# Disposal Area Monitoring System DAMOS





Contribution 205 December 2017



US Army Corps of Engineers ® New England District



| <b>REPORT DOCUMENTATION PAGE</b> form appro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                              |                                                                                                                                        | roved<br>OMB No. 0704-0188                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Public reporting concern for the collection of inform<br>searching existing data sources, gathering and measu<br>regarding this burden estimate or any other aspect of<br>Headquarters Services, Directorate for information (<br>to the Office of Management and Support, Paperwork                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ation is estimated to average 1 hour p<br>uring the data needed and correcting a<br>5 this collection of information includi<br>Observations and Records, 1215 Jeffer<br>k Reduction Project (0704-0188), Wa | er response including the<br>nd reviewing the collect<br>ing suggestions for reduc<br>rson Davis Highway, Su<br>ashington, D.C. 20503. | e time for reviewing instructions,<br>ion of information. Send comments<br>ing this burden to Washington<br>te 1204, Arlington, VA 22202-4302 and |
| 1. AGENCY USE ONLY (LEAVE BLANK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2. REPORT DATE<br>December 2017                                                                                                                                                                              | 3. REPORT TY<br>Cont                                                                                                                   | <b>PE AND DATES COVERED</b><br>ribution, October 2016                                                                                             |
| 4. TITLE AND SUBTITLE<br>Monitoring Survey at the Cape Cod Bay Disp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oosal Site, October 2016                                                                                                                                                                                     |                                                                                                                                        | <b>5. FUNDING NUMBERS</b><br>Contract No. W912WJ-12-D-0004                                                                                        |
| 6. AUTHOR(S)<br>Zach McKelvey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                              |                                                                                                                                        | -                                                                                                                                                 |
| 7. PERFORMING ORGANIZATION NAME(S)<br>INSPIRE Environmental ar<br>88 Silva Lane, Suite 4<br>Middletown, RI 02842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AND ADDRESS(ES)<br>Id Battelle<br>141 Longwater Di<br>Norwell, MA 020                                                                                                                                        | rive, Suite 202<br>61                                                                                                                  | 8. PERFORMING<br>ORGANIZATION REPORT<br>NUMBER                                                                                                    |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)<br>US Army Corps of Engineers-New England District<br>696 Virginia Rd<br>Concord, MA 01742-2751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              |                                                                                                                                        | <b>10. SPONSORING/MONITORING</b><br><b>AGENCY REPORT NUMBER</b><br>Contribution No. 205                                                           |
| 11. SUPPLEMENTARY NOTES<br>Available from DAMOS Program Ma<br>USACE-NAE, 696 Virginia Rd, Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nager, Evaluation Branch<br>ord, MA 01742-2751                                                                                                                                                               |                                                                                                                                        |                                                                                                                                                   |
| <b>12a. DISTRIBUTION/AVAILABILITY STATE</b><br>Approved for public release; distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MENT<br>on unlimited                                                                                                                                                                                         |                                                                                                                                        | 12b. DISTRIBUTION CODE                                                                                                                            |
| Approved for public release; distribution unlimited  I.3. ABSTRACT  A monitoring survey was conducted in October 2016 at the Cape Cod Bay Disposal Site (CCBDS) as part of the Disposal Area Monitoring System (DAMOS) Program. CCBDS is a regional dredged material disposal site in Massachusetts State waters that generally receives material from harbors surrounding Cape Cod Bay. The 2016 monitoring effort featured a high-resolution acoustic survey to characterize scafloor topography and dredged material distribution and a sediment-profile imaging (SPI)/plan-view imaging (PV) survey to assess benthic recolonization. The 2016 survey results documented changes at CCBDS since the previous survey in 2010 and the subsequent placement of close to 270,000 m <sup>3</sup> of dredged material at Mound C within CCBDS. The 2016 survey concluded that material was successfully placed at Mound C within the site boundaries and that it would be appropriate for the mound to continue to receive material in the future. The high-resolution acoustic survey consisted of multibeam bathymetric, acoustic backscatter and side-scan sonar data acquisition. The acoustic survey was conducted over a 1500 x 2000 m area in the active, northern portion of the site that included Mounds B and C. Mound B had most recently received material in 2010 and displayed a prominent raised feature approximately 7 m above the surrounding seafloor that did not appear to have changed and rougher than surrounding sediments. Sediment-profile images and plan-view images were collected at both disposal target areas within CCBDS (Mound B and Mound C) and three reference areas (CCBRS, NWREF, and SWREF). The results of the 2016 survey at CCBDS supported the conclusion that surface sediments at the the istorical target placement location (Mound B), and the recent target placement location (Mound C) have been recolonized by a benthic community that is ecologically equivalent to the reference areas. Evidence of Stage 3 successional stage was present in at least one replicate image from |                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                                                   |

site appeared stable, the benthic community appeared healthy, and the benthic community had reworked dredged material into the sediment matrix and recolonized areas of dredged material placement.

Based on the findings of the 2016 survey, our recommendations are: R1: That Mound C can accommodate additional dredged material placement utilizing a similar approach to what has been used in the past based on the presence of stable mounds and normal benthic recolonization.

R2: Monitoring efforts should continue consistent with Tiered Monitoring Protocols based on volume placed at site.

| <b>14. SUBJECT TERMS</b> DAMOS, dredg multibeam, SPI, PV, benthic, infauna | ed material, CCBDS, Cape Cod Bay Dispo      | sal Site, acoustic,         | 15. NUMBER OF TE | XT PAGES: 98                  |
|----------------------------------------------------------------------------|---------------------------------------------|-----------------------------|------------------|-------------------------------|
|                                                                            |                                             |                             | 16. PRICE CODE   |                               |
| 17. SECURITY CLASSIFICATION OF<br>REPORT Unclassified                      | 18. SECURITY CLASSIFICATION<br>OF THIS PAGE | 19. SECURITY<br>OF ABSTRACT | CLASSIFICATION   | 20. LIMITATION OF<br>ABSTRACT |

## MONITORING SURVEY AT THE CAPE COD BAY DISPOSAL SITE OCTOBER 2016

**CONTRIBUTION #205** 

December 2017

Contract No. W912WJ-12-D-0004

Submitted to:

New England District U.S. Army Corps of Engineers 696 Virginia Road Concord, MA 01742-2751



141 Longwater Drive, Suite 202 Norwell, MA 02061 Prepared by:



88 Silva Lane, Suite 4 Middletown, RI 02842 This report should be cited as:

McKelvey, Z. 2017. Monitoring Survey at the Cape Cod Bay Disposal Site, October 2016. DAMOS Contribution No. 205. U.S. Army Corps of Engineers, New England District, Concord, MA, 98 pp.

<u>Note on units of this report</u>: As a scientific data summary, information and data are presented in the metric system. However, given the prevalence of English units in the dredging industry of the United States, conversions to English units are provided for general information in Section 1. A table of common conversions can be found in Appendix A.

## TABLE OF CONTENTS

| LIST | OF TA | ABLES                                                   | iii      |
|------|-------|---------------------------------------------------------|----------|
| LIST | OF FI | GURES                                                   | iv       |
| LIST | OF A  | CRONYMS                                                 | viii     |
| EXE  | CUTIV | 'E SUMMARY                                              | X        |
| 1.0  | INTTD |                                                         | 1        |
| 1.0  |       | Overview of the DAMOS Program                           | 1<br>1   |
|      | 1.1   | Introduction to the Cana Cod Pay Disposal Site          | ו 1<br>ר |
|      | 1.2   | Historical Dradgad Material Disposal Activity           | 2<br>2   |
|      | 1.5   | Bravious Monitoring Events                              |          |
|      | 1.4   | Previous Molifioning Events                             |          |
|      | 1.5   | 2016 Survey Objectives                                  |          |
|      | 1.0   | 2010 Survey Objectives                                  | 4        |
| 2.0  | MET   | HODS                                                    | 11       |
|      | 2.1   | Navigation and On-Board Data Acquisition                | 11       |
|      | 2.2   | Acoustic Survey                                         | 11       |
|      |       | 2.2.1 Acoustic Survey Planning                          | 11       |
|      |       | 2.2.2 Acoustic Data Collection                          | 12       |
|      |       | 2.2.3 Bathymetric Data Processing                       | 12       |
|      |       | 2.2.4 Backscatter Data Processing                       | 14       |
|      |       | 2.2.5 Side-Scan Sonar Data Processing                   | 14       |
|      |       | 2.2.6 Acoustic Data Analysis                            | 14       |
|      | 2.3   | Sediment-Profile and Plan-View Imaging                  |          |
|      |       | 2.3.1 Sediment-Profile Imaging                          | 15       |
|      |       | 2.3.2 Plan-View Imaging                                 | 16       |
|      |       | 2.3.3 SPI and PV Data Collection                        | 17       |
|      |       | 2.3.4 Image Conversion and Calibration                  | 17       |
|      |       | 2.3.5 SPI and PV Data Analysis                          | 18       |
|      |       | 2.3.5.1 Sediment-Profile Image Analysis Parameters      |          |
|      |       | 2.3.5.2 Plan-View Analysis Parameters                   | 20       |
|      |       | 2.3.6 Statistical Methods                               | 21       |
|      | 2.4   | Fishing Gear Assessment via Surface Marker Buoy         |          |
| 30   | RESI  | ILTS                                                    | 32       |
| 5.0  | 3.1   | Bathymetry                                              | 32       |
|      | 5.1   | 3.1.1 Acoustic Backscatter and Side-Scan Sonar          |          |
|      |       | 312 Comparison with Previous Rathymetry and Rackscatter |          |
|      | 32    | Sediment-Profile and Plan-View Imaging                  |          |
|      | 5.2   | 3.2.1 Reference Area Stations                           |          |

## TABLE OF CONTENTS (CONTINUED)

## Page

|                 |            | 3.2.1.  | 1 Physical Sediment Characteristics                              | 34  |
|-----------------|------------|---------|------------------------------------------------------------------|-----|
|                 |            | 3.2.1.  | 2 Biological Conditions                                          | 34  |
|                 |            | 3.2.2   | Disposal Site Stations                                           | .35 |
|                 |            | 3.2.2.  | 1 Physical Sediment Characteristics                              | 35  |
|                 |            | 3.2.2.  | 2 Biological Conditions                                          | 36  |
|                 |            | 3.2.3   | Comparison to Reference Areas                                    | .37 |
|                 |            | 3.2.3.  | 1 Mean aRPD Variable                                             | 37  |
|                 |            | 3.2.3.  | 2 Mean Successional Stage Rank                                   | 37  |
|                 |            | 3.2.4   | Temporal Comparisons                                             | .38 |
|                 |            | 3.2.4.  | 1 Mean aRPD Variable                                             | 38  |
|                 | 3.3        | Fishing | g Gear Assessment                                                | 39  |
| 4.0             | DISCI      | ISSION  | Ţ                                                                | 02  |
| <del>4</del> .0 | <i>A</i> 1 |         | icy of Dredged Material Placement                                | .92 |
|                 | 4.1        | Long T  | Ferm Stability of Placed Sediment                                | 92  |
|                 | 43         | Biolog  | ical Recovery of the Benthic Community                           | 93  |
|                 | 4.4        | Manag   | ement Considerations                                             | 93  |
|                 |            | manag   |                                                                  | ))  |
| 5.0             | CONC       | LUSIO   | NS AND RECOMMENDATIONS                                           | .95 |
| 6.0             | REFEI      | RENCE   | S                                                                | .96 |
| INDEX           | X          |         |                                                                  |     |
| APPEN           | NDIX A     | A       | TABLE OF COMMON CONVERSIONS                                      |     |
| APPEN           | NDIX E     | 3       | CCBDS DISPOSAL LOG DATA FOR DISPOSAL SEASONS 2013 2014, AND 2015 | ,   |
| APPE            | NDIX (     | C       | ACTUAL SPI/PV REPLICATE LOCATIONS                                |     |
| APPE            | NDIX I     | )       | SPI/PV FIELD LOG                                                 |     |
| APPE            | NDIX E     | E       | SEDIMENT-PROFILE AND PLAN-VIEW IMAGE ANALYSIS<br>RESULTS         |     |

APPENDIX F GRAIN SIZE SCALE FOR SEDIMENTS

## LIST OF TABLES

| Table 1-1. | Historical Disposal Activity at CCBDS                                                                                                   |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Table 1-2. | Overview of Survey Activities at CCBDS                                                                                                  |
| Table 1-3. | Disposal Activity at Mound C of CCBDS since the September 2010<br>Monitoring Survey (per Scow Logs provided by USACE, December<br>2016) |
| Table 2-1. | Accuracy and Uncertainty Analysis of Bathymetric Data                                                                                   |
| Table 2-2. | CCBDS 2016 Target SPI/PV Station IDs/Coordinates26                                                                                      |
| Table 3-1. | Summary of CCBDS Reference Station Sediment-Profile Imaging<br>Results (Station Means), October 201640                                  |
| Table 3-2. | Summary of CCBDS Disposal Areas Mounds B and C Sediment-Profile<br>Imaging Results (Station Means), September 201641                    |
| Table 3-3. | Summary of Station Means by Sampling Location43                                                                                         |
| Table 3-4. | Summary Statistics and Results of Inequivalence Hypothesis Testing for aRPD Values                                                      |
| Table 3-5. | Summary Statistics and Results of Inequivalence Hypothesis Testing for<br>Successional Stage Values                                     |
| Table 3-6. | Summary Statistics and Results of Inequivalence Hypothesis Testing for<br>Temporal Change in aRPD Values                                |
| Table 3-7. | Surface Marker Boys Observed During the 2016 CCBDS Multibeam<br>Survey                                                                  |

## LIST OF FIGURES

| Figure 1-1.  | Location of the Cape Cod Bay Disposal Site (CCBDS)                                                                                                                                                   |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1-2.  | Overview of CCBDS with 2016 sampling areas indicated                                                                                                                                                 |
| Figure 1-3.  | Location of reported scow disposal release points at target Mound C on 2010 bathymetry                                                                                                               |
| Figure 2-1.  | CCBDS 2016 acoustic survey area and tracklines                                                                                                                                                       |
| Figure 2-2.  | CCBDS 2010 bathymetry with target station locations                                                                                                                                                  |
| Figure 2-3.  | Operation of the sediment-profile and plan-view camera imaging<br>system                                                                                                                             |
| Figure 2-4.  | The stages of infaunal succession as a response of soft-bottom benthic communities to (A) physical disturbance or (B) organic enrichment; from Rhoads and Germano (1982)                             |
| Figure 2-5.  | The blue scaling line on this representative plan-view image shows the sampling relationship between plan-view and sediment-profile images. Note: plan-view image coverage may vary between stations |
| Figure 3-1a. | Bathymetric contour map of reference areas – October 2016 48                                                                                                                                         |
| Figure 3-1b. | Bathymetric contour map of CCBDS – October 2016                                                                                                                                                      |
| Figure 3-2a. | Bathymetric depth data over acoustic relief model of reference areas –<br>October 2016                                                                                                               |
| Figure 3-2b. | Bathymetric depth data over acoustic relief model of CCBDS –<br>October 2016                                                                                                                         |
| Figure 3-3a. | Mosaic of unfiltered backscatter data of reference areas – October 2016 52                                                                                                                           |
| Figure 3-3b. | Mosaic of unfiltered backscatter data of CCBDS – October 2016 53                                                                                                                                     |
| Figure 3-4a. | Filtered backscatter over acoustic relief model of reference areas –<br>October 2016                                                                                                                 |
| Figure 3-4b. | Filtered backscatter over acoustic relief model of CCBDS – October 2016                                                                                                                              |

## LIST OF FIGURES (CONTINUED)

| Figure 3-5a. | Side-scan mosaic of reference areas – October 2016 56                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3-5b. | Side-scan mosaic of CCBDS – October 2016                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 3-6.  | CCBDS disposal area elevation difference: 2016 vs. 2010                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 3-7.  | Sediment grain size major mode (phi units) at the CCBDS reference<br>area stations                                                                                                                                                                                                                                                                                                                                                      |
| Figure 3-8.  | Sediment-profile images depicting very fine sand at all three reference<br>areas; (A) Station CCBRS-03; (B) Station NWREF-08; and (C) Station<br>SWREF-12                                                                                                                                                                                                                                                                               |
| Figure 3-9.  | Mean station camera prism penetration depths (cm) at the CCBDS reference area stations                                                                                                                                                                                                                                                                                                                                                  |
| Figure 3-10. | Mean dredged material thickness at the CCBDS reference area stations 62                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 3-11. | Mean station small-scale boundary roughness values (cm) at the<br>CCBDS reference area stations                                                                                                                                                                                                                                                                                                                                         |
| Figure 3-12. | Plan-view images depicting examples of boundary roughness at<br>reference areas; (A) Station CCBRS-03 showing tubes and a burrow<br>and; (B) Station SWREF-09 showing burrows                                                                                                                                                                                                                                                           |
| Figure 3-13. | Mean station aRPD depth values (cm) at the CCBDS reference area stations                                                                                                                                                                                                                                                                                                                                                                |
| Figure 3-14. | Sediment-profile images of aRPD depth at each reference area; (A)<br>Station CCBRS-03; (B) Station NWREF-07; and (C) Station SWREF-<br>11                                                                                                                                                                                                                                                                                               |
| Figure 3-15. | Infaunal successional stages found at the CCBDS reference area<br>stations                                                                                                                                                                                                                                                                                                                                                              |
| Figure 3-16. | Sediment-profile images from (A) Station CCBRS-03 indicating Stage<br>1 on 3 fauna represented by tubes at the sediment-water interface and<br>evidence of deeper bioturbation; (B) Station NWREF-06 indicating<br>Stage 2 transitioning to 3 fauna with shallow burrowing; and (C)<br>Station SWREF-10 depicting Stage 1 on 3 represented by small tubes<br>at the sediment-water interface and a burrow with a large, visible worm 68 |

## LIST OF FIGURES (CONTINUED)

| Figure 3-17. | Mean depth of subsurface feeding voids at the CCBDS reference area stations                                                                                                                                                      | 9 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Figure 3-18. | Plan-view images from the reference areas; (A) Station CCBRS-03<br>depicting burrows and small tubes; (B) Station NWREF-05 depicting<br>burrows and tracks; and (C) Station SWREF-11 depicting burrow<br>openings and tracks     | 0 |
| Figure 3-19. | Plan-view images from the reference areas containing brittle stars at;<br>(A) CCBRS-01; and (B) NWREF-07                                                                                                                         | 1 |
| Figure 3-20. | Sediment grain size major mode (phi units) at the CCBDS disposal area stations                                                                                                                                                   | 2 |
| Figure 3-21. | Sediment-profile images from disposal Mound B (A) Station B-01<br>depicting very fine sand with tubes at the sediment-water interface; and<br>(B) Station B-06 showing very coarse sand over silt-clay with shallow<br>burrowing | 3 |
| Figure 3-22. | Mean station camera prism penetration depths (cm) at the CCBDS disposal area stations                                                                                                                                            | 4 |
| Figure 3-23. | Mean station small-scale boundary roughness values (cm) at the<br>CCBDS disposal area stations                                                                                                                                   | 5 |
| Figure 3-24. | Plan-view images depicting examples of boundary roughness at Mound<br>B; (A) Station B-04 showing small tubes and burrows; and (B) Station<br>B-05 depicting a burrow and tracks on the sediment surface                         | 6 |
| Figure 3-25. | Mean dredged material thickness at the CCBDS disposal area stations7                                                                                                                                                             | 7 |
| Figure 3-26. | Sediment-profile images from disposal Mound B; (A) Station B-09;<br>and (B) Station B-04 both depicting a thick layer of partially reworked<br>dredged material extending beyond camera prism penetration depth                  | 8 |
| Figure 3-27. | Sediment-profile images from disposal Mound B depicting stations that<br>did not show evidence of dredged material at; (A) Station B-07; (B)<br>Station B-10; and (C) Station B-11                                               | 9 |
| Figure 3-28. | Sediment-profile image depicting the presence of methane at Station B-<br>04                                                                                                                                                     | 0 |

## LIST OF FIGURES (CONTINUED)

| Figure 3-29. | Sediment-profile image from disposal Mound C (A) Station C-23<br>depicting a layer of very fine sand over silt-clay; and (B) Station C-14<br>showing very fine sand                                                                                                                                                                                                                                                                                                                                  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3-30. | Plan-view images depicting examples of boundary roughness at Mound<br>C; (A) Station C-15 depicting a burrow and tracks and; (B) Station C-<br>20 depicting small burrows and tracks                                                                                                                                                                                                                                                                                                                 |
| Figure 3-31. | Sediment-profile images from disposal Mound C; (A) Station C-20 ;(B)<br>Station C-22; and (C) Station C-21 all showing a thick layer of dredged<br>material extending beyond camera prism penetration that has begun<br>being reworked                                                                                                                                                                                                                                                               |
| Figure 3-32. | Mean station aRPD depth values (cm) at the CCBDS disposal area station                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Figure 3-33. | Sediment-profile images from; (A) Mound B-12 and (B) Mound C-25 both depicting typical aRPD depths for the disposal areas                                                                                                                                                                                                                                                                                                                                                                            |
| Figure 3-34. | Infaunal successional stages found at the CCBDS disposal area stations 86                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Figure 3-35. | Mean depth of subsurface feeding voids at the CCBDS disposal area stations                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure 3-36. | Sediment-profile images from disposal Mound C; (A) Station C-15<br>indicating Stage 1 on 3 fauna represented by tubes at the sediment-<br>water interface and a large organism in a deep burrow; (B) Station C-24<br>indicating Stage 1 on 3 represented by small tubes at the sediment-<br>water interface and open feeding voids at depth as well as a deep<br>aRPD; and (C) Station C-17 depicting Stage 1 on 3 fauna represented<br>by shallow, open voids, and a large worm visible in a burrow |
| Figure 3-37. | Boxplots showing the distribution of mean aRPD depths measured at the disposal site and reference area stations in the 2016 survey                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 3-38. | Boxplots showing the distribution of mean aRPD depths measured at<br>the disposal area stations and reference area stations in the 2010 and<br>2016 surveys                                                                                                                                                                                                                                                                                                                                          |
| Figure 3-39. | Surface marker buoy observations during the acoustic survey at<br>CCBDS – October 2016                                                                                                                                                                                                                                                                                                                                                                                                               |

| aRPD  | Apparent redox potential discontinuity                                                                                                                                                                  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASCII | American Standard Code for Information Interchange                                                                                                                                                      |
| CCBDS | Cape Cod Bay Disposal Site                                                                                                                                                                              |
| CI    | Confidence interval                                                                                                                                                                                     |
| CLT   | Central Limit Theorem                                                                                                                                                                                   |
| DAMOS | Disposal Area Monitoring System                                                                                                                                                                         |
| DGPS  | Digital Global Positioning System                                                                                                                                                                       |
| DO    | Dissolved oxygen                                                                                                                                                                                        |
| Eh    | Redox potential (the potential generated between a platinum electrode and a standard hydrogen electrode when placed into the medium being tested, where hydrogen is considered the reference electrode) |
| GIS   | Geographic information system                                                                                                                                                                           |
| GPS   | Global Positioning System                                                                                                                                                                               |
| GRD   | Gridded data                                                                                                                                                                                            |
| MBES  | Multibeam echo sounder                                                                                                                                                                                  |
| MLLW  | Mean Lower Low Water                                                                                                                                                                                    |
| MRU   | Motion reference unit                                                                                                                                                                                   |
| NAD83 | North American Datum of 1983                                                                                                                                                                            |
| NAE   | USACE, New England Division                                                                                                                                                                             |
| NEF   | Nikon Electronic Format                                                                                                                                                                                 |
| NOAA  | National Oceanic and Atmospheric Association                                                                                                                                                            |
| NOS   | National Ocean Service                                                                                                                                                                                  |
| PSD   | Photoshop Document                                                                                                                                                                                      |

| PV       | Plan-View                                                                                                                                                                                                                                 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QAPP     | Quality Assurance Project Plan                                                                                                                                                                                                            |
| RTK      | Real time kinematic GPS - vertical accuracy is approximately 2 cm, enabling use for tide corrections in some circumstances. RTK GPS is suitable for both horizontal and centimeter level vertical positioning, including tide corrections |
| R/V      | Research vessel                                                                                                                                                                                                                           |
| SLR      | Single-lens reflex                                                                                                                                                                                                                        |
| SD       | Standard deviation                                                                                                                                                                                                                        |
| SOD      | Sediment oxygen demand                                                                                                                                                                                                                    |
| SOP      | Standard Operating Procedures                                                                                                                                                                                                             |
| SPI      | Sediment-Profile Imaging                                                                                                                                                                                                                  |
| TIF      | Tagged image file                                                                                                                                                                                                                         |
| TOC      | total organic carbon                                                                                                                                                                                                                      |
| UNH/NOAA | ССОМ                                                                                                                                                                                                                                      |

University of New Hampshire's NOAA Center for Coastal and Ocean Mapping

- USACE U.S. Army Corps of Engineers
- VDATUM Vertical Datum Transformation

A monitoring survey was conducted in October 2016 at the Cape Cod Bay Disposal Site (CCBDS) as part of the Disposal Area Monitoring System (DAMOS) Program. CCBDS is a regional dredged material disposal site in Massachusetts State waters that generally receives material from harbors surrounding Cape Cod Bay. The 2016 monitoring effort featured a high-resolution acoustic survey to characterize seafloor topography and dredged material distribution and a sediment-profile imaging (SPI)/plan-view imaging (PV) survey to assess benthic recolonization. The 2016 survey results documented changes at CCBDS since the previous survey in 2010 and the subsequent placement of close to 270,000 m<sup>3</sup> of dredged material at Mound C within CCBDS. The 2016 survey concluded that material was successfully placed at Mound C within the site boundaries and that it would be appropriate for the mound to continue to receive material in the future.

The high-resolution acoustic survey consisted of multibeam bathymetric, acoustic backscatter and side-scan sonar data acquisition. The acoustic survey was conducted over a 1500 x 2000 m area in the active, northern portion of the site that included Mounds B and C. Bathymetric data indicated that the site displayed relatively smooth bottom topography, except where dredged material had been placed at Mounds B and C. Mound B had most recently received material in 2010 and displayed a prominent raised feature approximately 7 m above the surrounding seafloor that did not appear to have changed in size or extent since a 2010 monitoring survey. Mound C was found to have a new, plateaued mound approximately 3 m above the surrounding area as a result of placement of material since 2010. Further acoustic results indicated that surficial sediment in areas that received dredged materials were harder and rougher than surrounding sediments.

Sediment-profile images and plan-view images were collected at both disposal target areas within CCBDS (Mound B and Mound C) and three reference areas (CCBRS, NWREF, and SWREF). The results of the 2016 survey at CCBDS supported the conclusion that surface sediments at both the historical target placement location (Mound B), and the recent target placement location (Mound C) have been recolonized by a benthic community that is ecologically equivalent to the reference areas. Evidence of Stage 3 successional stage was present in at least one replicate image from all survey stations at Mound C and all but three stations from Mound B. Mean apparent redox potential discontinuity (aRPD) depths and successional stage rank were statistically equivalent at both Mound B and Mound C compared to the reference areas. Mean aRPD depths at both disposal locations were significantly less deep compared to the same locations in the 2010 survey. However, the reduced mean aRPD depth was also observed in the reference areas between 2016 and 2010 surveys, supporting the conclusion that the change occurred over a relatively large spatial scale and was not caused by disposal activity at CCBDS.

Overall, the 2016 survey at CCBDS showed that both the Mound B previous disposal location and the recent Mound C disposal location within the site appeared stable, the benthic

community appeared healthy, and the benthic community had reworked dredged material into the sediment matrix and recolonized areas of dredged material placement.

Based on the findings of the 2016 survey, our recommendations are:

- R1: That Mound C can accommodate additional dredged material placement utilizing a similar approach to what has been used in the past based on the presence of stable mounds and normal benthic recolonization.
- R2: Monitoring efforts should continue consistent with Tiered Monitoring Protocols based on volume placed at site.

#### **1.0 INTRODUCTION**

A monitoring survey was conducted at the Cape Cod Bay Disposal Site (CCBDS) as part of the U.S. Army Corps of Engineers (USACE) New England District (NAE) Disposal Area Monitoring System (DAMOS) Program. DAMOS is a comprehensive monitoring and management program designed and conducted to address environmental concerns associated with use of aquatic disposal sites throughout the New England region. An introduction to the DAMOS Program and CCBDS, including a brief description of previous dredged material disposal activities and previous monitoring surveys, is provided below.

1

#### 1.1 Overview of the DAMOS Program

The DAMOS Program features a tiered management protocol designed to ensure that any potential adverse environmental impacts associated with dredged material disposal are promptly identified and addressed (Germano et al. 1994). For over 40 years, the DAMOS Program has collected and evaluated disposal site data throughout New England. Based on these data, patterns of physical, chemical, and biological responses of seafloor environments to dredged material disposal activity have been documented (Fredette and French 2004).

DAMOS monitoring surveys fall into two general categories: confirmatory studies and focused studies. The data collected and evaluated during these studies provide answers to strategic management questions in determining next steps in the disposal site management process. DAMOS monitoring results guide the management of disposal activities at existing sites, support planning for use of future sites, and evaluate the long-term status of historical sites (Wolf et al. 2012).

Confirmatory studies are designed to test hypotheses related to expected physical and ecological response patterns following placement of dredged material on the seafloor at established, active disposal sites. Two primary goals of DAMOS confirmatory monitoring surveys are to document the physical location and stability of dredged material placed into the aquatic environment and to evaluate the biological recovery of the benthic community following placement of dredged material. Several survey techniques are employed in order to characterize these responses to dredged material placement. Sequential acoustic monitoring surveys (including bathymetric, acoustic backscatter, and side-scan sonar data collection) are performed to characterize the height and spread of discrete dredged material deposits or mounds created at open water sites as well as the accumulation/consolidation of dredged material into confined aquatic disposal cells.

Sediment-profile (SPI) and plan-view (PV) imaging surveys are performed in confirmatory studies to provide further physical characterization of the material and to support evaluation of seafloor (benthic) habitat conditions and recovery over time. Each type of data collection activity is conducted periodically at disposal sites, and the conditions found after a defined period of disposal activity are compared with the long-term data set at specific sites to determine the next step in the disposal site management process (Germano et al. 1994).

Focused studies are periodically undertaken within the DAMOS Program to evaluate candidate sites, as baseline surveys at new sites, to evaluate inactive or historical disposal sites and contribute to the development of dredged material placement and monitoring techniques. Focused DAMOS monitoring surveys may also feature additional types of data collection activities as deemed appropriate to achieve specific survey objectives, such as grab sampling of sediment for physical and biological analysis, subbottom profiling, towed video, or sediment coring.

The October 2016 survey at CCBDS was designed as a confirmatory survey using multibeam acoustic data and SPI/PV images to provide characterization of seafloor topography, to track recent placement of dredged material, and to assess the condition of the older disposal mound. The survey was conducted to provide characterization of surficial sediments and benthic habitat quality to aid in management of the site.

#### **1.2** Introduction to the Cape Cod Bay Disposal Site

CCBDS is a regional dredged material disposal site within the state waters of Massachusetts, located in Cape Cod Bay, approximately 15 km (8 nmi) southwest of Long Point, Provincetown, Massachusetts (Figure 1-1). CCBDS is defined as a 1.85 x 1.85 km (1 x 1 nmi) area on the seafloor, centered at 41° 54.406' N, 70° 13.268' W (NAD 83) which has a relatively flat topography and no natural bathymetric features (ENSR 2004, Figure 1-2). The seafloor slopes gently downward to the northwest across the site, with water depths ranging from 28 m (92 ft.) in the southeast corner to 31.5 m (103 ft.) in the northwest corner.

CCBDS was selected as an open water disposal site in 1990 in response to an increase in dredging needs at many regional harbors due to a steady rise in population and recreational boating activities on Cape Cod (SAIC 2003). The current site boundaries were established around the Historic Wellfleet Disposal Site, which received material from several small Wellfleet Harbor dredging projects in the 1970s and 1980s (Figure 1-2). This area of Cape Cod Bay is characterized by relatively low currents, which contributed to its selection as a depositional disposal site. An historic absence of endangered right whale sightings or commercially important lobster grounds in the vicinity also supported this site selection decision (SAIC 2003).

Monitoring and management of CCBDS is the joint responsibility of the Commonwealth of Massachusetts Department of Conservation and Recreation (DCR) and the DAMOS Program. DCR maintained a disposal buoy at the site until 2014 with the DAMOS Program providing input for buoy placement decisions. With the advances in electronic positioning for both the disposal scows and supporting tugboats, placement at the site is directed solely by target coordinates. The disposal season at the site is limited to June-December due to concerns over seasonal marine mammal populations (SAIC 2003). Although the site was officially selected by the Commonwealth of Massachusetts in 1990, a disposal buoy was not placed at the site and disposal operations did not commence at the current disposal site until 1994 (SAIC 2003).

## 1.3 Historical Dredged Material Disposal Activity

Cape Cod Bay Disposal Site has received material from numerous projects over the last 20 years, and material has been placed at three target areas within CCBDS, denoted as Mounds A, B, and C (Figure 1-2; Table 1-1). During the winter of 1994-1995, approximately 112,000 m<sup>3</sup> (146,000 yd<sup>3</sup>) of material from Wellfleet Harbor was deposited in the southeast quadrant of CCBDS forming Mound A (SAIC 2003, Figure 1-2). The disposal target buoy was then moved to the northeast quadrant of the site, and approximately 509,000 m<sup>3</sup> (666,000 yd<sup>3</sup>) of material was placed at this location between 1996 and 2001, forming Mound B (SAIC 2003, Figure 1-2). In 2002, approximately 5,200 m<sup>3</sup> (6,800 yd<sup>3</sup>) of material from Provincetown Harbor was deposited at a new target location in the northwest quadrant of CCBDS initiating formation of Mound C. Later that year, a small amount of additional material [(2,500 m<sup>3</sup> (3,300 yd<sup>3</sup>)] from the same dredging project was placed on top of Mound A (ENSR 2004, Figure 1-2). Between 2003-2010, approximately 137,000 m<sup>3</sup> (179,000 yd<sup>3</sup>) of material was directed to Mound C in the northwest quadrant of the site (Figure-1-2).

## **1.4 Previous Monitoring Events**

A baseline survey was performed at CCBDS in 1994 with confirmatory surveys performed in 1995, 1996, 2001, 2003, and 2010 (AECOM 2012; Table 1-2). In 2010, a bathymetric and a SPI/PV survey were conducted around recent and historical disposal locations. The September 2010 SPI/PV survey was performed at Mounds A, B, and C. Recolonization had occurred at all three mounds, with at least one replicate at each of the disposal mound stations showing evidence of Stage 3 succession. All three mounds were found to have a mean aRPD depth consistent with reference areas, indicating a healthy benthic community at each disposal site.

## 1.5 Recent Dredged Material Disposal Activity

Since the most recent DAMOS survey in September 2010, approximately 270,000 m<sup>3</sup> (353,000 yd<sup>3</sup>) of material has been deposited at CCBDS (Figure 1-3). The material originated from construction of New Bedford Harbor Confined Aquatic Disposal (CAD) Cell 3 and the Rock Harbor and Duxbury Federal Navigation Projects (Table 1-3). All post-2010 material was placed at Mound C (Figure 1-3).

A detailed record of barge disposal activity at CCBDS for the 2013 through 2015 disposal seasons, including the origin of dredged material, the volume deposited, and the disposal location, is provided in Appendix B.

3

#### 1.6 2016 Survey Objectives

The October 2016 survey at CCBDS was designed as a confirmatory survey to track the recent placement of dredged material at Mound C as well as monitor the recovery of the benthic community at the active portion of CCBDS (Mound C) and at a region of historic material placement at Mound B. The survey objectives were to:

- Characterize the seafloor topography and surficial features over Mound C and Mound B of CCBDS and three reference areas (CCBRS, NWREF, and SWREF) by completing a multibeam bathymetric survey.
- Use SPI/PV to further define the physical characteristics of surficial sediment and to assess the benthic recolonization status (community recovery of the bottom-dwelling animals) of the site with recent disposal activity, the older disposal mounds, and the reference areas.

#### Table 1-1.

5

## Historical Disposal Activity at CCBDS

| Target Designation | Years of Disposal<br>Activity | Volume (m <sup>3</sup> ) | Volume (yd <sup>3</sup> ) |
|--------------------|-------------------------------|--------------------------|---------------------------|
| Mound A            | 1994-1995                     | 112,000                  | 146,000                   |
|                    | 2002                          | 2,500                    | 3,300                     |
| Mound B            | 1996-2001                     | 509,000                  | 666,000                   |
| Mound C            | 2002                          | 5,200                    | 6,800                     |
|                    | 2003-2010                     | 137,000                  | 179,000                   |

## Table 1-2.

## Overview of Survey Activities at CCBDS

| Date           | Purpose of Survey | Bathymetry Area                         | SPI Stations<br>(location - #) | Additional Studies                       | DAMOS Report/<br>Contribution No. | Reference                      |
|----------------|-------------------|-----------------------------------------|--------------------------------|------------------------------------------|-----------------------------------|--------------------------------|
| April 1994     | Pre-disposal      | Site: 1000 x 1000 m<br>Ref: 1000 x 1000 | √*                             | Sub-bottom and grab sampling             | NA                                | OSI 1995a                      |
| January 1995   | Post-disposal     | √*                                      |                                | Side-scan, Sub-bottom                    | NA                                | OSI 1995b                      |
| May 1996       | Monitoring        | Site: 1000 s 1500 m<br>Ref: 1000 x 1500 | Site: 13<br>Ref: 39            | Side-scan, sub-bottom, sediment sampling | NA                                | CR Environmental,<br>Inc. 1997 |
| August 2001    | Monitoring        | Site: 2100 x 2200 m                     | Site: 38<br>Ref: 16            |                                          | 144                               | SAIC 2003                      |
| August 2003    | Monitoring        | Site: 1200 x 2100 m                     | Site: 26<br>Ref: 5             |                                          | 157                               | ENSR 2004                      |
| September 2010 | Monitoring        | Site: 2000 x 2100 m<br>Multibeam        | Site: 45<br>Ref: 45            |                                          | 188                               | AECOM 2012                     |

✓\* Survey was conducted; detailed data not available (i.e. survey size, number of stations).

6

#### Table 1-3.

## Disposal Activity at Mound C of CCBDS since the September 2010 Monitoring Survey (per Scow Logs provided by USACE, December 2016)

| Permit number    | Project Name                                                  | Target Site<br>Disposal Season | Load volume<br>(m <sup>3</sup> ) | Load volume<br>(yd <sup>3</sup> ) |
|------------------|---------------------------------------------------------------|--------------------------------|----------------------------------|-----------------------------------|
| NAE-2007-2709    | New Bedford Harbor CAD Cell 3/<br>New Bedford Harbor Phase II | Mound C 2013                   | 81,930                           | 107,160                           |
| NAE-2009-2185    | North River Marine                                            | Mound C 2015                   | 3,479                            | 4,550                             |
| NAE-2010-1589    | Town of Duxbury                                               | Mound C 2015                   | 2,425                            | 3,172                             |
| NAE-2013-1792    | Rock Harbor                                                   | Mound C 2014                   | 29,547                           | 38,646                            |
| W912WJ-15-C-0022 | Duxbury Federal Navigation Project                            | Mound C 2015                   | 151,382                          | 198,000                           |
| Total            |                                                               |                                | 268,762                          | 351,528                           |

7



**Figure 1-1.** Location of the Cape Cod Bay Disposal Site (CCBDS)

Monitoring Survey at the Cape Cod Bay Disposal Site October 2016



Figure 1-2. Overview of CCBDS with 2016 sampling areas indicated

Monitoring Survey at the Cape Cod Bay Disposal Site October 2016





Monitoring Survey at the Cape Cod Bay Disposal Site October 2016

#### 2.0 METHODS

The October 2016 survey at CCBDS was conducted by a team of investigators from INSPIRE Environmental and CR Environmental aboard the 55-foot *R/V Jamie Hanna* including ACSM-certified hydrographer Christopher Wright (#266). The acoustic survey was conducted from 17-19 October 2016. The SPI/PV survey was conducted from 20-21 October 2016. Detailed Standard Operating Procedures (SOPs) for data collection and processing are available in the Quality Assurance Project Plan for the DAMOS Program (Battelle 2015).

## 2.1 Navigation and On-Board Data Acquisition

Navigation for the acoustic survey was accomplished using a Hemisphere VS-330 Real Time Kinematic Global Positioning System (RTK GPS) which received base station correction through the Keynet NTRIP broadcast. Horizontal position accuracy in fixed RTK mode was approximately 2 cm. A dual-antennae Hemisphere VS110 differential GPS (DGPS) was available if necessary as a backup. The GPS system was interfaced to a desktop computer running HYPACK hydrographic survey software. HYPACK continually recorded vessel position and GPS satellite quality and provided a steering display for the vessel captain to accurately maintain the position of the vessel along pre-established survey transects and targets. Vessel heading measurements were provided by an IxBlue Octans III fiber optic gyrocompass.

Navigation for the sediment grab sampling and SPI survey was accomplished using a Hemisphere R110 DGPS capable of sub-meter horizontal accuracy. Navigation data were recorded using HYPACK software.

## 2.2 Acoustic Survey

The acoustic survey included bathymetric, backscatter, and side-scan sonar data collection. The bathymetric data provided measurements of water depth that, when processed, were used to map the seafloor topography. Backscatter and side-scan sonar data provided images that supported characterization of surface sediment texture and roughness. Each of these acoustic data types is useful for assessing dredged material placement and surface sediment features.

## 2.2.1 Acoustic Survey Planning

The 1500 x 2000 m acoustic survey featured a high spatial resolution survey over the active portion of the site with recent disposal activity (Mound C) and over the older disposal mound (Mound B). Three 600 x 600 m surveys were also performed over the reference areas (CCBRS, NWREF, and SWREF). INSPIRE hydrographers coordinated with USACE NAE scientists and reviewed alternative survey designs. Hydrographers obtained site coordinates, imported them into geographic information system (GIS) software, and created maps to aid

design of a survey that would provide greater than 100-percent coverage within the survey area. Base bathymetric data were obtained from the National Ocean Service Hydrographic Data Base to estimate the transect separation required to obtain full bottom coverage using an assumed beam angle limit of 90-degrees (45 degrees to port, 45 degrees to starboard). Transects spaced 50-60 m apart and cross-lines spaced 250-300 m apart were created to meet conservative beam angle constraints (Figure 2-1). The proposed survey area and design were then reviewed and approved by NAE scientists.

## 2.2.2 Acoustic Data Collection

The 2016 multibeam bathymetric survey of CCBDS was conducted 17-19 October 2016. Data layers generated by the survey included bathymetric, acoustic backscatter, and side-scan sonar and were collected using an R2Sonic 2022 broadband multibeam echo sounder (MBES). This 200-400 kHz system forms up to 256 1- to 2-degree beams (frequency dependent) distributed equiangularly or equidistantly across a 10- to 160-degree swath. For this survey, a frequency of 200 kHz and pulse length of 0.084 msec was selected to maximize the resolution of bathymetric data without compromising the quality of acoustic backscatter data. The MBES transducer was mounted amidships to the port rail of the survey vessel using a high strength adjustable boom. The primary GPS antenna was mounted atop the transducer boom. The transducer depth below the water surface (draft) and antenna height were checked and recorded at the beginning and end of data acquisition, and draft was confirmed using the "bar check" method.

An IxBlue Octans III motion reference unit (MRU) was interfaced to the MBES topside processor and to the acquisition computer. Precise linear offsets between the MRU and MBES were recorded and applied during acquisition. Depth and backscatter data were synchronized using pulse per second timing and transmitted to the HYPACK MAX® acquisition computer via Ethernet communications. Several patch tests were conducted during the survey to allow computation of angular offsets between the MBES system components.

The system was calibrated for local water mass speed of sound by performing sound velocity profile (SVP) casts at frequent intervals throughout the survey day using an AML, Inc. MinosX sound velocity profiler.

## 2.2.3 Bathymetric Data Processing

Bathymetric data were processed using HYPACK HYSWEEP® software. Processing components are described below and included:

- Adjustment of data for tidal elevation fluctuations
- Correction of ray bending (refraction) due to density variation in the water column
- Removal of spurious points associated with water column interference or system errors

- Development of a grid surface representing depth solutions
- Statistical estimation of sounding solution uncertainty
- Generation of data visualization products

Tidal adjustments were accomplished using RTK GPS verified against tide data using records obtained from the National Oceanic and Atmospheric Association's (NOAA) Boston Tide Station (#8443970) after application of a site-specific tide zoning model obtained from NOAA. Water surface elevations derived using RTK were adjusted to Mean Lower Low Water (MLLW) elevations using NOAA's VDATUM Model. Correction of sounding depth and position (range and azimuth) for refraction due to water column stratification was conducted using a series of twelve sound-velocity profiles acquired by the survey team. Data artifacts associated with refraction remain in the bathymetric surface model at a relatively fine scale (generally less than 5 to 10 cm) relative to the survey depth.

Bathymetric data were filtered to accept only beams falling within an angular limit of  $60^{\circ}$  to minimize refraction artifacts. Spurious sounding solutions were rejected based on the careful examination of data on a sweep-specific basis.

The R2Sonics 2022 MBES system was operated at 200 kHz. At this frequency, the system has a published beam width of  $2.0^{\circ}$ . Assuming an average depth of 31 m and a maximum beam angle of  $60^{\circ}$ , the average diameter of the beam footprint mid-swath was calculated at approximately  $1.4 \times 1.2$  m (~2.8 m<sup>2</sup>). Data were reduced to a cell (grid) size of  $2.0 \times 2.0$  m, acknowledging the system's fine range resolution while accommodating beam position uncertainty. This data reduction was accomplished by calculating and exporting the average elevation for each cell in accordance with USACE recommendations (USACE 2013).

Statistical analysis of data as summarized on Table 2-1 showed negligible tide bias and vertical uncertainty substantially lower than values recommended by USACE (2013) or NOAA (2015). Note that the most stringent National Ocean Service (NOS) standard for this project depth (Special Order 1A) would call for a 95th percentile confidence interval (95% CI) of 0.38 m at the maximum survey depth (37.9 m) and 0.34 m at the average site depth (31.0 m).

Reduced data were exported in ASCII text format with fields for Easting, Northing, and MLLW Elevation (meters). All data were projected to the Massachusetts Mainland State Plane West FIPS 2001, NAD83 (metric). A variety of data visualizations were generated using a combination of ESRI ArcMap (V.10.1) and Golden Software Surfer (V.13.6). Visualizations and data products included:

- ASCII data files of all processed soundings including MLLW depths and elevations,
- Contours of seabed elevation (25-cm, 50-cm and 1.0-m intervals) in a geospatial data file format suitable for plotting using GIS and computer-aided design software,

- 3-dimensional surface maps of the seabed created using 2× vertical exaggeration and artificial illumination to highlight fine-scale features not visible on contour layers delivered in grid and tagged image file (TIF) formats, and,
- An acoustic relief map of the survey area created using 2× vertical exaggeration, delivered in georeferenced TIF format.

#### 2.2.4 Backscatter Data Processing

Backscatter data were extracted from cleaned MBES TruePix formatted files then used to provide an estimation of surface sediment texture based on seabed surface roughness. Mosaics of backscatter data were created using HYPACK's implementation of GeoCoder software developed by scientists at the University of New Hampshire's NOAA Center for Coastal and Ocean Mapping (UNH/NOAA CCOM). A seamless mosaic of unfiltered backscatter data was developed and exported in grayscale TIF format. Backscatter data were also exported in ASCII format with fields for Easting, Northing, and backscatter (dB). A Gaussian filter was applied to backscatter data to minimize nadir artifacts, and the filtered data were used to develop backscatter values on a 1-m grid. The grid was exported in ESRI binary GRD format to facilitate comparison with other data layers.

#### 2.2.5 Side-Scan Sonar Data Processing

Side-scan sonar data were processed using Chesapeake Technology, Inc. Sonar Wiz software and GeoCoder software to generate a database of images that maximized both textural information and structural detail.

Seamless mosaics of side-scan sonar data were developed using SonarWiz and exported in grayscale TIF format using a resolution of 0.20-m per pixel. Data were processed using manual gain adjustment methods to minimize nadir artifacts and facilitate visualization of fine seabed structures.

## 2.2.6 Acoustic Data Analysis

The processed bathymetric grids were converted to rasters, and bathymetric contour lines and acoustic relief models were generated and displayed using GIS. The backscatter mosaics and filtered backscatter grid were combined with acoustic relief models in GIS to facilitate visualization of relationships between acoustic datasets. This is done by rendering images and color-coded grids with sufficient transparency to allow three-dimensional acoustic relief model to be visible underneath.

## 2.3 Sediment-Profile and Plan-View Imaging

Sediment-profile and plan-view imaging is a monitoring technique used to provide data on the physical characteristics of the seafloor and the status of the benthic biological community (Germano et al. 2011).

A 36-station SPI/PV survey was performed within the area of the Cape Cod Bay Disposal Site (Figure 2-2), including 12 stations located in the area of recent dredged material placement at CCBDS, 12 stations in the area of older dredged material placed within CCBDS, and four stations at each of the three reference areas (CCBRS, NWREF, and SWREF). SPI/PV station target locations are provided in Table 2-2 and SPI/PV station replicate locations are provided in Appendix C. The methodology for data acquisition and analysis for these images was consistent with the sampling methods described in detail in the Quality Assurance Project Plan (QAPP) (Battelle 2015) and INSPIRE standard operating procedures (SOPs).

#### 2.3.1 Sediment-Profile Imaging

The SPI technique involves deploying an underwater camera system to photograph a cross-section of the sediment-water interface. High-resolution SPI images were acquired using a Nikon® D7100 digital single-lens reflex (SLR) camera mounted inside an Ocean Imaging® Model 3731 pressure housing. The pressure housing sat atop a wedge-shaped steel prism with a glass front faceplate and a back mirror, mounted at a 45° angle. The camera lens looked down at the mirror, which reflected the image from the faceplate. The prism had an internal strobe mounted inside at the back of the wedge to provide illumination for the image; this chamber was filled with distilled water, so the camera always had an optically clear path. As the prism penetrated the seafloor, a trigger activated a time-delay circuit that fired an internal strobe to obtain a cross-sectional image of the upper 15–20 cm of the sediment column (Figure 2-3). The camera remained on the seafloor for approximately 20 seconds to ensure that successful images were obtained.

Test exposures of a X-Rite Color Checker Classic Color Calibration Target were made on deck at the beginning of the survey to verify that all internal electronic systems were working to design specifications and to provide a color standard against which final images could be checked for proper color balance. Test images were also captured to confirm proper camera settings for site conditions. Images were checked periodically throughout the survey to confirm that the initial camera settings were still resulting in the highest possible quality images. All camera settings were recorded in the field log (Appendix D). For this survey, the ISO-equivalent was set at 640, shutter speed was 1/250, f-stop was f9, and storage was in compressed raw Nikon Electronic Format (NEF) files (approximately 30 MB each). Additional camera settings used were: white balance set to flash, color mode set to Adobe RGB, sharpening set to none, noise reduction off. Details of the camera settings for each digital image also are available in the associated parameters file embedded in each electronic image file.

Whenever the camera was brought back on board (typically after every third to fifth station), the frame counter was checked to ensure that the requisite number of replicates had been obtained. In addition, a prism penetration depth indicator on the camera frame was checked to verify that the optical prism had penetrated the bottom to a sufficient depth. If images were missed or the penetration depth was insufficient, the camera frame stop collars

were adjusted and/or weights were added or removed, and additional replicate images were taken. Frame counts, changes in prism weight amounts, the presence or absence of mud doors, and frame stop collar positions were recorded in the field log for each replicate image (Appendix D). Visual checks and hand tightening checks of all nuts/bolts on the SPI/PV camera frame were conducted periodically to make sure nothing vibrated loose during the survey.

Prior to field operations, the internal clock in the digital SPI system was synchronized with the vessel's GPS navigation system. Each image was assigned a unique time stamp in the digital file attributes by the camera's data logger and cross-checked with the time stamp in the navigational system's computer data file. In addition, the field crew kept redundant written sample logs (Appendix D). Images were downloaded periodically to verify successful sample acquisition and/or to assess the type(s) of sediment/depositional layer present at a given station. Digital image files were renamed with the appropriate station names immediately after downloading as a further quality assurance step.

#### 2.3.2 Plan-View Imaging

An Ocean Imaging® Model DSC24000 plan-view underwater camera (PV) system with two Ocean Imaging® Model 400-37 Deep Sea Scaling lasers was attached to the sediment-profile camera frame and used to collect plan-view photographs of the seafloor surface. Both SPI and PV images were collected during each "drop" of the system. The PV system consisted of a Nikon® D-7100 SLR camera encased in an aluminum housing, a 24 VDC autonomous power pack, a 500 W strobe, and a bounce trigger. A weight was attached to the bounce trigger with a stainless-steel cable so that the weight hung below the camera frame; the scaling lasers projected two red dots that were separated by a constant distance (26 cm) regardless of the field-of-view of the PV system. The field-of-view can be varied by increasing or decreasing the length of the trigger wire and, thereby, the camera height above the bottom when the picture is taken. As the SPI/PV camera system was lowered to the seafloor, the weight attached to the bounce trigger contacted the seafloor prior to the camera frame reaching the seafloor and triggered the PV camera (Figure 2-3).

During set up and testing of the PV camera, the positions of lasers on the PV camera were checked and calibrated to ensure separation of 26 cm. Test images were also captured to confirm proper camera settings for site conditions. Images were checked periodically throughout the survey to confirm that the initial camera settings were still resulting in the highest possible quality images. All camera settings were recorded in the field log (Appendix D). For this survey, the ISO-equivalent was set at 400, shutter speed was 1/30, f-stop was f14, and storage was in compressed raw Nikon Electronic Format (NEF) files (approximately 30 MB each). Additional camera settings used were: white balance set to flash, color mode set to Adobe RGB, sharpening set to none, noise reduction off. Details of the camera settings for each digital image also are available in the associated parameters file embedded in each electronic image file.

Prior to field operations, the internal clock in the digital PV system was synchronized with the vessel's GPS navigation system and the SPI camera. Each image was assigned a unique time stamp in the digital file attributes by the camera's data logger and cross-checked with the time stamp in the navigational system's computer data file. In addition, the field crew kept redundant written sample logs (Appendix D). Throughout the survey, PV images were downloaded at the same time as SPI images and were evaluated for successful image acquisition and image clarity. Digital image files were renamed with the appropriate station names immediately after downloading as a further quality assurance step.

The ability of the PV system to collect usable images is dependent on the clarity of the water column. Water conditions during this survey allowed use of a 0.5 m trigger wire, resulting in approximate image widths of 0.4 m.

#### 2.3.3 SPI and PV Data Collection

The SPI/PV survey was conducted at CCBDS from October 20-21, 2016 aboard the *R/V Jamie Hanna*. At each station, the vessel was positioned at the target coordinates and the camera was deployed within a defined station tolerance of 10 m. Four replicate SPI and PV images were collected at each of the stations (Appendix C). The three replicates with the best quality images from each station were chosen for analysis (Appendix E).

The DGPS described above was interfaced to HYPACK® software via laptop serial ports to provide a method to locate and record sampling locations. Throughout the survey, the HYPACK® data acquisition system received DGPS data. The incoming data stream was digitally integrated and stored on the PC's hard drive. The system provided a steering display to enable the vessel captain to navigate to the pre-established survey target locations. The navigator electronically recorded the vessel's position when the equipment contacted the seafloor and the winch wire went slack. Each replicate SPI/PV position was recorded and time stamped. Actual SPI/PV sampling locations were recorded using this system.

## 2.3.4 Image Conversion and Calibration

Following completion of the field operations, the raw image files were color calibrated in Adobe Camera Raw® by synchronizing the raw color profiles to an X-Rite Color Checker Classic Color Calibration Target that was photographed prior to field operations with the SPI camera. The raw images were then converted to high-resolution Photoshop Document (PSD) format files, using a lossless conversion file process, maintaining an Adobe RGB (1998) color profile. The PSD images were then calibrated and analyzed in Adobe Photoshop®. Image calibration was achieved by measuring the pixel length of a 5-cm scale bar printed on the X-Rite Color Checker Target, providing a pixel per centimeter calibration. This calibration information was applied to all SPI images analyzed. Linear and area measurements were recorded as the number of pixels and converted to scientific units using the calibration information.

#### 2.3.5 SPI and PV Data Analysis

Computer-aided analysis of SPI/PV images provided a set of standard measurements to allow comparisons among different locations and surveys. The DAMOS Program has successfully used this technique for over 30 years to map the distribution of disposed dredged material and to monitor benthic recolonization at disposal sites.

Measured parameters for SPI and PV images were recorded in Microsoft Excel<sup>®</sup> spreadsheets. These data were subsequently checked by one of INSPIRE's senior scientists as an independent quality assurance/quality control review before final interpretation was performed. Spatial distributions of SPI/PV parameters were mapped using ArcGIS.

#### 2.3.5.1 Sediment-Profile Image Analysis Parameters

The parameters discussed below were assessed and/or measured for each replicate SPI image. Descriptive comments were also made for each replicate image.

<u>Sediment Type</u> – The sediment grain size major mode and range were estimated visually using a visual grain size comparator created at a similar scale. Results were reported using the phi scale. A cross-walk between phi size classes, mm size ranges, and Udden-Wentworth size classes is provided in Appendix F. The presence and thickness of dredged material were also assessed.

<u>Penetration Depth</u> – The depth to which the camera penetrated the seafloor was measured to provide an indication of the sediment bearing capacity and shear strength. The penetration depth can range from a minimum of 0 cm (i.e., no penetration on hard substrata) to a maximum of 20 cm (full penetration of very soft substrata).

<u>Surface Boundary Roughness</u> – Surface boundary roughness is a measure of the vertical relief of features at the sediment-water interface. Surface boundary roughness was determined by measuring the vertical distance between the highest and lowest points of the sediment-water interface. The surface boundary roughness measured over the width of sediment-profile images typically ranges from 0 to 4 cm and may be related to physical structures (e.g., ripples, rip-up structures) or biogenic features (e.g., burrow openings, fecal mounds, foraging depressions).

<u>Mud Clasts</u> – When fine-grained, cohesive sediments are disturbed, either by physical bottom scour or faunal activity (e.g., decapod foraging) intact clumps of sediment are often scattered across the seafloor. The number of clasts observed at the sediment-water interface were counted and their oxidation state assessed. The detection of reduced mud clasts in an obviously aerobic setting suggests a recent origin (Germano 1983). Mud clasts that are artefacts of SPI sampling (mud clots can fall off the back of the prism or wiper blade) are not recorded in the analysis sheet, but may be noted in the "Comments" field.

Apparent Redox Potential Discontinuity (aRPD) Depth – The aRPD depth provides a measure of the integrated time history of the balance between near-surface oxygen conditions and biological reworking of sediments. Oxidized surface sediments contain particles coated with ferric hydroxide (an olive or tan color when associated with particles) (Fenchel 1969; Lyle 1983). As the particles are buried or moved down by biological activity they are exposed to reducing oxygen concentrations in subsurface porewaters and their oxic coating slowly changes color to dark gray or black (Fenchel 1969; Lyle 1983). The aRPD serves as a proxy for the RPD, the boundary between positive Eh and negative Eh regions of the sediment column (where Eh=0) that indicates a switch from dominantly aerobic to dominantly anaerobic processes. The mean aRPD measured in SPI has been shown to be a suitable proxy for the RPD with the depth of the actual Eh = 0 horizon generally either equal to or slightly shallower than the depth of the optical reflectance boundary (Rosenberg et al. 2001; Simone and Grant 2017). When biological activity is high, the aRPD depth increases; when it is low or absent, the aRPD depth decreases. The aRPD depth was measured by visually assessing color and reflectance boundaries within the images and, for each image, a mean aRPD was calculated.

<u>Sediment Oxygen Demand</u> – Sediment oxygen demand (SOD) represents the overall rate of oxygen consumption, biologically and chemically, by the sediment column. Organic loading to a system results in increased SOD and results in reduced sediments. The relative amount of organic enrichment is indicated by sediment color; darker coloration indicates that sediment is more reduced and has greater organic loading (Fenchel 1969; Rhoads 1974; Lyle 1983; Bull and Williamson 2001). SOD levels (i.e., none, low, medium, and high) were assessed for all images.

<u>Low Dissolved Oxygen</u> – Images in which dark gray or black reduced sediments were in contact with the water column across the entire length of the sediment-water interface were recorded as having low dissolved oxygen condition.

<u>Sedimentary Methane</u> – If organic loading is extremely high, porewater sulfate is depleted and methanogenesis occurs. The process of methanogenesis is indicated by the appearance of methane bubbles in the sediment column. These gas-filled voids are readily discernable in SPI images because of their irregular, generally circular aspect and glassy texture (due to the reflection of the strobe off the gas bubble).

<u>Thiophilic Bacteria (*Beggiatoa*)</u> – The presence of sulfur-oxidizing bacterial colonies indicates hypoxic dissolved oxygen concentrations in the water column at the benthic boundary-layer (Rosenberg and Diaz 1993). The presence and extent (e.g., threads, trace, patches, mat) of the *Beggiatoa* or *Beggiatoa*-like colonies were noted.

<u>Infaunal Successional Stage</u> – Infaunal successional stage is a measure of the biological community inhabiting the seafloor. Current theory holds that organism-sediment interactions in fine-grained sediments follow a predictable sequence of development after a major disturbance (e.g., dredged material disposal) (Pearson and Rosenberg 1978; Rhoads

and Germano 1982; Rhoads and Boyer 1982). This continuum has been divided subjectively into four stages: Stage 0, indicative of a sediment column that is largely devoid of macrofauna, occurs immediately following a physical disturbance or in close proximity to an organic enrichment source; Stage 1 is the initial community of tiny, densely populated polychaete assemblages; Stage 2 is the start of the transition to head-down deposit feeders; and Stage 3 is the mature, equilibrium community of deep-dwelling, head-down deposit feeders (Figure 2-4). In dynamic environments, it is simplistic to assume that benthic communities always progress completely and sequentially through all four stages in accordance with the idealized conceptual model (Figure 2-4). Various combinations of these basic successional stages are possible. For example, secondary succession can occur (Horn 1974) in response to additional labile carbon input to surface sediments, with surfacedwelling Stage 1 or 2 organisms co-existing at the same time and place with Stage 3, resulting in the assignment of a "Stage 1 on 3" or "Stage 2 on 3" designation. If both Stage 1 and Stage 2 organisms exists in an image with Stage 3 fauna, the Stage 1 on 3 designation is used because it is more important to document the presence of recruiting organisms than intermediate Stage 2 fauna. Additionally, "Stage  $2 \rightarrow 3$ " is used to indicate that Stage 2 appears to be progressing to Stage 3; for example, evidence of deep burrowing resembles Stage 3 but not overt signs of Stage 3 taxa are present in the image. Successional stage was assigned by assessing the types of species or organism-related activities apparent in the images. Additional variables related to the infaunal community and their role in bioturbation are often important to consider as bioturbation is related not only to sediment oxygen dynamics, but also nutrient and contaminant fluxes (Reible and Thibodeaux 1999). In this study, the minimum and maximum linear distances from the sediment surface to feeding voids were measured.

#### 2.3.5.2 Plan-View Analysis Parameters

Plan-view images provide a much larger field-of-view than SPI images and provide valuable information about the landscape ecology and sediment topography in the area where the pinpoint "optical core" of the sediment profile was taken (Figure 2-5). Unusual surface sediment layers, textures, or structures detected in any of the sediment-profile images can be interpreted considering the larger context of surface sediment features; i.e., is a surface layer or topographic feature a regularly occurring feature and typical of the seafloor in this general vicinity or an isolated anomaly? The scale information provided by the underwater lasers allows accurate density counts of attached epifaunal colonies, sediment-profile cross section, as well as measurements of the percent cover of *Beggiatoa* colonies and other features of interest observable on the seafloor at the sampling location. Information on sediment transport dynamics and bedform wavelength were also available from PV image analysis.

For each replicate PV image, the field-of-view was calculated and the sediment type, oxidation state of surface sediment, presence and type of bedforms; presence and notes related to dredged material; estimations of the relative percent cover of burrows, tubes,

tracks, macrophytes; types of epifauna, flora, and debris; quantitative measures of *Beggiatoa* percent cover; number of fish; and descriptive comments were recorded.

#### 2.3.6 Statistical Methods

The objective of this survey was to assess the status of benthic community recolonization of the sediment at disposal areas relative to reference area conditions. Statistical analyses were conducted to compare key SPI variables between sampled disposal areas (Mound B and Mound C) and reference areas (CCBRS, NWREF, and SWREF). The aRPD depth and successional stage measured in each image are the best indicators of infaunal activity measured by SPI and were, therefore, used in this comparative analysis. Standard boxplots were generated for visual assessment of the central tendency and variation in each of these variables within each disposal area and each reference area. Tests rejecting the inequivalence between the reference and disposal areas were conducted, as described in detail below.

The objective to look for differences has conventionally been addressed using a point null hypothesis of the form, "There is no significant difference in benthic conditions between the reference area and the disposal target areas." However, there is always some difference (perhaps only to a very small decimal place) between groups, but the statistical significance of this difference may or may not be ecologically meaningful. On the other hand, differences may not be detected due to insufficient statistical power. Without a power analysis and specification of what constitutes an ecologically meaningful difference, the results of conventional point null hypothesis testing often provide inadequate information for ecological assessments (Germano 1999). An approach using an inequivalence null hypothesis will identify when groups are statistically similar, within a specified interval, which is more suited to the objectives of the DAMOS monitoring program.

For an inequivalence test, the null hypothesis presumes the difference is great; this is recognized as a "proof of safety" approach because rejection of the inequivalence null hypothesis requires sufficient proof that the difference was actually small (McBride 1999). The null and alternative hypotheses for the inequivalence hypothesis test are:

H<sub>0</sub>:  $d < -\delta$  or  $d > \delta$  (presumes the difference is great)

H<sub>A</sub>:  $-\delta < d < \delta$  (requires proof that the difference is small)

where d is the difference between a reference mean and a site mean.

The test of this inequivalence (interval) hypothesis can be broken down into two onesided tests (TOST) (McBride 1999, Schuirmann 1987). Assuming a symmetric distribution, the inequivalence hypothesis is rejected at  $\alpha$  of 0.05 if the 90% confidence interval for the measured difference (or, equivalently, the 95% upper limit <u>and</u> the 95% lower limit for the difference) is wholly contained within the equivalence interval [- $\delta$ , + $\delta$ ]. The size of  $\delta$  should
be determined from historical data, and/or professional judgment, to identify the bounds that are within background variability and is therefore not ecologically meaningful. Previously established  $\delta$  values of 1 cm for aRPD depth and 0.5 for successional stage rank (on the 0-3 scale) were used.

The statistics used to test the interval hypotheses shown here are based on the Central Limit Theorem (CLT) and basic statistical properties of random variables. A simplification of the CLT states that the mean of any random variable is normally distributed. Linear combinations of normal random variables are also normal so a linear function of means is also normally distributed. When a linear function of means is divided by its standard error the ratio follows a t-distribution with degrees of freedom associated with the variance estimate. Hence, the t-distribution can be used to construct a confidence interval around any linear function of means.

In this survey, five distinct locations were sampled; three were categorized as reference areas (CCBRS, NWREF, and SWREF) and two were disposal locations (Mound B and Mound C). The difference equation of interest was the linear contrast of the average of the three reference means minus each disposal area mean, or

$$\hat{d} = [1/3 \times (\text{Mean}_{\text{CCBRS}} + \text{Mean}_{\text{NWREF}} + \text{Mean}_{\text{SWREF}}) - (\text{Mean}_{\text{Disposal}})]$$
 [Eq. 1]

where Mean<sub>Disposal</sub> was the mean for one of the disposal areas (Mounds B and C).

The three reference areas collectively represented ambient conditions, but if the means were different among these three areas, then pooling them into a single reference group would inflate the variance estimate because it would include the variability between areas, rather than only the variability between stations within each single homogeneous area. The effect of keeping the three reference areas separate had no effect on the grand reference mean when sample size was equal among these areas, but it ensured that the variance is truly the residual variance within a single population with a constant mean.

The difference equation,  $\hat{d}$ , for the comparison of interest was specified in Eq. 1 and the standard error of each difference equation used the fact that the variance of a sum is the sum of the variances for independent variables, or:

$$SE(\hat{d}) = \sqrt{\sum_{j} \left( S_{j}^{2} c_{j}^{2} / n_{j} \right)}$$
 [Eq. 2]

where:

 $c_j$  = coefficients for the j means in the difference equation,  $\hat{d}$  [Eq. 1] (i.e., for equation 1 shown above, the coefficients were 1/3 for each of the 3 reference areas, and -1 for the disposal area).

 $S_j^2$  = variance for the j<sub>th</sub> area. If equal variances are assumed, the pooled residual variance estimate equal to the mean square error from an *ANOVA* based on all groups involved, can be used for each  $S_j^2$ .

 $n_j$  = number of stations for the  $j_{th}$  area.

The inequivalence null hypothesis was rejected (and equivalence concluded) if the confidence interval on the difference of means,  $\hat{d}$ , was fully contained within the interval  $[-\delta, +\delta]$ . Thus, the decision rule was to reject H<sub>0</sub> (the two groups were inequivalent) if:

$$D_{L} = \hat{d} - t_{\alpha,\nu} SE(\hat{d}) \ge -\delta \qquad \text{and} \qquad D_{U} = \hat{d} + t_{\alpha,\nu} SE(\hat{d}) \le \delta$$
[Eq. 3]

where:

 $\hat{d}$  = observed difference in means between the Reference and Disposal Area.

 $t_{\alpha,\upsilon}$  = upper (1- $\alpha$ )\*100<sub>th</sub> percentile of a Student's t-distribution with  $\upsilon$  degrees of freedom ( $\alpha$  = 0.05)

 $SE(\hat{d})$  = standard error of the difference ([Eq. 2])

u = degrees of freedom for the standard error. If a pooled residual variance estimate was used, this was the residual degrees of freedom from an ANOVA on all groups (total number of stations minus the number of groups); if separate variance estimates were used, degrees of freedom were calculated based on the Welch-Sattherthwaite estimation (Satterthwaite 1946, Zar 1996).

Validity of normality and equal variance assumptions was tested using Shapiro-Wilk's test for normality on the area residuals ( $\alpha = 0.05$ ) and Levene's test for equality of variances among areas ( $\alpha = 0.05$ ). If normality was not rejected but equality of variances was, then normal parametric confidence bounds were calculated, using separate variance estimates for each group. If normality was rejected, then non-parametric bootstrapped estimates of the confidence bounds were calculated.

# 2.4 Fishing Gear Assessment via Surface Marker Buoy

During the CCBDS acoustic survey, each time a surface buoy marking fishing gear was observed alongside the vessel in and around the acoustic survey area, the location was time-stamped as a GPS fix within HYPACK. Each surface buoy was labeled based on its port/starboard position relative to the vessel's course and the marker buoy's color patterns. Real-time viewing of previously recorded buoys on the navigation system minimized duplicate records of individual marker buoys. A file of marker buoy GPS locations was created and was used to generate a map of surface marker buoy locations throughout CCBDS.

#### Table 2-1.

25

#### Accuracy and Uncertainty Analysis of Bathymetric Data

|               |                                  |      | <b>1</b> )  |             |
|---------------|----------------------------------|------|-------------|-------------|
|               |                                  |      | 95%         |             |
| Survey Date   | Quality Control Metric           | Mean | Uncertainty | Range       |
| 10/18-19/2016 | Cross-Line Swath Comparisons     | 0.00 | 0.11        |             |
|               | Within Cell Uncertainty          | 0.05 | 0.10        | 0.00 - 0.69 |
|               | Beam Angle Uncertainty (0 - 60d) | 0.00 | 0.11        | 0.10 - 0.12 |

Notes:

1. The mean of cross-line nadir and full swath comparisons are indicators of tide bias.

2. 95% uncertainty values were calculated using the sums of mean differences and standard deviations expressed at the 2-sigma level.

3. Within cell uncertainty values include biases and random errors.

4. Beam angle uncertainty was assessed by comparing cross-line data (60-degree swath limit) with a reference surface created using mainstay transect data.

5. Swath and cell based comparisons were conducted using 2 m x 2 m cell averages. These analyses do not exclude sounding variability associated with terrain slopes.

#### Table 2-2.

# CCBDS 2016 Target SPI/PV Station IDs/Coordinates

| Sample ID               | Station ID | Χ        | Y         | Latitude   | Longitude   |
|-------------------------|------------|----------|-----------|------------|-------------|
| CCBDS_16B1_SPI_B-01     | B-01       | 157652.4 | -193710.1 | 41.9099290 | -70.2158460 |
| CCBDS_16B1_SPI_B-02     | B-02       | 157739.2 | -193606.1 | 41.9108800 | -70.2148260 |
| CCBDS_16B1_SPI_B-03     | B-03       | 157659.8 | -193644.0 | 41.9105250 | -70.2157740 |
| CCBDS_16B1_SPI_B-04     | B-04       | 157568.2 | -193342.8 | 41.9132190 | -70.2169490 |
| CCBDS_16B1_SPI_B-05     | B-05       | 157982.8 | -193538.9 | 41.9115290 | -70.2119070 |
| CCBDS_16B1_SPI_B-06     | B-06       | 157793.9 | -193297.5 | 41.9136670 | -70.2142410 |
| CCBDS_16B1_SPI_B-07     | B-07       | 157548.1 | -193742.2 | 41.9096210 | -70.2170960 |
| CCBDS_16B1_SPI_B-08     | B-08       | 157638.6 | -193258.3 | 41.9139930 | -70.2161220 |
| CCBDS_16B1_SPI_B-09     | B-09       | 157858.3 | -193721.9 | 41.9098600 | -70.2133630 |
| CCBDS_16B1_SPI_B-10     | B-10       | 157978.4 | -193575.3 | 41.9112000 | -70.2119510 |
| CCBDS_16B1_SPI_B-11     | B-11       | 157680.2 | -193797.1 | 41.9091510 | -70.2154910 |
| CCBDS_16B1_SPI_B-12     | B-12       | 157912.4 | -193561.8 | 41.9113100 | -70.2127490 |
| CCBDS_16B1_SPI_C-13     | C-13       | 156641.0 | -193754.0 | 41.9093510 | -70.2280220 |
| CCBDS_16B1_SPI_C-14     | C-14       | 156603.0 | -193661.5 | 41.9101770 | -70.2285020 |
| CCBDS_16B1_SPI_C-15     | C-15       | 156859.3 | -193602.0 | 41.9107590 | -70.2254280 |
| CCBDS_16B1_SPI_C-16     | C-16       | 156641.4 | -193572.4 | 41.9109850 | -70.2280620 |
| CCBDS_16B1_SPI_C-17     | C-17       | 156556.0 | -193419.9 | 41.9123430 | -70.2291270 |
| CCBDS_16B1_SPI_C-18     | C-18       | 156691.3 | -193355.6 | 41.9129460 | -70.2275120 |
| CCBDS_16B1_SPI_C-19     | C-19       | 156521.9 | -193363.8 | 41.9128420 | -70.2295520 |
| CCBDS_16B1_SPI_C-20     | C-20       | 156974.1 | -193450.7 | 41.9121410 | -70.2240820 |
| CCBDS_16B1_SPI_C-21     | C-21       | 156797.4 | -193748.4 | 41.9094300 | -70.2261390 |
| CCBDS_16B1_SPI_C-22     | C-22       | 156621.8 | -193274.2 | 41.9136660 | -70.2283700 |
| CCBDS_16B1_SPI_C-23     | C-23       | 156476.9 | -193654.6 | 41.9102160 | -70.2300230 |
| CCBDS_16B1_SPI_C-24     | C-24       | 156915.4 | -193688.7 | 41.9099880 | -70.2247320 |
| CCBDS_16B1_SPI_CCBRS-01 | CCBRS-01   | 153660.3 | -188324.2 | 41.9576720 | -70.2652810 |
| CCBDS_16B1_SPI_CCBRS-02 | CCBRS-02   | 153434.0 | -188461.1 | 41.9563980 | -70.2679770 |
| CCBDS_16B1_SPI_CCBRS-03 | CCBRS-03   | 153644.2 | -188522.1 | 41.9558880 | -70.2654270 |
| CCBDS_16B1_SPI_CCBRS-04 | CCBRS-04   | 153719.1 | -188211.5 | 41.9586970 | -70.2646010 |
| CCBDS_16B1_SPI_NWREF-05 | NWREF-05   | 155586.6 | -191123.3 | 41.9328350 | -70.2413690 |
| CCBDS_16B1_SPI_NWREF-06 | NWREF-06   | 155560.1 | -191070.7 | 41.9333040 | -70.2417020 |
| CCBDS_16B1_SPI_NWREF-07 | NWREF-07   | 155258.3 | -191308.5 | 41.9311090 | -70.2452810 |
| CCBDS_16B1_SPI_NWREF-08 | NWREF-08   | 155518.6 | -191346.5 | 41.9308140 | -70.2421350 |
| CCBDS_16B1_SPI_SWREF-09 | SWREF-09   | 153305.2 | -196698.1 | 41.8822420 | -70.2674820 |
| CCBDS_16B1_SPI_SWREF-10 | SWREF-10   | 153415.3 | -196890.8 | 41.8805290 | -70.2661080 |
| CCBDS_16B1_SPI_SWREF-11 | SWREF-11   | 153533.5 | -196940.2 | 41.8801060 | -70.2646730 |
| CCBDS_16B1_SPI_SWREF-12 | SWREF-12   | 153631.3 | -196761.7 | 41.8817310 | -70.2635380 |

Notes

1. Grid coordinates are NAD\_1983\_StatePlane\_Massachusetts\_Mainland\_FIPS\_2001\_Meters 2. Geographic coordinates are NAD83 decimal degrees



Figure 2-1. CCBDS 2016 acoustic survey area and tracklines



Figure 2-2. CCBDS 2010 bathymetry with target station locations



Figure 2-3. Operation of the sediment-profile and plan-view camera imaging system

29



**Figure 2-4.** The stages of infaunal succession as a response of soft-bottom benthic communities to (A) physical disturbance or (B) organic enrichment; from Rhoads and Germano (1982)

Monitoring Survey at the Cape Cod Bay Disposal Site October 2016

30



**Figure 2-5.** The blue scaling line on this representative plan-view image shows the sampling relationship between plan-view and sediment-profile images. Note: plan-view image coverage may vary between stations

#### 3.0 **RESULTS**

The objectives of the October 2016 survey of CCBDS were to characterize seafloor topography and surficial features, to define the physical characteristics of the surface sediment, and to evaluate the recovery of the benthic community following recent placement of dredged material. The bathymetric surveys conducted during 2016 were designed to aid in management of material placement and assessment of long-term stability. Since the most recent DAMOS survey in September 2010, approximately 270,000 m<sup>3</sup> of material has been deposited at CCBDS. Survey tools were multibeam bathymetry and SPI/PV imaging.

#### 3.1 Bathymetry

The acoustic survey (bathymetric, side-scan and backscatter data collection) was performed over the active portion of CCBDS (located in the northern portion of the site) and at three reference areas (CCBRS, NWREF, and SWREF; Figure 3-1a). Within CCBDS the survey covered Mounds B and C. (Figure 3-1b). Multibeam bathymetric data rendered as a depth-scaled acoustic relief model (color scale with hillshading) provided a more detailed representation of the survey area topography (Figures 3-2a and 3-2b). The bathymetry of reference areas surveyed in October 2016 indicated a relatively flat and featureless bottom at all three areas, with mean water depths of 38 m, 33 m, and 29 m at CCBRS, NWREF, and SWREF, respectively (Table 3-1; Figure 3-1a).

The bathymetry of CCBDS was relatively flat and was punctuated by Mounds B and C, which appeared as discrete formations rising above the surrounding seafloor. Mound C had a smooth plateau rising approximately 3 m above the surrounding seafloor. Mound B had an elongated crest approximately 5 to 7 m above the bottom with shoulder areas that were 1–2 m high. Each of these mounds had been previously identified (AECOM 2012) and were due to the legacy of dredged material disposal in this area. Color scale presentation of multibeam bathymetric data enhanced the visibility of irregular depressions that were in this location. A series of small craters, consistent with the placement of individual scow loads of dredged material, "pock-marked" the seafloor in the survey area (Figure 3-2b).

#### 3.1.1 Acoustic Backscatter and Side-Scan Sonar

Acoustic backscatter provides an indication of the type of surficial sediment present in the survey area. Strong acoustic backscatter returns are typically indicative of coarse material or rough surfaces while weak acoustic backscatter returns are typically indicative of fine-grained materials or smooth surfaces (fine sands and silts). Unfiltered backscatter imagery of the reference areas revealed homogenous, weak returns across NWREF, CCBRS, and SWREF (Figure 3-3a). Unfiltered backscatter imagery of CCBDS revealed areas of stronger returns (dark areas in Figure 3-3b) at both disposal Mound B and disposal Mound C, and medium returns within the Historic Wellfleet disposal boundary located in the southcentral portion of the surveyed area. Weaker returns were found in the areas surrounding the three disposal areas (lighter areas in Figure 3-3b). Filtered backscatter provides a quantitative assessment of surface characteristics independent of slope effects. Overall backscatter returns as the reference areas were weak, with the strongest returns at SWREF (-30 to -34 dB), the weakest returns at NWREF (-34 to -38 dB), and returns between -32 and -36 dB at SWREF (Figure 3-4a). In the CCBDS survey area, the strongest filtered backscatter returns were observed at the topographic highs of the two mounds, with returns of -18 to -26 dB indicative of placement material (Figure 3-4b) and lower returns of -32 to -40 dB typical on the surrounding native seafloor. There was clear evidence of isolated disposal impact features and curved trails of dredged material that have been observed at other disposal sites (Carey et al. 2013 and Valente et al. 2012). Trails of material from barge disposal events were most visible extending from target placement location C in the western portion of the survey area, and the irregularity of the seafloor in and around the mounds was evident (Figure 3-4b). Patterns of disposal activity were also observed within the Historic Wellfleet disposal boundary (Figure 3-4b).

Side-scan sonar results showed few minor surficial features at any of the three reference areas (Figure 3-5a), but provided a clear representation of disposal activity over Mound B and Mound C, based on the presence of faint circular patterns (Figure 3-5b). Side-scan sonar results confirmed observations from backscatter results, but with additional detail. The side-scan sonar results have a higher resolution and are more responsive to minor surficial textural features and slope than backscatter results. Curved disposal tracks were visible around Mound C, and features of placement activity were also visible within the Historic Wellfleet disposal boundary.

# 3.1.2 Comparison with Previous Bathymetry and Backscatter

The bathymetric results in October 2016 were consistent with earlier survey results for CCBDS (AECOM 2012). A comparison of the elevation difference between depths measured in 2010 and 2016 demonstrated that dredged material placed after 2010 accumulated in a distinct flat mound at the Mound C disposal location (Figure 3-6). The disposed material was contained within the boundaries of CCBDS, with the highest elevation difference (2.6 to 3.4 m) centered on the mound over an approximately 250 x 200 m area. A smaller increase in elevation of approximately 0.4 to 1.0 m extends another 50 m around the highest accumulation.

# 3.2 Sediment-Profile and Plan-View Imaging

The following sections summarize the results for the reference areas (CCBRS, NWREF, and SWREF) and for each of the disposal mounds surveyed (Mound B and C). Detailed SPI and PV image analysis results are provided in Appendix E. Comparisons between reference areas and disposal mounds, as well as to the survey from 2010 is also provided in section 3.2.3. Mean aRPD was evaluated for statistical equivalence between reference and disposal areas sampled during the 2016 survey effort. Mound C and SWREF were sampled on the 20th of October 2016. Mound B was sampled on both the 20th and 21st of October 2016. NWREF and CCBRS were sampled on the 21st of October 2016.

Replicate stations for SPI and PV images were collected at the disposal mounds and reference areas (Figure 2-3). The area of seafloor captured in the PV images ranged from 0.08 - 0.24 m<sup>2</sup>.

## 3.2.1 Reference Area Stations

## 3.2.1.1 Physical Sediment Characteristics

The reference areas were characterized by a soft bottom, with a predominant grain size of 4-3 phi documented at all of the stations in each of the three reference areas (Table 3-1, Figures 3-7 and 3-8). Mean replicate prism penetration among reference stations ranged from 14.5 to 19.7 cm with a mean value of 17.4 cm (SD $\pm$ 1.5) (Table 3-1; Figure 3-9). Two weights were added to each side of the system at station SWREF-09 to increase penetration depth (Appendix E). There was no evidence of dredged material at any of the stations sampled in the reference areas, and no evidence of low dissolved oxygen (DO) or sedimentary methane (Figure 3-10; Appendix E).

Small-scale boundary roughness ranged from 0.8 to 1.8 cm with a mean boundary roughness of 1.2 cm (SD $\pm$ 0.3) at the reference areas (Table 3-1; Figure 3-11). Mean boundary roughness was approximately similar at CCBRS (1.0 cm; SD $\pm$ 0.2), NWREF (1.3 cm; SD $\pm$ 0.4), and SWREF (1.4 cm; SD $\pm$ 0.3) (Table 3-1). All of the small-scale topography observed in the reference areas was attributed to the surface and sub-surface activity of benthic organisms, evidenced as small burrow openings and tubes (Figure 3-12).

#### 3.2.1.2 Biological Conditions

At the reference areas, aRPD depths ranged from 1.2 to 4.0 cm with a mean of 2.2 cm  $(SD\pm0.9)$  (Table 3-1; Figure 3-13). Mean aRPD depths were deepest at CCBRS with a mean aRPD depth of 3.2 cm  $(SD\pm0.6)$ , and were shallowest at SWREF with a mean depth of 1.3 cm  $(SD\pm0.3)$  (Table 3-1; Figure 3-14). NWREF had a mean aRPD depth of 2.1 cm  $(SD\pm0.3)$  with a range between 1.9 and 2.5 cm (Table 3-1; Figure 3-14).

Stage 3 infauna were present at all three reference areas (Table 3-1; Figure 3-15) with the majority of stations at each area containing mature successional taxa. Only one station in all three reference areas had no replicates containing Stage 3 infauna (NWREF-06, Table 3-1) which contained Stage 2 -> 3 taxa. Stage 2 -> 3 taxa is a transitional successional state identified by medium to large tubes at the sediment water interface and a moderately reworked sediment column (Figure 3-16). Evidence for the presence of Stage 3 fauna included large-bodied infauna, deep subsurface burrows, and/or deep feeding voids (Figure 3-16). Stage 2 fauna are smaller than Stage 3 taxa and are active in the 2 - 4 cm zone below the sediment-water interface; they can coexist with the larger, deep-feeding Stage 3 fauna, ranged from 0.4 at CCBRS and SWREF to 0.8 at NWREF (Table 3-1). When present, voids were

found deep within the sediment, with mean void depths of 12.9 (SD $\pm$ 1.1), 17.1 (SD $\pm$ 0.8), and 10.6 (SD $\pm$ 4.4) cm at CCBRS, NWREF, and SWREF, respectively (Table 3-1; Figure 3-17).

Further indications of subsurface faunal activity from Stage 2 and Stage 3 taxa was observed in the PV images as the presence of burrows, tubes, and tracks on the seafloor (Figure 3-18). Tubes were observed at a 'present' density (10-25% image coverage) in every replicate at NWREF and SWREF and in all but two replicates at CCBRS, which had 'sparse' tube density (>10% coverage) (Table 3-1). Burrow density ranged from no burrows to abundant burrows (25-75% coverage) in the reference areas while tracks across the seafloor, often created by epifauna (crabs, gastropods), were documented in at least one replicate at all three reference areas (Appendix E). PV images at CCBRS and NWREF showed the sediment surface densely covered in brittle stars (Figure-19).

## 3.2.2 Disposal Site Stations

For this analysis, Mound B and Mound C were considered separately. The most recent disposal events at Mound B occurred in the 2000-2001 season, while Mound C received material as recently as the 2015 season.

# 3.2.2.1 Physical Sediment Characteristics

Mound B had a mean depth of 30 m, ranging from 23 to 33 m (Table 3-2; Figure 3-2b). Sediments at Mound B were primarily very fine sand with a predominant grain size of 4-3 phi with the exception of station B-06 located at the highest point of the mound; Station B-06 contained coarser grained sediment (0 phi) (Table 3-2, Figures 3-20 and 3-21). Mean replicate camera penetration values ranged from 3.7 to 19.0 cm with a mean of 14.2 cm (SD $\pm$ 5.5) (Table 3-2, Figure 3-22). At stations B-02 and B-06, 4 weights were added per side to the system to achieve shallow penetration (Appendix E). Small scale boundary roughness ranged from 0.6 to 2.4 cm with a mean of 1.1 cm (SD $\pm$ 0.5) (Table 3-2; Figure 3-23). All boundary roughness was biological in origin with no discernible spatial patterns (Figure 3-24).

Mean dredged material thickness was  $13.0 \text{ cm} (\text{SD}\pm 5.9)$  and ranged from 3.7 to 19.0 cm (Table 3-2, Figure 3-25). Dredged material thickness extended beyond prism penetration at all stations (Figure 3-26). Three stations did not contain dredged material (B-07, B-10, and B-11) and were located near the periphery of the boundaries of Mound B (Figure 3-27). There was evidence of methane bubbles at station B-04 (Figure 3-28).

Mound C had a mean depth of 30 m, ranging from 28 to 33 m (Table 3-2; Figure 3-2b). Sediments at Mound C were primarily very fine sand over silt-clay with a predominant grain size of 4-3/>4 phi. The exceptions were stations C-14 and C-15 which contained a sediment column of only very fine sand (Table 3-2, Figures 3-20 and 3-29). Mean replicate camera penetration values ranged from 14.1 to 19.8 cm with a mean of 14.1 cm (SD±1.9)

(Table 3-2; Figure 3-22). Small scale boundary roughness ranged from 0.5 to 1.9 cm with a mean of 1.1 cm (SD $\pm$ 0.4) (Table 3-2; Figure 3-23). All boundary roughness was biological in origin with no discernible spatial patterns (Figure 3-30).

Mean dredged material thickness was 17.2 cm (SD $\pm$ 1.9) and ranged from 14.1 to 19.8 cm (Table 3-2, Figure 3-25). Dredged material was documented at every station sampled, and the thickness of the dredged material extended beyond the prism penetration in all replicates (Figure 3-31). There was no evidence of low DO or sedimentary methane at Mound C (Appendix E).

# 3.2.2.2 Biological Conditions

At Mound B, mean aRPD depth was  $1.7 \text{ cm} (\text{SD}\pm0.3)$  and ranged from 1.2 to 2.2 cm (Table 3-2, Figure 3-32). Overall, aRPD depths at Mound B were relatively shallow and the optical reflectance of the sediments in this area (dark gray to black) indicated a sediment oxygen demand (SOD) of moderate to high (Figure 3-33). The majority of stations at Mound B contained at least one replicate with evidence of Stage 3 fauna, except Stations B-01, B-02, and B-06 (Table 3-2; Figure 3-34). Station B-01 was predominantly classified as Stage 2 transitioning to 3, Station B-02 was predominantly Stage 1 transitioning to 2, and Station B-06 had a replicate with Stage 1 taxa and another with evidence of Stage 2 fauna (Figure 3-21). When voids were present they were typically found deep within the sediment with a mean depth of 12.6 cm (SD±4.1) and a range of 7.2 to 19.3 cm (Table 3-2, Figure 3-35). Four stations (B-01, B-02, B-06, and B-08) did not contain any feeding voids (Appendix E). These stations were spatially located near the center of the mound on the topographic high of the peak and surrounding shoulder areas where shallow penetration limited visibility of deep sediment processes.

PV images at Mound B documented the biological activity present on the seafloor as tubes, burrows, and tracks (Figure 3-24). Tubes were observed in sparse to abundant densities in every replicate at Mound B (Appendix E). The majority of replicate images showed no burrows, with other images ranging from sparse to present burrows. Observation of tracks on the sediment surface created by epifauna ranged from no tracks to abundant tracks.

At Mound C, mean aRPD depth was 2.1 cm (SD $\pm$ 0.8) and ranged from 0.9 to 3.2 cm (Table 3-2, Figure 3-32). Overall aRPD depths at Mound C were relatively shallow similar to Mound B (Figure 3-33). There was one station at Mound C with a deep aRPD, Station 24 located at the center of Mound C on the rough plateau (Figure 3-36). All stations at Mound C contained at least one replicate with evidence of Stage 3 fauna (Table 3-2, Figures 3-34 and 3-36). Feeding voids were present in at least one replicate at every station at Mound C (Table 3-2). Voids were typically found deep within the sediment with a mean depth of 11.1 cm (SD $\pm$ 4.0) ranging from 5.2 to 17.6 cm (Figure 3-35). On the whole, successional taxa appeared to be more mature Mound C compared to B though shallow prism penetration at Mound B could impact this assessment.

Further indications of subsurface faunal activity from Stage 2 and Stage 3 taxa was observed in the PV images as the presence of burrows, tubes, and tracks (Figure 3-30). Mound C showed sparse to abundant tubes at every station except C-13 (Appendix E). Burrows were observed in at least one replicate at every station and ranged from no burrows to abundant burrows. Tracks were present in at least one replicate at every station except C-18, ranging from no tracks to abundant tracks across Mound C (Appendix E).

## 3.2.3 Comparison to Reference Areas

# 3.2.3.1 Mean aRPD Variable

Area mean aRPD depths at Mound B and C were 1.7 (SD $\pm$ 0.3) and 2.1 (SD $\pm$ 0.8) cm, respectively, comparable to the grand mean aRPD depth of the reference areas at 2.2 (SD $\pm$ 0.9) cm (Tables 3-2 and 3-3; Figure 3-37).

A statistical inequivalence test was performed to determine whether the differences observed in mean aRPD values between the three grouped reference areas against each of the two disposal areas were significantly dissimilar. The station mean aRPD data from all five locations were combined to assess normality and estimate pooled variance. Results for the normality test indicated that each area's residuals, i.e., each observation minus the area mean, was not significantly different from a normal distribution (Shapiro-Wilk's test p-value = 0.69, alpha = 0.05). Levene's test for equality of variances was rejected (p = 0.009, alpha = 0.05), so a single pooled variance estimate could not be used for all groups. Separate variances were used for Mound C (Figure 3-43). The confidence interval for the difference equations were constructed using parametric estimates with separate variances for Mound C and pooled variance for Mound B. The following statistical evaluations combined the three reference areas and treated reference as a single group (with n=12).

The confidence regions for the difference between the mean of the reference areas versus Mound B disposal area and versus Mound C disposal area were each contained within the interval [-1 cm, +1 cm] (Table 3-4). The conclusion was that the aRPD values from each of these two disposal areas were significantly equivalent to the pooled reference areas in the 2016 survey, i.e. there was no difference in aRPD depth between the disposal and the reference areas. The difference in means between reference and Mound B was 0.5 cm, and between reference and Mound C was 0.1 cm with the pooled reference areas having aRPD values roughly equivalent to Mound B and Mound C (Table 3-4).

#### 3.2.3.2 Mean Successional Stage Rank

To evaluate these successional stages numerically, a successional stage rank variable was applied to each image. A value of 3 was assigned to Stage 3, 2 on 3, or 1 on 3 designations, a value of 2 was applied to Stage 2 or 1 on 2, a value of 1 was applied to Stage 1, intermediate ranks were assigned to the transitional assemblages (2.5 for Stage 2

transitioning to Stage 3, and 1.5 for 1 transition to 2), and images from which the stage could not be determined were excluded from calculations. The maximum successional stage rank among replicates was used to represent the station value.

The successional stage rank variable was either Stage 2 transitioning to Stage 3, or Stage 3 across all three reference areas and Mound C disposal area. Two stations from Mound B contained a successional stage rank variable of Stage 2. Bootstrapping was used to construct confidence intervals between the mean successional stage at disposal areas Mound B and Mound C versus the pooled reference areas.

The confidence region for the difference between the mean successional stage rank of the pooled reference areas (2.9) versus Mound B (2.8), and versus C (3.0) were each contained within the interval [-0.5, +0.5 cm] (Table 3-5), which indicates that the mean successional stages at Mound B and Mound C were statistically equivalent to reference.

#### 3.2.4 Temporal Comparisons

# 3.2.4.1 Mean aRPD Variable

Area mean aRPD depths at Mound B disposal area in 2010 and 2016 were 2.7 and 1.7 cm, respectively; a decrease of 1.0 cm. Mound C had a decrease in mean aRPD depth of 1.1 cm, from 3.2 cm in 2010 to 2.1 cm in 2016. There was a decrease of 1.3 cm from 2010 to 2016 at the reference areas, from 3.5 to 2.2 cm (Table 3-6 and Figure 3-38).

Confidence intervals for the change over time (2016 minus 2010) were calculated for Mound B, Mound C, and the three reference areas combined. The residuals within each time period for Mound B, Mound C, and the grouped references were all approximately normally distributed (Mound B: Shapiro-Wilk's test p-value = 0.95, alpha 0.05; Mound C: Shapiro-Wilk's test p-value = 0.69, alpha 0.05; References: Shapiro-Wilk's test p-value = 0.85, alpha 0.05). Levene's test for equality of variances was rejected for all areas so separate variances were used for Mound B, Mound C, and the references (Mound B: Levene's test, p = 0.017, alpha 0.05; Mound C: Levene's test, p = 0.014, alpha 0.05; References: Levene's test, p = 0.045, alpha 0.05).

The 90% confidence interval for the change over time at the disposal area Mound B was [-1.39 cm to -0.73 cm] (Table 3-6) indicating that the two disposal area surveys had results that were significantly inequivalent within +/- 1 cm. The 90% confidence interval for the change over time at Mound C was [-1.60 cm to -0.74 cm] (Table 3-6) indicating that the two disposal area surveys had results that were significantly inequivalent within +/- 1 cm. The combined reference areas 90% confidence interval for the change over time was [-1.52 cm to -1.01 cm] (Table 3-6) indicating that the two reference area surveys had results that were significantly inequivalent within +/- 1 cm.

#### **3.3** Fishing Gear Assessment

A total of 17 lobster trap-style surface marker boys were observed during the CCBDS multibeam survey (Figure 3-39). Of the 17, seven were observed within the Mound B Sampling Area. The coordinates and a notation of the buoy colors were recorded (Table 3-7).

## Table 3-1.

## Summary of CCBDS Reference Station Sediment-Profile Imaging Results (Station Means), October 2016

| Area                | Station               | Water<br>Depth<br>(m) | Grain<br>Size<br>Major<br>Mode<br>(phi) <sup>a</sup> | Mean<br>Prism<br>Penetration<br>Depth (cm) | Mean<br>Boundary<br>Roughness<br>(cm) | Dominant<br>Type of<br>Boundary<br>Roughness | Mean<br>aRPD<br>Depth<br>(cm) | Mean<br>Dredged<br>Material<br>Thickness<br>(cm) | Mean # of<br>Subsurface<br>Feeding<br>Voids | Mean of<br>Maximum<br>Feeding<br>Void<br>Depth<br>(cm) | Methane<br>Present? | Succe  | essional S<br>Present <sup>b</sup> | Stages |
|---------------------|-----------------------|-----------------------|------------------------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------------|-------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------------|---------------------|--------|------------------------------------|--------|
| CCBRS               | 1                     | 38                    | 4 to 3                                               | 19.7                                       | 1.3                                   | Biological                                   | 4.0                           | none                                             | 0.7                                         | 13.7                                                   | No                  | 2 -> 3 | 1 on 3                             | 1 on 3 |
| CCBRS               | 2                     | 38                    | 4 to 3                                               | 16.9                                       | 0.9                                   | Biological                                   | 3.1                           | none                                             | 0.7                                         | 11.7                                                   | No                  | 2 -> 3 | 3                                  | 1 on 3 |
| CCBRS               | 3                     | 37                    | 4 to 3                                               | 17.9                                       | 1.2                                   | Biological                                   | 2.7                           | none                                             | 0.3                                         | 13.4                                                   | No                  | 2 -> 3 | 2 -> 3                             | 1 on 3 |
| CCBRS               | 4                     | 38                    | 4 to 3                                               | 18.1                                       | 0.8                                   | Biological                                   | 2.9                           | none                                             | 0.0                                         | -                                                      | No                  | 2 -> 3 | 2 -> 3                             | 2 on 3 |
| CCBRS               | Mean                  | 38                    |                                                      | 18.1                                       | 1.0                                   |                                              | 3.2                           |                                                  | 0.4                                         | 12.9                                                   |                     |        |                                    |        |
|                     | Standa                | rd Deviat             | tion                                                 | 1.1                                        | 0.2                                   |                                              | 0.6                           |                                                  |                                             | 1.1                                                    |                     |        |                                    |        |
|                     |                       |                       |                                                      |                                            |                                       |                                              |                               |                                                  |                                             |                                                        |                     |        |                                    |        |
| NWREF               | 5                     | 33                    | 4 to 3                                               | 16.7                                       | 1.8                                   | Biological                                   | 2.5                           | none                                             | 0.3                                         | 17.0                                                   | No                  | 2 -> 3 | 2 -> 3                             | 1 on 3 |
| NWREF               | 6                     | 34                    | 4 to 3                                               | 17.7                                       | 0.9                                   | Biological                                   | 2.0                           | none                                             | 0.0                                         | -                                                      | No                  | 2 -> 3 | 2 -> 3                             | 2 -> 3 |
| NWREF               | 7                     | 34                    | 4 to 3                                               | 18.5                                       | 1.0                                   | Biological                                   | 1.9                           | none                                             | 2.0                                         | 18.0                                                   | No                  | 2 -> 3 | 1 on 3                             | 1 on 3 |
| NWREF               | 8                     | 33                    | 4 to 3                                               | 17.5                                       | 1.4                                   | Biological                                   | 1.9                           | none                                             | 1.0                                         | 16.3                                                   | No                  | 2      | 1 on 3                             | 1 on 3 |
| NWREF               | Mean                  | 33                    |                                                      | 17.6                                       | 1.3                                   |                                              | 2.1                           |                                                  | 0.8                                         | 17.1                                                   |                     |        |                                    |        |
|                     | Standa                | rd Deviat             | tion                                                 | 0.8                                        | 0.4                                   |                                              | 0.3                           |                                                  |                                             | 0.8                                                    |                     |        |                                    |        |
|                     |                       |                       |                                                      |                                            |                                       |                                              |                               |                                                  |                                             |                                                        |                     |        |                                    |        |
| SWREF               | 9                     | 30                    | 4 to 3                                               | 19.4                                       | 1.3                                   | Biological                                   | 1.7                           | none                                             | 1.0                                         | 13.6                                                   | No                  | 1 on 3 | 1 on 3                             | 1 on 3 |
| SWREF               | 10                    | 29                    | 4 to 3                                               | 16.1                                       | 1.0                                   | Biological                                   | 1.3                           | none                                             | 0.3                                         | 12.6                                                   | No                  | 2 -> 3 | 2 -> 3                             | 1 on 3 |
| SWREF               | 11                    | 29                    | 4 to 3                                               | 16.0                                       | 1.5                                   | Biological                                   | 1.2                           | none                                             | 0.0                                         | -                                                      | No                  | 2 -> 3 | 2 -> 3                             | 1 on 3 |
| SWREF               | 12                    | 29                    | 4 to 3                                               | 14.5                                       | 1.5                                   | Biological                                   | 1.2                           | none                                             | 0.3                                         | 5.6                                                    | No                  | 2 -> 3 | 1 on 3                             | 1 on 3 |
| SWREF               | Mean                  | 29                    |                                                      | 16.5                                       | 1.3                                   |                                              | 1.4                           |                                                  | 0.4                                         | 10.6                                                   |                     |        |                                    |        |
|                     | Standa                | ard Devia             | tion                                                 | 2.1                                        | 0.3                                   |                                              | 0.3                           |                                                  |                                             | 4.4                                                    |                     |        |                                    |        |
| ALL<br>REF<br>AREAS | Max<br>Min<br>Mean    | 38<br>29<br>33        |                                                      | 19.7<br>14.5<br>17.4                       | 1.8<br>0.8<br>1.2                     |                                              | 4.0<br>1.2<br>2.2             |                                                  | 2.0<br>0.0<br>0.6                           | 18.0<br>5.6<br>13.5                                    |                     |        |                                    |        |
|                     | Standard<br>Deviation |                       |                                                      | 1.5                                        | 0.3                                   |                                              | 0.9                           |                                                  |                                             | 3.7                                                    |                     |        |                                    |        |

a Grain Size: "/" indicates layer of one phi size range over another (see Appendix F) b Successional Stage: "on" indicates one Stage is found on top of another Stage (i.e., 1 on 3); "->" indicates one Stage is progressing to another Stage (i.e., 2 -> 3)

#### **Table 3-2.**

#### Summary of CCBDS Disposal Areas Mounds B and C Sediment-Profile Imaging Results (Station Means), September 2016

| Area    | Station               | Water<br>Depth<br>(m) | Grain<br>Size<br>Major<br>Mode<br>(phi) <sup>a</sup> | Mean<br>Prism<br>Penetration<br>Depth (cm) | Mean<br>Boundary<br>Roughness<br>(cm) | Dominant<br>Type of<br>Boundary<br>Roughness | Mean<br>aRPD<br>Depth<br>(cm) | Mean<br>Dredged<br>Material<br>Thickness<br>(cm) <sup>c</sup> | Mean # of<br>Subsurface<br>Feeding<br>Voids | Mean of<br>Maximum<br>Feeding<br>Void<br>Depth<br>(cm) | Methane<br>Present? | Succ   | essional S<br>Present <sup>b</sup> | tages  |
|---------|-----------------------|-----------------------|------------------------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------------|-------------------------------|---------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|---------------------|--------|------------------------------------|--------|
| Mound B | 1                     | 32                    | 4 to 3                                               | 19.0                                       | 0.7                                   | Biological                                   | 1.4                           | 19.0                                                          | 0.0                                         | -                                                      | No                  | 2      | 2 -> 3                             | 2 -> 3 |
| Mound B | 2                     | 25                    | >4                                                   | 5.3                                        | 1.8                                   | Biological                                   | 1.8                           | 5.3                                                           | 0.0                                         | -                                                      | No                  | 2      | 1 -> 2                             | 1 -> 2 |
| Mound B | 3                     | 31                    | 4 to 3                                               | 13.3                                       | 0.9                                   | Biological                                   | 2.2                           | 13.3                                                          | 1.0                                         | 11.1                                                   | No                  | 2 -> 3 | 1 on 3                             | 1 on 3 |
| Mound B | 4                     | 28                    | 4 to 3                                               | 18.5                                       | 1.0                                   | Biological                                   | 1.5                           | 18.5                                                          | 0.3                                         | 12.7                                                   | Yes                 | 2 -> 3 | 1 on 3                             | 1 on 3 |
| Mound B | 5                     | 30                    | 4 to 3                                               | 17.5                                       | 1.6                                   | Biological                                   | 1.4                           | 17.5                                                          | 0.7                                         | 12.1                                                   | No                  | 2 -> 3 | 1 on 3                             | 1 on 3 |
| Mound B | 6                     | 23                    | 0/>4                                                 | 3.7                                        | 2.4                                   | Biological                                   | 1.9                           | 3.7                                                           | 0.0                                         | -                                                      | No                  | 1      | 2                                  | IND    |
| Mound B | 7                     | 33                    | 4 to 3                                               | 16.9                                       | 1.1                                   | Biological                                   | 1.5                           | none                                                          | 1.0                                         | 11.6                                                   | No                  | 2      | 1 on 3                             | 2 on 3 |
| Mound B | 8                     | 26                    | 4 to 3                                               | 8.7                                        | 1.0                                   | Biological                                   | 1.9                           | 8.7                                                           | 0.0                                         | -                                                      | No                  | 2      | 2                                  | 1 on 3 |
| Mound B | 9                     | 33                    | 4 to 3                                               | 18.4                                       | 0.6                                   | Biological                                   | 1.9                           | 18.4                                                          | 0.3                                         | 19.3                                                   | No                  | 2 -> 3 | 1 on 3                             | 1 on 3 |
| Mound B | 10                    | 32                    | 4 to 3                                               | 18.9                                       | 0.8                                   | Biological                                   | 1.2                           | none                                                          | 1.0                                         | 17.5                                                   | No                  | 1 on 3 | 1 on 3                             | 1 on 3 |
| Mound B | 11                    | 33                    | 4 to 3                                               | 17.2                                       | 0.6                                   | Biological                                   | 1.6                           | none                                                          | 0.7                                         | 8.9                                                    | No                  | 2      | 1 on 3                             | 2 on 3 |
| Mound B | 12                    | 32                    | 4 to 3                                               | 12.8                                       | 1.0                                   | Biological                                   | 1.8                           | 12.8                                                          | 0.3                                         | 7.2                                                    | No                  | 2      | 1 on 3                             | 1 on 3 |
|         | Max                   | 33                    |                                                      | 19.0                                       | 2.4                                   |                                              | 2.2                           | 19.0                                                          | 1.0                                         | 19.3                                                   |                     |        |                                    |        |
| Mound B | Min                   | 23                    |                                                      | 3.7                                        | 0.6                                   |                                              | 1.2                           | 3.7                                                           | 0.0                                         | 7.2                                                    |                     |        |                                    |        |
|         | Mean                  | 30                    |                                                      | 14.2                                       | 1.1                                   |                                              | 1.7                           | 13.0                                                          | 0.4                                         | 12.6                                                   |                     |        |                                    |        |
|         | Standard<br>Deviation |                       |                                                      | 5.5                                        | 0.5                                   |                                              | 0.3                           | 5.9                                                           |                                             | 4.1                                                    |                     |        |                                    |        |

IND = Indeterminate

a Grain Size: "/" indicates layer of one phi size range over another (see Appendix F)

b Successional Stage: "on" indicates one Stage is found on top of another Stage (i.e., 1 on 3); "->" indicates one Stage is progressing to another Stage (i.e., 2 -> 3)

c Dredged material extends below prism penetration depth (in each value other than 'none')

#### Table 3-2. (continued)

42

#### Summary of CCBDS Disposal Areas Mounds B and C Sediment-Profile Imaging Results (station means), September 2016

| Area    | Station            | Water<br>Depth<br>(m) | Grain<br>Size<br>Major<br>Mode<br>(phi) <sup>a</sup> | Mean<br>Prism<br>Penetration<br>Depth (cm) | Mean<br>Boundary<br>Roughness<br>(cm) | Dominant<br>Type of<br>Boundary<br>Roughness | Mean<br>aRPD<br>Depth<br>(cm) | Mean<br>Dredged<br>Material<br>Thickness<br>(cm) <sup>c</sup> | Mean # of<br>Subsurface<br>Feeding<br>Voids | Mean of<br>Maximum<br>Feeding<br>Void<br>Depth<br>(cm) | Methane<br>Present? | Succ   | essional St<br>Present <sup>b</sup> | tages  |
|---------|--------------------|-----------------------|------------------------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------------|-------------------------------|---------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|---------------------|--------|-------------------------------------|--------|
| Mound C | 13                 | 30                    | 4 to 3 / >4                                          | 14.5                                       | 1.2                                   | Biological                                   | 3.0                           | 14.5                                                          | 0.7                                         | 5.2                                                    | No                  | 2      | 1 on 3                              | 1 on 3 |
| Mound C | 14                 | 31                    | 4 to 3                                               | 18.5                                       | 1.3                                   | Biological                                   | 2.6                           | 18.5                                                          | 0.7                                         | 7.4                                                    | No                  | 1 on 3 | 1 on 3                              | 1 on 3 |
| Mound C | 15                 | 33                    | 4 to 3                                               | 18.9                                       | 0.6                                   | Biological                                   | 0.9                           | 18.9                                                          | 1.0                                         | 16.2                                                   | No                  | 1 on 3 | 1 on 3                              | 1 on 3 |
| Mound C | 16                 | 30                    | 4 to 3 / >4                                          | 19.8                                       | 0.5                                   | Biological                                   | 1.6                           | 19.8                                                          | 1.3                                         | 17.6                                                   | No                  | 1 on 3 | 1 on 3                              | 1 on 3 |
| Mound C | 17                 | 33                    | 4 to 3 / >4                                          | 17.7                                       | 0.9                                   | Biological                                   | 1.2                           | 17.7                                                          | 1.0                                         | 9.9                                                    | No                  | 2 -> 3 | 2 -> 3                              | 1 on 3 |
| Mound C | 18                 | 33                    | 4 to 3 / >4                                          | 14.1                                       | 1.5                                   | Biological                                   | 1.4                           | 14.1                                                          | 1.0                                         | 12.7                                                   | No                  | 2 -> 3 | 1 on 3                              | 1 on 3 |
| Mound C | 19                 | 33                    | 4 to 3 / >4                                          | 18.0                                       | 1.4                                   | Biological                                   | 2.1                           | 18.0                                                          | 1.7                                         | 13.7                                                   | No                  | 1 on 3 | 1 on 3                              | 1 on 3 |
| Mound C | 20                 | 29                    | 4 to 3 / >4                                          | 17.0                                       | 0.9                                   | Biological                                   | 2.2                           | 17.0                                                          | 0.7                                         | 9.3                                                    | No                  | 2 -> 3 | 1 on 3                              | 1 on 3 |
| Mound C | 21                 | 29                    | 4 to 3 / >4                                          | 17.7                                       | 0.8                                   | Biological                                   | 2.7                           | 17.7                                                          | 0.3                                         | 6.2                                                    | No                  | 2 -> 3 | 2 -> 3                              | 1 on 3 |
| Mound C | 22                 | 29                    | 4 to 3 / >4                                          | 18.1                                       | 1.0                                   | Biological                                   | 3.0                           | 18.1                                                          | 0.7                                         | 12.2                                                   | No                  | 2 -> 3 | 1 on 3                              | 1 on 3 |
| Mound C | 23                 | 29                    | 4 to 3 / >4                                          | 16.7                                       | 0.7                                   | Biological                                   | 1.7                           | 16.7                                                          | 0.7                                         | 16.1                                                   | No                  | 2      | 1 on 3                              | 1 on 3 |
| Mound C | 24                 | 29                    | 4 to 3 / >4                                          | 18.9                                       | 1.4                                   | Biological                                   | 3.2                           | 18.9                                                          | 1.0                                         | 9.6                                                    | No                  | 2 -> 3 | 1 on 3                              | 1 on 3 |
| Mound C | 25                 | 28                    | 4 to 3 / >4                                          | 14.2                                       | 1.9                                   | Biological                                   | 1.2                           | 14.2                                                          | 0.7                                         | 7.9                                                    | No                  | 2 -> 3 | 1 on 3                              | 1 on 3 |
|         | Max                | 33                    |                                                      | 19.8                                       | 1.9                                   |                                              | 3.2                           | 19.8                                                          | 1.7                                         | 17.6                                                   |                     |        |                                     |        |
| Mound C | Min                | 28                    |                                                      | 14.1                                       | 0.5                                   |                                              | 0.9                           | 14.1                                                          | 0.3                                         | 5.2                                                    |                     |        |                                     |        |
|         | Mean               | 30                    |                                                      | 17.2                                       | 1.1                                   |                                              | 2.1                           | 17.2                                                          | 0.9                                         | 11.1                                                   |                     |        |                                     |        |
|         | Standard Deviation |                       |                                                      | 1.9                                        | 0.4                                   |                                              | 0.8                           | 1.9                                                           |                                             | 4.0                                                    |                     |        |                                     |        |

IND = Indeterminate

a Grain Size: "/" indicates layer of one phi size range over another (see Appendix F)

b Successional Stage: "on" indicates one Stage is found on top of another Stage (i.e., 1 on 3); "->" indicates one Stage is progressing to another Stage (i.e., 2 -> 3)

c Dredged material extends below prism penetration depth (in each value other than 'none')

# 43 Table 3-3.

#### Summary of Station Means by Sampling Location

|                 | Mean aRPD Depth (cm) |      |                       | Maximum Successional<br>Stage Rank |                       | N              | umber of Fee | eding Voids           | Mean Max<br>Void I | Mean Maximum Feeding<br>Void Depth (cm) |  |
|-----------------|----------------------|------|-----------------------|------------------------------------|-----------------------|----------------|--------------|-----------------------|--------------------|-----------------------------------------|--|
| Site            | $\mathbf{N}^1$       | Mean | Standard<br>Deviation | Mean                               | Standard<br>Deviation | $\mathbf{N}^2$ | Mean         | Standard<br>Deviation | Mean               | Standard<br>Deviation                   |  |
| 2016            |                      |      |                       |                                    |                       |                |              |                       |                    |                                         |  |
| Reference Areas |                      |      |                       |                                    |                       |                |              |                       |                    |                                         |  |
| CCBRS           | 4                    | 3.2  | 0.6                   | 3.0                                | 0.0                   | 3              | 0.4          | 0.3                   | 12.9               | 1.1                                     |  |
| NWREF           | 4                    | 2.1  | 0.3                   | 2.9                                | 0.2                   | 3              | 0.8          | 0.9                   | 17.1               | 0.8                                     |  |
| SWREF           | 4                    | 1.4  | 0.3                   | 3.0                                | 0.0                   | 3              | 0.4          | 0.4                   | 10.6               | 4.4                                     |  |
| Mean            |                      | 2.2  |                       | 3.0                                |                       |                | 0.6          |                       | 13.5               |                                         |  |
| Disposal Areas  |                      |      |                       |                                    |                       |                |              |                       |                    |                                         |  |
| Mound B         | 12                   | 1.7  | 0.3                   | 2.8                                | 0.5                   | 8              | 0.4          | 0.4                   | 12.6               | 4.1                                     |  |
| Mound C         | 13                   | 2.1  | 0.8                   | 3.0                                | 0.1                   | 13             | 0.9          | 0.3                   | 11.1               | 4.0                                     |  |
| Mean            |                      | 1.9  |                       | 2.9                                |                       |                | 0.7          |                       | 11.6               |                                         |  |

<sup>1</sup> Number of stations surveyed per area, including any stations which had no penetration (and indeterminate results). <sup>2</sup> The number of feeding voids observed, useable N to determine means and standard deviations.

# 44

# Table 3-4.

#### Summary Statistics and Results of Inequivalence Hypothesis Testing for aRPD Values

| Difference Equation           | Observed<br>Difference<br>$(\hat{d})$ | SE <i>â</i> | <i>df</i> for SE | Confidence Bounds $(\mathbf{D}_L \text{ to } \mathbf{D}_U)^1$ | <b>Results</b> <sup>2</sup> |
|-------------------------------|---------------------------------------|-------------|------------------|---------------------------------------------------------------|-----------------------------|
| $Mean_{REF} - Mean_{Mound B}$ | 0.53                                  | 0.14        | 20               | 0.28 to 0.78                                                  | S                           |
| $Mean_{REF}-Mean_{Mound\ C}$  | 0.14                                  | 0.25        | 16.84            | -0.29 to 0.57                                                 | S                           |

 $\overline{}^{1}$  D<sub>L</sub> and D<sub>U</sub> as defined in [Eq. 3]  $\overline{}^{2}$  s = Reject the null hypothesis of inequivalence: the two group means are significantly equivalent, within ± 1 cm. d = Fail to reject the null hypothesis of inequivalence between the two group means, the two group means are different.

# 45

# Table 3-5.

Summary Statistics and Results of Inequivalence Hypothesis Testing for Successional Stage Values

| Difference Equation          | <b>Observed</b><br><b>Difference</b> $(\hat{d})$ | SE $\hat{d}$ | <i>df</i> for<br>SE | Confidence Bounds<br>(D <sub>L</sub> to D <sub>U</sub> ) <sup>1</sup> | Results <sup>2</sup> |
|------------------------------|--------------------------------------------------|--------------|---------------------|-----------------------------------------------------------------------|----------------------|
| $Mean_{REF}-Mean_{Mound\ B}$ | 0.17                                             | 0.12         | 22                  | -0.16 to 0.34                                                         | S                    |
| $Mean_{REF}-Mean_{Mound\ C}$ | -0.04                                            | 0.04         | 23                  | -0.09 to -0.04                                                        | S                    |

 $^{1}$  D<sub>L</sub> and D<sub>U</sub> as defined in [Eq. 3]  $^{2}$  s = Reject the null hypothesis of inequivalence: the two group means are significantly equivalent, within ± 0.5. d = Fail to reject the null hypothesis of inequivalence between the two group means, the two group means are different.

# Table 3-6.

Summary Statistics and Results of Inequivalence Hypothesis Testing for Temporal Change in aRPD Values

| Difference Equation                                               | <b>Observed</b><br><b>Difference</b> $(\hat{d})$ | SE $\hat{d}$ | <i>df</i> for<br>SE | Confidence Bounds $(D_L \text{ to } D_U)^1$ | Results <sup>2</sup> |
|-------------------------------------------------------------------|--------------------------------------------------|--------------|---------------------|---------------------------------------------|----------------------|
| $\begin{array}{l} Mound \ B_{2016}-Mound \\ B_{2010} \end{array}$ | -1.06                                            | 0.19         | 19.7                | -1.39 to -0.73                              | S                    |
| $\begin{array}{l} Mound \ C_{2016}-Mound \\ C_{2010} \end{array}$ | -1.17                                            | 0.25         | 18.9                | -1.60 to -0.74                              | S                    |
| $REF_{2016} - REF_{2010}$                                         | -1.27                                            | 0.14         | 10.7                | -1.52 to -1.01                              | S                    |

<sup>1</sup>  $D_L$  and  $D_U$  as defined in [Eq. 3] <sup>2</sup> s = Reject the null hypothesis of inequivalence: the two group means are significantly equivalent, within ± 1.0. d = Fail to reject the null hypothesis of inequivalence between the two group means, the two group means are different.

# Table 3-7.

# Surface Marker Boys Observed During the 2016 CCBDS Multibeam Survey

| <b>Buoy Description</b> | X         | Y         | Latitude      | Longitude     | Depth (m) |
|-------------------------|-----------|-----------|---------------|---------------|-----------|
| White w/Red Flag        | 305228.24 | 852255.46 | 41.9136012 N  | 70.23154461 W | 31.8      |
| Yellow/Red/Black        | 305225.94 | 851368.31 | 41.90561502 N | 70.23173133 W | 31.4      |
| Red/Black               | 305524.18 | 851292.93 | 41.90489643 N | 70.22815078 W | 31.8      |
| Black/Orange            | 306006.28 | 852418.99 | 41.91496881 N | 70.22213774 W | 33.3      |
| Black/Orange            | 306124.07 | 852650.00 | 41.91703256 N | 70.22067627 W | 33.6      |
| Yellow/Black            | 306309.67 | 851980.67 | 41.9109819 N  | 70.21856042 W | 33.2      |
| Black/Orange            | 306360.88 | 852067.05 | 41.9117526 N  | 70.21792758 W | 33.0      |
| Black/Orange            | 306547.53 | 852445.57 | 41.9151349 N  | 70.21560935 W | 33.8      |
| Black/Orange            | 306547.78 | 851568.35 | 41.90723779 N | 70.21576554 W | 33.4      |
| Black/Orange            | 306600.53 | 852452.04 | 41.91518596 N | 70.21496938 W | 33.9      |
| Grey (faded?)           | 306732.50 | 851942.49 | 41.91058088 N | 70.21347141 W | 32.7      |
| Black/Orange            | 306783.75 | 851953.61 | 41.91067403 N | 70.21285172 W | 33.2      |
| Black/Orange            | 306850.19 | 852091.41 | 41.91190553 N | 70.21202591 W | 33.7      |
| Black/Orange            | 306903.02 | 852306.19 | 41.91383188 N | 70.21135008 W | 33.9      |
| Black/Orange            | 306446.17 | 852291.94 | 41.9137656 N  | 70.21685888 W | 33.7      |
| Black/Orange            | 305806.22 | 852306.81 | 41.91398588 N | 70.22456924 W | 34.3      |
| Black/Orange            | 306790.35 | 852007.57 | 41.9111589 N  | 70.21276236 W | 33.0      |



Figure 3-1a. Bathymetric contour map of reference areas – October 2016



Figure 3-1b. Bathymetric contour map of CCBDS – October 2016



Figure 3-2a. Bathymetric depth data over acoustic relief model of reference areas – October 2016



Figure 3-2b. Bathymetric depth data over acoustic relief model of CCBDS – October 2016



Figure 3-3a. Mosaic of unfiltered backscatter data of reference areas – October 2016



Figure 3-3b. Mosaic of unfiltered backscatter data of CCBDS – October 2016



Figure 3-4a. Filtered backscatter over acoustic relief model of reference areas – October 2016



Figure 3-4b. Filtered backscatter over acoustic relief model of CCBDS – October 2016



Figure 3-5a. Side-scan mosaic of reference areas – October 2016



Figure 3-5b. Side-scan mosaic of CCBDS – October 2016


Figure 3-6. CCBDS disposal area elevation difference: 2016 vs. 2010

Monitoring Survey at the Cape Cod Bay Disposal Site October 2016

58



Figure 3-7. Sediment grain size major mode (phi units) at the CCBDS reference area stations



**Figure 3-8.** Sediment-profile images depicting very fine sand at all three reference areas; (A) Station CCBRS-03; (B) Station NWREF-08; and (C) Station SWREF-12

Monitoring Survey at the Cape Cod Bay Disposal Site October 2016

60



Figure 3-9. Mean station camera prism penetration depths (cm) at the CCBDS reference area stations



Figure 3-10. Mean dredged material thickness at the CCBDS reference area stations



Figure 3-11. Mean station small-scale boundary roughness values (cm) at the CCBDS reference area stations



**Figure 3-12.** Plan-view images depicting examples of boundary roughness at reference areas; (A) Station CCBRS-03 showing tubes and a burrow and; (B) Station SWREF-09 showing burrows



Figure 3-13. Mean station aRPD depth values (cm) at the CCBDS reference area stations



**Figure 3-14.** Sediment-profile images of aRPD depth at each reference area; (A) Station CCBRS-03; (B) Station NWREF-07; and (C) Station SWREF-11

Monitoring Survey at the Cape Cod Bay Disposal Site October 2016

66



Figure 3-15. Infaunal successional stages found at the CCBDS reference area stations



**Figure 3-16.** Sediment-profile images from (A) Station CCBRS-03 indicating Stage 1 on 3 fauna represented by tubes at the sediment-water interface and evidence of deeper bioturbation; (B) Station NWREF-06 indicating Stage 2 transitioning to 3 fauna with shallow burrowing; and (C) Station SWREF-10 depicting Stage 1 on 3 represented by small tubes at the sediment-water interface and a burrow with a large, visible worm



Figure 3-17. Mean depth of subsurface feeding voids at the CCBDS reference area stations



**Figure 3-18.** Plan-view images from the reference areas; (A) Station CCBRS-03 depicting burrows and small tubes; (B) Station NWREF-05 depicting burrows and tracks; and (C) Station SWREF-11 depicting burrow openings and tracks







Figure 3-20. Sediment grain size major mode (phi units) at the CCBDS disposal area stations



**Figure 3-21.** Sediment-profile images from disposal Mound B (A) Station B-01 depicting very fine sand with tubes at the sediment-water interface; and (B) Station B-06 showing very coarse sand over silt-clay with shallow burrowing











**Figure 3-24.** Plan-view images depicting examples of boundary roughness at Mound B; (A) Station B-04 showing small tubes and burrows; and (B) Station B-05 depicting a burrow and tracks on the sediment surface



Figure 3-25. Mean dredged material thickness at the CCBDS disposal area stations



**Figure 3-26.** Sediment-profile images from disposal Mound B; (A) Station B-09; and (B) Station B-04 both depicting a thick layer of partially reworked dredged material extending beyond camera prism penetration depth



**Figure 3-27.** Sediment-profile images from disposal Mound B depicting stations that did not show evidence of dredged material at; (A) Station B-07; (B) Station B-10; and (C) Station B-11

Monitoring Survey at the Cape Cod Bay Disposal Site October 2016

79







**Figure 3-29.** Sediment-profile image from disposal Mound C (A) Station C-23 depicting a layer of very fine sand over silt-clay; and (B) Station C-14 showing very fine sand



**Figure 3-30.** Plan-view images depicting examples of boundary roughness at Mound C; (A) Station C-15 depicting a burrow and tracks and; (B) Station C-20 depicting small burrows and tracks



**Figure 3-31.** Sediment-profile images from disposal Mound C; (A) Station C-20 ;(B) Station C-22; and (C) Station C-21 all showing a thick layer of dredged material extending beyond camera prism penetration that has begun being reworked

83



Figure 3-32. Mean station aRPD depth values (cm) at the CCBDS disposal area station



**Figure 3-33.** Sediment-profile images from; (A) Mound B-12 and (B) Mound C-25 both depicting typical aRPD depths for the disposal areas



Figure 3-34. Infaunal successional stages found at the CCBDS disposal area stations



Figure 3-35. Mean depth of subsurface feeding voids at the CCBDS disposal area stations



**Figure 3-36.** Sediment-profile images from disposal Mound C; (A) Station C-15 indicating Stage 1 on 3 fauna represented by tubes at the sediment-water interface and a large organism in a deep burrow; (B) Station C-24 indicating Stage 1 on 3 represented by small tubes at the sediment-water interface and open feeding voids at depth as well as a deep aRPD; and (C) Station C-17 depicting Stage 1 on 3 fauna represented by shallow, open voids, and a large worm visible in a burrow



# **Figure 3-37.** Boxplots showing the distribution of mean aRPD depths measured at the disposal site and reference area stations in the 2016 survey



**Figure 3-38.** Boxplots showing the distribution of mean aRPD depths measured at the disposal area stations and reference area stations in the 2010 and 2016 surveys



Figure 3-39. Surface marker buoy observations during the acoustic survey at CCBDS – October 2016

# 4.0 **DISCUSSION**

### 4.1 Accuracy of Dredged Material Placement

Since September 2010, approximately 270,000 m<sup>3</sup> of material has been placed at Mound C (Figure 1-3) at CCBDS. Prior to September 2010, material was placed at Mound B and at other locations within CCBDS. The topography of the seafloor recorded at CCBDS was characterized by pronounced raised features at Mounds B and C. Mound B contained a distinct elongated peak and reached approximately 7 m in elevation compared to the surrounding area while Mound C formed a rough plateau approximately 3 m above the surrounding area. The distinct topographic features observed in CCBDS were noticeably absent at the reference areas. All three reference areas (CCBRS, NWREF, and SWREF) had a relatively flat seafloor that was devoid of large-scale topographic features.

All stations surveyed at Mound C exhibited dredged material (Appendix E). Elevation comparisons at Mound C between 2010 and 2016 indicated that the material placed during these years increased the height of the mound above the seafloor by up to 3.4 m (Figure 3-6). SPI/PV sampling indicated that stations on the periphery of Mound C also contained dredged material (Figure 3-25). Dredged material was present at all but three stations at Mound B (Figure 3-25). The stations closest to the periphery of the Mound B area did not contain dredged material (Stations B-07, B-10, and B-11; Appendix E). This suggests that historical dredged material placed at Mound B has remained within the site boundaries.

## 4.2 Long Term Stability of Placed Sediment

CCBDS has cumulatively received approximately 766,000 m<sup>3</sup> of dredged material since the selection of this site in 1990 (AECOM 2012). Historically, the largest projects resulted in the creation of Mound A during the 1994-1995 disposal season and the creation of Mound B during the disposal seasons between 1996 and 2001. A 2010 survey found possible evidence of tidal currents winnowing out fine-grained sediments from the peak of Mound B (AECOM 2012). Coarse grained sediments were found to be located at the peak of Mound B in the 2016 survey, suggesting that winnowing had likely occurred with no significant change in peak height.

The most recent placement of close to 270,000 m<sup>3</sup> of dredged material was at Mound C during disposal seasons 2013, 2014, and 2015 (Figure 1-3). Depth difference observations show that a distinct topographic feature was created at Mound C with the deposited material (Figure 3-6). Bathymetric observations of Mound C found the disposal mound was constrained within the boundaries of the disposal area (Figure 3-2b). This suggests that little spatial transport of the deposited material has occurred. Mound C was observed to be a smooth, plateaued topographic high rising approximately 3 m above the surrounding seafloor.

Existing bathymetry at CCBDS showed the maximum height of Mound B to be 6.4 m above the ambient seafloor (peak = -23.6 m MLLW). The mean slope of the sides of Mound B was calculated as 3 degrees (rise/run = 1/19). Assuming a maximum deposit elevation of -23.6 m MLLW and a buffer width adequate to minimize the potential for dredged material sloughing outside of the 1850 m x 1850 m site boundary, the remaining capacity at CCBDS would be approximately 17.4 million m<sup>3</sup>.

#### 4.3 Biological Recovery of the Benthic Community

The results of the 2016 SPI survey indicated a relatively high degree of benthic recolonization at Mound B and Mound C sites at the time of the survey. Recovery of the benthic community at CCBDS was evident in the aRPD depths and successional taxa observed from SPI and plan-view images.

SPI images from Mound B and Mound C showed abundant evidence of mature, deposit-feeding, benthic taxa. The PV images reinforced the SPI results in showing numerous burrow openings, tubes, and tracks on the sediment surface at almost all stations. Stage 3 taxa were equally abundant at all three reference areas with evidence of mature, deposit-feeding fauna observed at all but one station (NWREF 06; Table 3-1). Similar to Mound B and Mound C, there were extensive organism tracks, burrow openings, and pits visible in plan-view images from the reference area stations. Successional stage at both Mound B and Mound C were statistically equivalent to the reference areas which implies that these areas had recovered to background levels.

Mean aRPD depths were statistically equivalent between both Mound B and Mound C disposal areas compared to the reference areas. The aRPD depth is often mediated by biological activity, and its depth within the sediment column provides an indication of biological reworking of the sediment column (Rosenberg et al. 2001; Kristensen et al. 2012). Statistical equivalence in aRPD depths between the disposal and reference areas supports the observation of benthic recovery equivalent to background at Mound B and Mound C.

Temporal comparison of the aRPD depth at the disposal areas (Mound B and Mound C) as well as the temporal comparison at the reference areas (CCBRS, NWREF, and SWREF) found statistical inequivalence between the 2010 and 2016 observations for both groups. Inequivalence is not due to seasonal differences, as both 2010 and 2016 SPI surveys occurred in the fall. The disposal mounds and the reference areas in 2016 were found to have aRPD depths that were shallower than in 2010. Given that aRPD depth and successional stage were found to be statistically equivalent between disposal and reference areas in 2016, the inequivalence found between survey years is likely due to overall change of the aRPD depth in the CCBDS region over time.

#### 4.4 Management Considerations

The patterns of dredged material on the seafloor at CCBDS are detectable based on elevation difference calculations between years of placement, through distinct signatures in
the backscatter and side-scan sonar, and through optical observations from SPI. These patterns indicate that dredged material placed within the Mound B and Mound C areas is stable (Figure 1-3).

There was no identification of dredged material at any of the reference locations, and the sediment characteristics and water depth of the reference areas were similar to the disposal areas. On this basis, the reference areas are still considered valid for comparison with disposal site conditions.

#### 5.0 CONCLUSIONS AND RECOMMENDATIONS

The October 2016 survey at CCBDS was conducted to collect bathymetric data over a portion of the disposal site that received dredged material placed since 2010 and to collect SPI and plan-view imaging at two disposal areas and three reference areas. The survey was designed to assess changes at the site after placement of approximately 270,000 m<sup>3</sup> of dredged material since the previous survey in 2010. The 2016 SPI and bathymetric surveys successfully characterized the seafloor topography and defined the physical characteristics to assess benthic recovery with the following results:

- The benthic communities at the two disposal sites located in the northern portion of CCBDS (Mound B and Mound C) recovered consistent with the expected recovery paradigm. Both Mound B and Mound C were statistically ecologically equivalent to reference stations, confirming a full recovery at both mounds, neither of which have received dredged material for at least one year.
- Mature benthic communities had developed at both disposal mounds, including the most recently used mound (Mound C).
- Dredged material placed at Mound C was constrained to a discrete, plateaued mound, and there were no observations of spatial displacement of deposited material.
- The results of the 2016 survey identified the following recommendations:
  - R1: The presence of stable mounds and normal benthic recolonization indicate that the Mound C could accommodate additional dredged material placement utilizing a similar approach to what has been used in the past.
  - R2: Monitoring efforts should continue consistent with Tiered Monitoring Protocols based on volume placed at site.

#### 6.0 **REFERENCES**

- AECOM. 2012. Monitoring Survey at the Cape Cod Bay Disposal Site, September 2010. DAMOS Contribution No. 188. U.S. Army Corps of Engineers, New England District, Concord, MA, 135 pp.
- Battelle. 2015. Quality Assurance Project Plan (QAPP) for the Disposal Area Monitoring Study (DAMOS) Program (Version 2.0). Prepared by Battelle, Norwell, MA. USACE NAE Contract No. W912WJ-12-D-0004. Submitted to U.S. Army Corps of Engineers, New England District, Concord, MA, 50 pp. May 1, 2015.
- Bull, D. C.; Williamson, R. B. 2001. Prediction of Principal Metal-Binding Solid Phases in Estuarine Sediments from Color Image Analysis. Environmental Science and Technology 35: 1658-1662.
- Carey, D. A.; Hickey, K.; Germano, J. D.; Read, L. B.; Esten, M. E. 2013. Monitoring Survey at the Massachusetts Bay Disposal Site September/October 2012. DAMOS Contribution No. 195. U.S. Army Corps of Engineers, New England District, Concord, MA, 87 pp.
- CR Environmental. 1997. Final Report Cape Cod Bay Disposal Site first year monitoring. Commonwealth of Massachusetts Executive Office of Environmental Affairs, Department of Environmental Management, Office of Waterways, Hingham, MA.
- ENSR. 2004. Monitoring Survey at the Cape Cod Bay Disposal Site, August 2003. DAMOS Contribution No. 157. U.S. Army Corps of Engineers, New England District, Concord, MA, 74 pp.
- Fenchel, T. 1969. The ecology of marine macrobenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6: 1-182.
- Fredette, T. J.; French, G. T. 2004. Understanding the physical and environmental consequences of dredged material disposal: history in New England and current perspectives. Mar. Pollut. Bull. 49:93–102.
- Germano, J. D. 1983. Infaunal succession in Long Island Sound: Animal sediment interactions and the effects of predation. Ph.D. dissertation, Yale University, New Haven, CT.
- Germano, J. D. 1999. Ecology, statistics, and the art of misdiagnosis: The need for a paradigm shift. Environ. Rev. 7(4):167–190.
- Germano, J. D.; Rhoads, D. C.; Lunz, J. D. 1994. An Integrated, Tiered Approach to Monitoring and Management of Dredged Material Disposal Sites in the New England

Regions. DAMOS Contribution No. 87. U.S. Army Corps of Engineers, New England Division, Waltham, MA, 67 pp.

- Germano, J. D.; Rhoads, D. C.; Valente, R. M.; Carey, D. A.; Solan, M. 2011. The use of sediment-profile imaging (SPI) for environmental impact assessments and monitoring studies: lessons learned from the past four decades. Oceanogr. Mar. Biol. Ann. Rev.
- Kristensen, E.; Penha-Lopes, G.; Delefosse, M.; Valdemarsen, T.; Quintana, C.; Banta, G. T. 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446: 285-302.
- Lyle, M. 1983. The brown-green colour transition in marine sediments: A marker of the Fe (III) – Fe(II) redox boundary. Limnology and Oceanography 28: 1026-1033.49:235– 285.
- McBride, G. B. 1999. Equivalence tests can enhance environmental science and management. Aust. New Zeal. J. Stat. 41(1):19–29.
- National Oceanic and Atmospheric Association (NOAA). 2015. NOS Hydrographic Surveys Specifications and Deliverables. May 2015.
- Ocean Surveys, Inc. 1995a. Final report pre-disposal surveys, Cape Cod Bay Disposal Site, Cape Cod Bay, Massachusetts. OSI Report #94ES024F. Old Saybrook, CT.
- Ocean Surveys, Inc. 1995b. Final report post-disposal surveys, Cape Cod Bay Disposal Site, Cape Cod Bay, Massachusetts. OSI Report #94ES117. Old Saybrook, CT.
- Pearson, T. H.; Rosenberg, R. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology an Annual Review 16: 229–311.
- Reible, D.; Thibodeaux, L. 1999. Using Natural Processes to Define Exposure from Sediments, in Sediment Management Work Group; Contaminated Sediment Management Technical Papers, Sediment Management Work Group, http://www.smwg.org/index.htm.
- Rhoads, D.C. 1974. Organism-sediment relations on the muddy seafloor. Oceanography and Marine Biology an Annual Review 12: 263 300.
- Rhoads, D. C.; Boyer, L. F. 1982. The effects of marine benthos on physical properties of sediments. pp. 3-52. In: Animal-Sediment Relations. McCall, P.L. and M.J.S. Tevesz (eds). Plenum Press, New York, NY.

- Rhoads, D. C.; Germano, J. D. 1982. Characterization of organism-sediment relations using sediment profile imaging: An efficient method of Remote Ecological Monitoring of The Seafloor (REMOTS® System). Mar. Ecol. Prog. Ser. 8:115–128.
- Rosenberg, R.; Diaz, R. J. 1993. Sulfur bacteria (*Beggiatoa* spp.) mats indicate hypoxic conditions in the inner Stockholm Archipelago. Ambio 22: 32–36.
- Rosenberg, R.; Nilsson, H. C.; Diaz, R. J. 2001. Response of benthic fauna and changing sediment redox profiles over a hypoxic gradient. Estuarine, Coastal and Shelf Science 53: 343-350.
- SAIC. 2003. Monitoring survey at the Cape Cod Bay Disposal Site, August 2001. DAMOS Contribution No. 144 (SAIC Report No. 574). US Army Corps of Engineers, New England Division, Concord, MA.
- Satterthwaite, F. E. 1946. "An Approximate Distribution of Estimates of Variance Components", Biometrics Bulletin, Vol. 2, No. 6, pp. 110-114.
- Schuirmann, D. J. 1987. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokinet. Biopharm. 15:657–680.
- Simone, M.; Grant, J. 2017. Visual assessment of redoxcline compared to electron potential in coastal marine sediments. Estuarine, Coastal and Shelf Science 188: 156-162.
- USACE. 2013. Engineering and Design Hydrographic Surveying. Manual No. EM 1110-2-1003. November 2013.
- Valente, R. M.; Carey, D. A.; Read, L.B.; Esten, M. E. 2012. Monitoring Survey at the Central Long Island Sound Disposal Site October 2009. DAMOS Contribution No. 184. U.S. Army Corps of Engineers, New England District, Concord, MA, 90 pp.
- Wolf, S.; Fredette, T. J.; Loyd, R. B. 2012. Thirty-Five Years of Dredged Material Disposal Area Monitoring – Current Work and Perspectives of the DAMOS Program. WEDA Journal of Dredging Engineering, Vol. 12, No. 2, p.24-41.
- Zar, J. H. 1996. Biostatistical Analysis, Third Edition. Prentice Hall, New Jersey. 662 pp. + Appendices.

#### INDEX

accumulation, 1, 33 acoustic relief model, 14, 32, 50, 51, 54, 55 ambient, 22, 93 ANOVA, 23 apparent redox potential discontinuity (aRPD), viii, x, 3, 19, 21, 22, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 65, 66, 84, 85, 88, 89, 90, 93 backscatter, x, 1, 11, 12, 14, 32, 33, 52, 53, 54, 55, 94 barge, 3, 33 baseline, 2, 3 bathymetric survey, 4, 12, 32, 95 bathymetry, 6, 10, 28, 32, 33, 93 bedform, 20 Beggiatoa, 19, 20, 21 benthic, x, xi, 1, 2, 3, 4, 14, 18, 19, 20, 21, 30, 32, 34, 93, 95 benthic recolonization, x, xi, 3, 4, 18, 21, 93, 95 bioturbation, 20, 68 boundary roughness, 18, 34, 35, 36, 63, 64, 75, 76, 82 buoy, 2, 3, 23, 39, 47, 91 burrow, 18, 20, 34, 35, 36, 37, 64, 68, 70, 76, 82, 88, 93 carbon, ix, 20 confined aquatic disposal (CAD), 3, 7 contaminant, 20 cores, 20 cross section, 20 cross-line, 12, 25 currents, 2, 3, 19, 92 datum, viii, ix density, 12, 20, 35 depositional, 2, 16 disposal mound, x, xi, 1, 2, 3, 4, 5, 7, 10, 11, 18, 21, 22, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 46, 73, 76, 78, 79, 81, 82, 83, 85, 88, 92, 93, 94, 95 disposal site Cape Cod Bay Disposal Site (CCBDS), viii, x, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12,

15, 17, 23, 26, 27, 28, 32, 33, 39, 40, 41, 42, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 69, 72, 74, 75, 77, 84, 86, 87, 91, 92, 93, 95 dissolved oxygen (DO), viii, 34, 36 dredged material, x, xi, 1, 2, 3, 4, 11, 15, 18, 19, 20, 32, 33, 34, 35, 36, 41, 42, 62, 77, 78, 79, 83, 92, 93, 94, 95 dredging, 2, 3 elevation difference, 33, 58, 93 epifauna, 20, 21, 35, 36 feeding void, 35, 40, 41, 42, 43 global positioning system (GPS), viii, ix, 11, 12, 13, 16, 17, 23 differential global positioning system (DGPS), viii, 11, 17 grain size, 18, 34, 35, 59, 72 sand, 35, 60, 73, 81 silt, 35, 73, 81 silt-clay, 35, 73, 81 habitat, 1, 2 hypoxic, 19 impact feature, 33 inequivalence, 21, 23, 37, 44, 45, 46, 93 macrofauna, 20 methane, 19, 34, 35, 36, 40, 41, 42, 80 multibeam multibeam echo sounder (MBES), viii, 12, 13, 14 National Oceanic and Atmospheric Administration (NOAA), viii, ix, 13, 14 native, 33 New Bedford Harbor, 3, 7 penetration depth, 15, 18, 34 phi, 18, 34, 35, 40, 41, 42, 59, 72 polychaete, 20 porewater, 19 prism penetration, 15, 34, 35, 36, 41, 42, 61, 74, 78, 83 PV plan-view imaging, ix, x, 1, 3, 14, 15, 16, 17, 18, 20, 29, 31, 33, 35, 36, 37, 93, 95

Monitoring Survey at the Cape Cod Bay Disposal Site October 2016

real-time kinematic (RTK), ix, 11, 13 recolonization, x, xi, 3, 4, 18, 21, 93, 95 reference area, x, 3, 4, 11, 15, 21, 22, 32, 33, 34, 35, 37, 38, 40, 48, 50, 52, 54, 56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 89, 90, 92, 93, 94, 95 ripple, 18 sediment, ix, x, xi, 1, 2, 4, 6, 11, 14, 15, 16, 18, 19, 20, 21, 29, 31, 32, 33, 34, 35, 36, 40, 41, 42, 59, 60, 66, 68, 72, 73, 76, 78, 79, 80, 81, 83, 85, 88, 92, 93, 94 sediment grab sample, 2, 6, 11 sediment sampling, 6 side-scan sonar, x, 1, 6, 11, 12, 14, 32, 33, 56, 57, 94 sound velocity profile (SVP), 12 sounding, 13, 25 SPI sediment-profile camera, 16 sediment-profile imaging (SPI), ix, x, 1, 2, 3, 4, 6, 11, 15, 16, 17, 18, 19, 20, 21, 26, 32, 33, 92, 93, 94, 95 SPI/PV

sediment-profile and plan-view imaging, 2, 3, 4, 11, 15, 16, 17, 18, 26, 32, 92 statistical testing, 22, 44, 45, 46 successional stage, x, 3, 19, 21, 22, 34, 35, 36, 37, 38, 67, 68, 86, 88, 93 surface boundary roughness, 18, 34, 35, 36, 63, 64, 75, 76, 82 survey, x, xi, 1, 2, 3, 4, 6, 7, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 25, 27, 32, 33, 37, 39, 47, 89, 91, 92, 93, 95 taxa, 20, 34, 35, 36, 37, 93 tide, ix, 13, 25 topography, x, 2, 4, 11, 20, 32, 34, 92, 95 total organic carbon (TOC), ix trackline, 27 tracks, 21, 33, 35, 36, 37, 70, 76, 82, 93 transducer, 12 transect, 11, 12, 25 transport, 20, 92 U.S. Army Corps of Engineers, viii, ix, 1, 7, 11, 13 worm, 68, 88 worm tubes, 20, 34, 35, 36, 37, 64, 68, 70, 73, 76, 88, 93

#### APPENDIX A

## TABLE OF COMMON CONVERSIONS

#### APPENDIX A

### TABLE OF COMMON CONVERSIONS

-

| Metric Unit Conver | sion to English Unit    | English Unit Conv | version to Metric Unit |
|--------------------|-------------------------|-------------------|------------------------|
| 1 meter            | 3.2808 ft.              | 1 foot            | 0.3048 m               |
| 1 m                |                         | 1 ft.             |                        |
| 1 square meter     | 10.7639 ft <sup>2</sup> | 1 square foot     | $0.0929 \text{ m}^2$   |
| 1 m <sup>2</sup>   |                         | $1 \text{ ft}^2$  |                        |
| 1 kilometer        | 0.6214 mi               | 1 mile            | 1.6093 km              |
| 1 km               |                         | 1 mi              |                        |
| 1 cubic meter      | 1.3080 yd <sup>3</sup>  | 1 cubic yard      | 0.7646 m <sup>3</sup>  |
| 1 m <sup>3</sup>   |                         | $1 \text{ yd}^3$  |                        |
| 1 centimeter       | 0.3937 in               | 1 inch            | 2.54 cm                |
| 1 cm               |                         | 1 in              |                        |
|                    |                         |                   |                        |

#### APPENDIX B

# CCBDS DISPOSAL LOG DATA FOR DISPOSAL SEASONS 2013, 2014, AND 2015

| Placement site name | Project name            | Permit number | Target<br>Site Code | Placement<br>date/time | Placement<br>latitude | Placement<br>longitude | City/town   | State | Load volume<br>(cubic meters) | Load volume<br>(cubic yards) | DQM trip<br>number | Placement<br>ID |
|---------------------|-------------------------|---------------|---------------------|------------------------|-----------------------|------------------------|-------------|-------|-------------------------------|------------------------------|--------------------|-----------------|
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 03-Jun-13              | 41.910793             | -70.227423             | New Bedford | MA    | 1,918                         | 2,508                        | 1533048            | 57248           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 03-Jun-13              | 41.910417             | -70.227805             | New Bedford | MA    | 1,918                         | 2,508                        | 1533052            | 57245           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 04-Jun-13              | 41.910135             | -70.226812             | New Bedford | MA    | 1,918                         | 2,508                        | 1535724            | 57247           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 07-Jun-13              | 41.91027              | -70.227812             | New Bedford | MA    | 1,918                         | 2,508                        | 1558004            | 57254           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 09-Jun-13              | 41.911143             | -70.228012             | New Bedford | MA    | 1,918                         | 2,508                        | 1557995            | 57256           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 09-Jun-13              | 41.910263             | -70.227907             | New Bedford | MA    | 1,918                         | 2,508                        | 1557988            | 57255           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 10-Jun-13              | 41.910715             | -70.227627             | New Bedford | MA    | 1,918                         | 2,508                        | 1558005            | 57257           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 10-Jun-13              | 41.911253             | -70.227183             | New Bedford | MA    | 1,918                         | 2,508                        | 1557989            | 57259           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 11-Jun-13              | 41.910432             | -70.22883              | New Bedford | MA    | 1,918                         | 2,508                        | 1558006            | 57260           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 11-Jun-13              | 41.91038              | -70.228945             | New Bedford | MA    | 1,918                         | 2,508                        | 1561735            | 57261           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 12-Jun-13              | 41.910143             | -70.22785              | New Bedford | MA    | 1,918                         | 2,508                        | 1561741            | 57262           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 13-Jun-13              | 41.910255             | -70.226927             | New Bedford | MA    | 1,918                         | 2,508                        | 1565367            | 57263           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 13-Jun-13              | 41.910302             | -70.227758             | New Bedford | MA    | 1,918                         | 2,508                        | 1565354            | 57264           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 13-Jun-13              | 41.910832             | -70.228085             | New Bedford | MA    | 1,918                         | 2,508                        | 1568898            | 57265           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 15-Jun-13              | 41.911055             | -70.227967             | New Bedford | MA    | 1,918                         | 2,508                        | 1581515            | 57266           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 15-Jun-13              | 41.910713             | -70.227648             | New Bedford | MA    | 1,918                         | 2,508                        | 1581501            | 57267           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 16-Jun-13              | 41.911058             | -70.226752             | New Bedford | MA    | 1,918                         | 2,508                        | 1581511            | 57271           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 18-Jun-13              | 41.910355             | -70.227838             | New Bedford | MA    | 1,918                         | 2,508                        | 1584822            | 57274           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 18-Jun-13              | 41.911372             | -70.2283               | New Bedford | MA    | 1,918                         | 2,508                        | 1589049            | 57275           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 18-Jun-13              | 41.910353             | -70.227503             | New Bedford | MA    | 1,918                         | 2,508                        | 1589058            | 57276           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 19-Jun-13              | 41.910233             | -70.227873             | New Bedford | MA    | 1,918                         | 2,508                        | 1592403            | 57277           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 19-Jun-13              | 41.90991              | -70.227802             | New Bedford | MA    | 1,918                         | 2,508                        | 1592402            | 57278           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 20-Jun-13              | 41.91066              | -70.228197             | New Bedford | MA    | 1,918                         | 2,508                        | 1592406            | 57279           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 27-Jun-13              | 41.91062              | -70.228198             | New Bedford | MA    | 1,918                         | 2,508                        | 1683872            | 57300           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 28-Jun-13              | 41.910275             | -70.227792             | New Bedford | MA    | 1,918                         | 2,508                        | 1635318            | 57301           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 28-Jun-13              | 41.910137             | -70.227002             | New Bedford | MA    | 1,918                         | 2,508                        | 1635322            | 57302           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 29-Jun-13              | 41.91162              | -70.226662             | New Bedford | MA    | 1,918                         | 2,508                        | 1635310            | 57304           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 29-Jun-13              | 41.910497             | -70.22797              | New Bedford | MA    | 1,918                         | 2,508                        | 1635369            | 57303           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 29-Jun-13              | 41.910378             | -70.227592             | New Bedford | MA    | 1,918                         | 2,508                        | 1635319            | 57305           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 30-Jun-13              | 41.91076              | -70.227675             | New Bedford | MA    | 1,918                         | 2,508                        | 1635323            | 57306           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 30-Jun-13              | 41.910157             | -70.226973             | New Bedford | MA    | 1,918                         | 2,508                        | 1635311            | 57307           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 01-Jul-13              | 41.910533             | -70.227718             | New Bedford | MA    | 1,918                         | 2,508                        | 1635341            | 57308           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 01-Jul-13              | 41.910412             | -70.227727             | New Bedford | MA    | 1,918                         | 2,508                        | 1635334            | 57309           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 01-Jul-13              | 41.910467             | -70.228157             | New Bedford | MA    | 1,918                         | 2,508                        | 1635324            | 57310           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 02-Jul-13              | 41.910753             | -70.227108             | New Bedford | MA    | 1,918                         | 2,508                        | 1635448            | 57312           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 02-Jul-13              | 41.91062              | -70.227288             | New Bedford | MA    | 1,918                         | 2,508                        | 1635441            | 57313           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 02-Jul-13              | 41.910067             | -70.227915             | New Bedford | MA    | 1,918                         | 2,508                        | 1635437            | 57311           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 03-Jul-13              | 41.910258             | -70.227857             | New Bedford | MA    | 1,918                         | 2,508                        | 1635449            | 57315           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 11-Jul-13              | 41.90998              | -70.225503             | New Bedford | MA    | 1,918                         | 2,508                        | 1665980            | 57333           |

| Placement site name | Project name            | Permit number | Target<br>Site Code | Placement<br>date/time | Placement<br>latitude | Placement<br>longitude | City/town   | State | Load volume<br>(cubic meters) | Load volume<br>(cubic yards) | DQM trip<br>number | Placement<br>ID |
|---------------------|-------------------------|---------------|---------------------|------------------------|-----------------------|------------------------|-------------|-------|-------------------------------|------------------------------|--------------------|-----------------|
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 11-Jul-13              | 41.910347             | -70.227758             | New Bedford | MA    | 1,918                         | 2,508                        | 1665972            | 57332           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 12-Jul-13              | 41.910905             | -70.227305             | New Bedford | MA    | 1,918                         | 2,508                        | 1666010            | 57335           |
| CCBDS               | New Bedford Harbor CAD3 | NAE-2007-2709 | CCBDS 12/13         | 26-Aug-13              | 41.910263             | -70.228233             | New Bedford | MA    | 1,918                         | 2,508                        | 2055353            | 57344           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 07-Oct-14              | 41.91178              | -70.22738              | Eastham     | MA    | 261                           | 342                          | 1                  | 56179           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 08-Oct-14              | 41.91228              | -70.2283               | Eastham     | MA    | 261                           | 342                          | 1                  | 56213           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 08-Oct-14              | 41.91153              | -70.22667              | Eastham     | MA    | 261                           | 342                          | 2                  | 56180           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 09-Oct-14              | 41.91155              | -70.2271               | Eastham     | MA    | 261                           | 342                          | 2                  | 56214           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 09-Oct-14              | 41.9124               | -70.22707              | Eastham     | MA    | 261                           | 342                          | 3                  | 56181           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 10-Oct-14              | 41.91195              | -70.22852              | Eastham     | MA    | 261                           | 342                          | 3                  | 56215           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 10-Oct-14              | 41.91212              | -70.22757              | Eastham     | MA    | 261                           | 342                          | 4                  | 56182           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 10-Oct-14              | 41.91188              | -70.22702              | Eastham     | MA    | 261                           | 342                          | 4                  | 56216           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 10-Oct-14              | 41.9123               | -70.22722              | Eastham     | MA    | 261                           | 342                          | 5                  | 56183           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 11-Oct-14              | 41.91198              | -70.22738              | Eastham     | MA    | 261                           | 342                          | 6                  | 56184           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 11-Oct-14              | 41.91172              | -70.22775              | Eastham     | MA    | 261                           | 342                          | 5                  | 56217           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 11-Oct-14              | 41.91145              | -70.22792              | Eastham     | MA    | 261                           | 342                          | 7                  | 56185           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 12-Oct-14              | 41.91158              | -70.22765              | Eastham     | MA    | 261                           | 342                          | 6                  | 56218           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 12-Oct-14              | 41.91183              | -70.22847              | Eastham     | MA    | 261                           | 342                          | 8                  | 56186           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 12-Oct-14              | 41.91155              | -70.22783              | Eastham     | MA    | 261                           | 342                          | 7                  | 56219           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 12-Oct-14              | 41.91235              | -70.22845              | Eastham     | MA    | 261                           | 342                          | 9                  | 56187           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 13-Oct-14              | 41.91232              | -70.22708              | Eastham     | MA    | 261                           | 342                          | 10                 | 56188           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 13-Oct-14              | 41.91138              | -70.22815              | Eastham     | MA    | 261                           | 342                          | 8                  | 56220           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 13-Oct-14              | 41.91205              | -70.22758              | Eastham     | MA    | 261                           | 342                          | 11                 | 56189           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 14-Oct-14              | 41.91183              | -70.22817              | Eastham     | MA    | 261                           | 342                          | 9                  | 56221           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 14-Oct-14              | 41.91247              | -70.22847              | Eastham     | MA    | 261                           | 342                          | 12                 | 56190           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 15-Oct-14              | 41.91158              | -70.22813              | Eastham     | MA    | 261                           | 342                          | 10                 | 56222           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 15-Oct-14              | 41.91133              | -70.22822              | Eastham     | MA    | 261                           | 342                          | 13                 | 56191           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 15-Oct-14              | 41.91197              | -70.22857              | Eastham     | MA    | 261                           | 342                          | 11                 | 56223           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 15-Oct-14              | 41.91152              | -70.22713              | Eastham     | MA    | 261                           | 342                          | 14                 | 56192           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 16-Oct-14              | 41.9113               | -70.22725              | Eastham     | MA    | 261                           | 342                          | 15                 | 56193           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 16-Oct-14              | 41.91173              | -70.22758              | Eastham     | MA    | 261                           | 342                          | 12                 | 56224           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 16-Oct-14              | 41.91153              | -70.22678              | Eastham     | MA    | 261                           | 342                          | 16                 | 56194           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 16-Oct-14              | 41.912                | -70.22773              | Eastham     | MA    | 261                           | 342                          | 13                 | 56225           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 17-Oct-14              | 41.91153              | -70.22762              | Eastham     | MA    | 261                           | 342                          | 14                 | 56226           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 17-Oct-14              | 41.9118               | -70.22765              | Eastham     | MA    | 261                           | 342                          | 17                 | 56195           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 17-Oct-14              | 41.91245              | -70.22742              | Eastham     | MA    | 261                           | 342                          | 15                 | 56227           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 17-Oct-14              | 41.91178              | -70.22772              | Eastham     | MA    | 261                           | 342                          | 18                 | 56196           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 18-Oct-14              | 41.91205              | -70.22783              | Eastham     | MA    | 261                           | 342                          | 19                 | 56197           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 18-Oct-14              | 41.91162              | -70.22692              | Eastham     | MA    | 261                           | 342                          | 16                 | 56228           |
| CCBDS               | Rock Harbor             | NAE-2013-1792 | CCBDS               | 18-Oct-14              | 41.90957              | -70.22542              | Eastham     | MA    | 261                           | 342                          | 17                 | 56229           |

| Placement site name | Project name | Permit number | Target<br>Site Code | Placement<br>date/time | Placement<br>latitude | Placement<br>longitude | City/town | State | Load volume<br>(cubic meters) | Load volume<br>(cubic yards) | DQM trip<br>number | Placement<br>ID |
|---------------------|--------------|---------------|---------------------|------------------------|-----------------------|------------------------|-----------|-------|-------------------------------|------------------------------|--------------------|-----------------|
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 18-Oct-14              | 41.91198              | -70.22763              | Eastham   | MA    | 261                           | 342                          | 20                 | 56198           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 20-Oct-14              | 41.91218              | -70.22672              | Eastham   | MA    | 261                           | 342                          | 18                 | 56230           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 21-Oct-14              | 41.91092              | -70.22723              | Eastham   | MA    | 261                           | 342                          | 19                 | 56231           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 21-Oct-14              | 41.91102              | -70.22658              | Eastham   | MA    | 261                           | 342                          | 21                 | 56199           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 21-Oct-14              | 41.91007              | -70.22635              | Eastham   | MA    | 261                           | 342                          | 20                 | 56232           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 21-Oct-14              | 41.9098               | -70.22445              | Eastham   | MA    | 261                           | 342                          | 22                 | 56200           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 22-Oct-14              | 41.91193              | -70.2272               | Eastham   | MA    | 261                           | 342                          | 21                 | 56233           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 22-Oct-14              | 41.91182              | -70.22713              | Eastham   | MA    | 261                           | 342                          | 23                 | 56201           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 22-Oct-14              | 41.91143              | -70.22785              | Eastham   | MA    | 261                           | 342                          | 22                 | 56234           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 22-Oct-14              | 41.91233              | -70.22697              | Eastham   | MA    | 261                           | 342                          | 24                 | 56202           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 25-Oct-14              | 41.91235              | -70.2273               | Eastham   | MA    | 261                           | 342                          | 23                 | 56235           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 26-Oct-14              | 41.91175              | -70.22735              | Eastham   | MA    | 261                           | 342                          | 24                 | 56236           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 26-Oct-14              | 41.9119               | -70.22687              | Eastham   | MA    | 261                           | 342                          | 25                 | 56203           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 26-Oct-14              | 41.91157              | -70.22817              | Eastham   | MA    | 261                           | 342                          | 26                 | 56204           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 27-Oct-14              | 41.9112               | -70.22815              | Eastham   | MA    | 261                           | 342                          | 28                 | 56206           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 27-Oct-14              | 41.91192              | -70.22702              | Eastham   | MA    | 261                           | 342                          | 27                 | 56205           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 28-Oct-14              | 41.91192              | -70.22715              | Eastham   | MA    | 261                           | 342                          | 25                 | 56237           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 28-Oct-14              | 41.91178              | -70.22707              | Eastham   | MA    | 261                           | 342                          | 26                 | 56238           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 28-Oct-14              | 41.9123               | -70.22797              | Eastham   | MA    | 261                           | 342                          | 29                 | 56207           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 29-Oct-14              | 41.91218              | -70.22773              | Eastham   | MA    | 261                           | 342                          | 27                 | 56239           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 29-Oct-14              | 41.91213              | -70.22673              | Eastham   | MA    | 261                           | 342                          | 30                 | 56208           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 29-Oct-14              | 41.91235              | -70.2273               | Eastham   | MA    | 261                           | 342                          | 28                 | 56240           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 29-Oct-14              | 41.91273              | -70.22787              | Eastham   | MA    | 261                           | 342                          | 31                 | 56209           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 30-Oct-14              | 41.91183              | -70.22768              | Eastham   | MA    | 261                           | 342                          | 29                 | 56241           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 30-Oct-14              | 41.91203              | -70.22705              | Eastham   | MA    | 261                           | 342                          | 32                 | 56210           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 30-Oct-14              | 41.91197              | -70.22772              | Eastham   | MA    | 261                           | 342                          | 30                 | 56242           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 31-Oct-14              | 41.91197              | -70.22702              | Eastham   | MA    | 261                           | 342                          | 33                 | 56211           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 31-Oct-14              | 41.91192              | -70.22812              | Eastham   | MA    | 261                           | 342                          | 31                 | 56243           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 31-Oct-14              | 41.91243              | -70.22722              | Eastham   | MA    | 261                           | 342                          | 34                 | 56212           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 04-Nov-14              | 41.91197              | -70.22733              | Eastham   | MA    | 261                           | 342                          | 32                 | 56265           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 04-Nov-14              | 41.91213              | -70.22722              | Eastham   | MA    | 261                           | 342                          | 35                 | 56244           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 04-Nov-14              | 41.91188              | -70.22733              | Eastham   | MA    | 261                           | 342                          | 33                 | 56266           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 05-Nov-14              | 41.91198              | -70.22708              | Eastham   | MA    | 261                           | 342                          | 36                 | 56245           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 05-Nov-14              | 41.91215              | -70.22805              | Eastham   | MA    | 261                           | 342                          | 34                 | 56267           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 05-Nov-14              | 41.91183              | -70.22697              | Eastham   | MA    | 261                           | 342                          | 37                 | 56246           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 06-Nov-14              | 41.91162              | -70.22792              | Eastham   | MA    | 261                           | 342                          | 35                 | 56268           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 06-Nov-14              | 41.91188              | -70.22837              | Eastham   | MA    | 261                           | 342                          | 38                 | 56247           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 06-Nov-14              | 41.91175              | -70.22857              | Eastham   | MA    | 261                           | 342                          | 36                 | 56269           |
| CCBDS               | Rock Harbor  | NAE-2013-1792 | CCBDS               | 06-Nov-14              | 41.91223              | -70.22817              | Eastham   | MA    | 261                           | 342                          | 39                 | 56248           |

| Placement site name | Project name    | Permit number | Target<br>Site Code | Placement<br>date/time | Placement<br>latitude | Placement<br>longitude | City/town | State | Load volume<br>(cubic meters) | Load volume<br>(cubic yards) | DQM trip<br>number | Placement<br>ID |
|---------------------|-----------------|---------------|---------------------|------------------------|-----------------------|------------------------|-----------|-------|-------------------------------|------------------------------|--------------------|-----------------|
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 07-Nov-14              | 41.91203              | -70.22763              | Eastham   | MA    | 261                           | 342                          | 37                 | 56270           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 07-Nov-14              | 41.91173              | -70.22763              | Eastham   | MA    | 261                           | 342                          | 40                 | 56249           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 08-Nov-14              | 41.91173              | -70.22717              | Eastham   | MA    | 261                           | 342                          | 38                 | 56271           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 09-Nov-14              | 41.91132              | -70.2272               | Eastham   | MA    | 261                           | 342                          | 39                 | 56272           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 09-Nov-14              | 41.91247              | -70.22783              | Eastham   | MA    | 261                           | 342                          | 41                 | 56250           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 09-Nov-14              | 41.91195              | -70.2272               | Eastham   | MA    | 261                           | 342                          | 40                 | 56273           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 09-Nov-14              | 41.91202              | -70.22725              | Eastham   | MA    | 261                           | 342                          | 42                 | 56251           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 10-Nov-14              | 41.91157              | -70.22748              | Eastham   | MA    | 261                           | 342                          | 41                 | 56274           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 10-Nov-14              | 41.91213              | -70.22783              | Eastham   | MA    | 261                           | 342                          | 43                 | 56252           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 10-Nov-14              | 41.9117               | -70.22807              | Eastham   | MA    | 261                           | 342                          | 42                 | 56275           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 10-Nov-14              | 41.91223              | -70.22757              | Eastham   | MA    | 261                           | 342                          | 44                 | 56253           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 11-Nov-14              | 41.91197              | -70.2284               | Eastham   | MA    | 261                           | 342                          | 43                 | 56276           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 11-Nov-14              | 41.91215              | -70.22727              | Eastham   | MA    | 261                           | 342                          | 45                 | 56254           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 11-Nov-14              | 41.91185              | -70.22783              | Eastham   | MA    | 261                           | 342                          | 44                 | 56277           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 11-Nov-14              | 41.91242              | -70.228                | Eastham   | MA    | 261                           | 342                          | 46                 | 56255           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 12-Nov-14              | 41.91178              | -70.22803              | Eastham   | MA    | 261                           | 342                          | 45                 | 56278           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 12-Nov-14              | 41.91163              | -70.2271               | Eastham   | MA    | 261                           | 342                          | 47                 | 56256           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 13-Nov-14              | 41.91157              | -70.22858              | Eastham   | MA    | 261                           | 342                          | 46                 | 56279           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 13-Nov-14              | 41.9119               | -70.22733              | Eastham   | MA    | 261                           | 342                          | 47                 | 56280           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 13-Nov-14              | 41.91245              | -70.22758              | Eastham   | MA    | 261                           | 342                          | 48                 | 56257           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 14-Nov-14              | 41.9118               | -70.22737              | Eastham   | MA    | 261                           | 342                          | 49                 | 56258           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 16-Nov-14              | 41.91185              | -70.22733              | Eastham   | MA    | 261                           | 342                          | 51                 | 56259           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 16-Nov-14              | 41.91192              | -70.22708              | Eastham   | MA    | 261                           | 342                          | 48                 | 56281           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 17-Nov-14              | 41.9115               | -70.22767              | Eastham   | MA    | 261                           | 342                          | 49                 | 56282           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 19-Nov-14              | 41.91177              | -70.22735              | Eastham   | MA    | 261                           | 342                          | 50                 | 56283           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 20-Nov-14              | 41.91207              | -70.22708              | Eastham   | MA    | 261                           | 342                          | 53                 | 56261           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 20-Nov-14              | 41.91272              | -70.22653              | Eastham   | MA    | 261                           | 342                          | 51                 | 56284           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 21-Nov-14              | 41.91218              | -70.22743              | Eastham   | MA    | 261                           | 342                          | 52                 | 56260           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 23-Nov-14              | 41.91263              | -70.22768              | Eastham   | MA    | 261                           | 342                          | 53                 | 56285           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 24-Nov-14              | 41.9115               | -70.22742              | Eastham   | MA    | 261                           | 342                          | 54                 | 56286           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 24-Nov-14              | 41.91255              | -70.22718              | Eastham   | MA    | 261                           | 342                          | 55                 | 56287           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 24-Nov-14              | 41.91137              | -70.22712              | Eastham   | MA    | 261                           | 342                          | 54                 | 56262           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 25-Nov-14              | 41.9121               | -70.22665              | Eastham   | MA    | 261                           | 342                          | 56                 | 56288           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 25-Nov-14              | 41.912                | -70.22712              | Eastham   | MA    | 261                           | 342                          | 55                 | 56263           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 25-Nov-14              | 41.91252              | -70.22675              | Eastham   | MA    | 261                           | 342                          | 57                 | 56289           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 26-Nov-14              | 41.91195              | -70.22735              | Eastham   | MA    | 261                           | 342                          | 56                 | 56264           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 26-Nov-14              | 41.91158              | -70.22707              | Eastham   | MA    | 261                           | 342                          | 58                 | 56290           |
| CCBDS               | Rock Harbor     | NAE-2013-1792 | CCBDS               | 29-Nov-14              | 41.91173              | -70.22778              | Eastham   | MA    | 261                           | 342                          | 59                 | 56291           |
| CCBDS               | Town of Duxbury | NAE-2010-1589 | CCBDS 15/16         | 30-Jan-15              | 41.91147              | -70.22827              | Duxbury   | MA    | 1,213                         | 1,586                        | 4993350            | 57447           |

| Placement site name | Project name       | Permit number    | Target<br>Site Code | Placement<br>date/time | Placement<br>latitude | Placement<br>longitude | City/town | State | Load volume<br>(cubic meters) | Load volume<br>(cubic yards) | DQM trip<br>number | Placement<br>ID |
|---------------------|--------------------|------------------|---------------------|------------------------|-----------------------|------------------------|-----------|-------|-------------------------------|------------------------------|--------------------|-----------------|
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 15-Oct-15              | 41.91248              | -70.22678              | Duxbury   | MA    | 995                           | 1,302                        | 4583229            | 57464           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 18-Oct-15              | 41.91143              | -70.22682              | Duxbury   | MA    | 995                           | 1,302                        | 4601712            | 57479           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 20-Oct-15              | 41.91253              | -70.22808              | Duxbury   | MA    | 995                           | 1,302                        | 4601713            | 57483           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 22-Oct-15              | 41.91168              | -70.22762              | Duxbury   | MA    | 995                           | 1,302                        | 4602185            | 57484           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 27-Oct-15              | 41.91217              | -70.22813              | Duxbury   | MA    | 995                           | 1,302                        | 4623461            | 57488           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 27-Oct-15              | 41.912                | -70.22783              | Duxbury   | MA    | 995                           | 1,302                        | 4676860            | 57491           |
| CCBDS               | North River Marine | NAE-2009-2185    | CCBDS 15/16         | 31-Oct-15              | 41.91215              | -70.22832              | Scituate  | MA    | 497                           | 650                          | 4632142            | 57440           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 31-Oct-15              | 41.91215              | -70.2279               | Duxbury   | MA    | 995                           | 1,302                        | 4676861            | 57492           |
| CCBDS               | North River Marine | NAE-2009-2185    | CCBDS 15/16         | 01-Nov-15              | 41.9125               | -70.22822              | Scituate  | MA    | 497                           | 650                          | 4636309            | 57441           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 02-Nov-15              | 41.91243              | -70.22717              | Duxbury   | MA    | 995                           | 1,302                        | 4650647            | 57489           |
| CCBDS               | North River Marine | NAE-2009-2185    | CCBDS 15/16         | 02-Nov-15              | 41.91152              | -70.22742              | Scituate  | MA    | 497                           | 650                          | 4638968            | 57442           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 03-Nov-15              | 41.91273              | -70.2282               | Duxbury   | MA    | 995                           | 1,302                        | 4676862            | 57493           |
| CCBDS               | North River Marine | NAE-2009-2185    | CCBDS 15/16         | 03-Nov-15              | 41.91158              | -70.2278               | Scituate  | MA    | 497                           | 650                          | 4643176            | 57443           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 04-Nov-15              | 41.91193              | -70.22737              | Duxbury   | MA    | 995                           | 1,302                        | 4676248            | 57494           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 04-Nov-15              | 41.913                | -70.22853              | Duxbury   | MA    | 995                           | 1,302                        | 4676863            | 57495           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 05-Nov-15              | 41.91243              | -70.22768              | Duxbury   | MA    | 995                           | 1,302                        | 4676249            | 57502           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 06-Nov-15              | 41.91153              | -70.22715              | Duxbury   | MA    | 995                           | 1,302                        | 4676251            | 57508           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 06-Nov-15              | 41.9124               | -70.227                | Duxbury   | MA    | 995                           | 1,302                        | 4676864            | 57496           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 06-Nov-15              | 41.91188              | -70.2277               | Duxbury   | MA    | 995                           | 1,302                        | 4676250            | 57505           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 07-Nov-15              | 41.91152              | -70.22767              | Duxbury   | MA    | 995                           | 1,302                        | 4676865            | 57497           |
| CCBDS               | North River Marine | NAE-2009-2185    | CCBDS 15/16         | 09-Nov-15              | 41.91135              | -70.22817              | Scituate  | MA    | 497                           | 650                          | 4676244            | 57444           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 09-Nov-15              | 41.9113               | -70.22797              | Duxbury   | MA    | 995                           | 1,302                        | 4676866            | 57498           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 10-Nov-15              | 41.9122               | -70.22827              | Duxbury   | MA    | 995                           | 1,302                        | 4676252            | 57511           |
| CCBDS               | North River Marine | NAE-2009-2185    | CCBDS 15/16         | 10-Nov-15              | 41.91168              | -70.22795              | Scituate  | MA    | 497                           | 650                          | 4676684            | 57445           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 10-Nov-15              | 41.91195              | -70.22792              | Duxbury   | MA    | 995                           | 1,302                        | 4676867            | 57499           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 15-Nov-15              | 41.91212              | -70.22743              | Duxbury   | MA    | 995                           | 1,302                        | 4807303            | 57500           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 16-Nov-15              | 41.9122               | -70.22837              | Duxbury   | MA    | 995                           | 1,302                        | 4807306            | 57509           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 16-Nov-15              | 41.91155              | -70.22785              | Duxbury   | MA    | 995                           | 1,302                        | 4806732            | 57514           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 16-Nov-15              | 41.91192              | -70.22808              | Duxbury   | MA    | 995                           | 1,302                        | 4807304            | 57503           |
| CCBDS               | North River Marine | NAE-2009-2185    | CCBDS 15/16         | 17-Nov-15              | 41.91155              | -70.22722              | Scituate  | MA    | 497                           | 650                          | 4689060            | 57446           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 18-Nov-15              | 41.911292             | -70.221962             | Duxbury   | MA    | 995                           | 1,302                        | 4690896            | 57480           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 18-Nov-15              | 41.91173              | -70.22707              | Duxbury   | MA    | 995                           | 1,302                        | 4807305            | 57506           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 18-Nov-15              | 41.9114               | -70.22828              | Duxbury   | MA    | 995                           | 1,302                        | 4806733            | 57517           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 20-Nov-15              | 41.912307             | -70.22793              | Duxbury   | MA    | 995                           | 1,302                        | 4719195            | 57481           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 21-Nov-15              | 41.91211              | -70.228055             | Duxbury   | MA    | 995                           | 1,302                        | 4775859            | 57482           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 22-Nov-15              | 41.912203             | -70.228595             | Duxbury   | MA    | 995                           | 1,302                        | 4775878            | 57485           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 22-Nov-15              | 41.91232              | -70.22795              | Duxbury   | MA    | 995                           | 1,302                        | 4807307            | 57512           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 22-Nov-15              | 41.91195              | -70.22722              | Duxbury   | MA    | 995                           | 1,302                        | 4806734            | 57520           |
| CCBDS               | Duxbury FNP        | W912WJ-15-C-0022 | CCBDS 15/16         | 24-Nov-15              | 41.912173             | -70.228148             | Duxbury   | MA    | 995                           | 1,302                        | 4797863            | 57486           |

| Placement site name | Project name                | Permit number    | Target<br>Site Code | Placement<br>date/time | Placement<br>latitude | Placement<br>longitude | City/town   | State | Load volume<br>(cubic meters) | Load volume<br>(cubic yards) | DQM trip<br>number | Placement<br>ID |
|---------------------|-----------------------------|------------------|---------------------|------------------------|-----------------------|------------------------|-------------|-------|-------------------------------|------------------------------|--------------------|-----------------|
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 24-Nov-15              | 41.91143              | -70.2278               | Duxbury     | MA    | 995                           | 1,302                        | 4806735            | 57523           |
| CCBDS               | New Bedford Harbor Phase II | NAE-2007-2709    | CCBDS 12/13         | 25-Nov-15              | 41.912033             | -70.227963             | New Bedford | MA    | 1,395                         | 1,824                        | 4304147            | 57380           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 25-Nov-15              | 41.91225              | -70.22745              | Duxbury     | MA    | 995                           | 1,302                        | 4807308            | 57515           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 25-Nov-15              | 41.912047             | -70.228223             | Duxbury     | MA    | 995                           | 1,302                        | 4816385            | 57487           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 25-Nov-15              | 41.91205              | -70.2285               | Duxbury     | MA    | 995                           | 1,302                        | 4806736            | 57526           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 26-Nov-15              | 41.911738             | -70.22762              | Duxbury     | MA    | 995                           | 1,302                        | 4816370            | 57490           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 26-Nov-15              | 41.911868             | -70.228138             | Duxbury     | MA    | 995                           | 1,302                        | 4816406            | 57501           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 28-Nov-15              | 41.912225             | -70.22718              | Duxbury     | MA    | 995                           | 1,302                        | 4816516            | 57504           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 28-Nov-15              | 41.91202              | -70.22733              | Duxbury     | MA    | 995                           | 1,302                        | 4807309            | 57518           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 28-Nov-15              | 41.911855             | -70.228578             | Duxbury     | MA    | 995                           | 1,302                        | 4816434            | 57507           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 28-Nov-15              | 41.911338             | -70.22783              | Duxbury     | MA    | 995                           | 1,302                        | 4828655            | 57510           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 29-Nov-15              | 41.91173              | -70.22793              | Duxbury     | MA    | 995                           | 1,302                        | 4842851            | 57521           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 29-Nov-15              | 41.912177             | -70.228145             | Duxbury     | MA    | 995                           | 1,302                        | 4828659            | 57513           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 30-Nov-15              | 41.911708             | -70.228715             | Duxbury     | MA    | 995                           | 1,302                        | 4816715            | 57516           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 30-Nov-15              | 41.911773             | -70.22824              | Duxbury     | MA    | 995                           | 1,302                        | 4816477            | 57519           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 30-Nov-15              | 41.91222              | -70.22802              | Duxbury     | MA    | 995                           | 1,302                        | 4812119            | 57529           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 01-Dec-15              | 41.911762             | -70.228612             | Duxbury     | MA    | 995                           | 1,302                        | 4816772            | 57522           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 01-Dec-15              | 41.9121               | -70.22793              | Duxbury     | MA    | 995                           | 1,302                        | 4842852            | 57524           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 01-Dec-15              | 41.912305             | -70.22804              | Duxbury     | MA    | 995                           | 1,302                        | 4816487            | 57525           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 02-Dec-15              | 41.91208              | -70.22875              | Duxbury     | MA    | 995                           | 1,302                        | 4814860            | 57532           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 02-Dec-15              | 41.911437             | -70.228285             | Duxbury     | MA    | 995                           | 1,302                        | 4816790            | 57527           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 02-Dec-15              | 41.911617             | -70.22805              | Duxbury     | MA    | 995                           | 1,302                        | 4818287            | 57530           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 03-Dec-15              | 41.912767             | -70.228115             | Duxbury     | MA    | 995                           | 1,302                        | 4818284            | 57533           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 03-Dec-15              | 41.91243              | -70.227                | Duxbury     | MA    | 995                           | 1,302                        | 4842853            | 57528           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 03-Dec-15              | 41.911962             | -70.228182             | Duxbury     | MA    | 995                           | 1,302                        | 4820268            | 57536           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 04-Dec-15              | 41.912098             | -70.228083             | Duxbury     | MA    | 995                           | 1,302                        | 4828713            | 57538           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 04-Dec-15              | 41.91225              | -70.22683              | Duxbury     | MA    | 995                           | 1,302                        | 4820503            | 57535           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 04-Dec-15              | 41.911922             | -70.228348             | Duxbury     | MA    | 995                           | 1,302                        | 4828721            | 57541           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 05-Dec-15              | 41.91225              | -70.22677              | Duxbury     | MA    | 995                           | 1,302                        | 4842854            | 57531           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 05-Dec-15              | 41.912163             | -70.22841              | Duxbury     | MA    | 995                           | 1,302                        | 4828732            | 57544           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 05-Dec-15              | 41.91137              | -70.22702              | Duxbury     | MA    | 995                           | 1,302                        | 4823156            | 57539           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 05-Dec-15              | 41.911775             | -70.228303             | Duxbury     | MA    | 995                           | 1,302                        | 4828751            | 57547           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 06-Dec-15              | 41.91257              | -70.22742              | Duxbury     | MA    | 995                           | 1,302                        | 4842855            | 57534           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 06-Dec-15              | 41.91173              | -70.228395             | Duxbury     | MA    | 995                           | 1,302                        | 4828686            | 57550           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 06-Dec-15              | 41.91207              | -70.22748              | Duxbury     | MA    | 995                           | 1,302                        | 4855281            | 57542           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 06-Dec-15              | 41.912037             | -70.228073             | Duxbury     | MA    | 995                           | 1,302                        | 4828764            | 57552           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 07-Dec-15              | 41.91245              | -70.22712              | Duxbury     | MA    | 995                           | 1,302                        | 4842856            | 57537           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 07-Dec-15              | 41.91192              | -70.22811              | Duxbury     | MA    | 995                           | 1,302                        | 4828735            | 57554           |
| CCBDS               | Duxbury FNP                 | W912WJ-15-C-0022 | CCBDS 15/16         | 07-Dec-15              | 41.912172             | -70.228233             | Duxbury     | MA    | 995                           | 1,302                        | 4831352            | 57557           |

| Placement site name | Project name | Permit number    | Target<br>Site Code | Placement<br>date/time | Placement<br>latitude | Placement<br>longitude | City/town | State | Load volume<br>(cubic meters) | Load volume<br>(cubic yards) | DQM trip<br>number | Placement<br>ID |
|---------------------|--------------|------------------|---------------------|------------------------|-----------------------|------------------------|-----------|-------|-------------------------------|------------------------------|--------------------|-----------------|
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 07-Dec-15              | 41.9124               | -70.22788              | Duxbury   | MA    | 995                           | 1,302                        | 4855282            | 57545           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 08-Dec-15              | 41.912223             | -70.228027             | Duxbury   | MA    | 995                           | 1,302                        | 4831350            | 57560           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 08-Dec-15              | 41.91132              | -70.22817              | Duxbury   | MA    | 995                           | 1,302                        | 4842857            | 57540           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 09-Dec-15              | 41.912232             | -70.228015             | Duxbury   | MA    | 995                           | 1,302                        | 4834427            | 57564           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 09-Dec-15              | 41.91213              | -70.22855              | Duxbury   | MA    | 995                           | 1,302                        | 4842858            | 57543           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 09-Dec-15              | 41.912092             | -70.226747             | Duxbury   | MA    | 995                           | 1,302                        | 4837223            | 57568           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 10-Dec-15              | 41.91237              | -70.227787             | Duxbury   | MA    | 995                           | 1,302                        | 4845355            | 57570           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 10-Dec-15              | 41.91222              | -70.22745              | Duxbury   | MA    | 995                           | 1,302                        | 4842859            | 57546           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 11-Dec-15              | 41.91217              | -70.22795              | Duxbury   | MA    | 995                           | 1,302                        | 4855283            | 57548           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 11-Dec-15              | 41.91225              | -70.2272               | Duxbury   | MA    | 995                           | 1,302                        | 4855142            | 57549           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 11-Dec-15              | 41.911965             | -70.22727              | Duxbury   | MA    | 995                           | 1,302                        | 4845414            | 57572           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 12-Dec-15              | 41.91237              | -70.22798              | Duxbury   | MA    | 995                           | 1,302                        | 4855284            | 57551           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 12-Dec-15              | 41.9116               | -70.22838              | Duxbury   | MA    | 995                           | 1,302                        | 4855143            | 57561           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 12-Dec-15              | 41.912293             | -70.227953             | Duxbury   | MA    | 995                           | 1,302                        | 4845411            | 57577           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 13-Dec-15              | 41.91193              | -70.22858              | Duxbury   | MA    | 995                           | 1,302                        | 4855285            | 57562           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 13-Dec-15              | 41.911667             | -70.227555             | Duxbury   | MA    | 995                           | 1,302                        | 4845456            | 57580           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 13-Dec-15              | 41.9123               | -70.22792              | Duxbury   | MA    | 995                           | 1,302                        | 4855144            | 57553           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 13-Dec-15              | 41.911712             | -70.227043             | Duxbury   | MA    | 995                           | 1,302                        | 4845454            | 57583           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 13-Dec-15              | 41.911413             | -70.227862             | Duxbury   | MA    | 995                           | 1,302                        | 4845487            | 57585           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 13-Dec-15              | 41.91248              | -70.22823              | Duxbury   | MA    | 995                           | 1,302                        | 4855286            | 57555           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 14-Dec-15              | 41.9124               | -70.2284               | Duxbury   | MA    | 995                           | 1,302                        | 4855145            | 57556           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 14-Dec-15              | 41.911325             | -70.227782             | Duxbury   | MA    | 995                           | 1,302                        | 4848028            | 57586           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 14-Dec-15              | 41.91255              | -70.22808              | Duxbury   | MA    | 995                           | 1,302                        | 4855287            | 57558           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 15-Dec-15              | 41.912165             | -70.2284               | Duxbury   | MA    | 995                           | 1,302                        | 4848031            | 57587           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 17-Dec-15              | 41.91226              | -70.229522             | Duxbury   | MA    | 995                           | 1,302                        | 4860508            | 57588           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 17-Dec-15              | 41.91155              | -70.22802              | Duxbury   | MA    | 995                           | 1,302                        | 4855146            | 57559           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 17-Dec-15              | 41.912442             | -70.22737              | Duxbury   | MA    | 995                           | 1,302                        | 4860470            | 57589           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 18-Dec-15              | 41.912127             | -70.228597             | Duxbury   | MA    | 995                           | 1,302                        | 4860543            | 57590           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 18-Dec-15              | 41.91198              | -70.228262             | Duxbury   | MA    | 995                           | 1,302                        | 4866540            | 57591           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 18-Dec-15              | 41.91133              | -70.22692              | Duxbury   | MA    | 995                           | 1,302                        | 4857943            | 57563           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 19-Dec-15              | 41.912865             | -70.228398             | Duxbury   | MA    | 995                           | 1,302                        | 4866526            | 57592           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 19-Dec-15              | 41.911827             | -70.227147             | Duxbury   | MA    | 995                           | 1,302                        | 4866589            | 57593           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 20-Dec-15              | 41.911928             | -70.227782             | Duxbury   | MA    | 995                           | 1,302                        | 4866592            | 57594           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 20-Dec-15              | 41.91063              | -70.22398              | Duxbury   | MA    | 995                           | 1,302                        | 4862261            | 57567           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 20-Dec-15              | 41.911848             | -70.228297             | Duxbury   | MA    | 995                           | 1,302                        | 4866660            | 57595           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 20-Dec-15              | 41.91188              | -70.22687              | Duxbury   | MA    | 995                           | 1,302                        | 4870942            | 57566           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 21-Dec-15              | 41.912273             | -70.227583             | Duxbury   | MA    | 995                           | 1,302                        | 4866662            | 57596           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 21-Dec-15              | 41.911905             | -70.227417             | Duxbury   | MA    | 995                           | 1,302                        | 4871738            | 57597           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 22-Dec-15              | 41.91245              | -70.228525             | Duxbury   | MA    | 995                           | 1,302                        | 4871740            | 57598           |

| Placement site name | Project name | Permit number    | Target<br>Site Code | Placement<br>date/time | Placement<br>latitude | Placement<br>longitude | City/town | State | Load volume<br>(cubic meters) | Load volume<br>(cubic yards) | DQM trip<br>number | Placement<br>ID |
|---------------------|--------------|------------------|---------------------|------------------------|-----------------------|------------------------|-----------|-------|-------------------------------|------------------------------|--------------------|-----------------|
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 22-Dec-15              | 41.91282              | -70.22803              | Duxbury   | MA    | 995                           | 1,302                        | 4870943            | 57573           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 22-Dec-15              | 41.912023             | -70.227245             | Duxbury   | MA    | 995                           | 1,302                        | 4871770            | 57599           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 22-Dec-15              | 41.91262              | -70.22722              | Duxbury   | MA    | 995                           | 1,302                        | 4870961            | 57569           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 23-Dec-15              | 41.911968             | -70.228162             | Duxbury   | MA    | 995                           | 1,302                        | 4871772            | 57600           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 23-Dec-15              | 41.91147              | -70.22733              | Duxbury   | MA    | 995                           | 1,302                        | 4870944            | 57574           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 23-Dec-15              | 41.911182             | -70.227893             | Duxbury   | MA    | 995                           | 1,302                        | 4874698            | 57601           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 23-Dec-15              | 41.91263              | -70.22793              | Duxbury   | MA    | 995                           | 1,302                        | 4872256            | 57571           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 24-Dec-15              | 41.912282             | -70.22887              | Duxbury   | MA    | 995                           | 1,302                        | 4874700            | 57602           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 25-Dec-15              | 41.91187              | -70.22837              | Duxbury   | MA    | 995                           | 1,302                        | 4877623            | 57575           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 27-Dec-15              | 41.9122               | -70.22813              | Duxbury   | MA    | 995                           | 1,302                        | 4880120            | 57576           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 27-Dec-15              | 41.9125               | -70.2281               | Duxbury   | MA    | 995                           | 1,302                        | 4882039            | 57578           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 28-Dec-15              | 41.912698             | -70.228207             | Duxbury   | MA    | 995                           | 1,302                        | 4886876            | 57603           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 31-Dec-15              | 41.91187              | -70.226135             | Duxbury   | MA    | 995                           | 1,302                        | 4903565            | 57604           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 31-Dec-15              | 41.91172              | -70.22682              | Duxbury   | MA    | 995                           | 1,302                        | 4891336            | 57581           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 31-Dec-15              | 41.911948             | -70.228075             | Duxbury   | MA    | 995                           | 1,302                        | 4902727            | 57605           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 31-Dec-15              | 41.91182              | -70.22775              | Duxbury   | MA    | 995                           | 1,302                        | 4892648            | 57579           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 01-Jan-16              | 41.911138             | -70.226193             | Duxbury   | MA    | 995                           | 1,302                        | 4903578            | 57606           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 01-Jan-16              | 41.91118              | -70.22728              | Duxbury   | MA    | 995                           | 1,302                        | 4893249            | 57584           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 01-Jan-16              | 41.91153              | -70.22815              | Duxbury   | MA    | 995                           | 1,302                        | 4894181            | 57582           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 01-Jan-16              | 41.911967             | -70.228287             | Duxbury   | MA    | 995                           | 1,302                        | 4902753            | 57607           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 02-Jan-16              | 41.91138              | -70.22697              | Duxbury   | MA    | 995                           | 1,302                        | 4896094            | 57609           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 02-Jan-16              | 41.911938             | -70.227498             | Duxbury   | MA    | 995                           | 1,302                        | 4903601            | 57627           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 02-Jan-16              | 41.911747             | -70.228098             | Duxbury   | MA    | 995                           | 1,302                        | 4902785            | 57628           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 03-Jan-16              | 41.91225              | -70.22722              | Duxbury   | MA    | 995                           | 1,302                        | 4898372            | 57608           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 03-Jan-16              | 41.9121               | -70.22897              | Duxbury   | MA    | 995                           | 1,302                        | 4898525            | 57611           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 03-Jan-16              | 41.911715             | -70.22859              | Duxbury   | MA    | 995                           | 1,302                        | 4903634            | 57629           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 04-Jan-16              | 41.911785             | -70.22807              | Duxbury   | MA    | 995                           | 1,302                        | 4906740            | 57630           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 06-Jan-16              | 41.91118              | -70.22858              | Duxbury   | MA    | 995                           | 1,302                        | 4909293            | 57613           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 06-Jan-16              | 41.91208              | -70.22708              | Duxbury   | MA    | 995                           | 1,302                        | 4910416            | 57610           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 07-Jan-16              | 41.9117               | -70.22848              | Duxbury   | MA    | 995                           | 1,302                        | 4912062            | 57615           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 07-Jan-16              | 41.9124               | -70.22773              | Duxbury   | MA    | 995                           | 1,302                        | 4933416            | 57612           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 08-Jan-16              | 41.91198              | -70.22877              | Duxbury   | MA    | 995                           | 1,302                        | 4933275            | 57617           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 12-Jan-16              | 41.91198              | -70.2285               | Duxbury   | MA    | 995                           | 1,302                        | 4933417            | 57614           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 12-Jan-16              | 41.912                | -70.22618              | Duxbury   | MA    | 995                           | 1,302                        | 4933276            | 57619           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 14-Jan-16              | 41.91207              | -70.22705              | Duxbury   | MA    | 995                           | 1,302                        | 4936417            | 57616           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 15-Jan-16              | 41.91205              | -70.2264               | Duxbury   | MA    | 995                           | 1,302                        | 4937642            | 57621           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 16-Jan-16              | 41.91178              | -70.22857              | Duxbury   | MA    | 995                           | 1,302                        | 4940824            | 57618           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 22-Jan-16              | 41.91272              | -70.22803              | Duxbury   | MA    | 995                           | 1,302                        | 4972275            | 57620           |
| CCBDS               | Duxbury FNP  | W912WJ-15-C-0022 | CCBDS 15/16         | 22-Jan-16              | 41.91112              | -70.22697              | Duxbury   | MA    | 995                           | 1,302                        | 4972263            | 57623           |

| Placement site name | Project name    | Permit number    | Target<br>Site Code | Placement<br>date/time | Placement<br>latitude | Placement<br>longitude | City/town | State | Load volume<br>(cubic meters) | Load volume<br>(cubic yards) | DQM trip<br>number | Placement<br>ID |
|---------------------|-----------------|------------------|---------------------|------------------------|-----------------------|------------------------|-----------|-------|-------------------------------|------------------------------|--------------------|-----------------|
| CCBDS               | Duxbury FNP     | W912WJ-15-C-0022 | CCBDS 15/16         | 26-Jan-16              | 41.91273              | -70.22792              | Duxbury   | MA    | 995                           | 1,302                        | 4970485            | 57622           |
| CCBDS               | Duxbury FNP     | W912WJ-15-C-0022 | CCBDS 15/16         | 27-Jan-16              | 41.91208              | -70.22688              | Duxbury   | MA    | 995                           | 1,302                        | 4975264            | 57625           |
| CCBDS               | Duxbury FNP     | W912WJ-15-C-0022 | CCBDS 15/16         | 28-Jan-16              | 41.91173              | -70.22697              | Duxbury   | MA    | 995                           | 1,302                        | 4976382            | 57624           |
| CCBDS               | Duxbury FNP     | W912WJ-15-C-0022 | CCBDS 15/16         | 29-Jan-16              | 41.9122               | -70.22882              | Duxbury   | MA    | 1,069                         | 1,398                        | 4979343            | 57626           |
| CCBDS               | Town of Duxbury | NAE-2010-1589    | CCBDS 15/16         | 31-Jan-16              | 41.91268              | -70.22727              | Duxbury   | MA    | 1,213                         | 1,586                        | 4993306            | 57448           |

### APPENDIX C

## ACTUAL SPI/PV REPLICATE LOCATIONS

|            | CCB       | DS 2016 Ac | tual SPI/I | <b>PV</b> Station | n IDs/Coo | rdinates   |             |
|------------|-----------|------------|------------|-------------------|-----------|------------|-------------|
| Station ID | Replicate | Date       | Time       | Х                 | Y         | Latitude   | Longitude   |
| Mound B-01 | А         | 10/20/2016 | 15:00:46   | 306566.4          | 851867.1  | 41.9099243 | -70.2154868 |
| Mound B-01 | В         | 10/20/2016 | 15:01:37   | 306555.1          | 851866.6  | 41.9099217 | -70.2156236 |
| Mound B-01 | С         | 10/20/2016 | 15:02:32   | 306540.4          | 851864.6  | 41.9099059 | -70.2158013 |
| Mound B-01 | D         | 10/20/2016 | 15:03:10   | 306531.9          | 851864.5  | 41.9099058 | -70.2159028 |
| Mound B-01 | E         | 10/20/2016 | 15:03:56   | 306523.2          | 851861.9  | 41.9098839 | -70.2160085 |
| Mound B-02 | А         | 10/20/2016 | 15:19:10   | 306649.9          | 851988.9  | 41.9110099 | -70.2144582 |
| Mound B-02 | В         | 10/20/2016 | 15:20:48   | 306643.5          | 851990.8  | 41.9110280 | -70.2145356 |
| Mound B-02 | С         | 10/20/2016 | 15:21:12   | 306637.9          | 851991.6  | 41.9110358 | -70.2146021 |
| Mound B-02 | D         | 10/20/2016 | 15:21:56   | 306622.6          | 851990.7  | 41.9110300 | -70.2147876 |
| Mound B-02 | E         | 10/20/2016 | 15:22:40   | 306610.3          | 851992.8  | 41.9110505 | -70.2149347 |
| Mound B-02 | E         | 10/21/2016 | 10:19:44   | 306613.8          | 851958.3  | 41.9107393 | -70.2148992 |
| Mound B-02 | F         | 10/21/2016 | 10:20:22   | 306614.4          | 851958.9  | 41.9107445 | -70.2148915 |
| Mound B-02 | G         | 10/21/2016 | 10:20:58   | 306614.2          | 851963.7  | 41.9107875 | -70.2148928 |
| Mound B-02 | н         | 10/21/2016 | 10:21:37   | 306611.6          | 851965.5  | 41.9108040 | -70.2149244 |
| Mound B-03 | А         | 10/20/2016 | 15:10:20   | 306576.2          | 851935.0  | 41.9105347 | -70.2153562 |
| Mound B-03 | В         | 10/20/2016 | 15:11:10   | 306567.2          | 851938.1  | 41.9105636 | -70.2154639 |
| Mound B-03 | С         | 10/20/2016 | 15:12:01   | 306553.2          | 851937.2  | 41.9105576 | -70.2156329 |
| Mound B-03 | D         | 10/20/2016 | 15:12:53   | 306542.5          | 851934.4  | 41.9105336 | -70.2157634 |
| Mound B-04 | А         | 10/21/2016 | 9:15:00    | 306435.2          | 852101.4  | 41.9120513 | -70.2170260 |
| Mound B-04 | В         | 10/21/2016 | 9:15:44    | 306430.9          | 852103.3  | 41.9120694 | -70.2170770 |
| Mound B-04 | С         | 10/21/2016 | 9:16:26    | 306426.9          | 852104.7  | 41.9120829 | -70.2171253 |
| Mound B-04 | D         | 10/21/2016 | 9:18:20    | 306442.1          | 852091.5  | 41.9119615 | -70.2169449 |
| Mound B-05 | А         | 10/21/2016 | 9:37:47    | 306862.9          | 852039.6  | 41.9114369 | -70.2118822 |
| Mound B-05 | В         | 10/21/2016 | 9:38:24    | 306856.9          | 852044.5  | 41.9114821 | -70.2119539 |
| Mound B-05 | С         | 10/21/2016 | 9:39:05    | 306859.1          | 852046.8  | 41.9115030 | -70.2119262 |
| Mound B-05 | D         | 10/21/2016 | 9:39:45    | 306864.3          | 852044.9  | 41.9114846 | -70.2118647 |
| Mound B-06 | А         | 10/21/2016 | 9:28:58    | 306629.6          | 852013.7  | 41.9112362 | -70.2146986 |
| Mound B-06 | В         | 10/21/2016 | 9:29:40    | 306625.9          | 852014.4  | 41.9112425 | -70.2147437 |
| Mound B-06 | С         | 10/21/2016 | 9:30:19    | 306625.4          | 852014.7  | 41.9112455 | -70.2147495 |
| Mound B-06 | D         | 10/21/2016 | 9:31:01    | 306628.1          | 852018.3  | 41.9112778 | -70.2147160 |
| Mound B-06 | E         | 10/21/2016 | 10:03:29   | 306626.4          | 852011.1  | 41.9112130 | -70.2147380 |
| Mound B-06 | F         | 10/21/2016 | 10:04:10   | 306627.0          | 852010.7  | 41.9112096 | -70.2147301 |
| Mound B-06 | G         | 10/21/2016 | 10:04:47   | 306623.6          | 852005.8  | 41.9111653 | -70.2147726 |
| Mound B-06 | Н         | 10/21/2016 | 10:05:23   | 306619.9          | 852002.1  | 41.9111326 | -70.2148180 |
| Mound B-06 | I         | 10/21/2016 | 10:10:38   | 306623.5          | 852004.7  | 41.9111559 | -70.2147733 |
| Mound B-06 | J         | 10/21/2016 | 10:12:19   | 306619.9          | 852017.2  | 41.9112689 | -70.2148145 |
| Mound B-06 | К         | 10/21/2016 | 10:12:56   | 306622.0          | 852013.9  | 41.9112389 | -70.2147908 |
| Mound B-06 | L         | 10/21/2016 | 10:13:35   | 306619.6          | 852014.3  | 41.9112426 | -70.2148186 |
| Mound B-07 | А         | 10/20/2016 | 14:39:31   | 306453.5          | 851811.4  | 41.9094383 | -70.2168572 |
| Mound B-07 | В         | 10/20/2016 | 14:40:13   | 306451.5          | 851813.2  | 41.9094549 | -70.2168821 |

|            | CCB       | DS 2016 Ac | tual SPI/I | <b>PV</b> Station | n IDs/Coo | rdinates   |             |
|------------|-----------|------------|------------|-------------------|-----------|------------|-------------|
| Station ID | Replicate | Date       | Time       | Х                 | Y         | Latitude   | Longitude   |
| Mound B-07 | С         | 10/20/2016 | 14:41:11   | 306441.2          | 851809.8  | 41.9094262 | -70.2170057 |
| Mound B-07 | D         | 10/20/2016 | 14:42:01   | 306426.5          | 851814.0  | 41.9094657 | -70.2171830 |
| Mound B-07 | E         | 10/20/2016 | 14:42:53   | 306419.0          | 851810.3  | 41.9094333 | -70.2172743 |
| Mound B-08 | А         | 10/21/2016 | 9:22:35    | 306573.5          | 852054.0  | 41.9116066 | -70.2153678 |
| Mound B-08 | В         | 10/21/2016 | 9:23:16    | 306573.8          | 852051.9  | 41.9115876 | -70.2153642 |
| Mound B-08 | С         | 10/21/2016 | 9:23:54    | 306569.3          | 852052.2  | 41.9115907 | -70.2154179 |
| Mound B-08 | D         | 10/21/2016 | 9:24:31    | 306563.8          | 852047.3  | 41.9115473 | -70.2154857 |
| Mound B-08 | E         | 10/21/2016 | 10:27:09   | 306566.0          | 852029.3  | 41.9113851 | -70.2154619 |
| Mound B-08 | F         | 10/21/2016 | 10:27:47   | 306569.3          | 852030.7  | 41.9113971 | -70.2154225 |
| Mound B-08 | G         | 10/21/2016 | 10:28:27   | 306566.2          | 852028.3  | 41.9113761 | -70.2154597 |
| Mound B-08 | Н         | 10/21/2016 | 10:29:05   | 306563.4          | 852027.9  | 41.9113726 | -70.2154943 |
| Mound B-09 | А         | 10/20/2016 | 15:46:57   | 306765.8          | 851856.7  | 41.9098044 | -70.2130856 |
| Mound B-09 | В         | 10/20/2016 | 15:48:29   | 306748.9          | 851860.4  | 41.9098399 | -70.2132890 |
| Mound B-09 | С         | 10/20/2016 | 15:48:49   | 306746.1          | 851858.4  | 41.9098218 | -70.2133223 |
| Mound B-09 | D         | 10/20/2016 | 15:49:32   | 306737.7          | 851856.7  | 41.9098081 | -70.2134241 |
| Mound B-09 | E         | 10/20/2016 | 15:50:17   | 306731.1          | 851850.6  | 41.9097539 | -70.2135050 |
| Mound B-10 | А         | 10/20/2016 | 16:39:11   | 306864.6          | 852009.9  | 41.9111698 | -70.2118676 |
| Mound B-10 | В         | 10/20/2016 | 16:40:16   | 306859.0          | 852004.4  | 41.9111214 | -70.2119360 |
| Mound B-10 | С         | 10/20/2016 | 16:40:50   | 306860.3          | 852001.8  | 41.9110975 | -70.2119200 |
| Mound B-10 | D         | 10/20/2016 | 16:41:42   | 306859.7          | 851994.6  | 41.9110324 | -70.2119288 |
| Mound B-11 | А         | 10/20/2016 | 14:53:22   | 306580.3          | 851764.1  | 41.9089957 | -70.2153382 |
| Mound B-11 | В         | 10/20/2016 | 14:54:12   | 306575.1          | 851765.4  | 41.9090080 | -70.2154004 |
| Mound B-11 | С         | 10/20/2016 | 14:54:54   | 306566.6          | 851763.6  | 41.9089930 | -70.2155028 |
| Mound B-11 | D         | 10/20/2016 | 14:55:41   | 306561.1          | 851761.9  | 41.9089782 | -70.2155694 |
| Mound B-12 | А         | 10/20/2016 | 15:58:18   | 306716.8          | 852043.6  | 41.9114933 | -70.2136425 |
| Mound B-12 | В         | 10/20/2016 | 15:58:35   | 306712.9          | 852042.6  | 41.9114851 | -70.2136899 |
| Mound B-12 | С         | 10/20/2016 | 15:59:35   | 306694.5          | 852047.8  | 41.9115339 | -70.2139105 |
| Mound B-12 | D         | 10/20/2016 | 16:00:04   | 306690.8          | 852046.0  | 41.9115187 | -70.2139552 |
| Mound B-12 | E         | 10/20/2016 | 16:30:27   | 306746.1          | 852033.0  | 41.9113942 | -70.2132907 |
| Mound B-12 | F         | 10/20/2016 | 16:31:09   | 306749.8          | 852023.9  | 41.9113116 | -70.2132483 |
| Mound B-12 | G         | 10/20/2016 | 16:31:35   | 306753.3          | 852017.0  | 41.9112491 | -70.2132069 |
| Mound B-12 | Н         | 10/20/2016 | 16:32:09   | 306755.4          | 852013.3  | 41.9112151 | -70.2131825 |
| Mound C-13 | А         | 10/20/2016 | 12:33:09   | 305654.7          | 852042.3  | 41.9116254 | -70.2264427 |
| Mound C-13 | В         | 10/20/2016 | 12:33:51   | 305646.8          | 852038.3  | 41.9115904 | -70.2265387 |
| Mound C-13 | С         | 10/20/2016 | 12:34:38   | 305640.1          | 852037.0  | 41.9115796 | -70.2266196 |
| Mound C-13 | D         | 10/20/2016 | 12:35:24   | 305621.9          | 852032.9  | 41.9115451 | -70.2268405 |
| Mound C-14 | A         | 10/20/2016 | 12:11:22   | 305480.4          | 851867.3  | 41.9100734 | -70.2285757 |
| Mound C-14 | В         | 10/20/2016 | 12:13:15   | 305475.0          | 851851.7  | 41.9099333 | -70.2286431 |
| Mound C-14 | С         | 10/20/2016 | 12:13:35   | 305471.7          | 851846.0  | 41.9098824 | -70.2286838 |
| Mound C-14 | D         | 10/20/2016 | 12:13:50   | 305468.7          | 851842.4  | 41.9098508 | -70.2287207 |

|            | CCBDS 2016 Actual SPI/PV Station IDs/Coordinates |            |          |          |          |            |             |  |  |  |  |  |
|------------|--------------------------------------------------|------------|----------|----------|----------|------------|-------------|--|--|--|--|--|
| Station ID | Replicate                                        | Date       | Time     | Х        | Y        | Latitude   | Longitude   |  |  |  |  |  |
| Mound C-15 | А                                                | 10/20/2016 | 13:48:58 | 305717.1 | 851930.7 | 41.9106118 | -70.2257110 |  |  |  |  |  |
| Mound C-15 | В                                                | 10/20/2016 | 13:49:53 | 305715.9 | 851920.5 | 41.9105204 | -70.2257279 |  |  |  |  |  |
| Mound C-15 | С                                                | 10/20/2016 | 13:50:49 | 305710.1 | 851909.4 | 41.9104214 | -70.2257992 |  |  |  |  |  |
| Mound C-15 | D                                                | 10/20/2016 | 13:51:19 | 305703.2 | 851908.0 | 41.9104093 | -70.2258833 |  |  |  |  |  |
| Mound C-16 | А                                                | 10/20/2016 | 12:22:28 | 305516.5 | 851963.2 | 41.9109317 | -70.2281235 |  |  |  |  |  |
| Mound C-16 | В                                                | 10/20/2016 | 12:23:30 | 305507.1 | 851962.4 | 41.9109259 | -70.2282358 |  |  |  |  |  |
| Mound C-16 | С                                                | 10/20/2016 | 12:24:01 | 305502.0 | 851957.0 | 41.9108778 | -70.2282984 |  |  |  |  |  |
| Mound C-16 | D                                                | 10/20/2016 | 12:24:50 | 305491.7 | 851952.5 | 41.9108388 | -70.2284238 |  |  |  |  |  |
| Mound C-17 | А                                                | 10/20/2016 | 13:56:14 | 305425.0 | 852120.7 | 41.9123615 | -70.2291975 |  |  |  |  |  |
| Mound C-17 | В                                                | 10/20/2016 | 13:57:20 | 305416.1 | 852117.0 | 41.9123293 | -70.2293051 |  |  |  |  |  |
| Mound C-17 | С                                                | 10/20/2016 | 13:57:52 | 305417.9 | 852111.1 | 41.9122760 | -70.2292844 |  |  |  |  |  |
| Mound C-17 | D                                                | 10/20/2016 | 13:58:40 | 305415.5 | 852096.4 | 41.9121437 | -70.2293164 |  |  |  |  |  |
| Mound C-18 | А                                                | 10/20/2016 | 14:06:31 | 305559.0 | 852184.9 | 41.9129220 | -70.2275708 |  |  |  |  |  |
| Mound C-18 | В                                                | 10/20/2016 | 14:07:18 | 305543.3 | 852181.4 | 41.9128918 | -70.2277609 |  |  |  |  |  |
| Mound C-18 | С                                                | 10/20/2016 | 14:08:10 | 305533.4 | 852180.1 | 41.9128821 | -70.2278808 |  |  |  |  |  |
| Mound C-18 | D                                                | 10/20/2016 | 14:09:02 | 305527.2 | 852173.7 | 41.9128250 | -70.2279567 |  |  |  |  |  |
| Mound C-19 | А                                                | 10/20/2016 | 14:12:28 | 305382.7 | 852167.3 | 41.9127870 | -70.2296992 |  |  |  |  |  |
| Mound C-19 | В                                                | 10/20/2016 | 14:13:20 | 305369.8 | 852166.1 | 41.9127775 | -70.2298551 |  |  |  |  |  |
| Mound C-19 | С                                                | 10/20/2016 | 14:14:19 | 305363.3 | 852164.7 | 41.9127658 | -70.2299335 |  |  |  |  |  |
| Mound C-19 | D                                                | 10/20/2016 | 14:14:46 | 305356.0 | 852166.0 | 41.9127788 | -70.2300208 |  |  |  |  |  |
| Mound C-20 | А                                                | 10/20/2016 | 11:19:01 | 305566.1 | 852084.6 | 41.9120179 | -70.2275036 |  |  |  |  |  |
| Mound C-20 | В                                                | 10/20/2016 | 11:19:34 | 305566.7 | 852078.5 | 41.9119623 | -70.2274976 |  |  |  |  |  |
| Mound C-20 | С                                                | 10/20/2016 | 11:20:47 | 305556.8 | 852064.8 | 41.9118408 | -70.2276195 |  |  |  |  |  |
| Mound C-20 | D                                                | 10/20/2016 | 11:21:33 | 305550.2 | 852048.2 | 41.9116925 | -70.2277019 |  |  |  |  |  |
| Mound C-20 | E                                                | 10/20/2016 | 11:22:06 | 305551.3 | 852037.6 | 41.9115966 | -70.2276906 |  |  |  |  |  |
| Mound C-21 | А                                                | 10/20/2016 | 11:29:03 | 305492.7 | 852048.8 | 41.9117050 | -70.2283940 |  |  |  |  |  |
| Mound C-21 | В                                                | 10/20/2016 | 11:29:34 | 305494.8 | 852047.9 | 41.9116972 | -70.2283692 |  |  |  |  |  |
| Mound C-21 | С                                                | 10/20/2016 | 11:30:34 | 305488.7 | 852040.7 | 41.9116328 | -70.2284438 |  |  |  |  |  |
| Mound C-21 | D                                                | 10/20/2016 | 11:31:02 | 305489.9 | 852036.0 | 41.9115900 | -70.2284303 |  |  |  |  |  |
| Mound C-22 | А                                                | 10/20/2016 | 11:06:32 | 305518.6 | 852110.1 | 41.9122540 | -70.2280715 |  |  |  |  |  |
| Mound C-22 | В                                                | 10/20/2016 | 11:07:33 | 305513.6 | 852095.1 | 41.9121192 | -70.2281341 |  |  |  |  |  |
| Mound C-22 | С                                                | 10/20/2016 | 11:08:01 | 305516.3 | 852088.9 | 41.9120628 | -70.2281022 |  |  |  |  |  |
| Mound C-22 | D                                                | 10/20/2016 | 11:08:47 | 305518.2 | 852074.2 | 41.9119304 | -70.2280829 |  |  |  |  |  |
| Mound C-23 | А                                                | 10/20/2016 | 11:43:35 | 305610.4 | 851997.1 | 41.9112236 | -70.2269855 |  |  |  |  |  |
| Mound C-23 | В                                                | 10/20/2016 | 11:44:20 | 305609.9 | 851990.9 | 41.9111687 | -70.2269920 |  |  |  |  |  |
| Mound C-23 | С                                                | 10/20/2016 | 11:45:20 | 305598.2 | 851987.9 | 41.9111427 | -70.2271333 |  |  |  |  |  |
| Mound C-23 | D                                                | 10/20/2016 | 11:46:05 | 305585.2 | 851983.1 | 41.9111015 | -70.2272916 |  |  |  |  |  |
| Mound C-23 | E                                                | 10/20/2016 | 11:46:59 | 305567.8 | 851976.3 | 41.9110424 | -70.2275025 |  |  |  |  |  |
| Mound C-24 | A                                                | 10/20/2016 | 11:53:02 | 305571.6 | 852011.2 | 41.9113566 | -70.2274505 |  |  |  |  |  |
| Mound C-24 | В                                                | 10/20/2016 | 11:53:43 | 305564.4 | 852005.9 | 41.9113092 | -70.2275385 |  |  |  |  |  |

|            | CCBDS 2016 Actual SPI/PV Station IDs/Coordinates |            |          |          |          |            |             |  |  |  |  |  |
|------------|--------------------------------------------------|------------|----------|----------|----------|------------|-------------|--|--|--|--|--|
| Station ID | Replicate                                        | Date       | Time     | Х        | Y        | Latitude   | Longitude   |  |  |  |  |  |
| Mound C-24 | С                                                | 10/20/2016 | 11:54:37 | 305561.2 | 851992.7 | 41.9111914 | -70.2275785 |  |  |  |  |  |
| Mound C-24 | D                                                | 10/20/2016 | 11:55:25 | 305557.2 | 851977.0 | 41.9110501 | -70.2276294 |  |  |  |  |  |
| Mound C-25 | А                                                | 10/20/2016 | 12:03:41 | 305557.8 | 851924.1 | 41.9105740 | -70.2276319 |  |  |  |  |  |
| Mound C-25 | В                                                | 10/20/2016 | 12:04:17 | 305555.3 | 851918.3 | 41.9105225 | -70.2276631 |  |  |  |  |  |
| Mound C-25 | С                                                | 10/20/2016 | 12:04:30 | 305552.0 | 851914.5 | 41.9104885 | -70.2277041 |  |  |  |  |  |
| Mound C-25 | D                                                | 10/20/2016 | 12:05:11 | 305550.0 | 851904.8 | 41.9104014 | -70.2277298 |  |  |  |  |  |
| CCBRS-01   | А                                                | 10/21/2016 | 12:00:07 | 302365.2 | 857097.1 | 41.9575660 | -70.2652073 |  |  |  |  |  |
| CCBRS-01   | В                                                | 10/21/2016 | 12:00:45 | 302362.9 | 857099.7 | 41.9575892 | -70.2652348 |  |  |  |  |  |
| CCBRS-01   | С                                                | 10/21/2016 | 12:01:25 | 302359.2 | 857093.4 | 41.9575335 | -70.2652797 |  |  |  |  |  |
| CCBRS-01   | D                                                | 10/21/2016 | 12:02:39 | 302356.2 | 857094.6 | 41.9575443 | -70.2653161 |  |  |  |  |  |
| CCBRS-02   | А                                                | 10/21/2016 | 11:51:31 | 302135.2 | 856955.3 | 41.9563196 | -70.2680054 |  |  |  |  |  |
| CCBRS-02   | В                                                | 10/21/2016 | 11:52:08 | 302133.9 | 856957.4 | 41.9563385 | -70.2680208 |  |  |  |  |  |
| CCBRS-02   | С                                                | 10/21/2016 | 11:52:50 | 302135.2 | 856959.7 | 41.9563587 | -70.2680052 |  |  |  |  |  |
| CCBRS-02   | D                                                | 10/21/2016 | 11:53:28 | 302132.9 | 856958.1 | 41.9563447 | -70.2680329 |  |  |  |  |  |
| CCBRS-03   | А                                                | 10/21/2016 | 11:43:43 | 302342.0 | 856894.7 | 41.9557470 | -70.2655223 |  |  |  |  |  |
| CCBRS-03   | В                                                | 10/21/2016 | 11:44:23 | 302341.9 | 856895.3 | 41.9557520 | -70.2655238 |  |  |  |  |  |
| CCBRS-03   | С                                                | 10/21/2016 | 11:45:01 | 302341.0 | 856896.6 | 41.9557639 | -70.2655340 |  |  |  |  |  |
| CCBRS-03   | D                                                | 10/21/2016 | 11:45:41 | 302342.7 | 856898.7 | 41.9557828 | -70.2655132 |  |  |  |  |  |
| CCBRS-04   | А                                                | 10/21/2016 | 12:08:08 | 302406.5 | 857210.6 | 41.9585820 | -70.2646885 |  |  |  |  |  |
| CCBRS-04   | В                                                | 10/21/2016 | 12:08:51 | 302406.1 | 857211.2 | 41.9585878 | -70.2646938 |  |  |  |  |  |
| CCBRS-04   | С                                                | 10/21/2016 | 12:09:29 | 302403.7 | 857206.7 | 41.9585478 | -70.2647238 |  |  |  |  |  |
| CCBRS-04   | D                                                | 10/21/2016 | 12:10:06 | 302405.1 | 857208.6 | 41.9585643 | -70.2647057 |  |  |  |  |  |
| NWREF-05   | Α                                                | 10/21/2016 | 11:24:05 | 304374.8 | 854364.9 | 41.9327049 | -70.2414552 |  |  |  |  |  |
| NWREF-05   | В                                                | 10/21/2016 | 11:24:43 | 304373.7 | 854362.5 | 41.9326840 | -70.2414696 |  |  |  |  |  |
| NWREF-05   | С                                                | 10/21/2016 | 11:25:20 | 304368.8 | 854371.1 | 41.9327619 | -70.2415271 |  |  |  |  |  |
| NWREF-05   | D                                                | 10/21/2016 | 11:25:56 | 304366.3 | 854366.7 | 41.9327228 | -70.2415578 |  |  |  |  |  |
| NWREF-06   | А                                                | 10/21/2016 | 11:29:31 | 304363.5 | 854417.1 | 41.9331764 | -70.2415827 |  |  |  |  |  |
| NWREF-06   | В                                                | 10/21/2016 | 11:30:07 | 304361.1 | 854416.3 | 41.9331698 | -70.2416119 |  |  |  |  |  |
| NWREF-06   | С                                                | 10/21/2016 | 11:30:44 | 304360.8 | 854416.9 | 41.9331753 | -70.2416156 |  |  |  |  |  |
| NWREF-06   | D                                                | 10/21/2016 | 11:31:22 | 304358.6 | 854417.2 | 41.9331780 | -70.2416415 |  |  |  |  |  |
| NWREF-07   | А                                                | 10/21/2016 | 11:14:51 | 304054.8 | 854169.8 | 41.9309907 | -70.2453477 |  |  |  |  |  |
| NWREF-07   | В                                                | 10/21/2016 | 11:15:28 | 304052.5 | 854166.6 | 41.9309625 | -70.2453761 |  |  |  |  |  |
| NWREF-07   | С                                                | 10/21/2016 | 11:16:07 | 304052.0 | 854163.1 | 41.9309308 | -70.2453828 |  |  |  |  |  |
| NWREF-07   | D                                                | 10/21/2016 | 11:16:46 | 304050.1 | 854163.3 | 41.9309333 | -70.2454066 |  |  |  |  |  |
| NWREF-08   | А                                                | 10/21/2016 | 10:53:50 | 304318.0 | 854138.0 | 41.9306695 | -70.2421811 |  |  |  |  |  |
| NWREF-08   | В                                                | 10/21/2016 | 10:54:25 | 304317.2 | 854134.8 | 41.9306409 | -70.2421907 |  |  |  |  |  |
| NWREF-08   | С                                                | 10/21/2016 | 10:55:03 | 304317.0 | 854137.3 | 41.9306633 | -70.2421928 |  |  |  |  |  |
| NWREF-08   | D                                                | 10/21/2016 | 10:55:41 | 304314.5 | 854138.3 | 41.9306730 | -70.2422230 |  |  |  |  |  |
| NWREF-08   | E                                                | 10/21/2016 | 11:05:44 | 304314.3 | 854135.8 | 41.9306506 | -70.2422260 |  |  |  |  |  |
| NWREF-08   | F                                                | 10/21/2016 | 11:06:21 | 304311.3 | 854140.0 | 41.9306890 | -70.2422610 |  |  |  |  |  |

| CCBDS 2016 Actual SPI/PV Station IDs/Coordinates |           |            |          |          |          |            |             |  |  |  |  |  |
|--------------------------------------------------|-----------|------------|----------|----------|----------|------------|-------------|--|--|--|--|--|
| Station ID                                       | Replicate | Date       | Time     | Х        | Y        | Latitude   | Longitude   |  |  |  |  |  |
| NWREF-08                                         | G         | 10/21/2016 | 11:07:03 | 304309.8 | 854140.6 | 41.9306940 | -70.2422791 |  |  |  |  |  |
| NWREF-08                                         | Н         | 10/21/2016 | 11:07:48 | 304306.5 | 854142.9 | 41.9307159 | -70.2423183 |  |  |  |  |  |
| SWREF-09                                         | А         | 10/20/2016 | 9:29:21  | 302263.9 | 848718.7 | 41.8821529 | -70.2678881 |  |  |  |  |  |
| SWREF-09                                         | В         | 10/20/2016 | 9:29:49  | 302264.0 | 848717.0 | 41.8821371 | -70.2678871 |  |  |  |  |  |
| SWREF-09                                         | С         | 10/20/2016 | 9:30:42  | 302258.0 | 848709.3 | 41.8820693 | -70.2679617 |  |  |  |  |  |
| SWREF-09                                         | D         | 10/20/2016 | 9:31:47  | 302247.5 | 848700.0 | 41.8819864 | -70.2680892 |  |  |  |  |  |
| SWREF-09                                         | E         | 10/20/2016 | 9:32:31  | 302238.3 | 848696.7 | 41.8819577 | -70.2682006 |  |  |  |  |  |
| SWREF-10                                         | А         | 10/20/2016 | 9:52:35  | 302414.0 | 848520.2 | 41.8803461 | -70.2661150 |  |  |  |  |  |
| SWREF-10                                         | В         | 10/20/2016 | 9:53:25  | 302404.0 | 848517.0 | 41.8803191 | -70.2662360 |  |  |  |  |  |
| SWREF-10                                         | С         | 10/20/2016 | 9:54:06  | 302395.9 | 848516.8 | 41.8803179 | -70.2663333 |  |  |  |  |  |
| SWREF-10                                         | D         | 10/20/2016 | 9:54:49  | 302392.5 | 848512.9 | 41.8802834 | -70.2663756 |  |  |  |  |  |
| SWREF-11                                         | А         | 10/20/2016 | 10:04:46 | 302548.0 | 848488.0 | 41.8800391 | -70.2645069 |  |  |  |  |  |
| SWREF-11                                         | В         | 10/20/2016 | 10:05:29 | 302541.7 | 848483.5 | 41.8799990 | -70.2645836 |  |  |  |  |  |
| SWREF-11                                         | С         | 10/20/2016 | 10:06:17 | 302536.5 | 848477.4 | 41.8799451 | -70.2646467 |  |  |  |  |  |
| SWREF-11                                         | D         | 10/20/2016 | 10:06:55 | 302530.9 | 848474.4 | 41.8799187 | -70.2647150 |  |  |  |  |  |
| SWREF-12                                         | А         | 10/20/2016 | 10:16:36 | 302637.5 | 848672.8 | 41.8816913 | -70.2633954 |  |  |  |  |  |
| SWREF-12                                         | В         | 10/20/2016 | 10:17:22 | 302628.8 | 848669.1 | 41.8816586 | -70.2635013 |  |  |  |  |  |
| SWREF-12                                         | С         | 10/20/2016 | 10:18:25 | 302619.6 | 848661.0 | 41.8815873 | -70.2636136 |  |  |  |  |  |
| SWREF-12                                         | D         | 10/20/2016 | 10:18:58 | 302612.4 | 848659.1 | 41.8815711 | -70.2637008 |  |  |  |  |  |

<u>Notes</u>

1. Grid coordinates are NAD\_1983\_StatePlane\_Massachusetts\_Mainland\_FIPS\_2001\_Meters

2. Geographic coordinates are NAD83 decimal degrees

#### APPENDIX D

#### SPI/PV FIELD LOG

| StationID | Replicate | Date       | Time     | Frame | Stops_inches | Weights_per_side | Depth_ft | Comments                                    | QC_Notes |
|-----------|-----------|------------|----------|-------|--------------|------------------|----------|---------------------------------------------|----------|
|           |           |            |          |       |              |                  |          | SPI: 1/250, ISO 640, F9; PV: 1/30, ISO 400, |          |
| SWREF-09  | А         | 10/20/2016 | 9:28:38  | 4     | 14           | 2                | 98       | F14                                         |          |
| SWREF-09  | В         | 10/20/2016 | 9:29:38  | 5     | 14           | 2                | 98       |                                             |          |
| SWREF-09  | С         | 10/20/2016 | 9:30:42  | 6     | 14           | 2                | 98       |                                             |          |
| SWREF-09  | D         | 10/20/2016 | 9:31:34  | 7     | 14           | 2                | 98       |                                             |          |
| SWREF-09  | E         | 10/20/2016 | 9:32:23  | 8     | 14           | 2                | 96       | On Deck, Download; Frame Count 9            |          |
| SWREF-10  | А         | 10/20/2016 | 9:52:33  | 10    | 14           | 0                | 96       |                                             |          |
| SWREF-10  | В         | 10/20/2016 | 9:53:24  | 11    | 14           | 0                | 96       |                                             |          |
| SWREF-10  | С         | 10/20/2016 | 9:54:04  | 12    | 14           | 0                | 96       |                                             |          |
| SWREF-10  | D         | 10/20/2016 | 9:54:48  | 13    | 14           | 0                | 96       |                                             |          |
| SWREF-11  | А         | 10/20/2016 | 10:04:45 | 14    | 14           | 0                | 96       |                                             |          |
| SWREF-11  | В         | 10/20/2016 | 10:05:28 | 15    | 14           | 0                | 96       |                                             |          |
| SWREF-11  | С         | 10/20/2016 | 10:06:10 | 16    | 14           | 0                | 96       |                                             |          |
| SWREF-11  | D         | 10/20/2016 | 10:06:45 | 17    | 14           | 0                | 96       |                                             |          |
| SWREF-12  | А         | 10/20/2016 | 10:16:35 | 18    | 14           | 0                | 96       | Lost Frame                                  |          |
| SWREF-12  | В         | 10/20/2016 | 10:17:20 | 19    | 14           | 0                | 96       |                                             |          |
| SWREF-12  | С         | 10/20/2016 | 10:18:09 | 20    | 14           | 0                | 96       |                                             |          |
| SWREF-12  | D         | 10/20/2016 | 10:18:50 | 21    | 14           | 0                | 96       | On Deck, Download; Frame Count 20           |          |
| C22       | А         | 10/20/2016 | 11:06:27 | 21    | 14           | 0                | 94       |                                             |          |
| C22       | В         | 10/20/2016 | 11:07:15 | 22    | 14           | 0                | 94       |                                             |          |
| C22       | С         | 10/20/2016 | 11:07:56 | 23    | 14           | 0                | 94       |                                             |          |
| C22       | D         | 10/20/2016 | 11:08:54 | 24    | 14           | 0                | 94       |                                             |          |
| C20       | А         | 10/20/2016 | 11:18:43 | 25    | 14           | 0                | 94       |                                             |          |
| C20       | В         | 10/20/2016 | 11:19:33 | 26    | 14           | 0                | 94       |                                             |          |
| C20       | С         | 10/20/2016 | 11:20:22 | 27    | 14           | 0                | 94       |                                             |          |
| C20       | D         | 10/20/2016 | 11:21:07 | 28    | 14           | 0                | 94       |                                             |          |
| C20       | E         | 10/20/2016 | 11:22:06 | 29    | 14           | 0                | 94       |                                             |          |
| C21       | А         | 10/20/2016 | 11:28:37 | 30    | 14           | 0                | 94       |                                             |          |
| C21       | В         | 10/20/2016 | 11:29:25 | 31    | 14           | 0                | 94       |                                             |          |
| C21       | С         | 10/20/2016 | 11:30:17 | 32    | 14           | 0                | 94       |                                             |          |
| C21       | D         | 10/20/2016 | 11:31:00 | 33    | 14           | 0                | 94       |                                             |          |
| C23       | А         | 10/20/2016 | 11:43:26 | 34    | 14           | 0                | 96       |                                             |          |
| C23       | В         | 10/20/2016 | 11:44:17 | 35    | 14           | 0                | 96       |                                             |          |
| C23       | С         | 10/20/2016 | 11:45:07 | 36    | 14           | 0                | 96       |                                             |          |
| C23       | D         | 10/20/2016 | 11:46:04 | 37    | 14           | 0                | 96       |                                             |          |
| C23       | E         | 10/20/2016 | 11:46:53 | 38    | 14           | 0                | 96       |                                             |          |
| C24       | А         | 10/20/2016 | 11:52:54 | 39    | 14           | 0                | 95       |                                             |          |
| C24       | В         | 10/20/2016 | 11:53:42 | 40    | 14           | 0                | 95       |                                             |          |
| C24       | С         | 10/20/2016 | 11:54:28 | 41    | 14           | 0                | 95       |                                             |          |
| C24       | D         | 10/20/2016 | 11:55:13 | 42    | 14           | 0                | 95       |                                             |          |
| C25       | А         | 10/20/2016 | 12:03:31 | 43    | 14           | 0                | 93       |                                             |          |
| C25       | В         | 10/20/2016 | 12:04:20 | 44    | 14           | 0                | 93       |                                             |          |

| StationID | Replicate | Date       | Time     | Frame | Stops_inches | Weights_per_side | Depth_ft | Comments                          | QC_Notes |
|-----------|-----------|------------|----------|-------|--------------|------------------|----------|-----------------------------------|----------|
| C25       | С         | 10/20/2016 | 12:05:06 | 45    | 14           | 0                | 93       |                                   |          |
| C25       | D         | 10/20/2016 | 12:05:51 | 46    | 14           | 0                | 93       |                                   |          |
| C14       | А         | 10/20/2016 | 12:11:16 | 47    | 14           | 0                | 101      |                                   |          |
| C14       | В         | 10/20/2016 | 12:12:04 | 48    | 14           | 0                | 101      |                                   |          |
| C14       | С         | 10/20/2016 | 12:12:52 | 49    | 14           | 0                | 101      |                                   |          |
| C14       | D         | 10/20/2016 | 12:13:47 | 50    | 14           | 0                | 101      |                                   |          |
| C16       | А         | 10/20/2016 | 12:22:27 | 51    | 14           | 0                | 98       |                                   |          |
| C16       | В         | 10/20/2016 | 12:23:16 | 52    | 14           | 0                | 98       |                                   |          |
| C16       | С         | 10/20/2016 | 12:23:59 | 53    | 14           | 0                | 98       |                                   |          |
| C16       | D         | 10/20/2016 | 12:24:47 | 54    | 14           | 0                | 98       |                                   |          |
| C13       | А         | 10/20/2016 | 12:33:08 | 55    | 14           | 0                | 99       |                                   |          |
| C13       | В         | 10/20/2016 | 12:33:49 | 56    | 14           | 0                | 99       |                                   |          |
| C13       | С         | 10/20/2016 | 12:34:36 | 57    | 14           | 0                | 99       |                                   |          |
| C13       | D         | 10/20/2016 | 12:35:21 | 58    | 14           | 0                | 99       | On Deck, Download; Frame Count 58 |          |
| C15       | А         | 10/20/2016 | 13:48:04 | 59    | 13           | 0                | 107      |                                   |          |
| C15       | В         | 10/20/2016 | 13:48:55 | 60    | 13           | 0                | 107      |                                   |          |
| C15       | С         | 10/20/2016 | 13:49:47 | 61    | 13           | 0                | 107      |                                   |          |
| C15       | D         | 10/20/2016 | 13:50:38 | 62    | 13           | 0                | 107      |                                   |          |
| C17       | А         | 10/20/2016 | 13:56:12 | 63    | 13           | 0                | 109      |                                   |          |
| C17       | В         | 10/20/2016 | 13:57:00 | 64    | 13           | 0                | 109      |                                   |          |
| C17       | С         | 10/20/2016 | 13:57:50 | 65    | 13           | 0                | 109      |                                   |          |
| C17       | D         | 10/20/2016 | 13:58:38 | 66    | 13           | 0                | 109      |                                   |          |
| C18       | А         | 10/20/2016 | 14:06:27 | 67    | 13           | 0                | 107      |                                   |          |
| C18       | В         | 10/20/2016 | 14:07:16 | 68    | 13           | 0                | 107      |                                   |          |
| C18       | С         | 10/20/2016 | 14:08:07 | 69    | 13           | 0                | 107      |                                   |          |
| C18       | D         | 10/20/2016 | 14:09:01 | 70    | 13           | 0                | 107      |                                   |          |
| C19       | А         | 10/20/2016 | 14:12:23 | 71    | 13           | 0                | 109      |                                   |          |
| C19       | В         | 10/20/2016 | 14:13:18 | 72    | 13           | 0                | 109      |                                   |          |
| C19       | С         | 10/20/2016 | 14:14:18 | 73    | 13           | 0                | 109      |                                   |          |
| C19       | D         | 10/20/2016 | 14:15:03 | 74    | 13           | 0                | 109      | Lost Frame                        |          |
| B07       | А         | 10/20/2016 | 14:39:30 | 75    | 13           | 0                | 108      |                                   |          |
| B07       | В         | 10/20/2016 | 14:40:15 | 76    | 13           | 0                | 108      |                                   |          |
| B07       | С         | 10/20/2016 | 14:41:10 | 77    | 13           | 0                | 108      |                                   |          |
| B07       | D         | 10/20/2016 | 14:41:59 | 78    | 13           | 0                | 108      |                                   |          |
| B07       | E         | 10/20/2016 | 14:42:51 | 79    | 13           | 0                | 108      | On Deck; Frame Count 78           |          |
| B11       | А         | 10/20/2016 | 14:53:20 | 79    | 13           | 0                | 107      |                                   |          |
| B11       | В         | 10/20/2016 | 14:54:10 | 80    | 13           | 0                | 107      |                                   |          |
| B11       | С         | 10/20/2016 | 14:54:53 | 81    | 13           | 0                | 107      |                                   |          |
| B11       | D         | 10/20/2016 | 14:55:37 | 82    | 13           | 0                | 107      |                                   |          |
| B01       | А         | 10/20/2016 | 15:00:45 | 83    | 13           | 0                |          |                                   |          |
| B01       | В         | 10/20/2016 | 15:01:39 | 84    | 13           | 0                |          |                                   |          |
| B01       | С         | 10/20/2016 | 15:02:23 | 85    | 13           | 0                |          |                                   |          |

| StationID | Replicate | Date       | Time     | Frame | Stops_inches | Weights_per_side | Depth_ft | Comments                                        | QC_Notes                             |
|-----------|-----------|------------|----------|-------|--------------|------------------|----------|-------------------------------------------------|--------------------------------------|
| B01       | D         | 10/20/2016 | 15:03:09 | 86    | 13           | 0                |          |                                                 |                                      |
| B01       | E         | 10/20/2016 | 15:03:54 | 87    | 13           | 0                |          |                                                 |                                      |
| B03       | А         | 10/20/2016 | 15:10:18 | 88    | 13           | 0                | 103      |                                                 |                                      |
| B03       | В         | 10/20/2016 | 15:11:10 | 89    | 13           | 0                | 103      |                                                 |                                      |
| B03       | С         | 10/20/2016 | 15:12:00 | 90    | 13           | 0                | 103      |                                                 |                                      |
| B03       | D         | 10/20/2016 | 15:12:47 | 91    | 13           | 0                | 103      |                                                 |                                      |
| B02       | А         | 10/20/2016 | 15:18:50 | 92    | 13           | 0                | 90       |                                                 |                                      |
| B02       | В         | 10/20/2016 | 15:20:29 | 93    | 13           | 0                | 90       |                                                 |                                      |
| B02       | С         | 10/20/2016 | 15:21:10 | 94    | 13           | 0                | 90       |                                                 |                                      |
| B02       | D         | 10/20/2016 | 15:21:49 | 95    | 13           | 0                | 90       |                                                 |                                      |
| B02       | E         | 10/20/2016 | 15:22:37 | 96    | 13           | 0                | 90       | On Deck, Download; Redo Station with<br>Weights |                                      |
| B09       | А         | 10/20/2016 | 15:46:54 | 97    | 13           | 0                | 107      |                                                 |                                      |
| B09       | В         | 10/20/2016 | 15:47:49 | 98    | 13           | 0                | 107      |                                                 |                                      |
| B09       | С         | 10/20/2016 | 15:48:36 | 99    | 13           | 0                | 107      |                                                 |                                      |
| B09       | D         | 10/20/2016 | 15:49:24 | 100   | 13           | 0                | 107      |                                                 |                                      |
| B09       | E         | 10/20/2016 | 15:50:12 | 101   | 13           | 0                | 107      |                                                 |                                      |
| B12       | А         | 10/20/2016 | 15:57:34 | 102   | 13           | 0                | 105      |                                                 |                                      |
| B12       | В         | 10/20/2016 | 15:58:25 | 103   | 13           | 0                | 105      |                                                 |                                      |
| B12       | С         | 10/20/2016 | 15:59:08 | 104   | 13           | 0                | 105      |                                                 |                                      |
| B12       | D         | 10/20/2016 | 15:59:59 | 105   | 13           | 0                | 105      | On Deck                                         |                                      |
| B12       | E         | 10/20/2016 | 16:29:38 | 106   | 14           | 2                | 105      |                                                 |                                      |
| B12       | F         | 10/20/2016 | 16:30:27 | 107   | 14           | 2                | 105      |                                                 |                                      |
| B12       | G         | 10/20/2016 | 16:31:16 | 108   | 14           | 2                | 105      |                                                 |                                      |
| B12       | Н         | 10/20/2016 | 16:32:04 | 109   | 14           | 2                | 105      |                                                 |                                      |
| B10       | А         | 10/20/2016 | 16:39:09 | 110   | 14           | 2                | 106      |                                                 |                                      |
| B10       | В         | 10/20/2016 | 16:40:00 | 111   | 14           | 2                | 106      |                                                 |                                      |
| B10       | С         | 10/20/2016 | 16:40:50 | 112   | 14           | 2                | 106      |                                                 |                                      |
| B10       | D         | 10/20/2016 | 16:40:48 | 113   | 14           | 2                | 106      | On Deck; Frame Count 115                        |                                      |
| B04       | А         | 10/21/2016 | 8:58:42  | 116   | 14           | 0                | 99       |                                                 |                                      |
| B04       | В         | 10/21/2016 | 8:59:17  | 117   | 14           | 0                | 99       |                                                 |                                      |
| B04       | С         | 10/21/2016 | 8:59:55  | 118   | 14           | 0                | 99       |                                                 |                                      |
| B04       | D         | 10/21/2016 | 9:00:33  | 119   | 14           | 0                | 99       |                                                 |                                      |
| B08       | А         | 10/21/2016 | 9:04:50  | 120   | 14           | 0                | 98       |                                                 |                                      |
| B08       | В         | 10/21/2016 | 9:05:29  | 121   | 14           | 0                | 98       |                                                 |                                      |
| B08       | С         | 10/21/2016 | 9:06:11  | 122   | 14           | 0                | 98       |                                                 |                                      |
| B08       | D         | 10/21/2016 | 9:06:55  | 123   | 14           | 0                | 98       |                                                 |                                      |
| B04       | E         | 10/21/2016 | 9:15:01  | 124   | 14           | 0                | 91       |                                                 | EB20170126: Updated Replicate from A |
| B04       | F         | 10/21/2016 | 9:15:44  | 125   | 14           | 0                | 91       |                                                 | EB20170126: Updated Replicate from B |
| B04       | G         | 10/21/2016 | 9:16:26  | 126   | 14           | 0                | 91       |                                                 | EB20170126: Updated Replicate from C |
| B04       | Н         | 10/21/2016 | 9:18:25  | 127   | 14           | 0                | 91       |                                                 | EB20170126: Updated Replicate from D |
| B08       | E         | 10/21/2016 | 9:22:33  | 128   | 14           | 0                | 85       |                                                 | EB20170126: Updated Replicate from A |

| StationID | Replicate | Date       | Time     | Frame | Stops_inches | Weights_per_side | Depth_ft | Comments                           | QC_Notes                             |
|-----------|-----------|------------|----------|-------|--------------|------------------|----------|------------------------------------|--------------------------------------|
| B08       | F         | 10/21/2016 | 9:23:17  | 129   | 14           | 0                | 85       |                                    | EB20170126: Updated Replicate from B |
| B08       | G         | 10/21/2016 | 9:23:54  | 130   | 14           | 0                | 85       |                                    | EB20170126: Updated Replicate from C |
| B08       | Н         | 10/21/2016 | 9:24:32  | 131   | 14           | 0                | 85       |                                    | EB20170126: Updated Replicate from D |
| B06       | А         | 10/21/2016 | 9:29:00  | 132   | 14           | 0                | 78       |                                    |                                      |
| B06       | В         | 10/21/2016 | 9:29:40  | 133   | 14           | 0                | 78       |                                    |                                      |
| B06       | С         | 10/21/2016 | 9:30:20  | 134   | 14           | 0                | 78       | Missing                            |                                      |
| B06       | D         | 10/21/2016 | 9:31:01  | 135   | 14           | 0                | 78       | Missing                            |                                      |
| B05       | Α         | 10/21/2016 | 9:37:48  | 136   | 14           | 0                | 97       |                                    |                                      |
| B05       | В         | 10/21/2016 | 9:38:25  | 137   | 14           | 0                | 97       |                                    |                                      |
| B05       | С         | 10/21/2016 | 9:39:06  | 138   | 14           | 0                | 97       |                                    |                                      |
| B05       | D         | 10/21/2016 | 9:39:45  | 139   | 14           | 0                | 97       | On Deck, Download; Frame Count 138 |                                      |
| B06       | E         | 10/21/2016 | 10:03:32 | 139   | 14           | 2                | 78       |                                    |                                      |
| B06       | F         | 10/21/2016 | 10:04:11 | 140   | 14           | 2                | 78       |                                    |                                      |
| B06       | G         | 10/21/2016 | 10:04:47 | 141   | 14           | 2                | 78       |                                    |                                      |
| B06       | Н         | 10/21/2016 | 10:05:22 | 142   | 14           | 2                | 78       |                                    |                                      |
| B06       | Ι         | 10/21/2016 | 10:10:39 | 143   | 14           | 4                | 77       |                                    |                                      |
| B06       | J         | 10/21/2016 | 10:12:19 | 144   | 14           | 4                | 77       |                                    |                                      |
| B06       | К         | 10/21/2016 | 10:12:56 | 145   | 14           | 4                | 77       |                                    |                                      |
| B06       | L         | 10/21/2016 | 10:13:34 | 146   | 14           | 4                | 77       |                                    |                                      |
| B02       | F         | 10/21/2016 | 10:19:45 | 147   | 14           | 4                | 82       |                                    | EB20170126: Updated Replicate from E |
| B02       | G         | 10/21/2016 | 10:20:22 | 148   | 14           | 4                | 82       |                                    | EB20170126: Updated Replicate from F |
| B02       | Н         | 10/21/2016 | 10:20:58 | 149   | 14           | 4                | 82       |                                    | EB20170126: Updated Replicate from G |
| B02       | I         | 10/21/2016 | 10:21:38 | 150   | 14           | 4                | 82       |                                    | EB20170126: Updated Replicate from H |
| B08       | I         | 10/21/2016 | 10:27:09 | 151   | 14           | 4                | 83       |                                    | EB20170126: Updated Replicate from E |
| B08       | J         | 10/21/2016 | 10:27:48 | 152   | 14           | 4                | 83       |                                    | EB20170126: Updated Replicate from F |
| B08       | К         | 10/21/2016 | 10:28:28 | 153   | 14           | 4                | 83       |                                    | EB20170126: Updated Replicate from G |
| B08       | L         | 10/21/2016 | 10:29:05 | 154   | 14           | 4                | 83       | On Deck, Download: Frame Count 156 | EB20170126: Updated Replicate from H |
| NWREF-08  | А         | 10/21/2016 | 10:53:52 | 157   | 14           | 0                | 108      |                                    |                                      |
| NWREF-08  | В         | 10/21/2016 | 10:54:26 | 158   | 14           | 0                | 108      |                                    |                                      |
| NWREF-08  | С         | 10/21/2016 | 10:55:03 | 159   | 14           | 0                | 108      |                                    |                                      |
| NWREF-08  | D         | 10/21/2016 | 10:55:41 | 160   | 14           | 0                | 108      | On Deck, Stops changed             |                                      |
| NWREF-08  | E         | 10/21/2016 | 11:05:45 | 161   | 13           | 0                | 109      |                                    |                                      |
| NWREF-08  | F         | 10/21/2016 | 11:06:22 | 162   | 13           | 0                | 109      |                                    |                                      |
| NWREF-08  | G         | 10/21/2016 | 11:07:04 | 163   | 13           | 0                | 109      |                                    |                                      |
| NWREF-08  | Н         | 10/21/2016 | 11:07:47 | 164   | 13           | 0                | 109      |                                    |                                      |
| NWREF-07  | Α         | 10/21/2016 | 11:14:51 | 165   | 13           | 0                | 110      |                                    |                                      |
| NWREF-07  | В         | 10/21/2016 | 11:15:30 | 166   | 13           | 0                | 110      |                                    |                                      |
| NWREF-07  | С         | 10/21/2016 | 11:16:08 | 167   | 13           | 0                | 110      |                                    |                                      |
| NWREF-07  | D         | 10/21/2016 | 11:16:48 | 168   | 13           | 0                | 110      |                                    |                                      |
| NWREF-05  | Α         | 10/21/2016 | 11:24:06 | 169   | 13           | 0                | 109      |                                    |                                      |
| NWREF-05  | В         | 10/21/2016 | 11:24:43 | 170   | 13           | 0                | 109      |                                    |                                      |
| NWREF-05  | С         | 10/21/2016 | 11:25:21 | 171   | 13           | 0                | 109      |                                    |                                      |

| StationID | Replicate | Date       | Time     | Frame | Stops_inches | Weights_per_side | Depth_ft | Comments                 | QC_Notes |
|-----------|-----------|------------|----------|-------|--------------|------------------|----------|--------------------------|----------|
| NWREF-05  | D         | 10/21/2016 | 11:25:57 | 172   | 13           | 0                | 109      |                          |          |
| NWREF-06  | А         | 10/21/2016 | 11:29:31 | 173   | 13           | 0                | 110      |                          |          |
| NWREF-06  | В         | 10/21/2016 | 11:30:08 | 174   | 13           | 0                | 110      |                          |          |
| NWREF-06  | С         | 10/21/2016 | 11:30:45 | 175   | 13           | 0                | 110      |                          |          |
| NWREF-06  | D         | 10/21/2016 | 11:31:22 | 176   | 13           | 0                | 110      | On Deck; Frame Count 176 |          |
| CCBRS-03  | А         | 10/21/2016 | 11:43:45 | 177   | 13           | 0                | 123      |                          |          |
| CCBRS-03  | В         | 10/21/2016 | 11:44:24 | 178   | 13           | 0                | 123      |                          |          |
| CCBRS-03  | С         | 10/21/2016 | 11:45:01 | 179   | 13           | 0                | 123      |                          |          |
| CCBRS-03  | D         | 10/21/2016 | 11:45:42 | 180   | 13           | 0                | 123      |                          |          |
| CCBRS-02  | А         | 10/21/2016 | 11:51:31 | 181   | 13           | 0                | 124      |                          |          |
| CCBRS-02  | В         | 10/21/2016 | 11:52:09 | 182   | 13           | 0                | 124      |                          |          |
| CCBRS-02  | С         | 10/21/2016 | 11:52:51 | 183   | 13           | 0                | 124      |                          |          |
| CCBRS-02  | D         | 10/21/2016 | 11:53:28 | 184   | 13           | 0                | 124      |                          |          |
| CCBRS-01  | А         | 10/21/2016 | 12:00:07 | 185   | 13           | 0                | 124      |                          |          |
| CCBRS-01  | В         | 10/21/2016 | 12:00:46 | 186   | 13           | 0                | 124      |                          |          |
| CCBRS-01  | С         | 10/21/2016 | 12:01:26 | 187   | 13           | 0                | 124      |                          |          |
| CCBRS-01  | D         | 10/21/2016 | 12:02:40 | 188   | 13           | 0                | 124      |                          |          |
| CCBRS-04  | А         | 10/21/2016 | 12:08:08 | 189   | 13           | 0                | 124      |                          |          |
| CCBRS-04  | В         | 10/21/2016 | 12:08:52 | 190   | 13           | 0                | 124      |                          |          |
| CCBRS-04  | С         | 10/21/2016 | 12:09:30 | 191   | 13           | 0                | 124      |                          |          |
| CCBRS-04  | D         | 10/21/2016 | 12:10:06 | 192   | 13           | 0                | 124      |                          |          |



LEVEL All-Weather Notebook No. 311

Rockland PDS 12-14 Sep 2016 Portland PDS 17-19 Sep 2016 Central Long Island CLDS 29 Sep + 02017 2016 Com (ad Bay CCBDS 26-21 Oct 2016 4 5/8" x 7" - 48 Numbered Pages

| 36<br>57Å   | REP                                      | FRAME  | a period                                 | TIME         | DECTH(H) | STAN     | REP         | FRAME  |                            | TIME                | 37<br>DEPIM(A!) |
|-------------|------------------------------------------|--------|------------------------------------------|--------------|----------|----------|-------------|--------|----------------------------|---------------------|-----------------|
| CLIS        | haddeedharn - 40                         | 228    |                                          | 10:59:56     | 87 1     | 25000-03 | A           | 248    |                            | 12:05:50            | 44              |
| REF-02      | в                                        | 229    |                                          | 11:00:52     |          |          | B           | 249    | 2. 2. 5                    | 12:06:33            |                 |
|             | C                                        | 23.0   |                                          | 11:01:40     |          |          | C           | 250    | 2.25                       | 12:07:13            |                 |
|             | D                                        | 231    |                                          | 11:02:27     |          |          | Ø           | 251    | S. S. A.                   | 12:07:53            |                 |
|             |                                          |        |                                          |              |          |          |             |        |                            |                     |                 |
| CLIS        | A                                        | 232    |                                          | 11:06:23     | 86       | 2500W-05 | A           | 252    | 1.1                        | 12:12:28            | 63              |
| REF-01      | B                                        | 733    |                                          | 11:07:11     |          |          | B           | 253    | 1                          | 12:13:14            | ( Starter 1     |
|             | C                                        | 234    |                                          | 11:07:53     |          |          | C           | 254    | Q                          | (2:14:29            |                 |
|             | 6                                        | 235    |                                          | 11:08:32     |          |          | D .         | 255    | $(\mathbf{x}, \mathbf{y})$ | 12:15:10            |                 |
| ON DECK DOW | NLOAD FOR                                | NE 235 |                                          |              |          | EOD      |             |        |                            | and the second      |                 |
|             | 14. N                                    |        |                                          | - trialester |          | 101 1    |             |        |                            |                     |                 |
| 2500 - 02   | A                                        | 23.6   |                                          | N:46:45      | 64       | 10/20/20 | 0/6         | 1      | j kţ                       | - Aller - Aller     |                 |
|             | B                                        | 237    |                                          | 11:47:32     |          |          | 1 0         |        | e al                       | 1                   | 1               |
|             | C                                        | 228    | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 11:48414     | 199      | Cape (   | od Di       | sposal | SAL                        | (CCA).              | ))              |
|             | 2                                        | 239    |                                          | 1:49:06      |          | ' SPI    | /Ar sur     | iny -  | Re S                       | 1                   |                 |
|             | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |        |                                          | A ANNA       |          | 06.50 @  | Joch        |        |                            |                     |                 |
| 2500 -01    | A                                        | 240    | 1                                        | 11:51:16     | 64.      | 07:30 5  | lepart do   | ich    | 1 h                        | an an an ar         | With Market     |
|             | ß                                        | 241    | 0.00                                     | 11:52:00     |          |          | - Stores of | -      | PE.                        | <u>, Mariana in</u> |                 |
|             | il i                                     | 242    |                                          | 11:52:48     |          | setting. | 5           | A MA   | 14 A.S.                    | 1000000             |                 |
|             | b                                        | 243    |                                          | 11:53:23     |          | SPI      | PV          | 132    | 100                        |                     |                 |
|             |                                          |        |                                          |              |          | 1/250    | 1/30        |        |                            | and the second      |                 |
| 25000-04    | A                                        | 244    |                                          | 12:00:13     | 64       | ISO 640  | 100 400     |        |                            |                     |                 |
|             | B                                        | 245    |                                          | 12:01:00     |          | fq       | FIM         | ////   |                            |                     |                 |
|             | C                                        | 246    |                                          | 12:01:41     |          |          |             | 4      |                            |                     |                 |
|             | D                                        | 247    |                                          | 12:02:28     |          |          |             |        |                            |                     |                 |
|             |                                          |        |                                          |              |          |          |             |        |                            |                     |                 |

| 38<br>57A   | REP                   | FRAME       | 1442        | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DECTH (4) | STA        | REP       | FRAME | Territoria della 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TIME      | 39<br>De <i>eru(41</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|-----------------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SWREF       | A                     | 104         |             | 09:28:38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28        | C-22-rew_  | A         | 21    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:09:27  | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 09          | B                     | 105         |             | 09:29:38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            | B         | 22    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:07:15  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | t                     | 04          |             | 09:30:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            | C. Was    | 23    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:07:56  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 2                     | 07          |             | 09:31:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            | D         | 24    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:08:44  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | E                     | 08          |             | 09:32:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ON De       | ck bound da           | b Frame 109 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 6-20 - new | A         | 25    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:18:43  | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SWREF       | A                     | 10          | 1450        | 09.52:33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96        |            | B         | 26    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:19:33  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10          | B                     | 1           |             | 09:53:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            | C. mar    | 27    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:20:22  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | ¢                     | 12          |             | 09:54:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            | D         | 28    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:21:07  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | Þ                     | 13          |             | 09:54:48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            | E         | 29    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:22:00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |             |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 1          |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GINREF      | A,                    | 14          |             | 10:04:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96        | C-21-14W   | A         | 30    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:28:37  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11          | β -                   | 15          |             | 10:05:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            | Barrie    | 31    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:29:25  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | C                     | 16          |             | 75:06:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            | 0         | 32    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:30:17  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | D                     | 117         |             | 10:06:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            | 0         | 33    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:3600   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | /          | - Briefer |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SWEEF       |                       | 18          | lost france | 10:16:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96        | C-23-New   | A         | 34    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:43120  | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12          |                       | 19          |             | 10:17:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            | B         | 35    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1144117   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       | 20          |             | 10:18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            | C         | 36    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:45:07  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       | 21          |             | 10:18:56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            | 0         | 37    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:46:04  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DU NECK N   | Abash                 | FALMZ 20    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            | E         | 38    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:46:55  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| op spere of | and the second second |             | 5           | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |             |             | and the second s |           | C-24 New   | А         | 39    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:52:54  | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |                       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         | - Cha      | B         | 10    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11: 53:42 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            | C         | 41    | and the second se | 11:54:28  | and a submer to be a submer to be the submer to be the submer to be the submer to be the submer to be a |
|             |                       |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            | D         | 42    | 1 marine and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11:55:13  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 40<br>STA | REP      | FR duals   |       | TTANK     | NEOTHICA | STA     | Rep      | Frands |             | TTHAT     | 41        |
|-----------|----------|------------|-------|-----------|----------|---------|----------|--------|-------------|-----------|-----------|
| C-25_New  | A        | 43         |       | 12:07:71  | 93       | C-17    | A        | 63     |             | 12.01.12  | The start |
|           | ß        | 44         |       | 12:04:20  | 10       |         | ß        | 64     | 1           | 13:52:00  | 107       |
|           | (        | 45         |       | 12:05:06  |          |         | ć        | 65     |             | 13:57:50  |           |
|           | p .      | 46         |       | 12:05:51  |          |         | 0        | 66     | 1           | 13:58:38  |           |
| c-14      | A        | 47         |       | 12;11:14  | 101      | C-18 -  | A        | 67     |             | 14:06:27  | 107-      |
|           | Bas      | 48         |       | 12:12:04  |          |         | B        | 68     |             | 14:07:16  |           |
|           | C. Maria | 49         |       | 12:12:52  |          |         | Carro    | 69     |             | H:08:07   |           |
|           | б        | 50         |       | 12:13:47  |          | -       | 15       | 70     |             | 14:09:01  |           |
| C-110     | A        | 51         |       | R: 77+72  | 98       | C-19    | A        | 71     |             | 14:17:23  | 109       |
|           | ß        | 52         |       | 12:23:16  |          |         | ß        | 72     |             | 14:13:18  |           |
|           | C .      | 53         |       | 12:23:59  |          |         | C        | 73     |             | 14:14:18  |           |
|           | Ŋ        | 54         |       | 12:24:47  |          |         | D        | 74     | missed from | 14:15:03  |           |
| r=13 NE.  | А        | <i>c</i> ( |       | 17:37.14  | 69       | B-07    | A        | 25     |             | 111.24.20 | 108       |
| L leger   | B        | 56         |       | 12:33:49  | 1        |         | β        | 76     |             | 14:40:15  | 100       |
|           | C        | 57         |       | 12131:36  |          |         | C        | 77     |             | 14:41:10  |           |
|           | D.       | 58         |       | 12:35:71  |          |         | 6        | 78     |             | 14:41:59  |           |
| N Deek    | DOWNLOAD | FRAME 58   | Lunch | TIME      |          |         | E        | 79     |             | 14:42:51  |           |
|           |          |            |       |           |          | ON Deck | FRAME CO | ut 78  |             | ,         |           |
| C-15      | A        | 59         | B+0   | 13:48:04  | 107      | B-11    | A        | 79     |             | 14:53:20  | 167       |
|           | B        | 6.0        |       | 13:48:55  |          | 1       | B        | 80     |             | M: 54.10  |           |
|           | C        | 61         |       | 13:49 247 |          |         | ٢        | 81     |             | 14:54:53  |           |
|           | D        | 42         |       | 13: 50:38 |          |         | 0        | 82     |             | 14:55:37  |           |

| 42        |        |       |            |           | 1 Cal      | 1          | 1 mile  |          |                                                                                                                 |               | 43       |
|-----------|--------|-------|------------|-----------|------------|------------|---------|----------|-----------------------------------------------------------------------------------------------------------------|---------------|----------|
| STA       | K.E.P. | FRAME |            | TIME      | DEPTH (AF) | STA        | ICE fe  | FRAME    | and the second providence of the second s | TIME          | DEPTH(4) |
| B-01      | A      | 83    |            | 15:00:45  | 106        | B-12       | A       | 107      | 1                                                                                                               | 15:57:34      | 105      |
|           | ß      | 84    |            | 15:01:39  |            |            | В       | 133      |                                                                                                                 | 15:58:25      |          |
|           | С      | 85    |            | 15:02:23  |            |            | ·       | 104      |                                                                                                                 | 15:51:08      |          |
|           | 6      | 86    |            | 15: 03:09 |            |            | D       | ecq      |                                                                                                                 | 15:59:59      |          |
|           | E      | 87    |            | 15:03:54  |            | ON DE      | ch      | 10.4     |                                                                                                                 |               |          |
|           |        |       |            |           |            | B-17       | E       | 106      | 1472                                                                                                            | 16:129138     | 105      |
| 6-03      | A      | 88    |            | 15:10:18  | 103        |            | F       | 107      |                                                                                                                 | 16:130:27     |          |
|           | ß      | 84    |            | 15:11:10  |            |            | 61      | 108      |                                                                                                                 | 16:13/114     |          |
|           | 0      | 40    |            | 15:12:00  |            | 1          | H       | 109      |                                                                                                                 | 16:32:04      | 1        |
|           | 0      | 91    |            | 15:12:47  |            |            |         |          |                                                                                                                 | 1             |          |
|           |        |       |            |           |            | B-10       | A       | 110      | 3                                                                                                               | 16:30:00      | 106      |
| B-02      | A      | 97    | 5000       | 75:18:50  | 90         |            | G.      | . he     |                                                                                                                 | 11 -: 425 200 | 10.0     |
|           | ß      | 43    | Station of | 15:20:29  |            | •          | L       | 112      |                                                                                                                 | 16:40:00      |          |
|           | د      | igad. | weights    | 15:21:10  |            |            | d       | 113      |                                                                                                                 | 110:11:110    |          |
|           | Ь      | 95    | youts      | 1521:49   |            | ON NECK    | FRAN    | IE IIS   |                                                                                                                 | (y.1).70      |          |
|           | E      | 96    | 1.30       | 15:22:37  |            | EOD IN     | 147: he | Dal Lack | to bail                                                                                                         |               |          |
| ON NECK & | MAGAMA |       |            |           |            | -05 13     |         |          | C I W GOL                                                                                                       |               |          |
| B=09      | A      | 97    |            | 1546:54   | 107        | 10/21/2010 |         |          |                                                                                                                 |               |          |
| 0-1       | B      | 98    |            | 15:47:49  |            | 07:00 C    | An h.   | 07.00    | 1000                                                                                                            | Dack for      | ite      |
|           | c      | 99    |            | 15: 48:36 |            |            | Ser     | 04110    | benen i                                                                                                         |               | 2.17     |
|           | b      | 60    |            | 15:49.24  |            | B-04       | Ann     | 111      | KULO                                                                                                            | 0.010.00      | 99       |
|           | F      | 101   |            | 15:50:R   |            |            | B       | 114      | 17.4-0                                                                                                          | 08.58.46      | 1        |
|           | L      |       |            | CONT.     |            |            | C       | 110      |                                                                                                                 | 05.51.17      |          |
|           |        |       |            |           |            |            | Ň       | 110      |                                                                                                                 | 05,57.55      |          |
|           |        |       |            |           |            |            | 0       | 117      |                                                                                                                 | 09:00:33      |          |
|           |        |       |            |           |            |            |         |          |                                                                                                                 |               |          |
|           |        |       |            |           |            |            |         |          |                                                                                                                 |               |          |
| 44       |           |            |            |          | Saint      |             | 0                                       | -           |            |                       | 45     |
|----------|-----------|------------|------------|----------|------------|-------------|-----------------------------------------|-------------|------------|-----------------------|--------|
| STA      | REP 1     | RAINE      | 1          | IZABE    | DE PITICAL | _3/A        | And | TRAMA       | here a     | secure and the second | D2 MAG |
| B-08     | A         | 120        | 1          | 98'      | 09:04:50   | 8-06_New    | E                                       | 139         | 14+2       | 10:03:32              | 78     |
|          | Ð.        | 121        |            |          | 09:05:29   |             | F                                       | 140         |            | 10:04:11              |        |
|          | (         | 122        |            |          | 01:06:11   |             | 61                                      | 141         | 100        | 10:04:47              | ×      |
|          | 0         | 123        |            | hi h     | 09:06:55   |             | 4                                       | 142         |            | 10:05:22              |        |
| B-04-New | A         | 124        |            | 09:15:01 | 91         | B-olla Dev  | Ĭ                                       | 143         | 14 + 4     | 10:10:39              | 77     |
|          | ß         | 175        |            | 09:15:44 |            |             | J                                       | 144         |            | 10:12:19              |        |
|          | C         | 126        |            | 09:16:26 |            |             | K                                       | 145         | 4          | 10:12:56              |        |
|          | b         | 127        |            | 09:18:21 | \ '        |             | 4                                       | 146         | . <u> </u> | 10:13:34              |        |
| B-08 New | A         | 128        | 18. de1    | 09:22:33 | 85         | B-02-New    | E                                       | 147         |            | 10:19:45              | 58     |
| 02.1     | B         | 129        | 2-13       | 09:23:17 |            | al and      | F                                       | 148         |            | 10:20:22              |        |
|          | C         | 130        |            | 09:23:54 |            |             | G                                       | 149         | 1.         | 10:20:58              |        |
|          | D         | 13)        | Ŵ          | 09:24:32 |            |             | H                                       | 150         | 5.1        | 10:21:38              |        |
| B-06-Ne  | A         | 132        | ale all    | 09:29:00 | 78         | B-08 New !! | E.                                      | 151         | 14         | 10:27:09              | 83     |
|          | в         | 133        | redo 2 mgb | 09:29:40 |            |             | F                                       | 152         |            | 10-27:48              |        |
|          | (         | 174        | mitscha    | 09:30:20 |            |             | 4                                       | 153         |            | m:28:28               |        |
|          | D         | 175        | minutes    | 09:31: M |            |             | н                                       | 154         | 2.         | 10:29:05              |        |
|          |           | 1.3.5      | and an a   | ST. OF   |            | DA DETE A.  | 11042 1                                 | RAME ISI    | 10         |                       |        |
| B-OS     | A         | 136        |            | 09:37:48 | 97         | or such you | New and                                 |             | 1440       | 15                    |        |
|          | B         | 137        |            | 09:38:25 | 1          | NWREF.      | A                                       | 157         | 14 +051    | 10:53:52              | 108    |
|          | C         | 138        |            | 09:39:06 |            | 80          | B                                       | 158         | i sti      | 10:54:26              |        |
|          | 0         | 139        |            | 09:39:45 |            | < No.       | 0                                       | 159         |            | 10:55:03              |        |
| on beck  | bown Loak | FRAM & 138 |            |          |            | ON DECK     | b<br>stop. ch                           | 160<br>mgel |            | 10:55:41              |        |

| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 47       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REP   | FRAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | TIME     | Derni (41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FRAME                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TIME     | DEPTH GA |
| NWREF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E     | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1340 | 11:05:45 | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UBRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 181                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:51:31 | VZ4      |
| 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F     | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:06:22 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 182                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:52:09 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G     | 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1:07:04  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 183                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:52:51 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14    | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:07:47 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 184                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1:53:28  |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
| NW REF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | А     | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:14:51 | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CEBRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.5                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:00:07 | 124      |
| 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | в     | 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:15:30 | r.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 186                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:00:46 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C     | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:16:08 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 187                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:01:26 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5     | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:16:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 188                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:02:40 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
| NWREF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A     | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1:24:06  | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCBRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 189                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:08:08 | 124      |
| 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B     | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:24:43 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 196                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:08:52 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C     | 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:25:21 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 191                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:09:30 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5     | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:25:57 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 142                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:10:00 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13:00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Such @ N                                                                                                       | nell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106      |          |
| NOREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A     | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:29:31 | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | State of the state |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
| DG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ß     | 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1:30:08  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C     | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:30:45 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D     | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:31:22 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
| ON ASCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FRAME | 17-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
| Or Qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 me  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
| UBRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٨     | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:43:45 | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
| 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B     | 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:44:24 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · c   | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1:45:01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D     | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 11:45:42 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |
| and the second se |       | the state of the s |      |          | and the state of the second state of the secon | and the second se | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the second s | A second s |          |          |

## APPENDIX E

## SEDIMENT-PROFILE AND PLAN-VIEW IMAGE ANALYSIS RESULTS

| Area     | Location | StationID | Replicate | Date       | Time     | Water<br>Depth (m) | Stop<br>Collar<br>Setting<br>(in) | # of<br>Weights<br>(per side) | Image<br>Width<br>(cm) | Grain Size<br>Major<br>Mode (phi) | Grain Size<br>Minimum<br>(phi) | Grain Size<br>Maximum<br>(phi) | Grain Size<br>Range<br>(phi) | Penetration<br>Mean (cm) | Penetration<br>Minimum<br>(cm) | Penetration<br>Maximum<br>(cm) | Boundary<br>Roughness<br>(cm) | Boundary<br>Roughness<br>Type |
|----------|----------|-----------|-----------|------------|----------|--------------------|-----------------------------------|-------------------------------|------------------------|-----------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|
| Disposal | Mound B  | B01       | В         | 10/20/2016 | 15:01:26 | 106                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 19.59                    | 17.16                          | 21.71                          | IND                           | Physical                      |
| Disposal | Mound B  | B01       | D         | 10/20/2016 | 15:02:58 | 106                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 19.28                    | 18.95                          | 19.73                          | 0.77                          | Biological                    |
| Disposal | Mound B  | B01       | E         | 10/20/2016 | 15:03:42 | 106                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 18.12                    | 17.77                          | 18.37                          | 0.60                          | Biological                    |
| Disposal | Mound B  | B02       | G         | 10/21/2016 | 10:20:09 | 82                 | 14                                | 4                             | 14.47                  | >4                                | >4                             | -5                             | >4 to -5                     | 5.14                     | 3.78                           | 6.40                           | 2.62                          | Biological                    |
| Disposal | Mound B  | B02       | Н         | 10/21/2016 | 10:20:44 | 82                 | 14                                | 4                             | 14.47                  | >4                                | >4                             | -3                             | >4 to -3                     | 3.20                     | 2.48                           | 3.91                           | 1.43                          | Biological                    |
| Disposal | Mound B  | B02       | I         | 10/21/2016 | 10:21:25 | 82                 | 14                                | 4                             | 14.47                  | >4                                | >4                             | 2                              | >4 to 2                      | 7.43                     | 6.90                           | 8.15                           | 1.26                          | Biological                    |
| Disposal | Mound B  | B03       | А         | 10/20/2016 | 15:10:07 | 103                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 9.48                     | 8.53                           | 9.87                           | 1.34                          | Biological                    |
| Disposal | Mound B  | B03       | В         | 10/20/2016 | 15:10:58 | 103                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 14.29                    | 13.80                          | 14.42                          | 0.63                          | Biological                    |
| Disposal | Mound B  | B03       | с         | 10/20/2016 | 15:11:49 | 103                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 16.11                    | 15.78                          | 16.37                          | 0.59                          | Biological                    |
| Disposal | Mound B  | B04       | E         | 10/21/2016 | 9:14:50  | 91                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 18.46                    | 18.20                          | 18.72                          | 0.51                          | Biological                    |
| Disposal | Mound B  | B04       | G         | 10/21/2016 | 9:16:16  | 91                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 20.28                    | 19.62                          | 20.69                          | 1.07                          | Biological                    |
| Disposal | Mound B  | B04       | н         | 10/21/2016 | 9:18:11  | 91                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 16.71                    | 16.18                          | 17.67                          | 1.48                          | Biological                    |
| Disposal | Mound B  | B05       | A         | 10/21/2016 | 9:37:37  | 97                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 18.44                    | 18.12                          | 18.92                          | 0.80                          | Biological                    |
| Disposal | Mound B  | B05       | В         | 10/21/2016 | 9:38:14  | 97                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 16.31                    | 14.88                          | 17.56                          | 2.68                          | Biological                    |
| Disposal | Mound B  | B05       | с         | 10/21/2016 | 9:38:55  | 97                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 17.69                    | 17.19                          | 18.51                          | 1.33                          | Biological                    |
| Disposal | Mound B  | B06       | J         | 10/21/2016 | 10:12:06 | 77                 | 14                                | 4                             | 14.47                  | 0 to -1 / >4                      | >4                             | -4                             | >4 to -4                     | 3.59                     | 0.17                           | 4.10                           | 3.93                          | Biological                    |
| Disposal | Mound B  | B06       | К         | 10/21/2016 | 10:12:43 | 77                 | 14                                | 4                             | 14.47                  | >4                                | >4                             | -2                             | >4 to -2                     | 3.21                     | 2.58                           | 3.87                           | 1.30                          | Biological                    |
| Disposal | Mound B  | B06       | L         | 10/21/2016 | 10:13:21 | 77                 | 14                                | 4                             | 14.47                  | 1 to 0 / >4                       | >4                             | -3                             | >4 to -3                     | 4.27                     | 2.95                           | 4.92                           | 1.96                          | Biological                    |
| Disposal | Mound B  | B07       | С         | 10/20/2016 | 14:40:59 | 108                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 16.05                    | 15.59                          | 16.50                          | 0.91                          | Biological                    |
| Disposal | Mound B  | B07       | D         | 10/20/2016 | 14:41:48 | 108                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 16.13                    | 15.77                          | 16.49                          | 0.72                          | Biological                    |
| Disposal | Mound B  | B07       | E         | 10/20/2016 | 14:42:40 | 108                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 18.60                    | 17.52                          | 19.04                          | 1.52                          | Biological                    |
| Disposal | Mound B  | B08       | н         | 10/21/2016 | 9:24:20  | 85                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 0                              | >4 to 0                      | 8.56                     | 8.31                           | 8.80                           | 0.49                          | Biological                    |
| Disposal | Mound B  | B08       | J         | 10/21/2016 | 10:27:35 | 83                 | 14                                | 4                             | 14.47                  | 4 to 3                            | >4                             | 0                              | >4 to 0                      | 7.83                     | 7.13                           | 8.58                           | 1.45                          | Biological                    |
| Disposal | Mound B  | B08       | L         | 10/21/2016 | 10:28:52 | 83                 | 14                                | 4                             | 14.47                  | 4 to 3                            | >4                             | 0                              | >4 to 0                      | 9.79                     | 9.10                           | 10.23                          | 1.13                          | Biological                    |
| Disposal | Mound B  | B09       | В         | 10/20/2016 | 15:47:37 | 107                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 1                              | >4 to 1                      | 17.94                    | 17.45                          | 18.10                          | 0.65                          | Biological                    |
| Disposal | Mound B  | B09       | с         | 10/20/2016 | 15:48:25 | 107                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 0                              | >4 to 0                      | 18.24                    | 18.02                          | 18.45                          | 0.43                          | Biological                    |
| Disposal | Mound B  | B09       | D         | 10/20/2016 | 15:49:13 | 107                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 1                              | >4 to 1                      | 19.13                    | 18.82                          | 19.40                          | 0.58                          | Biological                    |
| Disposal | Mound B  | B10       | A         | 10/20/2016 | 16:38:57 | 106                | 14                                | 2                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 18.64                    | 18.32                          | 18.76                          | 0.43                          | Biological                    |
| Disposal | Mound B  | B10       | В         | 10/20/2016 | 16:39:49 | 106                | 14                                | 2                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 18.56                    | 18.25                          | 18.87                          | 0.63                          | Biological                    |
| Disposal | Mound B  | B10       | C         | 10/20/2016 | 16:40:35 | 106                | 14                                | 2                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 19.52                    | 19.01                          | 20.47                          | 1.47                          | Biological                    |

| Area     | Location | StationID  | Replicate | Date       | Time     | Water<br>Depth (m) | Stop<br>Collar<br>Setting | # of<br>Weights | Image<br>Width | Grain Size<br>Major | Grain Size<br>Minimum | Grain Size<br>Maximum | Grain Size<br>Range | Penetration<br>Mean (cm) | Penetration<br>Minimum | Penetration<br>Maximum | Boundary<br>Roughness | Boundary<br>Roughness |
|----------|----------|------------|-----------|------------|----------|--------------------|---------------------------|-----------------|----------------|---------------------|-----------------------|-----------------------|---------------------|--------------------------|------------------------|------------------------|-----------------------|-----------------------|
|          |          |            |           |            |          |                    | (in)                      | (per side)      | (cm)           | wode (pm)           | (piii)                | (pm)                  | (piii)              |                          | (ciii)                 | (ciii)                 | (cm)                  | туре                  |
| Disposal | Mound B  | B11        | A         | 10/20/2016 | 14:53:09 | 107                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 18.33                    | 18.06                  | 18.67                  | 0.61                  | Biological            |
| Disposal | Mound B  | B11<br>B11 | В         | 10/20/2016 | 14:53:58 | 107                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 17.28                    | 17.05                  | 17.54                  | 0.49                  | Biological            |
| Disposal | Mound B  | B11<br>B12 | A         | 10/20/2016 | 15:57:24 | 107                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 9.29                     | 8.70                   | 9.83                   | 1.14                  | Biological            |
| Disposal | Mound B  | B12        | D         | 10/20/2016 | 15:59:48 | 105                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 10.72                    | 10.41                  | 10.97                  | 0.56                  | Biological            |
| Disposal | Mound B  | B12        | G         | 10/20/2016 | 16:31:03 | 105                | 14                        | 2               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 18.51                    | 17.86                  | 19.07                  | 1.22                  | Biological            |
| Disposal | Mound C  | C13        | А         | 10/20/2016 | 12:32:56 | 99                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 13.68                    | 12.84                  | 14.12                  | 1.28                  | Biological            |
| Disposal | Mound C  | C13        | В         | 10/20/2016 | 12:33:38 | 99                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 13.45                    | 12.99                  | 14.16                  | 1.16                  | Biological            |
| Disposal | Mound C  | C13        | С         | 10/20/2016 | 12:34:25 | 99                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 16.41                    | 15.79                  | 17.00                  | 1.21                  | Biological            |
| Disposal | Mound C  | C14        | А         | 10/20/2016 | 12:11:06 | 101                | 14                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 17.05                    | 16.76                  | 17.57                  | 0.81                  | Biological            |
| Disposal | Mound C  | C14        | В         | 10/20/2016 | 12:11:55 | 101                | 14                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 19.98                    | 18.94                  | 21.42                  | 2.47                  | Biological            |
| Disposal | Mound C  | C14        | С         | 10/20/2016 | 12:12:42 | 101                | 14                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 18.59                    | 18.39                  | 18.90                  | 0.51                  | Biological            |
| Disposal | Mound C  | C15        | А         | 10/20/2016 | 13:47:53 | 107                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 20.02                    | 19.69                  | 20.35                  | 0.66                  | Biological            |
| Disposal | Mound C  | C15        | В         | 10/20/2016 | 13:48:45 | 107                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 17.80                    | 17.46                  | 18.19                  | 0.73                  | Biological            |
| Disposal | Mound C  | C15        | С         | 10/20/2016 | 13:49:37 | 107                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 18.85                    | 18.68                  | 19.00                  | 0.31                  | Biological            |
| Disposal | Mound C  | C16        | А         | 10/20/2016 | 12:22:17 | 98                 | 14                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 20.33                    | 18.89                  | 21.71                  | IND                   | IND                   |
| Disposal | Mound C  | C16        | В         | 10/20/2016 | 12:23:05 | 98                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 19.29                    | 19.16                  | 19.80                  | 0.64                  | Biological            |
| Disposal | Mound C  | C16        | С         | 10/20/2016 | 12:23:49 | 98                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 19.76                    | 19.57                  | 20.01                  | 0.45                  | Biological            |
| Disposal | Mound C  | C17        | А         | 10/20/2016 | 13:56:03 | 109                | 13                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 17.29                    | 17.01                  | 17.62                  | 0.61                  | Biological            |
| Disposal | Mound C  | C17        | В         | 10/20/2016 | 13:56:49 | 109                | 13                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 18.08                    | 17.57                  | 18.78                  | 1.22                  | Biological            |
| Disposal | Mound C  | C17        | С         | 10/20/2016 | 13:57:39 | 109                | 13                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 17.76                    | 17.25                  | 18.12                  | 0.87                  | Biological            |
| Disposal | Mound C  | C18        | Α         | 10/20/2016 | 14:06:15 | 107                | 13                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 13.90                    | 13.17                  | 15.30                  | 2.13                  | Biological            |
| Disposal | Mound C  | C18        | В         | 10/20/2016 | 14:07:06 | 107                | 13                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 15.50                    | 15.21                  | 15.86                  | 0.65                  | Biological            |
| Disposal | Mound C  | C18        | С         | 10/20/2016 | 14:07:57 | 107                | 13                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 12.92                    | 11.78                  | 13.52                  | 1.75                  | Biological            |
| Disposal | Mound C  | C19        | A         | 10/20/2016 | 14:12:13 | 109                | 13                        | 0               | 14.47          | 4  to  3 / >4       | >4                    | 2                     | >4 to 2             | 19.72                    | 18.09                  | 20.55                  | 2.46                  | Biological            |
| Disposal | Nound C  | C19<br>C10 | В         | 10/20/2016 | 14:13:08 | 109                | 13                        | 0               | 14.47          | 4  to  3 / >4       | >4                    | 2                     | >4 to 2             | 10.42                    | 15.92                  | 17.14                  | 1.22                  | Biological            |
| Dispusal | would c  | C13        |           | 10/20/2010 | 14.14.00 | 103                | 13                        | 0               | 14.47          | + 10 3 / 24         |                       | 4                     | 24 LU Z             | 17.00                    | 17.47                  | 10.07                  | 0.00                  | biological            |
| Disposal | Mound C  | C20        | B         | 10/20/2016 | 11:19:22 | 94<br>94           | 14                        | 0               | 14.47          | 4  to  3 / >4       | >4                    | 2                     | >4 to 2             | 15.27                    | 14.93                  | 15.86                  | 0.93                  | Biological            |
| Disposal | Mound C  | C20        | D D       | 10/20/2016 | 11:20:58 | 94                 | 14                        | 0               | 14.47          | 4  to  3 / >4       | >4                    | 2                     | >4 to 2             | 18.08                    | 17.80                  | 18.47                  | 0.62                  | Biological            |
| Disposal | Mound C  | C21        | В         | 10/20/2016 | 11:29:14 | 94                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 16.56                    | 15.92                  | 16.94                  | 1.02                  | Biological            |

| Area      | Location | StationID | Replicate | Date       | Time     | Water<br>Depth (m) | Stop<br>Collar<br>Setting | # of<br>Weights | Image<br>Width | Grain Size<br>Major | Grain Size<br>Minimum | Grain Size<br>Maximum | Grain Size<br>Range | Penetration<br>Mean (cm) | Penetration<br>Minimum | Penetration<br>Maximum | Boundary<br>Roughness | Boundary<br>Roughness |
|-----------|----------|-----------|-----------|------------|----------|--------------------|---------------------------|-----------------|----------------|---------------------|-----------------------|-----------------------|---------------------|--------------------------|------------------------|------------------------|-----------------------|-----------------------|
|           |          |           |           |            |          |                    | (in)                      | (per side)      | (cm)           | wode (pill)         | (piii)                | (piii)                | (piii)              |                          | (cm)                   | (cm)                   | (cm)                  | туре                  |
| Disposal  | Mound C  | C21       | С         | 10/20/2016 | 11:30:07 | 94                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 16.84                    | 16.60                  | 17.03                  | 0.43                  | Biological            |
| Disposal  | Mound C  | C21       | D         | 10/20/2016 | 11:30:50 | 94                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 19.56                    | 19.10                  | 19.92                  | 0.82                  | Biological            |
| Disposal  | Mound C  | C22       | Α         | 10/20/2016 | 11:06:17 | 94                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 18.69                    | 18.02                  | 19.41                  | 1.39                  | Biological            |
| Disposal  | Mound C  | C22       | В         | 10/20/2016 | 11:07:05 | 94                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 16.60                    | 16.35                  | 16.98                  | 0.63                  | Biological            |
| Disposal  | Mound C  | C22       | С         | 10/20/2016 | 11:07:46 | 94                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 19.13                    | 18.71                  | 19.78                  | 1.07                  | Biological            |
| Disposal  | Mound C  | C23       | Α         | 10/20/2016 | 11:43:14 | 96                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 15.84                    | 15.28                  | 16.11                  | 0.83                  | Biological            |
| Disposal  | Mound C  | C23       | В         | 10/20/2016 | 11:44:08 | 96                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 15.15                    | 14.57                  | 15.38                  | 0.82                  | Biological            |
| Disposal  | Mound C  | C23       | С         | 10/20/2016 | 11:44:56 | 96                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 19.25                    | 18.94                  | 19.48                  | 0.54                  | Biological            |
| Disposal  | Mound C  | C24       | А         | 10/20/2016 | 11:52:43 | 95                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 18.20                    | 17.82                  | 18.68                  | 0.86                  | Biological            |
| Disposal  | Mound C  | C24       | В         | 10/20/2016 | 11:53:30 | 95                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 19.17                    | 17.79                  | 20.13                  | 2.35                  | Biological            |
| Disposal  | Mound C  | C24       | С         | 10/20/2016 | 11:54:18 | 95                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 19.49                    | 18.96                  | 19.97                  | 1.01                  | Biological            |
| Disposal  | Mound C  | C25       | А         | 10/20/2016 | 12:03:19 | 93                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 16.24                    | 14.32                  | 18.22                  | 3.90                  | Biological            |
| Disposal  | Mound C  | C25       | В         | 10/20/2016 | 12:04:08 | 93                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 11.27                    | 10.63                  | 11.64                  | 1.02                  | Biological            |
| Disposal  | Mound C  | C25       | D         | 10/20/2016 | 12:05:41 | 93                 | 14                        | 0               | 14.47          | 4 to 3 / >4         | >4                    | 2                     | >4 to 2             | 15.05                    | 14.59                  | 15.44                  | 0.85                  | Biological            |
| Reference | CC-BRS   | CCBRS-01  | А         | 10/21/2016 | 11:59:56 | 124                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 20.32                    | 19.99                  | 20.78                  | 0.80                  | Biological            |
| Reference | CC-BRS   | CCBRS-01  | В         | 10/21/2016 | 12:00:36 | 124                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 19.79                    | 19.38                  | 20.18                  | 0.80                  | Biological            |
| Reference | CC-BRS   | CCBRS-01  | С         | 10/21/2016 | 12:01:15 | 124                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 18.89                    | 18.02                  | 20.20                  | 2.18                  | Biological            |
| Reference | CC-BRS   | CCBRS-02  | Α         | 10/21/2016 | 11:51:21 | 124                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 14.95                    | 14.63                  | 15.53                  | 0.90                  | Biological            |
| Reference | CC-BRS   | CCBRS-02  | В         | 10/21/2016 | 11:51:59 | 124                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 17.98                    | 17.53                  | 18.60                  | 1.07                  | Biological            |
| Reference | CC-BRS   | CCBRS-02  | D         | 10/21/2016 | 11:53:18 | 124                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 17.76                    | 17.43                  | 18.02                  | 0.59                  | Biological            |
| Reference | CC-BRS   | CCBRS-03  | А         | 10/21/2016 | 11:43:33 | 123                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 17.98                    | 17.34                  | 18.28                  | 0.94                  | Biological            |
| Reference | CC-BRS   | CCBRS-03  | В         | 10/21/2016 | 11:44:13 | 123                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 17.76                    | 17.40                  | 18.14                  | 0.74                  | Biological            |
| Reference | CC-BRS   | CCBRS-03  | С         | 10/21/2016 | 11:44:51 | 123                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 17.99                    | 17.05                  | 19.01                  | 1.96                  | Biological            |
| Reference | CC-BRS   | CCBRS-04  | A         | 10/21/2016 | 12:07:57 | 124                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 17.89                    | 17.69                  | 18.12                  | 0.42                  | Biological            |
| Reference | CC-BRS   | CCBRS-04  | В         | 10/21/2016 | 12:08:41 | 124                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 16.69                    | 16.35                  | 17.22                  | 0.87                  | Biological            |
| Reference | CC-BRS   | CCBRS-04  | С         | 10/21/2016 | 12:09:19 | 124                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 19.65                    | 19.11                  | 20.32                  | 1.20                  | Biological            |
| Reference | NW-REF   | NWREF-05  | А         | 10/21/2016 | 11:23:55 | 109                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 17.15                    | 16.61                  | 18.29                  | 1.68                  | Biological            |
| Reference | NW-REF   | NWREF-05  | В         | 10/21/2016 | 11:24:33 | 109                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 15.37                    | 14.89                  | 16.30                  | 1.41                  | Biological            |
| Reference | NW-REF   | NWREF-05  | D         | 10/21/2016 | 11:25:46 | 109                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 17.43                    | 16.49                  | 18.66                  | 2.17                  | Biological            |
| Reference | NW-REF   | NWREF-06  | А         | 10/21/2016 | 11:29:21 | 110                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 19.30                    | 18.83                  | 19.54                  | 0.71                  | Biological            |
| Reference | NW-REF   | NWREF-06  | В         | 10/21/2016 | 11:29:57 | 110                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 18.46                    | 18.54                  | 18.78                  | 0.24                  | Biological            |
| Reference | NW-REF   | NWREF-06  | С         | 10/21/2016 | 11:30:34 | 110                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 15.25                    | 14.24                  | 16.10                  | 1.86                  | Biological            |
| Reference | NW-REF   | NWREF-07  | А         | 10/21/2016 | 11:14:41 | 110                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 17.46                    | 16.87                  | 18.27                  | 1.40                  | Biological            |
| Reference | NW-REF   | NWREF-07  | В         | 10/21/2016 | 11:15:18 | 110                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 18.17                    | 17.81                  | 18.60                  | 0.79                  | Biological            |
| Reference | NW-REF   | NWREF-07  | С         | 10/21/2016 | 11:15:57 | 110                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 19.98                    | 19.53                  | 20.25                  | 0.73                  | Biological            |
| Reference | NW-REF   | NWREF-08  | F         | 10/21/2016 | 11:06:10 | 109                | 13                        | 0               | 14.47          | 4 to 3              | >4                    | 2                     | >4 to 2             | 18.06                    | 17.53                  | 19.20                  | 1.67                  | Biological            |

| Area      | Location | StationID | Replicate | Date       | Time     | Water<br>Depth (m) | Stop<br>Collar<br>Setting<br>(in) | # of<br>Weights<br>(per side) | Image<br>Width<br>(cm) | Grain Size<br>Major<br>Mode (phi) | Grain Size<br>Minimum<br>(phi) | Grain Size<br>Maximum<br>(phi) | Grain Size<br>Range<br>(phi) | Penetration<br>Mean (cm) | Penetration<br>Minimum<br>(cm) | Penetration<br>Maximum<br>(cm) | Boundary<br>Roughness<br>(cm) | Boundary<br>Roughness<br>Type |
|-----------|----------|-----------|-----------|------------|----------|--------------------|-----------------------------------|-------------------------------|------------------------|-----------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|
| Reference | NW-REF   | NWREF-08  | G         | 10/21/2016 | 11:06:53 | 109                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 19.05                    | 18.63                          | 19.60                          | 0.97                          | Biological                    |
| Reference | NW-REF   | NWREF-08  | Н         | 10/21/2016 | 11:07:38 | 109                | 13                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 15.27                    | 14.24                          | 15.75                          | 1.51                          | Biological                    |
| Reference | SW-REF   | SWREF-09  | А         | 10/20/2016 | 9:28:16  | 98                 | 14                                | 2                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 19.64                    | 19.31                          | 19.85                          | 0.54                          | Biological                    |
| Reference | SW-REF   | SWREF-09  | С         | 10/20/2016 | 9:30:26  | 98                 | 14                                | 2                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 18.99                    | 18.23                          | 19.84                          | 1.61                          | Biological                    |
| Reference | SW-REF   | SWREF-09  | E         | 10/20/2016 | 9:32:07  | 96                 | 14                                | 2                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 19.53                    | 18.91                          | 20.52                          | 1.61                          | Biological                    |
| Reference | SW-REF   | SWREF-10  | А         | 10/20/2016 | 9:52:22  | 96                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 15.99                    | 15.39                          | 16.59                          | 1.20                          | Biological                    |
| Reference | SW-REF   | SWREF-10  | В         | 10/20/2016 | 9:53:13  | 96                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 15.79                    | 15.33                          | 16.31                          | 0.98                          | Biological                    |
| Reference | SW-REF   | SWREF-10  | С         | 10/20/2016 | 9:53:54  | 96                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 16.60                    | 16.30                          | 16.98                          | 0.68                          | Biological                    |
| Reference | SW-REF   | SWREF-11  | А         | 10/20/2016 | 10:04:34 | 96                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 15.89                    | 15.47                          | 16.34                          | 0.87                          | Biological                    |
| Reference | SW-REF   | SWREF-11  | В         | 10/20/2016 | 10:05:18 | 96                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 1                              | >4 to 1                      | 17.50                    | 16.27                          | 18.67                          | 2.40                          | Biological                    |
| Reference | SW-REF   | SWREF-11  | С         | 10/20/2016 | 10:06:00 | 96                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 14.63                    | 14.22                          | 15.42                          | 1.20                          | Biological                    |
| Reference | SW-REF   | SWREF-12  | В         | 10/20/2016 | 10:17:10 | 96                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 13.60                    | 13.43                          | 13.80                          | 0.37                          | Biological                    |
| Reference | SW-REF   | SWREF-12  | С         | 10/20/2016 | 10:17:59 | 96                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 14.66                    | 13.26                          | 16.10                          | 2.83                          | Biological                    |
| Reference | SW-REF   | SWREF-12  | D         | 10/20/2016 | 10:18:40 | 96                 | 14                                | 0                             | 14.47                  | 4 to 3                            | >4                             | 2                              | >4 to 2                      | 15.17                    | 14.66                          | 15.93                          | 1.27                          | Biological                    |

| Area     | Location | StationID | Replicate | aRPD Mean (cm) | aRPD > Pen | Mud Clast<br>Number | Mud Clast<br>State | Methane<br>Present? | Number of<br>Methane<br>Bubbles | Dredged<br>Material<br>Present? | Mean depth below<br>Sediment Surface of<br>top of Dredged<br>Material Layer (cm) | Dredged Material<br>Layer Mean<br>Thickness (cm) | Dredged Material > Pen |
|----------|----------|-----------|-----------|----------------|------------|---------------------|--------------------|---------------------|---------------------------------|---------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|------------------------|
| Disposal | Mound B  | B01       | В         | IND            |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 19.59                                            | TRUE                   |
| Disposal | Mound B  | B01       | D         | 1.44           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 19.28                                            | TRUE                   |
| Disposal | Mound B  | B01       | E         | 1.38           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 18.12                                            | TRUE                   |
| Disposal | Mound B  | B02       | G         | 2.81           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 2.81                                             | TRUE                   |
| Disposal | Mound B  | B02       | Н         | 1.43           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 3.20                                             | TRUE                   |
| Disposal | Mound B  | B02       | I         | 1.21           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 7.43                                             | TRUE                   |
| Disposal | Mound B  | B03       | А         | 1.80           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 9.48                                             | TRUE                   |
| Disposal | Mound B  | B03       | В         | 2.36           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 14.29                                            | TRUE                   |
| Disposal | Mound B  | B03       | С         | 2.28           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Disposal | Mound B  | B04       | E         | 1.83           |            | 0                   |                    | Yes                 | 3                               | Yes                             |                                                                                  | 18.46                                            | TRUE                   |
| Disposal | Mound B  | B04       | G         | 1.12           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 20.28                                            | TRUE                   |
| Disposal | Mound B  | B04       | н         | 1.50           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 16.71                                            | TRUE                   |
| Disposal | Mound B  | B05       | А         | 1.65           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 18.44                                            |                        |
| Disposal | Mound B  | B05       | В         | 1.06           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 16.31                                            |                        |
| Disposal | Mound B  | B05       | С         | 1.54           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 17.69                                            |                        |
| Disposal | Mound B  | B06       | J         | 1.92           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 3.59                                             | TRUE                   |
| Disposal | Mound B  | B06       | К         | 2.35           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 3.21                                             | TRUE                   |
| Disposal | Mound B  | B06       | L         | 1.48           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 4.27                                             | TRUE                   |
| Disposal | Mound B  | B07       | С         | 1.30           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Disposal | Mound B  | B07       | D         | 0.79           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Disposal | Mound B  | B07       | E         | 2.33           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Disposal | Mound B  | B08       | н         | 1.43           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 8.56                                             | TRUE                   |
| Disposal | Mound B  | B08       | J         | 2.01           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 7.83                                             | TRUE                   |
| Disposal | Mound B  | B08       | L         | 2.22           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 9.79                                             | TRUE                   |
| Disposal | Mound B  | B09       | В         | 1.83           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 17.94                                            |                        |
| Disposal | Mound B  | B09       | С         | 2.37           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 18.24                                            |                        |
| Disposal | Mound B  | B09       | D         | 1.42           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 19.13                                            |                        |
| Disposal | Mound B  | B10       | А         | 0.89           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Disposal | Mound B  | B10       | В         | 1.26           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Disposal | Mound B  | B10       | С         | 1.41           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |

| Area     | Location  | StationID | Replicate | aRPD Mean (cm) | aRPD > Pen | Mud Clast<br>Number | Mud Clast<br>State | Methane<br>Present? | Number of<br>Methane<br>Bubbles | Dredged<br>Material<br>Present? | Mean depth below<br>Sediment Surface of<br>top of Dredged<br>Material Layer (cm) | Dredged Material<br>Layer Mean<br>Thickness (cm) | Dredged Material > Pen |
|----------|-----------|-----------|-----------|----------------|------------|---------------------|--------------------|---------------------|---------------------------------|---------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|------------------------|
| Disposal | Mound B   | B11       | Α         | 2.10           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Disposal | Mound B   | B11       | В         | 1.27           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Disposal | Mound B   | B11       | C         | 1.30           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Disposal | Mound B   | B12       | A         | 1.70           |            | 0                   |                    | NO                  | 0                               | Yes                             |                                                                                  | 9.29                                             |                        |
| Disposal | Iviouna B | B12       | D         | 1.81           |            | 0                   |                    | NO                  | 0                               | Yes                             |                                                                                  | 10.72                                            |                        |
| Disposal | Mound B   | B12       | G         | 1.99           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 18.51                                            |                        |
| Disposal | Mound C   | C13       | Α         | 1.29           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 13.68                                            | TRUE                   |
| Disposal | Mound C   | C13       | В         | 3.80           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 13.45                                            | TRUE                   |
| Disposal | Mound C   | C13       | С         | 3.82           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 16.41                                            | TRUE                   |
| Disposal | Mound C   | C14       | А         | 2.81           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 17.05                                            | TRUE                   |
| Disposal | Mound C   | C14       | В         | 3.27           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 19.98                                            | TRUE                   |
| Disposal | Mound C   | C14       | С         | 1.68           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 18.59                                            | TRUE                   |
| Disposal | Mound C   | C15       | А         | 0.48           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 20.02                                            | TRUE                   |
| Disposal | Mound C   | C15       | В         | 0.92           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 17.80                                            | TRUE                   |
| Disposal | Mound C   | C15       | С         | 1.23           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 18.85                                            | TRUE                   |
| Disposal | Mound C   | C16       | А         | IND            |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 20.33                                            | TRUE                   |
| Disposal | Mound C   | C16       | В         | 1.89           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 19.29                                            | TRUE                   |
| Disposal | Mound C   | C16       | С         | 1.33           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 19.76                                            | TRUE                   |
| Disposal | Mound C   | C17       | А         | 1.24           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 17.29                                            | TRUE                   |
| Disposal | Mound C   | C17       | В         | 0.98           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 18.08                                            | TRUE                   |
| Disposal | Mound C   | C17       | с         | 1.42           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 17.76                                            | TRUE                   |
| Disposal | Mound C   | C18       | Α         | 1.70           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 13.90                                            | TRUE                   |
| Disposal | Mound C   | C18       | В         | 1.09           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 15.50                                            | TRUE                   |
| Disposal | Mound C   | C18       | С         | 1.29           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 12.92                                            | TRUE                   |
| Disposal | Mound C   | C19       | A         | 1.73           |            | 0                   | 1                  | No                  | 0                               | Yes                             |                                                                                  | 19.72                                            |                        |
| Disposal | Mound C   | C19       | В         | 2.30           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 16.42                                            |                        |
| Disposal | Mound C   | C19       | С         | 2.17           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 17.83                                            |                        |
| Disposal | Mound C   | C20       | В         | 1.59           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 15.27                                            | TRUE                   |
| Disposal | Mound C   | C20       | С         | 2.71           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 17.71                                            | TRUE                   |
| Disposal | Mound C   | C20       | D         | 2.37           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 18.08                                            | TRUE                   |
| Disposal | Mound C   | C21       | В         | IND            |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 16.56                                            | TRUE                   |

| Area      | Location | StationID | Replicate | aRPD Mean (cm) | aRPD > Pen | Mud Clast<br>Number | Mud Clast<br>State | Methane<br>Present? | Number of<br>Methane<br>Bubbles | Dredged<br>Material<br>Present? | Mean depth below<br>Sediment Surface of<br>top of Dredged<br>Material Layer (cm) | Dredged Material<br>Layer Mean<br>Thickness (cm) | Dredged Material > Pen |
|-----------|----------|-----------|-----------|----------------|------------|---------------------|--------------------|---------------------|---------------------------------|---------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|------------------------|
| Disposal  | Mound C  | C21       | С         | 3.12           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 16.84                                            | TRUE                   |
| Disposal  | Mound C  | C21       | D         | 2.31           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 19.56                                            | TRUE                   |
| Disposal  | Mound C  | C22       | А         | 2.03           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 18.69                                            | TRUE                   |
| Disposal  | Mound C  | C22       | В         | 4.06           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 16.60                                            | TRUE                   |
| Disposal  | Mound C  | C22       | С         | IND            |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 19.13                                            | TRUE                   |
| Disposal  | Mound C  | C23       | А         | 0.98           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 15.84                                            | TRUE                   |
| Disposal  | Mound C  | C23       | В         | 2.62           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 15.15                                            | TRUE                   |
| Disposal  | Mound C  | C23       | С         | 1.45           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 19.25                                            | TRUE                   |
| Disposal  | Mound C  | C24       | A         | 3.36           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 18.20                                            | TRUE                   |
| Disposal  | Mound C  | C24       | В         | 3.93           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 19.17                                            | TRUE                   |
| Disposal  | Mound C  | C24       | С         | 2.16           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 19.49                                            | TRUE                   |
| Disposal  | Mound C  | C25       | А         | 1.32           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 16.24                                            | TRUE                   |
| Disposal  | Mound C  | C25       | В         | 0.86           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 11.27                                            | TRUE                   |
| Disposal  | Mound C  | C25       | D         | 1.43           |            | 0                   |                    | No                  | 0                               | Yes                             |                                                                                  | 15.05                                            | TRUE                   |
| Reference | CC-BRS   | CCBRS-01  | А         | 4.41           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | CC-BRS   | CCBRS-01  | В         | 4.77           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | CC-BRS   | CCBRS-01  | С         | 2.92           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | CC-BRS   | CCBRS-02  | A         | 2.78           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | CC-BRS   | CCBRS-02  | В         | 2.89           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | CC-BRS   | CCBRS-02  | D         | 3.60           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | CC-BRS   | CCBRS-03  | А         | 3.23           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | CC-BRS   | CCBRS-03  | В         | 2.40           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | CC-BRS   | CCBRS-03  | С         | 2.38           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | CC-BRS   | CCBRS-04  | A         | 3.47           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | CC-BRS   | CCBRS-04  | В         | 2.49           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | CC-BRS   | CCBRS-04  | С         | 2.61           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | NW-REF   | NWREF-05  | А         | 2.49           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | NW-REF   | NWREF-05  | В         | 2.30           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | NW-REF   | NWREF-05  | D         | 2.56           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | NW-REF   | NWREF-06  | А         | 2.60           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | NW-REF   | NWREF-06  | В         | 1.60           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | NW-REF   | NWREF-06  | С         | 1.71           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | NW-REF   | NWREF-07  | А         | 2.12           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | NW-REF   | NWREF-07  | В         | 1.57           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | NW-REF   | NWREF-07  | С         | 1.95           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | NW-REF   | NWREF-08  | F         | 2.12           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |

| Area      | Location | StationID | Replicate | aRPD Mean (cm) | aRPD > Pen | Mud Clast<br>Number | Mud Clast<br>State | Methane<br>Present? | Number of<br>Methane<br>Bubbles | Dredged<br>Material<br>Present? | Mean depth below<br>Sediment Surface of<br>top of Dredged<br>Material Layer (cm) | Dredged Material<br>Layer Mean<br>Thickness (cm) | Dredged Material > Pen |
|-----------|----------|-----------|-----------|----------------|------------|---------------------|--------------------|---------------------|---------------------------------|---------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|------------------------|
| Reference | NW-REF   | NWREF-08  | G         | 1.96           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | NW-REF   | NWREF-08  | н         | 1.76           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | SW-REF   | SWREF-09  | А         | 1.84           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | SW-REF   | SWREF-09  | С         | 2.12           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | SW-REF   | SWREF-09  | E         | 1.27           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | SW-REF   | SWREF-10  | А         | 1.59           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | SW-REF   | SWREF-10  | В         | 1.07           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | SW-REF   | SWREF-10  | С         | 1.27           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | SW-REF   | SWREF-11  | А         | 0.64           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | SW-REF   | SWREF-11  | В         | 1.64           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | SW-REF   | SWREF-11  | С         | 1.28           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | SW-REF   | SWREF-12  | В         | 1.13           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | SW-REF   | SWREF-12  | С         | 1.10           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |
| Reference | SW-REF   | SWREF-12  | D         | 1.29           |            | 0                   |                    | No                  | 0                               | No                              |                                                                                  |                                                  |                        |

| Area     | Location | StationID | Replicate | Dredged Material Notes                                                                                               | Low DO<br>Present? | Sediment<br>Oxygen<br>Demand | Beggiatoa<br>Present? | Beggiatoa<br>Type/Extent | # of<br>Feeding<br>Voids | Void<br>Minimum<br>Depth (cm) | Void<br>Maximum<br>Depth (cm) | Successional<br>Stage |
|----------|----------|-----------|-----------|----------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|-----------------------|--------------------------|--------------------------|-------------------------------|-------------------------------|-----------------------|
| Disposal | Mound B  | B01       | В         |                                                                                                                      | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal | Mound B  | B01       | D         | Crescent of much darker material deep in sediment column, may be<br>dragdown. Similar sediment seen in ref stations. | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2                     |
| Disposal | Mound B  | B01       | E         |                                                                                                                      | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal | Mound B  | B02       | G         | Poorly sorted coarse sands and gravels.                                                                              | No                 | Low                          | No                    |                          | 0                        |                               |                               | 1 -> 2                |
| Disposal | Mound B  | B02       | Н         | Poorly sorted coarse sands and gravels.                                                                              | No                 | Low                          | No                    |                          | 0                        |                               |                               | 1 -> 2                |
| Disposal | Mound B  | B02       | I         | Very fine black sand and silt to penetration.                                                                        | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 2                     |
| Disposal | Mound B  | B03       | А         |                                                                                                                      | No                 | Low                          | No                    |                          | 1                        | 7.03                          | 8.36                          | 1 on 3                |
| Disposal | Mound B  | B03       | В         |                                                                                                                      | No                 | Low                          | No                    |                          | 2                        | 0.52                          | 13.93                         | 1 on 3                |
| Disposal | Mound B  | B03       | С         |                                                                                                                      | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal | Mound B  | B04       | E         | Pale gray laminated layers with mottled black near penetration<br>maximum.                                           | No                 | High                         | No                    |                          | 0                        |                               |                               | 1 on 3                |
| Disposal | Mound B  | B04       | G         | Pale gray laminated layers with mottled black near penetration<br>maximum.                                           | No                 | High                         | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal | Mound B  | B04       | н         | Pale tan fines with large patch of gray at SWI. Coarse patches and mottled fines near pen max.                       | No                 | Medium                       | No                    |                          | 1                        | 10.66                         | 12.68                         | 1 on 3                |
| Disposal | Mound B  | B05       | Α         |                                                                                                                      | No                 | Medium                       | No                    |                          | 1                        | 5.62                          | 6.77                          | 1 on 3                |
| Disposal | Mound B  | B05       | В         | Fine to medium gray sand over native sediment.                                                                       | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal | Mound B  | B05       | С         | Trace DM as mottled light and very dark sediment in deepest section of image.                                        | No                 | Medium                       | No                    |                          | 1                        | 16.78                         | 17.43                         | 1 on 3                |
| Disposal | Mound B  | B06       | J         | Coarse sands and gravels mixed with fines.                                                                           | No                 | Low                          | No                    |                          | 0                        |                               |                               | IND                   |
| Disposal | Mound B  | B06       | К         | Coarse sands mixed with fines.                                                                                       | No                 | Low                          | No                    |                          | 0                        |                               |                               | 1                     |
| Disposal | Mound B  | B06       | L         | Coarse sands mixed with very dark fines.                                                                             | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 2                     |
| Disposal | Mound B  | B07       | С         |                                                                                                                      | No                 | Medium                       | No                    |                          | 2                        | 10.61                         | 15.33                         | 2 on 3                |
| Disposal | Mound B  | B07       | D         |                                                                                                                      | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 2                     |
| Disposal | Mound B  | B07       | E         |                                                                                                                      | No                 | Medium                       | No                    |                          | 1                        | 6.91                          | 7.83                          | 1 on 3                |
| Disposal | Mound B  | B08       | н         | Very dark fines with high organic content and shell particles.                                                       | No                 | High                         | No                    |                          | 0                        |                               |                               | 2                     |
| Disposal | Mound B  | B08       | J         | Very dark fines with high organic content and shell particles.                                                       | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 1 on 3                |
| Disposal | Mound B  | B08       | L         | Very dark fines with high organic content and shell particles.                                                       | No                 | High                         | No                    |                          | 0                        |                               |                               | 2                     |
| Disposal | Mound B  | B09       | В         |                                                                                                                      | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal | Mound B  | B09       | С         |                                                                                                                      | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 1 on 3                |
| Disposal | Mound B  | B09       | D         |                                                                                                                      | No                 | Medium                       | No                    |                          | 1                        | 17.21                         | 19.26                         | 1 on 3                |
| Disposal | Mound B  | B10       | А         |                                                                                                                      | No                 | Low                          | No                    |                          | 1                        | 14.79                         | 15.37                         | 1 on 3                |
| Disposal | Mound B  | B10       | В         |                                                                                                                      | No                 | Medium                       | No                    |                          | 1                        | 17.68                         | 18.37                         | 1 on 3                |
| Disposal | Mound B  | B10       | С         |                                                                                                                      | No                 | Low                          | No                    |                          | 1                        | 18.70                         | 18.90                         | 1 on 3                |

| Area     | Location | StationID | Replicate | Dredged Material Notes                                        | Low DO<br>Present? | Sediment<br>Oxygen<br>Demand | Beggiatoa<br>Present? | Beggiatoa<br>Type/Extent | # of<br>Feeding<br>Voids | Void<br>Minimum<br>Depth (cm) | Void<br>Maximum<br>Depth (cm) | Successional<br>Stage |
|----------|----------|-----------|-----------|---------------------------------------------------------------|--------------------|------------------------------|-----------------------|--------------------------|--------------------------|-------------------------------|-------------------------------|-----------------------|
| Disposal | Mound B  | B11       | А         |                                                               | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 2                     |
| Disposal | Mound B  | B11       | В         |                                                               | No                 | Low                          | No                    |                          | 1                        | 7.61                          | 8.83                          | 1 on 3                |
| Disposal | Mound B  | B11       | C         |                                                               | No                 | Low                          | No                    |                          | 1                        | 6.47                          | 8.96                          | 2 on 3                |
| Disposal | Mound B  | B12       | A         |                                                               | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2                     |
| Disposal | Mound B  | B12       | D         |                                                               | No                 | Low                          | No                    |                          | 1                        | 5.84                          | 7.22                          | 1 on 3                |
| Disposal | Mound B  | B12       | G         |                                                               | No                 | Low                          | No                    |                          | 0                        |                               |                               | 1 on 3                |
| Disposal | Mound C  | C13       | A         | Pale gray fines over mottled light and dark gray silt/clay.   | No                 | Medium                       | No                    |                          | 2                        | 3.53                          | 5.19                          | 1 on 3                |
| Disposal | Mound C  | C13       | В         | Pale gray fines over mottled light and dark gray silt/clay.   | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2                     |
| Disposal | Mound C  | C13       | С         | Pale gray fines over mottled light and dark gray silt/clay.   | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 1 on 3                |
| Disposal | Mound C  | C14       | А         | Pale gray fines over mottled light and dark gray silt/clay.   | No                 | Low                          | No                    |                          | 1                        | 3.21                          | 4.90                          | 1 on 3                |
| Disposal | Mound C  | C14       | В         | Pale gray fines over mottled light and dark gray silt/clay.   | No                 | Low                          | No                    |                          | 0                        |                               |                               | 1 on 3                |
| Disposal | Mound C  | C14       | С         | Pale gray fines over mottled light and dark gray silt/clay.   | No                 | Low                          | No                    |                          | 1                        | 8.56                          | 9.91                          | 1 on 3                |
| Disposal | Mound C  | C15       | А         | Pale tan fines with high organic content over very dark fines | No                 | Medium                       | No                    |                          | 2                        | 14.13                         | 15.82                         | 1 on 3                |
| Disposal | Mound C  | C15       | В         | Pale tan fines with high organic content over very dark fines | No                 | Medium                       | No                    |                          | 1                        | 16.31                         | 16.51                         | 1 on 3                |
| Disposal | Mound C  | C15       | С         | Pale tan fines with high organic content over very dark fines | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 1 on 3                |
| Disposal | Mound C  | C16       | А         | Pale tan fines with high organic content over very dark fines | No                 | Medium                       | No                    |                          | 1                        | 17.50                         | 17.71                         | 1 on 3                |
| Disposal | Mound C  | C16       | В         | Pale tan fines with high organic content over very dark fines | No                 | Medium                       | No                    |                          | 2                        | 12.17                         | 15.46                         | 1 on 3                |
| Disposal | Mound C  | C16       | с         | Pale tan fines with high organic content over very dark fines | No                 | Medium                       | No                    |                          | 1                        | 11.88                         | 19.72                         | 1 on 3                |
| Disposal | Mound C  | C17       | А         | Pale tan fines with high organic content over very dark fines | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal | Mound C  | C17       | В         | Pale tan fines with high organic content over very dark fines | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal | Mound C  | C17       | С         | Pale tan fines with high organic content over very dark fines | No                 | Medium                       | No                    |                          | 3                        | 3.04                          | 9.89                          | 1 on 3                |
| Disposal | Mound C  | C18       | A         | Pale tan fines with high organic content over very dark fines | No                 | Medium                       | No                    |                          | 1                        | 9.70                          | 10.33                         | 1 on 3                |
| Disposal | Mound C  | C18       | В         | Pale tan fines with high organic content over very dark fines | No                 | Medium                       | No                    |                          | 2                        | 5.42                          | 15.04                         | 1 on 3                |
| Disposal | Mound C  | C18       | С         | Pale tan fines with high organic content over very dark fines | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal | Mound C  | C19       | А         |                                                               | No                 | Medium                       | No                    |                          | 3                        | 11.84                         | 16.62                         | 1 on 3                |
| Disposal | Mound C  | C19       | В         |                                                               | No                 | Medium                       | No                    |                          | 2                        | 3.58                          | 10.84                         | 1 on 3                |
| Disposal | Mound C  | C19       | С         |                                                               | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 1 on 3                |
| Disposal | Mound C  | C20       | В         | Tan fines over dark gray mottled sediment.                    | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal | Mound C  | C20       | С         | Tan fines over dark gray mottled sediment.                    | No                 | Medium                       | No                    |                          | 2                        | 0.00                          | 9.26                          | 1 on 3                |
| Disposal | Mound C  | C20       | D         | Tan fines over dark gray mottled sediment.                    | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 1 on 3                |
| Disposal | Mound C  | C21       | В         | Tan fines over dark gray mottled sediment.                    | No                 | High                         | No                    |                          | 0                        |                               |                               | 2 -> 3                |

| Area      | Location | StationID | Replicate | Dredged Material Notes                     | Low DO<br>Present? | Sediment<br>Oxygen<br>Demand | Beggiatoa<br>Present? | Beggiatoa<br>Type/Extent | # of<br>Feeding<br>Voids | Void<br>Minimum<br>Depth (cm) | Void<br>Maximum<br>Depth (cm) | Successional<br>Stage |
|-----------|----------|-----------|-----------|--------------------------------------------|--------------------|------------------------------|-----------------------|--------------------------|--------------------------|-------------------------------|-------------------------------|-----------------------|
| Disposal  | Mound C  | C21       | С         | Tan fines over dark gray mottled sediment. | No                 | Medium                       | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal  | Mound C  | C21       | D         | Uniform very dark fines to penetration.    | No                 | High                         | No                    |                          | 1                        | 5.64                          | 6.20                          | 1 on 3                |
| Disposal  | Mound C  | C22       | А         | Tan fines over dark gray mottled sediment. | No                 | High                         | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal  | Mound C  | C22       | В         | Tan fines over dark gray mottled sediment. | No                 | High                         | No                    |                          | 1                        | 4.18                          | 5.36                          | 1 on 3                |
| Disposal  | Mound C  | C22       | С         | Tan fines over dark gray mottled sediment. | No                 | High                         | No                    |                          | 1                        | 18.43                         | 18.98                         | 1 on 3                |
| Disposal  | Mound C  | C23       | А         | Tan fines over dark gray mottled sediment. | No                 | High                         | No                    |                          | 1                        | 14.65                         | 15.22                         | 1 on 3                |
| Disposal  | Mound C  | C23       | В         | Tan fines over dark gray mottled sediment. | No                 | High                         | No                    |                          | 0                        |                               |                               | 2                     |
| Disposal  | Mound C  | C23       | С         | Tan fines over dark gray mottled sediment. | No                 | High                         | No                    |                          | 1                        | 14.82                         | 16.90                         | 1 on 3                |
| Disposal  | Mound C  | C24       | A         | Tan fines over dark gray mottled sediment. | No                 | High                         | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal  | Mound C  | C24       | В         | Tan fines over dark gray mottled sediment. | No                 | High                         | No                    |                          | 2                        | 5.52                          | 11.70                         | 1 on 3                |
| Disposal  | Mound C  | C24       | С         | Tan fines over dark gray mottled sediment. | No                 | High                         | No                    |                          | 1                        | 6.37                          | 7.48                          | 1 on 3                |
| Disposal  | Mound C  | C25       | A         | Tan fines over dark gray mottled sediment. | No                 | High                         | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Disposal  | Mound C  | C25       | В         | Tan fines over dark gray mottled sediment. | No                 | High                         | No                    |                          | 1                        | 7.19                          | 9.27                          | 1 on 3                |
| Disposal  | Mound C  | C25       | D         | Tan fines over dark gray mottled sediment. | No                 | Medium                       | No                    |                          | 1                        | 6.16                          | 6.48                          | 1 on 3                |
| Reference | CC-BRS   | CCBRS-01  | А         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | CC-BRS   | CCBRS-01  | В         |                                            | No                 | Low                          | No                    |                          | 1                        | 7.07                          | 9.28                          | 1 on 3                |
| Reference | CC-BRS   | CCBRS-01  | С         |                                            | No                 | Low                          | No                    |                          | 1                        | 13.28                         | 18.11                         | 1 on 3                |
| Reference | CC-BRS   | CCBRS-02  | A         |                                            | No                 | Low                          | No                    |                          | 1                        | 9.10                          | 11.60                         | 1 on 3                |
| Reference | CC-BRS   | CCBRS-02  | В         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | CC-BRS   | CCBRS-02  | D         |                                            | No                 | Low                          | No                    |                          | 1                        | 11.31                         | 11.73                         | 3                     |
| Reference | CC-BRS   | CCBRS-03  | А         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | CC-BRS   | CCBRS-03  | В         |                                            | No                 | Low                          | No                    |                          | 1                        | 13.31                         | 13.44                         | 1 on 3                |
| Reference | CC-BRS   | CCBRS-03  | С         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | CC-BRS   | CCBRS-04  | А         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | CC-BRS   | CCBRS-04  | В         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 1 on 3                |
| Reference | CC-BRS   | CCBRS-04  | с         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | NW-REF   | NWREF-05  | А         |                                            | No                 | Low                          | No                    |                          | 1                        | 16.01                         | 17.02                         | 1 on 3                |
| Reference | NW-REF   | NWREF-05  | В         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | NW-REF   | NWREF-05  | D         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | NW-REF   | NWREF-06  | А         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | NW-REF   | NWREF-06  | В         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | NW-REF   | NWREF-06  | С         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | NW-REF   | NWREF-07  | А         |                                            | No                 | Low                          | No                    |                          | 2                        | 6.59                          | 16.00                         | 1 on 3                |
| Reference | NW-REF   | NWREF-07  | В         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | NW-REF   | NWREF-07  | С         |                                            | No                 | Low                          | No                    |                          | 4                        | 10.79                         | 20.04                         | 1 on 3                |
| Reference | NW-REF   | NWREF-08  | F         |                                            | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2                     |

| Area      | Location | StationID | Replicate | Dredged Material Notes | Low DO<br>Present? | Sediment<br>Oxygen<br>Demand | Beggiatoa<br>Present? | Beggiatoa<br>Type/Extent | # of<br>Feeding<br>Voids | Void<br>Minimum<br>Depth (cm) | Void<br>Maximum<br>Depth (cm) | Successional<br>Stage |
|-----------|----------|-----------|-----------|------------------------|--------------------|------------------------------|-----------------------|--------------------------|--------------------------|-------------------------------|-------------------------------|-----------------------|
| Reference | NW-REF   | NWREF-08  | G         |                        | No                 | Low                          | No                    |                          | 2                        | 13.63                         | 18.94                         | 1 on 3                |
| Reference | NW-REF   | NWREF-08  | Н         |                        | No                 | Low                          | No                    |                          | 1                        | 11.70                         | 13.74                         | 1 on 3                |
| Reference | SW-REF   | SWREF-09  | Α         |                        | No                 | Low                          | No                    |                          | 1                        | 17.67                         | 19.25                         | 1 on 3                |
| Reference | SW-REF   | SWREF-09  | С         |                        | No                 | Low                          | No                    |                          | 2                        | 4.15                          | 7.93                          | 1 on 3                |
| Reference | SW-REF   | SWREF-09  | E         |                        | No                 | Low                          | No                    |                          | 0                        |                               |                               | 1 on 3                |
| Reference | SW-REF   | SWREF-10  | Α         |                        | No                 | Low                          | No                    |                          | 1                        | 6.62                          | 12.58                         | 1 on 3                |
| Reference | SW-REF   | SWREF-10  | В         |                        | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | SW-REF   | SWREF-10  | С         |                        | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | SW-REF   | SWREF-11  | Α         |                        | No                 | Low                          | No                    |                          | 0                        |                               |                               | 1 on 3                |
| Reference | SW-REF   | SWREF-11  | В         |                        | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | SW-REF   | SWREF-11  | с         |                        | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | SW-REF   | SWREF-12  | В         |                        | No                 | Low                          | No                    |                          | 0                        |                               |                               | 2 -> 3                |
| Reference | SW-REF   | SWREF-12  | С         |                        | No                 | Low                          | No                    |                          | 1                        | 4.87                          | 5.57                          | 1 on 3                |
| Reference | SW-REF   | SWREF-12  | D         |                        | No                 | Low                          | No                    |                          | 0                        |                               |                               | 1 on 3                |

| Area     | Location | StationID | Replicate | Comment                                                                                                                                                                                                                                                                                                 |
|----------|----------|-----------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disposal | Mound B  | B01       | В         | Very fine pale tan sand and silt/clay over darker material of similar GSMM. Underlying darker material contains high amount of coarser white particles. SWI appears disturbed and partially over penetrated. Evidence of deep burrowing. Worms against faceplate deep in sed column at right.           |
| Disposal | Mound B  | B01       | D         | Very fine pale tan sand and silt/clay over darker material of similar GSMM. Coarse white particles throughout sediment column. Crescent of dark material deep in sediment may be<br>drag down. Stage 1 tubes at SWI. Medium length burrow halos in sediment.                                            |
| Disposal | Mound B  | B01       | E         | Very fine pale tan sand and silt/clay over darker material of similar GSMM. Sediment is mottled with patches of coarser material near penetration maximum. Stage 1 tubes at SWI.                                                                                                                        |
| Disposal | Mound B  | B02       | G         | Sorted fines with interstitial coarse material. Thin aPRD. Low penetration. Stage 1 tubes visible in PV and at SWI.                                                                                                                                                                                     |
| Disposal | Mound B  | B02       | Н         | Sorted fines with interstitial coarse material. Thin aPRD. Low penetration. Stage 2 tubes visible at SWI. Large shell fragments at SWI.                                                                                                                                                                 |
| Disposal | Mound B  | B02       | 1         | Very dark silt/clay with thin, distinct aRPD. Stage 1 tubes ad pellets at SWI. Stage 2 inferred by depth of burrow halos.                                                                                                                                                                               |
| Disposal | Mound B  | B03       | А         | Very fine pale tan sand and silt/clay over darker material of similar GSMM. Coarse white particles throughout sediment column. Small void near left edge of image. Carpet of stage 1 tubes at SWI.                                                                                                      |
| Disposal | Mound B  | B03       | В         | Very fine pale tan sand and silt/clay over darker material of similar GSMM. Coarse white particles throughout sediment column. Large burrow transected. Carpet of stage 1 tubes at SWI.                                                                                                                 |
| Disposal | Mound B  | B03       | С         | Very fine pale tan sand and silt/clay over darker material of similar GSMM. Coarse white particles throughout sediment column. Long burrows transected. Carpet of stage 1 tubes at SWI. Evidence of deep burrowing. Transected burrows at depth.                                                        |
| Disposal | Mound B  | B04       | E         | Very fine pale gray sand is especially mottled near penetration maximum. Bright thin aRPD at SWI. Small methane bubbles. Infauna visible in sediment column.                                                                                                                                            |
| Disposal | Mound B  | B04       | G         | Very fine pale gray sand is especially mottled near penetration maximum. Pale tan thin aRPD at SWI. Burrow textures visible in sediment.                                                                                                                                                                |
| Disposal | Mound B  | B04       | н         | Very fine pale tan sand over mottled dark fines. Large void deep in sediment. Dark gray material deposited at SWI. Deep burrow halos. Stage 1 tubes at SWI.                                                                                                                                             |
| Disposal | Mound B  | B05       | А         | Very fine pale tan sand over lightly mottled dark and light fines. Small void in sediment. Stage 1 tubes at SWI.                                                                                                                                                                                        |
| Disposal | Mound B  | B05       | В         | Very fine pale gray sand with fine and medium sand mixed into native sediment at SWI. Sediment is lightly mottled in deeper layers of sediment column, similar to ref areas. Small infauna visible in upper few cm of sediment and thing long worms also visible against face plate deep in sed column. |
| Disposal | Mound B  | B05       | С         | Very fine pale gray sand over lightly mottled layer of dark sediment and light gray silt/clay. Burrow textures near pen maximum.                                                                                                                                                                        |
| Disposal | Mound B  | B06       | J         | Coarse sands and gravels mixed with silt/clay. Very little penetration. RPD is not apparent. Large crustacean in far field.                                                                                                                                                                             |
| Disposal | Mound B  | B06       | К         | Coarse sands mixed with fines. Very little penetration. Stage 1 tubes visible in water column.                                                                                                                                                                                                          |
| Disposal | Mound B  | B06       | L         | Coarse sands mixed with very dark fines. Very little penetration. Stage 1 tubes visible in water column. Bivalve siphon visible in plan view image.                                                                                                                                                     |
| Disposal | Mound B  | B07       | С         | Very fine pale gray sand over pale gray fines with small area of near black in bottom right corner. Two large voids. Ophiuroid at WI.                                                                                                                                                                   |
| Disposal | Mound B  | B07       | D         | Very fine pale gray sand mottled with darker fines to penetration. Shallow aRPD. Abundant ophiuroids visible in plan view pair.                                                                                                                                                                         |
| Disposal | Mound B  | B07       | E         | Very fine pale tan sand over mottled dark and light fines to penetration. Long burrow halo with infauna visible to left side of image. Burrowing textures/void visible. Stage 1 tubes visible at SWI.                                                                                                   |
| Disposal | Mound B  | B08       | н         | Very fine dark sand mixed with coarse sand with thin aRPD and high organic content to penetration. Sediment shows abundant shell particles mixed through column. Stage 1 tubes at SWI. Evidence of burrowing below aRPD.                                                                                |
| Disposal | Mound B  | B08       | J         | Very fine dark sand mixed with coarse sand; high organic content to penetration. Sediment shows abundant shell particles mixed through column. Stage 1 tubes at SWI. Large infauna transected.                                                                                                          |
| Disposal | Mound B  | B08       | L         | Very fine dark sand mixed with coarse sand; high organic content to penetration. Sediment shows abundant shell particles mixed through column. Stage 1 tubes at SWI.                                                                                                                                    |
| Disposal | Mound B  | B09       | В         | Very fine pale tan sand over slightly darker material. Small patch of coarse sediment in lower right corner of image. Carpet of stage 1 tubes at SWI. Infauna visible deep in sediment.                                                                                                                 |
| Disposal | Mound B  | B09       | С         | Very fine pale tan sand over successive layers of varying color and grain size composition. Coarsest material in bottom of image. Large infauna visible deep in sediment column.                                                                                                                        |
| Disposal | Mound B  | B09       | D         | Very fine pale tan sand over lightly mottled pale fines. Small void deep in sediment column. Coarse material mixed into lowest portion of visible area.                                                                                                                                                 |
| Disposal | Mound B  | B10       | Α         | Very fine pale tan sand over lightly mottled pale fines. Small void deep in sediment column. Infauna and long burrow halos visible. Stage 1 tube carpet at SWI.                                                                                                                                         |
| Disposal | Mound B  | B10       | В         | Very fine pale tan sand over lightly mottled pale fines. Large void deep in sediment column. Infauna and long burrow halos visible. Stage 1 tube carpet at SWI.                                                                                                                                         |
| Disposal | Mound B  | B10       | С         | Very fine pale tan sand over lightly mottled pale fines. Thin void deep in sediment column. Large object dragged down creating a halo of oxidized sediment.                                                                                                                                             |

| Area     | Location | StationID | Replicate | Comment                                                                                                                                                                                                                                                                  |
|----------|----------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disposal | Mound B  | B11       | Α         | Very fine pale tan sand over lightly mottled pale and darker fines. Ophiuroid at SWI. Small shell particles deep in sediment column.                                                                                                                                     |
| Disposal | Mound B  | B11       | В         | Very fine pale tan sand over lightly mottled pale and darker fines. Small void visible in sediment column.                                                                                                                                                               |
| Disposal | Mound B  | B11       | С         | Very fine pale tan sand over lightly mottled pale and darker fines. Large void visible in sediment column. Plan view image is covered with ophiuroids.                                                                                                                   |
| Disposal | Mound B  | B12       | Α         | Very fine pale tan sand over Successively darker layers. Stage 1 tubes at SWI. Small patch of black material near pen max. Deep burrow halos.                                                                                                                            |
| Disposal | Mound B  | B12       | D         | Very fine pale tan sand over successively darker layers. Carpet of stage 1 tubes at SWI. Large void in sediment column.                                                                                                                                                  |
| Disposal | Mound B  | B12       | G         | Very fine pale tan sand over successively darker layers. Carpet of stage 1 tubes at SWI. Long burrow halo deep in sediment. Shell particles buried in deepest portion of image.                                                                                          |
| Disposal | Mound C  | C13       | А         | Pale gray silt/clay with thin aRPD over mottled light and dark fines. Two small voids. Stage 1 tubes at SWI. Coarse particles buried in deepest visible sediment.                                                                                                        |
| Disposal | Mound C  | C13       | В         | Pale gray silt/clay with thin aRPD over mottled light and dark fines. Deep burrow halos. Stage 1 tubes at SWI. Coarse particles buried in deepest visible sediment. Large object                                                                                         |
|          |          |           |           | Contacted and similed approximation by prism.                                                                                                                                                                                                                            |
| Disposal | Mound C  | C13       | С         | SWI                                                                                                                                                                                                                                                                      |
| Disposal | Mound C  | C14       | Δ         | Pale gray silt/clay with thin aRPD over lightly mottled dark fines. Stage 1 tubes at SWL Large yold visible                                                                                                                                                              |
| Disposal | Would C  | 014       | ~         | Pale gray silt/clay with this aRPD over lightly motified dark fines. Stage 1 tubes at SWI. This worms visible against facehold are claum. Deen burrow balos extending to                                                                                                 |
| Disposal | Mound C  | C14       | В         | penetration max and below.                                                                                                                                                                                                                                               |
| Disposal | Mound C  | C14       | С         | Pale gray silt/clay with thin aRPD over lightly mottled dark fines. Stage 1 tubes at SWI. Partially infilled void visible.                                                                                                                                               |
|          |          |           |           | Pale tan fines form a thin aRPD over streaky layer of very dark gray sediment. Abundant black and white fine particles throughout image. Large infauna and void near penetration                                                                                         |
| Disposal | Mound C  | C15       | A         | max.                                                                                                                                                                                                                                                                     |
| Disposal | Mound C  | C15       | В         | Pale tan fines form a thin a RPD over streaky layer of very dark gray sediment. Abundant black and white fine particles throughout image. Small void near penetration maximum.                                                                                           |
| Disposal | Mound C  | C15       | С         | Pale tan fines form a thin aRPD over streaky layer of very dark gray sediment. Abundant black and white fine particles throughout image. Thin worms visible against faceplate deep in sed column. Long oxidized burrow halos visible in sediment column.                 |
| Disposal | Mound C  | C16       | А         | Pale tan fines form a thin aRPD over streaky layer of very dark gray sediment. Abundant black and white fine particles throughout image. Long oxidized halos visible in sediment column. Partially over penetrated. Small void.                                          |
| Disposal | Mound C  | C16       | В         | Pale tan fines form a thin aRPD over streaky layer of very dark gray sediment. Abundant black and white fine particles throughout image. Two voids in sediment column.                                                                                                   |
| Disposal | Mound C  | C16       | с         | Pale tan fines form a thin aRPD over streaky layer of very dark gray sediment. Abundant black and white fine particles throughout image. Large void near penetration maximum.                                                                                            |
| Disposal | Mound C  | C17       | А         | Pale tan fines form a thin aRPD over streaky layer of very dark gray sediment. Abundant black and white fine particles throughout image. Long oxidized halos visible in sediment column.                                                                                 |
| Disposal | Mound C  | C17       | В         | Pale tan fines form a thin aRPD over streaky layer of very dark gray sediment. Abundant black and white fine particles throughout image. Thin worms visible against faceplate deep in sed column. Long oxidized halos visible in sediment column. Burrows visible in PV. |
| Disposal | Mound C  | C17       | с         | Pale tan fines form a thin a RPD over streaky layer of very dark gray sediment. Abundant black and white fine particles throughout image. Large polychaete visible. Several voids.                                                                                       |
| Disposal | Mound C  | C18       | А         | Pale tan fines form a thin aRPD over streaky layer of very dark gray sediment. Abundant black and white fine particles throughout image. Single small void.                                                                                                              |
| Disposal | Mound C  | C18       | В         | Pale tan fines form a thin a RPD over streaky, mottled, layer of very dark gray sediment. Abundant black and white fine particles throughout image. Two small voids.                                                                                                     |
| Disposal | Mound C  | C18       | С         | Pale tan fines form a thin aRPD over streaky, mottled, layer of very dark gray sediment. Large burrows visible in PV.                                                                                                                                                    |
| Disposal | Mound C  | C19       | А         | Pale tan very fine sand over very fine, lightly mottled, dark gray sand. Two large voids.                                                                                                                                                                                |
| Disposal | Mound C  | C19       | В         | Pale tan very fine sand over very fine, uniform, dark gray sand. Two large voids.                                                                                                                                                                                        |
| Disposal | Mound C  | C19       | С         | Pale tan very fine sand over very fine, lightly mottled, dark gray sand. Long burrow halos visible in sediment column.                                                                                                                                                   |
| Disposal | Mound C  | C20       | В         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Thin worms visible against faceplate deep in sed column. Long burrow halos visible in sediment<br>column. Infauna visible. Dragdown from aRPD appears as cleanly horizontal line. |
| Disposal | Mound C  | C20       | С         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Long burrow/void network transected.                                                                                                                                              |
| Disposal | Mound C  | C20       | D         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Long burrow halo visible.                                                                                                                                                         |
| Disposal | Mound C  | C21       | В         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Redeposited reduced sediment dragged over aRPD area. Infauna visible in sediment. Burrows visible in PV.                                                                          |

| Area      | Location | StationID | Replicate | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|----------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disposal  | Mound C  | C21       | С         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Thin worms visible against faceplate deep in sed column. Deep burrow halos visible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Disposal  | Mound C  | C21       | D         | Pale tan fines over uniform dark brown/gray silt/clay. Single small void in sediment. Evidence of numerous deep thin burrows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Disposal  | Mound C  | C22       | Α         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Burrows visible in PV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Disposal  | Mound C  | C22       | В         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Single infilled void. Several large burrows and infauna visible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Disposal  | Mound C  | C22       | С         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Redeposited reduced sediment dragged over aRPD area. Infauna visible in sediment. Void visible deep in sediment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Disposal  | Mound C  | C23       | Α         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Void deep in sed column at left. Burrows visible in PV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Disposal  | Mound C  | C23       | В         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Deep burrow halos visible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Disposal  | Mound C  | C23       | С         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Deep burrow and void halos visible. Small infauna visible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Disposal  | Mound C  | C24       | А         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Deep burrow halos visible. Small infauna visible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Disposal  | Mound C  | C24       | В         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. SWI is very rough. Two large burrows transected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Disposal  | Mound C  | C24       | С         | Pale tan very fine sand over very fine, heavily mottled, dark gray and pale gray sand. Void transected. Adjacent infilled void.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Disposal  | Mound C  | C25       | А         | Pale tan very fine sand over very fine, lightly mottled, dark gray and pale gray sand. Deep burrow halos visible, Large object emerging from SWI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Disposal  | Mound C  | C25       | В         | Pale tan very fine sand over very fine, lightly mottled, dark gray and pale gray sand. Void visible in center of image.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Disposal  | Mound C  | C25       | D         | Pale tan very fine sand over very fine lightly mottled dark gray and light tan sand. Very small yold visible near infauna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reference | CC-BRS   | CCBRS-01  | Δ         | Very fine nale tan sand with substantial drag down over slightly darker material. Very small infauna visible _ PV image shows small hurrows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Reference | CC-BRS   | CCBRS-01  | B         | Very fine pale tan sama and over lightly matted and slightly darker material. Small void visible in sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Reference | CC-BRS   | CCBRS-01  | C C       | Very line pale tan sand over lightly mottled and slightly darker material. Fare void visible in sedment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reference | CC-BRS   | CCBRS-02  | Δ         | Very fine pale tan sand over lightly mottled and slightly darker material. Large vold visible in sediment. Onbiuroid arm visible at SWI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reference | CC_BRS   | CCBRS_02  | B         | Very fine pale tail solution over lightly motified and signify darket material. Early void value in solution. Ophiaroid a visible in 200 market material void visible and signify darket material. Early void value and solution of the soluti |
| Nelelence | CC-DIG   | CCDINJ-02 | D         | Very line pale tai sand over rightly motified and signify darker material. Works visible against faceprate deep in see commissional control with a signify darker material. Small visible in sediment. Works visible against faceprate deep in see commission of the second over the second ov |
| Reference | CC-BRS   | CCBRS-02  | D         | SWI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Reference | CC-BRS   | CCBRS-03  | А         | Very fine pale tan sand over lightly mottled and slightly darker material. Worms visible against faceplate deep in sed column. Ophiuroids and large burrow openings visible in PV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reference | CC-BRS   | CCBRS-03  | В         | Very fine pale tan sand over lightly mottled and slightly darker material. Small void visible in sediment. Ophiuroids in PV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Reference | CC-BRS   | CCBRS-03  | С         | Very fine pale tan sand over lightly mottled and slightly darker material. Worms visible against faceplate deep in sed column. Burrows in PV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Reference | CC-BRS   | CCBRS-04  | A         | Very fine pale tan sand and silt/clay over darker material of similar GSMM. Underlying material is slightly mottled with oxidized sediment. Coarse white particles throughout sediment column. Worms visible against faceplate deep in sed column. Burrowing textures deep in sed column. Large ophiuroid at SWI. Small red infauna in sediment column.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reference | CC-BRS   | CCBRS-04  | В         | Very fine pale tan sand and silt/clay over darker material of similar GSMM. Underlying material is mottled with pale gray and darker gray sediment. Infauna and large burrow transected. Stage 1 tubes at SWI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Reference | CC-BRS   | CCBRS-04  | С         | Very fine pale tan sand and silt/clay over darker material of similar GSMM. Underlying material is mottled with pale gray and darker gray sediment. Worms visible against faceplate<br>deep in sed column. Burrowing textures deep in sed column. Ophiuroid arms visible at SWI. Stage 1 tubes at SWI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reference | NW-REF   | NWREF-05  | А         | Very fine pale tan sand and silt/clay over darker material of similar GSMM. Underlying material is lightly mottled with pale gray and darker gray sediment. Partially infilled void at pen maximum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reference | NW-REF   | NWREF-05  | В         | Very fine pale tan sand over lightly mottled and slightly darker material. Medium sized burrow halo in sed column. Ophiuroids in PV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Reference | NW-REF   | NWREF-05  | D         | Very fine pale tan sand over lightly mottled and slightly darker material. Ophiuroids at SWI. Large burrow openings in PV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reference | NW-REF   | NWREF-06  | А         | Very fine pale tan sand over lightly mottled and slightly darker material. Small patch of black sediment near pen max. Worms visible against faceplate deep in sed column. Burrowing textures deep in sed column. Ophiuroids in PV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reference | NW-REF   | NWREF-06  | В         | Very fine pale tan sand over lightly mottled and slightly darker material. Worms visible against faceplate deep in sed column. Burrowing textures deep in sed column. Ophiuroids in PV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reference | NW-REF   | NWREF-06  | С         | Very fine pale tan sand over lightly mottled and slightly darker material. Ophiuroids visible at SWI. Small burrows visible in PV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reference | NW-REF   | NWREF-07  | А         | Very fine pale tan sand over lightly mottled and slightly darker material. Two voids visible deep in sediment column. Stage 1 tubes at SWI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Reference | NW-REF   | NWREF-07  | В         | Very fine pale tan sand over lightly mottled and slightly darker material. Long burrow halos in sediment column. Ophiuroid visible at SWI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reference | NW-REF   | NWREF-07  | С         | Very fine pale tan sand over lightly mottled and slightly darker material. Four voids visible deep in sediment column. Stage 1 tubes at SWI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Reference | NW-REF   | NWREF-08  | F         | Very fine pale tan sand over lightly mottled and slightly darker material. Ophiuroids in PV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Area      | Location | StationID | Replicate | Comment                                                                                                                                                                                                                                                       |
|-----------|----------|-----------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference | NW-REF   | NWREF-08  | G         | Very fine pale tan sand over lightly mottled and slightly darker material. Two voids visible deep in sediment column. Stage 1 tubes at SWI.                                                                                                                   |
| Reference | NW-REF   | NWREF-08  | Н         | Very fine pale tan sand over lightly mottled and slightly darker material. Single void visible deep in sediment column. Stage 1 tubes at SWI.                                                                                                                 |
| Reference | SW-REF   | SWREF-09  | А         | Very fine pale tan sand over lightly mottled and slightly darker material. Two voids visible deep in sediment column. Stage 1 tubes at SWI.                                                                                                                   |
| Reference | SW-REF   | SWREF-09  | С         | Very fine pale tan sand over lightly mottled and slightly darker material. Two voids visible in sediment column. Stage 1 tubes at SWI.                                                                                                                        |
| Reference | SW-REF   | SWREF-09  | E         | Very fine pale tan sand over lightly mottled and slightly darker material. Worms visible against faceplate deep in sed column. Burrowing textures deep in sed column. Small burrows visible in PV.                                                            |
| Reference | SW-REF   | SWREF-10  | А         | Very fine pale tan sand over lightly mottled and slightly darker material. Large void and burrow transected with polychaete visible. Stage 1 tubes at SWI.                                                                                                    |
| Reference | SW-REF   | SWREF-10  | В         | Very fine pale tan sand over lightly mottled and slightly darker material. Long burrow halos visible. Stage 1 tubes at SWI. Worms visible against faceplate deep in sed column.<br>Burrowing textures deep in sed column.                                     |
| Reference | SW-REF   | SWREF-10  | С         | Very fine pale tan sand over lightly mottled and slightly darker material. Long burrow halos visible. Stage 1 tubes at SWI. Worms visible against faceplate deep in sed column.<br>Burrowing textures deep in sed column.                                     |
| Reference | SW-REF   | SWREF-11  | А         | Very fine pale tan sand over lightly mottled and slightly darker material. Stage 1 tubes at SWI. Deep burrowing textures visible. Large burrow openings in PV.                                                                                                |
| Reference | SW-REF   | SWREF-11  | В         | Thin layer of very fine pale sand over 2cm thick layer gray fine sand. Tan and pale gray very fine sand to penetration; slightly mottled. Stage 1 tubes at SWI. Worms visible against faceplate deep in sed column. Burrowing textures deep in sed column.    |
| Reference | SW-REF   | SWREF-11  | С         | Very fine pale tan sand over lightly mottled and slightly darker material. Stage 1 and 2 tubes at SWI. Worms visible against faceplate deep in sed column. Burrowing textures deep in sed column.                                                             |
| Reference | SW-REF   | SWREF-12  | В         | Very fine pale tan sand over lightly mottled and slightly darker material. Stage 1 tubes at SWI. Small organism in midfield at SWI. Long burrow halos in sediment. Worms visible against faceplate deep in sed column. Burrowing textures deep in sed column. |
| Reference | SW-REF   | SWREF-12  | С         | Very fine pale tan sand over lightly mottled and slightly darker material. Single small void visible in sediment column. Stage 1 tubes at SWI.                                                                                                                |
| Reference | SW-REF   | SWREF-12  | D         | Very fine pale tan sand over lightly mottled and slightly darker material. Long burrow transected extending past max penetration. Stage 1 tubes at SWI.                                                                                                       |

| Aroa     | Location | StationID | Poplicato | Data       | Timo     | Image Width | Image Height | Field of | Sediment  | Surface   | Beggiatoa | Beggiatoa   | Dredged Material |
|----------|----------|-----------|-----------|------------|----------|-------------|--------------|----------|-----------|-----------|-----------|-------------|------------------|
| Alea     | LOCATION | Stationid | Replicate | Date       | Time     | (cm)        | (cm)         | View     | Туре      | Oxidation | Present?  | Type/Extent | Present?         |
| Disposal | Mound B  | B01       | А         | 10/20/2016 | 15:00:14 | 52.10       | 34.74        | 0.18     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B01       | D         | 10/20/2016 | 15:02:37 | 46.96       | 31.31        | 0.15     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B01       | Е         | 10/20/2016 | 15:03:22 | 37.02       | 24.68        | 0.09     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B02       | G         | 10/21/2016 | 10:19:51 | IND         | IND          | IND      | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B02       | Н         | 10/21/2016 | 10:20:27 | 51.69       | 34.46        | 0.18     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B02       | -         | 10/21/2016 | 10:21:07 | 49.71       | 33.14        | 0.16     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound B  | B03       | А         | 10/20/2016 | 15:09:47 | 46.62       | 31.08        | 0.14     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B03       | В         | 10/20/2016 | 15:10:37 | 49.12       | 32.75        | 0.16     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B03       | С         | 10/20/2016 | 15:11:29 | 45.92       | 30.62        | 0.14     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B04       | С         | 10/21/2016 | 8:59:24  | 43.94       | 29.30        | 0.13     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B04       | E         | 10/21/2016 | 9:14:30  | 36.91       | 24.60        | 0.09     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B04       | Н         | 10/21/2016 | 9:17:50  | 40.40       | 26.94        | 0.11     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B05       | А         | 10/21/2016 | 9:37:17  | 34.95       | 23.30        | 0.08     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B05       | В         | 10/21/2016 | 9:37:54  | 46.73       | 31.16        | 0.15     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B05       | С         | 10/21/2016 | 9:38:35  | 42.35       | 28.23        | 0.12     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B06       | Ι         | 10/21/2016 | 10:10:08 | 54.85       | 36.57        | 0.20     | Cobble    | Ox        | No        |             | Yes              |
| Disposal | Mound B  | B06       | J         | 10/21/2016 | 10:11:49 | 48.90       | 32.60        | 0.16     | Cobble    | Ox        | No        |             | Yes              |
| Disposal | Mound B  | B06       | L         | 10/21/2016 | 10:13:03 | 49.04       | 32.69        | 0.16     | Gravel    | Ох        | No        |             | Yes              |
| Disposal | Mound B  | B07       | С         | 10/20/2016 | 14:40:39 | 42.75       | 28.50        | 0.12     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B07       | D         | 10/20/2016 | 14:41:28 | 45.64       | 30.43        | 0.14     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B07       | E         | 10/20/2016 | 14:42:20 | 44.98       | 29.99        | 0.13     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B08       | I         | 10/21/2016 | 10:26:38 | 47.40       | 31.60        | 0.15     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B08       | J         | 10/21/2016 | 10:27:17 | 43.87       | 29.25        | 0.13     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B08       | L         | 10/21/2016 | 10:28:34 | 44.48       | 29.65        | 0.13     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B09       | С         | 10/20/2016 | 15:48:05 | 35.63       | 23.76        | 0.08     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound B  | B09       | D         | 10/20/2016 | 15:48:53 | 39.13       | 26.08        | 0.10     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B09       | E         | 10/20/2016 | 15:49:41 | 41.17       | 27.45        | 0.11     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B10       | А         | 10/20/2016 | 16:38:38 | 39.21       | 26.14        | 0.10     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B10       | В         | 10/20/2016 | 16:39:30 | 44.50       | 29.66        | 0.13     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B10       | С         | 10/20/2016 | 16:40:16 | 36.59       | 24.40        | 0.09     | Silt/clay | Ox        | No        |             | No               |

| Area     | Location | StationID | Poplicato | Data       | Timo     | Image Width | Image Height | Field of | Sediment  | Surface   | Beggiatoa | Beggiatoa   | Dredged Material |
|----------|----------|-----------|-----------|------------|----------|-------------|--------------|----------|-----------|-----------|-----------|-------------|------------------|
| Alea     | LOCATION | Stationid | Replicate | Date       | Time     | (cm)        | (cm)         | View     | Туре      | Oxidation | Present?  | Type/Extent | Present?         |
| Disposal | Mound B  | B11       | Α         | 10/20/2016 | 14:52:48 | 57.14       | 38.10        | 0.22     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound B  | B11       | В         | 10/20/2016 | 14:53:37 | 39.92       | 26.61        | 0.11     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound B  | B11       | D         | 10/20/2016 | 14:55:06 | 43.02       | 28.68        | 0.12     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound B  | B12       | E         | 10/20/2016 | 16:29:06 | 34.73       | 23.15        | 0.08     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound B  | B12       | G         | 10/20/2016 | 16:30:43 | 39.29       | 26.20        | 0.10     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound B  | B12       | Н         | 10/20/2016 | 16:31:33 | 41.85       | 27.90        | 0.12     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C13       | А         | 10/20/2016 | 12:32:36 | 57.78       | 38.52        | 0.22     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C13       | В         | 10/20/2016 | 12:33:18 | 51.90       | 34.60        | 0.18     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C13       | С         | 10/20/2016 | 12:34:05 | 42.74       | 28.49        | 0.12     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C14       | Α         | 10/20/2016 | 12:10:45 | 51.45       | 34.30        | 0.18     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C14       | В         | 10/20/2016 | 12:11:34 | 44.33       | 29.55        | 0.13     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C14       | С         | 10/20/2016 | 12:12:22 | 33.75       | 22.50        | 0.08     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C15       | А         | 10/20/2016 | 13:47:33 | 50.75       | 33.83        | 0.17     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C15       | В         | 10/20/2016 | 13:48:24 | 38.25       | 25.50        | 0.10     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C15       | С         | 10/20/2016 | 13:49:16 | 39.98       | 26.65        | 0.11     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C16       | В         | 10/20/2016 | 12:22:44 | 37.73       | 25.15        | 0.09     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C16       | С         | 10/20/2016 | 12:23:28 | 47.76       | 31.84        | 0.15     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C16       | D         | 10/20/2016 | 12:24:17 | 43.88       | 29.25        | 0.13     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C17       | А         | 10/20/2016 | 13:55:42 | 53.72       | 35.81        | 0.19     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C17       | В         | 10/20/2016 | 13:56:29 | 48.61       | 32.41        | 0.16     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C17       | D         | 10/20/2016 | 13:58:08 | 34.03       | 22.69        | 0.08     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C18       | А         | 10/20/2016 | 14:05:54 | 50.21       | 33.47        | 0.17     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C18       | В         | 10/20/2016 | 14:06:45 | 54.00       | 36.00        | 0.19     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound C  | C18       | С         | 10/20/2016 | 14:07:37 | 38.95       | 25.97        | 0.10     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound C  | C19       | А         | 10/20/2016 | 14:11:53 | 51.38       | 34.26        | 0.18     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound C  | C19       | В         | 10/20/2016 | 14:12:47 | 47.42       | 31.61        | 0.15     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C19       | С         | 10/20/2016 | 14:13:46 | 49.35       | 32.90        | 0.16     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C20       | А         | 10/20/2016 | 11:18:13 | 54.30       | 36.20        | 0.20     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound C  | C20       | В         | 10/20/2016 | 11:19:02 | 48.46       | 32.31        | 0.16     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound C  | C20       | С         | 10/20/2016 | 11:19:52 | 40.66       | 27.10        | 0.11     | Silt/clay | Ох        | No        |             | No               |
| Disposal | Mound C  | C21       | А         | 10/20/2016 | 11:28:07 | 46.15       | 30.77        | 0.14     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound C  | C21       | В         | 10/20/2016 | 11:28:53 | 52.60       | 35.06        | 0.18     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound C  | C21       | D         | 10/20/2016 | 11:30:29 | 36.65       | 24.43        | 0.09     | Silt/clay | Ox        | No        |             | No               |
| Disposal | Mound C  | C22       | А         | 10/20/2016 | 11:05:57 | 53.79       | 35.86        | 0.19     | Silt/clay | >50% Ox   | No        |             | No               |
| Disposal | Mound C  | C22       | В         | 10/20/2016 | 11:06:44 | 47.10       | 31.40        | 0.15     | Silt/clay | Ox        | No        |             | No               |

| Aroa      | Location | StationID | Poplicato | Data       | Timo     | Image Width | Image Height | Field of | Sediment  | Surface   | Beggiatoa | Beggiatoa   | Dredged Material |
|-----------|----------|-----------|-----------|------------|----------|-------------|--------------|----------|-----------|-----------|-----------|-------------|------------------|
| Area      | LOCATION | Stationid | Replicate | Date       | Time     | (cm)        | (cm)         | View     | Туре      | Oxidation | Present?  | Type/Extent | Present?         |
| Disposal  | Mound C  | C22       | С         | 10/20/2016 | 11:07:26 | 39.54       | 26.36        | 0.10     | Silt/clay | >50% Ox   | No        |             | No               |
| Disposal  | Mound C  | C23       | А         | 10/20/2016 | 11:42:53 | 60.02       | 40.02        | 0.24     | Silt/clay | Ox        | No        |             | No               |
| Disposal  | Mound C  | C23       | В         | 10/20/2016 | 11:43:47 | 39.22       | 26.14        | 0.10     | Silt/clay | Ox        | No        |             | No               |
| Disposal  | Mound C  | C23       | С         | 10/20/2016 | 11:44:36 | 40.63       | 27.08        | 0.11     | Silt/clay | Ox        | No        |             | No               |
| Disposal  | Mound C  | C24       | А         | 10/20/2016 | 11:52:23 | 46.25       | 30.83        | 0.14     | Silt/clay | Ox        | No        |             | No               |
| Disposal  | Mound C  | C24       | С         | 10/20/2016 | 11:53:57 | 54.09       | 36.06        | 0.20     | Silt/clay | Ox        | No        |             | No               |
| Disposal  | Mound C  | C24       | D         | 10/20/2016 | 11:54:42 | 49.41       | 32.94        | 0.16     | Silt/clay | Ox        | No        |             | No               |
| Disposal  | Mound C  | C25       | А         | 10/20/2016 | 12:02:58 | 54.15       | 36.10        | 0.20     | Silt/clay | Ox        | No        |             | No               |
| Disposal  | Mound C  | C25       | В         | 10/20/2016 | 12:03:47 | 52.51       | 35.01        | 0.18     | Silt/clay | Ox        | No        |             | No               |
| Disposal  | Mound C  | C25       | С         | 10/20/2016 | 12:04:34 | 52.63       | 35.09        | 0.18     | Silt/clay | Ox        | No        |             | No               |
| Reference | CC-BRS   | CCBRS-01  | А         | 10/21/2016 | 11:59:35 | 42.74       | 28.49        | 0.12     | Silt/clay | Ox        | No        |             | No               |
| Reference | CC-BRS   | CCBRS-01  | В         | 10/21/2016 | 12:00:15 | 41.96       | 27.97        | 0.12     | Silt/clay | Ox        | No        |             | No               |
| Reference | CC-BRS   | CCBRS-01  | С         | 10/21/2016 | 12:00:55 | 35.57       | 23.71        | 0.08     | Silt/clay | Ox        | No        |             | No               |
| Reference | CC-BRS   | CCBRS-02  | А         | 10/21/2016 | 11:51:00 | 44.60       | 29.73        | 0.13     | Silt/clay | Ox        | No        |             | No               |
| Reference | CC-BRS   | CCBRS-02  | В         | 10/21/2016 | 11:51:38 | 38.64       | 25.76        | 0.10     | Silt/clay | Ox        | No        |             | No               |
| Reference | CC-BRS   | CCBRS-02  | С         | 10/21/2016 | 11:52:19 | 35.85       | 23.90        | 0.09     | Silt/clay | Ox        | No        |             | No               |
| Reference | CC-BRS   | CCBRS-03  | А         | 10/21/2016 | 11:43:13 | 46.43       | 30.95        | 0.14     | Silt/clay | Ox        | No        |             | No               |
| Reference | CC-BRS   | CCBRS-03  | В         | 10/21/2016 | 11:43:53 | 46.13       | 30.75        | 0.14     | Silt/clay | Ox        | No        |             | No               |
| Reference | CC-BRS   | CCBRS-03  | С         | 10/21/2016 | 11:44:30 | 38.06       | 25.37        | 0.10     | Silt/clay | Ox        | No        |             | No               |
| Reference | CC-BRS   | CCBRS-04  | А         | 10/21/2016 | 12:07:37 | 38.38       | 25.58        | 0.10     | Silt/clay | Ox        | No        |             | No               |
| Reference | NW-REF   | NWREF-05  | А         | 10/21/2016 | 11:23:35 | 42.51       | 28.34        | 0.12     | Silt/clay | Ox        | No        |             | No               |
| Reference | NW-REF   | NWREF-05  | С         | 10/21/2016 | 11:24:49 | 49.90       | 33.27        | 0.17     | Silt/clay | Ox        | No        |             | No               |
| Reference | NW-REF   | NWREF-05  | D         | 10/21/2016 | 11:25:26 | 39.63       | 26.42        | 0.10     | Silt/clay | Ox        | No        |             | No               |
| Reference | NW-REF   | NWREF-06  | А         | 10/21/2016 | 11:29:00 | 41.73       | 27.82        | 0.12     | Silt/clay | Ox        | No        |             | No               |
| Reference | NW-REF   | NWREF-06  | В         | 10/21/2016 | 11:29:37 | 41.38       | 27.59        | 0.11     | Silt/clay | Ox        | No        |             | No               |
| Reference | NW-REF   | NWREF-06  | D         | 10/21/2016 | 11:30:51 | 39.51       | 26.34        | 0.10     | Silt/clay | Ox        | No        |             | No               |
| Reference | NW-REF   | NWREF-07  | А         | 10/21/2016 | 11:14:21 | 44.22       | 29.48        | 0.13     | Silt/clay | Ox        | No        |             | No               |
| Reference | NW-REF   | NWREF-08  | F         | 10/21/2016 | 11:05:50 | 41.53       | 27.69        | 0.12     | Silt/clay | Ox        | No        |             | No               |
| Reference | NW-REF   | NWREF-08  | G         | 10/21/2016 | 11:06:33 | 44.41       | 29.60        | 0.13     | Silt/clay | Ox        | No        |             | No               |
| Reference | NW-REF   | NWREF-08  | Н         | 10/21/2016 | 11:07:17 | 45.18       | 30.12        | 0.14     | Silt/clay | Ox        | No        |             | No               |
| Reference | SW-REF   | SWREF-09  | А         | 10/20/2016 | 9:27:57  | 38.20       | 25.47        | 0.10     | Silt/clay | Ox        | No        |             | No               |
| Reference | SW-REF   | SWREF-09  | D         | 10/20/2016 | 9:30:57  | 51.20       | 34.13        | 0.17     | Silt/clay | Ox        | No        |             | No               |
| Reference | SW-REF   | SWREF-09  | E         | 10/20/2016 | 9:31:47  | 52.30       | 34.86        | 0.18     | Silt/clay | Ox        | No        |             | No               |
| Reference | SW-REF   | SWREF-10  | В         | 10/20/2016 | 9:52:53  | 39.55       | 26.37        | 0.10     | Silt/clay | Ox        | No        |             | No               |
| Reference | SW-REF   | SWREF-10  | С         | 10/20/2016 | 9:53:34  | 48.31       | 32.21        | 0.16     | Silt/clay | Ox        | No        |             | No               |
| Reference | SW-REF   | SWREF-10  | D         | 10/20/2016 | 9:54:18  | 44.50       | 29.66        | 0.13     | Silt/clay | Ox        | No        |             | No               |

| Area      | Location | StationID | Poplicato | Data       | Timo     | Image Width | Image Height | Field of | Sediment  | Surface   | Beggiatoa | Beggiatoa   | Dredged Material |
|-----------|----------|-----------|-----------|------------|----------|-------------|--------------|----------|-----------|-----------|-----------|-------------|------------------|
| Alea      | LOCATION | Stationid | Replicate | Date       | Time     | (cm)        | (cm)         | View     | Туре      | Oxidation | Present?  | Type/Extent | Present?         |
| Reference | SW-REF   | SWREF-11  | А         | 10/20/2016 | 10:04:57 | 46.76       | 31.18        | 0.15     | Silt/clay | Ох        | No        |             | No               |
| Reference | SW-REF   | SWREF-11  | В         | 10/20/2016 | 10:05:39 | 40.59       | 27.06        | 0.11     | Silt/clay | Ох        | No        |             | No               |
| Reference | SW-REF   | SWREF-11  | С         | 10/20/2016 | 10:06:16 | 45.09       | 30.06        | 0.14     | Silt/clay | Ох        | No        |             | No               |
| Reference | SW-REF   | SWREF-12  | Α         | 10/20/2016 | 10:16:04 | 42.26       | 28.18        | 0.12     | Silt/clay | Ох        | No        |             | No               |
| Reference | SW-REF   | SWREF-12  | В         | 10/20/2016 | 10:16:49 | 47.32       | 31.54        | 0.15     | Silt/clay | Ох        | No        |             | No               |
| Reference | SW-REF   | SWREF-12  | D         | 10/20/2016 | 10:18:20 | 43.66       | 29.11        | 0.13     | Silt/clay | Ox        | No        |             | No               |

| Area     | Location | StationID | Replicate | Dredged Material Notes      | Debris                               | Bedforms | Tubes             | Burrows          | Tracks            |
|----------|----------|-----------|-----------|-----------------------------|--------------------------------------|----------|-------------------|------------------|-------------------|
| Disposal | Mound B  | B01       | А         |                             | None                                 | None     | Abundant (25-75%) | None             | Sparse (<10%)     |
| Disposal | Mound B  | B01       | D         |                             | None                                 | None     | Abundant (25-75%) | None             | Sparse (<10%)     |
| Disposal | Mound B  | B01       | E         |                             | None                                 | None     | Present (10-25%)  | Present (10-25%) | Present (10-25%)  |
| Disposal | Mound B  | B02       | G         |                             | Large shell fragments                | None     | Present (10-25%)  | None             | None              |
| Disposal | Mound B  | B02       | н         |                             | Large shell fragments                | None     | Present (10-25%)  | None             | Present (10-25%)  |
| Disposal | Mound B  | B02       | I         |                             | None                                 | None     | Present (10-25%)  | Sparse (<10%)    | Present (10-25%)  |
| Disposal | Mound B  | B03       | А         |                             | None                                 | None     | Present (10-25%)  | Sparse (<10%)    | None              |
| Disposal | Mound B  | B03       | В         |                             | None                                 | None     | Sparse (<10%)     | Sparse (<10%)    | Sparse (<10%)     |
| Disposal | Mound B  | B03       | С         |                             | None                                 | None     | Present (10-25%)  | None             | None              |
| Disposal | Mound B  | B04       | С         |                             | None                                 | None     | Present (10-25%)  | None             | Sparse (<10%)     |
| Disposal | Mound B  | B04       | E         |                             | None                                 | None     | Present (10-25%)  | Sparse (<10%)    | Sparse (<10%)     |
| Disposal | Mound B  | B04       | Н         |                             | None                                 | None     | Abundant (25-75%) | Present (10-25%) | Present (10-25%)  |
| Disposal | Mound B  | B05       | А         |                             | None                                 | None     | Present (10-25%)  | None             | Sparse (<10%)     |
| Disposal | Mound B  | B05       | В         |                             | None                                 | None     | Present (10-25%)  | None             | Abundant (25-75%) |
| Disposal | Mound B  | B05       | С         |                             | None                                 | None     | Present (10-25%)  | Present (10-25%) | Present (10-25%)  |
| Disposal | Mound B  | B06       | I         | Cobbles and coarse sediment | Cobbles                              | None     | Sparse (<10%)     | None             | None              |
| Disposal | Mound B  | B06       | J         | Cobbles and coarse sediment | Cobbles                              | None     | Sparse (<10%)     | None             | None              |
| Disposal | Mound B  | B06       | L         | Cobbles and coarse sediment | Cobbles                              | None     | Sparse (<10%)     | None             | None              |
| Disposal | Mound B  | B07       | С         |                             | None                                 | None     | Sparse (<10%)     | None             | None              |
| Disposal | Mound B  | B07       | D         |                             | None                                 | None     | Sparse (<10%)     | None             | None              |
| Disposal | Mound B  | B07       | E         |                             | None                                 | None     | Sparse (<10%)     | None             | None              |
| Disposal | Mound B  | B08       | I         |                             | Large shell fragments<br>and cobbles | None     | Sparse (<10%)     | None             | None              |
| Disposal | Mound B  | B08       | J         |                             | None                                 | None     | Sparse (<10%)     | None             | Sparse (<10%)     |
| Disposal | Mound B  | B08       | L         |                             | None                                 | None     | Sparse (<10%)     | None             | Sparse (<10%)     |
| Disposal | Mound B  | B09       | С         |                             | None                                 | None     | Sparse (<10%)     | None             | Sparse (<10%)     |
| Disposal | Mound B  | B09       | D         |                             | None                                 | None     | Sparse (<10%)     | None             | Sparse (<10%)     |
| Disposal | Mound B  | B09       | E         |                             | None                                 | None     | Sparse (<10%)     | None             | Sparse (<10%)     |
| Disposal | Mound B  | B10       | А         |                             | None                                 | None     | Present (10-25%)  | Present (10-25%) | Sparse (<10%)     |
| Disposal | Mound B  | B10       | В         |                             | None                                 | None     | Abundant (25-75%) | None             | Present (10-25%)  |
| Disposal | Mound B  | B10       | С         |                             | None                                 | None     | Present (10-25%)  | Present (10-25%) | Present (10-25%)  |

| Area     | Location | StationID | Replicate | Dredged Material Notes | Debris | Bedforms | Tubes            | Burrows           | Tracks            |
|----------|----------|-----------|-----------|------------------------|--------|----------|------------------|-------------------|-------------------|
| Disposal | Mound B  | B11       | А         |                        | None   | None     | Sparse (<10%)    | None              | None              |
| Disposal | Mound B  | B11       | В         |                        | None   | None     | Present (10-25%) | None              | Sparse (<10%)     |
| Disposal | Mound B  | B11       | D         |                        | None   | None     | Sparse (<10%)    | None              | None              |
| Disposal | Mound B  | B12       | E         |                        | None   | None     | Sparse (<10%)    | None              | Sparse (<10%)     |
| Disposal | Mound B  | B12       | G         |                        | None   | None     | Sparse (<10%)    | None              | Abundant (25-75%) |
| Disposal | Mound B  | B12       | Н         |                        | None   | None     | Sparse (<10%)    | None              | Sparse (<10%)     |
| Disposal | Mound C  | C13       | А         |                        | None   | None     | None             | Sparse (<10%)     | Present (10-25%)  |
| Disposal | Mound C  | C13       | В         |                        | None   | None     | None             | Sparse (<10%)     | Present (10-25%)  |
| Disposal | Mound C  | C13       | С         |                        | None   | None     | None             | Sparse (<10%)     | Present (10-25%)  |
| Disposal | Mound C  | C14       | А         |                        | None   | None     | Sparse (<10%)    | Present (10-25%)  | Sparse (<10%)     |
| Disposal | Mound C  | C14       | В         |                        | None   | None     | Sparse (<10%)    | Present (10-25%)  | Present (10-25%)  |
| Disposal | Mound C  | C14       | С         |                        | None   | None     | Sparse (<10%)    | None              | Present (10-25%)  |
| Disposal | Mound C  | C15       | А         |                        | None   | None     | Present (10-25%) | Present (10-25%)  | Present (10-25%)  |
| Disposal | Mound C  | C15       | В         |                        | None   | None     | Present (10-25%) | None              | None              |
| Disposal | Mound C  | C15       | С         |                        | None   | None     | Present (10-25%) | None              | Sparse (<10%)     |
| Disposal | Mound C  | C16       | В         |                        | None   | None     | Present (10-25%) | Sparse (<10%)     | Present (10-25%)  |
| Disposal | Mound C  | C16       | С         |                        | None   | None     | Present (10-25%) | Sparse (<10%)     | Sparse (<10%)     |
| Disposal | Mound C  | C16       | D         |                        | None   | None     | Present (10-25%) | Abundant (25-75%) | Present (10-25%)  |
| Disposal | Mound C  | C17       | А         |                        | None   | None     | Sparse (<10%)    | Present (10-25%)  | Present (10-25%)  |
| Disposal | Mound C  | C17       | В         |                        | None   | None     | Sparse (<10%)    | Sparse (<10%)     | Sparse (<10%)     |
| Disposal | Mound C  | C17       | D         |                        | None   | None     | Present (10-25%) | None              | None              |
| Disposal | Mound C  | C18       | А         |                        | None   | None     | Sparse (<10%)    | None              | None              |
| Disposal | Mound C  | C18       | В         |                        | None   | None     | Sparse (<10%)    | None              | None              |
| Disposal | Mound C  | C18       | С         |                        | None   | None     | Sparse (<10%)    | Abundant (25-75%) | None              |
| Disposal | Mound C  | C19       | А         |                        | None   | None     | Present (10-25%) | Present (10-25%)  | None              |
| Disposal | Mound C  | C19       | В         |                        | None   | None     | Present (10-25%) | Present (10-25%)  | Sparse (<10%)     |
| Disposal | Mound C  | C19       | С         |                        | None   | None     | Sparse (<10%)    | None              | None              |
| Disposal | Mound C  | C20       | А         |                        | None   | None     | Sparse (<10%)    | Present (10-25%)  | Present (10-25%)  |
| Disposal | Mound C  | C20       | В         |                        | None   | None     | Present (10-25%) | Present (10-25%)  | Present (10-25%)  |
| Disposal | Mound C  | C20       | С         |                        | None   | None     | Present (10-25%) | Sparse (<10%)     | Sparse (<10%)     |
| Disposal | Mound C  | C21       | А         |                        | None   | None     | Sparse (<10%)    | Sparse (<10%)     | Sparse (<10%)     |
| Disposal | Mound C  | C21       | В         |                        | None   | None     | Sparse (<10%)    | Sparse (<10%)     | Abundant (25-75%) |
| Disposal | Mound C  | C21       | D         |                        | None   | None     | Present (10-25%) | None              | Sparse (<10%)     |
| Disposal | Mound C  | C22       | А         |                        | None   | None     | Present (10-25%) | Present (10-25%)  | Present (10-25%)  |
| Disposal | Mound C  | C22       | В         |                        | None   | None     | Present (10-25%) | Sparse (<10%)     | None              |

| Area      | Location | StationID | Replicate | Dredged Material Notes | Debris | Bedforms | Tubes             | Burrows           | Tracks            |
|-----------|----------|-----------|-----------|------------------------|--------|----------|-------------------|-------------------|-------------------|
| Disposal  | Mound C  | C22       | С         |                        | None   | None     | Present (10-25%)  | Sparse (<10%)     | Sparse (<10%)     |
| Disposal  | Mound C  | C23       | А         |                        | None   | None     | Sparse (<10%)     | Present (10-25%)  | Present (10-25%)  |
| Disposal  | Mound C  | C23       | В         |                        | None   | None     | Present (10-25%)  | Sparse (<10%)     | Sparse (<10%)     |
| Disposal  | Mound C  | C23       | С         |                        | None   | None     | Abundant (25-75%) | Sparse (<10%)     | Sparse (<10%)     |
| Disposal  | Mound C  | C24       | А         |                        | None   | None     | Present (10-25%)  | Present (10-25%)  | Sparse (<10%)     |
| Disposal  | Mound C  | C24       | С         |                        | None   | None     | Present (10-25%)  | Present (10-25%)  | Sparse (<10%)     |
| Disposal  | Mound C  | C24       | D         |                        | None   | None     | Present (10-25%)  | Present (10-25%)  | Sparse (<10%)     |
| Disposal  | Mound C  | C25       | А         |                        | None   | None     | Present (10-25%)  | Present (10-25%)  | Sparse (<10%)     |
| Disposal  | Mound C  | C25       | В         |                        | None   | None     | Present (10-25%)  | Sparse (<10%)     | Sparse (<10%)     |
| Disposal  | Mound C  | C25       | С         |                        | None   | None     | Abundant (25-75%) | Present (10-25%)  | Sparse (<10%)     |
| Reference | CC-BRS   | CCBRS-01  | А         |                        | None   | None     | Sparse (<10%)     | Sparse (<10%)     | Sparse (<10%)     |
| Reference | CC-BRS   | CCBRS-01  | В         |                        | None   | None     | Present (10-25%)  | Sparse (<10%)     | Sparse (<10%)     |
| Reference | CC-BRS   | CCBRS-01  | С         |                        | None   | None     | Sparse (<10%)     | None              | None              |
| Reference | CC-BRS   | CCBRS-02  | А         |                        | None   | None     | Present (10-25%)  | None              | Sparse (<10%)     |
| Reference | CC-BRS   | CCBRS-02  | В         |                        | None   | None     | Present (10-25%)  | Sparse (<10%)     | Sparse (<10%)     |
| Reference | CC-BRS   | CCBRS-02  | С         |                        | None   | None     | Present (10-25%)  | Sparse (<10%)     | Sparse (<10%)     |
| Reference | CC-BRS   | CCBRS-03  | А         |                        | None   | None     | Present (10-25%)  | Present (10-25%)  | Sparse (<10%)     |
| Reference | CC-BRS   | CCBRS-03  | В         |                        | None   | None     | Present (10-25%)  | None              | None              |
| Reference | CC-BRS   | CCBRS-03  | С         |                        | None   | None     | Present (10-25%)  | Present (10-25%)  | Sparse (<10%)     |
| Reference | CC-BRS   | CCBRS-04  | А         |                        | None   | None     | Present (10-25%)  | Sparse (<10%)     | Sparse (<10%)     |
| Reference | NW-REF   | NWREF-05  | А         |                        | None   | None     | Present (10-25%)  | None              | None              |
| Reference | NW-REF   | NWREF-05  | С         |                        | None   | None     | Present (10-25%)  | Abundant (25-75%) | Abundant (25-75%) |
| Reference | NW-REF   | NWREF-05  | D         |                        | None   | None     | Present (10-25%)  | Sparse (<10%)     | None              |
| Reference | NW-REF   | NWREF-06  | А         |                        | None   | None     | Present (10-25%)  | None              | None              |
| Reference | NW-REF   | NWREF-06  | В         |                        | None   | None     | Present (10-25%)  | None              | None              |
| Reference | NW-REF   | NWREF-06  | D         |                        | None   | None     | Present (10-25%)  | Sparse (<10%)     | None              |
| Reference | NW-REF   | NWREF-07  | А         |                        | None   | None     | Present (10-25%)  | None              | None              |
| Reference | NW-REF   | NWREF-08  | F         |                        | None   | None     | Present (10-25%)  | None              | None              |
| Reference | NW-REF   | NWREF-08  | G         |                        | None   | None     | Present (10-25%)  | None              | None              |
| Reference | NW-REF   | NWREF-08  | Н         |                        | None   | None     | Present (10-25%)  | None              | None              |
| Reference | SW-REF   | SWREF-09  | А         |                        | None   | None     | Present (10-25%)  | Sparse (<10%)     | Sparse (<10%)     |
| Reference | SW-REF   | SWREF-09  | D         |                        | None   | None     | Present (10-25%)  | Sparse (<10%)     | Sparse (<10%)     |
| Reference | SW-REF   | SWREF-09  | E         |                        | None   | None     | Present (10-25%)  | Present (10-25%)  | Sparse (<10%)     |
| Reference | SW-REF   | SWREF-10  | В         |                        | None   | None     | Present (10-25%)  | Present (10-25%)  | None              |
| Reference | SW-REF   | SWREF-10  | С         |                        | None   | None     | Present (10-25%)  | None              | None              |
| Reference | SW-REF   | SWREF-10  | D         |                        | None   | None     | Present (10-25%)  | None              | Sparse (<10%)     |

| Area      | Location | StationID | Replicate | Dredged Material Notes | Debris | Bedforms | Tubes            | Burrows           | Tracks           |
|-----------|----------|-----------|-----------|------------------------|--------|----------|------------------|-------------------|------------------|
| Reference | SW-REF   | SWREF-11  | А         |                        | None   | None     | Present (10-25%) | Abundant (25-75%) | Sparse (<10%)    |
| Reference | SW-REF   | SWREF-11  | В         |                        | None   | None     | Present (10-25%) | None              | None             |
| Reference | SW-REF   | SWREF-11  | С         |                        | None   | None     | Present (10-25%) | Sparse (<10%)     | None             |
| Reference | SW-REF   | SWREF-12  | А         |                        | None   | None     | Present (10-25%) | Sparse (<10%)     | Sparse (<10%)    |
| Reference | SW-REF   | SWREF-12  | В         |                        | None   | None     | Present (10-25%) | Sparse (<10%)     | Present (10-25%) |
| Reference | SW-REF   | SWREF-12  | D         |                        | None   | None     | Present (10-25%) | None              | Present (10-25%) |

| · · · · · · · · · · · · · · · · · · · |           |           | 1         | 1                 | 1     |                   |                                                                                                                |
|---------------------------------------|-----------|-----------|-----------|-------------------|-------|-------------------|----------------------------------------------------------------------------------------------------------------|
| Area                                  | Location  | StationID | Replicate | Epifauna          | Flora | Number<br>of Fish | Comments                                                                                                       |
| Disposal                              | Mound B   | B01       | А         | None              | None  | 0                 | Pale tan fines with many small tubes visible.                                                                  |
| Disposal                              | Mound B   | B01       | D         | None              | None  | 0                 | Pale tan fines with many small tubes visible.                                                                  |
| Disposal                              | Mound B   | B01       | E         | None              | None  | 0                 | Pale tan fines with many small tubes visible. Several burrows visible. Thin line of tracks.                    |
| Disposal                              | Mound B   | B02       | G         | None              | None  | 0                 | Pale tan fines with gravels and shell fragments. Small tubes visible. Right laser not visible.                 |
| Disposal                              | Mound B   | B02       | н         | None              | None  | 0                 | Pale tan fines with gravels and shell fragments. Small tubes visible. Thin tracks in sediment.                 |
| Disposal                              | Mound B   | B02       | I         | Gastropods        | None  | 0                 | Pale tan fines with small tubes visible. Thin tracks. Several small orange gastropods.                         |
| Disposal                              | Mound B   | B03       | Α         | None              | None  | 0                 | Pale tan fines with small tubes visible. Few small burrows                                                     |
| Disposal                              | Mound B   | B03       | В         | Gastropods        | None  | 0                 | Pale tan fines with small tubes visible. Few small burrows. Thin tracks. Small orange gastropods               |
| Disposal                              | Mound B   | B03       | С         | None              | None  | 0                 | Pale tan fines with many small tubes visible.                                                                  |
| Disposal                              | Mound B   | B04       | С         | None              | None  | 0                 | Pale tan fines with many small tubes visible. Small tracks.                                                    |
| Disposal                              | Mound B   | B04       | E         | None              | None  | 0                 | Pale tan fines with many small tubes visible. Small tracks. Small burrows. Image taken very close to sediment. |
| Disposal                              | Mound B   | B04       | Н         | None              | None  | 0                 | Pale tan fines with many small tubes visible. Small tracks. Small burrows.                                     |
| Disposal                              | Mound B   | B05       | Α         | None              | None  | 0                 | Pale tan fines with small tubes visible. Few thin tracks.                                                      |
| Disposal                              | Mound B   | B05       | В         | None              | None  | 0                 | Pale tan fines with small tubes visible. Many thin tracks visible over sediment.                               |
| Disposal                              | Mound B   | B05       | C         | Gastropods        | None  | 0                 | Pale tan fines with small tubes visible. Many thin tracks vis Small burrow openings visible. Very              |
| Disposal                              | Mound B   | B06       | I         | Hydroids, sponges | None  | 0                 | Pale tan sand between large cobbles. Cobbles are encrusted with hydroids and sponges.                          |
| Disposal                              | Mound B   | B06       | J         | Hydroids, sponges | None  | 0                 | Pale tan sand and gravels between large cobbles. Cobbles are encrusted with hydroids and sponges.              |
| Disposal                              | Mound B   | B06       | L         | Hydroids, sponges | None  | 0                 | Pale tan sand and gravels between large cobbles. Bivalve siphon visible in sediment.                           |
| Disposal                              | Mound B   | B07       | С         | Ophiuroids        | None  | 0                 | Pale tan fines covered with ophiuroids.                                                                        |
| Disposal                              | Mound B   | B07       | D         | Ophiuroids        | None  | 0                 | Pale tan fines covered with ophiuroids.                                                                        |
| Disposal                              | Mound B   | B07       | E         | Ophiuroids        | None  | 0                 | Pale tan fines covered with ophiuroids.                                                                        |
| Disposal                              | Mound B   | B08       | I         | Paguroid          | None  | 0                 | Pale tan fines covered with cobbles and large shell fragments                                                  |
| Disposal                              | Mound B   | B08       | J         | None              | None  | 0                 | Pale tan fines with few small tubes and thin shallow tracks.                                                   |
| Disposal                              | Mound B   | B08       | L         | None              | None  | 0                 | Pale tan fines with few small tubes and thin shallow tracks. Large hole in sediment.                           |
| Disposal                              | Mound B   | B09       | С         | Crab              | None  | 0                 | Pale tan fines with few small tubes and thin shallow tracks. Large crab in view.                               |
| Disposal                              | Mound B   | B09       | D         | None              | None  | 0                 | Pale tan fines with few small tubes and thin shallow tracks. Reduced material strewn over sediment             |
| Disposal                              | Mound B   | B09       | F         | None              | None  | 0                 | Pale tan fines with few small tubes and thin shallow tracks                                                    |
| Disposal                              | Mound B   | B10       | Δ         | None              | None  | 0                 | Pale tan fines with small tubes and several large hurrow openings                                              |
| Disposal                              | Mound B   | B10       | B         | None              | None  | 0                 | Pale tan fines with small tubes and thin shallow tracks                                                        |
| Disposal                              | Mound R   | B10       | C C       | None              | None  | 0                 | Pale tan fines with small tubes and single large hurrow opening                                                |
| Disposal                              | Infound D | 510       |           | None              | Hone  | 5                 |                                                                                                                |

| Area     | Location | StationID | Replicate | Epifauna             | Flora | Number<br>of Fish | Comments                                                                                                                          |
|----------|----------|-----------|-----------|----------------------|-------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Disposal | Mound B  | B11       | Α         | Ophiuroids           | None  | 0                 | Pale tan fines covered with ophiuroids.                                                                                           |
| Disposal | Mound B  | B11       | В         | None                 | None  | 0                 | Pale tan fines with small tubes and thin shallow tracks.                                                                          |
| Disposal | Mound B  | B11       | D         | Ophiuroids, paguroid | None  | 0                 | Pale tan fines covered with ophiuroids. Small hermit crab.                                                                        |
| Disposal | Mound B  | B12       | E         | None                 | None  | 0                 | Pale tan fines with small tubes and thin shallow tracks.                                                                          |
| Disposal | Mound B  | B12       | G         | None                 | None  | 0                 | Pale tan fines with small tubes and many large tracks.                                                                            |
| Disposal | Mound B  | B12       | Н         | None                 | None  | 0                 | Pale tan fines with small tubes and thin shallow tracks.                                                                          |
| Disposal | Mound C  | C13       | А         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with large tracks and burrow openings. Image is blurred.                                                       |
| Disposal | Mound C  | C13       | В         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with large tracks and burrow openings.                                                                         |
| Disposal | Mound C  | C13       | С         | None                 | None  | 0                 | Pale tan silt/clay with large tracks and burrow openings.                                                                         |
| Disposal | Mound C  | C14       | Α         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with few small tubes, single large burrow opening.                                                             |
| Disposal | Mound C  | C14       | В         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes, few tracks.                                                                              |
| Disposal | Mound C  | C14       | С         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes, few tracks.                                                                              |
| Disposal | Mound C  | C15       | А         | None                 | None  | 0                 | Pale tan silt/clay with small tubes and thin tracks. Large burrow depression visible.                                             |
| Disposal | Mound C  | C15       | В         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes.                                                                                          |
| Disposal | Mound C  | C15       | С         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes.                                                                                          |
| Disposal | Mound C  | C16       | В         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with few small tubes, few tracks. Small burrows.                                                               |
| Disposal | Mound C  | C16       | С         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with few small tubes, few tracks. Small burrows.                                                               |
| Disposal | Mound C  | C16       | D         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes, few tracks. Large burrows.                                                               |
| Disposal | Mound C  | C17       | Α         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes, small burrows. Lines of parallel tracks.                                                 |
| Disposal | Mound C  | C17       | В         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes, small burrows. Small tracks in lower right.                                              |
| Disposal | Mound C  | C17       | D         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes. Reduced material I n lower right.                                                        |
| Disposal | Mound C  | C18       | А         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes.                                                                                          |
| Disposal | Mound C  | C18       | В         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with few small tubes.                                                                                          |
| Disposal | Mound C  | C18       | С         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes. Large burrow opening with organisms visible on side of<br>burrow.                        |
| Disposal | Mound C  | C19       | А         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with few small tubes. Two large burrows visible.                                                               |
| Disposal | Mound C  | C19       | В         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes. Small burrows present.                                                                   |
| Disposal | Mound C  | C19       | С         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes.                                                                                          |
| Disposal | Mound C  | C20       | A         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with few small tubes. Many small burrows and track depressions. Gastropods.                                    |
| Disposal | Mound C  | C20       | В         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with few small tubes. Many small burrows and track depressions. Gastropods.<br>Small patches of gray sediment. |
| Disposal | Mound C  | C20       | С         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with few small tubes. Few small burrows and tracks. Gastropods.                                                |
| Disposal | Mound C  | C21       | А         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes. Few small burrows and tracks.                                                            |
| Disposal | Mound C  | C21       | В         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with few small tubes. Few small burrows and abundant tracks.                                                   |
| Disposal | Mound C  | C21       | D         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with few small tubes. Few small tracks.                                                                        |
| Disposal | Mound C  | (22       | ٨         | None                 | None  | 0                 | Pale tan silt/clay with few small tubes. Long thin tracks. Small and few large burrow openings                                    |
| Dispusai | would C  | C22       | ~         | NULLE                | None  | 0                 | visible. Small patches of reduced sediment visible.                                                                               |
| Disposal | Mound C  | C22       | В         | Nudibranchs          | None  | 0                 | Pale tan silt/clay with few small tubes. Large reduced clast impacting sediment.                                                  |

| Area      | Location | StationID | Replicate | Epifauna           | Flora | Number<br>of Fish | Comments                                                                                                                              |
|-----------|----------|-----------|-----------|--------------------|-------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Disposal  | Mound C  | C22       | С         | None               | None  | 0                 | Pale tan silt/clay with few small tubes. Few small tracks. Small patch of reduced sediment.                                           |
| Disposal  | Mound C  | C23       | А         | None               | None  | 0                 | Pale tan silt/clay with few small tubes. Few small tracks. Surface is slightly hummocky.                                              |
| Disposal  | Mound C  | C23       | В         | None               | None  | 0                 | Pale tan silt/clay with few small tubes. Long thin tracks visible.                                                                    |
| Disposal  | Mound C  | C23       | С         | Nudibranchs        | None  | 0                 | Pale tan silt/clay with small tubes. Nudibranchs.                                                                                     |
| Disposal  | Mound C  | C24       | А         | None               | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible,.                                                                     |
| Disposal  | Mound C  | C24       | С         | Nudibranchs        | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible,.                                                                     |
| Disposal  | Mound C  | C24       | D         | Nudibranchs        | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible,.                                                                     |
| Disposal  | Mound C  | C25       | А         | Shrimp, gastropods | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible,. Gastropods and shrimp on sediment.                                  |
| Disposal  | Mound C  | C25       | В         | None               | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible,.                                                                     |
| Disposal  | Mound C  | C25       | С         | None               | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible,.                                                                     |
| Reference | CC-BRS   | CCBRS-01  | А         | None               | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible,.                                                                     |
| Reference | CC-BRS   | CCBRS-01  | В         | None               | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible,.                                                                     |
| Reference | CC-BRS   | CCBRS-01  | С         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Abundant ophiuroids over sediment.                                                               |
| Reference | CC-BRS   | CCBRS-02  | А         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Abundant ophiuroids over sediment.                                                               |
| Reference | CC-BRS   | CCBRS-02  | В         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Abundant ophiuroids over sediment.                                                               |
| Reference | CC-BRS   | CCBRS-02  | С         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Abundant ophiuroids over sediment.                                                               |
| Reference | CC-BRS   | CCBRS-03  | А         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Abundant ophiuroids over sediment.                                                               |
| Reference | CC-BRS   | CCBRS-03  | В         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Ophiuroids over sediment.                                                                        |
| Reference | CC-BRS   | CCBRS-03  | С         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Ophiuroids arms visible. Large burrow.                                                           |
| Reference | CC-BRS   | CCBRS-04  | А         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Ophiuroids over sediment.                                                                        |
| Reference | NW-REF   | NWREF-05  | А         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Ophiuroids over sediment.                                                                        |
| Reference | NW-REF   | NWREF-05  | С         | None               | None  | 0                 | Pale tan silt/clay with small tubes. Three very large burrows in sediment. Several smaller burrows.<br>Abundant long and thin tracks. |
| Reference | NW-REF   | NWREF-05  | D         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Ophiuroids over sediment.                                                                        |
| Reference | NW-REF   | NWREF-06  | А         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Ophiuroids over sediment.                                                                        |
| Reference | NW-REF   | NWREF-06  | В         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Ophiuroids over sediment.                                                                        |
| Reference | NW-REF   | NWREF-06  | D         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Ophiuroids over sediment.                                                                        |
| Reference | NW-REF   | NWREF-07  | А         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Ophiuroids over sediment.                                                                        |
| Reference | NW-REF   | NWREF-08  | F         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Ophiuroids over sediment.                                                                        |
| Reference | NW-REF   | NWREF-08  | G         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Ophiuroids over sediment.                                                                        |
| Reference | NW-REF   | NWREF-08  | Н         | Ophiuroids         | None  | 0                 | Pale tan silt/clay with small tubes. Ophiuroids over sediment.                                                                        |
| Reference | SW-REF   | SWREF-09  | А         | None               | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible,.                                                                     |
| Reference | SW-REF   | SWREF-09  | D         | None               | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible,.                                                                     |
| Reference | SW-REF   | SWREF-09  | E         | None               | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible,.                                                                     |
| Reference | SW-REF   | SWREF-10  | В         | None               | None  | 0                 | Pale tan silt/clay with small tubes.                                                                                                  |
| Reference | SW-REF   | SWREF-10  | С         | Nudibranchs        | None  | 0                 | Pale tan silt/clay with small tubes. Small nudibranch visible.                                                                        |
| Reference | SW-REF   | SWREF-10  | D         | None               | None  | 0                 | Pale tan silt/clay with small tubes. Tracks visible,.                                                                                 |

| Area      | Location | StationID | Replicate | Epifauna | Flora | Number<br>of Fish | Comments                                                                             |
|-----------|----------|-----------|-----------|----------|-------|-------------------|--------------------------------------------------------------------------------------|
| Reference | SW-REF   | SWREF-11  | Α         | None     | None  | 0                 | Pale tan silt/clay with small tubes. Tracks visible. Very large burrows in sediment. |
| Reference | SW-REF   | SWREF-11  | В         | Seastar  | None  | 0                 | Pale tan silt/clay with small tubes. Arm of sea star visible.                        |
| Reference | SW-REF   | SWREF-11  | С         | None     | None  | 0                 | Pale tan silt/clay with small tubes. Single small burrow.                            |
| Reference | SW-REF   | SWREF-12  | Α         | None     | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible.                     |
| Reference | SW-REF   | SWREF-12  | В         | None     | None  | 0                 | Pale tan silt/clay with small tubes. Tracks and burrows visible.                     |
| Reference | SW-REF   | SWREF-12  | D         | None     | None  | 0                 | Pale tan silt/clay with small tubes. Tracks visible.                                 |

# APPENDIX F

# GRAIN SIZE SCALE FOR SEDIMENTS

### APPENDIX F

## GRAIN SIZE SCALE FOR SEDIMENTS

| Phi (Φ) Size | Size Range (mm) | Size Class (Wentworth Class) |
|--------------|-----------------|------------------------------|
| <-1          | >2              | Gravel                       |
| 0 to -1      | 1 to 2          | Very coarse sand             |
| 1 to 0       | 0.5 to 1        | Coarse sand                  |
| 2 to 1       | 0.25 to 0.5     | Medium sand                  |
| 3 to 2       | 0.125 to 0.25   | Fine sand                    |
| 4 to 3       | 0.0625 to 0.125 | Very fine sand               |
| >4           | < 0.0625        | Silt/clay                    |