Pathways for Human and Ecological Receptors:

The source of potential MC is primarily the result of historical military activities, including the firing of artillery, practice bombing, and small arms. Exposure to receptors by ingestion, inhalation, and dermal contact are potentially complete

pathways. Groundwater is not a pathway of concern unless MC soil sampling results indicate a possible impact to groundwater.

Potential for contact with MEC includes walking over surface MEC, handling/collecting MEC, or contact with subsurface MEC due to any intrusive activities (see RI Section 3.1.3).

Description of Receptors (Human and Ecological):

Potential receptors to MC in the Former Camp Wellfleet include human populations, animal species, or habitats that may be exposed to site-related MC in soil or groundwater. Human receptors include Recreational Users (including fishermen), Site Workers (including NPS Staff and Road/Utility Workers), and Construction Workers. Ecological receptors include various birds, mammals, invertebrates, flora, and fauna that occur within the Former Camp Wellfleet (see RI Section 3.3.1).

However, a complete pathway requires a source of contaminants, and based on site sampling results, no MC contaminant source was identified. The updated CSM (RI Figure 16) shows that there are no complete pathways for MC based on the sample results.

MEC has been found (76mm anti-aircraft artillery). MD has been recovered, including 50 caliber machine gun ammunition, fuze cans, shipping clips for 90mm fuzes, and 30 caliber ammunition cans, calcium hydride canisters, and unknown frag. Based on this scenario, **the EHE module has been assigned an 'A' rating.**

There is no physical or historical evidence indicating that CWM was present at this AOI. Therefore, **the CHE module** has been assigned the alternative rating of No Known or Suspected CWM Hazard.

MC sampling results indicated no constituents above background in soil, and therefore no MC releases or risks to human health and the environment, and accordingly, the HHE module has been assigned the alternative rating of No Known or Suspected MC Hazard.

The overall Priority Rating for AOI-02 is '2', based on the EHE module.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. 	30
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	• UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	 Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.) 	2
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	25

MEC has been found (76mm anti-aircraft artillery). See RI Table 3-1.

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms *former range, practice munitions, small arms range, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones. 	10
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	 The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment. 	5
Former industrial operating facilities	 The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility. 	4
Former firing points	 The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range. 	4
Former missile or air defense artillery emplacements	 The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range. 	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.) 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

AOI-02 is the Former Artillery Firing Line. These were firing points for 90mm and other artillery, primarily firing out to sea. MEC presence has been established with a 76mm anti-aircraft artillery round migrating to the surface as a result of the erosion of the high bluff (see RI Section 3.1.1). As this AOI includes most of the Former Camp Wellfleet FUDS shoreline, it is also likely to see munition items washing ashore following storm events.

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with <u>all</u> the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	• There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.	2
Small arms (regardless of location)	• The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.)	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	25

MEC presence has been established with a 76mm anti-aircraft artillery round recovered from the surface (RI Section 3.1.2).

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score	
No barrier	 There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible). 	10	
Barrier to MRS access is incomplete	There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8	
Barrier to MRS access is complete but not monitored	• There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5	
Barrier to MRS access is complete and monitored	• There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0	
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10	
DIRECTIONS: Document any MRS-specific data used in selecting the Ease of Access classification in the space			

provided.

AOI-02 is a moderate to high traffic beach access area. While the central and southern portions contain few trails and a high density of natural vegetation that limits pedestrian access, most of the northern part of AOI-02 contains high volume pedestrian and vehicle traffic associated with beach access. The southern beach areas are essentially open access through adjacent AOI-05. See Figures 3 & 4, and Section 2.1.

EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description		
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 		
Scheduled for transfer from DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied. 	3	
DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year. 		
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5	
DIRECTIONS: Document any MRS-specific data used in selecting the Status of Property classification in the space provided.			
This is a FUDS, owned and managed by the NPS, with a smaller portion owned and managed by the Town of Wellfleet (see RI Sections 1.2 and 1.3).			

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description			
> 500 persons per square mile	• There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.			
100–500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	3		
< 100 persons per square mile	• There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.			
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).			
DIRECTIONS: Document any MRS-specific data used in selecting the Population Density classification in the space provided.				
	MRS-specific data used in selecting the <i>Population Density</i> classification in	the space		

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Description	Score
 There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	5
 There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	4
 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	3
 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2
 There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	1
 There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	0
DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
	 There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. DIRECTIONS: Record the single highest score from above in

There are many more than 26 or more inhabited structures using Google Earth to calculate the total number of inhabited structures within the two-mile radius for this AOI. Inhabited structures include homes, commercial buildings, motels/hotels, and beach houses for use by recreational visitors.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	5
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4
Agricultural, forestry	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. 	3
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2
No known or recurring activities	 There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary. 	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

Types of activities/structures within 2 miles include NPS buildings, homes, commercial buildings, motels/hotels, and beach houses for use by recreational visitors. See Figures 1 & 3, and Section 2.1.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score		
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.			
Ecological resources present	There are ecological resources present on the MRS.	3		
Cultural resources present	There are cultural resources present on the MRS.	3		
No ecological or cultural resources present	 There are no ecological resources or cultural resources present on the MRS. 			
ECOLOGICAL AND/OR DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).				
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Ecological and/or Cultural Resources</i> classification in the space provided.				
Ecological receptors include various birds, mammals, invertebrates, flora, and fauna that occur within the Former Camp Wellfleet. Wildlife species at the Cape Cod National Seashore include twelve species of amphibians, 370 species of birds, 59 species of mammals, five species of migratory marine turtles, and 13 species of land-based reptiles (NPS website, https://www.nps.gov/caco)(see RI Section 3.3.1).				

Cultural resources include the historic Marconi Tower in the northern part of the AOI. See Figures 2 & 3, and Section 2.1.

Table 10 Determining the EHE Module Rating

Source	Score	Value

	N
1. From Tables 1–9, record the data	So
element scores in the Score boxes to the right.	A
boxes to the light.	

- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- 3. Add the three **Value** boxes and record this number in the **EHE Module Total** box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the **EHE Module Rating** that corresponds to the range selected and record this value in the **EHE Module Rating** box found at the bottom of the table.

Note:

DIRECTIONS:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Munitions Type	Table 1	25	25
1	Source of Hazard	Table 2	10	35
	Accessibility Factor Data Eler	nents		
	Location of Munitions	Table 3	25	
r	Ease of Access	Table 4	10	40
	Status of Property	Table 5	5	
	Receptor Factor Data Elemen	ts		
	Population Density	Table 6	5	
	Population Near Hazard	Table 7	5	
	Types of Activities/Structures	Table 8	5	20
	Ecological and /or Cultural Resources	Table 9	5	
	EHE N	IODULE	TOTAL	95
	EHE Module Total	EHE Mo	odule Ra	ating
	EHE Module Total 92 to 100	EHE Mo	odule Ra	ating
		EHE Mo		ating
	92 to 100		Α	ating
0	92 to 100 82 to 91		A B	ating
•	92 to 100 82 to 91 71 to 81		A B C	ating
D t	92 to 100 82 to 91 71 to 81 60 to 70		A B C D	ating
D t	92 to 100 82 to 91 71 to 81 60 to 70 48 to 59		A B C D E	ating
D	92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 38 to 47		A B C D E F	
D t	92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 38 to 47 less than 38	Evalua	A B C D E F G	ling
b	92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 38 to 47 less than 38	Evalua No Lon	A B C D E F G tion Penc	ling ired
b t	92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 38 to 47 less than 38	Evalua No Lon	A B C D E F G tion Penc ger Requ	ling ired

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms *CWM/UXO, CWM/DMM, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	 The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO. 	25
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20
CWM/DMM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS are: Nonexplosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container). 	15
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M- 2/E11. 	12
CAIS (chemical agent identification sets)	 CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	• Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the CWM Configuration classification	s in the space
There is no physical or histor	ical evidence indicating that CWM was present at this AOI. See RI Sect	ion 1.5.

Tables 12 through 19 are intentionally omittedPer Active Army Guidance (U.S. Army, 2009)

Table 20 Determining the CHE Module Rating

DIRECTIONS:

1. From Tables 11–19, record the data element scores in the **Score** boxes to the right.

2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.

3. Add the three **Value** boxes and record this number in the **CHE Module Total** box below.

4. Circle the appropriate range for the **CHE Module Total** below.

5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

CWM Hazard Factor Data	Elements		
CWM Configuration	Table 11	0	0
Sources of CWM	Table 12		0
Accessibility Factor Data Ele	ements		
Location of CWM	Table 13		
Ease of Access	Table 14		0
Status of Property	Table 15		
Receptor Factor Data Eleme	nts		
Population Density	Table 16		
Population Near Hazard	Table 17		
Types of Activities/Structures	Table 18		0
Ecological and /or Cultural Resources	Table 19		
CHE	MODULE	TOTAL	0
CHE Module Total	CHE N	/lodule R	ating
92 to 100		А	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59	48 to 59 E		
38 to 47	F		
less than 38	G		
Alternative Module Ratings	atings Evaluation Pending		
	No Lo	onger Requ	iired
	No Known or Suspected CWM Hazard		
CHE MODULE RATING		wn or Sus WM Hazar	

Table 21 HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios	
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)	$CHF = \Sigma$ [Maximum Concentration of C	ontaminant]	
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of C]}{[Comparison Value for Conta$		
2 > CHF	L (Low)		anniang	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from = H).	n above in the box to the right (maximum value		
DIRECTIONS: Circle th	Migratory Pathwn ne value that corresponds most closely to	v ay Factor the groundwater migratory pathway at the	MRS.	
Classification	Des	cription	Value	
Evident	moving toward, or has moved to a point of expos		Н	
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
DIRECTIONS: Circle th	Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the groundwater receptors at the MRS.			
Classification		cription	Value	
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture (equivalent to Class I or IIA aquifer).			
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).			
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).			
RECEPTOR FACTOR				
	No Knowi	n or Suspected Groundwater MC Hazard		

Groundwater was not a pathway of concern for this AOI (see RI Section 3.3.1).

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (μg/L)	Comparison Value (µg/L)	Ratios
	<u>OUEValua</u>	Our The Define	
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHF = E [Maximum Concentration of Conc	ontaminant]
100 > CHF > 2	M (Medium)	[Comparison Value for Conta	minant]
2 > CHF	L (Low)		-
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right	
HAZARD FACTOR	(maximum value = H).		
	Migratory Pathw	vay Factor	
DIRECTIONS: Circle t	he value that corresponds most closely to	o the surface water migratory pathway at the	MRS.
Classification	Description		Value
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.		
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		
MIGRATORY PATHWAY DIRECTIONS: Record <u>the single highest value</u> from above in the box to the			
FACTOR	right (maximum value = H).		
DIRECTIONS: Circle t	Receptor Fa		
DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS. Classification Description			Value
Identified	Identified receptors have access to surface water to which contamination has moved or can move.		Н
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.		М
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.		L
RECEPTOR FACTOR	Directorioritor recoold <u>and englishing noter value</u> nom above in the box to		
	No Known or Suspected Surfa	ace Water (Human Endpoint) MC Hazard	

Surface water was not a pathway of concern and was not sampled (see RI Section 3.3.1).

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHE_ [Maximum Concentration of C	ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of C]}{[Comparison Value for Conta$	
2 > CHF	L (Low)		aminantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value maximum value = H).	from above in the box to the right	
	Migratory Pathw	vav Factor	
DIRECTIONS: Circle th		the sediment migratory pathway at the MR	S.
Classification	Description		
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.		Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
DIRECTIONS: Circle th	ne value that corresponds most closely to		
Classification	ion Description		
Identified	Identified receptors have access to sediment to which contamination has moved or can move.		
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.		М
Limited	Little or no potential for receptors to have access can move.	to sediment to which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value)		
	No Known or Suspected	Sediment (Human Endpoint) MC Hazard	

Sediment was not a pathway of concern and was not sampled (see RI Section 3.3.1).

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
	<u> </u>		
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)	- Maximum Concentration of C	ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of Co$	Untarinitarity
2 > CHF	L (Low)	[Comparison Value for Conta	iminantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	
	Migratory Pathw	vav Factor	
DIRECTIONS: Circle th		the surface water migratory pathway at the	MRS.
Classification	Desc	Value	
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.		Н
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	h <u>est value</u> from above in the box to the	
TACTOR	÷ · · · · · · · · · · · · · · · · · · ·	,	
DIRECTIONS: Circle th	Receptor Fa	actor o the surface water receptors at the MRS.	
Classification	Dese	cription	Value
Identified	Identified receptors have access to surface water	Н	
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.		М
Limited	Little or no potential for receptors to have access or can move.	L	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =		
	No Known or Suspected Surface	Water (Ecological Endpoint) MC Hazard	

Surface water was not a pathway of concern and was not sampled (see RI Section 3.3.1).

L

Table 25
HHE Module: Sediment – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)	Maximum Concentration of Co	ontaminantl
100 > CHF > 2	M (Medium)		
2 > CHF	L (Low)	[Comparison Value for Conta	minantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).		
DIRECTIONS: Circle t	Migratory Path he value that corresponds most closely	way Factor to the sediment migratory pathway at the MRS	6.
Classification	De	scription	Value
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expo	s that contamination in the sediment is present at, sure.	Н
Potential	but is not moving appreciably, or information is Confined.	htly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or	Μ

ConfinedInformation indicates a low potential for contaminant migration from the source via the sediment to a
potential point of exposure (possibly due to the presence of geological structures or physical controls).MIGRATORY PATHWAY
FACTORDIRECTIONS: Record the single highest value
right (maximum value = H).

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

Classification	Description	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	
	No Known or Suspected Sediment (Ecological Endpoint) MC Hazard	

Sediment was not a pathway of concern and was not sampled (see RI Section 3.3.1).

	Table 26		
	HHE Module: Surface Soil	Data Element Table	
values (from 27. Calculate comparison surface soil c	Appendix B of the Primer) in the table be and record the ratios for each contamin value . Determine the CHF by adding the ontaminants recorded on Table 27. Base /alue . If there is no known or suspected	Eactor (CHF) ants in the MRS's surface soil and their co elow. Additional contaminants can be recon nant by dividing the maximum concentrati e contaminant ratios together, including ar ed on the CHF, use the CHF Scale to deter MC hazard with present in the surface soil.	ded on Table on by the av additional mine and
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)	► [Maximum Concentration of Co	ontaminant]
100 > CHF > 2 2 > CHF	M (Medium) L (Low)	$CHF = \sum [Maximum Concentration of Co$	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	e from above in the box to the right	
DIRECTIONS: Circle the value	<u>Migratory Pathwa</u> that corresponds most closely to the s	y Factor urface soil migratory pathway at the MRS.	
Classification	Description	Value	
Evident	Analytical data or observable evidence indicates th moving toward, or has moved to a point of exposure		Н
Potential	Contamination in surface soil has moved only sligh but is not moving appreciably, or information is not Confined.	tly beyond the source (i.e. tens of feet), could move sufficient to make a determination of Evident or	Μ
Confined		nt migration from the source via the surface soil to a sence of geological structures or physical controls.)	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	= H).	
DIRECTIONS: Circle the value	Receptor Fac ue that corresponds most closely to the s		
Classification	Description	Value	
Identified	Identified receptors have access to surface soil to	which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to surface so	oil to which contamination has moved or can move.	Μ
Limited	Little or no potential for receptors to have access to can move.	o surface soil to which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value =		
	No Known or	Suspected Surface Soil MC Hazard	N

Soil sampling included IS sampling of surface soil collected from three sampling units SUs. However, all results were less than the background.

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do no fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway,** and **Receptor Factors** for the media (from Tables 21-26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A-G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)	
Groundwater (Table 21)					NA	
Surface Water/Human Endpoint (Table 22)					NA	
Sediment/ Human Endpoint (Table 23)					NA	
Surface Water/Ecological Endpoint (Table 24)					NA	
Sediment/Ecological Endpoint (Table 25)					NA	
Surface Soil (Table 26)					No Known or Suspected Hazard	
DIRECTIONS (cont.): 4. Select the single highest Media Rating (A is the			HHE MO	DULE RATING	NKSH	
			HHE Ratings (for reference only)			
highest; G is the lowe HHE Module Rating		letter in the	Combination		Rating	
	507.		ННН		A	
Note:			HHM		В	
An alternative module rat module letter rating is ina			HHL		С	
module rating is used wh	en more informa	tion is needed	HMM HML MMM			
to score one or more mee was previously addresse					D	
suspect contamination was ever present at an MRS.			HLL			
					E	
				/ML		
			-	MLL	F	
				LLL	G	
				Evaluation Pending No Longer Required		
			Alternative	Module Ratings	No Known or Suspected MC Hazard	

Because all results were less than the background for this AOI, there is no MC release and no unacceptable risk is posed by any media, and therefore, the HHE module has been assigned an alternative rating of No Known or Suspected Hazard.

Table 29 MRS Priority

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS Rating at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		А	1		
Α	2	В	2	А	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending		Evaluation	Pending	Evaluation Pending	
No Longer Required		No Longer	Required	No Longe	r Required
No Known or Suspected Explosive HazardNo Known or Suspected CWM HazardNo Known or Suspected MC Hazard					
ſ	MRS PRIORITY or ALTERNATIVE MRS RATING				2

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the **MRS Summary**, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non munitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: Area of Interest (AOI)-03 Component: U.S. Army Corps of Engineers Formerly Used Defense Site (FUDS) Program Installation/Property Name: Former Camp Wellfleet Location (City, County, State): Town of Wellfleet, Barnstable County, Massachusetts Site Name/Project Name (Project No.): Former Camp Wellfleet FUDS Date Information Entered/Updated: 08/13/2018 Point of Contact (Name/Phone): Gina Kaso, CENAE PM (978-318-8180) Project Phase (check only one): ⊠ RI RD FS RA-C 🗆 RI RA-O LTM Media Evaluated (check all that apply): ☑ Groundwater □ Sediment (human receptor) ☑ Surface soil – Subsurface Soil □ Surface Water (ecological receptor) □ Surface Water (human receptor) □ Sediment (ecological receptor) MRS Summary: MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type: Camp Wellfleet training activities occurred from 1942 to 1961. It is currently owned and managed by the National Park Service (NPS) as part of the Cape Cod National Seashore. AOI-03 is the former Ammunition Supply Point, with multiple U-shaped revetments possibly used to store ammunition. It also includes an area of multiple ground scars identified from 1943 and 1947 aerial photos. A single Rifle Smoke Grenade found during the EE/CA was considered to be MEC. Additionally, abundant MD was found during previous investigations (see RI Section 3.1.1). The following MEC item and MD items were found in the surface or subsurface of AOI-03: MEC: Rifle Smoke Grenade. MD: Multiple fuze shipping spacers, some small arms debris. However, using the MEC risk assessment matrix methodology (RI Appendix E), no unacceptable MEC risks are posed by this AOI. For MC characterization, Incremental Soil (IS) sampling of surface soil was conducted from three sampling units (SUs) and IS subsurface soil samples from one SU. As described in RI Table 3-9, SU locations were based on previous munitions debris finds. Analytical parameters included select metals (antimony, copper, lead, manganese, nickel, and zinc) and select explosives (RDX, TNT, nitroglycerin, 2,4-dinitrotoluene, 2,6-dinitrotoluene, tetryl, and nitroguanidine (See RI Sections 3.3 and 3.4). MC sampling results determined that additional soil or groundwater sampling was not warranted. The RI screening indicated that there were no MC releases, no risks to human health and the environment, and therefore, no HHRA or

SLERA were conducted.

Description of Pathways for Human and Ecological Receptors:

The source of potential MC is primarily the result of historical military activities, including the firing of artillery, practice bombing, and small arms. Exposure to receptors by ingestion, inhalation, and dermal contact are potentially complete pathways. Groundwater is not a pathway of concern unless MC soil sampling results indicate a possible impact to groundwater.

Potential for contact with MEC includes walking over surface MEC, handling/collecting MEC, or contact with subsurface MEC due to any intrusive activities (see RI Section 3.1.2).

Description of Receptors (Human and Ecological):

Potential receptors to MC in the Former Camp Wellfleet include human populations, animal species, or habitats that may be exposed to site-related MC in soil or groundwater. Human receptors include Recreational Users (including fishermen), Site Workers (including NPS Staff and Road/Utility Workers), and Construction Workers. Ecological receptors include various birds, mammals, invertebrates, flora, and fauna that occur within the Former Camp Wellfleet (see RI Section 3.3.1).

However, a complete pathway requires a source of contaminants, and based on site sampling results, no MC contaminant source was identified. The updated CSM (RI Figure 16) shows that there are no complete pathways for MC based on the sample results.

MEC (Rifle Smoke Grenade), and MD (multiple fuze shipping spacers, some small arms debris) have been found. However, based on the MEC risk matrix methodology assessment of no unacceptable explosive risks (RI Section 5.1.1), this AOI has been given the **alternative rating of No Longer Required**.

There is no physical or historical evidence indicating that CWM was present at this AOI. Therefore, the CHE module has been assigned the alternative rating of No Known or Suspected CWM Hazard.

MC sampling results indicated metals above background in soil and groundwater, but the RI screen against project screening levels showed no MC releases, no risks to human health and the environment, and accordingly, the HHE module has been assigned the alternative rating of No Known or Suspected MC Hazard.

The overall Priority Rating for AOI-03 is 'No Longer Required', based on the EHE module.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. 	30
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	 UXO or DMM containing a riot control agent filler (e.g., tear gas). 	3
Small arms	 Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.) 	2
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	20

MEC (Rifle Smoke Grenade) has been found (see RI Table 3-1).

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms *former range, practice munitions, small arms range, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones. 	10
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions range	• The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5
Former industrial operating facilities	 The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility. 	4
Former firing points	• The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	 The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range. 	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.) 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	2

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

AOI-03 is the former Ammunition Supply Point, with multiple U-shaped revetments possibly used to store ammunition (see RI Section 3.1.1). This is the best fit from the choices provided.

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with <u>all</u> the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	 There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM. 	2
Small arms (regardless of location)	• The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.)	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	20

MEC presence has been established with the Rifle Smoke Grenade recovered from the subsurface. See RI Section 3.1.2.

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Description	0
Description	Score
There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).	10
There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
• There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	8
	 parts of the MRS are accessible). There is a barrier preventing access to parts of the MRS, but not the entire MRS. There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS. There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS. DIRECTIONS: Record <u>the single highest score</u> from above in the box to

DIRECTIONS: Document any MRS-specific data used in selecting the *Ease of Access* classification in the space provided.

AOI-03 is a moderate traffic area with unpaved trails and a paved road. There is a gate limiting vehicle traffic onto unpaved trails, and there is some semi-dense natural vegetation and rough terrain that act as a natural barrier that limits pedestrian access, however there are no man-made barrier restrictions to pedestrians. See RI Figures 3 & 4, and Section 2.1.

EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score	
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	5	
Scheduled for transfer from DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied. 	3	
DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year. 	0	
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Status of Property</i> classification in the space provided.			
This is a FUDS, owned and managed by the NPS, with a smaller portion owned and managed by the Town of Wellfleet (see RI Sections 1.2 and 1.3).			

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score		
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	5		
100–500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	3		
< 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.		1		
POPULATION DENSITY DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5). 5				
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Population Density</i> classification in the space provided.				
The population density per square mile in the county in which the Former Camp Wellfleet is located is approximately 548: https://www.census.gov/quickfacts/fact/table/barnstablecountymassachusetts/PST045217				

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score	
26 or more inhabited structures	There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5	
16 to 25 inhabited structures	 There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	4	
11 to 15 inhabited structures	 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	3	
6 to 10 inhabited structures	 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2	
1 to 5 inhabited structures	 There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	1	
0 inhabited structures	 There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	0	
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Population Near Hazard</i> classification in the space provided.			

There are many more than 26 or more inhabited structures using Google Earth to calculate the total number of inhabited structures within the two-mile radius for this AOI. Inhabited structures include homes, commercial buildings, motels/hotels, and beach houses for use by recreational visitors.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	5
 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4
• Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3
 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2
There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1
DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
-	 to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.

Types of activities/structures within 2 miles include NPS buildings, homes, commercial buildings, motels/hotels, and beach houses for use by recreational visitors. See RI Figures 1 & 3, and Section 2.1.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score		
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5		
Ecological resources present	There are ecological resources present on the MRS.	3		
Cultural resources present	There are cultural resources present on the MRS.	3		
No ecological or cultural resources present	 There are no ecological resources or cultural resources present on the MRS. 	0		
ECOLOGICAL AND/OR CULTURAL RESOURCES DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).				
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Ecological and/or Cultural Resources</i> classification in the space provided.				
Wellfleet. Wildlife species at the	arious birds, mammals, invertebrates, flora, and fauna that occur within the Form ne Cape Cod National Seashore include twelve species of amphibians, 370 spec five species of migratory marine turtles, and 13 species of land-based reptiles (caco)(see RI Section 3.3.1).	cies of		

Table 10 Determining the EHE Module Rating

Source Score value	Source	Score	Value
--------------------	--------	-------	-------

		oouroo	00010	Tarao
DIRECTIONS:				
	Munitions Type	Table 1	20	
 From Tables 1–9, record the data element scores in the Score 	Source of Hazard	Table 2	2	22
boxes to the right.	Accessibility Factor Data Eler	nents		
2. Add the Score boxes for each of the	Location of Munitions	Table 3	20	
three factors and record this number	Ease of Access	Table 4	8	33
in the Value boxes to the right.	Status of Property	Table 5	5	
Add the three Value boxes and record this number in the EHE	Receptor Factor Data Elemen	ts		
Module Total box below.	Population Density	Table 6	5	
4. Circle the appropriate range for the	Population Near Hazard	Table 7	5	
EHE Module Total below.	Types of Activities/Structures	Table 8	5	18
Circle the EHE Module Rating that corresponds to the range selected	Ecological and /or Cultural Resources	Table 9	3	
and record this value in the EHE Module Rating box found at the	EHE N	NODULE	TOTAL	73
bottom of the table.	EHE Module Total	EHE Mo	odule Ra	ating
Note:	92 to 100		А	
An alternative module rating may be assigned when a module letter rating is	82 to 91	В		
inappropriate. An alternative module rating	71 to 81	С		
is used when more information is needed to score one or more data elements,	60 to 70	D		
contamination at an MRS was previously addressed, or there is no reason to suspect	48 to 59	E		
contamination was ever present at an MRS.	38 to 47	F		
	less than 38		G	
	Alternative Module Ratings	Evalua	ation Pend	ling
		No Longer Required		ired
		No Known or Suspecto Explosive Hazard		
	EHE MODULE RATING	No Longer Required		

Based on the MEC risk matrix methodology assessment of no unacceptable explosive risks (RI Section 5.1.1) for this AOI, the Alternative Rating of No Longer Required has been given

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms *CWM/UXO, CWM/DMM, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	 The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO. 	25
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20
CWM/DMM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS are: Nonexplosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container). 	15
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M- 2/E11. 	12
CAIS (chemical agent identification sets)	 CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the CWM Configuration classification	s in the space
There is no physical or histor	ical evidence indicating that CWM was present at this AOI. See RI Sect	ion 1.5.

Tables 12 through 19 are intentionally omittedPer Active Army Guidance (U.S. Army, 2009)

Table 20 Determining the CHE Module Rating

DIRECTIONS:

1. From Tables 11–19, record the data element scores in the **Score** boxes to the right.

2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.

3. Add the three **Value** boxes and record this number in the **CHE Module Total** box below.

4. Circle the appropriate range for the **CHE Module Total** below.

5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

CWM Hazard Factor Data	Elements		
CWM Configuration	Table 11 0	0	
Sources of CWM	Table 12	0	
Accessibility Factor Data Elements			
Location of CWM	Table 13		
Ease of Access	Table 14	0	
Status of Property	Table 15		
Receptor Factor Data Element	nts		
Population Density	Table 16		
Population Near Hazard	Table 17		
Types of Activities/Structures	Table 18	0	
Ecological and /or Cultural Resources	Table 19		
CHE	MODULE TOT/	AL O	
CHE Module Total	CHE Module	e Rating	
92 to 100			
	A		
82 to 91	B		
82 to 91 71 to 81			
	В		
71 to 81	B		
71 to 81 60 to 70	B C D		
71 to 81 60 to 70 48 to 59	B C D E		
71 to 81 60 to 70 48 to 59 38 to 47	B C D E F	Pending	
71 to 81 60 to 70 48 to 59 38 to 47 less than 38	B C D E F G	-	
71 to 81 60 to 70 48 to 59 38 to 47 less than 38	B C D E F G Evaluation F	equired Suspected	

Table 21

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
Antimony	3.8	15	0.25
Copper	20.8	1,500	0.01
Lead	3.3	15	0.22
Manganese	5.7	1700	0.003
Zinc	18.1	11,000	0.002
CHF Scale	CHF Value	Sum The Ratios	0.49
CHF > 100	H (High)	- CUE - 5 [Maximum Concentration of Co	ontaminantl
100 > CHF > 2	M (Medium)		
2 > CHF	L (Low)	[Comparison Value for Conta	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> fro = H).	m above in the box to the right (maximum value	L
DIRECTIONS: Circle the Classification		o the groundwater migratory pathway at the I	MRS. Value
Classification		scription s that contamination in the groundwater is present at,	value
Evident	moving toward, or has moved to a point of expo		Н
Potential	Contamination in groundwater has moved only s move but is not moving appreciably, or informat or Confined.	М	
Confined	Information indicates a low potential for contami a potential point of exposure (possibly due to the controls).	nant migration from the source via the groundwater to e presence of geological structures or physical	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value	hest value from above in the box to the = H).	L
DIRECTIONS: Circle the Classification	Des	o the groundwater receptors at the MRS.	Value
Identified	There is a threatened water supply well downgra source of drinking water or source of water for o (equivalent to Class I or IIA aquifer).	adient of the source and the groundwater is a current ther beneficial uses such as irrigation/agriculture	Н
Potential	There is no threatened water supply well downg or potentially usable for drinking water, irrigation aquifer).	radient of the source and the groundwater is currently a, or agriculture (equivalent to Class I, IIA, or IIB	М
Limited		well downgradient of the source and the groundwater water and is of limited beneficial use (equivalent to fer exists only).	L
RECEPTOR	DIRECTIONS: Record the single hig	hest value from above in the box to the	М

The single groundwater sample was collected from within this AOI (see RI Section 5.3.4). Physical controls (treatment system) make this a confined migration pathway factor.

No Known or Suspected Groundwater MC Hazard

right (maximum value = H).

FACTOR

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
	CHF Value	Cum The Defice	
CHF Scale		Sum The Ratios	
CHF > 100	H (High)	CHF = E [Maximum Concentration of Conc	ontaminant]
100 > CHF > 2	M (Medium)	[Comparison Value for Conta	aminant]
2 > CHF	L (Low)		-
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right	
HAZARD FACTOR	(maximum value = H).		
	Migratory Pathw	vay Factor	
DIRECTIONS: Circle t	he value that corresponds most closely to	o the surface water migratory pathway at the	MRS.
Classification	Desc	cription	Value
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.		Н
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contamina a potential point of exposure (possibly due to the controls).	ant migration from the source via the surface water to presence of geological structures or physical	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =		
	Receptor F		
	he value that corresponds most closely to	o the surface water receptors at the MRS.	
Classification	Desc	cription	Value
Identified	Identified receptors have access to surface water		H
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.		М
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
	No Known or Suspected Surfa	ace Water (Human Endpoint) MC Hazard	

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)	CHE_ [Maximum Concentration of C	ontaminantl	
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of C]}{[Comparison Value for Conta$		
2 > CHF	L (Low)		iminantj	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value maximum value = H).	from above in the box to the right		
	,			
Migratory Pathway Factor DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS				
Classification	Des	cription	Value	
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.		Н	
Potential		tly beyond the source (i.e., tens of feet), could move ot sufficient to make a determination of Evident or	М	
Confined		nant migration from the source via the sediment to a resence of geological structures or physical controls).	L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =			
DIRECTIONS: Circle th	Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.			
Classification	Des	cription	Value	
Identified	Identified receptors have access to sediment to v	which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.		М	
Limited	Little or no potential for receptors to have access can move.	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.		
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
	No Known or Suspecte	d Sediment (Human Endpoint) MC Hazard		

Sediment was not a pathway of concern and was not sampled (see RI Section 3.3.1).

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
	 				
	<u> </u>				
	<u> </u>				
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)	CHF = S [Maximum Concentration of Conc	ontaminantl		
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{1}{(Comparison Value for Conta$			
2 > CHF	L (Low)	[Comparison Value for Conta	iminantj		
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right			
HAZARD FACTOR	(maximum value = H).				
	Migratory Pathw				
DIRECTIONS: Circle th	ne value that corresponds most closely to	o the surface water migratory pathway at the	MRS.		
Classification		cription	Value		
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of exposit	that contamination in the surface water is present at, ure.	Н		
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could				
Confined	Information indicates a low potential for contamin to a potential point of exposure (possibly due to the controls).	nant migration from the source via the surface water he presence of geological structures or physical	L		
MIGRATORY PATHWAY	DIRECTIONS: Record the single high				
FACTOR	right (maximum value =	,			
DIRECTIONS: Circle th	Receptor Fa he value that corresponds most closely to	actor o the surface water receptors at the MRS.			
Classification	Dese	cription	Value		
Identified	Identified receptors have access to surface water	r to which contamination has moved or can move.	Н		
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access or can move.	L			
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =				
No Known or Suspected Surface Water (Ecological Endpoint) MC Hazard					

Surface water was not a pathway of concern and was not sampled (see RI Section 3.3.1).

Table 25 HHE Module: Sediment – Ecological Endpoint Data Element Table <u>Contaminant Hazard Factor (CHF)</u> DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.				
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
CHF Scale	CHF Value	Sum the Ratios		
CHF > 100	H (High)	CHF = CHF = CHF	ontaminant]	
100 > CHF > 2	M (Medium)	[Comparison Value for Conta	minantl	
CONTAMINANTDIRECTIONS: Record the CHF Valuefrom above in the box to the rightHAZARD FACTOR(maximum value = H).				
DIRECTIONS: Circle the Classification		way Factor to the sediment migratory pathway at the MRS scription	S. Value	
Evident	moving toward, or has moved to a point of expo		Н	
Potential		ntly beyond the source (i.e., tens of feet), could move not sufficient to make a determination of Evident or	М	
Confined		nant migration from the source via the sediment to a presence of geological structures or physical controls).	L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single hig</u> right (maximum value	<u>hest value</u> from above in the box to the = H).		
DIRECTIONS: Circle the	he value that corresponds most closely t			
Classification	Des	scription	Value	
Identified	Identified receptors have access to sediment to		Н	
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.			
RECEPTOR FACTORDIRECTIONS: Record the single highest value right (maximum value = H).from above in the box to the right (maximum value = H).				
No Known or Suspected Sediment (Ecological Endpoint) MC Hazard				

Sediment was not a pathway of concern and was not sampled (see RI Section 3.3.1).

Table 26 HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record CHF Value. If there is no known or suspected MC hazard with present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
Zinc	15.7	23,000	0.0007
CHF Scale	CHF Value	Sum the Ratios	0.0007
CHF > 100	H (High)	S [Maximum Concentration of Co	ntominont]
100 > CHF > 2	M (Medium)	CHF = 🚄	
2 > CHF	L (Low)	[Comparison Value for Conta	iminant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right	L
	Migratory Pathwa		
DIRECTIONS: Circle the value	ue that corresponds most closely to the s	urface soil migratory pathway at the MRS.	
Classification	Description	Value	
Evident	Analytical data or observable evidence indicates th moving toward, or has moved to a point of exposu		н
Potential	Contamination in surface soil has moved only sligh but is not moving appreciably, or information is not Confined.	м	
Confined	Information indicates a low potential for contamina potential point of exposure (possibly due to the pre	L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	nest value from above in the box to the = H).	
	Receptor Fac		
DIRECTIONS: Circle the value	ue that corresponds most closely to the s	urface soil receptors at the MRS.	
Classification	Description	Value	
Identified	Identified receptors have access to surface soil to	which contamination has moved or can move.	н
Potential		oil to which contamination has moved or can move.	Μ
Limited	Little or no potential for receptors to have access to can move.	o surface soil to which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =	nest value from above in the box to the = H).	
	No Known or	Suspected Surface Soil MC Hazard	

Soil sampling included IS sampling of surface soil collected from three sampling units SUs and IS subsurface soil from one SU.

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do no fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway,** and **Receptor Factors** for the media (from Tables 21-26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A-G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)	L	L	М	MLL	F
Surface Water/Human Endpoint (Table 22)					NA
Sediment/ Human Endpoint (Table 23)					NA
Surface Water/Ecological Endpoint (Table 24)					NA
Sediment/Ecological Endpoint (Table 25)					NA
Surface Soil (Table 26)	L	М	М	MML	E
DIRECTIONS (cont.)):		HHE MO	DULE RATING	E
4. Select the single higher			HHE F	Ratings (for refer	ence only)
highest; G is the lowes HHE Module Rating		letter in the	Com	nbination	Rating
			ННН		A
Note:			HHM		В
An alternative module rat module letter rating is ina module rating is used wh	ppropriate. An a	alternative	HHL HMM		С
to score one or more mee was previously addressed	dia, contaminatic d, or there is no i	n at an MRS reason to		HML //MM	D
suspect contamination wa	as ever present a	at an MRS.	HLL		E
			MML MLL		F
				-	
				LLL	G Evoluction Donding
					Evaluation Pending No Longer Required
			Alternative	Module Ratings	No Known or Suspected MC Hazard

MC sampling results indicated metals above background in soil and groundwater, but the RI screen against project screening levels showed no MC releases, no risks to human health and the environment, and accordingly, **the HHE module has been assigned the alternative rating of No Known or Suspected MC Hazard**.

Table 29 MRS Priority

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS Rating at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		А	1		
A	2	В	2	А	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	Е	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending		Evaluation Pending		Evaluation Pending	
No Longer Required		No Longer	Required	No Longei	Required
No Known or Suspected Explosive Hazard		No Known or Suspected CWM Hazard		No Known or Suspected MC Hazard	
MRS PRIORITY or ALTERNATIVE MRS RATING			No Longe	r Required	

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the **MRS Summary**, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non munitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: Area of Interest (AOI)-04 Component: U.S. Army Corps of Engineers Formerly Used Defense Site (FUDS) Program Installation/Property Name: Former Camp Wellfleet Location (City, County, State): Town of Wellfleet, Barnstable County, Massachusetts Site Name/Project Name (Project No.): Former Camp Wellfleet FUDS Date Information Entered/Updated: 08/13/2018 Point of Contact (Name/Phone): Gina Kaso, CENAE PM (978-318-8180) Project Phase (check only one): ⊠ RI FS **RD** RA-C 🗆 RI RA-O LTM

Media Evaluated (check all that apply):

□ Groundwater	□ Sediment (human receptor)
☑ Surface soil – Subsurface Soil	□ Surface Water (ecological receptor)
□ Sediment (ecological receptor)	□ Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

Camp Wellfleet training activities occurred from 1942 to 1961. It is currently owned and managed by the National Park Service (NPS) as part of the Cape Cod National Seashore.

AOI-04 combines EE/CA investigation areas C, F, and J. These are bomb target areas and a burial site. Limited previous removal actions (associated with single point anomaly excavations) conducted to physically remove subsurface MEC found only MD, but not all targets were dug and it is possible that suspected hazards may remain (see RI Section 3.1.1).

No MEC was found in AOI-04. The following MD items were found in the surface and subsurface of AOI-04: Numerous items including abundant fuze shipping spacers, some small arms debris, one empty Dove Missile/1000-pound bomb, one empty 250-pound bomb, 186 M28A1 flash tubes from 106mm projectile cartridge cases, and fragments of grenade spoons. These were inert or practice rounds.

Using the MEC risk assessment matrix methodology (RI Appendix E), no unacceptable MEC risks are posed by this AOI.

For MC characterization, Incremental Soil (IS) sampling of surface soil was conducted from five sampling units (SUs) and IS subsurface soil samples from one SU. As described in RI Table 3-9, SU locations were based on the location of a possible burn pit or previous munitions debris finds. Analytical parameters included select metals (antimony, copper, lead, manganese, nickel, and zinc) and select explosives (RDX, TNT, nitroglycerin, 2,4-dinitrotoluene, 2,6-dinitrotoluene, tetryl, and nitroguanidine (See RI Sections 3.3 and 3.4).

MC sampling results indicated one metal above background in soil, but the screen against project screening levels showed no MC releases, no risks to human health and the environment, and therefore, no HHRA or SLERA were conducted.

Description of Pathways for Human and Ecological Receptors:

The source of potential MC is primarily the result of historical military activities, including the firing of artillery, practice bombing, and small arms. Exposure to receptors by ingestion, inhalation, and dermal contact are potentially complete

pathways. Groundwater is not a pathway of concern unless MC soil sampling results indicate a possible impact to groundwater.

Potential for contact with MEC includes walking over surface MEC, handling/collecting MEC, or contact with subsurface MEC due to any intrusive activities (see RI Section 3.1.2).

Description of Receptors (Human and Ecological):

Potential receptors to MC in the Former Camp Wellfleet include human populations, animal species, or habitats that may be exposed to site-related MC in soil or groundwater. Human receptors include Recreational Users (including fishermen), Site Workers (including NPS Staff and Road/Utility Workers), and Construction Workers. Ecological receptors include various birds, mammals, invertebrates, flora, and fauna that occur within the Former Camp Wellfleet (see RI Section 3.3.1).

However, a complete pathway requires a source of contaminants, and based on site sampling results, no MC contaminant source was identified. The updated CSM (RI Figure 16) shows that there are no complete pathways for MC based on the sample results.

No MEC has been found. Only MD has been recovered, but not all targets were dug during previous investigations and it is possible that suspected hazards may remain. However, based on the MEC risk matrix methodology assessment of no unacceptable explosive risks (RI Section 5.1.1), this AOI has been given the **alternative rating of No Longer Required**.

There is no physical or historical evidence indicating that CWM was present at this AOI. Therefore, the CHE module has been assigned the alternative rating of No Known or Suspected CWM Hazard.

Screening of initial MC sampling results against the PSLs showed no exceedances and it was determined that there were no MC releases, no risks to human health and the environment, and therefore, no HHRA or SLERA were conducted; accordingly, the HHE module has been assigned the alternative rating of No Known or Suspected MC Hazard.

The overall Priority Rating for AOI-04 is 'No Longer Required', based on the EHE module.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses and sensitive sensitive fuzes. 	30
	 Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. 	
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	• UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	 Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.) 	2
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
MUNITIONS TYPE	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 30).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

No MEC was found in AOI-04.

The following MD items were found in the surface and subsurface of AOI-04: Numerous items including abundant fuze shipping spacers, some small arms debris, one empty Dove Missile/1000-pound bomb, one empty 250-pound bomb, 186 M28A1 flash tubes from 106mm projectile cartridge cases, and fragments of grenade spoons (see RI Table 3-1). These were inert or practice rounds.

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms *former range, practice munitions, small arms range, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones. 	10
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	 The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment. 	5
Former industrial operating facilities	 The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility. 	4
Former firing points	• The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4
Former missile or air defense artillery emplacements	 The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range. 	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.) 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	6

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

AOI-04 includes bomb target areas and a burial site. Limited previous removal actions (associated with single point anomaly excavations) conducted to physically remove subsurface MEC found only MD, primarily practice munitions (see RI Section 3.1.1).

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with <u>all</u> the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score		
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25		
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20		
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15		
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10		
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5		
Subsurface, physical constraint	 There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM. 	2		
Small arms (regardless of location)	 The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.) 	1		
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0		
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	10		
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Location of Munitions</i> classifications in the space provided. There is physical evidence of munitions in the form of the recovered MD. See RI Section 3.1.2.				

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	• There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).	10
Barrier to MRS access is incomplete	There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
Barrier to MRS access is complete but not monitored	 There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS. 	5
Barrier to MRS access is complete and monitored	• There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	8

DIRECTIONS: Document any MRS-specific data used in selecting the *Ease of Access* classification in the space provided.

While AOI-04 is accessible by park visitors, it contains unpaved trails and a paved road. The unpaved trails see moderate pedestrian traffic, and the paved road sees vehicle traffic. There is some semi-dense natural vegetation and rough terrain that acts as a natural barrier to limit pedestrian access, however there are no man-made barrier restrictions. See RI Figures 3 & 4, and Section 2.1.

EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score		
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	5		
Scheduled for transfer from DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied. 	3		
DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0		
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5		
DIRECTIONS: Document any MRS-specific data used in selecting the Status of Property classification in the space provided.				
This is a FUDS, owned and managed by the NPS, with a smaller portion owned and managed by the Town of Wellfleet (see RI Sections 1.2 and 1.3).				

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score	
> 500 persons per square mile	 There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located. 	5	
100–500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	3	
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1	
POPULATION DENSITY DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).		5	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Population Density</i> classification in the space provided.			
The population density per square mile in the county in which the Former Camp Wellfleet is located is approximately 548: https://www.census.gov/quickfacts/fact/table/barnstablecountymassachusetts/PST045217			

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	• There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	• There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	3
6 to 10 inhabited structures	 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2
1 to 5 inhabited structures	 There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
DIRECTIONS: Document any MRS-sp space provided.	ecific data used in selecting the Population Near Hazard classification	n in the

There are many more than 26 or more inhabited structures using Google Earth to calculate the total number of inhabited structures within the two-mile radius for this AOI. Inhabited structures include homes, commercial buildings, motels/hotels, and beach houses for use by recreational visitors.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	5
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4
Agricultural, forestry	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. 	3
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2
No known or recurring activities	 There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary. 	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

Types of activities/structures within 2 miles include NPS buildings, homes, commercial buildings, motels/hotels, and beach houses for use by recreational visitors. See RI Figures 1 & 3, and Section 2.1.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score	
Ecological and cultural resources present • There are both ecological and cultural resources present on the MRS.		5	
Ecological resources present	There are ecological resources present on the MRS.	3	
Cultural resources present	There are cultural resources present on the MRS.	3	
No ecological or cultural resources present	 There are no ecological resources or cultural resources present on the MRS. 	0	
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Ecological and/or Cultural Resources</i> classification in the space provided.			
Ecological receptors include various birds, mammals, invertebrates, flora, and fauna that occur within the Former Camp Wellfleet. Wildlife species at the Cape Cod National Seashore include twelve species of amphibians, 370 species of birds, 59 species of mammals, five species of migratory marine turtles, and 13 species of land-based reptiles (NPS website, <u>https://www.nps.gov/caco</u>) (see RI Section 3.3.1).			

Table 10 Determining the EHE Module Rating

Source Score value	Source	Score	Value
--------------------	--------	-------	-------

DIRECTIONS:Munitions TypeTable 151. From Tables 1–9, record the data element scores in the Score boxes to the right.Source of HazardTable 262. Add the Score boxes for each of the three factors and record this number in the Value boxes to the right.Location of MunitionsTable 3103. Add the three Value boxes and record this number in the EHEStatus of PropertyTable 55Receptor Factor Data Elements	23	
element scores in the Score boxes to the right. Accessibility Factor Data Elements 2. Add the Score boxes for each of the three factors and record this number in the Value boxes to the right. Location of Munitions Table 3 10 3. Add the three Value boxes and record this number in the EHE Status of Property Table 5 5		
boxes to the right.Accessibility Factor Data Elements2. Add the Score boxes for each of the three factors and record this number in the Value boxes to the right.Location of MunitionsTable 3103. Add the three Value boxes and record this number in the EHEStatus of PropertyTable 55Receptor Factor Data Elements	23	
 2. Add the Score boxes for each of the three factors and record this number in the Value boxes to the right. 3. Add the three Value boxes and record this number in the EHE 3. Add the three Value boxes and record this number in the EHE 	23	
three factors and record this number in the Value boxes to the right. Ease of Access Table 4 8 Status of Property Table 5 5 Add the three Value boxes and record this number in the EHE Receptor Factor Data Elements 5	23	
Status of Property Table 5 5 3. Add the three Value boxes and record this number in the EHE Receptor Factor Data Elements		
record this number in the EHE		
Module Total box below.Population DensityTable 65		
4. Circle the appropriate range for the Population Near Hazard Table 7 5		
EHE Module Total below. Types of Activities/Structures Table 8 5	18	
5. Circle the EHE Module Rating that corresponds to the range selected Ecological and /or Cultural Resources Table 9 3		
	52	
bottom of the table. EHE Module Total EHE Module Rat	ing	
92 to 100 A		
An alternative module rating may be 82 to 91 B	В	
assigned when a module letter rating is inappropriate. An alternative module rating 71 to 81 C		
is used when more information is needed to 60 to 70 D	D	
contamination at an MRS was previously 48 to 59 E		
addressed, or there is no reason to suspect contamination was ever present at an MRS.38 to 47F		
less than 38 G		
Alternative Module Ratings Evaluation Pending	g	
No Longer Require	d	
No Known or Suspec Explosive Hazard		
	red	

Based on the MEC risk matrix methodology assessment of no unacceptable explosive risks (RI Section 5.1.1) for this AOI, the Alternative Rating of No Longer Required has been given.

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms *CWM/UXO, CWM/DMM, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	 The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO. 	25
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20
CWM/DMM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS are: Nonexplosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container). 	15
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M- 2/E11. 	12
CAIS (chemical agent identification sets)	 CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0
DIRECTIONS: Document any provided.	<pre>/ MRS-specific data used in selecting the CWM Configuration classification</pre>	s in the space
There is no physical or histor	ical evidence indicating that CWM was present at this AOI. See RI Sect	ion 1.5.

Tables 12 through 19 are intentionally omittedPer Active Army Guidance (U.S. Army, 2009)

Table 20Determining the CHE Module Rating

DIRECTIONS:

1. From Tables 11–19, record the data element scores in the **Score** boxes to the right.

2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.

3. Add the three **Value** boxes and record this number in the **CHE Module Total** box below.

4. Circle the appropriate range for the **CHE Module Total** below.

5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

CWM Hazard Factor Data Elements				
CWM Configuration	Table 11	0	0	
Sources of CWM	Table 12		0	
Accessibility Factor Data Ele	ements			
Location of CWM	Table 13			
Ease of Access	Table 14			
Status of Property	Table 15			
Receptor Factor Data Eleme	nts			
Population Density	Table 16			
Population Near Hazard	Table 17			
Types of Activities/Structures	Table 18			
Ecological and /or Cultural Resources	Table 19			
CHE	MODULE	TOTAL	0	
CHE Module Total	CHE N	<i>l</i> odule R	ating	
92 to 100		А		
82 to 91		В		
71 to 81	С			
60 to 70	D			
48 to 59	E			
38 to 47	F			
less than 38	G			
Alternative Module Ratings	Evaluation Pending		ding	
	No Lo	onger Requ	uired	
		wn or Sus WM Hazar	-	
CHE MODULE RATING		wn or Sus WM Hazar		

Table 21 HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (μg/L)	Comparison Value (µg/L)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHF = E [Maximum Concentration of Conc	ontaminantl
100 > CHF > 2	M (Medium)	CHF = 2 [Comparison Value for Conta	minontl
2 > CHF	L (Low)		annnantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from = H).	n above in the box to the right (maximum value	
<u>Migratory Pathway Factor</u> DIRECTIONS: Circle the value that corresponds most closely to the groundwater migratory pathway at the N			
Classification	Des	cription	Value
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.		Н
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		Μ
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the groundwater receptors at the MRS.			
Classification		cription	Value
Identified	source of drinking water or source of water for ot (equivalent to Class I or IIA aquifer).		Н
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).		Μ
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).		
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =	n <u>est value</u> from above in the box to the = H).	
	No Kno	wn or Suspected Groundwater MC Hazard	

Groundwater was not a pathway of concern for this AOI and was not sampled (see RI Section 3.3.1).

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	$CHF = \sum$ [Maximum Concentration of Con	ontaminant]
100 > CHF > 2	M (Medium)	[Comparison Value for Conta	minantl
2 > CHF	L (Low)		armang
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right	
HAZARD FACTOR	(maximum value = H).		
Migratory Pathway Factor			
DIRECTIONS: Circle the value that corresponds most closely to the surface water migratory pathway at the MRS.			
Classification	Desc	cription	Value
Evident	Analytical data or observable evidence indicates t moving toward, or has moved to a point of exposu	hat contamination in the surface water is present at, are.	Н
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		
MIGRATORY PATHWAY	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
FACTOR	.	,	
DIRECTIONS: Circle t	Receptor Fa	actor the surface water receptors at the MRS.	
Classification		cription	Value
Identified	Identified receptors have access to surface water	to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to surface we move.	water to which contamination has moved or can	М
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> the right (maximum valu		
	No Known or Suspected Su	rface Water (Human Endpoint) MC Hazard	

Surface water was not a pathway of concern and was not sampled (see RI Section 3.3.1).

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHE-S [Maximum Concentration of C	ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of C]}{[Comparison Value for Conta$	
2 > CHF	L (Low)		uninanij
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> maximum value = H).	from above in the box to the right	
Migratory Pathway Factor			
DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS			S.
Classification		cription	Value
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expos		Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined		nant migration from the source via the sediment to a resence of geological structures or physical controls).	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =		
Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.			
Classification	Dese	cription	Value
Identified	Identified receptors have access to sediment to w	which contamination has moved or can move.	Н
Potential		nt to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access can move.	to sediment to which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value)		
	No Known or Suspecte	d Sediment (Human Endpoint) MC Hazard	

Sediment was not a pathway of concern and was not sampled (see RI Section 3.3.1).

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios	
	 			
	<u> </u>			
	<u> </u>			
CHF Scale	CHF Value	Sum the Ratios		
CHF > 100	H (High)	CHF = S [Maximum Concentration of Conc	ontaminantl	
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{1}{(Comparison Value for Conta$		
2 > CHF	L (Low)	[Comparison Value for Conta	iminantj	
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right		
HAZARD FACTOR	(maximum value = H).			
	Migratory Pathw			
DIRECTIONS: Circle the value that corresponds most closely to the surface water migratory pathway at the M				
Classification		cription	Value	
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.		Н	
Potential	Contamination in surface water has moved only s move but is not moving appreciably, or informatic or Confined.	М		
Confined	Information indicates a low potential for contamin to a potential point of exposure (possibly due to the controls).	L		
MIGRATORY PATHWAY	DIRECTIONS: Record the single high			
FACTOR	right (maximum value =			
DIRECTIONS: Circle th	Receptor Fa he value that corresponds most closely to	actor o the surface water receptors at the MRS.		
Classification	Dese	cription	Value	
Identified	Identified receptors have access to surface water to which contamination has moved or can move.			
Potential	Potential for receptors to have access to surface move.	water to which contamination has moved or can	М	
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =			
	No Known or Suspected Surfac	ce Water (Ecological Endpoint) MC Hazard		

Surface water was not a pathway of concern and was not sampled (see RI Section 3.3.1).

(from A Calcula compa sedime record	Appendix B of the Primer) in the table belo ate and record the ratios for each contami rison value. Determine the CHF by adding ont contaminants recorded on Table 27. B the CHF Value. If there is no known or su ont, select the box at the bottom of the tab	al Endpoint Data Element Table <u>d Factor (CHF)</u> ininants in the MRS's sediment and their compa- w. Additional contaminants can be recorded o inant by dividing the maximum concentration b g the contaminant ratios together, including an based on the CHF, use the CHF Scale to determin ispected MC hazard with ecological endpoints p	n Table 27. y the y additional ine and
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)		
100 > CHF > 2	M (Medium)	CHF = C [Maximum Concentration of Co	ontaminantj
2 > CHF	L (Low)	[Comparison Value for Conta	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).		
	· · · · · · · · · · · · · · · · · · ·		
DIRECTIONS: Circle t	Migratory Pathy he value that corresponds most closely	to the sediment migratory pathway at the MRS	3.
Classification		scription	Value
Evident		s that contamination in the sediment is present at,	H
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
DIRECTIONS: Circle t	Receptor I he value that corresponds most closely		
Classification	Des	scription	Value
Identified	Identified receptors have access to sediment to		Н
Potential		ent to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have acces can move.	s to sediment to which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record the single hig right (maximum value	hest value from above in the box to the = H).	
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard	

Sediment was not a pathway of concern and was not sampled (see RI Section 3.3.1).

Table 26 HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record CHF Value. If there is no known or suspected MC hazard with present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comp	oarison Value (mg/kg)	Ratios
Zinc	18.2		23,000	0.0008
CHF Scale	CHF Value		Sum the Ratios	0.0008
CHF > 100	H (High)		[Maximum Concentration of Co	ntaminant]
100 > CHF > 2	M (Medium)	CHF = \sum		
2 > CHF	L (Low)		[Comparison Value for Conta	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).		e in the box to the right	L
DIRECTIONS: Circle the value	<u>Migratory Pathwa</u> ue that corresponds most closely to the s		nigratory pathway at the MRS.	
Classification	Description		Value	
Evident	Analytical data or observable evidence indicates th moving toward, or has moved to a point of exposure		n in the surface soil is present at,	Н
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e. tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			М
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to the presence of geological structures or physical controls.)			L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			Μ
DIRECTIONS: Circle the year	Receptor Fac		acontors at the MPS	
DIRECTIONS. Circle the value	de mar corresponds most closely to me s		eceptors at the Mixo.	
Classification	Description		Value	
Identified	Identified receptors have access to surface soil to	which contamina	ation has moved or can move.	Н
Potential	Potential for receptors to have access to surface so	oil to which cont	amination has moved or can move.	Μ
Limited	Little or no potential for receptors to have access to can move.	o surface soil to	which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value =		om above in the box to the	Μ
	No Known or	Suspected	Surface Soil MC Hazard	

Soil sampling included IS sampling of surface soil collected from five SUs and IS subsurface soil samples from one SU.

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do no fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway,** and **Receptor Factors** for the media (from Tables 21-26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A-G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)	
Groundwater (Table 21)					NA	
Surface Water/Human Endpoint (Table 22)					NA	
Sediment/ Human Endpoint (Table 23)					NA	
Surface Water/Ecological Endpoint (Table 24)					NA	
Sediment/Ecological Endpoint (Table 25)					NA	
Surface Soil (Table 26)	L	М	М	MML	MML	
DIRECTIONS (cont.):			HHE MO	DULE RATING	E	
4. Select the single high			HHE F	Ratings (for refer	ence only)	
highest; G is the lowes HHE Module Rating		letter in the	Combination		Rating	
	507.		HHH		A	
Note:			HHM		В	
An alternative module rat module letter rating is ina module rating is used wh	ppropriate. An a	alternative	HHL HMM		С	
to score one or more med	dia, contaminatio	on at an MRS	HML		- D	
was previously addressed suspect contamination wa			MMM		D	
support containination wa			HLL		E	
			ſ	MML	Ľ	
				MLL	F	
				LLL	G	
					Evaluation Pending	
					No Longer Required	
			Alternative Module Ratings		No Known or Suspected MC Hazard	

MC sampling results indicated one metal above background in soil, but the RI screen against project screening levels showed no MC releases, no risks to human health and the environment, and accordingly, the HHE module has been assigned the alternative rating of No Known or Suspected MC Hazard.

Table 29 MRS Priority

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS Rating at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		А	1		
A	2	В	2	A	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	Е	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation Pending		Evaluation Pending		Evaluation Pending	
No Longer Required		No Longer Required		No Longei	Required
No Known or Suspected Explosive Hazard		No Known or Suspected No CWM Hazard		No Known o MC H	
R	MRS PRIORITY or ALTERNATIVE MRS RATING			No Longe	r Required

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the **MRS Summary**, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non munitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: Area of Interest (AOI)-05 Component: U.S. Army Corps of Engineers Formerly Used Defense Site (FUDS) Program Installation/Property Name: Former Camp Wellfleet Location (City, County, State): Town of Wellfleet, Barnstable County, Massachusetts Site Name/Project Name (Project No.): Former Camp Wellfleet FUDS Date Information Entered/Updated: 08/13/2018 Point of Contact (Name/Phone): Gina Kaso, CENAE PM (978-318-8180) Project Phase (check only one): ⊠ RI FS **RD** RA-C 🗆 RI RA-O LTM Media Evaluated (check all that apply): □ Groundwater □ Sediment (human receptor) ☑ Surface soil – Subsurface Soil □ Surface Water (ecological receptor)

MRS Summary:

Sediment (ecological receptor)

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

□ Surface Water (human receptor)

Camp Wellfleet training activities occurred from 1942 to 1961. It is currently owned and managed by the National Park Service (NPS) as part of the Cape Cod National Seashore.

AOI-05 is a former Rocket Range and Small Arms Range. The small arms range has been completely covered by the large paved parking lot. The southern portion includes a small 5-acre removal action area. Multiple pieces of frag from 3.5" rockets and 105mm projectiles found during the previous investigations or removal action are considered HE frag or MD indicative of MEC (see RI Section 3.1.1). As this AOI includes a shoreline portion, it may also see munition items washing ashore following storm events.

The following MD indicative of MEC items and MD items were found in the surface or subsurface of AOI-05:

MD Indicative of MEC: HE frag from 3.5" Rockets and 105mm projectiles. MD: 50 cal bullet, miscellaneous scrap.

For MC characterization, Incremental Soil (IS) sampling of surface soil was conducted from three sampling units (SUs) and IS subsurface soil samples from one SU. As described in Table 3-9, SU locations were based on previous munitions debris finds. Analytical parameters included select metals (antimony, copper, lead, manganese, nickel, and zinc) and select explosives (RDX, TNT, nitroglycerin, 2,4-dinitrotoluene, 2,6-dinitrotoluene, tetryl, and nitroguanidine (See RI Sections 3.3 and 3.4).

MC sampling results determined that additional soil or groundwater sampling was not warranted. The RI screening indicated that there were no MC releases, no risks to human health and the environment, and therefore, no HHRA or SLERA were conducted.

Description of Pathways for Human and Ecological Receptors:

The source of potential MC is primarily the result of historical military activities, including the firing of artillery, practice bombing, and small arms. Exposure to receptors by ingestion, inhalation, and dermal contact are potentially complete

pathways. Groundwater is not a pathway of concern unless MC soil sampling results indicate a possible impact to groundwater.

Potential for contact with MEC includes walking over surface MEC, handling/collecting MEC, or contact with subsurface MEC due to any intrusive activities (see RI Section 3.1.2).

Description of Receptors (Human and Ecological):

Potential receptors to MC in the Former Camp Wellfleet include human populations, animal species, or habitats that may be exposed to site-related MC in soil or groundwater. Human receptors include Recreational Users (including fishermen), Site Workers (including NPS Staff and Road/Utility Workers), and Construction Workers. Ecological receptors include various birds, mammals, invertebrates, flora, and fauna that occur within the Former Camp Wellfleet (see RI Section 3.3.1).

However, a complete pathway requires a source of contaminants, and based on site sampling results, no MC contaminant source was identified. The updated CSM (RI Figure 16) shows that there are no complete pathways for MC based on the sample results.

MD Indicative of MEC (HE frag from 3.5" Rockets and 105mm projectiles) and MD (50 cal bullet, miscellaneous scrap) have been found. Based on this scenario, **the EHE module has been assigned a 'C' rating.**

There is no physical or historical evidence indicating that CWM was present at this AOI. Therefore, **the CHE module** has been assigned the alternative rating of No Known or Suspected CWM Hazard.

MC sampling results indicated metals above background in soil, but the RI screen against project screening levels showed no MC releases, no risks to human health and the environment, and accordingly, the HHE module has been assigned the alternative rating of No Known or Suspected MC Hazard.

The overall Priority Rating for AOI-05 is '4', based on the EHE module.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. 	30
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	• UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	 Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.) 	2
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	25

MD Indicative of MEC (HE frag from 3.5" Rockets and 105mm projectiles) has been found (see RI Table 3-1).

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms *former range, practice munitions, small arms range, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones. 	10
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	 The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment. 	5
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	 The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range. 	4
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.) 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

AOI-05 is a former Rocket Range (see RI Section 3.1.1).

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with <u>all</u> the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.	2
Small arms (regardless of location)	• The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.)	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	10

MD Indicative of MEC presence has been established with the HE frag (from 3.5" Rockets and 105mm projectiles) recovered from the subsurface (RI Section 3.1.2). This constitutes suspected classification.

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	 There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible). 	10
Barrier to MRS access is incomplete	• There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
Barrier to MRS access is complete but not monitored	• There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5
Barrier to MRS access is complete and monitored	• There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10
DIRECTIONS: Document any I provided.	MRS-specific data used in selecting the <i>Ease of Access</i> classification in the s	pace

AOI-05 is a high traffic beach access area. It contains unpaved and paved trails, a paved road and a large paved parking lot. While there is some semi-dense natural vegetation that limits pedestrian access, there are no man-made barrier restrictions. Access to the beach is open with daily use. See Figures 3 & 4, and Section 2.1.

EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	5
Scheduled for transfer from DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied. 	3
DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year. 	0
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the <i>Status of Property</i> classification in th	e space
This is a FUDS, owned and mar (see RI Sections 1.2 and 1.3).	naged by the NPS, with a smaller portion owned and managed by the Town of	Wellfleet

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score		
> 500 persons per square mile	• There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	5		
100–500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	3		
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1		
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5		
DIRECTIONS: Document any MRS-specific data used in selecting the Population Density classification in the space provided.				
	re mile in the county in which the Former Camp Wellfleet is located is approxi cts/fact/table/barnstablecountymassachusetts/PST045217	mately 548:		

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	• There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	• There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	3
6 to 10 inhabited structures	 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2
1 to 5 inhabited structures	 There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
DIRECTIONS: Document any MRS-sp space provided.	pecific data used in selecting the Population Near Hazard classification	n in the

There are many more than 26 or more inhabited structures using Google Earth to calculate the total number of inhabited structures within the two-mile radius for this AOI. Inhabited structures include homes, commercial buildings, motels/hotels, and beach houses for use by recreational visitors.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Activities are conducted, or inhabited structures are located up to two miles from the MDS's hourdary or within the MDS's	
to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering.	5
 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4
 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. 	3
 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	
There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	
DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
-	 purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.

Types of activities/structures within 2 miles include NPS buildings, homes, commercial buildings, motels/hotels, and beach houses for use by recreational visitors. See Figures 1 & 3, and Section 2.1.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score		
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5		
Ecological resources present	There are ecological resources present on the MRS.	3		
Cultural resources present	There are cultural resources present on the MRS.	3		
No ecological or cultural resources present	 There are no ecological resources or cultural resources present on the MRS. 	0		
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3		
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Ecological and/or Cultural Resources</i> classification in the space provided.				
Ecological receptors include various birds, mammals, invertebrates, flora, and fauna that occur within the Former Camp Wellfleet. Wildlife species at the Cape Cod National Seashore include twelve species of amphibians, 370 species of birds, 59 species of mammals, five species of migratory marine turtles, and 13 species of land-based reptiles (NPS website, <u>https://www.nps.gov/caco</u>) (see RI Section 3.3.1).				

Table 10 Determining the EHE Module Rating

Source	Score	Value

	Munit
•	Source
element scores in the Score boxes to the right.	Acces
2. Add the Score boxes for each of the	Locatio
three factors and record this number	Ease o
in the Value boxes to the right.	Ctotus

- 3. Add the three **Value** boxes and record this number in the **EHE Module Total** box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the **EHE Module Rating** that corresponds to the range selected and record this value in the **EHE Module Rating** box found at the bottom of the table.

Note:

DIRECTIONS:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Munitions Type	Table 1	25	25
	Source of Hazard	Table 2	10	35
	Accessibility Factor Data Eler	nents		
	Location of Munitions	Table 3	10	
•	Ease of Access	Table 4	10	25
	Status of Property	Table 5	5	
	Receptor Factor Data Elemen	ts		
	Population Density	Table 6	5	
	Population Near Hazard	Table 7	5	
	Types of Activities/Structures	Table 8	5	18
	Ecological and /or Cultural Resources	Table 9	3	
	EHE N	IODULE	TOTAL	78
	EHE Module Total	EHE Mo	odule Ra	ating
	92 to 100		А	
	82 to 91			
	02 (0 0 1		В	
	71 to 81		B C	
	71 to 81		C	
	71 to 81 60 to 70		C D	
	71 to 81 60 to 70 48 to 59		C D E	
	71 to 81 60 to 70 48 to 59 38 to 47	Evalua	C D E F	ling
	71 to 81 60 to 70 48 to 59 38 to 47 less than 38		C D E F G	-
	71 to 81 60 to 70 48 to 59 38 to 47 less than 38	No Lon No Know	C D E F G tion Pend	ired ected
	71 to 81 60 to 70 48 to 59 38 to 47 less than 38	No Lon No Know	C D E F G tion Pend ger Requ n or Susp	ired ected

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms *CWM/UXO, CWM/DMM, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	 The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO. 	25
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20
CWM/DMM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS are: Nonexplosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container). 	15
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M- 2/E11. 	12
CAIS (chemical agent identification sets)	 CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	• Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the CWM Configuration classification	s in the space
There is no physical or histor	ical evidence indicating that CWM was present at this AOI. See RI Sect	ion 1.5.

Tables 12 through 19 are intentionally omittedPer Active Army Guidance (U.S. Army, 2009)

Table 20Determining the CHE Module Rating

DIRECTIONS:

1. From Tables 11–19, record the data element scores in the **Score** boxes to the right.

2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.

3. Add the three **Value** boxes and record this number in the **CHE Module Total** box below.

4. Circle the appropriate range for the **CHE Module Total** below.

5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

CWM Hazard Factor Data Elements				
CWM Configuration	Table 11	0	0	
Sources of CWM	Table 12		0	
Accessibility Factor Data Ele	ements			
Location of CWM	Table 13			
Ease of Access	Table 14		0	
Status of Property	Table 15			
Receptor Factor Data Eleme	nts			
Population Density	Table 16			
Population Near Hazard	Table 17			
Types of Activities/Structures	Table 18		0	
Ecological and /or Cultural Resources	Table 19			
CHE	MODULE	TOTAL	0	
CHE Module Total	CHE Module Rating			
92 to 100		А		
82 to 91		В		
71 to 81		С		
60 to 70		D		
48 to 59		E		
38 to 47	F			
less than 38		G		
Alternative Module Ratings	Evaluation Pending			
	No Lo	onger Requ	uired	
	No Known or Suspected CWM Hazard			
CHE MODULE RATING	G No Known or Suspected CWM Hazard			

Table 21 HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHE-S [Maximum Concentration of Concentr	ontaminant]
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of Co$	
2 > CHF	L (Low)		aminantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from = H).	n above in the box to the right (maximum value	
DIRECTIONS: Circle th	Migratory Pathwn ne value that corresponds most closely to	a <mark>y Factor</mark> the groundwater migratory pathway at the l	MRS.
Classification	Des	cription	Value
Evident	moving toward, or has moved to a point of expos		Н
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
DIRECTIONS: Circle th	Receptor Faceptor Fac	actor the groundwater receptors at the MRS.	
Classification	Des	cription	Value
Identified	There is a threatened water supply well downgra source of drinking water or source of water for ot (equivalent to Class I or IIA aquifer).	dient of the source and the groundwater is a current her beneficial uses such as irrigation/agriculture	Н
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).		
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).		
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
	No Kno	wn or Suspected Groundwater MC Hazard	

Groundwater was not a pathway of concern for this AOI (see RI Section 3.3.1).

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHF = E [Maximum Concentration of Conc	ontaminant]
100 > CHF > 2	M (Medium)	[Comparison Value for Conta	minantl
2 > CHF	L (Low)		armang
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right	
HAZARD FACTOR	(maximum value = H).		
	Migratory Pathw	vav Factor	
DIRECTIONS: Circle t		the surface water migratory pathway at the	MRS.
Classification	Desc	cription	Value
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.		
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		
MIGRATORY PATHWAY	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the		
FACTOR	right (maximum value = H).		
DIRECTIONS: Circle t	Receptor Fa	actor the surface water receptors at the MRS.	
Classification		cription	Value
Identified	Identified receptors have access to surface water to which contamination has moved or can move.		Н
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.		М
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.		L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> the right (maximum valu		
	No Known or Suspected Su	rface Water (Human Endpoint) MC Hazard	

Surface water was not a pathway of concern and was not sampled (see RI Section 3.3.1).

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHF = S [Maximum Concentration of C	ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{(Comparison Volume for Control$	minont
2 > CHF	L (Low)	[Comparison Value for Conta	aminantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value maximum value = H).	from above in the box to the right	
	Migratory Pathw	vav Factor	
DIRECTIONS: Circle th		the sediment migratory pathway at the MR	S.
Classification	Desc	cription	Value
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.		
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
DIRECTIONS: Circle th	ne value that corresponds most closely to		
Classification Description		Value	
Identified	Identified receptors have access to sediment to which contamination has moved or can move.		Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.		М
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.		
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
	No Known or Suspecte	d Sediment (Human Endpoint) MC Hazard	

Sediment was not a pathway of concern and was not sampled (see RI Section 3.3.1).

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios	
	 			
	<u> </u>			
	<u> </u>			
CHF Scale	CHF Value	Sum the Ratios		
CHF > 100	H (High)	CHF = S [Maximum Concentration of Conc	ontaminantl	
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{1}{(Comparison Value for Conta$		
2 > CHF	L (Low)	[Comparison Value for Conta	iminantj	
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right		
HAZARD FACTOR	(maximum value = H).			
	Migratory Pathw			
DIRECTIONS: Circle th	ne value that corresponds most closely to	o the surface water migratory pathway at the	MRS.	
Classification		cription	Value	
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of exposit	that contamination in the surface water is present at, ure.	Н	
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the			
FACTOR	right (maximum value =	,		
DIRECTIONS: Circle th	Receptor Fa he value that corresponds most closely to	actor o the surface water receptors at the MRS.		
Classification	Dese	cription	Value	
Identified	Identified receptors have access to surface water	r to which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
	No Known or Suspected Surfac	ce Water (Ecological Endpoint) MC Hazard		

Surface water was not a pathway of concern and was not sampled (see RI Section 3.3.1).

Table 25
HHE Module: Sediment – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg) Comparison Value (mg/kg)		Ratios
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)	[Maximum Concentration of Co	ontaminant]
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of CC}{[Comparison Value for Conta}]$	
2 > CHF	L (Low)		minang
CONTAMINANT	DIRECTIONS: Record the CHF Valu		
HAZARD FACTOR	(maximum value = H).		
	Migratory Path		_
DIRECTIONS: Circle ti	he value that corresponds most closely	to the sediment migratory pathway at the MRS	S.
Classification		scription	Value
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expo	s that contamination in the sediment is present at, sure.	Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined		inant migration from the source via the sediment to a presence of geological structures or physical controls).	L
MIGRATORY PATHWAY	DIRECTIONS: Record the single hig	hest value from above in the box to the	

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.

right (maximum value = H).

FACTOR

Classification	Description	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	
	No Known or Suspected Sediment (Ecological Endpoint) MC Hazard	

Sediment was not a pathway of concern and was not sampled (see RI Section 3.3.1).

Table 26 HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record CHF Value. If there is no known or suspected MC hazard with present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
Copper	5.90	3,100	0.002	
Zinc	13.9	23,000	0.003	
CHF Scale	CHF Value	Sum the Ratios	0.005	
CHF > 100	H (High)	[Maximum Concentration of Co	ntaminantl	
100 > CHF > 2	M (Medium)	CHF = 🚄		
2 > CHF	L (Low)	[Comparison Value for Conta	minant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).		L	
DIRECTIONS: Circle the value	Migratory Pathway ue that corresponds most closely to the s	y Factor urface soil migratory pathway at the MRS.		
Classification	Description	Value		
Evident	Analytical data or observable evidence indicates th moving toward, or has moved to a point of exposure		Н	
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e. tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined		nt migration from the source via the surface soil to a sence of geological structures or physical controls.)	L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	Μ		
DIRECTIONS: Circle the value	Receptor Fac			
	······			
Classification	Description	Value		
Identified	Identified receptors have access to surface soil to	which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to surface so	oil to which contamination has moved or can move.	Μ	
Limited	Little or no potential for receptors to have access to can move.	o surface soil to which contamination has moved or	L	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
No Known or Suspected Surface Soil MC Hazard				

Soil sampling included IS sampling of surface soil collected from three sampling units SUs and IS subsurface soil from one SU.

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do no fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway,** and **Receptor Factors** for the media (from Tables 21-26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A-G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)					NA
Surface Water/Human Endpoint (Table 22)					NA
Sediment/ Human Endpoint (Table 23)					NA
Surface Water/Ecological Endpoint (Table 24)					NA
Sediment/Ecological Endpoint (Table 25)					NA
Surface Soil (Table 26)	L	М	М	MML	E
DIRECTIONS (cont.)):		HHE MO	DULE RATING	E
4. Select the single high			HHE F	Ratings (for refer	ence only)
highest; G is the lowes HHE Module Rating		letter in the	Combination		Rating
			ННН		A
Note:			ł	ННМ	В
An alternative module rat module letter rating is ina module rating is used wh	ppropriate. An a	alternative		HHL HMM	C
to score one or more mee was previously addressed	dia, contaminatic d, or there is no i	on at an MRS reason to		HML MMM	D
suspect contamination wa	as ever present a	at an MRS.		HLL	Е
				MML	F
				MLL	-
				LLL	G
					Evaluation Pending No Longer Required
			Alternative	Module Ratings	No Known or Suspected MC Hazard

MC sampling results indicated metals above background in soil, but the RI screen against project screening levels showed no MC releases, no risks to human health and the environment, and accordingly, the HHE module has been assigned the alternative rating of No Known or Suspected MC Hazard.

Table 29 MRS Priority

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS Rating at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		А	1		
А	2	В	2	А	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Pending	Evaluation Pending		Evaluation Pending	
No Longer	No Longer Required		No Longer Required		r Required
No Known or Explosive		No Known or CWM H		No Known or Suspected MC Hazard	
MRS PRIORITY or ALTERNATIVE MRS RATING				4	

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the **MRS Summary**, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental non munitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: Area of Interest (AOI)-06 Component: U.S. Army Corps of Engineers Formerly Used Defense Site (FUDS) Program Installation/Property Name: Former Camp Wellfleet Location (City, County, State): Town of Wellfleet, Barnstable County, Massachusetts Site Name/Project Name (Project No.): Former Camp Wellfleet FUDS Date Information Entered/Updated: 08/13/2018 Point of Contact (Name/Phone): Gina Kaso, CENAE PM (978-318-8180) Project Phase (check only one): ⊠ RI RD FS RA-C 🗆 RI RA-O **D**RC LTM

Media Evaluated (check all that apply):

Groundwater	□ Sediment (human receptor)
Surface soil – Subsurface Soil	□ Surface Water (ecological receptor)
□ Sediment (ecological receptor)	□ Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

Camp Wellfleet training activities occurred from 1942 to 1961. It is currently owned and managed by the National Park Service (NPS) as part of the Cape Cod National Seashore.

AOI-06 is the Range Fan of Artillery Targets in Ocean. MEC presence is suspected based on past use as an ocean range fan with anti-aircraft and rocket firing at targets over the ocean conducted for approximately 20 years. This AOI could also be a source of MEC/MD to AOI-02 and AOI-05 if munition items wash ashore following storm events (see RI Section 3.1.1), although documented occurrence of this is rare.

The following MEC items might conservatively be expected to be in the ocean range fan: 76mm anti-aircraft artillery, 90mm and 105mm projectiles, 3.5" rockets.

No MC sampling was conducted for the RI.

Description of Pathways for Human and Ecological Receptors:

The source of potential MC is primarily the result of historical military activities, including the firing of artillery, practice bombing, and small arms. Exposure to marine receptors by ingestion and dermal contact are potentially complete pathways.

Potential for contact with MEC includes recreational diving, swimming/wading, fishing, or contact with subsurface MEC due to any intrusive activities such as maintenance in the shallow shore waters.

Description of Receptors (Human and Ecological):

Potential receptors to MC in the Former Camp Wellfleet include human populations, marine animal species, or habitats that may be exposed to site-related MC in surface water. Human receptors include Recreational Users (including swimmers, divers, fishermen), and Site Workers (including NPS Staff and Maintenance Workers). Ecological receptors include marine flora and fauna that occur within the ocean range fan (see RI Section 3.3.1).

The following MEC items might conservatively be expected to be in the ocean range fan: 76mm anti-aircraft artillery, 90mm and 105mm projectiles, 3.5" rockets. Based on this scenario, **the EHE module has been assigned a 'C' rating.**

There is no physical or historical evidence indicating that CWM was present at this AOI. Therefore, the CHE module has been assigned the alternative rating of No Known or Suspected CWM Hazard.

No MC sampling was conducted in the open ocean or sediment, and the HHE module has been assigned the alternative rating of No Known or Suspected MC Hazard.

The overall Priority Rating for AOI-06 is '4', based on the EHE module.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an 	30
	explosive hazard.	
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, oyrotechnics, or oropellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	• UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	 Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.) 	2
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	25

provided.

The following MEC items might conservatively be expected to be in the ocean range fan: 76mm anti-aircraft artillery, 90mm and 105mm projectiles, 3.5" rockets. See RI Table 3-1.

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms *former range, practice munitions, small arms range, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones. 	10
Former munitions treatment i.e., OB/OD) unit	The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal.	8
Former practice munitions ange	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	 The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment. 	5
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	 The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range. 	4
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.) 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

AOI-06 is the Range Fan of Artillery Targets in Ocean (see RI Section 3.1.1).

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with <u>all</u> the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	 There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM. 	2
Small arms (regardless of location)	• The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.)	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	5

Suspected munitions with historical evidence indicating that UXO or DMM may be present in this AOI since anti-aircraft and rocket firing at targets over the ocean was conducted for approximately 20 years. See RI Section 3.1.2.

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score	
No barrier	 There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible). 	10	
Barrier to MRS access is incomplete	• There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8	
Barrier to MRS access is complete but not monitored	• There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5	
Barrier to MRS access is complete and monitored	• There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0	
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Ease of Access</i> classification in the space provided.			

AOI-06 is the open ocean with no physical barriers, although ocean depth eventually becomes a practical barrier. See Figures 3, and Section 2.1.

EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score	
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	5	
Scheduled for transfer from DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied. 	3	
DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year. 	0	
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Status of Property</i> classification in the space provided.			
Portions of the ocean range fan are controlled by local government or the state of Massachusetts. See RI Sections 1.2 and 1.3.			

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	5
100–500 persons per square mile	 There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located. 	3
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5
	to the light (maximum soore – o).	
DIRECTIONS: Document any provided.	MRS-specific data used in selecting the Population Density classification in the selecting the Population Density classification in the selecting the Population Density classification in the selecting the s	the space

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	• There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	5
16 to 25 inhabited structures	 There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	4
11 to 15 inhabited structures	 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	3
6 to 10 inhabited structures	 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2
1 to 5 inhabited structures	 There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	1
0 inhabited structures	 There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

space provided.

There are many more than 26 or more inhabited structures using Google Earth to calculate the total number of inhabited structures within the two-mile radius of the western-most reaches of this AOI. Inhabited structures include homes, commercial buildings, motels/hotels, and beach houses for use by recreational visitors.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	5
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4
Agricultural, forestry	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. 	3
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2
No known or recurring activities	 There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary. 	
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

Types of activities/structures within 2 miles of the western-most reaches of this AOI include NPS buildings, homes, commercial buildings, motels/hotels, and beach houses for use by recreational visitors. See Figures 1 & 3, and Section 2.1.

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	Score	
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5	
Ecological resources present	There are ecological resources present on the MRS.	3	
Cultural resources present	There are cultural resources present on the MRS.	3	
No ecological or cultural resources present	 There are no ecological resources or cultural resources present on the MRS. 	0	
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	3	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Ecological and/or Cultural Resources</i> classification in the space provided.			
Ecological receptors include marine flora and fauna that occur within the ocean. Wildlife species at the Cape Cod National Seashore include five species of migratory marine turtles (NPS website, <u>https://www.nps.gov/caco</u>) (see RI Section 3.3.1).			

Table 10 **Determining the EHE Module Rating**

Source	Score	Value
--------	-------	-------

DIRECTIONS:				
DIRECTIONS.	Munitions Type	Table 1	25	
 From Tables 1–9, record the data element scores in the Score 	Source of Hazard	Table 2	10	35
boxes to the right.	Accessibility Factor Data Eler	ments		
2. Add the Score boxes for each of the	Location of Munitions	Table 3	5	20
three factors and record this number	Ease of Access	Table 4	10	
in the Value boxes to the right.	Status of Property	Table 5	5	
 Add the three Value boxes and record this number in the EHE 	Receptor Factor Data Elemen	its		
Module Total box below.	Population Density	Table 6	5	
4. Circle the appropriate range for the	Population Near Hazard	Table 7	5	
EHE Module Total below.	Types of Activities/Structures	Table 8	5	18
5. Circle the EHE Module Rating that corresponds to the range selected	Ecological and /or Cultural Resources	Table 9	3	
and record this value in the EHE Module Rating box found at the	EHE MODULE TOTAL 73			
bottom of the table.	EHE Module Total	EHE Mo	odule Ra	ating
Note:	92 to 100		А	
	82 to 91		В	
An alternative module rating may be	02 10 91			
assigned when a module letter rating is inappropriate. An alternative module rating	71 to 81		С	
assigned when a module letter rating is			C D	
assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously	71 to 81			
assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements,	71 to 81 60 to 70		D	
assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect	71 to 81 60 to 70 48 to 59		D	
assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect	71 to 81 60 to 70 48 to 59 38 to 47	Evalua	D E F	ling
assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect	71 to 81 60 to 70 48 to 59 38 to 47 less than 38		D E F G	•
assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect	71 to 81 60 to 70 48 to 59 38 to 47 less than 38	No Lon No Know	D E F G tion Penc	ired bected
assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect	71 to 81 60 to 70 48 to 59 38 to 47 less than 38	No Lon No Know Explo	D E F G tion Penc ger Requ n or Susp	ired bected

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms *CWM/UXO, CWM/DMM, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	 The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO. 	25
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20
CWM/DMM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS are: Nonexplosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container). 	15
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M- 2/E11. 	12
CAIS (chemical agent identification sets)	 CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0
DIRECTIONS: Document any provided.	<pre>/ MRS-specific data used in selecting the CWM Configuration classification</pre>	s in the space
There is no physical or histor	ical evidence indicating that CWM was present at this AOI. See RI Sec	tion 1.5.

Tables 12 through 19 are intentionally omittedPer Active Army Guidance (U.S. Army, 2009)

Table 20 Determining the CHE Module Rating

DIRECTIONS:

1. From Tables 11–19, record the data element scores in the **Score** boxes to the right.

2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.

3. Add the three **Value** boxes and record this number in the **CHE Module Total** box below.

4. Circle the appropriate range for the **CHE Module Total** below.

5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

CWM Hazard Factor Data Elements			
CWM Configuration	Table 11	0	0
Sources of CWM	Table 12		0
Accessibility Factor Data Elements			
Location of CWM	Table 13		
Ease of Access	Table 14		0
Status of Property	Table 15		
Receptor Factor Data Elemen	nts		
Population Density	Table 16		
Population Near Hazard	Table 17		
Types of Activities/Structures	Table 18		0
Ecological and /or Cultural Resources	Table 19		
CHE	MODULE	TOTAL	0
CHE Module Total	CHE N	<i>l</i> odule R	ating
92 to 100		А	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59		Е	
38 to 47		F	
less than 38		G	
Alternative Module Ratings	Evaluation Pending		ding
	No Lo	onger Requ	uired
		wn or Sus WM Hazar	
CHE MODULE RATING	No Kno	wn or Sus	pected

Table 21 HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (μg/L)	Comparison Value (µg/L)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHE-S [Maximum Concentration of C	ontaminant]
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of C]}{[Comparison Value for Conta$	
2 > CHF	L (Low)		anniang
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from = H).	n above in the box to the right (maximum value	
DIRECTIONS: Circle th	Migratory Pathwn Migratory Migrato	ay Factor the groundwater migratory pathway at the	MRS.
Classification	Des	cription	Value
Evident	moving toward, or has moved to a point of expos		Н
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
DIRECTIONS: Circle th	Receptor Faceptor Fac		
Classification		cription	Value
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture (equivalent to Class I or IIA aquifer).		
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).		
Limited		vell downgradient of the source and the groundwater vater and is of limited beneficial use (equivalent to er exists only).	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
	No Kno	wn or Suspected Groundwater MC Hazard	

Groundwater was not a pathway of concern and was not sampled (see RI Section 3.3).

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHF = E [Maximum Concentration of Conc	ontaminant]
100 > CHF > 2	M (Medium)	[Comparison Value for Conta	minantl
2 > CHF	L (Low)		armang
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right	
HAZARD FACTOR	(maximum value = H).		
	Migratory Pathw	vav Factor	
DIRECTIONS: Circle t		the surface water migratory pathway at the	MRS.
Classification	Description		Value
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.		
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the		
FACTOR	right (maximum value =	,	
DIRECTIONS: Circle t	Receptor Fa	actor the surface water receptors at the MRS.	
Classification		cription	Value
Identified	Identified receptors have access to surface water to which contamination has moved or can move.		Н
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.		М
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.		L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
	No Known or Suspected Su	rface Water (Human Endpoint) MC Hazard	

Surface water was not a pathway of concern and was not sampled (see RI Section 3.3.1).

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	CHE-S [Maximum Concentration of C	ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of C]}{[Comparison Value for Conta$	
2 > CHF	L (Low)		uninanij
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> maximum value = H).	from above in the box to the right	
	Migratory Pathw	vay Factor	
DIRECTIONS: Circle th		the sediment migratory pathway at the MR	S.
Classification	on Description		
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.		Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
DIRECTIONS: Circle th	ne value that corresponds most closely to		
Classification	Dese	cription	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.		Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.		М
Limited	Little or no potential for receptors to have access can move.	to sediment to which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).		
	No Known or Suspecte	d Sediment (Human Endpoint) MC Hazard	

Sediment was not a pathway of concern and was not sampled (see RI Section 3.3.1).

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios		
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)	CHF = E [Maximum Concentration of C	ontaminantl		
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{(2n+i)^{n}} 1$	suite entit		
2 > CHF	L (Low)	[Comparison Value for Conta	iminantj		
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right			
HAZARD FACTOR	(maximum value = H).				
	Migratory Pathw				
DIRECTIONS: Circle th	ne value that corresponds most closely to	the surface water migratory pathway at the	MRS.		
Classification Description					
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).				
MIGRATORY PATHWAY	DIRECTIONS: Record the single highest value from above in the box to the				
FACTOR	right (maximum value = H).				
DIRECTIONS: Circle th	Receptor Fa	actor the surface water receptors at the MRS.			
Classification	Dese	cription	Value		
Identified	Identified receptors have access to surface water to which contamination has moved or can move.				
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L		
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =				
	No Known or Suspected Surfac	e Water (Ecological Endpoint) MC Hazard			

Surface water was not a pathway of concern and was not sampled (see RI Section 3.3.1).

(from A Calcula compai sedime record sedime	ppendix B of the Primer) in the table belo the and record the ratios for each contam rison value. Determine the CHF by addin nt contaminants recorded on Table 27. E the CHF Value. If there is no known or su nt, select the box at the bottom of the tab	al Endpoint Data Element Table <u>d Factor (CHF)</u> ninants in the MRS's sediment and their company www. Additional contaminants can be recorded of inant by dividing the maximum concentration by g the contaminant ratios together, including any based on the CHF, use the CHF Scale to determing spected MC hazard with ecological endpoints pro- tele.	n Table 27. / the / additional ne and			
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios			
CHF Scale	CHF Value	Sum the Ratios				
CHF Scale CHF > 100						
100 > CHF > 2	H (High) M (Medium)	CHF = S [Maximum Concentration of Co	ontaminant]			
2 > CHF	L (Low)	[Comparison Value for Conta	minant]			
CONTAMINANT		e from above in the box to the right				
HAZARD FACTOR						
DIRECTIONS: Circle t Classification		way Factor to the sediment migratory pathway at the MRS scription	S. Value			
Evident	moving toward, or has moved to a point of expo		Н			
Potential		Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or				
Confined		inant migration from the source via the sediment to a presence of geological structures or physical controls).	L			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value	<pre>hest value from above in the box to the = H).</pre>				
	Receptor I he value that corresponds most closely	to the sediment receptors at the MRS.				
Classification		scription	Value			
Identified	Identified receptors have access to sediment to		Н			
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move. M					
Limited	Little or no potential for receptors to have acces can move.	s to sediment to which contamination has moved or	L			
RECEPTOR FACTOR	DIRECTIONS: Record the single hig right (maximum value	hest value from above in the box to the = H).				
	No Known or Suspected	Sediment (Ecological Endpoint) MC Hazard				

Sediment was not a pathway of concern and was not sampled (see RI Section 3.3.1).

Table 26 HHE Module: Surface Soil Data Element Table								
values (from 27. Calculate comparison surface soil c record CHF V	Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value . Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF , use the CHF Scale to determine and record CHF Value . If there is no known or suspected MC hazard with present in the surface soil, select the box at the bottom of the table.							
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios					
CHF Scale	CHF Value	Sum the Ratios						
CHF > 100 100 > CHF > 2	H (High)	CHF = $\sum_{i=1}^{n} [Maximum Concentration of Concent$	ntaminant]					
2 > CHF	L (Low)	[Comparison Value for Contaminant]						
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	e from above in the box to the right						
DIRECTIONS: Circle the value	Migratory Pathwa ue that corresponds most closely to the s	<u>y Factor</u> urface soil migratory pathway at the MRS.						
Classification	Description	Value						
Evident	Analytical data or observable evidence indicates the moving toward, or has moved to a point of exposu		Н					
Potential	Contamination in surface soil has moved only sligh but is not moving appreciably, or information is not Confined.	ntly beyond the source (i.e. tens of feet), could move t sufficient to make a determination of Evident or	Μ					
Confined		Int migration from the source via the surface soil to a esence of geological structures or physical controls.)	L					
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =	h <u>est value</u> from above in the box to the = H).						
DIRECTIONS: Circle the value	Receptor Fac ue that corresponds most closely to the s							
Classification	Description	Value						
Identified	Identified receptors have access to surface soil to	which contamination has moved or can move.	Н					
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.							
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.							
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =	h <u>est value</u> from above in the box to the = H).						
	No Known or	Suspected Surface Soil MC Hazard						

Soil was not a pathway of concern and was not sampled (see RI Section 3.3.1).

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do no fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard, Migration Pathway,** and **Receptor Factors** for the media (from Tables 21-26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A-G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)	
Groundwater (Table 21)					NA	
Surface Water/Human Endpoint (Table 22)					NA	
Sediment/ Human Endpoint (Table 23)					NA	
Surface Water/Ecological Endpoint (Table 24)					NA	
Sediment/Ecological Endpoint (Table 25)					NA	
Surface Soil (Table 26)					NA	
DIRECTIONS (cont.):			HHE MO	DULE RATING	NA	
4. Select the single highest Media Rating (A is the			HHE Ratings (for reference only)			
highest; G is the lowes HHE Module Rating	highest; G is the lowest) and enter the letter in the		Combination		Rating	
	DOX.		ННН		А	
Note:			HHM		В	
An alternative module rat module letter rating is ina			HHL HMM HML MMM		С	
module rating is used wh					- C	
to score one or more med					D	
was previously addressed suspect contamination wa					_	
			HLL		Е	
			MML		L	
			MLL		F	
			LLL	G		
					Evaluation Pending No Longer Required	
			Alternative	Module Ratings	No Known or Suspected MC Hazard	

No MC sampling was conducted in the open ocean or the sediment and therefore, the HHE module has been assigned an overall rating of No Known or Suspected Hazard.

Table 29 MRS Priority

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS Rating at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		А	1		
А	2	В	2	А	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Evaluation Pending Evaluation Pending		Evaluation	n Pending	
No Longer	No Longer Required		No Longer Required		r Required
No Known or Explosive		No Known or Suspected CWM Hazard		No Known o MC H	r Suspected azard
MRS PRIORITY or ALTERNATIVE MRS RATING				4	

APPENDIX G: PHOTO DOCUMENTATION

This Page Intentionally Left Blank

Photo 01 – Forested area comprising the background soil sampling locations. Date: 10 April 2018

Photo 02 – UXO team and field personnel using step probes to collect soil samples. Date: 13 April 2018

Photo 03 – UXO team performing sweep of surface soils with a Schonstedt before sampling. Field personnel using RTK rover to validate location. *Date*: 12 April 2018

Photo 04 – Field personnel performing RTK base station check to ensure accuracy. Date: 12 April 2018

Photo 05 – RTK base station setup for southern locations data collection. Date: 11 April 2018

Photo 06 – UXO field personnel using hand auger in AOI-01 to collect discrete samples. Date: 14 April 2018

Photo: 07- Field team decontaminating step probes and labeling samples. Date: 14 April 2018

Photo 08 – The Well House containing Supply Well B. Date: 13 April 2018

APPENDIX H: FIELD DOCUMENTATION

This Page Intentionally Left Blank

Project: Camp Wellfleet	Date: 04/09/2018				
Report Number: 001	Prepared By: Robert Koroncai				
Time of Arrival at Site: 1605	Time of Departure from Site: 1715				
Time of Safety Brief: 1605					
Weather/Site Conditions:					
Weather: Sunny, 45 degrees					
Personnel On-Site:					
Robert Koroncai (ERT)					
Lee Lucas (ERT)					
Equipment Quality Control:					
GPS Morning: N/A	Anomaly Avoidance Morning: N/A				
GPS Afternoon: N/A	Anomaly Avoidance Afternoon: N/A				
Site Activities Conducted:					
Arrive at Cape Cod National Seashore. Met wit	th D. Crary at the Fire Cache. Crary shows				
ERT GPS control points, fire roads to access AOIs, and equipment and drum staging area.					
ERT discusses plan for completing sampling.					
Issues Encountered and Resolutions:	Issues Encountered and Resolutions:				
None.					

Planned Activities:

Begin sample collection in Background Area tomorrow.

Table 1. Sample Collection					
Sample	Date	Sample	Date	Sample	Date
None					

Project: Camp Wellfleet	Date: 04/10/2018
Report Number: 002	Prepared By: Robert Koroncai
Time of Arrival at Site: 0700	Time of Departure from Site: 1700
Time of Safety Brief: 0715	
Weather/Site Conditions:	
Weather: Overcast, light precipitation, 35 degree	es
Personnel On-Site:	
Robert Koroncai (ERT)	Mike Watson (ERT)
Lee Lucas (ERT)	Lee Peterson (ERT)
Equipment Quality Control:	
GPS Morning: Pass	Anomaly Avoidance Morning: Pass
GPS Afternoon: Pass	Anomaly Avoidance Afternoon: Pass
Site Activities Conducted:	
ERT arrives onsite and meets with NPS staff (D Cache for morning briefing. ERT set-up contro established Schondstedt verification area and co began soil sample collection at Background Are verification. ERT meet with D. Crary at Fire Ca	l points at Marconi Beach Parking Lot. ERT onducted morning instrument verification. ERT ea. ERT conducted afternoon instrument
Issues Encountered and Resolutions:	
None.	
Planned Activities:	

Continue sample collection in Background Area.

Table 1. Sample Collection						
Sample	Date	Sample	Date	Sample	Date	
BKG-SU1-SA	4/10	BKG-SU2-SA	4/10	BKG-SU2-SA-Rep2	4/10	
BKG-SU2-SA-Rep3	4/10	BKG-SU3-SA	4/10	BKG-SU4-SA	4/10	
BKG-SU5-SA	4/10	BKG-SU6-SA	4/10	BKG-SU7-SA	4/10	
SA = Surface Soil (ISM)					

Project: Camp Wellfleet	Date: 04/11/2018
Report Number: 003	Prepared By: Robert Koroncai
Time of Arrival at Site: 0700	Time of Departure from Site: 1715
Time of Safety Brief: 0715	
Weather/Site Conditions:	
Weather: Sunny, 48 degrees	
Personnel On-Site:	
Robert Koroncai (ERT – Team Leader)	Mike Watson (ERT – UXO Tech Lead)
Lee Lucas (ERT)	Lee Peterson (ERT)
Equipment Quality Control:	-
GPS Morning: Pass	Anomaly Avoidance Morning: Pass
GPS Afternoon: Pass	Anomaly Avoidance Afternoon: Pass
Site Activities Conducted:	
ERT arrives onsite and meets with NPS staff (D ERT conducted morning instrument verification Background Area. ERT conducted afternoon in Crary at Fire Cache for afternoon briefing. ERT	n. ERT continued soil sample collection at astrument verification. ERT meets with D.
Visitors:	
None	
Jaguag Encountered and Decolutions	

Issues Encountered and Resolutions:

None.

Planned Activities:

Continue sample collection in Background Area, begin sample collection in AOI5.

Table 1. Sample Collection					
Sample	Date	Sample	Date	Sample	Date
BKG-SU2-SB	4/11	BKG-SU2-SB-Rep2	4/11	BKG-SU2-SB-Rep3	4/11
BKG-SU3-SB	4/11	BKG-SU5-SB	4/11	BKG-SU6-SB	4/11
BKG-SU7-SB	4/11				
SB = Subsurface Soil ((ISM)				

Project: Camp Wellfleet	Date: 04/12/2018				
Report Number: 004	Prepared By: Robert Koroncai				
Time of Arrival at Site: 0700	Time of Departure from Site: 1700				
Time of Safety Brief: 0715					
Weather/Site Conditions:					
Weather: Sunny, 48 degrees					
Personnel On-Site:					
Robert Koroncai (ERT – Team Leader)	Mike Watson (ERT – UXO Tech Lead)				
Lee Lucas (ERT)	Lee Peterson (ERT)				
Equipment Quality Control:					
GPS Morning: Pass	Anomaly Avoidance Morning: Pass				
GPS Afternoon: Not Conducted Anomaly Avoidance Afternoon: Pass					
Site Activities Conducted:					
ERT arrives onsite and meets with NPS staff (D ERT conducted morning instrument verification Background Area, AOI3, and AOI5. ERT cond meets with D. Crary at Fire Cache for afternoor	n. ERT continued soil sample collection at lucted afternoon instrument verification. ERT				
Visitors:					
None					
Issues Encountered and Resolutions:					
Afternoon GPS verification not completed due to base station antennae loss of power. An extra external battery has been obtained to avoid this potential issue going forward.					
Planned Activities:					
Continue sample collection; sample collection t	o be completed in AOI3 and AOI4.				
Table 1. Sam	ple Collection				

Table 1. Sample Collection					
Sample	Date	Sample	Date	Sample	Date
BKG-SU1-SB	4/12	BKG-SU4-SB	4/12	AOI3-SU3-SA-Rep1	4/12
AOI3-SU3-SA-Rep2	4/12	AOI3-SU3-SA-Rep3	4/12	AOI5-SU1-SA-Rep1	4/12
AOI5-SU1-SA-Rep2	4/12	AOI5-SU1-SA-Rep3	4/12	AOI5-SU2-SA-Rep1	4/12
AOI5-SU2-SA-Rep2	4/12	AOI5-SU2-SA-Rep3	4/12		
SA = Surface Soil (ISM)					
SB = Subsurface Soil (ISN	(M				

Project: Camp Wellfleet	Date: 04/13/2018
Report Number: 005	Prepared By: Robert Koroncai
Time of Arrival at Site: 0700	Time of Departure from Site: 1645
Time of Safety Brief: 0715	
Weather/Site Conditions:	
Weather: Cloudy, 50 degrees	
Personnel On-Site:	
Robert Koroncai (ERT – Team Leader)	Mike Watson (ERT – UXO Tech Lead)
Lee Lucas (ERT)	Lee Peterson (ERT)
Equipment Quality Control:	
GPS Morning: Pass	Anomaly Avoidance Morning: Pass
GPS Afternoon: Pass	Anomaly Avoidance Afternoon: Pass
Site Activities Conducted:	
ERT arrives onsite and meets with NPS staff (E ERT conducted morning instrument verification Well B. ERT continued soil sample collection instrument verification. ERT meets with D. Cra offsite.	n. ERT collected groundwater sample from at AOI3, and AOI4. ERT conducted afternoon
Visitors:	
Patrick (PJ) Mion (USACE-CENAE)	
Issues Encountered and Resolutions:	

None

Planned Activities:

Continue sample collection; sample collection to be conducted in AOI3 and AOI4.

Table 1. Sample Collection						
Sample	Date	Sample	Date	Sample	Date	
WellB-GW-1	4/13	AOI4-SU5-SA-Rep1	4/13	AOI4-SU5-SA-Rep2	4/13	
AOI4-SU5-SA-Rep3	4/13	AOI3-SU1-SA-Rep1	4/13	AOI3-SU1-SA-Rep2	4/13	
AOI3-SU1-SA-Rep3	4/13	AOI3-SU1-SB-Rep1	4/13	AOI3-SU1-SB-Rep2	4/13	
AOI3-SU1-SB-Rep3	4/13					
SA = Surface Soil (ISM)						
SB = Subsurface Soil (ISM	(I)					

Project: Camp Wellfleet	Date: 04/14/2018
Report Number: 006	Prepared By: Robert Koroncai
Time of Arrival at Site: 0700	Time of Departure from Site: 1645
Time of Safety Brief: 0705	
Weather/Site Conditions:	
Weather: Sunny, 55 degrees	
Personnel On-Site:	
Robert Koroncai (ERT – Team Leader)	Mike Watson (ERT – UXO Tech Lead)
Lee Lucas (ERT)	Lee Peterson (ERT)
Equipment Quality Control:	
GPS Morning: Pass	Anomaly Avoidance Morning: Pass
GPS Afternoon: Pass	Anomaly Avoidance Afternoon: Pass
Site Activities Conducted:	
ERT arrived onsite and conducted health and sa verification. ERT continued soil sample collect afternoon instrument verification. ERT offsite.	•
Visitors:	
Partrick (PJ) Mion (USACE-CENAE)	
Issues Encountered and Resolutions:	
No issues encountered.	
-	

Planned Activities:

Continue sample collection in AOI3 and AOI4.

Table 1. Sample Collection						
Sample	Date	Sample	Date	Sample	Date	
AOI4-SU3-SA-Rep1	4/14	AOI4-SU3-SA-Rep2	4/14	AOI4-SU3-SA-Rep3	4/14	
AOI4-SU3-SB-Rep1	4/14	AOI4-SU3-SB-Rep2	4/14	AOI4-SU3-SB-Rep3	4/14	
AOI3-SU2-SA-Rep1	4/14	AOI3-SU2-SA-Rep2	4/14	AOI3-SU2-SA-Rep3	4/14	
AOI4-SU1-SA-Rep1	4/14	AOI4-SU1-SA-Rep2	4/14	AOI4-SU1-SA-Rep3	4/14	
AOI4-SU3-SA-Rep1	4/14	AOI4-SU3-SA-Rep2	4/14	AOI4-SU3-SA-Rep3	4/14	
AOI4-SU4-SA-Rep1	4/14	AOI4-SU4-SA-Rep2	4/14	AOI4-SU4-SA-Rep3	4/14	
SA = Surface Soil (ISM)						
SB = Subsurface Soil (ISN	(Iv					

Project: Camp Wellfl	eet		Date:	04/1	.6/2018			
Report Number: 007	Report Number: 007			Prepared By: Robert Koroncai				
Time of Arrival at Site:	NA				rture from Site: NA			
Time of Safety Brief: NA								
Weather/Site Condition	ns:							
Weather: Heavy rain, str	ong wind	ls						
Personnel On-Site:								
Robert Koroncai (ERI] – Team	Leader)	Mike V	Vatson ((ERT – UXO Tech Le	ead)		
Lee Lucas (ERT)			Lee Pet	erson (ERT)			
Equipment Quality Co	ntrol:		-					
GPS Morning: NA Anomaly Avoidance Morning: NA								
GPS Afternoon: NA Anomaly Avoidance Afternoon: NA								
Site Activities Conduct	ed:							
No site work conducted	due to he	avy rain and s	trong wi	nds. Lo	gistics and planning fo	r		
upcoming sampling even	nts was c	onducted.						
Visitors:								
None								
Issues Encountered an	d Resolu	tions:						
No issues encountered.								
Planned Activities:								
Continue sample collect	ion; samp	ole collection t	o be cond	lucted in	n AOI3 and AOI4.			
	Table 1. Sample Collection							
Sample	Date	Sample	e	Date	Sample	Date		

SA = Surface Soil (ISM) SB = Subsurface Soil (ISM)

ad)					
trument					
verification. ERT continued soil sample collection at AOI1. ERT conducted afternoon					

Visitors:

None

Issues Encountered and Resolutions:

No issues encountered.

Planned Activities:

Continue sample collection; sample collection to be conducted in AOI2 and AOI5 with MassDEP oversight.

Table 1. Sample Collection					
Sample	Date	Sample	Date	Sample	Date
AOI1-SU1-SA-Rep1	4/17	AOI1-SU1-SA-Rep2	4/17	AOI1-SU1-SA-Rep3	4/17
AOI1-SU2-SA-Rep1	4/17	AOI1-SU2-SA-Rep2	4/17	AOI1-SU2-SA-Rep3	4/17
AOI1-SU2-SO01-8-10	4/17	AOI1-SU2-SO02-8-10	4/17	AOI1-SU2-SO03-8-10	4/17
AOI1-SU2-SO04-8-10	4/17	Wellfleet-FD1	4/17	AOI1-SU3-SA-Rep1	4/17
AOI1-SU3-SA-Rep2	4/17	AOI1-SU3-SA-Rep3	4/17	AOI1-SU3-SO01-8-10	4/17
AOI1-SU3-SO01-8-10-	4/17	AOI1-SU3-SO02-8-10	4/17	AOI1-SU3-SO03-8-10	4/17
MS/MSD					
AOI1-SU3-SO04-8-10	4/17				
SA = Surface Soil (ISM)					
SO = Subsurface Soil (Dis	screte)				

Project: Camp Wellf	eet		Date:	04/1	18/2018	
Report Number: 009	Prepar	ed By:	Robert Koroncai			
Time of Arrival at Site:	0700				rture from Site: 1530	
Time of Safety Brief: 0715						
Weather/Site Conditio	ns:					
Weather: Sunny, 55 deg	rees, lig	ht winds				
Personnel On-Site:						
Robert Koroncai (ERT	T – Tear	n Leader)	Mike V	Vatson	(ERT – UXO Tech Le	ad)
Lee Lucas (ERT)			Lee Pet	terson ((ERT)	
Equipment Quality Co	ntrol:					
GPS Morning: Pass			Anoma	ly Avoi	dance Morning: Pass	
GPS Afternoon: Pass			Anoma	ly Avoi	dance Afternoon: Pass	
Site Activities Conduct	ted:					
verification. ERT contin soil sampling. ERT con Visitors: Performing oversight: PJ Mion (USACE) Kendall Walker (MassD Issues Encountered an	ducted a DEP) d Resolution	fternoon instru	ment ver	ification	n. ERT offsite.	1 all
No issues encountered.	Oversigl	nt personnel see	med plea	ased wit	h observed activities.	
Planned Activities:						
Collect IDW sample, red	cover IS	Os, final site cho	eck, and	demobi	lize.	
		Table 1. Samp	ple Colle	ection		
Sample	Date	Sample		Date	Sample	Date
	4/18	AOI2-SU1-SA	-Rep2	4/18	AOI2-SU1-SA-Rep3	Date
AOI2-SU1-SA-Rep1	4/10	A012-301-3A	- T -		А012-301-3А-керз	4/18
AOI2-SU1-SA-Rep1 AOI2-SU2-SA-Rep1	4/18	AOI2-SU2-SA		4/18	AOI2-SU2-SA-Rep3	
1			-Rep2	4/18 4/18	*	4/18
AOI2-SU2-SA-Rep1	4/18	AOI2-SU2-SA	-Rep2 -Rep2		AOI2-SU2-SA-Rep3	4/18 4/18

SA = Surface Soil (ISM)

SB = Subsurface Soil (ISM)

Project: Camp Wellfleet	Date: 04/19/2018
Report Number: 010	Prepared By: Robert Koroncai
Time of Arrival at Site: 0800	Time of Departure from Site: 0900
Time of Safety Brief: 0805	
Weather/Site Conditions:	
Weather: Cloudy, 50 degrees, light rain	
Personnel On-Site:	
Robert Koroncai (ERT – Team Leader)	Mike Watson (ERT – UXO Tech Lead)
Lee Lucas (ERT)	
Equipment Quality Control:	
GPS Morning: NA	Anomaly Avoidance Morning: NA
GPS Afternoon: NA	Anomaly Avoidance Afternoon: NA
Site Activities Conducted:	
ERT arrived onsite and conducted health and sa equip decon water. ERT removed two ISOs use ERT Demobilized.	
Visitors:	
None.	
Issues Encountered and Resolutions:	
No issues encountered.	
Planned Activities:	
None.	
Table 1. Sam	ple Collection

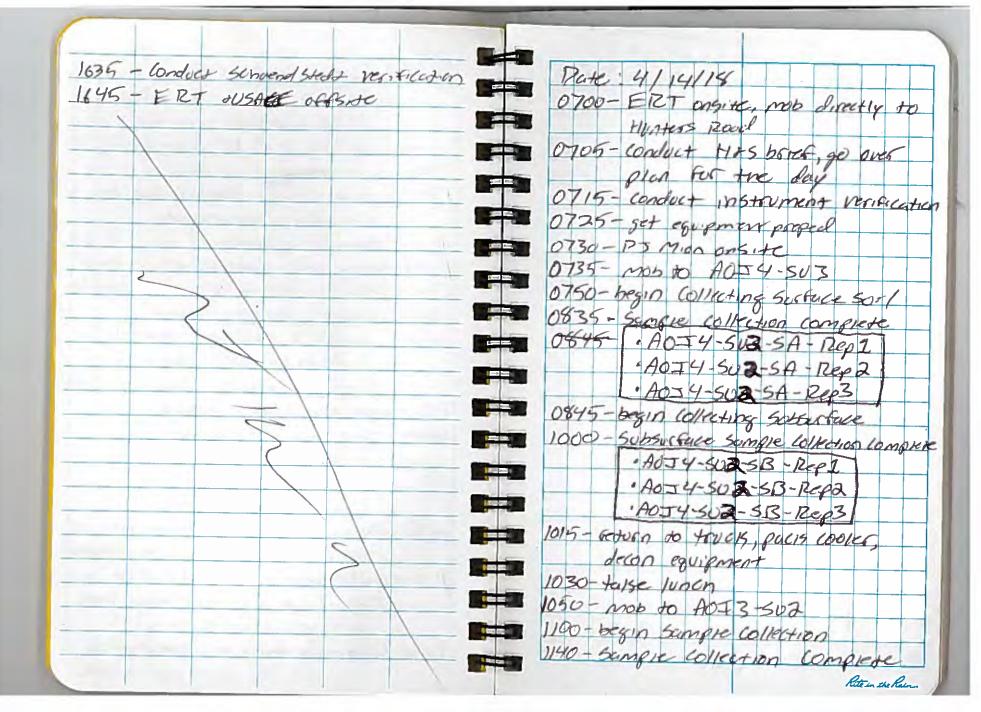
		I				
Sample	Date	Sample	Date	Sample	Date	
Wellfleet-IDW1	4/19					
IDW = Investigative Derived Waste (equipment decontamination fluid)						

	CONTENTS		
AGE	REFERENCE	DATE	Date: 4/9/18 0700-10000 EPUT DEFile men to
			1605 Arrive est icrus materiale years,
	TEAM 1 FIELD NOTES		1615 - DEIVE GEOME SIZE US COMPLETE
	FIELD NOTES		2 go to the met source in mercon
			1715- ERT OPENT, man to hetel

Date: 4/10/18 GTCC - FRT GETIVES ONSITE at Mand OFFICE FIRE COLOR Mees w/ D CRAY NiCOK NITE 0705 - to over introductions, NPS 1-SINGS OUT Averss to the ADJ'S, go Over Safety, ensure no distribunce to the environment 0710 - FRT conducts daily Hos brief and go over the days plan 6715- mos to Hat mat even and Place alrum in Storage 0720 - mos to (antro) point (CP14) by mains office, set up base states 0725 - moh to control point (cre) by intrance and confrom coordinates 0730 - mon to none yard area and Setup Schatzelt QC, Mary two =30'S at 65 0.501 ft 55 0745- mon to massen' benen purising 105 to 4 to up souther point 0500 - bet first point of "PL COINE" 05 20 - mos to CP 14 to got brite them 0840- Set-up base at PL Corner

0900 - mob to bacisground area OTDO- Clean coursement, pacing ser, beach to B156-504 0940- out at SUY, Ocicoted term Lithin goid 1000- begin collecting samples 1130 - Sumples Collected -BK6-504-5A ·BISU-SUY-SA-Reparrow ·BK--504-5A-Rop3 1145- Mob to trucis decan equipment, put sumpres in cooler 1200 - Lupan 1230 - man to SUT. and byin simple collection 1345 - Collart SUZ BISU-SUZ-SA 1400- down ogu pront, place sumpre in copier 1410 mes to SUB, by in sample collection 1530 - Semple Collection Complete 1. B150-506-5AV 1545 - decon eperprise and picke sumpre in coste 1600- bry In collecting SU 3 1640-Simple wilcotion complete ·B156-513-5A) 1645 - mos to mar con Beven perisagioi, conduct pretrugent ner, for 4.60 Rete in the Rein.

Date: 4/11/18 1155 Mosto Fire Calle , disenss Ofour mers at Fire Councy, ERT+CRIV. Wer 1sed allompished and prend Discuss plan for the day NO Issues activities for tomorrow to be discussed 1700-ERT OFFSITE 0725 - Watton ERT confect HIS brick 0740- wotson + Peterson mob to honogical aren and conduct QC. Boronces: and lucis men to Morcon bear parisinglot, set up base southon and conduct CX2 0755 - Watson & Peterson cosive cust marconi beach parisim lot 0800 - pacis & ofginize equipment 0630- mos to pacisgrand arm 0850- Koppia: + Warson mos 10 (Teun 2) mon to BKK-506 0 905 - begin collecting sample at SU-6 1115 - Sample collection complete [.BKU-5U6-5B 1125-Lunch 3 6 1 1145 - decon Step proje 1155 - mas do 545 and the set 1215- begin Sample Collection 1330 - Sample collection complete - Index of +B154-505-5B Rite in the Rain


Dute: 4/12/18 1345- PLUS SAMPIC, decan Stop portor 0700- FIRT & GROLY meet at 1400- Term 102 mob do 50-2 FILL COLLE and dISLUSS to begin soil sample collection for day Plan 1535- Sample Collected 5B-Ref 2 0715- conduct tito brief · BISU-502- 1292 0730- Conduct Schoendshelt ver fixuden · B154-502-513-12022 Set-up hose Station 1545 - Decon prome, pack looker 0735- conduct UPS Verification 1405 Tram Z mos total offsite 1 0740- PACIS TOUCK, NOR to to Ship sumples. Term 1 1605 Bacisgoound Area begin Sumple Loiketion at 0500 - Arrive at BKF ARE B156-502 1650 0813 - Team 1 mos to 13154-524 1450× - Sample Collected Termz mas to Bist-Sul [-B150-502-5B-Reg 3] 1055 0945- Sample Collected 1455 - decon pore 1.BK1-504-5B conduct a fternoon instrument 7900-0955- deico equipment, mob 20 rerification 15-10- meet w/ brasy at fire line A073-503 1015 - Lunch 1515 - ERTOFFSITC 1030- bagin Sample Collection 175. 1215 - sympte collection complete · B ADI 3-503-54-Rep. ADJ3-5U3-5A-REPZ · AO = 3-54 - 12003 1230- MOS to NPS HILL FOR BORKS (-) - i a de la companya de la company 1250-mob to A01-5-502 Rite in the Rain

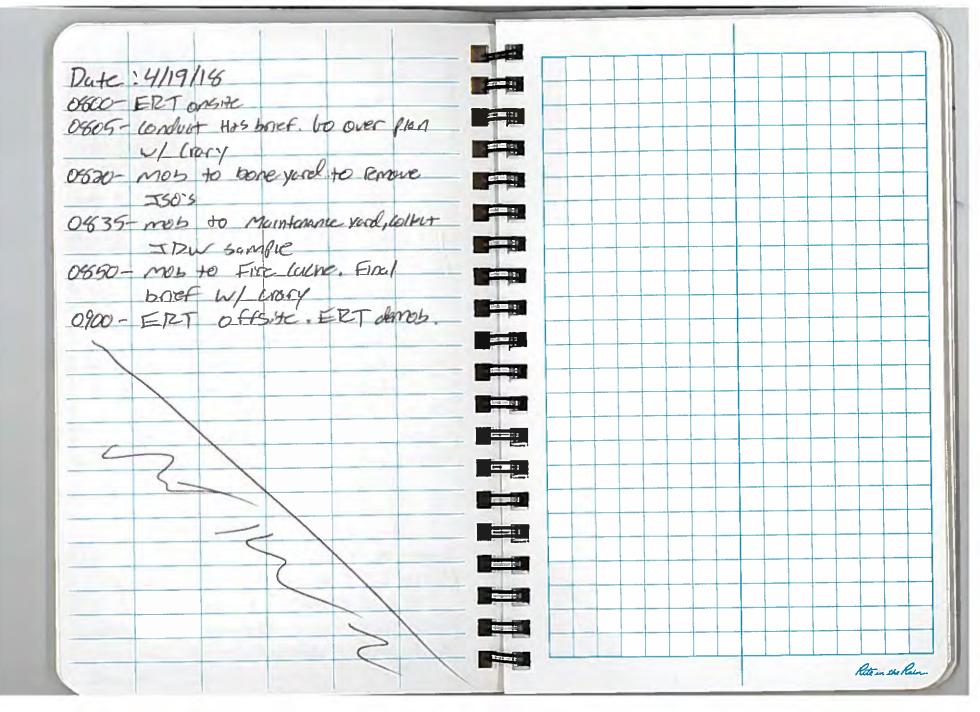
1300 - begin sample collection at A015-501 1400- Sample Callected ·AOIS-501-5A-12601 "AOT5-501-5A-RUP2 AOT5-501-5A-12931 1405- deton equipment , pucks sumples 1410 - begin Sample Collection at AO 75-502 1500- Sample collection Lamplete ·AOTE -502-5A-Rup1 · AOIG-502-5A-1262 ADJ 5-502-5A-Rep3 1515- packs cooles 1535- Team 2 offsite, mos do Ship coles, Team 1 mob to establish control points by ADI3/9054 1545 - Base Station bottory bus no power, Unuble to estublish contact points 1600 - Condict a Etersion instrument varifications NO 6-PS verification possible 1605 - mos to five locke to unked IDW 1620 - Unload IDW, go to next up cary 1630 - afternoon brief w/ char 1700-0665, He - ---

Date = 4/13/18 0700 - ERTONSITC, asove at Fire rache for motoring beref 4/ CRASY + Richard Muspie 720- moto to control point 14 to Set-up base station. 725 - Team 2 (Horrowi & Watson) mos to wall B to meet with R. Murphy 0735 Trum 2 to survey ouro new control points at the end of HIVATERS Rocal do use for ADI3 + ADITY 0735 - Team 2 meet up R. Marphy to over hever system, Well 13 lototel inside well house sample to be taken from tap in the water line whin well nouse NO FILTO or condition of bother well and tup 0740 begin sugary line 0800 - 15 gallons proged. 0805 - collect but sample · Well B- (-W-1) 0510 - more to mercopi station Site (ACT 2) the se Rete in the Rain

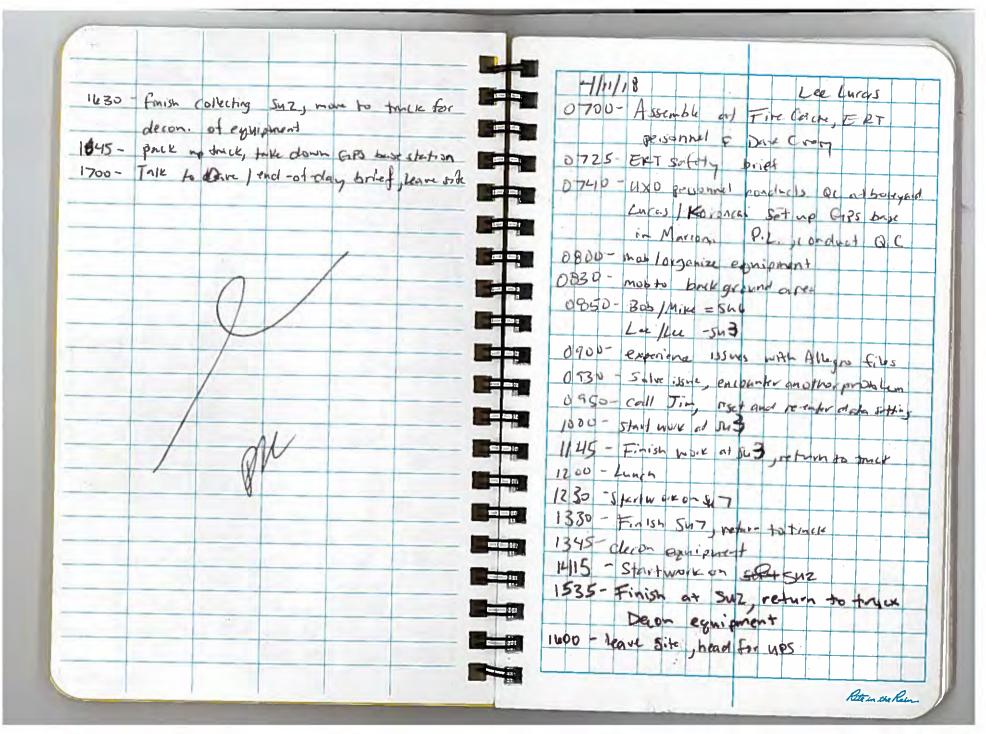
0615 - meet W/ Team 2, Team 2 Sxt-up additional londrol ports to ver for A0=21A0=2 0835 - Team 1 o Fram 2 mob to Mucconi beach pucking lot. Stop at Candrol Point 14 00-get base station to op 0860- get of base Station at Merconi beack perking lot. 0900- mon to DOX 9-505 DAK Ibrance: + Lucas protocom U-PS QC, Watson & Paterson perform Schoendstant GL 0900 - Mos to AOX 4-SUS 685 Pover in autonomus studes, made back to base studion to determine Rover states issue, Lucas trouble shart w/ Stuby_ Welles reconfigure base and Para and reves 1030- mob to A054-505 1045- begin Sample 1115 - P.J. MON ONSit, BOGONUL mob to Marconi Beach gate. 1130- Conduct Has briet 1145- MOS ave to 50

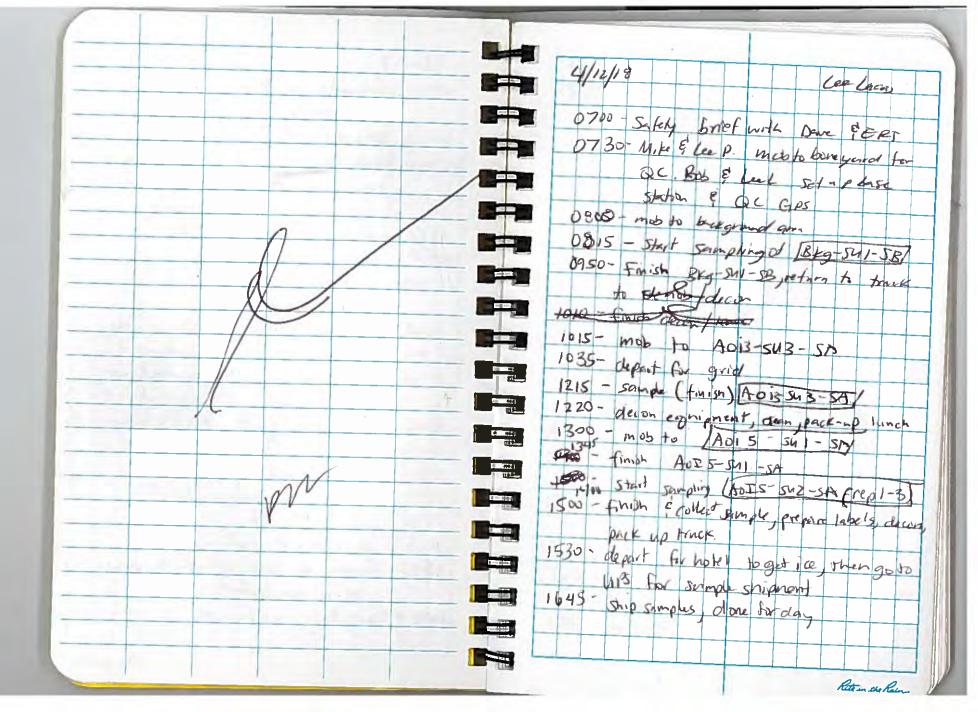
1220 - Sumple collected · AO = 4-505-5A-12601 1. AO = 4-505-5A - Repz · AO = 4- 505-5A-Rep3 1230- Which 1300- mon to Morcon; Beach larsing lot to pulls up take station 1310- Mob to Huster Road 1315- set-up base stution, verify nover 1330 - mob to AOT 3-541 1415 Collated Surface Sumpre · A053- 541-5A - Rot1 · A053-542-5A-Repa - A0-3-512-5A-Rel3 1420-begin Subsistère collection 1545 - Sample calketion comprise · ADI 3-501 -53 - Rept ·ADI3-501-5B-Repa : AOI3-501-5B-Rep3 1550- Decon equipment. Meet CRUEY for Arternoon boref at Hunter pad 160 - Afternoon Le PS ver, fication Term Z pacis cooles and nes 0555K & UPS. 1630 - Tram I moto to bone yerd Rete in the Rain

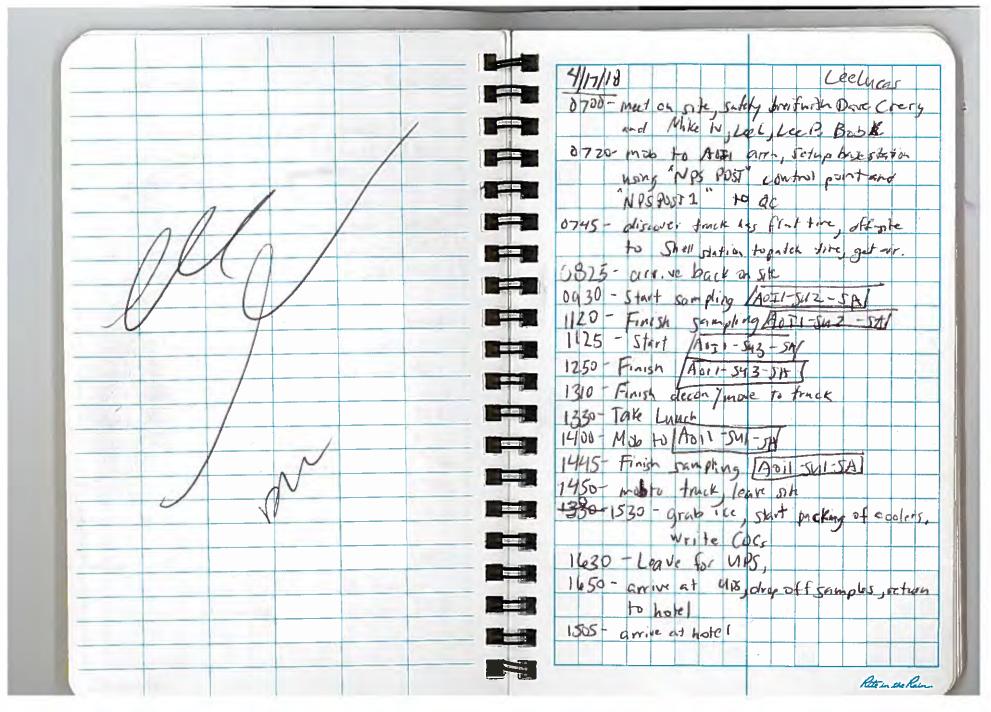
· A073-502-5A-Rep7 -----1555 - Decar equipment, Pacis capter ·AOI3-502-5A - Repa in the second 1605- partico conduct afternoon ·AOIB-502-5A-Rep3 1200- Lecon equipment instrument verificution 1210- MOS 20 \$ AJOH-541, begin 16 30- Pacis equipment Contrasts Sumple Collection 1645-0ff Site 1300 - Sumple collection Complete · AOIT 4-5U1-5A-Rep2 ·AOJ4-501-5A-Repa · A054-502-5A - Rep3 1305 - map to struck, pack looke, decon equipment 1315 - mos to A074-503 1325 begin collecting sumple Real Property lies 1420 - Simple collection complete · AO - 4-503-5A-Repl · AOT4-503-5A - Rep2 A034-523-5A-Rep3 . 1425 - decon equipment 1430 - mosto A0=4-514 1 1445 - begin collecting sample 1530- Sample Collection complete · AOT4-504-5A-Rep1 · AOI4-504-5A-1242 · AO I4 - 504 - 5A - 12093 1540 - mos to truck R Street Rete in the Rein


Date: 4/17/18 0700- EIZT Amile Onside at fire 4011-502 Cache Meer w/ D. Lany; 0715 - Londvor HIS brief and discuss plus for the day 01 0720- mon to AOT 1-0730 - active at persistor per post 02 bet up muse stution, Conduct insorvment perification 0745- foot left tire on ERT 03 toucis observed do be losing 04 air. drive to nurby gus Stan to find separ 15, 2 and cold a. [0800- the separed, mos buck to DOI 1 A0-11-503 1 0835 - apaper drive down maintenance Road, Paris nur POTI-503 .1 TRACE 2 0845- mob to A072-503 to by in Consult I Samar Collection - team 2 (Kosonar, watson) begin And a state of the local division of the loc collating dixecte samples. Tam 3 2 (Locus, Presson) has acketion 9 1 of Surface sample 0915 - basin collections subsucture sample 0945 - Sample Collection Comprete (second) -A011-502-3001-4-10 Not to scale (Income) 0950 - decon augur Rete in the Rain

0955 + + Ar 1-412-5802	1210- begin sample collection and
0955 - mos to AOI1-502-5BO2	AOI2-503-5BOB
1000 - basin sample collection	
1019 Sumple contental whipper	law wind windle
-AOTI-502-3002-56-10	
1020-decon augur	Small metal fragments and glass absorm
1025 - bryin Collecting Sumple at	Epom 2-6 Ft bas
	in a accer ouger
1040 - Sumple Collection complete	
[.A0I-502-5003-6-16]	1300-Sample Collection Complete
1045 decon augur	[ADI1-5U3-6004-8-10]
1050-begin collecting at A051-502-5804	
1105 - Sample Collected	
·A077-512-5004-8-10	1305-decon equipment
1106 - Collect Field dup from A051-502-5804	1310 - MOD back to theck
· wellFleet - FD2	and the provent
1110 - decon augur, map to A051-503	
1115 - basin collecting sumple at ADI2-503 5B01	= 1400 - bogin collecting fample
1130- Gumple Collected MS/MSD Willected	1993 - Sumple correction complete
·AOT2-503-5002-8-10	- 1.70+7-5U1-5A-Rep1
· A011-503-5002-8-10-M52	
· AOT 1-503 5002-5-10-MS122	: AOII-601-5A-12003
1135 - decon augur	1950- MOD to TULK, MOD to PARISING lot
1140 - begin semple collection at Acti-su3-staz	1500 - more to NPS HQ to prois up
1200- Sample Collection complete	
· A0-11-503-5002-8-10	1510-Mois to paring 102
1205- decon equipment	Rite in the Rein.


1515 - Conduct instromeno veri Bratis Date: 4/18/18 0700-ERTONSHE, mees Cran 1530- pace up base souther 1545- Lall LIDEY and discuss what at Fire Calme Disuss Was accomplished Elan for the day 1600- mob off bite to pelisoshp 0715-Conduct Hos boref 55 0725- Conduct instrument verification Coolers Base station Bet-up at persing last Aux A0 11/2 0745 - MOB tO AOT 2-549 0800 - begin simple conjection 0845 - Semple collection complete ·ADIZ-SU1-SA Rept · AO TO SU2-50 - ROD · AOI2-502-5A-Rap 3 0850 - Mobodo prossing lot to get been sking Decon equipments 0900 mob to end of Hupton road, sot-up ble station 0910- mob to POSZ-SUZ, PS75 ators 1000 0920- beg n Sample Collection 1000 - Sompto Collected · A0-2-502-5A-1200: ·A0-2-502-5A-12002 -AOID SUZ SA -1200 1010- Mosto Hunter road Rete in the Rain


1015 - decon equipment, 30 1020 - MOS to AOF2 -503 1030 - begin collecting sample 1100 - Sumple Collection Complete ·AOI2-503-5A-Rep1 ·AOID354-Rep2 · ADT2-503 5A- REP3 1105 - mos do truchs, pack up base Station 1115-mob to NPS HQ to meet PJ Mion (USALE) und Bendall Wallser (MussDEP) 1130 - Mob to Marcani Beach perking las 1 III 1135 - Get up here status, ves. fy rovers, dicon equipment 1145 - agin collecting sample 342 1230 - Simplie Collected 10 122 ·ACT 5-543-5A-RUP2 · ACT 5-543-5A - Rep2 ·ADIG-503-5A-12ep3 1245 - MOD DO HOUR, PACK Samples, delon equigment Note: during collect ion of SUSFile samples at AO \$5-503 the two (2) cersten most lins were close lover the bluff.


Due to susety concerns and inability to alles mose sample increments, 2 1.mes were relievented to the westenedge of the SU. USALE und MUSSDEP appeal with this action as the appropriate action to take Add tipolelly the sustermost onel 1) Subourfuse line of incrementer points were agreed to be mored, offert from the Western edge of the SU. Again confugence was renered between ERT, VSALE, and MassDEP 1300- begin Sample Collection of ADIZ-SU3 1440 - Simple Collection Complete · AOIT5-503-513-1202 ·AOID-503-5B-1242 ·A075-503-53-12103 1450 - pacts recter, dron equipment 1500 - ERT MOD DO FIRE COCH, US ACE and Moss DEP OFFS. te 1510-conduct instrument verification 1530- ERT 0665110-250 Rete in the Reis

D. OT	CONTENTS		
PAGE	REFERENCE	DATE	Date: 4/10/18 Cer Lucas
			0700 - ERT arrives on ste
			The original place draw in storage
			1 6720. mob to control point Hy in parking
			1730: mob to can trol paint to for august
	TEAM 2		cuntai, that surces fail
	FIELD NOTES		
			() 315 save new point an endally and and
			priving lot midlight, the need Place other
			1 0340 - setup new bar station at Perderner
			7900 ± 41111111
			Orco Start Setho for field work
			1 0940 - worked to Sh-4 (buckground)
			1197 - returned the forest of draw of the
			1200 - Took lynch
			Equanent at truck
			1345 - Mobile Sul to collect sumple
			1500 - Finish collecting Bul was to de the at the w

