Monitoring Surveys of the New Haven Capping Project, 1993 - 1994

Disposal Area Monitoring System DAMOS

Contribution 111 July 1996

US Army Corps of Engineers New England Division

REPORT DOCUMENTATION PAGE		Form approved OMB No. 0704-0188	Form approved OMB No. 0704-0188	
Public reporting concern for the collection of i instructions, searching exsisting data sources, information. Send comments regarding this b suggestions for reducing this burden to Washi 1216 Jefferson Davis Highway, Suite 1204, A	information is estimated to average gathering and measuring data need urden estimate or any other aspect ngton Headquaters Services, Direct rlington VA 22202-4302 and to the	1 hour per persons inculding ed and correcting and review of this collectikon of informat toriate for Information Observ Office of Management and S	the time for reviewing ing the collection of ion including ations and Records, upport.	
	2. REPORT DATE	3. REPORT TYPE AND DATES		
	July 1996	Final Report		
4. TITLE AND SUBTITLE			FUNDING NUMBERS	
MONITORING SURVEYS OF THE N	EW HAVEN CAPPING PROJECT	, 1993-1994		
6. AUTHORS John T. Morris, Judith Charles, and	David C. Inglin			
7. PERFROMING ORGANIZATION NAME(S) ANI Science Appli	ADDRESS(ES) cations Intenational Corporation	-	PERFORMING RGANIZATION REPORT	
221 Thrid Stre Newport, RI 0	et		SAIC No. 319	
9. SPONSORING/MONITORING AGENCY NAME: US Army Corr 424 Trapelo R Waltham, MA	ps of Engineers-New England Division oad	N	D. SPONSORING/ IONITORING AGENCY DAMOS Contribution Number 111	
11. SUPPLEMENTARY NOTES Avaiable from	 DAMOS PROGRAM MANAGER 424 Trapelo Road Waltham, MA 02254-9149 	Regulatory Division, USACE-N	ED	
12a. DISTRIBUTION/AVAIABILTY STATEMENT			b. DISTRIBUTION CODE	
Approved for public release; distribut	ion unlimited			
13. ABSTRACT The set of the New Haven Harbor Channel and five private marine terminals occurred between October 1993 and February 1994. These projects involved removal of an estimated barge volume of 500,000m3 of unacceptably contaminated dredged material (UDM) from the inner portion of the federal channel and about 90,000 m3 from the five private terminals. The UDM was approved for open water disposal and sediment capping at Central Long Island Sound Disposal Site (CLIA). A total barge volume of 560,000 m3 (506,000m3 federal and 63,000m3 private) of cap dredged material (CDM) was used to establish a sediment cap over the UDM deposit. A taut-wired, moored Disposal Area Monitoring System (DAMOS) disposal buoy "NHAV" was deployed in the center of a basin-like feature created by a ring. of seven historical disposal mounds, The ring of mounds, which required ten years to construct, would serve as a lateral containment measure, limiting the spread of the initial UDM deposit and facilitating efficient capping operations. Capping material was placed at various points surrounding the NHAV buoy to ensure sufficient coverage of the UDM mound. The end result of disposal activity at CLIS was the development of a flat, stable, confined aquatic disposal (CAD) mound. Science Applications International Corporation (SAIC) completed five precession bathymetric surveys (baseline, interim disposal, precap, interim cap, and postap), two we mote Monitoring of the Seafoor (REMOTS) surveys, and three gotechenical coring surveys of the NHAV 93 mound. The strategic repetition of the survey activity over the NHAV 93 mound has given the SAIC and NED an excellent perspective on CAD mound developinem mounds, allowing time-series comparisons of the various stages of CAD mound construction. The REMOTS photographs were used to determine relative shear strength of the containment ring as well as the areal extent of the UDM deposit. Getechnical cores and grab samples were used to define the physical characteristics, document the				
14. SUBECT TERMS Central Long Island Sound (CLIS), Ca	pping, bathymetric survey, Ren	note Monitoring of the Seafloo	15.NUMBER OF PAGES	
(REMOTS), open water disposal, dred	ged material	······································	16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED		19. SECURITY CLASSIFICATIO OF ABSTRACT	N 20.LIMITATION OF ABSTRACT	

MONITORING SURVEYS OF THE NEW HAVEN CAPPING PROJECT, 1993 - 1994

CONTRIBUTION #111

July 1996

Report No. SAIC Report No. 319

Submitted to:

Regulatory Division New England Division U.S. Army Corps of Engineers 424 Trapelo Road Waltham, MA 02254-9149

> Prepared by: John T. Morris Judith Charles David C. Inglin

Submitted by: Science Applications International Corporation Admiral's Gate 221 Third Street Newport, RI 02840 (401) 847-4210

US Army Corps of Engineers New England Division

TABLE OF CONTENTS

÷

.

L.

.

Page

.

LIST OF TABLES
1.0 INTRODUCTION 1
2.0 DECISION PROCESS FOR THE DREDGING OF NEW HAVEN HARBOR10
2.1 Physical Testing of Sediment
2.2 Chemical Testing of Sediment
2.2.1 Metals
2.2.2 Organic Compounds
2.3 Bioaccumulation/Bioassay Tests
2.4 Disposal and Capping Operations
2.4.1 Disposal of UDM
2.4.2 Capping Operations
3.0 METHODS
3.1 Precision Bathymetric Surveys
3.2 REMOTS [®] Sediment-Profile Surveys
3.2.1 Baseline Survey
3.2.2 Precap Survey
3.3 Geotechnical Cores/Surface Grabs
4.0 RESULTS
4.1 Repetitive Bathymetric Surveys
4.1.1 Baseline Survey (19-20 September 1993)
4.1.2 Interim Disposal Survey (23-25 October 1993)
4.1.3 Precap Survey (2-3 November 1993)
4.1.4 Interim Cap Surveys (23-24 November 1993 and
12-13 January 1994)
4.1.5 Postcap Survey (13-14 March 1994)
4.2 REMOTS [®] Sediment-Profile Surveys
4.2.1 Grain Size Distribution
4.2.2 Prism Penetration Depth
4.2.3 Mean Apparent Redox Potential Discontinuity (RPD) Depth
4.2.4 Infaunal Successional Stage
4.2.5 Organism-Sediment Indices (OSI)45

TABLE OF CONTENTS

5.0 DISCUSSION	.46
6.0 CONCLUSIONS	. 54
7.0 REFERENCES	. 55

INDEX

APPENDICES

LIST OF TABLES

Table 1-1.	Summary of Monitoring Surveys for the New Haven Capping Project, September 1993 to March 1994	4
Table 1-2.	Amounts of Sediments Dredged from New Haven Harbor, October 1993 to February 1994	9
Table 2-1.	New England River Basins Commission (NERBC) Classification of Dredged Sediment	13
Table 4-1.	Summary of Volume Difference Calculations for the New Haven Capping Project, September 1993 to March 1994	27

.

.

LIST OF FIGURES

-

.

•••

....

Page

.

Figure 1-1.	Location of the federal navigation channel, Gulf Oil, Mobil Oil Corporation, the New Haven Terminal, Northeast Petroleum, and Wyatt Incorporated in New Haven Harbor
Figure 1-2.	Timeline of disposal and environmental monitoring activity during the New Haven Capping Project 1993-1994
Figure 1-3.	Location of the Central Long Island Sound Disposal Site (CLIS)7
Figure 1-4.	Location of the NHAV buoy over the basin created by seven historic disposal mounds
Figure 2-1.	Sediment and benthic sampling locations in the federal navigation channel, New Haven Harbor
Figure 2-2.	Cap placement locations at CLIS, 1993 16
Figure 3-1.	Station replicate locations for the baseline REMOTS [®] sediment-profile survey conducted 21-22 September 1993
Figure 3-2.	Station locations for the precap REMOTS [®] sediment-profile survey conducted 4 November 1993 with dredged material thickness seen in REMOTS [®] analysis and 0.5 m contour from bathymetry 22
Figure 4-1.	Contoured bathymetric chart around the disposal point following disposal of 50% of the sediments for the federal inner harbor dredging project, October 1993 (depth in meters)
Figure 4-2.	Depth difference contour chart (in meters) based on the comparison of the interim disposal (October 1993) and baseline (September 1993) bathymetric surveys
Figure 4-3.	Contoured bathymetric chart of the mound complex at precap status or 100% completion of the dredging of the inner harbor sediments plus approximately 76,000 m ³ of cap material, 2 November 1993 (depth in meters)

LIST OF FIGURES (continued)

P	a	g	e
	~	-	~

Figure 4-4.	Depth difference contour chart (in meters) based on the comparison of interim disposal (October 1993) and precap (November 1993) bathymetric surveys
Figure 4-5.	Bathymetric profile plots of survey lane 35 from the interim disposal survey (October 1993) and precap survey (November 1993) 30
Figure 4-6.	Depth difference contour chart (in meters) based on the comparison of the precap (2 November 1993) and baseline (September 1993) bathymetric surveys
Figure 4-7.	Contoured bathymetric chart of the mound complex following completion of 50% of the capping operations, 23 November 1993 (depth in meters) 33
Figure 4-8.	Contoured bathymetric chart based on data collected by Ocean Surveys, Inc. at the completion of the private dredging operations, January 1994 (depth in meters)
Figure 4-9.	Depth difference contour chart (in meters) based on the comparison of the interim cap (23 November 1993) and precap (2 November 1993) bathymetric surveys
Figure 4-10.	Depth difference contour chart (in meters) based on the comparison of the Ocean Surveys, Inc. interim cap (January 1994) and SAIC baseline (September 1993) bathymetric surveys
Figure 4-11.	Depth difference contour chart (in meters) based on the comparison of the SAIC precap survey (2 November 1993) and the Ocean Surveys, Inc. interim cap survey (January 1994)
Figure 4-12.	Contoured bathymetric chart of the mound complex following completion of the capping operations (postcap), March 1994
Figure 4-13.	Depth difference contour chart (in meters) based on the comparison of the postcap (March 1994) versus baseline (September 1993) bathymetric surveys

.

-

.

Figure 4-14.	Depth difference contour chart showing apparent cap material thickness (in meters) based on the comparison of the postcap
	(March 1994) versus precap (2 November 1993) surveys 40
Figure 4-15.	Mean RPD and OSI values for the five disposal mounds and the
	east-southeast valley feature during the baseline REMOTS® survey 43
Figure 4-16.	Infaunal successional stages at the five disposal mounds and east-
5	southeast valley feature during the baseline REMOTS® survey
Figure 5-1.	Suggested pattern of future disposal at CLIS to maximize site capacity
	and construct a network of containment cells
Figure 5-2.	July 1994 subbottom data. Contour plot of subbottom layer 1 (cap
_	thickness) 1600 \times 525 m analysis area over the NHAV 93 mound,
	0.25 m contour interval 51
Figure 5-3.	July 1994 subbottom data. Contour plot of subbottom layer 1 (cap
-	thickness) overlaid onto cap material footprint plot of March 1994,
	1600×525 m analysis area over the NHAV 93 mound

Dredging of the New Haven Harbor Channel and five private marine terminals occurred between October 1993 and February 1994. These projects involved removal of an estimated barge volume of 500,000 m³ of unacceptably contaminated dredged material (UDM) from the inner portion of the federal channel and about 90,000 m³ from the five private terminals. The UDM was approved for open water disposal and sediment capping at the Central Long Island Sound Disposal Site (CLIS). A total barge volume of 569,000 m³ (506,000 m³ federal and 63,000 m³ private) of cap dredged material (CDM) was used to establish a sediment cap over the UDM deposit.

A taut-wired, moored Disposal Area Monitoring System (DAMOS) disposal buoy "NHAV" was deployed in the center of a basin-like feature created by a ring of seven historic disposal mounds. The ring of mounds, which required ten years to construct, would serve as a lateral containment measure, limiting the spread of the initial UDM deposit and facilitating efficient capping operations. Deposition of UDM from the federal project was completed at the NHAV buoy, while the privately dredged UDM was disposed at a point to the southwest of the buoy. Capping material was placed at various points surrounding the NHAV buoy to ensure sufficient coverage of the UDM mound. The end result of disposal activity at CLIS was the development of a flat, stable, confined aquatic disposal (CAD) mound.

The decision to cap the material was based on the results of the *Ampelisca* bioassay test using the sediments sampled from the federal channel project. Biological testing of the private marine terminal projects was not pursued due to a cooperative plan for capping both the federal and private projects, providing a cost-efficient method of disposal.

Science Applications International Corporation (SAIC) completed five precision bathymetric surveys (baseline, interim disposal, precap, interim cap, and postcap), two Remote Monitoring of the Seafloor (REMOTS[®]) surveys, and three geotechnical coring surveys of the NHAV 93 mound. The strategic repetition of survey activity over the NHAV 93 mound has given SAIC and NED an excellent perspective on CAD mound development and insight toward the disposal and oceanographic processes that affect the bottom feature. The bathymetric data provided "snapshots" of the developing mounds, allowing time-series comparisons of the various stages of CAD mound construction. The REMOTS[®] photographs were used to determine the relative shear strength of the containment ring as well as the areal extent of the UDM deposit. Geotechnical cores and grab samples were used to define the physical characteristics, document the bulk density, and estimate the consolidation of the NHAV 93 mound.

EXECUTIVE SUMMARY (continued)

Comparisons between the baseline, interim disposal, and precap monitoring surveys revealed a UDM deposit 510 m in diameter and 2.5 m in height, containing a volume of 312,000 m³ of new material. A significant amount of consolidation was detected over the apex of the disposal mound before capping operations commenced. The NHAV 93 mound was then capped to a thickness of 0.5 to 1.0 m with CDM from the outer harbor, resulting in a total mound diameter of 600-800 m and height of 2.5 m at the apex. Volume difference calculations based on the baseline, precap, interim cap, and postcap surveys detected 402,000 m³ of cap material overlying the initial UDM deposit and a total mound volume of 714,000 m³.

Although 402,000 m³ of CDM was placed over the initial UDM mound, there was no increase in net mound height at the apex. It has been determined through precision bathymetric surveying and geotechnical coring that consolidation of the UDM deposit and compaction of the basement sediments had occurred during the middle stages of CAD mound construction. As a result, no apparent changes in mound height were detected after the completion of capping operations over the NHAV 93 mound.

Monitoring of the NHAV 93 mound has continued through 1995, including additional precision bathymetric surveys, subbottom profiling, REMOTS[®] sediment-profile photography, sediment surface grab samples for chemical analysis, and geotechnical coring. The long-term focus of these operations has pertained to mound stability and compaction/consolidation of the NHAV 93 mound; REMOTS[®] sediment-profile surveys have determined the recolonization rate of the mound; and additional sediment cores and grab samples investigated the potential for migration of contaminants into the overlying cap material. The results of these datasets have been submitted to NED under separate DAMOS report titles.

1.0 INTRODUCTION

From October 1993 to February 1994, the New Haven Harbor was dredged to improve navigational access within the federal channel and operations efficiency at five area marine terminals (Figure 1-1). As part of the Dredged Material Management Plan, formulated by the New England Division (NED) of the US Army Corps of Engineers (USACE), the federal channel project sediments were sampled and subjected to a variety of tests to determine their physical and chemical properties. The results of a standard *Ampelisca* bioassay test indicated that the federal channel project material was not suitable for unconfined open water disposal and required capping. Capping is a subaqueous containment method which uses dredged material determined to be suitable for unconfined open water disposal to overlay and isolate the unacceptably contaminated dredged material (UDM) from the environment (Fredette 1994). The process was introduced to the Central Long Island Sound Disposal Site (CLIS) in 1979 with the formation of the Stamford-New Haven mounds (STNH-N and STNH-S; SAIC 1995).

Subaqueous capping is the most cost effective and environmentally sound approach to manage large volumes of UDM. Results of the Stamford-New Haven Project suggested that careful navigational controls and point deposition techniques at a taut-wired buoy could be used to form a discrete mound of UDM (SAIC 1995). In addition, these results suggested that precise deposition of cap dredged material (CDM), both at the center and at the flanks of the UDM mound, could be accomplished with tight navigational control and project planning. As a result of the operational success of the 1979 capping project, additional capping projects were conducted at CLIS. These include the Mill-Quinnipiac River mound (MQR), Norwalk mound (NORWALK), and two Experimental Cap Sites (CS-1 and CS-2). Physical monitoring of the mounds indicates that they have been stable even after the passage of three hurricanes (SAIC 1995).

A successful capping project requires an effective monitoring program in addition to predisposal planning and well-organized dredging and disposal operations (SAIC 1995). Science Applications International Corporation (SAIC) conducted a series of five environmental surveys including the collection of various types of data at each stage of the dredging project (Table 1-1). The data collected at CLIS includes precision bathymetry, Remote Ecological Monitoring of the Seafloor (REMOTS®) sediment-profile photographs, sediment grab samples, and geotechnical cores (Figure 1-2). The strategic repetition of survey operations over the disposal site during the New Haven Capping Project provided SAIC and NED a wealth of information on the developing mound.

The baseline survey conducted from 19 to 20 September 1993 was intended to define the predisposal conditions at the site to provide a baseline for comparison to the future survey

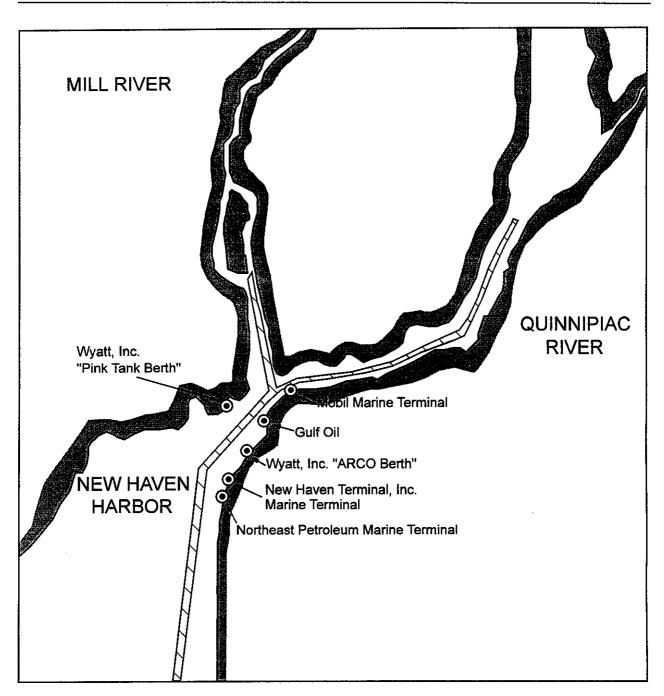
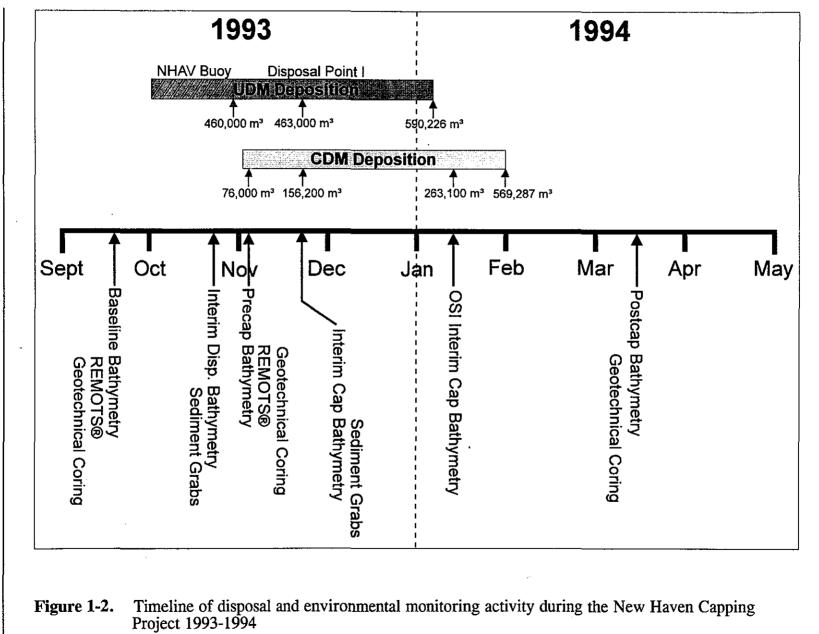



Figure 1-1. Location of the federal navigation channel, Gulf Oil, Mobil Oil Corporation, the New Haven Terminal, Northeast Petroleum, and Wyatt Incorporated in New Haven Harbor (adapted from HMM Associates, Inc. 1993)

Monitoring Surveys of the New Haven Capping Project, 1993-1994

τu

Table 1-1

Event	Baseline (Predisposal)	Interim Disposal	Precap*	Interim Cap	Interim Cap ⁺	Postcap
Precision Bathymetry	9/19-20/93	10/23-25/93	11/2-3/93	11/23- 24/93	1/12-13/94	3/13-14/94
REMOTS® Sediment Profile	9/21-22/94		11/4/93			
Sediment Cores	9/21/93		11/10/93			3/15/94
Sediment Grabs		10/25/93		11/24/93		
Vessel	M/V Beavertail	R/V UCONN	R/V UCONN	M/♥ Beavertail		M/V Beavertail

Summary of Monitoring Surveys for the New Haven Capping Project, September 1993 to March 1994

data. The baseline survey included bathymetry, REMOTS[®], and geotechnical cores. The interim disposal survey, completed after 50% of the UDM dredged from the federal channel was disposed (23-25 October 1993), included bathymetry and sediment grab samples.

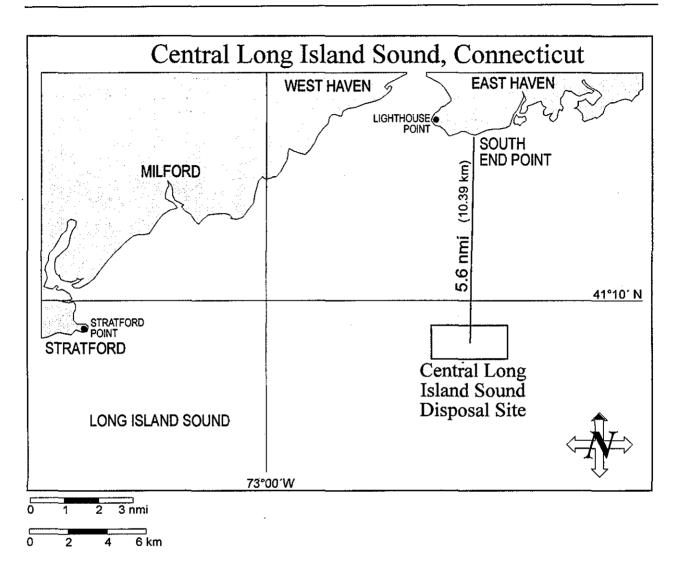
Bathymetry, REMOTS[®], and geotechnical cores were collected during the precap survey, performed following the completion of the federal inner harbor dredging (2-3 November 1993). This survey was designed to provide an accurate map of the distribution of UDM to facilitate complete cap coverage. An interim capping survey was completed from 23 to 24 November 1993 using bathymetry and sediment grab samples to document the distribution of cap material. A final survey was conducted following the completion of all dredging activities to evaluate the coverage of the UDM deposit by the outer harbor CDM. This postcap survey included bathymetry and geotechnical cores and was completed from 13 to 15 March 1994.

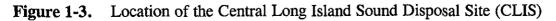
The geotechnical cores were collected by SAIC and University of Rhode Island (URI) scientists in close proximity to the NHAV disposal buoy and within the central portion of the dredged material mound. Results provided an estimate of consolidation within the basement sediments and inner harbor dredged material. In addition, the geotechnical coring results

Monitoring Surveys of the New Haven Capping Project, 1993-1994

were used to verify the completion of the cap material thickness requirements established by NED.

A sediment plume study was conducted during the initial phase of dredging (25 October to 18 November 1993) to monitor the potential for material dispersion (Bohlen et al. 1994). Nine plume tracking surveys were conducted by Dr. W.F. Bohlen of the University of Connecticut while Great Lakes Dredging Company was operating in New Haven Harbor; results will be provided under a separate report. Further survey activity over CLIS during the New Haven Capping Project included bathymetric and sediment-profile photography surveys (12–13 January 1994). Ocean Surveys, Incorporated completed these field tasks following the disposal of UDM generated from the private marine terminal projects in the harbor.


Since 1977, monitoring cruises have been conducted at CLIS as part of the Disposal Area Monitoring System (DAMOS) Program for the US Army Corps of Engineers, NED (NUSC 1979). These surveys assessed both the stability of the dredged material disposed at the site and any potential for adverse long-term environmental effects, particularly in terms of the postdisposal recovery of benthic ecosystems. The objectives of these surveys included documenting and monitoring the location and physical characteristics of dredged material mounds, as well as any postdepositional dispersion of material. A total of eighteen inactive disposal mounds currently exist within the 6.85 km² area of CLIS.


CLIS, located approximately 5.6 nautical miles (nmi) south of South End Point, East Haven, Connecticut, continues to be one of the most active containment sites in New England (Figure 1-3). The 2 nmi long by 1 nmi wide rectangular area, centered at 41°08.950' N, 72°52.850' W, receives sediments dredged from the New Haven, Stamford, and Norwalk Harbors as well as adjacent coves and embayments. In addition, the large volumes of material deposited at CLIS have been subject to a variety of dredged material management strategies.

The strategy at CLIS during the 1993 New Haven Harbor Capping Project was to form a large scale, stable confined aquatic disposal (CAD) mound. A CAD mound is a dredged material disposal mound constructed in conjunction with artificial or natural containment measures. The containment measures are structures that surround a given area limiting the lateral spread of UDM to facilitate efficient sediment capping operations. The taut-wire moored buoy "NHAV" was deployed at 41°09.122' N and 72°53.453' W, over the center of a basin created by the planned placement of seven historic disposal mounds: CLIS-87, CLIS-88, CLIS-89, CLIS-90, CLIS-91, SP, and NORWALK (Figure 1-4). The basin region was utilized for the disposal of a total volume of 1,159,513 m³ of material; 590,229 m³ of UDM and 569,287 m³ of CDM (Table 1-2). The precision disposal and 6

capping operations performed by the Great Lakes Dredging Company and the technical support provided by SAIC aided NED in forming a stable CAD mound with a diameter of 550 m, a height of 2.5 m, and a CDM to UDM ratio of 0.96 to 1.0.

The successful completion of the NHAV 93 mound represents the end of a ten-year dredging cycle in the central Long Island Sound region. NED estimates that major maintenance dredging of New Haven Harbor must be conducted every ten years to provide adequate water depths for commercial, military, and private vessels utilizing the harbor. Thoughtful management of smaller volumes of dredged material over the last decade not only facilitated the safe disposal of over a million cubic meters of dredged material, but also demonstrated a management strategy that can serve to maximize the site capacity of CLIS as well as other DAMOS disposal sites.

Monitoring Surveys of the New Haven Capping Project, 1993-1994

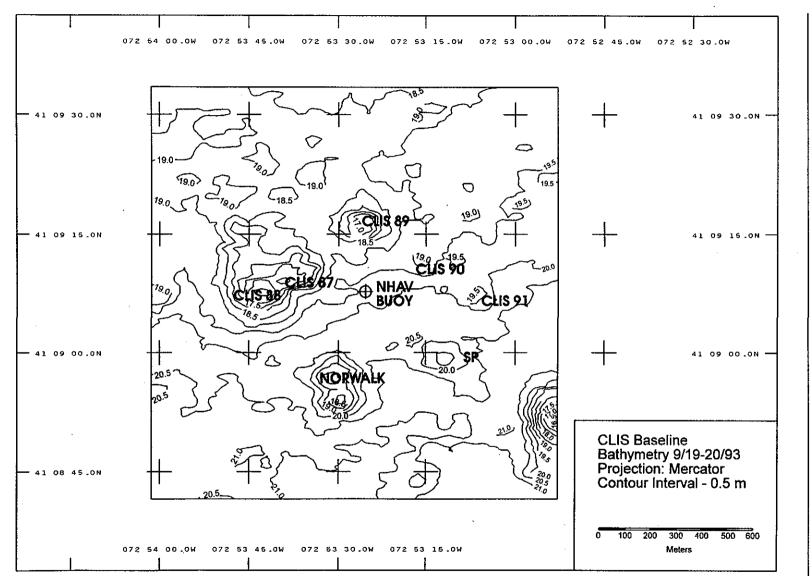


Figure 1-4. Location of the NHAV buoy over the basin created by seven historic disposal mounds. The contoured bathymetric chart shows the results of the baseline survey conducted in September 1993 (depth in meters).

Table 1-2

Amounts of Sediments Dredged from New Haven Harbor, October 1993 to February 1994 (Source: DAMOS Disposal Barge Logs)

A. CONTAMINATED SEDIMENTS

Disposal Location	Source	Volume (m ³)
NHAV buoy	inner federal channel	460,083
Disposal Point I	inner federal channel	40,286
Total from the inner fe	deral channel	500,369
Disposal Point I	· .	
	New Haven Terminal	25,327
	Wyatt Incorporated	. 20,873
	NE Petroleum	11,927
	Gulf Oil	28,901
	Mobil Oil	2,829
Total from private dre	dging projects	89,857
************************	TOTAL VOLUME	590,226

B. CAP SEDIMENTS

Disposal Location	Source	Volume (m ³)
Multiple Points	outer federal channel	505,848
K, L, V-Z, A1	NE Petroleum	48,338
G	Lex Atlantic/Gateway	12,272
J	Wyatt Incorporated	2,829
	TOTAL VOLUME	569,287

Monitoring Surveys of the New Haven Capping Project, 1993-1994

2.0 DECISION PROCESS FOR THE DREDGING OF NEW HAVEN HARBOR

The decision to dispose and cap dredged material is made through a formal, tiered decision matrix which is used as a guide for monitoring and managing disposal sites in New England (EPA/USACE 1991). Federal maintenance projects and private applicants are approved for open-water disposal when all practicable alternatives to ocean or estuarine/riverine disposal have been determined to be unavailable according to federal and state guidelines (EPA/USACE 1991).

Once these criteria are met, the dredged material is evaluated for potential environmental impacts based on laboratory analytical results. After NED completes the evaluation process, all permits are subject to review and comment by federal agencies such as EPA Region I, the National Marine Fisheries Service, and the US Fish and Wildlife Service. Approval to dredge the inner federal navigation channel of New Haven Harbor was given in October 1993. During the dredging of the inner channel, permits were granted for the following five private dredging projects within New Haven Harbor: Northeast Petroleum (two projects approved 5 and 30 November 1993), Mobil Oil and the New Haven Terminal (24 November 1993), Wyatt Incorporated (1 December 1993), and Gulf Oil (17 December 1993).

2.1 Physical Testing of Sediment

As part of the evaluation process, samples of dredged material are analyzed for grain size, total organic carbon, and water content. Sediments proposed for disposal may be excluded from further testing according to the tiered protocol if the majority of the material is predominantly composed of sand-sized particles or larger (EPA/USACE 1991). Sand and larger diameter particles are chemically inert and relatively free from contaminants. Therefore, they pose no environmental impact from a chemical or biological standpoint (other than a possible change in the type of community that develops on a substratum of a particular grain size).

Results of the grain size analysis for the federal navigation channel showed that the sediments contained little sand and were predominantly silt/clay (inner channel Stations A-D were 93 to 97% silt/clay and outer channel Stations E-J were 77 to 99% silt/clay) (Figure 2-1; Appendix A Tables 1 and 2). The sand fractions at the New Haven Terminal ranged from 57 to 66%, Mobil Oil 66 to 82%, and Wyatt Incorporated from 34 to 87%. Sediments dredged from Gulf Oil were almost equal in the percentage of sands and silt/clay. The majority of samples from Northeast Petroleum consisted of 87 to 93% silt/clay; only three samples contained 70 to 98% sands (Appendix A Tables 1 through 7).

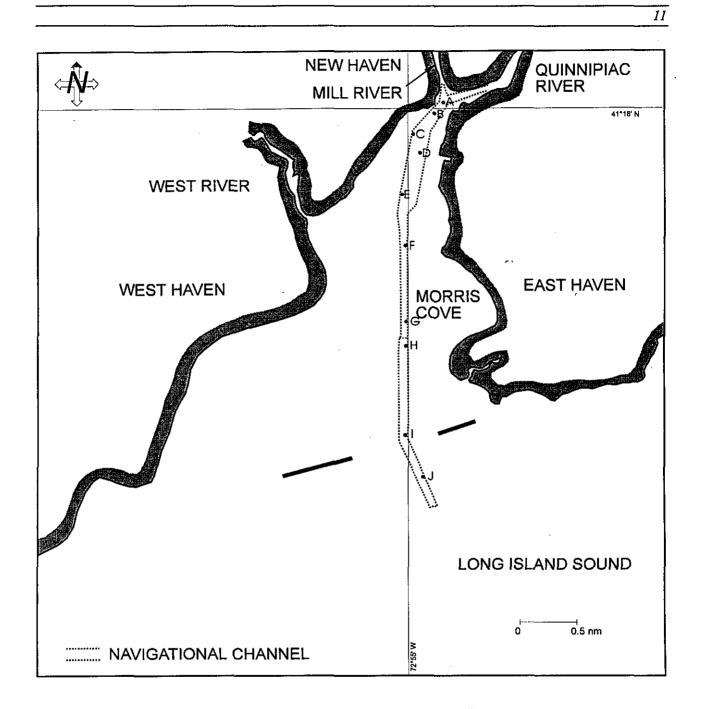


Figure 2-1. Sediment and benthic sampling locations in the federal navigation channel, New Haven Harbor. Stations A-D were located in the inner harbor (UDM), and Stations E-J were located in the outer channel (CDM).

Monitoring Surveys of the New Haven Capping Project, 1993-1994

12

2.2 Chemical Testing of Sediment

Sediments which are not predominantly sand require bulk sediment analyses for eight metals, total polychlorinated biphenyls (PCBs), chlorinated pesticides, and polynuclear aromatic hydrocarbons (PAHs) according to EPA guidance (EPA/USACE 1991). All project areas in New Haven Harbor including the outer channel required chemical analyses.

2.2.1 Metals

The metals required for analysis included arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn). Sediments from the inner federal channel contained moderate levels of all metals except Hg and Pb (present in low levels) when compared to the classification guidelines provided by the New England River Basins Commission (NERBC) (Table 2-1; Appendix A Tables 1 through 7). Zn was high in one sample (595 ppm). Low to moderate levels of As, Cd, Cr, Cu, Ni, and Zn were present in sediments sampled from the outer channel with only one value of Zn classified as high (440 ppm). Metal concentrations were low in sediments sampled from Mobil Oil and the New Haven Terminal. Moderate levels of Cr (117 to 123 ppm), Pb (110 to 158 ppm), and Zn (264 to 350 ppm) were detected in some sediments collected from Gulf Oil; Wyatt Incorporated, Zn (213 to 265 ppm) and Pb (105 to 168 ppm); and Northeast Petroleum, moderate to high levels of Zn (235 to 919 ppm) and a moderate level of Pb (144 ppm).

2.2.2 Organic Compounds

Pesticides were below the detection limit for all compounds in the inner channel and outer channel sediments except for heptachlor epoxide which ranged from 0.46 to 1.94 ppm in the inner channel and from less than the detection limit to 0.82 ppm in the outer channel sediments. Pesticides were below the detection limit for all five terminal project areas.

Total PCBs for the inner and outer channel sediments were less than the laboratory's reported detection limit of 100 ppb. Total PCBs were detected by another laboratory in sediments collected from Mobil Oil (less than unreported detection limit to 56 ppb), Wyatt Incorporated (22 to 68 ppb), and Gulf Oil (140 to 280 ppb).

For the permitting process PAH values were normalized to percent organic carbon and compared to the carbon normalized PAH values for the CLIS Reference area. The concentrations of PAHs in some sediments from the inner federal channel and the five

Table 2-1

New England River Basins Commission (NERBC) Classification of Dredged Sediment (NERBC 1980)

	Class I	Class II	Class III
Percent oil and grease (hexane extract)	< 0.2	0.2-0.75	>0.75
Percent volatile solids (NED method)	<5	5-10	>10
Percent water	<40	40-60	>60
Percent silt/clay	< 60	60-90	>90

LEVEL OF CONTAMINATION

_	LOW	MODERATE	HIGH
As	< 10	10-20	>20
Cd	<3	3-7	>7
Cr	<100	100-300	> 300
Cu	<200	200-400	>400
Hg	< 0.5	0.5-1.5	>1.5
Ni	< 50	50-100	>100
Pb	< 100	100-200	>200
v	<75	75-125	>125
Zn	<200	200-400	>400

private project areas (as well as elevated levels of Zn in some samples collected from NE Petroleum) indicated that sediments were not suitable for open water disposal unless capped or subjected to biological testing (Appendix A Tables 1 through 7; ranges of PAHs reported here have not been normalized to TOC). The concentrations of individual PAHs in the inner channel sediments ranged from <0.03 to 2.39 ppm; outer channel sediments ranged from <0.03 to 2.39 ppm; outer channel sediments ranged from <0.02 to 1.07 ppm. Sediments from Wyatt Incorporated had higher concentrations of individual PAHs in the Pink Tank berthing area, up to 8.70 ppm, requiring the capping of all sediments in comparison to sediments sampled from the Arco berthing area which contained concentrations of PAHs ranging from 0.08 to 3.71 ppm. Approximately 3,800 m³ from this area were considered suitable for open-water disposal. Other ranges for individual PAH compounds present above the detection limit were 1) Gulf Oil, 0.12 to 8.75 ppm; 2) Mobil Oil, 0.05 to 11.4 ppm; 3) Northeast Petroleum, 0.03 to 4.66 ppm; and 4) the New Haven Terminal, 0.09 to 6.52 ppm.

2.3 Bioaccumulation/Bioassay Tests

If sediment chemistry data indicate elevated levels of contaminants, bioassay and bioaccumulation testing are required. Permittees can, at this point, opt to select capping as opposed to paying for this expensive testing procedure which may indicate the need to cap anyway (EPA/USACE 1991). Whole sediment bioassays must include three species from three different phyla: a crustacean, a polychaete, and a bivalve, and bioaccumulation testing must use the survivors of the bioassay test. Data are used to determine whether or not capping need be imposed as a permit restriction (EPA/USACE 1991).

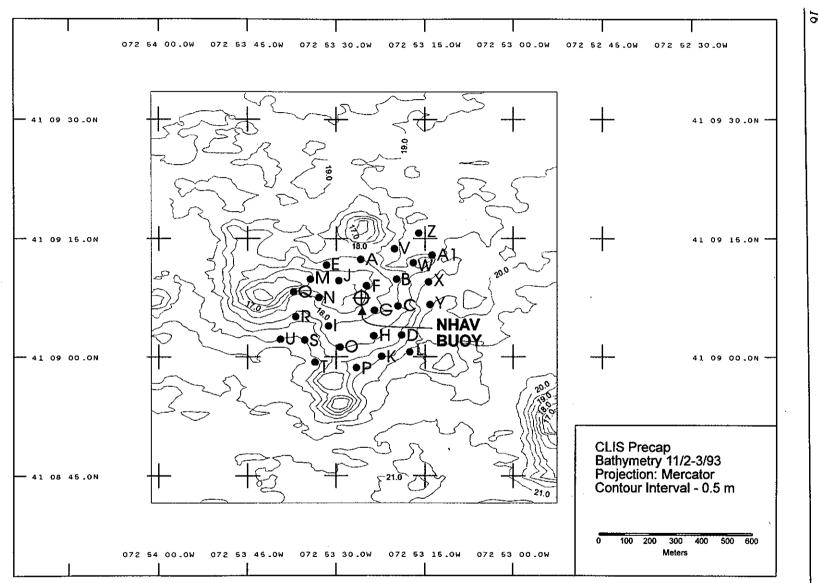
The Tier III benthic-bioaccumulation tests provide for the determination of bioavailability through 10-day exposure tests if all contaminants of concern are metals or 28-day exposure tests if any contaminants of concern are organic or organometallic compounds (EPA/USACE 1991). The decision to cap sediments from the inner harbor federal channel was based on the results of the 28-day *Ampelisca* bioassay which had a significant mortality compared to the reference samples.

Results of the *Ampelisca* bioassay showed survival in the inner harbor was 51%, which was 36% lower than the reference survival of 87%. This suitability determination was conservative based on the current understanding of the *Ampelisca* toxicity test. Survival of *Nereis* and *Macoma* in test sediments (28 days) was not significantly different from reference results based on analysis of preliminary laboratory data. Bioaccumulation in *Nereis* and *Macoma* was also not significantly different from reference samples based on analysis of preliminary data (Lawless 1991). Biological testing was not pursued for the private projects because of the availability of capping material if dredging was completed in conjunction with the federal navigation channel project.

Additional sediment chemistry data are available through NED for the core samples and replicate sample data. Sampling and analytical work were contracted to HMM Associates, Incorporated, Concord, Massachusetts. Methods used for grain size, TOC, and metals were not provided; however, PAHs were analyzed by EPA Method 8270, and chlorinated pesticides and total PCBs by EPA Method 8080. Bioassay studies were conducted by SP, Incorporated, Salem, MA. Skinners and Sherman, Waltham, MA, conducted the bioaccumulation tissue analysis. Cadmium, copper, and zinc were analyzed in the tissue following EPA Methods 3051, 6010, and 7131. Pesticides were analyzed by Method 8080 and PAHs by Method 8270.

2.4 Disposal and Capping Operations

The Great Lakes Dredge and Dock Company conducted the dredging operations in New Haven Harbor with Clamshell Dredge 54. Disposal and capping at CLIS were achieved with the use of Great Lakes' 4000 yd³ disposal barges 32 and 33 and Towing Vessels (T/V) Arthur F. Zeman, Jr. and Delmur C. Lynn. Additional disposal work was performed by Gateway Towing, Inc. T/V Outrageous and United Towing, Inc. T/V Terror during the New Haven Capping Project.


2.4.1 Disposal of UDM

Of the total volume of UDM (590,226 m³), approximately 500,369 m³ was dredged from the inner federal navigation channel. During the month of October 1993, approximately 460,083 m³ from the inner channel was deposited at the NHAV buoy (Appendix B Table 1). The remaining 40,286 m³ were deposited at disposal point I, located southwest of the buoy (41°09.000' N and 72°53.525' W) (Figure 2-2). UDM from the private dredging projects totaling 89,857 m³ was also deposited at disposal point I from 3 December 1993 to 8 January 1994 (Appendix B Table 1). This allowed capping to begin on the northern side of the mound while contaminated sediments were disposed on the southern side of the mound.

2.4.2 Capping Operations

In addition to the use of the DAMOS capping model (which was not designed for large volume dredged material projects such as the New Haven capping project because it has a tendency to create unrealistically high central mound heights) capping operations were designed using a simple geometric analysis of volume and potential cap thickness. It was predicted that the dredged material would be placed in a berm-shaped mound approximately 5 m high, 250 m wide, and 608 m long including the thin flanks. The total areas to be covered by the cap material would need to extend 50 m beyond these

Monitoring Surveys of the New Haven Capping Project, 1993-1994

v.

16

ę.

dimensions with a designated cap thickness of 50 cm to 1 m. These calculations were based on estimated amounts of 539,800 m³ of contaminated dredged material and 397,000 m³ of cap material. Prior experience in the construction of capped sediment mounds at CLIS (STNH-N, STNH-S, MQR, CS-1, CS-2, and NORWALK) was also incorporated into the NHAV 93 mound capping design (SAIC 1995).

CDM dredged from the outer New Haven Harbor provided the bulk of the cap material, 505,848 m³. Additional CDM was also obtained from sediments dredged from NE Petroleum, Lex Atlantic/Gateway, and Wyatt Incorporated terminals. This volume amounted to 63,439 m³. The total volume of available cap material was 569,287 m³.

Capping of the UDM deposit took place in several stages using a series of cap placement points (Figure 2-2; Appendix B Table 2) designed for complete coverage of the UDM mound. Prior to the precap survey, approximately 76,000 m³ of CDM was deposited near points A, F, and J (Figure 2-2). The directed cap disposal began with depositing outer channel sediments at disposal points A-E on a rotating basis (3 November 1993). Additional UDM from the federal channel and private terminals was deposited at point I during this stage.

The second stage of capping began on 18 November 1993 when disposal was directed to points F, G, H, J, K, and L, again on a rotating basis. UDM continued to be disposed at point I. Beginning on 10 December 1993, capping operations were directed to points G, K, L, V, W, X, Y, Z, and A1. Disposal at eight of the nine points (excluding G) was completed on a rotating basis for cap sediments from the federal project and Northeast Petroleum. Point G was used for placement of Lex Atlantic/Gateway sediments. Location I was maintained for further disposal of UDM. A fourth revision in distribution of the cap material occurred on 22 December 1993. This stage began with disposal of cap material at and around point I (five trips) and the NHAV buoy (five trips). Additional cap material was then placed at points N, R, S, and O (three trips each). Once these trips were completed, capping was carried out on a rotating basis at the NHAV buoy and points G, I, M, N, O, P, Q, R, S, T, and U. This was intended to cap the most recently disposed contaminated material.

3.0 METHODS

SAIC conducted five monitoring surveys from September 1993 to March 1994: 1) baseline, 2) interim disposal, 3) precap, 4) interim cap, and 5) postcap (Figure 1-2) (Table 1-2). In addition to the comprehensive dataset generated by the strategic repetition of SAIC's survey activity, Ocean Surveys Incorporated conducted an interim cap survey in January 1994 to fulfill a contract with the marine terminals involved in the dredging project. Results of this survey are reported in Section 4.1.4.

The SAIC Integrated Navigation and Data Acquisition System (INDAS) provided the precision navigation required for all SAIC field operations. This system uses a Hewlett-Packard 9920[®] series computer to collect position, depth, and time data for later analysis, as well as provide real-time navigation. A Del Norte Microwave Trisponder[®] System provided positioning to an accuracy of ± 3 m. Shore stations were established in Connecticut at known benchmarks at Stratford Point (41°09.112' N, 73°06.227' W) and Lighthouse Point (41°14.931' N, 72°54.255' W). A detailed description of the navigation system and its operation can be found in SAIC Report No. 290 (Murray and Selvitelli 1993).

3.1 Precision Bathymetric Surveys

The five precision bathymetric surveys that documented the stages of mound development were all centered at 41°09.125' N, 72°53.450' W, and conducted over a 1600 m \times 1600 m area. The surveys were oriented east to west using 25 m lane spacing and requiring 65 lanes to fully cover the 2.56 km² area. An ODOM DF3200 Echotrac[®] Survey Fathometer with a narrow-beam 208 kHz transducer measured individual depths to a resolution of 3.0 cm (0.1 feet) as described in SAIC Report No. 290 (Murray and Selvitelli 1993). Depth values transmitted to the computer were adjusted for transducer depth. The acoustic records reliably detect changes in depth on the order of 20 cm due to the accumulation of errors introduced by the positioning system, tidal corrections, the calibration of the fathometer (speed of sound through the water column), the slope of the bottom, and the vertical motion of the vessel.

During each bathymetric survey, tidal variations at the disposal site were recorded using a Seabird Instruments, Inc. SBE 26-03 Sea Gauge wave and tide recorder. Pressure readings were collected at 6 minute intervals for the duration of the survey. After conversion to water depths, the readings provided a constant record of tidal variations over the survey area. The observed tidal data were later used to correct the bathymetric survey data.

Sound velocity measurements were obtained before and after the bathymetric survey using a Seabird Instruments, Inc. SEACAT SBE 19-01 Conductivity, Temperature, and Depth probe (CTD). The CTD was lowered over the side and allowed to equilibrate in ambient seawater for one to two minutes before initiating the cast. The CTD provided a profile of temperature, depth, salinity, and sound velocity in the water column. A mean sound velocity was then calculated and applied to the bathymetric data.

The data collected during each of the five bathymetric surveys were analyzed using SAIC's Hydrographic Data Analysis System v. 1.03 (HDAS). During analysis, raw bathymetric data were corrected for sound velocity and standardized to Mean Tidal Level. The corrected bathymetric data were then used to construct depth models of the surveyed area. Depth difference calculations were performed using the HDAS volume differencing routines. In order to assist NED in achieving its goal, SAIC supplied detailed contour and depth difference plots of the survey area 48 hours after each survey in order to modify the disposal or capping activity to ensure proper containment and coverage. A detailed discussion of the bathymetric analysis technique is given in SAIC Report No. 290 (Murray and Selvitelli 1993).

3.2 **REMOTS®** Sediment-Profile Surveys

Actual REMOTS[®] station locations (latitude and longitude) occupied during the surveys are provided in Appendix C along with analytical results. REMOTS[®] sediment-profile surveys were conducted prior to disposal to assess baseline conditions and after UDM disposal (precap survey) (Figure 1-2). Designed to obtain *in situ* profile images of the top 20 cm of the sediment, the REMOTS[®] sediment-profile camera has been used to detect and map the distribution of thin (0.1-20 cm) dredged material layers, and document seafloor processes and organism-sediment relationships as they occur naturally on the seafloor and on the disposal site (Rhoads and Germano 1990). Specific measurement/ observational techniques for determining REMOTS[®] parameters include sediment grain size major mode and range, prism penetration depth, surface boundary roughness, presence/absence and size of mud clasts, apparent redox potential discontinuity (RPD) depth, apparent presence/absence of sedimentary methane, infaunal successional stage, and calculation of the REMOTS[®] Organism-Sediment Index (OSI).

3.2.1 Baseline Survey

During the September 1993 baseline survey, REMOTS[®] sediment-profile photographs were obtained in triplicate from 30 stations surrounding the NHAV buoy (Figure 3-1; Appendix C Table 1). A series of six-station transects were occupied, over five surrounding sediment mounds (CLIS 87-88 complex, CLIS 89, CLIS 90, NORWALK, Monitoring Surveys of the New Haven Capping Project, 1993-1994

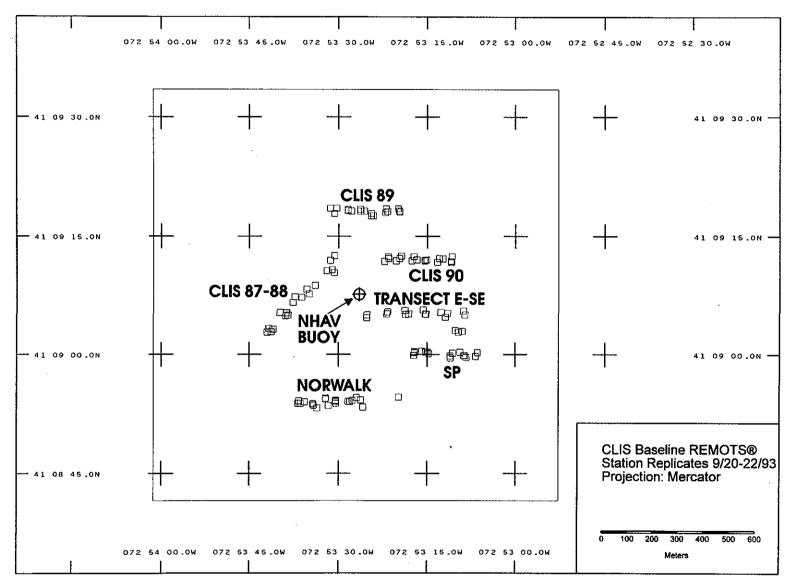


Figure 3-1. Station replicate locations for the baseline REMOTS[®] sediment-profile survey conducted 21-22 September 1993

ю

۰ł

20

s²

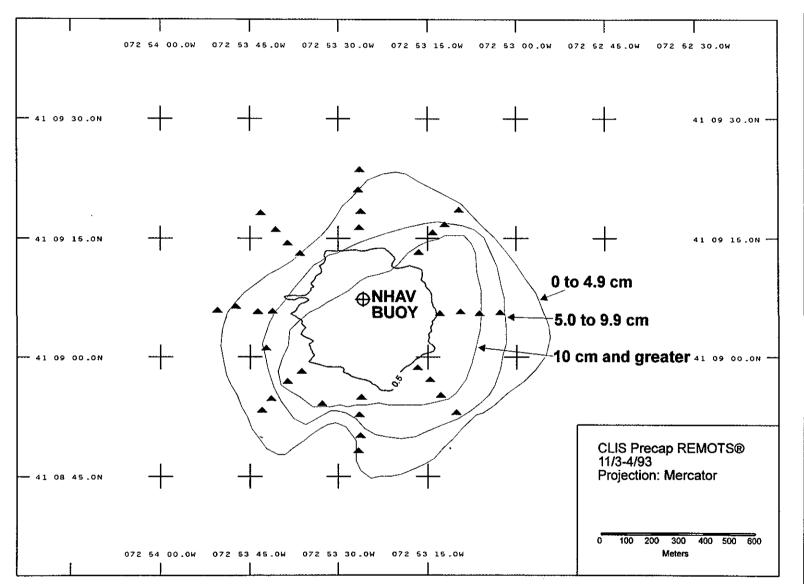
and SP) and along the east-southeast valley area to determine recolonization status and relative shear strength of the sediments (Figure 3-2; Appendix C Table 2).

3.2.2 Precap Survey

SAIC conducted a second REMOTS[®] survey on 3-4 November 1993 following the completion of the inner harbor dredging. Transects were oriented in the eight major compass directions (N, NE, E, SE, S, SW, W, NW) to delineate the apron of the disposal mound for capping. The survey was conducted from the center of the mound (41°09.100' N, 72°53.442' W) as determined by the interim disposal survey. Each transect began 325 m from the center and consisted of four stations spaced 75 m apart extending a total of 550 m from the center. Three replicate samples were taken at each station. The presence and/or absence of dredged material was determined for each REMOTS[®] sediment-profile photograph (Figure 3-2).

In addition to the eight directional transects, two other stations in the southwest quadrant were also sampled, 400 m SSW and 400 m WSW, during the precap survey (Appendix C Table 2). The southwest quadrant may be selected as a site for future disposal operations, and information from these stations was used to provide greater detail on the distribution of dredged material and status of the benthic community. A nine-station cross-shaped grid was conducted over the historic FVP mound in the northeast corner of the disposal site. The REMOTS images were used to determine whether excess cap material should also be directed to the FVP mound (Appendix C Table 3).

3.3 Geotechnical Cores/Surface Grabs


Geotechnical cores were obtained in a joint effort between SAIC and the University of Rhode Island (URI) using the PVC version of the Marine Geotechnical Laboratory (MGL) Large-diameter Gravity Corer (LGC) (Appendix D Table 1, and Figures 1 through 3) (Silva et al. 1994a). The core barrel consisted of a 3 m (10 ft) section of Schedule 40 PVC with a 10.2 cm (4.0 in) inside diameter. The PVC core barrel included a nose cone and core catcher at the bottom. Basement sediments were cored during the baseline and precap surveys to establish geotechnical characteristics before loading by any additional layers of material. During each interim survey (i.e., disposal and capping) sediment grabs were collected from the vicinity of the NHAV buoy and the center of the disposal mound to characterize the surface sediments (Figure 1-2; Appendix D Table 2).

Basement material, UDM, and CDM were cored immediately following completion of the CAD mound to establish the initial geotechnical characteristics of the completed mound (Figure 1-2). These data will be used as a reference for future geotechnical

#ł

a¥

Figure 3-2. Station locations for the precap REMOTS[®] sediment-profile survey conducted 4 November 1993 with dredged material thickness seen in REMOTS[®] analysis and 0.5 m contour from bathymetry. Contour lines indicate thickness of dredged material.

22

43

and bathymetric surveys over the NHAV 93 mound and to carry out numerical computations of settlement and volume changes.

Results of URI's analysis of the sediment cores and surface grabs have been submitted in a separate report (Silva et al. 1994b). Twenty good quality cores with lengths from 69 cm to 302 cm were recovered during the baseline, precap, and postcap surveys using the LGC system (Appendix D). Before splitting the cores (core liners), a Multi-Sensor Core Logger (MSCL) was used to obtain profiles of sediment bulk density. Visual descriptions (and photographs) were recorded and subsamples extracted for analysis of the physical properties (grain size, water content, Atterberg limits, and specific gravity). Consolidation behavior was measured through analysis (void ratio versus effective stress, compression index, and consolidation stress) and permeability data (direct and indirect measurements).

24

4.0 RESULTS

4.1 Repetitive Bathymetric Surveys

CLIS is located in a depositional area of Long Island Sound, characterized by mild bottom current regimes and subject to shallow, wind-driven waves. Since 1984, the DAMOS site management strategy at CLIS has been to create a ring of disposal mounds for the deposition of large volumes of dredged material. The New Haven Capping Project marks the first instance that an artificial containment measure was designed and utilized for the deposition of dredged material. The entire CAD mound development process was observed, scrutinized, and documented by SAIC in support of the DAMOS Program. Results of the precision bathymetry and depth difference analyses for the five surveys conducted at CLIS between September 1993 and March 1994 are presented below including 1) baseline (predisposal), 2) interim disposal, 3) precap, 4) interim cap, and 5) postcap.

4.1.1 Baseline Survey (19-20 September 1993)

Results of the baseline bathymetry indicate, with the exception of shallower water depths over the mounds, water depths in the area range from 19 m in the northern half of the surveyed area to 21 m in the southern portion (Figure 1-1). Water depths over the mound centers were as follows: CLIS-87 and CLIS-88 16 m, CLIS-89 17 m, CLIS-90 19 m, CLIS-91 19 m, NORWALK 18.5 m, and SP 19.5 m. The historic NHAV-74 mound is visible in the southeast corner of the bathymetric chart with a minimum depth of 17.0 m before extending beyond the survey area.

4.1.2 Interim Disposal Survey (23-25 October 1993)

The interim disposal survey was completed when the federal inner harbor dredging was 50% complete. Development of the mound is readily apparent in the bathymetric analysis of the interim survey (Figure 4-1) when compared to the baseline survey (Figure 1-1). The water depth at the center of the NHAV 93 UDM mound was 17.0 m. The depth difference comparison between the baseline and interim disposal surveys (Figure 4-2) showed a mound approximately 400 to 450 m in diameter and 3 m in height. The total volume of the mound based on successive bathymetric surveys was 238,000 m³ (Table 4-1).

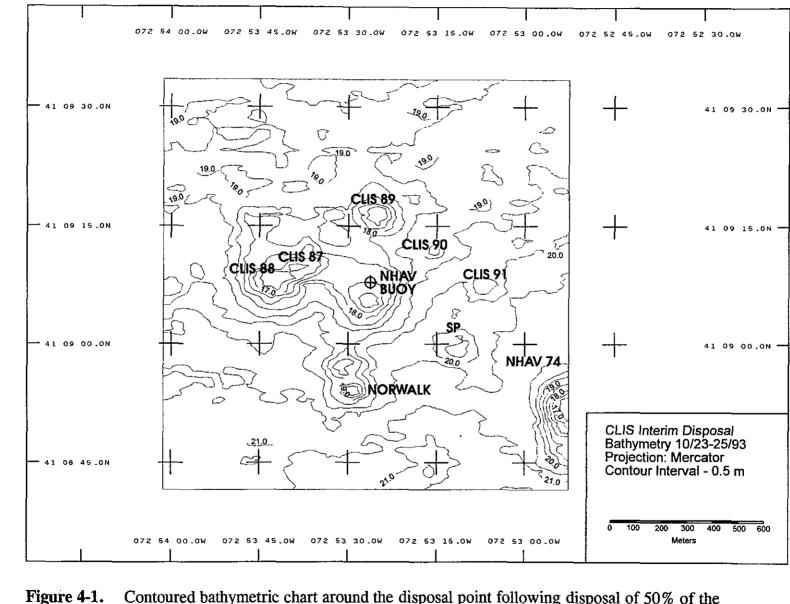


Figure 4-1. Contoured bathymetric chart around the disposal point following disposal of 50% of the sediments for the federal inner harbor dredging project, October 1993 (depth in meters)

Monitoring Surveys of the New Haven Capping Project, 1993-1994

*

1

N N ٠

٩

.

E.

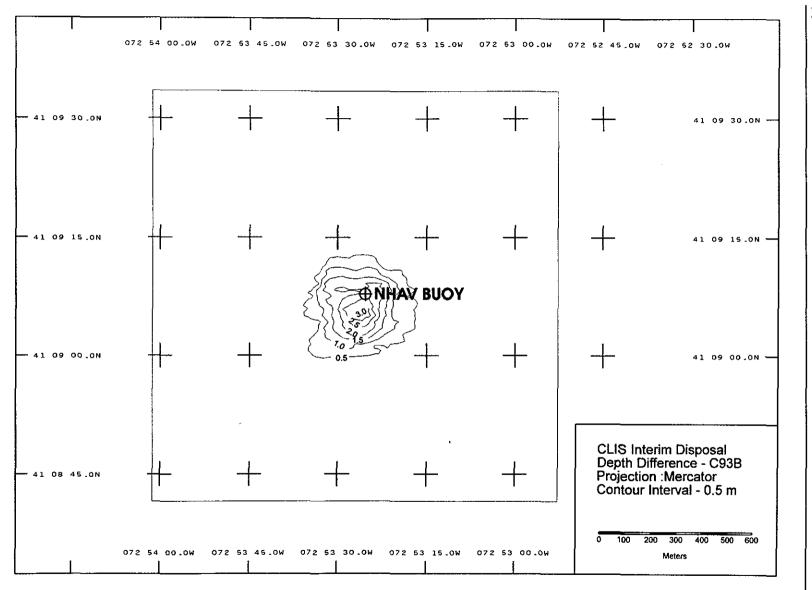


Figure 4-2. Depth difference contour chart (in meters) based on the comparison of the interim disposal (October 1993) and baseline (September 1993) bathymetric surveys

26

;

×.

Table 4-1

Summary of Volume Difference Calculations for the New Haven Capping Project, September 1993 to March 1994

	m ³
Baseline/Interim Disposal	238,000
Interim Disposal/Precap	74,000
TOTAL DREDGED MATERIAL	312,000
Precap/Interim Cap	124,000
Interim Cap/Postcap	278,000
TOTAL CAP	402,000
TOTAL VOLUME	714,000

4.1.3 Precap Survey (2-3 November 1993)

This survey measured the NHAV 93 mound following the completion of the federal inner harbor dredging and UDM deposition, as well as the disposal of 76,000 m^3 of cap material at the northwest capping locations. Disposal of UDM from the private dredging operations continued over the southwestern flank of the disposal mound. (Figure 2-2, point I). The analysis of bathymetric data from the precap survey (Figure 4-3) indicated a loss in mound height (0.5 m) from the interim disposal survey (Figure 4-1). An interesting result of the bathymetric comparison is evidence of a large amount of consolidation or slumping of the dredged material. The depth difference contours between the interim disposal and precap survey (Figure 4-4) show the loss at the mound peak due to structural failure of the apex. The profile plot comparing survey lane 35 from the interim and the precap survey (Figure 4-5) is included to show the evidence of slumping of the mound peak and the movement of material towards the northeast. Results of the depth difference between the baseline and precap operations (Figure 4-6) show the size of the mound to be approximately 510 m in diameter and 2.5 m in height. The calculated total volume of the mound based on the baseline and precap bathymetric surveys is 312,000 m³. The volume shown by the depth difference model between the interim disposal survey and the precap survey is 74,000 m³.

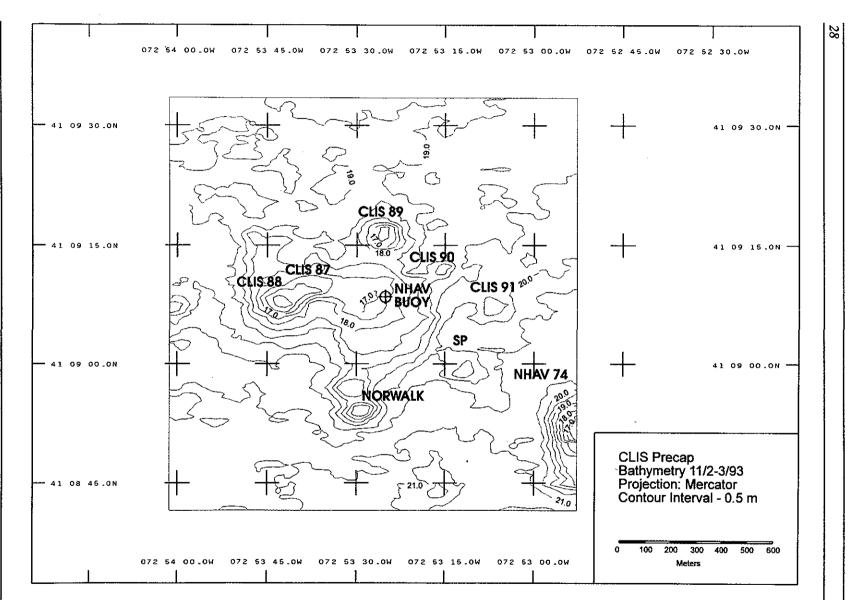


Figure 4-3. Contoured bathymetric chart of the mound complex at precap status or 100% completion of the dredging of the inner harbor sediments plus approximately 76,000 m³ of cap material, 2 November 1993 (depth in meters)

ę.,

ų,

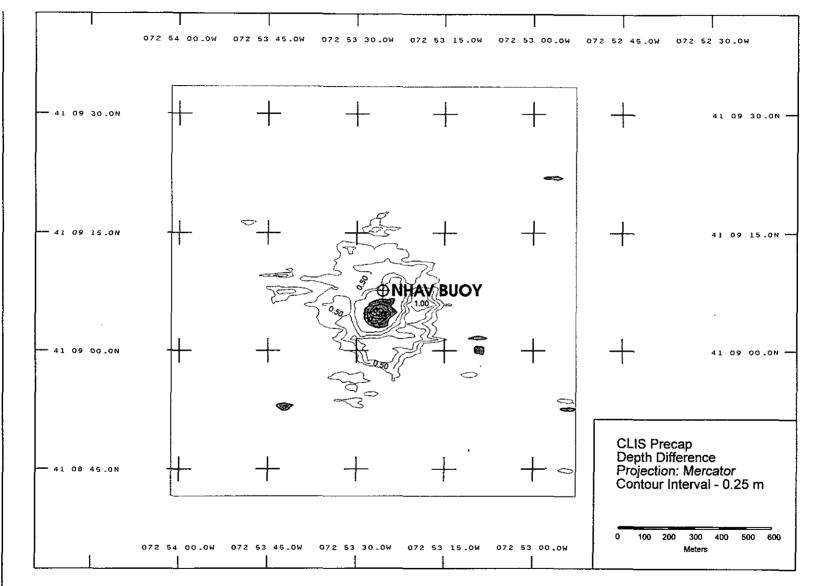
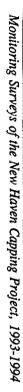
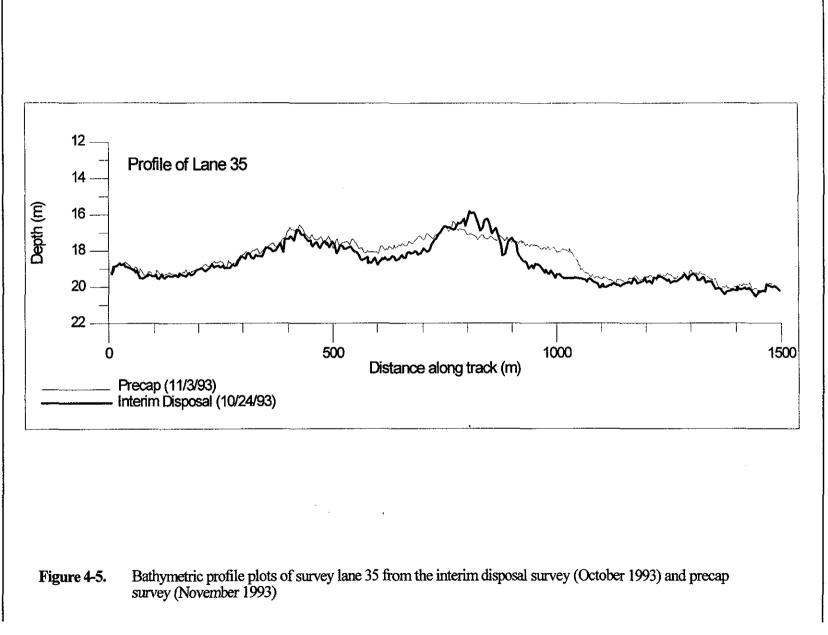
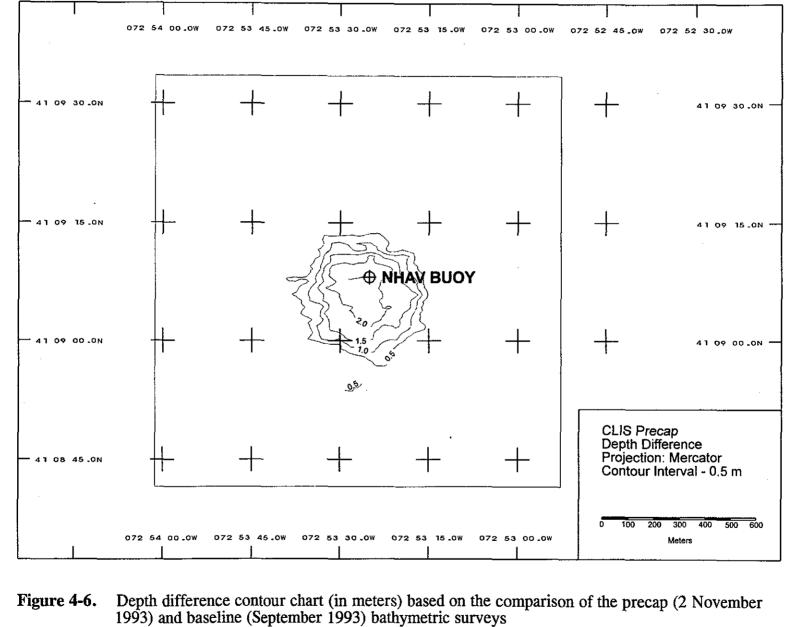


Figure 4-4. Depth difference contour chart (in meters) based on the comparison of interim disposal (October 1993) and precap (November 1993) bathymetric surveys. Negative depth differences showing the loss in mound height are shaded.


.


.


20

۲

ť

31

۹.

4.1.4 Interim Cap Surveys (23-24 November 1993 and 12-13 January 1994)

Two interim cap bathymetric surveys were conducted, one by SAIC in late November (Figure 4-7) when the federal capping operations were 50% complete and another by Ocean Surveys Incorporated on 12-13 January 1994 (Figure 4-8) following the completion of the dredging of contaminated sediment from the private terminals. Results of the depth difference comparing the 2-3 November precap survey to the 23-24 November interim cap survey (Figure 4-9) showed that the volume added to the mound was 124,000 m³ to the east and southeast of the buoy. Most of the capping activity following the interim cap survey was concentrated in the southwestern portion of the mound where the UDM originating from the private terminals was deposited. The height of the mound was 2.5 m, and the diameter of the mound was approximately 550 m. The depth difference comparing the November interim cap survey to the September baseline survey showed the total volume of the mound to be 435,000 m³.

In comparing the data from the Ocean Surveys Incorporated survey (Figure 4-8) to the SAIC baseline survey (Figure 1-1) there was an average overall discrepancy of 0.92 m. This difference was the result of comparing datasets corrected to dissimilar vertical datums used for tidal corrections. SAIC data is referenced to observed Mean Tide Level (MTL) over the survey area, while Ocean Surveys Incorporated used tidal corrections based on Mean Lower Low Water (MLLW) predictions. After correcting the Ocean Surveys Incorporated data to previous SAIC surveys, two depth difference plots were generated. The first plot shows the thickness of material added since the baseline survey (Figure 4-10). This represents a total mound volume of about 593,000 m³. The second depth difference shows the material added between the January and precap (November 2-3) surveys (Figure 4-11). The volume from this comparison, 281,000 m³, includes all of the privately dredged contaminated sediments and some of the federal capping sediments. This plot illustrates that the deposition of dredged material during this period was mostly over the southeast flank of the NHAV 93 mound in accordance with the direction from NED.

4.1.5 Postcap Survey (13-14 March 1994)

Comparison of the postcap (Figure 4-12) and baseline (Figure 1-1) bathymetric surveys shows the formation of a well-developed mound centered 125 m to the south of the NHAV buoy. The water depth at the center of the mound is 17.5 m. The depth difference comparison of the postcap survey versus the baseline survey (Figure 4-13) shows the height of the mound to be 2.5 m and the mound diameter to be 600-800 m. The final volume of the capped NHAV mound based on that comparison is approximately 714,000 m³. Differencing the postcap survey to the precap survey (Figure 4-14) shows the total volume of cap material and privately dredged sediments to be approximately

Monitoring Surveys of the New Haven Capping Project, 1993-1994

2

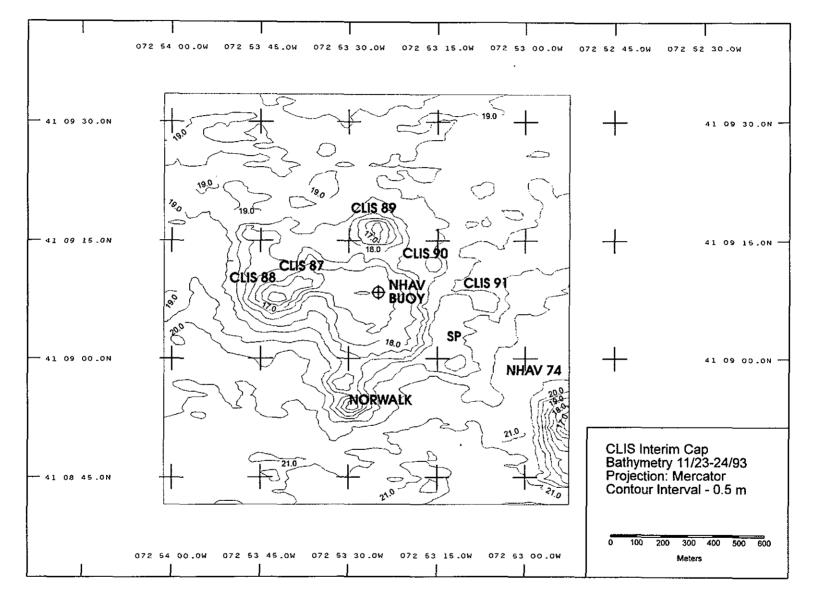


Figure 4-7. Contoured bathymetric chart of the mound complex following completion of 50% of the capping operations, 23 November 1993 (depth in meters)

<u></u>

۰.

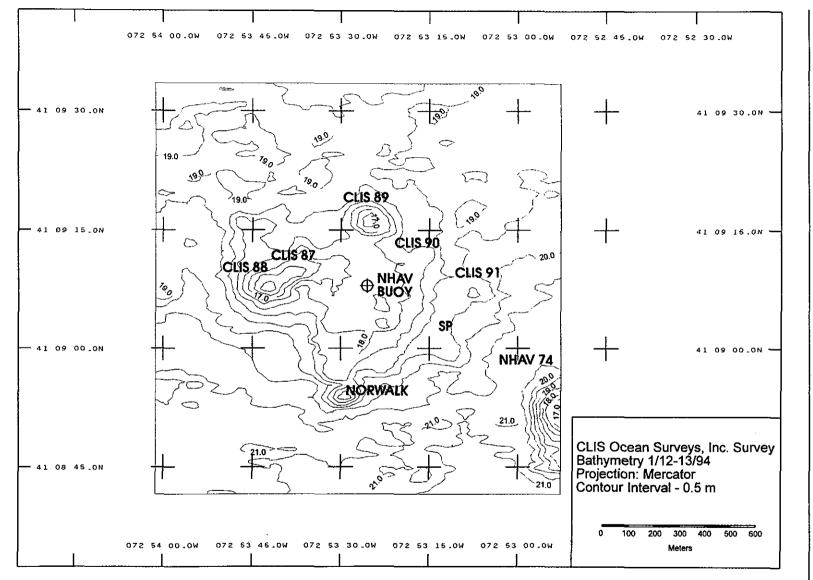
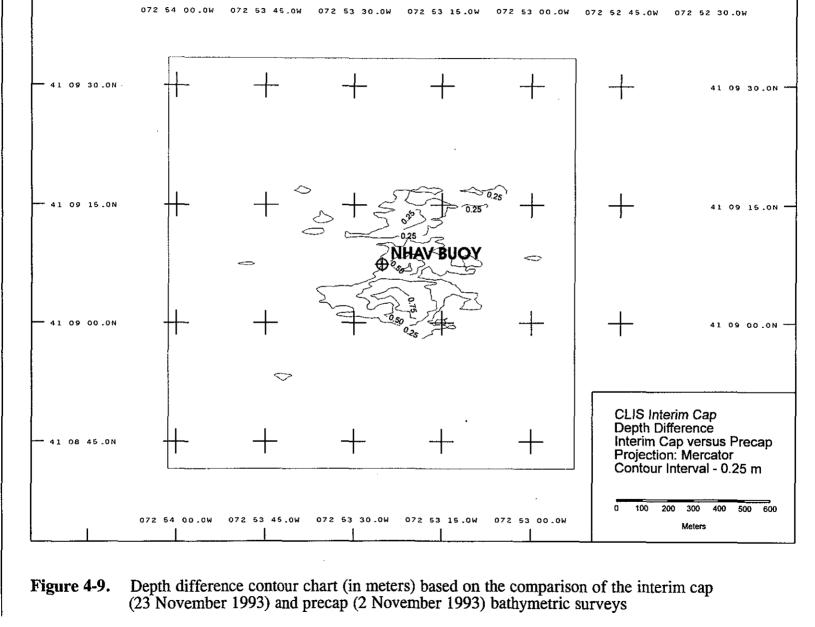



Figure 4-8. Contoured bathymetric chart based on data collected by Ocean Surveys, Inc. at the completion of the private dredging operations, January 1994 (depth in meters)

<u>2</u>

.

4

.

.

ť

i

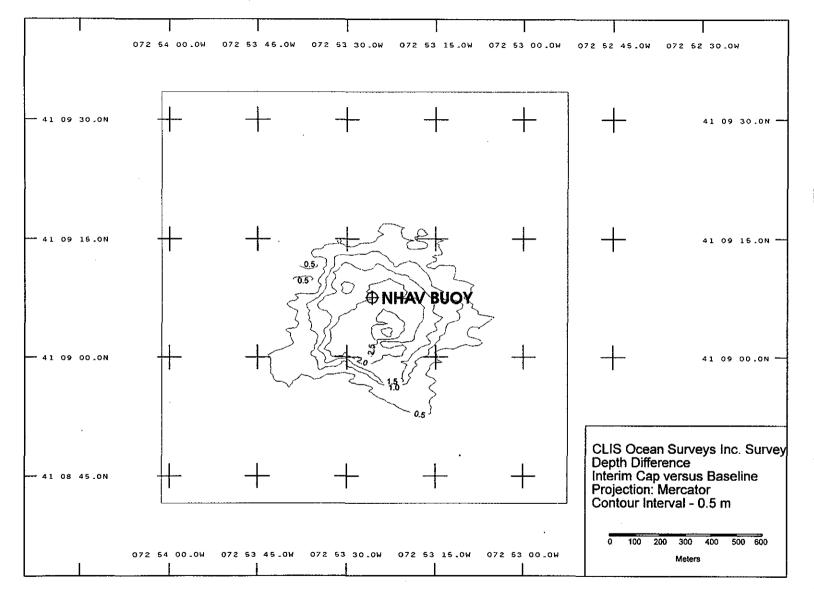


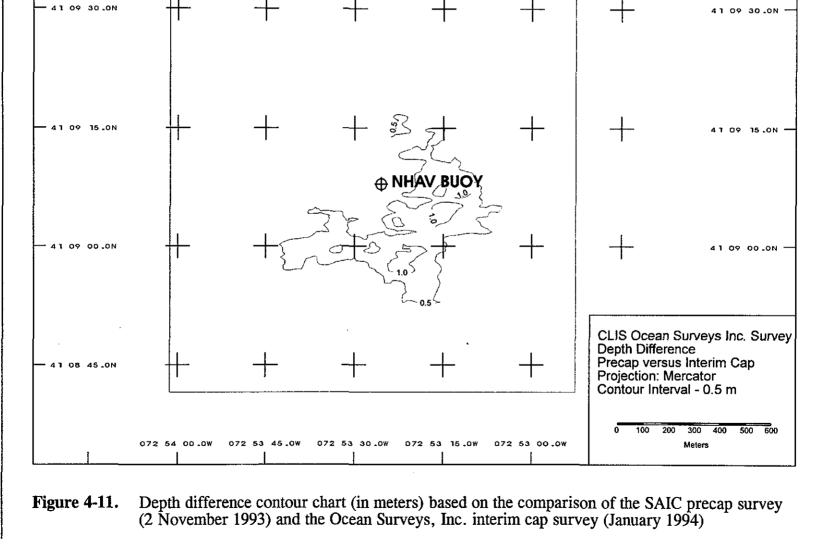
Figure 4-10. Depth difference contour chart (in meters) based on the comparison of the Ocean Surveys, Inc. interim cap (January 1994) and SAIC baseline (September 1993) bathymetric surveys

36

4.5

L

072 54 00.0W


072 53 45.OW

072 53 30 OW

072 53 15.0W

072 53 00.0W

.

i t

.

072 52 30.0W

37

072 52 45.OW

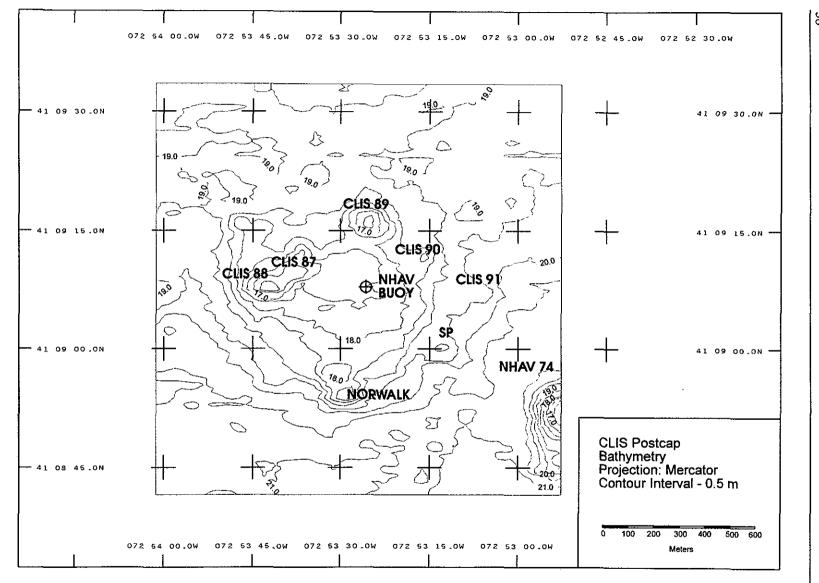
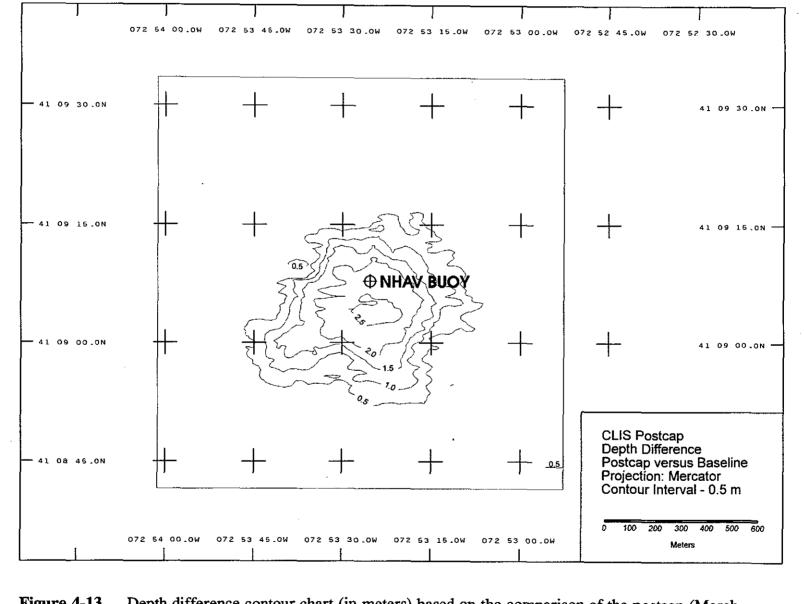


Figure 4-12. Contoured bathymetric chart of the mound complex following completion of the capping operations (postcap), March 1994


38

1.

.

ŧ.

£

Figure 4-13. Depth difference contour chart (in meters) based on the comparison of the postcap (March 1994) versus baseline (September 1993) bathymetric surveys

39

•

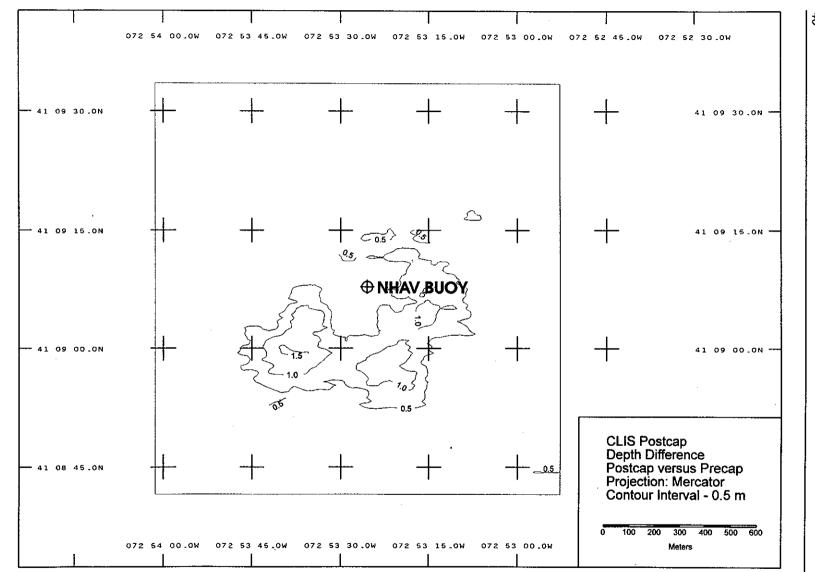


Figure 4-14. Depth difference contour chart showing apparent cap material thickness (in meters) based on the comparison of the postcap (March 1994) versus precap (2 November 1993) surveys

2.

t

278,000 m³. The comparison shows that federal cap material and the privately funded disposal and cap material were deposited on the southern side of the mound. The 76,000 m³ barge volume of additional federal cap material that was disposed to the northwest of the NHAV buoy location prior to the precap survey could not be accounted for in this comparison due to its deposition prior to the completion of the precap bathymetry.

4.2 **REMOTS®** Sediment-Profile Surveys

The REMOTS[®] baseline survey was conducted over the following inactive disposal mounds: NORWALK, CLIS-87, CLIS-88, CLIS-89, CLIS-90, SP, and the east-southeast valley. The results were used to assess the stability of the disposal mounds, allow accurate placement of dredged material in the basin formed by these mounds, and to document the status of the benthic community. In addition, NED planned to place a sediment cap over the experimental FVP mound in the northeast quadrant of CLIS using any excess CDM generated by the New Haven Capping Project. Therefore, triplicate photographs were also obtained at the historic FVP mound during the precap survey to allow comparisons in the event that excess CDM was available for deposition.

4.2.1 Grain Size Distribution

The major modal grain sizes over the majority of the mounds were very fine sand (4-3 phi) and some silt/clay (\geq 4 phi) sediments at the CLIS-87 and CLIS-88 mounds. Fine sands (3-2 phi) were the major mode at a few of the stations located on the CLIS-89 and SP mounds. Several stations had surface layers of coarse sands and gravel. The major modal grain sizes at the FVP mound were very fine sands (4-3 phi); some silt/clay (\geq 4 phi) sediments were present at stations 50E, 50W, 100W, and 100S. The range in grain size included gravel and very coarse sands to silt/clay.

4.2.2 Prism Penetration Depth

Dredged material often has different shear strengths and bearing capacities than ambient bottom sediments. The prism penetration depth into the bottom sediments depends on the force exerted by the optical prism and bearing strength of the sediment. The optical prism of the REMOTS[®] camera penetrates the bottom sediment under a static driving force imparted by the weight of the descending optical prism, camera housing, supporting mechanism, and weight packs. Soft silt/clay sediments will generally produce photographs showing two-thirds to full penetration (15-20 cm), while coarser grained material yields lesser penetration values (sands 8-12 cm; gravel 3-10 cm). 42

During the baseline survey, penetration depths of individual replicates over the five sediment mounds (CLIS 87-88 complex, CLIS 89, CLIS 90, NORWALK, and SP) ranged from 5.50 cm to 20.70 cm. The replicate-averaged mean penetration depths at the CLIS 87-88 mound complex ranged from 7.6 to 13.88 cm; CLIS 89 7.80 to 17.64 cm; CLIS 90 11.42 to 16.72 cm; NORWALK 9.83 to 17.35 cm; and SP 5.65 to 17.52 cm. The penetration depths from individual replicates on the FVP mound ranged from 5.76 cm (sediments with a surface layers of gravel and coarse sands over very fine sands) to 15.83 cm (sediments with a surface layer of coarse and medium sands over silt/clay sediments).

4.2.3 Mean Apparent Redox Potential Discontinuity (RPD) Depth

Aerobic near-surface marine sediments typically have higher reflectance values relative to underlying hypoxic or anoxic sediments. Surface sands washed free of mud also have higher optical reflectance than underlying muddy sands. These differences in optical reflectance are readily apparent in REMOTS[®] images; the oxidized surface sediment contains particles coated with ferric hydroxide (an olive color associated with particles), while reduced and muddy sediments below this oxygenated layer are darker, generally gray to black. The boundary between the colored ferric hydroxide surface sediment and underlying gray to black sediment is called the apparent redox potential discontinuity (RPD). The replicate averaged RPD over the project area ranged from 1.10 cm to 3.06 cm during the baseline survey (Figure 4-15). The RPD values for the FVP mound during the precap survey ranged from 1.09 cm to 2.72 cm.

4.2.4 Infaunal Successional Stage

The mapping of successional stages is based on the theory that organism-sediment interactions follow a predictable sequence after a major seafloor perturbation such as the disposal of dredged material (Rhoads and Germano 1990). All stations occupied during the baseline REMOTS[®] survey showed evidence of Stage I pioneering polychaetes (Figure 4-16). Stage I on Stage III communities were present at CLIS-87 and CLIS-88, CLIS-90, SP, and the east-southeast valley transect. Stage III taxa represent high-order successional stages typically found in low disturbance regimes. Evidence of Stage II taxa was present at CLIS-89, NORWALK, SP, and the east-southeast valley transect. Stage III organisms represent a transitional stage to Stage III and are characterized by tubicolous amphipods which can form extensive tube mats on the surface.

All stations occupied over the FVP mound during the NHAV 93 precap survey were characterized by presence of Stage I organisms. One replicate at FVP station 50W showed signs of Stage III activity, and was designed as Stage I on III. These results

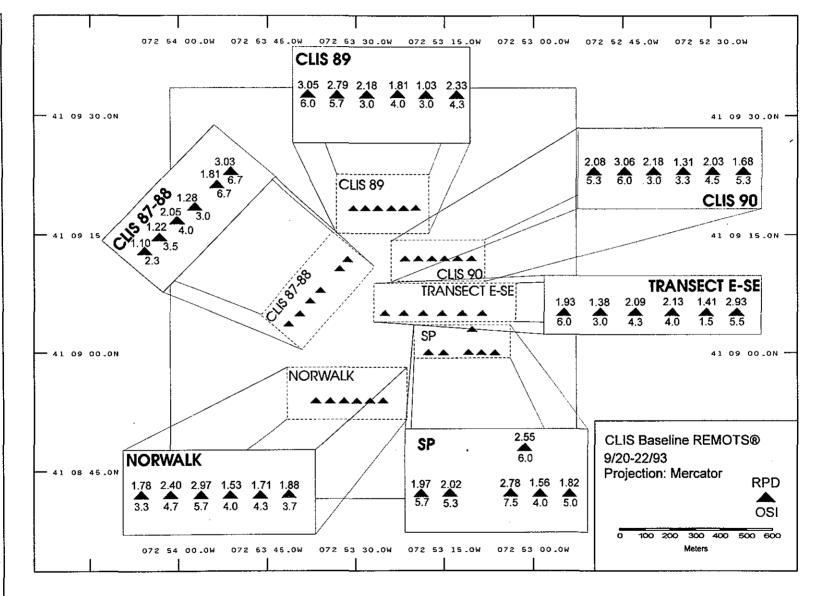


Figure 4-15. Mean RPD and OSI values for the five disposal mounds and the east-southeast valley feature during the baseline REMOTS[®] survey

.

۲.

43

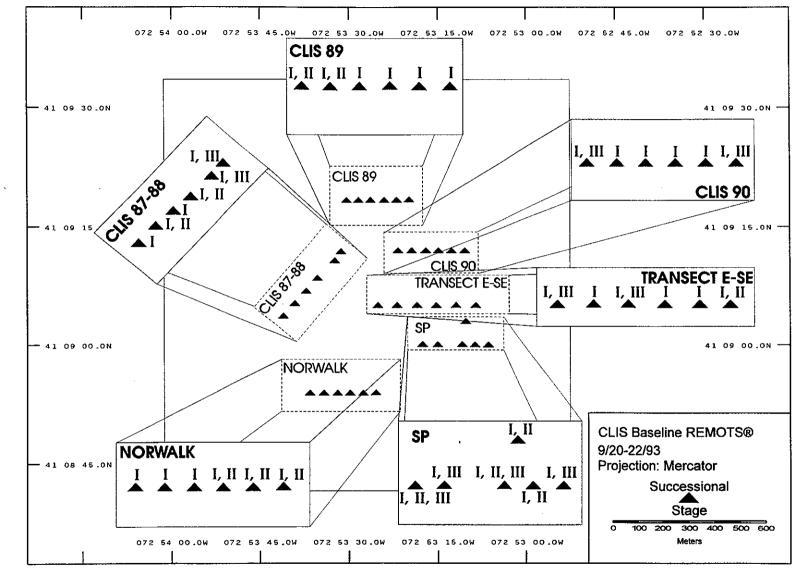


Figure 4-16. Infaunal successional stages at the five disposal mounds and east-southeast valley feature during the baseline REMOTS[®] survey

ŧ?

1.

Monitoring Surveys of the New Haven Capping Project, 1993-1994

4

,

indicate a continued lack of a stable, benthic infaunal population over the entire FVP mound.

4.2.5 Organism-Sediment Indices (OSI)

The multiparameter Organism-Sediment Index (OSI), used to characterize gradients in habitat disturbance, can only be calculated at those stations where RPD and infaunal successional stage are also determined. The OSI is calculated automatically by the image analysis system after completion of all measurements from each REMOTS[®] image. Based on the compiled results of REMOTS[®] surveys during the past 10 years, OSI values of less than or equal to +6 are considered indicative of chronically stressed benthic habitats and/or those which have experienced recent disturbance such as disposal (Rhoads and Germano 1986). OSI values greater than +6 tend to represent relatively undisturbed habitats or habitats that have experienced a long period of recovery relative to bottom areas more recently disturbed. The replicate averaged OSI values over the disposal site ranged from 2.3 to 7.5 and were indicative of a patchy benthic environment in varying states of recovery (Figure 4-15). The NORWALK and SP mounds showed the most uniform values of OSI. Values at the FVP mound ranged from 3 to 5 with one value of 9; this was at the station with a Stage I on III community.

5.0 DISCUSSION

The subaqueous capping of dredged material was introduced as a disposal technique to the DAMOS Program in 1979. The practices behind this disposal technique were improved during the early-1980s and continue to be employed in the successful completion of capping projects at CLIS, the New London Disposal Site (NLDS), and Portland Disposal Site (PDS; SAIC 1995). Over the years, data have shown that both sand and silt are effective capping materials. The low permeability and chemically adsorptive properties of silt constitute good capping material. Although sand caps provide greater resistance to erosion during storm events, a 0.5 to 1.0 m layer of silt was used as capping material at CLIS due to its similarity to the ambient grain size, relative abundance, and availability to the New Haven Capping Project.

The NHAV 93 disposal mound received an estimated barge volume of 1,159,000 m³ of material dredged from New Haven Harbor and the surrounding area as part of the New Haven Capping Project. The capping project conducted at CLIS during the 1993-1994 disposal season was atypical in several ways: 1) Dredged material was deposited in a depression formed by a ring of seven historic mounds to restrict the lateral spread of the UDM apron; 2) The resulting disposal mound was successfully capped with quantities of CDM less than the total volume of the UDM deposit; 3) A remarkable sequence of five precision bathymetric, two REMOTS[®] sediment-profile, and three geotechnical coring surveys were conducted by SAIC at various stages of NHAV 93 mound development, creating a comprehensive time-series dataset documenting the construction of the CAD mound.

The data collected over the NHAV 93 mound indicate that lateral containment of the UDM deposit was critical in the completion of the New Haven Capping Project. Utilization of the basin-like feature, created by the ring of disposal mounds, to receive large volumes of UDM for environmentally sound and cost-effective disposal is the culmination of many years of thoughtful planning and disposal. Since the inception of the DAMOS Program, a ten-year cycle of dredging and disposal operations has been established in the central Long Island Sound region. With the development of the NHAV 74, NHAV 83, and NHAV 93 mounds, NED has estimated that large scale dredging operations must be conducted in New Haven Harbor and the Quinnipiac River every ten years to maintain adequate depths for commercial, military, and private vessels (Morris 1994).

The ten-year time frame allows for the completion of many small dredging operations in regional harbors, channels, and docking facilities. The disposal of modest volumes of material aids in the preparation for large scale projects with the magnitude of

Monitoring Surveys of the New Haven Capping Project, 1993-1994

the New Haven Capping Project. Dredged material generated by those smaller projects is now used to develop containment rings that concentrate deposition of large volumes of UDM and facilitate efficient capping. By continuing to build rings of closely spaced disposal mounds over the 6.85 km² area of CLIS, a network of containment cells, similar to honeycombs, will be produced (Figure 5-1). Over time, this network of cells will minimize the surface area occupied by each dredged material deposit and therefore maximize the overall capacity of the site.

In the past, the management strategy at CLIS and other DAMOS disposal sites was to build many independent mounds over the given area of the disposal site. Each mound could be monitored individually, assessing mound stability, cap thickness, recolonization status, etc. Although this practice was highly successful, the overall capacity of the disposal site was reduced due to the unusable area between the discrete sediment mounds. This strategy changed at CLIS in 1983 with the placement of the SP mound to the northeast of the historic NORWALK mound (SAIC 1984). As dredging and disposal practices continued to improve, advancements in precision navigation and point deposition helped concentrate sediment mounds in smaller areas. By repositioning a taut-wire moored disposal buoy at the start of each disposal season, a ring of disposal mounds was formed and eventually completed in 1992 with the development of the CLIS 91 mound. At this time project plans for the large-scale New Haven Capping Project were being finalized.

The reported volumes provided by the DAMOS Disposal Barge Logs state that approximately 590,000 m³ of UDM was deposited at the NHAV buoy, followed by an estimated volume of 569,000 m³ of CDM. The wealth of data collected over the NHAV 93 project area suggests that the resulting mound is broad, stable, adequately capped, and exhibiting a CDM to UDM ratio of 0.96 to 1.0 (Morris 1994). In the past, CDM to UDM ratios varied from 2:1 to 6:1 when initiating a capping operation on a flat or gently sloping area of seafloor without natural (i.e., rock outcrops, glacial troughs) or artificial (i.e., disposal mound ring, geotextile fabrics) means of restricting the lateral dispersion of a UDM deposit (SAIC 1995). Lacking means of containment, the apron of UDM is free to spread into a wide, thin layer of material, increasing the amount of CDM required to completely cover the flanks of the mound.

The NHAV 93 capping project was the first in the New England region to utilize an artificial containment cell to control the spread of UDM. The use of the disposal mound ring at CLIS significantly reduced the outward migration of the UDM mound apron. As a result, cap material was distributed over a much smaller area, decreasing the total volume of CDM required to cap the inner harbor sediments. Dredging operations in urbanized areas may not produce an abundance of CDM for use in capping operations. However, the

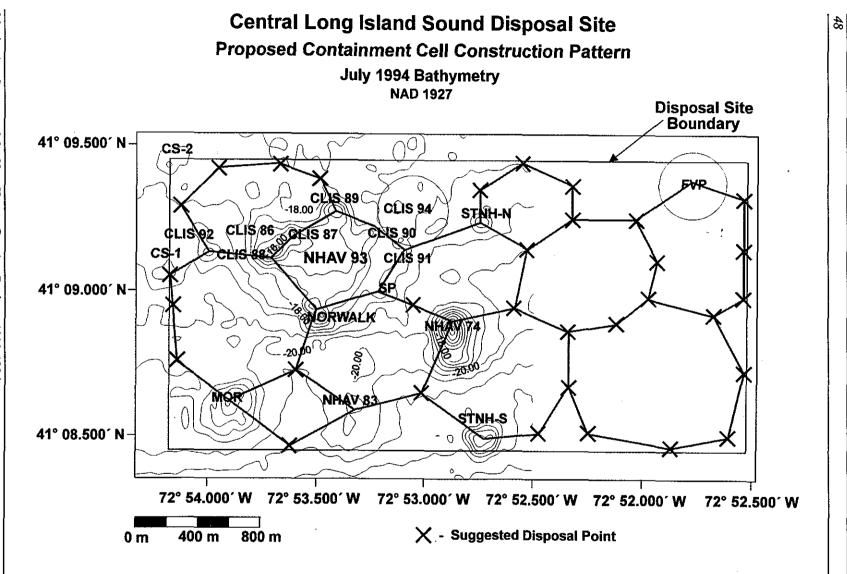


Figure 5-1. Suggested pattern of future disposal at CLIS to maximize site capacity and construct a network of containment cells

ŧ.

perfection of this disposal and containment technique allows NED to deposit moderate to large volumes of UDM, while requiring a minimum investment of CDM.

The strategic repetition of precision bathymetric, REMOTS[®], and geotechnical coring surveys was invaluable during the New Haven Capping Project. The five separate datasets allowed SAIC to document the progression of CAD mound development and advise NED upon the best course of action to achieve its ultimate goal. The results of each bathymetric survey provided a "snapshot" in time, allowing comparisons with previous surveys to document and quantify central mound consolidation, calculate overall growth of the CAD mound, and identify areas requiring additional cap material deposition. This comprehensive dataset also facilitates revisiting the various stages of the capping project to chronicle how disposal and oceanographic processes affected the dredged material, as well as to explore what knowledge of CAD mound construction was gained.

During the baseline survey, REMOTS[®] sediment-profile photography was used to estimate the shear strength, as well as document the successional status of the containment ring. The flanks of the UDM mound were mapped by REMOTS[®] within the containment basin during the precap survey of the NHAV 93 mound. These data were used to ensure accurate placement of the dredged material during disposal operations and permit the calculation of target capping points along the mound apron (Figure 4-6). REMOTS[®] photography continues to be used to detect changes in various physical and biological parameters on the surface of the NHAV 93 mound.

The surface layer shear strengths of the five mounds sampled during the baseline survey indicated that significant de-watering and consolidation had occurred in the surface sediments. The larger grain-sized and densely packed sediment deposits displayed higher shear strengths, indicating the potential to contain a ridge of new dredged material while maintaining the mound integrity. No structural failure was detected within the sevenmound containment ring during any of the five bathymetric surveys.

URI estimated the relative consolidation of sediments occurring between the precap, interim cap, and postcap surveys using both theoretical models and data from the geotechnical cores. These estimates were required to determine cap material requirements; actual cap thickness was masked by consolidation of both the basement material (ambient sediments and historic dredged material) and the UDM deposit. Cores collected immediately following the construction of the mound included the basement material, UDM, and CDM. Results were used to establish the initial geotechnical characteristics of the completed mound. These data were used as a reference for future geotechnical and bathymetric surveys. Numerical computations will also be performed on settlement and volume changes.

Following UDM disposal, the mound was 2.5 m in height and 510 m in diameter with a calculated volume of 312,000 m³ based on comparisons of the baseline and precap bathymetric surveys. The final CAD mound is centered approximately 125 m to the south of the NHAV buoy location (Figure 4-13). The total volume of cap material accounted for by bathymetry was 402,000 m³, the diameter of the mound expanded to 800 m, and the mound height remained at 2.5 m due to significant consolidation of the underlying UDM deposit. According to DAMOS barge disposal logs, the total volume of dredged material was 1,159,000 m³; however, the total volume accounted for by bathymetry was 714,000 m³ (62% of the estimated barge volume).

Results of previous DAMOS monitoring surveys have shown that accumulations of dredged material less than 20 cm thick in the flanks of a disposal mound are typically deposited in layers too thin to be detected by standard bathymetric techniques. The 38% difference in final volumes between bathymetric analysis and disposal logs is accounted for by consolidation of the underlying UDM deposit and the limits of the acoustic survey. Due to the complex scheduling of disposal activities during this project, it is difficult to determine what volumes of contaminated and cap material were present during each survey.

The depth difference comparison between the precap and the postcap surveys provides the best indication of the overall distribution of cap material. This comparison indicates an apparent lack of cap material in the northwestern quadrant of the final disposal mound (Figure 4-14). However, disposal records indicate that 76,000 m³ of cap material was disposed in this quadrant prior to the precap survey making it undetectable in the precap/postcap comparisons. In addition, subbottom profiling data and geotechnical cores collected over the NHAV 93 mound in July 1994 detected 0.5 to 0.75 m of silt cap material over the northwestern flank (Figures 5-2 and 5-3; Morris 1994).

Results of the REMOTS[®] baseline survey showed that recolonization of the bottom invertebrate community from the disturbance of historic disposal operations has proceeded at a rate typical for open-water dredged material sites. Successional stages were dominated by pioneering Stage I polychaetes with evidence of more mature taxa in the Stage I to Stage II and Stage I on Stage III communities. Stage II taxa represent a transitional sere between Stage I and III and are associated with recovery of a disturbed benthic habitat (Rhoads and Germano 1986). Stage III taxa generally represent high-order successional stages typically found in low disturbance regimes. Organism-Sediment Indices were variable and indicative of a patchy benthic environment.

.

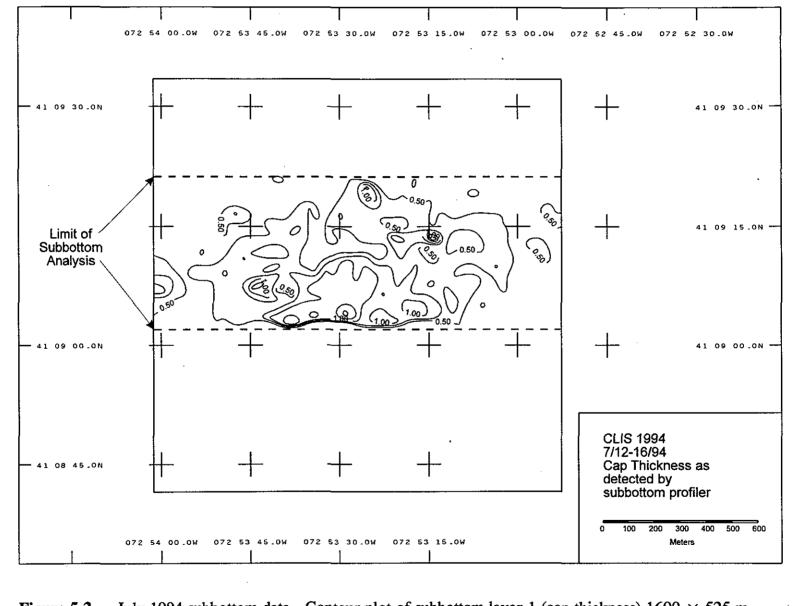


Figure 5-2. July 1994 subbottom data. Contour plot of subbottom layer 1 (cap thickness) 1600×525 m analysis area over the NHAV 93 mound, 0.25 m contour interval.

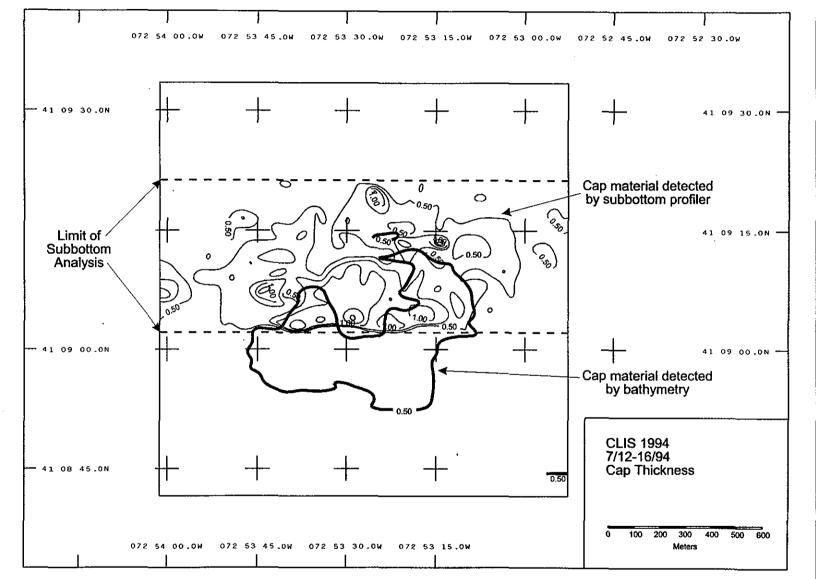


Figure 5-3. July 1994 subbottom data. Contour plot of subbottom layer 1 (cap thickness) overlaid onto cap material footprint plot of March 1994, 1600×525 m analysis area over the NHAV 93 mound.

During the November 1993 precap REMOTS[®] survey of the FVP mound, there was a noticeable lack of Stage II and Stage III benthic infaunal activity. Although plans were made to cap the historic UDM mound, no excess CDM was available from the New Haven Capping Project to begin the placement of a sediment cap over the FVP mound. Another series of REMOTS[®] photographs collected in September 1995 indicate an increase in Stage III individuals within the surface sediments (Morris and Murray 1995). A total of ten stations displayed evidence of Stage III assemblages, compared to the single replicate of station 50W in 1993. However, the majority of those ten stations lie 200 to 300 m from the center of the mound, correlating to previous observations regarding the patchy benthic infaunal community near the center of the FVP mound.

The original objective of FVP was to field verify existing predictive techniques for evaluating the environmental consequences of dredged material disposal under aquatic, intertidal (wetland), and upland conditions (Murray and Carey 1993). The mound is an uncapped UDM deposit formed by the placement of Black Rock Harbor sediments placed in the northeast corner of CLIS during the 1982-83 disposal season. Designed as a six-year, cooperative research project between the US Army Corps of Engineers, Waterways Experiment Station (WES) and the US Environmental Protection Agency (EPA), the UDM sediments have been monitored periodically for changes in benthic infaunal population and contaminant content.

Now that the WES/EPA experimentation has concluded, plans have been made to cap the mound in order to isolate the UDM from the marine environment. Without the deposition of cap material during the New Haven Capping Project, an opportunity still exists to conduct a comprehensive physical, chemical, and biological assessment of the experimental mound 13 years post-disposal. An intensive bioaccumulation study on the invertebrate species inhabiting the sediments could determine the current amount of chemical uptake within the benthic infauna, as well as explore the stress and susceptibility levels of the organisms occupying the various domains of the mound.

6.0 CONCLUSIONS

Based on acoustically detected changes in depth at the NHAV buoy location, disposal and capping operations formed a CAD mound with a diameter of 800 m and height of 2.5 m. Depth difference calculations between the interim disposal and precap surveys detected a 100 m wide pocket of consolidation over the mound apex. It was determined that the majority of the material shifted to the northeast, forming a 150 m wide plateau at the top of the UDM mound. The primary factor causing the structural failure of the apex was likely to be the initial placement of CDM over the northwest quadrant of the NHAV 93 mound, building the apex beyond the critical angle of repose, causing redistribution of material downslope. A contributing factor to the collapse of the mound apex could have been the subsurface consolidation of the UDM deposit due to de-watering.

A question had existed concerning the coverage of UDM in the northwestern quadrant of the NHAV 93 mound due to conflicts in the schedule of capping and survey operations. However, DAMOS disposal logs indicate an estimated barge volume of 76,000 m³ was released over cap placement points A, F, and J before the completion of the precap survey. In addition, subbottom and geotechnical core data collected over the northern portion of the NHAV 93 mound in July 1994 indicate that 0.5 to 0.75 m of cap material is present northwest of the buoy location. Recolonization over the entire surface of the new CAD mounds is expected to progress at a rate typical of open-water dredged material disposal sites.

This capping project demonstrated the successful execution of a long-term management strategy at the most active disposal site in New England. The strategy included the thoughtful placement of small to moderate volumes of dredged material in order to support the containment of large volumes of UDM and effectively isolate it from further interaction with the marine environment. Also, the continued use of this management approach will concentrate disposal into the formation and subsequent filling of containment cells, maximizing the finite capacity of the 6.85 km² disposal site. Although all primary indications suggest the attainment of all of NED's goals, monitoring at the NHAV 93 mound should continue for the next several years to assess biological recovery and long-term cap integrity (Morris 1994; Germano et al. 1994).

The wealth of data generated by the repetitive survey operations during CAD mound construction and annual monitoring are providing a great deal of insight into the processes that continue to affect this and other dredged material mounds. The inspection of cap integrity and quantification of overall consolidation could lead to answers pertaining to dredged material mass balance, consolidation rates, material slumping, material dewatering, and physical changes in basement material.

7.0 **REFERENCES**

- Bohlen, W. F.; Cohen, D. R.; Howard-Strobel, M. M.; Morton, E. T. 1994. DAMOS New Haven dredge monitoring cruise log summary, October 25-November 18, 1993. University of Connecticut, Marine Sciences Department, Avery Point, CT. Submitted to SAIC, Newport, RI.
- EPA/USACE. 1991. Evaluation of dredged material proposed for ocean disposal, testing manual. Publication 503/8-91/001. US Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, D.C. and Dept. of the Army, US Corps of Engineers, Washington, D.C.
- Fredette, T. J. 1994. Disposal site capping management: New Haven Harbor. Reprinted from Dredging '94, Proceedings of the Second International Conference, November 13-16, 1994. US Army Corps of Engineers, New England Division, Waltham, MA.
- Germano, J. D.; Rhoads, D. C.; Lunz, J. D. 1994. An integrated, tiered approach to monitoring and management of dredged material disposal sites in the New England Region. DAMOS Contribution No. 87 (SAIC Report No. SAIC-90/7575&234). US Army Corps of Engineers, New England Division, Waltham, MA.
- HMM Associates, Inc. 1993. Consultants for the US Army Corps of Engineers. Concord, MA.
- Lawless, W., Chief, Regulatory Divisions Operations Directorate for USACE New England Division. [Letter to Chief, Navigation Division]. 1991 December 23.
- Morris, J. T. 1994. Monitoring cruise at the Central Long Island Sound Disposal Site, July 1994. SAIC Report No. 327. Draft report submitted to US Army Corps of Engineers, New England Division, Waltham, MA.
- Morris, J. T.; Murray, P. M. 1995. Monitoring cruise at the Central Long Island Sound Disposal Site, September 1995: data report. SAIC Report No. 360. Data report submitted to US Army Corps of Engineers, New England Division, Waltham, MA.
- Murray, P. M.; Carey, D. A. 1993. Summary of monitoring results at the Field Verification Program aquatic disposal mound. SAIC Report No. 287. Technical report submitted to US Army Corps of Engineers, New England Division, Waltham, MA.

56

- Murray, P. M.; Selvitelli, P. 1996. DAMOS navigation and bathymetry standard operating procedures. SAIC Report No. 290. Final report submitted to US Army Corps of Engineers, New England Division, Waltham, MA.
- Naval Underwater Systems Center (NUSC). 1979. Disposal Area Monitoring System (DAMOS) annual data report - 1978. Submitted to US Army Corps of Engineers, New England Division, Waltham, MA.
- New England River Basins Commission (NERBC). 1980. Interim plan for the disposal of dredged material from Long Island Sound. New England River Basins Commission. Boston, MA. pp. 1-55.
- Rhoads, D. C.; Germano, J. D. 1986. Interpreting long-term changes in benthic community structure: a new protocol. Hydrobiologia. 142:291-308.
- Rhoads, D. C.; Germano, J. D. 1990. The use of REMOTS[®] imaging technology for disposal site selection and monitoring. In: Demars, K.; Chaney, R. eds. Geotechnical engineering of ocean waste disposal. ASTM Symposium Volume, January 1989, Orlando, Fla., pp. 50-64.
- SAIC. 1984. DAMOS summary of program results 1981-1984: volume II, part B, section II: Central Long Island Sound ongoing surveys. DAMOS Contribution No. 46 (SAIC Report No. 84/7521&C46). US Army Corps of Engineers, New England Division, Waltham, MA.
- SAIC. 1985. Standard operating procedure manual for DAMOS monitoring activities: volume I and volume II. DAMOS Contribution No. 48 (SAIC Report No. SAIC-85/7516&C48)). US Army Corps of Engineers, New England Division, Waltham, MA.
- SAIC. 1995. Sediment capping of subaqueous dredged material disposal mounds: an overview of the New England experience 1979-1993. DAMOS Contribution No. 95 (SAIC Report No. SAIC-90/7573&C84). US Army Corps of Engineers, New England Division, Waltham, MA.
- Silva, A. J.; Brandes, H. G.; Veyera, G. E. 1994a. Geotechnical characterization: coring and core processing summary. DAMOS Project Central Long Island Sound, New Haven Harbor Maintenance 1993-1994. Draft report submitted to SAIC, Newport, RI. Available from: University of Rhode Island, Narragansett, RI.
- Silva, A. J.; Brandes, H. G.; Veyera, G. E. 1994b. Geotechnical laboratory testing summary. DAMOS Project Central Long Island Sound, New Haven Harbor

Monitoring Surveys of the New Haven Capping Project, 1993-1994

Maintenance 1993-1994. Draft report submitted to SAIC, Newport, RI. Available from: University of Rhode Island, Narragansett, RI.

.

aerobic, 55 anoxia, 55 barge, viii, 12, 24, 54 disposal, 24 benthos, 7, 16, 22, 29, 32, 54, 56, 59 ampeliscids, viii, 1, 22 amphipod, 56 bivalve, 22 polychaete, 22, 56 bioassay, viii, 1, 22 body burden bioaccumulation, 22, 23 bioassay, viii, 1, 22 boundary roughness, 29 buoy, viii, 1, 6, 7, 12, 24, 27, 32, 44, 54 disposal, viii, 6 capping, viii, x, 1, 5, 6, 7, 22, 23, 24, 25, 27, 29, 32, 36, 39, 44, 54 Central Long Island Sound (CLIS) FVP, 32, 54, 55, 56, 59 MQR, 1 Norwalk (NOR), 1, 7 conductivity, 29 consolidation, x, 6, 35, 39 containment, viii, 1, 7, 29, 36 contaminant, x, 14, 22 New England River Basin Commission (NERBC). 18,20 CTD meter, 29 density, 35 deposition, viii, 1, 36, 39, 44, 54 dispersion, 6, 7 disposal site Central Long Island Sound (CLIS), viii, 1, 6, 7, 8, 10, 19, 24, 36, 54, 55, 56 fish. 14 fisheries, 14 grain size, 14, 24, 29, 35, 54 habitat, 59 methane, 29

mud clast, 29 New England River Basin Commission (NERBC), 18, 20 oil and grease, 20 organics oil and grease, 20 polyaromatic hydrocarbon (PAH), 18, 19, 22, 24 polychlorinated biphenyl (PCB), 18, 24 total organic carbon, 14 recolonization, x, 32 reference area, 19 REMOTS®, viii, x, 2, 5, 6, 29, 30, 32, 54, 55, 56, 59 boundary roughness, 29 Organism-Sediment Index (OSI), 30, 59 redox potential discontinuity (RPD), 29, 55 RPD REMOTS®, redox potential discontinuity (RPD), 29, 55, 59 salinity, 29 sediment chemistry, 22, 24 clay, 14, 20, 54, 55 gravel, 54, 55 plume, 6 sand, 14, 18, 54, 55 silt, 14, 20, 54, 55 sediment sampling cores, ix, x, 2, 5, 6, 24, 32, 35 grabs, ix, x, 2, 5, 6, 32, 35 shore station, 28 succession pioneer stage, 56 successional stage, 29, 56, 59 survey baseline, viii, x, 2, 5, 6, 28, 29, 30, 32, 35, 36, 39, 44, 54, 55, 56 bathymetry, viii, x, 1, 5, 6, 28, 29, 35, 36, 39, 44, 54 postdisposal, 7 predisposal, 1, 2, 5, 36 REMOTS®, 32, 56, 59 subbottom, x

temperature, 29

tide, 28, 29, 44 toxicity, 23 trace metals, 18, 22, 24 arsenic (As), 18, 20 cadmium (Cd), 18, 20, 24 chromium (Cr), 18, 20, 24 chromium (Cr), 18, 20 copper (Cu), 18, 21, 24 lead (Pb), 18, 21 mercury (Hg), 18, 21 nickel (Ni), 18, 21 vanadium (V), 5, 12, 24, 27 zinc (Zn), 12, 18, 24, 27

volume

difference, x

waves, 28, 36

APPENDIX A

Sediment Chemistry Results .

.

~

Appendix A Sediment Chemistry Results

.

Appendix A Table 1.	Sediment Chemistry Results (Dry Weight) for the Inner Federal Navigation Channel, New Haven Harbor 1993
Appendix A Table 2.	Sediment Chemistry Results (Dry Weight) for the Outer Federal Navigation Channel, New Haven Harbor 1993
Appendix A Table 3.	Sediment Chemistry Results (Dry Weight) for Gulf Oil, New Haven Harbor 1993
Appendix A Table 4.	Sediment Chemistry Results (Dry Weight) for Northeast Petroleum, New Haven Harbor 1993
Appendix A Table 5.	Sediment Chemistry Results (Dry Weight) for the New Haven Terminal, New Haven Harbor 1993
Appendix A Table 6.	Sediment Chemistry Results (Dry Weight) for Mobil Oil, New Haven Harbor 1993
Appendix A Table 7.	Sediment Chemistry Results (Dry Weight) for Wyatt Incorporated, New Haven Harbor 1993

Appendix A Table 1

INNER HARBOR	A	В	С	D
Station Latitude	42°17.94'	42°17.73'	41°17.45'	41°17.23'
Station Longitude	72°54.50'	72°54.60'	72°54.75'	72°54.69'
GRAIN SIZE				
%Silt/clay	93	97	96	96
% TOC	1.20	0.96	0.82	0.55
METALS (ppm)				
As	13.8	0.6	0.9	0.1
Cd	7.7	0.9	3.1	2.9
Cr	163	168	168	266
Cu	109	99	111	279
Hg	0.15	0.02	0.18	0.10
Ni	45	75	82	71
РЪ	67	98	. 32	47
Zn	595	174	136	81
PESTICIDES (ppm)				· · · · · · · · · · · · · · · · · · ·
Aldrin	< 0.01	< 0.01	< 0.01	< 0.01
Chlordane	< 0.40	< 0.40	< 0.40	< 0.40
pp-DDT,DDE,DDD	< 0.02	< 0.02	< 0.02	< 0.02
Dieldrin	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan I,II	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan sulfate	< 0.04	< 0.04	< 0.04	< 0.04
Endrin	< 0.01	< 0.01	< 0.01	< 0.01
Endrin aldehyde	< 0.04	< 0.04	< 0.04	< 0.04
Heptachlor	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor epoxide	0.46	1.42	1.79	1.94
Toxaphene	< 0.50	< 0.50	<0.50	<0.50
alpha-BHC	< 0.01	< 0.01	< 0.01	< 0.01
beta-BHC	< 0.01	< 0.01	< 0.01	< 0.01
gamma-BHC	< 0.01	< 0.01	< 0.01	< 0.01
Total BHC	< 0.01	< 0.01	< 0.01	< 0.01
PCBs (ppb)	< 100	<100	< 100	< 100
· · · · · · · · · · · · · · · · · · ·				

Sediment Chemistry Results (Dry Weight) for the Inner Federal Navigation Channel, New Haven Harbor 1993

ţ

PAHs (ppm)	А	В	С	D
Low Molecular Weight				
Napthalene	0.20	0.18	0.31	0.19
Acenapthene	0.11	0.05	0.05	0.03
Acenaphthylene	< 0.03	< 0.03	< 0.04	< 0.04
Fluorene	0.17	0.09	. 0.10	< 0.04
Phenanthrene	0.69	0.34	0.55	0.29
Anthracene	0.27	0.11	0.13	0.08
High Molecular Weight				
Fluoranthene	1.52	0.82	1.31	0.82
Pyrene	2.39	1.12	1.38	0.87
Benzo(a)anthracene	0.71	0.32	0.47	0.28
Chrysene	0.73	0.41	0.60	0.36
Benzo(b)fluoranthene	0.63	0.36	0.70	0.39
Benzo(k)fluoranthene	0.62	0.36	0.46	0.38
Benzo(a)pyrene	0.47	0.32	0.45	0.27
Benzo(g,h,i)perylene	< 0.03	< 0.03	0.31	0.19
Dibenzo(a,h)anthracene	< 0.03	< 0.03	< 0.04	< 0.04
Indeno(1,2,3-cd)pyrene	< 0.03	< 0.03	< 0.04	< 0.04

Appendix A Table 2

Sediment Chemistry Results (Dry Weight) for the Outer Federal Navigation Channel, New Haven Harbor 1993

OUTER HARBOR	E	F	G	H	1	1
Station Latitude	41°16.94'	42°16.39'	41°15.60'	41°15.16'	41°14.50'	41°13.54'
Station Longitude	72°54.80'	72°54.69'	72°54.81'	72°54.97'	72°54.97'	72°54.69'
GRAIN SIZE				l		
% Silt/clay	95	97	97	99	98	77
% TOC	0.60	0.64	0.40	0.68	0.76	0.50
METALS (ppm)						
As	< 0.03	12.6	3.9	1.4	1.5	1.9
Cd	4.2	1.1	3.9	1.1	0.76	0.62
Cr	320	220	278	318	162	151
Cu	260	340	258	420	149	153
Hg	0.19	0.22	0.24	0.24	0.28	0.38
Ni	36	76	96	181	60	63
Pb	90	100	80	98	106	112
Zn	101	440	117	218	321	334
PESTICIDES (ppm)						
Aldrin	< 0.01	0.13	< 0.01	< 0.01	< 0.01	0.21
Chlordane	< 0.40	< 0.40	<0.40	<0.40	<0.40	<0.40
pp-DDT,DDE,DDD	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Dieldrin	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
Endosulfan I,II	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan sulfate	< 0.04	<0.04	<0.04	< 0.04	<0.04	0.04
Endrin	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Endrin aldehyde	< 0.04	< 0.04	<0.04	<0.04	< 0.04	< 0.04
Heptachlor	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor epoxide	1.39	0.62	0.82	< 0.01	0.53	0.59
Toxaphene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
alpha-BHC	< 0.01	0.18	< 0.01	< 0.01	< 0.01	< 0.01
beta-BHC	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01
gamma-BHC	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
Total BHC	< 0.01	0.11	0.22	< 0.01	< 0.01	< 0.01
PCBs (ppb)	<100	<100	<100	<100	<100	<100

Appendix A Table 2 (cont.)

PAHs (ppm)	E	F	G	Н	Ī	Ĵ
Low Molecular Weight		<u>_</u>	L.			
Napthalene	0.03	< 0.02	0.14	0.48	0.06	0.05
Acenapthene	< 0.05	< 0.02	< 0.05	0.26	< 0.06	< 0.03
Acenapthylene	< 0.05	< 0.02	< 0.05	< 0.05	< 0.06	< 0.03
Fluorene	< 0.05	< 0.02	0.08	0.47	< 0.06	< 0.03
Phenanthrene	0.07	0.11	0.36	1.07	0.18	0.21
Anthracene	< 0.05	0.03	0.08	0.22	< 0.06	0.06
High Molecular Weight						
Fluoranthene	0.16	0.54	0.83	0.94	0.43	0.35
Pyrene	0.16	0.58	0.78	0.93	0.43	0.37
Benzo(a)anthracene	0.06	0.39	0.28	0.31	0.19	0.15
Chrysene	0.06	0.29	0.38	0.30	0.19	0.14
Benzo(b)fluoranthene	< 0.05	0.29	0.34	0.37	0.13	0.16
Benzo(k)fluoranthene	< 0.05	0.25	0.32	0.35	0.13	0.11
Benzo(a)pyrene	< 0.05	0.27	0.31	0.35	0.13	0.13
Benzo(g,h,i)perylene	< 0.05	0.19	0.30	. 0.29	< 0.06	< 0.03
Dibenzo(a,h)anthracene	< 0.05	< 0.02	< 0.05	< 0.05	< 0.06	< 0.03
Indeno(1,2,3-cd)pyrene	< 0.05	0.31	< 0.05	< 0.05	< 0.06	< 0.03

Appendix A Table 3

Sediment Chemistry Results (Dry Weight) for Gulf Oil, New Haven Harbor 1993

GULF OIL	B1	B2 A/B*	B3	B4	B5	B6 A/B*	B7
GRAIN SIZE		·					
% Gravel	0	0	0	0	0.2	0	0
% Sand	52.5	32.4	58.4	61.5	59.6	47.5	53.8
% Silt/clay	46.6	36.8	42.3	38.4	40.1	55.7	46.6
%TOC	5.3	3.2	4.2	3.7	4.8	3.9	3.5
METALS(ppm)	[]	<u> </u>				[]	
As	ND	ND	ND	ND	ND	ND	ND
Cd	5.91	4.9	5.36	4.76	5.87	6.55	6.65
Cr	12	87.3	91.4	84.8	94.8	117	123
Cu	200	130	150	135	156	200	217
Pb [·]	140	95	110	100	120	142	158
Hg	ND	ND	ND	ND	ND	ND	ND
Ni	49.9	30.5	38.4	33.5	. 39	41.9	46.2
Zn	350	200	200	190	265	264	276
PESTICIDES(ppm)							
Aldrin	ND	ND	ND	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND	ND	ND	ND
pp-DDT,DDE,DDD	ND	ND	ND	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND	ND	ND	ND
Endosulfan I,II	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND	ND	ND	ND
Endrin Endrin aldahuda	ND	ND	ND ND	ND	ND	ND	ND
Endrin aldehyde	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Heptachlor Heptachlor epoxide	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Heptachlorocyclohexane (total)	ND	ND	ND	ND	ND ND	ND	ND ND
Methoxychlor	ND	ND	ND	ND	ND	ND	ND ND
Toxaphene	ND	ND	ND	ND	ND ND	ND ND	ND ND
PCBs (ppb)	190	210	250	280	250	140	150
r CBS (Pp0)	190	210	250	200	230	140	120
		بايسيبيب والمستحص					

. . . .

PAHs (ppm)	B1	B2 A/B*	B3	B4	B5	B6 A/B*	B7
Low Molecular Weight			L	<u></u>			I
Napthalene	ND	ND	ND	ND	ND	ND	ND
1-Methylnapthalene	ND	ND	ND	ND	ND	ND	ND
Biphenyl	ND	ND	ND	ND	ND	ND	ND
2,6-DimethyInapthalene	ND	ND	ND	ND	ND	ND	ND
Acenapthene	ND	ND	ND	ND	ND	ND	ND
Acenapthylene	ND	ND	ND	ND	ND	ND	ND
Fluorene	2.78	ND	ND	ND	ND	ND	ND
Phenanthrene	ND	0.2	ND	0.13	0.22	0.43	ND
1-Methylphenanthrene	ND	ND	ND	ND	ND	ND	ND
Anthracene	0.15	ND	0.27	0.2	0.35	0.71	ND
High Molecular Weight					-		
Fluoranthene	ND	0.99	0.58	0.66	1.38	2.56	1.22
Pyrene	2.49	0.89	0.54	0.6	1.09	2.09	0.99
Benzo(a)anthracene	8.75	4.36	0.16	2.49	4.10	8.33	4.07
Chrysene	1.47	0.73	0.4	0.44	0.70	1.41	0.72
Benzo(b)fluoranthene	2.09	1.29	0.83	0.73	1.09	1.75	1.1
Benzo(k)fluoranthene	1.97	1.22	ND	0.7	ND	0.12	ND
Benzo(a)pyrene	2.79	0.56	0.43	0.27	0.63	0.78	0.54
Benzo(e)pyrene	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	ND	ND	0.96	0.53	ND	ND	ND
Dibenzo(a,h)anthracene	0.54	ND	ND	0.29	ND	0.2	ND
Indeno(1,2,3-cd)pyrene	ND	ND	ND	0.29	ND	0.28	ND
Perylene	ND	ND	ND	ND	ND	ND	ND

* Composites of two samples

Appendix A Table 4

Sediment Chemistry Results (Dry Weight) for Northeast Petroleum, New Haven Harbor 1993

NORTHEAST PETROLEUM	T 1	T2	B1	B2	B 3	B 3	B3
GRAIN SIZE							······
%Gravel	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%Sand	9.5	10.7	10.3	8.35	7.82	12.6	97.7
%Sand %Silt/clay	90.54	89.3	89.7	91.65	92.18	87.4	2.3
%5nu chay %TOC	3.4	3.6	4.8	3.1	2.6	0.9	0.07
<i>2</i> 100	5.4	5.0	4.0	5.1	2.0	0.7	0.07
METALS (ppm)							
As	0.604	0.612	1.01	1.05	1.17	0.386	0.431
Cd	ND	ND	ND	0.065	0.505	ND	ND
Cr	71.4	61.2	71.3	92.8	128.0	5.56	32.0
Cu	107.0	92.7	100.0	60.2	73.4	46.3	4.08
Pb .	69.9	61.0	75.0	· <i>1</i> 7.3	122.0	10.7	29.0
Hg	0.093	0.099	0.136	0.098	0.036	0.006	0.086
Ni	18.7	19.9	25.1	24.1	32.4	6.3	10.9
Zn	156.0	159.0	182.0	188.0	235.0	16.2	57.2
PESTICIDES (ppm)							
Aldrin	ND	ND	ND	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND	ND	ND	ND
pp-DDT,DDE,DDD	ND	ND	ND	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND	ND	ND	ND
Endosulfan I,II	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND	ND	ND	ND
Endrin	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclohexane (total)	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND	ND	ND	ND
PCBs (ppb)	ND	ND	ND	ND	ND	ND	ND
ND Net Detected							

ND = Not Detected

e

PAHs (ppm)	TI	T2	B1	B2	B3	B3	B 3
Low Molecular Weight	I	l		L			
Napthalene	ND	ND	ND	ND	ND	0.06	ND
1-Methylnapthalene	ND	ND	ND	ND	ND	ND	ND
2-Methylnapthalene	ND	ND	ND	ND	ND	ND	ND
Biphenyl	ND	ND	ND	ND	ND	ND	ND
2,6-Dimethylnapthalene	ND	ND	ND	ND	ND	ND	ND
Acenapthene	ND	0.24	ND	ND	ND	ND	ND
Acenapthylene	ND	ND	ND	ND	0.03	ND	ND
Fluorene	ND	0.23	ND	ND	ND	ND	ND
Phenanthrene	ND	0.94	ND	ND	0.06	ND	ND
1-Methylphenanthrene	ND	ND	ND	ND	ND	ND	ND
Anthracene	ND	ND	ND	ND	0.04	ND	ND
High Molecular Weight]				····	<u> </u>	
Fluoranthene	0.43	4.66	ND	ND	0.11	0.44	ND
Pyrene	0.31	2.54	ND	ND	ND	0.26	ND
Benzo(a)anthracene	ND	0.25	ND	ND	0.03	ND	ND
Chrysene	0.14	ND	ND	ND	ND	0.14	ND
Benzo(b)fluoranthene	ND	0.21	ND	ND	0.45	0.05	ND
Benzo(k)fluoranthene	ND	0.22	ND	ND	0.58	0.07	ND
Benzo(a)pyrene	ND	0.27	ND	ND	ND	0.1	ND
Benzo(e)pyrene	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	ND
Perylene	ND	ND	ND	ND	ND	ND	ND

ND = Not Detected

Appendix A	Table 4	(cont.)
------------	---------	---------

NORTHEAST PETROLEUM	B4	B4	B5	B5	B6	B7	B8
GRAIN SIZE	I		1	I	<u>l</u>		
%Gravel	0	0	0	0	0	0	1.67
%Sand	11.4	6.82	7.43	10.4	11.2	69.7	74.5
%Silt/clay	88.6	93.18	92.57	89.6	88.8	26.7	21.6
%TOC	3.2	1.6	3.5	2	2.2	0.46	0.26
METALS (ppm)	1		I,			_ <u></u>	
As	0.894	0.751	1.4	1.13	1.35	NA	NA
Cd	ND	ND	1.22	0.864	ND	NA	NA
Cr	73.4	91.5	1.56	101	72.5	NA	NA
Cu	130	54.2	98.4	64.7	88.1	NA	NA
Pb	78.4	81	144	98.7	73.9	NA	NA
Hg	0.136	0.183	0.203	0.109	0.086	NA	NA
Ni	25.7	23.4	40.3	24.8.	22.7	NA	NA
Zn	166	306	919	543	149	4.22	7.62
PESTICIDES (ppm)							
Aldrin	ND	ND	ND	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND	ND	ND	ND
pp-DDT,DDE,DDD	ND	ND	ND	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND	ND	ND	ND
Endosulfan I,II	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND	ND	ND	ND
Endrin	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclohexane (total)	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND	ND	ND	ND
PCBs (ppb)	ND	ND	ND	ND	ND	ND	ND

ND = Not Detected NA = Not Given

PAHs (ppm)	B4	B4	B5	B 5	B6	B 7	B8
Low Molecular Weight	<u> 1</u>	I			<u></u>		
Napthalene	0.12	0.14	0.04	0.6	ND	ND	ND
1-Methylnapthalene	ND	ND	ND	ND	ND	ND	ND
2-Methylnapthalene	ND	ND	ND	ND	ND	ND	ND
Biphenyl	ND	ND	ND	ND	ND	ND	ND
2,6-Dimethylnapthalene	ND	ND	ND	ND	ND	ND	ND
Acenapthene	ND	ND	0.14	ND	ND	ND	ND
Acenapthylene	ND	0.09	ND	ND	ND	ND	ND
Fluorene	ND	0.14	ND	0.08	ND	ND	ND
Phenanthrene	0.09	0.28	0.13	0.07	ND	ND	ND
1-Methylphenanthrene	ND	ND	ND	ND	ND	ND	ND
Anthracene	ND	0.06	0.46	ND	ND	ND	ND
High Molecular Weight	_						
Fluoranthene	1.6	3.13	2.3	1.27	0.9	ND	ND
Pyrene	1	2.3	1.46		0.55	ND	ND
Benzo(a)anthracene	0.13	0.24	0.14	0.08	0.09	ND	ND
Chrysene	ND	0.05	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.17	0.38	0.12	0.13	0.12	ND	ND
Benzo(k)fluoranthene	0.24	0.52	0.21	0.17	0.15	ND	ND
Benzo(a)pyrene	0.31	0.49	ND	0.22	0.15	ND	ND
Benzo(e)pyrene	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	ND	0.05	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	ND
Perylene	ND	ND	ND	ND	ND	ND	ND

ND = Not Detected

Appendix A Table 5

Sediment Chemistry Results (Dry Weight) for the New Haven Terminal, New Haven Harbor 1993

NEW HAVEN TERMINAL	B1	B2	B3	B5	B6
GRAIN SIZE					
%Gravel	23.1	13.8	2.13	13.4	3.58
% Sand	57.0	63.8	62.4	60.4	66.5
%Silt/clay	20.6	18.5	32.1	26.9	26.3
%TOC	2.4	1.6	1.4	1.2	3.3
METALS (ppm)		<u> </u>			
As	ND	ND	ND	ND	ND
Cd	ND	ND	ND	ND	ND
Cr	50.9	30.4	· 38	46.8	77.3
Cu	80	43.1	57.7	63.5	105
Pb	69.6	32.4	49.8	59.5	90.3
Hg	ND	ND	ND	ND	ND
Ni	21.6	11.7	15.8	19.9	25.4
Zn	139	92.6	98.3	121	181
PESTICIDES (ppm)					
Aldrin	ND	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND	ND
pp-DDT,DDE,DDD	ND	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND	ND
Endosulfan I,H	ND	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND	ND
Endrin	ND	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND	ND
Hexachlorocyclohexane (total)	ND	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND	ND
PCBs (ppb)	ND	ND	ND	ND	ND
					1

ł

PAHs (ppm)	B1	B2	B3	B5	B6	
Low Molecular Weight			·			
Napthalene	ND	ND	ND	ND	ND	
1-Methylnapthalene	ND	ND	ND	ND	ND	
2-Methylnapthalene	ND	ND	ND	ND	ND	
Biphenyl	ND	ND	ND	ND	ND	
2,6-Dimethylnapthalene	ND	ND	ND	ND	ND	
Acenapthene	ND	ND	ND	ND	ND	
Acenapthylene	ND	ND	ND	ND	ND	
Fluorene	ND	ND	ND	ND	ND	
Phenanthrene	0.29	0.3	0.09	0.55	0.79	
1-Methylphenanthrene	ND	ND	ND	ND	1 1	
Anthracene	ND	ND	NÐ	0.48	ND	
High Molecular Weight						
Fluoranthene	0.2	1.79	1.52	2.43	6.52	
Pyrene	ND	1.19	ND	1.75	4.49	
Benzo(a)anthracene	ND	ND	0.34	ND	0.13	
Chrysene	0.11	0.57	0.43	1.12	ND	
Benzo(b)fluoranthene	0.14	0.68	0.62	ND	0.14	
Benzo(k)fluoranthene	0.17	0.88	ND	0.14	0.14	
Benzo(a)pyrene	ND	0.08	ND	ND	0.35	
Benzo(e)pyrene	ND	ND	ND	ND	ND	
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	
Dibenzo(a,h)anthracene	ND	ND	ND	ND	0.51	
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	
Perylene	ND	ND	ND	ND	ND	

Appendix A Table 6

MOBIL OIL	B1	B2	B3
GRAIN SIZE			<u> </u>
% Gravel	3.89	28.3	14.5
% Sand	81.9	66.4	82.0
% Silt/clay	14.2	5.5	3.68
% TOC	4.9	3.5	0.65
METALS (ppm)			·
As	ND	ND	ND
Cd	1.25	ND	ND
Cr	10.7	7.09	2.18
Cu	18.7	0.944	2.24
Pb	38.4	21.8	5.97
Hg	ND	ND	ND
Ni	7.83	4.8	2.66
Zn	87.5	58.3	12.3
PESTICIDES (ppm)			
Aldrin	ND	ND	ND
Chlordane	ND	ND	ND
pp-DDT,DDE,DDD	ND	ND	ND
Dieldrin	ND	ND	ND
Endosulfan I,II	ND	ND	ND
Endosulfan sulfate	ND	ND	ND
Endrin	ND	ND	ND
Endrin aldehyde	ND	ND	ND
Heptachlor	ND	ND	ND
Heptachlor epoxide	ND	ND	ND
Hexachlorocyclohexane (total)	ND	ND	ND
Methoxychlor	ND	ND	ND
Toxaphene	ND	ND	ND
PCBs (ppb)	56	23	ND

Sediment Chemistry Results (Dry Weight) for Mobil Oil, New Haven Harbor 1993

PAHs (ppm)	B1	B2	B3
Low Molecular Weight			
Napthalene	ND	ND	ND
1-Methylnapthalene	ND	ND	ND
2-Methylnapthalene	ND	ND	ND
Biphenyl	ND	ND	ND
2,6-Dimethylnapthalene	ND	ND	ND
Acenapthene	0.42	ND	ND
Acenapthylene	0.40	0.11	ND
Fluorene	0.24	ND	ND
Phenanthrene	0.74	0.24	ND
1-Methylphenanthrene	ND	ND	ND
Anthracene	5.39	1.66	ND
High Molecular Weight			
Fluoranthene	1.86	1.44	0.05
Pyrene	11.20	7.02	0.23
Benzo(a)anthracene	0.65	4.79	ND
Chrysene	1.61	0.68	0.03
Benzo(b)fluoranthene	11.40	5.05	0.44
Benzo(k)fluoranthene	1.37	0.56	0.56
Benzo(a)pyrene	1.57	0.54	0.04
Benzo(e)pyrene	ND	ND	ND
Benzo(g,h,i)perylene	4.88	0.60	0.05
Dibenzo(a,h)anthracene	2.47	1.04	ND
Indeno(1,2,3-cd)pyrene	ND	ND	ND
Perylene	ND	ND	ND

Appendix A Table 7

Sediment Chemistry Results (Dry Weight) for Wyatt Incorporated, New Haven Harbor 1993

WYATT INCORPORATED	B1	B2	B 3	B4	B4-A		B6	A1
	Arco b	erth		P	ink Tank	berth		
GRAIN SIZE								
% Gravel	12.7	8.98	18.4	11.3	0.0	3.43	0.5	0.0
% Sand	67.6	70.2	56.3	72.6	69.5	68.3	87.1	34.1
% Silt/clay	19.3	21.6	26.9	16.9	30.8	28.3	12.3	65.9
%TOC	3.8	3.4	4.8	2.0	3.9	3.1	0.64	4.3
METALS (ppm)		I				ł		
As	ND	ND	ND	ND	ND	ND	ND	ND
Cd	ND	ND	2.54	2.18	3.51	2.87	0.596	1.2
Cr	89.1	44.8	87.0	64.7	101.0	77.2	23.5	10.9
Cu	148.0	67.0	144.0	190.3	206.0	171.0	68.6	ND
Pb	168.0	59.3	105.0	113.0	131.0	106.0	4.48	24.4
Hg	ND	ND	ND	ND	ND	ND	ND	ND
Ni	45.4	21.1	26.5	19.8	29.9	25.1	8.46	8.19
<u>Zn</u>	ND	139.0	214.0	149.0	265.0	213.0	82.8	61.9
PESTICIDES (ppm)					-			
Aldrin	ND	ND	ND	ND	ND	ND	ND	ND
Chlordane	ND	ND	ND	ND	ND	ND	ND	ND
pp-DDT,DDE,DDD	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I,II	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclohexane (total)	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND	ND	ND	ND	ND
PCBs (ppb)	25	22	27	53	68	59	47	49

PAHs (ppm)	B1	B2	B3[B4	B4-A	B5	B 6	A1
	Arco bert	1		Pin	nk Tank be		_	
Low Molecular Weight							· · · ·	
Napthalene	ND	ND	ND	ND	0.41	ND	ND	- ND
1-Methylnapthalene	ND	ND	ND	ND	ND	ND	ND	ND
Biphenyl	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dimethylnapthalene	ND	ND	ND	ND	ND	ND	ND	ND
Acenapthene	ND	ND	ND	ND	ND	ND	ND	ND
Acenapthylene	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	ND	0.11	0.18	0.30	0.80	0.53	ND	0.16
1-Methylphenanthrene	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	ND	ND	0.19	ND	0.07	ND	ND	0.06
High Molecular Weight								
Fluoranthene	1.31	0.54	1.09	2.87	8.70	3.22	1.44	1.35
Pyrene	ND	0.51	0.97	2.51	6.95	2.69	1.21	6.51
Benzo(a)anthracene	ND	ND	0.51	0.14	0.17	0.13	0.07	5.37
Chrysene	1.44	0.34	0.52	1.68	2.88	2.29	0.97	0.77
Benzo(b)fluoranthene	2.88	0.88	2.01	2.79	2.36	4.34	1.73	7.45
Benzo(k)fluoranthene	3.71	0.08	2.58	0.29	0.17	0.35	0.18	0.56
Benzo(a)pyrene	ND	ND	0.21	0.40	0.60	0.48	0.29	0.65
Benzo(e)pyrene	ND	ND	ND	ND	0.30	ND	ND	ND
Benzo(g,h,i)perylene	ND	ND	ND	0.31	ND	0.72	0.07	2.10
Dibenzo(a,h)anthracene	ND	ND	0.43	0.54	0.84	0.70	0.34	0.87
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	ND	ND
Perylene	ND	ND	ND	ND	ND	ND	ND	ND

APPENDIX B

Disposal and Capping Operations

Appendix B Disposal and Capping Operations

۱

Appendix B Table 1.	Summary of Disposal Operations of Contaminated Sediments Dredged from New Haven Harbor, October 1993 to January 1994 (Source: Great Lakes Dredging Company)
Appendix B Table 2.	Summary of Capping Operations at the NHAV93 Mound, November 1993 to February 1994 (Source: Great Lakes Dredging Company)

Appendix B Table 1

Summary of Disposal Operations of Contaminated Sediments Dredged from New Haven Harbor, October 1993 to January 1994 (Source: DAMOS Disposal Logs)

Disposal Location	Trip Date	Source	Volume	
			m ³	yd ³
NHAV93 buoy	10/3/93-10/31/93	inner federal channel	460,083	601,730
I	11/5/93-11/18/93	inner federal channel	2,752	3,600
I	11/18/93-12/3/93	inner federal channel	35,240	46,090
I	1/8/94	inner federal channel	2,294	3,000
	То	tal from the inner federal channel	500,369	654,420
I	12/3/93-12/7/93	New Haven Terminal	······································	
		Total	25,327	33,125
I		Wyatt Incorporated		
	12/7/93-12/9/93	Pink Tank	16,362	21,400
	12/13/93-12/14/93	Arco Berth	4,511	5,900
· · · · · · · · · · · · · · · · · · ·		Total	20,873	27,302
I	12/11/93-12/13/93	NE Petroleum	9,710	12,700
· · ·	12/13/93-12/15/93	NE Petroleum	2,217	2,900
		Total	11,927	15,600
I	12/25/93-12/28/93	Gulf Oil	25,767	33,700
	1/7/94-1/8/94	Gulf Oil	2,752	3,600
	1/8/94	Gulf Oil	382	500
· · · · · · · · · · · · · · · · · · ·		Total	28,901	37,801
I	1/7/94	Mobil		
		Total	2,829	3,700
	To	tal from private dredging projects	89,857	117,533
		TOTAL VOLUME	590,226	771,949
		460,083	601,730	
		Total deposited at location I	130,143	117,529

Appendix B Table 2

.

\$

DISPOSAL POINT	LAT D	EG	LONG	DEG	DATE INITIATED	DATE COMPLETED	SOURCE OF CAP MATERIAL	VOLUME (yd ³)	VOLUME (m³)
A-Cap	41	9.200	72	53.425	11/3/93	11/18/93	federal channel	43,185	33,019
B-Cap	41	9,158	72	53,333	11/3/93	11/18/93	federal channel	43,575	33,317
C-Cap	41	9,108	72	53,325	11/3/93	11/18/93	federal channel	38,400	29,361
D-Cap	41	9.050	72	53.317	11/3/93	11/18/93	federal channel	39,440	30,156
E-Cap	41	9,192	72	53,525	11/3/93	11/18/93	federal channel	39,680	30,339
F-Cap	41	9,150	72	53.417	11/18/93	12/10/93	federal channel	14,800	11,316
G-Cap	41	9.100	72	53,400	11/18/93	1/31/94	federal channel & Lex Atlantic/ Gateway	60,700	46,411
Н-Сар	41	9.042	72	53.392	11/18/93	12/10/93	federal channel	14,320	10,949
J-Cap	41	9.163	72	53.488	11/18/93	. 12/10/93	federal channel & Wyatt Incorporated	18,000	13,763
К-Сар	p 41 9.000 72 53.375		11/18/93	12/22/93	federal channel & NE Petroleum	26,615	20,350		

Summary of Capping Operations at the NHAV93 Mound, November 1993 to February 1994 (Source: DAMOS Disposal Logs)

.

.

Appendix B Table 2 (cont.)

DISPOSAL POINT	LAT D	EG	LONG	DEG	DATE INITIATED	DATE COMPLETED	SOURCE OF CAP MATERIAL	VOLUME (yd ³)	VOLUME (m³)
L-Cap	41	9.008	72	53.300	11/18/93	11/18/93 12/22/93		15,140	11,576
V-Cap	41	9.235	72	53.340	12/10/93	12/22/93	NE Petroleum	10,210	7,806
W-Cap	41	9.200	72 53.300 12/10/93		12/10/93	12/22/93 federal channel & NE Petroleum		12,550	9,596
X-Cap	41	9.163	72	53,275	12/10/93	12/22/93	NE Petroleum	7,400	5,658
Ү-Сар	41	9.100	72	53.250	12/10/93	12/22/93	NE Petroleum	7,450	5,696
Z-Cap	41	9.265	72	53.265	12/10/93	12/22/93	NE Petroleum	6,000	4,588
Al-Cap	41	9.230	72	53.230	12/10/93	12/22/93	NE Petroleum	7,300	5,582
I-Cap	41	9.067	72	53.525	1/10/94	1/31/94	federal channel	42,350	32,381
М-Сар	41	9.163	72	53.583	1/14/94	1/31/94	federal channel	25,200	19,268
N-Cap	41	9.115	72	53.550	1/8/93	1/31/94	federal channel	35,000	26,761
O-Cap	41	9.023	72	53.483	1/13/94	1/31/94	federal channel	35,700	27,296
P-Cap	41	8.975	72	53.435	1/14/94	· <u>1/31/94</u>	federal channel	20,400	15,598
Q-Cap	41	9.125	72	53.625	1/14/94	2/1/94	federal channel	24,900	19,038
R-Cap	41	9.088	72	53.613	1/10/94	2/1/94	federal channel	32,350	24,735
S-Cap	41	9.038	72	53,583	1/10/94	1/30/94	federal channel	34,250	26,187
Т-Сар	41	8.992	72	53.565	1/14/94	1/30/94	federal channel	24,950	19,077

DISPOSAL POINT	LAT D	DEG LONG		DEG	DATE INITIATED	DATE COMPLETED	SOURCE OF CAP MATERIAL	VOLUME (yd³)	VOLUME (m³)
U-Cap	41	9.040	72	53.660	1/17/94	1/30/94	federal channel	22,560	17,249
NHAV 93 Buoy	41	11.083	72	53,750	1/8/94	1/30/94	federal channel	42,130	32,213
					_	Total Volume of	Capped Sediments	744,555	569,287
						Total Volume fro	m federal channel	661,585	505,845
						Total Volume fr	om NE Petroleum	63,220	48,338
					Tota	16,050	12,272		
			[Тс	otal Volume from V	Vyatt Incorporated	3,700	2,829

٠

Appendix B Table 2 (cont.)

¢

1

APPENDIX C

REMOTS® Sediment-Profile Surveys

Appendix C REMOTS[®] Sediment-Profile Surveys

Appendix C Table 1.	Station Locations and Results of the REMOTS [®] Baseline Survey Conducted in September 1993
Appendix C Table 2.	Dredged Material Thickness from REMOTS® Precap Survey (3- 4 November 1993)
Appendix C Table 3.	Station Locations and Results of the REMOTS [®] Postdisposal Survey Conducted 4 November 1993

Appendix C Table 1

Station Locations and Results of the REMOTS® Baseline Survey Conducted in September 1993

STATION			LAT		LONG	SUCC	GRAIN SIZE		MUD CLAS		PENET	RATION			DREDGED MATER		REDOX	REBO		REDOX	OTENT		ONTINUITY
& REP		DEG	MIN	DEG			MIN MAX							MEAN	AREA MIN MAX								
CLIS 87-88																							
C87-88 NEC	A	41	9.199	72	53.524	ST_I	1>4	4 to 3	0	Q	14.19	14.44	0.25	14.32	0 0 0	0	0	0	Ö	37.312	1.57	3.33	2.75
C87-88 NEC	B	41	9.209	72	53.512	ST	2 >4	>4	0	0	10.91	13.48	2.58		0 0 0	ol	0	0	o	35.246	1.16	3.74	2.63
C87-88 NEC	c	41	9.309	72	53.506	ST_I_ON_II	2 >4	4 to 3	o	Ō	14.29	14.95	0.66	14.62	0 0 0	0	ol	0	Ó	50.025	2.12	4.60	3.71
C87-88 50SW	A	41	9.179	72	53.519	ST I ON II	2 >4	>4	Ō	Ò	8.03		2.17	9,12	0 0 0	ō	1.06	6.72	3.89	24.011	0.61	2.37	1.76
C87-88 50SW	c	41	9,173			ST_I_ON_II	2 >4	>4	l ö	ō	10.86	11.36	0.50		o o o	õ	1.01	5,46	3.24	27.265	0.10	2.68	2,10
C87-88 50SW	Ď	41	9.177		53.534		2 >4	>4	ō	Ő	9,19	10.30	1.11	9.75	o o o	ō		2.58	1.74	20.377	0.45	2.37	1.57
C87-88 150SW	A	41	9.146		53.567		-1 >4	4 to 3	15	2.52	5.15	7.17	2.02		<u>o</u> o o	ŏ	0	0	0	6.685	0.05	1.25	0.51
C87-88 150SW	8	41	9.138		53.591		2 >4	>4	Ö	0	6.52	8.28	1,77	7.40	0 0 0	ŏ	0.1	4,19	2.15	17.788	0.15	2.73	1.32
C87-88 150SW	ē	41	9.128		53.584		1>4	>4	ŏ	õ	8.54	9.95	1.41	9.24	o o o	ŏ	0.4	2.93	1.67	27.055	1.11	2.53	2.00
C87-88 225SW	B	41	9.110		53.630		1 >4	-4		0	12.53	13.03	0.51	12.78		ŏ	<u>, , , , , , , , , , , , , , , , , , , </u>			26.937	0.05	2.88	2.00
C87-88 225SW	č		9.121		53.605		1>4	>4	i ő	ŏ	13.79		0.61		o o o	ŏ	ŏ	ŏ	ŏ	25.836	0.81	2.53	1.91
C87-88 225SW	Ď	41			53.624		1>4	>4	ŏ	ő	14.50	15.05	0.55		o o o	ŏ	ŏ	ň	ŏ	30.447	1.36	3.59	2.24
C87-88 300SW	Ă	41	9.088		53.648		-1>4	4 to 3	ő	ň	9.09	11.01	1.92		<u>o o o</u>	ŏ		ŏ	ŏ	99	99.00	99.00	99.00
C87-88 300SW	B	41				ST_I_TO_II	1>4	>4	ŏ	ň	11.16		1.31		0 0 0	ň	ň	ň	ă	14,133	0.66	1.31	1.00
C87-88 300SW	Ď	41	9.082		53.649		0>4	>4	15	1.11	15.15		0.86			ň	i ă	ň	ă	7.458	0.51	2.68	1.44
C87-88 300SW	Ĕ	41	9.089		53,665		-1>4	>4	ö		0.05	0.05	0.00		o o o	ŏ	l XI	Ň	Ň	99	99.00	99.00	99.00
C87-88 375SW	Ā	41	9.047		53.700		-1>4	>4			3.99	7.02	3.03			ŏ		Ň	Ň	5.165	0.05		
C87-88 375SW	B	41	9.055		53,695		1>4	>4	ő		13.99	14.30	0.31	14.14		ŏ		0	2	9,522	0.05	1.26	0.79 0.93
C87-88 375SW	č		9.048		53,689		0>4	>4	ň	0	12.68		0.81			ŏ		ŏ	, XI	20.349	0.05	1.46 2.42	1.51
C87-88 375SW	ŏ		9.053		53,684		-1>4	>4		ŏ	10.00	11.57	1.57	10.78		ŏ	ŏ	ŏ	ŏ	16.559			
CLIS 89			9,000	12	33,004	31_1	-11-4	1/4		V	10.00	11.57	1.97	10.76		v			U	16.559	0.66	1.72	1.18
C89 100E	A	41	9.301	70	53.326	et i	2154	4 to 3	0	0	10.96	11.46	0.51	11.21		0			AI	22.769	0.401	0.701	1.80
	ŝ						2 >4 2 >4	4 to 3	ŏ	ŏ					0 0 0	ŏ	ŏ	Ň	Ň		0.10	3.79	
C89 100E	č	41	9.308		53.331		1>4		ő	0	13.28	14.14	0.86			ŏ	2	Ö	2	39.898	1.31	3.54	2.95
C89 100E		41	9.303		53,328			4 to 3			13.28	13.84	0.56					0	<u>v</u>	30.23	0.30	2.98	2.24
C89 50E	A	41	9.302		53,361		0 >4	3 to 2	20	1.26	8.94	11.57	2.63		0 0 0	0	2	0		99	99.00	99.00	99.00
C89 50E	8	41	9.308		53.365		1>4	4 to 3			3.03	6.41	3.38	4.72		, v	2	0		11.391	0.25	1.67	0.97
C89 50E	c	41	9.300		53.367		1>4	3 to 2	15	2.29	7.43	9.44	2.02			0	백	0	<u> </u>	14.283	0.25	1.87	1.08
C89 CTR	A	41	9.293		53,402		1>4	3 to 2	10	2.1	9,14	12.78	3.64		0 0 0	0	2	0		17.887	0.05	3.59	1.68
C89 CTR	B	41	9.298		53.407		1 >4	>4	0	0	8.84	10,76	1.92		0 0 0	, v			2	24.902	1.11	2.73	1.85
C89 CTR	ç	41	9.293		53.408		2 >4	4 to 3	1 <u>~</u> 1	0	6.97	8.28	1.31		0 0 0	0	0	0	<u> </u>	25.864	0.40	2.78	1.89
C89 50W	B	41	9.303		53.428		2 >4	3 to 2	30	0.76		16.01	1.21	15.40	0 0 0	~1	2	0		45.054	1.26	4.85	3.36
C89 50W	C	41	9.307		53.439		2 >4	3 to 2	4 ~I		11.87	14.65	2.78			0	0	0	0	46.216	2.22	4.34	3.40
C89 50W	<u> </u>	41	9.303		53,438		0 >4	3 to 2	0	0	13.54	16.87	3.33		0 0 0	0		0	0	19.884	0.25	2.58	1.94
C89 100W	A	41	9.303			ST_I_TO_II	2 >4	4 to 3		0	17.02	17.93	0.91		0 0 0	0	아	Ő	9	50.324	0.45	5.45	3.74
C89 100W	8	41	9.306		53,474		2 >4	4 to 3	3	9.47	16.26	17.83	1.57		0 0 0	0	9	0	9	16.263	0.30	2.53	1.49
C89 100W	С	41	9.304			ST_I_TO_II	2 >4	>4	0	0	17.32	19.49	2.17	18.41	0 0 0	0	0	0	0	41.923	1.06	4.70	3.13
C89 150W	A	41	9.309		53.524		2 >4	>4	3	10.01	3.13		10.35		0 0 0	Q	0	0	0	21.393	1.16	3.18	2.34
C69 150W	8	41	9.298	72	53.512	ST_I	1 >4	4 to 3	0	0	17.32	17.98	0.66		0 0 0	0		0	0	47.42	1.92	4.85	3.50
C89 150W	C	41	9.309	72	53,506	ST_I_TO_II	2 >4	4 to 3	0	0	16.46	17.32	0.86	16.89	0 0 0	0)	0	0	0	44.213	1.92	4.44	3.32
CLIS 90																							
C90 100E	Α	41	9.207		53,181		-1 >4	4 to 3	0	0			0.80		0 0 0	0	0	0	0	23.371	0.90	2.85	1.74
C90 100E	B	41			53,184		-1 >4	4 to 3	0	0	12.15		0.50		0 0 0	0	0	0	0	23.352	0.35	4.00	1.76
C90 100E	C	41	9.195			ST_LON_II	1>4	>4	0	0		7.25	1.90		0 0 0	0	0	0	0	20.646	0.50	2.30	1.55
C90 50E	A	41	9.203		53.217		1 >4	>4	0	0	12.25	13.50	1.25		0 0 0	Ô	0	0	0	30.936	1.20	2.85	2.32
C90 50E	в	41	9.202		53.207		3 >4	4 to 3	0	0	12.25		1.25		0 0 0	0	0	0	0	17.163	0.30	2.40	1.73
C90 50E	C	41	9.195		53.222		1 >4	4 to 3	30	1.81	20.70	20.70	0.00		0 0 0	0	0	0	0	99	99.00	99.00	99.00
C90 CTR	A	41	9.200	72	53.252	ST_I	0 >4	>4	0	0	13.03	13.48	0.45	13.26	0 0 0	0	0	0	0	13.056	0.25	2.53	1.01
C90 CTR	в	41	9.199	72	53.256	ST_I	-1 >4	4 to 3	0	0	13.13	13.89	0.76		0 0 0	0	0	0	0	26.122	0.10	2.98	1.96
C90 CTR	C	41	9.198		53,257		0 >4	3 to 2	0	0	7.53	11.36	3.84	9.44	0 0 0	0	0	0	Ó	11.789	0.15	1.62	0.97
C90 50W	Ā	41	9.207	72	53.287	ŝt_i	-1>4	4 to 3	0	0	13.59	14.44	0.86	14.01	0 0 0	0	0	0	0	29.224	0.35	2.83	2.20
C90 50W	в	41	9.200	72	53.280	st <u>ī</u> i	1 >4	4 to 3	0	0	15.71	16.31	0.61	16.01	0 0 0	o	0	0	0	28.963	1.01	2.78	2.16
C90 50W	č	41	9,198		53.293		2>4	4 to 3	ō	ō	0.05	4.80	4.75		0 0 0	ō	Ó	ō	ŏ	99	99.00	99.00	99.00
C90 100W	Ă	41	9.203		53.327		2 >4	4 to 3	10	2.33	13.64	15.10	1.46		0 0 0	Ö	ó	ō	ŏ	55.234	0.10	6.62	4.34
C90 100W	B	41	9.198		53,337		0>4	4 to 3	100	1.07	17.27	18,53	1.26			ō	Ó	ō	ŏ	20,231	0.20	3.38	1.86
C90 100W	č	41	9,208		53.322		0>4	4 to 3	30	0.57	17.27	18.53	1.28		o o o	ŏ	l ol	ō		40.487	1.21	4.09	2.97
C90 150W	Ă	41	9.197	72			-1>4	4 to 3	0	0	15.76	18.31	0.56			ŏ	ő	ō		34,984	1.57	3.18	2.56
C90 150W	8	41	9.207			ST I ON II	1>4	4 to 3	i š	5.24	9,19	14,09	4,90			õ	ŏ	ŏ	ŏ	8.845	0.20	2.45	0.74
C90 150W	č		9.203		53.358		0 >4	>4	10	1.52	9.55		5.61			ň	ő	ភ័	ň	38.707	0.91	4.49	2.93
000 10014	× .		*.L.30	L	30.000			<u>''</u>			4.00				· · · · · · · · · · · · · · · · · · ·	<u>"</u>	<u> </u>		Ŭ			7.70	2.33

Appendix C Table 1 (cont.)

ſ

.

1

STATION			МЕТНА	NE BUBBLES			<u> </u>	SURFACE	ADDITIONAL MEASUREMENT		1
& REP				AREA MIN		MEAN	OSI	TYPE	COMMENT (NOADDM)	VALŲE	COMMENTS
CLIS 87-88	-			Leader Caute	1.00.01	1.00.00				INLUL	
C87-88 NEC	A	NO	0	0	0 0) 0		5 BIOGENIC	NOADDM	0	DM>pen, sand at bottom, chaetopterid? tube, pull-away
C87-88 NEC	в	NÔ	Ī) ŏ		5 PHYSICAL	NOADDM		DM>pen, pull-away at bottom, burrow, M/S
C87-88 NEC	č	NO	0	ō	o o			BIOGENIC	depth to feeding void (cm)		DM>pen, Reduced fecal coil above feeding void, amphipod tubes
C87-88 50SW	Ă	NO	ŏ	0	ŏ ŏ			BIOGENIC	NOADDM	0	DM>pen, amphipod tube on left, Nephthys, camera tipped
C87-88 50SW	ĉ	NO	Ō	0					Depth to sm feeding void (cm)		DM>pen, M/S
C87-88 50SW	Ď	NO	Ō	ō	õ õ				NOADDM		DM>pen, pull-away
C87-68 150SW	Ā	NŎ	Ō	ō				2 PHYSICAL	Depth to bottom sand layer (cm)		DM>pen, fresh DM, shelter fabric, some ig tubes, max gs shell
C87-88 150SW	B	NO	Ĭŏ	ŏ			•	SINDET	NOADDM		DM>pen, S/M/S, RPD 0-1 cm
C87-88 150SW	č	NŎ	Ιŏ	ŏ		ől ő		4)BIOGENIC		ň	DM>pen, very subtle change from RPD to blue sed, sand at bottom?
C87-88 225SW	ă	NÖ	Ĭŏ	i ŏ	ŏ ŏ			4 BIOGENIC		<u> </u>	DM>pen, burrow middle it blue laver betw, ox and sulfitic lavers
C87-88 225SW	č	NO	ŏ	ŏ	0 0			4 BIOGENIC			DM>pen, it blue mid layer 8-13 cm thick, pull-apart cracks
C87-88 225SW	ŏ	NO	Ĭŏ	ŏ	öl ö		1	4 BIOGENIC			DM>pen, trotoe find layer of 5 cm trick, pull-apart clacks DM>pen, burrows, sl. pull-away
C87-88 3005W	Ā	NO	ŏ	i	8 6			9 PHYSICAL			DM>pen, Nephthys?
C87-88 300SW	B	NO	ŏ	i o	0 0 0 0 0 0			4 BIOGENIC			OM-pen, hepitalys? OM-pen, burrows
C87-88 300SW	Ď	NO	Ĭŏ	ő	õ č			3 PHYSICAL			
	E		Ĭ		ö ö						DM>pen, surf. erosion, bivalve, pull-away, sand on bottom?
C87-88 300SW		NO YES						9 PHYSICAL		<u> </u>	surf. shot, DM=clumps of roots of marsh grass, fresh DM DM>pen, thin RPD, gastropod shell
C87-88 375SW	A B	NO	0000	0					NOADDM Width anemone burrow (cm)		
C87-88 375SW				0		ไ ว่	1				DM>pen, Ig anemone burrow fr suff. to bottom
C87-88 375SW	ç	NO			2	-		4 BIOGENIC	NOADDM		DM>pen, pull-apart void, sand at bottom?
C87-88 375SW	D	NQ	0	4 0	0 0	<u>4 0</u>	L	3 BIOGENIC	NUADUM	0	DM>pen, pull-away, hole at 7 cm depth, gastropod shell
CLIS 89		10	 2		<u>-</u>	<u> </u>	1	doucceure	NOADDW		Dillogon Jours 10 u sulfing Manhibus at death of sulf as an unit formation
C89 100E	<u>A</u>	NO	0				i :	4 BIOGENIC			DM>pen, lower 1/2 v sulfitic, Nephthys at depth, sl. pull-away, void burrow?
C89 100E	в	NO		0	0 0	2 2		5 BIOGENIC			DM>pen, pull-away + pullapart crack, Nephthys, phi 2-1 sand at bottom
C89 100E	C	NO		0	<u>o</u> o			4 BIOGENIC		0	DM>pen, M/S/M/S/M/S, pull-away, burrow? in center
C89 50E	A	NO	000	0	0 0		9	9 PHYSICAL		0	DM>pen, wiper dirt obscures RPD, shelter fabric on left, pull-away
C89 50E	в	NO	0		0 0			3 PHYSICAL			DM>pen, phi 4 over phi 2 sand, burrow, pull-apart voids at discontinuity
C89 50E	С	NO			0 0			3 PHYSICAL	NOADUM		DM>pen, chaotic ,2 mm thick phi 3 sand, pull-apart cracks
C89 CTR	A	NO	0					4 PHYSICAL			DM>pen, chaotic + shelter fabric, v sulfitic bet. RPD and bottom sand layer
C89 CTR	в	NO	0	0	0 0		· ·	4 BIOGENIC	NOADDM		DM>pen, S/M/S, pull-away at bottom
CB9 CTR	С	NO	0					4 BIOGENIC			DM>pen, chaotic, S/M/S/M/S
C89 50W	8	NO	0		0 0				Thickness phi 3 sand RDSI layer (cm)		DM>pen, S/M/S, RDSI, mid black cl. layer pull-away, 1 st. I tube
C89 50W	С	NO		0	이 이	이 이		6 PHYSICAL	NOADDM		DM>pen, pull-away in black lower layer
C89 50W	D	NO	[0	0 0	<u>oj c</u>			4 BIOGENIC			DM>pen, S/M/S, pull-away + pull-apart in black middle layer
C89 100W	Α	NO	0		0 0			7 BIOGENIC			DM>pen, pull-away at bottom
C89 100W	в	NO	0		oj o			3 PHYSICAL	NOADDM		DM>pen, S/M/S, relic void? pull-away + pull apart cracks
C89 100W	С	NO	0		0 0			7 BIOGENIC			DM>pen, S/M/S, 2 amphipod tubes ?, burrows?, pull-away + pull apart cracks
C89 150W	Ä	NQ	000	0				5 PHYSICAL	NOADDM		DM>pen, shelter fabric?
C89 150W	В	NO	0		0 0	0 0		6 BIOGENIC		0	DM>pen, S/M, burrows?, pull-away below discontinuity
C89 150W	С	NO	0	0 0	0 0) 0		7 BIOGENIC	NOADDM	0	DM>pen, S/M, 3 amphipod tubes, pull-away
CLIS 90											
C90 100E	A	NO		0 0	0 0		1		Depth to 1st discontinuity (cm)	3.35	DM>pen, M/S/M, sand 3-2 phi, sand at bottom artifact fell out of hole
C90 100E	в	NO		0) 0	1	4 BIOGENIC	Min. depth to black layer (cm)	3.15	DM>pen, chaotic fabric, S/M/S/M, mid S 2-3 phi
C90 100E	č	NO	0	0 0				8 BIOGENIC	NOADDM		DM>pen, S/M, pull-apart cracks in lower dark layer
C90 50E	Ă	NO		0 10	0 0) 0		5 BIOGENIC	NOADDM		DM>pen, S/M/S, void an artifact
C90 50E	В	NÔ		o lo	0 0) o	1	4 INDET	NOADDM		DM>pen, voids anifacts, phi 2 sand at depth
C90 50E	ē	NO	l	0	0 0		1 9	9 INDET	NOADDM	0	DM>pen, op, chaotic fabric, jumble of black mud+orange sand (fresh DM)
C90 CTR	A	NO						3 BIOGENIC	NÓADDM	Ō	DM>pen, S/M/S, top sand layer chaotic, mid black layer 12 cm thick
C90 CTR	B	NO	l ă	a a	0 0		1	4 BIOGENIC	NOADDM		DM>pen, S/M/S
C90 CTR	č	NO	000		o o			3 PHYSICAL	Thickness of top layer (cm)	1.73	DM>pen, S/M?/S, 3 layers white black dk. gray, camera tipped?
C90 50W	Ă	NO	ŏ		ŏ č	ő ő		4 BIOGENIC		0	DM>pen, pull-away, Burrow not feeding void?, S/M/S, sand at 13 cm depth
C90 50W	B	NO	1 1		8 11.65			2 BIOGENIC			DM>pen, 20 methan bubbles, pull-away, sed, chaotic below 7 cm, S/M/S
C90 50W	č	NO			0 0			9 PHYSICAL			DM>pen, camera tipped?
C90 50W	Ă	NO					t*	7 PHYSICAL	NOADDM		DM>pen, pull-away + pull-apart, sand clast in center
C90 100W	B	NO	1 8	3 2	0 0		•	9 PHYSICAL	NOADOM		DM>pen, chaotic fabric, dewatering channels ig one on rt
		NO NO	000					5 BLOGENIC			DM>pen, S/M/S/M/S, chaotic fabric, sed, torn below 8 cm, sand at depth
C90 100W	<u> </u>								Depth Nephthys burrow (cm)		DM>pen, S/M/S/M/S, Nephthys, pull-apart at mid-sand layer
	Α	NO		ય પ	9 4						
C90 150W				1 6							
C90 150W C90 150W C90 150W	B C	NÔ NÔ						6 PHYSICAL 5 PHYSICAL			DM>pen, chaotic, pull-away at depth, hole on rt artifact, sm burrow in center DM>pen, camera on slope (tubes upright), center burrow, pull-away + pull-ap

ï

Appendix C Table 1 (cont.)

		1 4 1 - 1		E FILM																	
STATION & REP	DEG	MIN	LONG DEG MIN	SUCC	GRAIN SIZE	WAT HOD	MUDIC		PENEI	RATION		UEAN	DREDGED MAT	ERIAL	REDOX	REBO	UND	REDOXI	OIEN	IAL DISC	
NORWALK	DEG	MIN 1	DCO MIN	SIAGE	LIMITA LIMAN	INVO MOD	COUNT	AVGDIA	MIN	MPA I	Ouro I	MCAN	AREAL MIN MAX	MEAN	MUN	MAX	MEAN	AREA	MUN	MAA	MEAN
NWK 100E	A 41	8.910	72 52 320	IST I TO II	1 104	4 to 3			3636	10.971	5 6 71	10574					~~~~	C X X 731			0.65
NWK 100E	8 41		72 53.437		1>4	4 to 3	ŏ	Š.	10.10		0.87	10.54 12.84			2	2		9.073	0.15	1.11	0.63
NWK 100E			72 53.431		-1>4	4 to 3		2 2						~	0	0	0	43.396	2.15	4.00	3.22
							0	0	9.04	10.66	1.62	9.85	0 0 0	0	0	0	0	25.257	0.15	3.10	2.02
NWK 100E	F 41		72 53.449		-1 >4	4 to 3	0	00	8.82	14.10	5.28	11.46	0 0 0	0	0	0	Q.	8.53	0.67	3.03	1.65
NWK 50E	A 41		72 53.461		-1>4	4 to 3	0	0	10.81	11.78	0.96]	11.29	0 0 0		0	0	0	22.644	0.76	2.99	1.79
NWK 50E	B 41		72 53.468		-1>4	4 to 3	15	1.56		15,53	4.52	13.27	0 0 0		0	0	0	11.905	0.61	3.15	1.97
NVVK 50E	C 41	8.901	72 53.473	SIST_I	0 >4	4 to 3	0	0	13.96	15.48	1.52	14.72	0 0 0	0	0	0	0	16.995	0.20	3.20	1.36
NWKCTR	A 41	8.903		SIST_L_TO_II		4 to 3	0	0	12.28	15.13	2.84	13.71	0 0 0	0	0	0	0	20.283	0.76	2.84	1.67
NWKCTR	D 41	8.901	72 53.509	elst∐ –	-1>4	4 to 3	3	1.52	7.56	8,48	0.91	8.02	o o o o	o o	0	0	0	19.244	0.05	2.84	1.53
NWKCTR	E 41	8,897	72 53.508	3 ST	0 >4	4 to 3	10	3.64	7.46	8.07	0.61	7.77	ololo	0	0	o	0	18,16	0.30	2.64	1.38
NWK 50W	2 41	8.907	72 53.537	TINDET	1>4	4 to 3	0	0	20.66	20.66	0.00	20.66	0 0 0	Ó	ö	Ö	Ö	99	99.00	99.00	99.00
NWK 50W	A 41				0>4	4 to 3	l ol	ō		19.85	0.92	19.39	o o o	0	ŏ	ō	Ō	42.751	1.68	4.90	3,18
NWK 50W	B 41		72 53,537		0>4	4 to 3	i al	ā			0.56	18.55	o o o	i n	ō	ō	n 1	34.88	0.71	3.78	2.60
NWK 50W	D 41		72 53.529		0>4	4 to 3	l ol	ő	12.81	15.41	2.60	14.11			ŏ	ň	ň	39,745	0.20	4.80	3.14
NWK 100W	A 41		72 53.573		-1>4	4 to 3	ŏ	ŏ		12.40	0.31	12.24		il X	ŏ	ő	Ň	37.346	1.38	3.93	2.79
NWK 100W	B 41		72 53.571		-1>4	4 to 3	ō	ŏ		14,13	1.22		157.9 10.4 13.1	110	ŏ	ŏ		22.982	0.56	2.55	
	C 41	8.887	72 53.561		0>4	4 to 3	6	0		16,17	0.82	15.77	157.9 10.4 13.1	11.6	ő	0					1.71
NWK 100W			72 53.59		-1 >4	4 to 3			7.35	7.81	0.82		73.27 2.02 7.98	5.91	0	<u> </u>	×	36.134	1.07	4.03	2.71 0.99
NWK 150W	A 41							-								-	. V	13.516	0.15		
NWK 150W	B 41		72 53.608		-1>4	4 to 3	°,	2	10.97	11.22	0.26	11.10			0	0	0	23.528	0.77	2.45	1.73
NWK 150W	C 41		72 53.613		-1>4	4 to 3	0	9	13.01		0.26	13.14			0	0	0	20.097	0.77	2,19	1.47
NWK 150W	D 41	8.897	72 53.615	SSI_1	-1>4	4 to 3	0	0	15.25	16.17	0.92	15.71	0 0 0	0	0	0	0	12.723	0,46	2.19	1.15
SP						****					1.001										
SP 100E	A 41	8.996	72 53.114		2>4 2>4	4 to 3	0	0	2.49	4.15	1.66	3.32	0 0 0	0	0	0	0	13.802	0.16	2.23	1.44
SP 100E	D 41		72 53.108			3 to 2	0	0	1.96		1.08	2.50	0 0 0		0	0	•	15.04	0.25	2.27	1.02
SP 100E	E 41			ST ON I	-1>4	4 to 3	0	0	14.59		1.49	15.33	0 0 0	0	0	0	0	34.863	0.62	4.07	2.99
SP 50E	A 41	8.998	72 53.147		1>4	4 to 3	0	0	10.26	11.80	1.55	11.03	0 0 0	0	0	0	0	23.814	1.03	3.09	1.78
SP 50E	D 41	8.994	72 53.141		1>4	4 to 3	이	0	19.84	20.67	0.82	20.26	0 0 0	0	0	0	0	99	99.00	99.00	99.00
SP 50E	E 41		72 53.145		2>4	>4	이	0	3.40	4.28	0.88	3.84	0 0 0	-	0	0	0	21.024	1.08	2.27	1.54
SP 50E	F 41	9.005		3 ST_I_TO_		3 to 2	0	0	1.08	3.08	2.00	2.08	0 0 0	0	0	0	0	10.97	0.10	2.67	1.37
SP ČTŘ	A 41	8.997	72 53.186	SIST_I	0>4	2 to 1	0	0	8.50	9.15	0.65	8.83	0 0 0	0	0	0	0	99	99.00	99.00	99.00
SP CTR	B 41	8.993	72 53.185	s[st]i	0>4	>4	5	5.52	17.25	17.95	0.70	17.60	0 0 0	0	0	0	0	32.3	0.30	3.95	2.43
SPCTR	C 41	9.003	72 53,179	ST_LON_I	2 >4	3 to 2	0	0	9.05	10.65	1.60	9.85	0 0 0	0	0	0	0	41.698	0.30	5,15	3.13
SP 50W	A 41	9.049	72 53 151	ilst i	1 1 >4	4 to 3	. 0	0	16.70	17.75	1.05	17.22	0 0 0	0 0	0	0	0	24.323	0.20	3.00	1.86
SP 50W	B 41	9.047	72 53,162		1>4	>4	0	0	17.20	18,45	1.25	17.82	ାତାର	0 0	0	0	l o	43.168	1,95	4.45	3,24
SP 100W	G 41		72 53.254	ST I ON I	-1>4	4 to 3	0	10	6.85	8.60	1.75	7.72	0 0 0	0 0	0	0	0	23.561	0.50	2.30	1.74
SP 100W	1 41				-1>4	3 to 2	10	2.45	11.60	12.60	1.00	12.10		0	o i	ŏ	Ō	27.584	0.60	3.85	2.19
SP 100W	j 41		72 53.265		-1>4	3 to 2	Ö	Ö	1.80		0.70	2.15	o o o	n n	ō	ō	l õ	99	99.00	99.00	99.00
SP 100W	- К 41	++	72 53,250		1 1 1	4 to 3	l õl	ō	13.65	14.20	0.55	13.92		0	ŏ	ō	i i	28.933	1.30	2.85	2.13
SP 150W	A 41				-154	4 10 3	ŏ	ŏ			1.45	10.88	ŏ ŏ ŏ		ŏ	ŏ	ň	20.921	0,10	2.85	1.75
SP 150W	B 41			STION		4 to 3	ŏ	ŏ			1.15	12.67	-0 0 0		ŏ			27.125	0.15	4.80	2,10
SP 150W						4 to 3	ŏ	ŏ	7,60		1.60	8.40			Ň	0	1	25.964	0.05	3.10	2.10
		9.000	/2 33.265			1103	i vi		1,00	3.20	1.00	0,40	ייויין	<u>1 V</u>	<u> </u>	<u> </u>	L	23.364	0.00	J 3.10	2.00
SOUTHEAST VALLE		0.000	70 50 740	NOT L TO U	1 154	14 to 3	1 01	0	19.95	20.40	0.45]	20.18	0 0 0	0	ा	A	0	25.447	0.76	3.38	- 345
VAL 150E		9.092		alst_i_to_i	-1>4	4 10 3	2	12.63	0.12		15.18	7,71			ŏ	00		25.44/		5.30	2.17
VAL 150E	<u>B 41</u>														-				0.30		3.69
VAL 75E	A 41				1>4	4 to 3	10	3,35	0.05	10.40	10.35	5.23	0 0 0		0	0		99	99.00	99.00	99.00
VAL 75E	B 41				-1>4	4 to 3	10	1.3	6.92		2.32	8.08			0	0		0.000	0.05	1.77	1.14
VAL 75E	C 41		72 53.193		1>4	4 to 3	<u> </u>			15.91	1.47	15.18			0	0	0	4.4.10	0.35	2.88	1.67
VALCIR	A 41					4 3 to 2	0	0		11.01	6.66	7.68	0 0 0	-	0	0	0	99	99.00	99.00	99.00
VAL CTR	B 41				3>4	>4	인		4.24	4.65	0.40	4.44	0 0 0	~	0	0		30.536	1.36	2.78	2.22
VAL CTR	C 41		72 53.253		2 >4	4 to 3	0	0	10.45	11.01	0.56	10.73	0 0 0		0.91	1.92	1.41	27.405	0.81	3.43	2.04
VAL 75W	A 41			2 ST_I_TO_I	2>4	>4	0	0		11.11	0.81	10.71	0 0 0	-	ा	0	0	18.855	0.45	2.37	1.38
VAL 75W	B 41				2>4	4 to 3	0	0		12.17	0.56	11.89	0 0 0	· · ·	1.01	1.41			1.52	3.23	2.67
VAL 75W	C 41		72 53.309		1>4	4 to 3	0	0		11.62	0.40	11.41	0 0 0	0 0	0	0	0	00.001	0.96	2.83	2.22
VAL 150W	A 41	9.090	72 53.361	IST_I	-1>4	54	0	0		8.23	0.61	7.93	0 0 0	0	0	0	0	18.954	0.05	2.27	1.41
VAL 150W	B 41	9.085	72 53.363	B ST_I	2>4	>4	0	0	10.00	10.35	0.35	10.18	0 0 0	0 0	0	0	0	18.202	0.10	2.02	1.34
VAL 225W	A 41	9.084			2>4	4 to 3	0	0	10.00	10.35	0.35	10.18	0 0 0	0 0	0	Ö	0	30,166	1.31	3.38	2.21
VAL 225W		9.078		ST ON I		4 to 3	0	o	7.73	9.29	1.57	8.51	0 0 0	0	0	Ó	Ó	22.017	0.05	2.88	1.65

.

۰.

Appendix C Table 1 (cont.)

STATION	LOW	METHANE BUBBLES		1	SURFACE	ADDITIONAL MEASUREMENT		
& REP	DISS O2	COUNT AREA MIN	MAX MEAN	OSI	TYPE	COMMENT (NOADDM)	VALUE	COMMENTS
NORWALK								
NWK 100E	A NO B NO	0 0	0 0 0		BIOGENIC		. 0	DM>pen, kg. animal at 9 cm depth, si pull-away+pull-apart
NWK 100E	B NO		0 0 0	8	BIOGENIC	NOADDM	0	DM>pen, sl. pull-away at bottom, amphipod tubes on surf.
	C NO	0 0	0 0 0		BIOGENIC		0	DM>pen, sl. pull-away, sunf. disturbed
	F YES		0 0 0		PHYSICAL		0	OM>pen, patchy RPD, some pull-away+ pull-apart, some shells
NWK 50E	A NO	0 0	0 0 0	6	INDET	NOADDM	0	DM>pen, amphipods, shelter fabric, ig. sullitic patch at 5 cm depth, sl. pull-
	B NO	0 0		4	PHYSICAL	NOADDM	0	DM>pen, shelter fab, dk sulf. cl. below 5 cm depth, max gastropod shell
NWK 50E	C NO			3	PHYSICAL	NOADDM		DM>pen
NWKCTR	A NO	0 0	0 0 0	5	PHYSICAL	Depth of worm (cm)	14.31	DM>pen, pull-away, shelter fabric
NWK CTR	D NO	0 0	0 0 0	1 4	PHYSICAL	NOADDM		DM>pen, shelter fab, stick on surf, pull-apart volds, few tubes on surf.
NWKCTR	E NO	0 0			PHYSICAL			DM>pen, ig. shelter fabric, few Stage I tubes
NWK 50W	2 NO			99	INDET	Min. depth of animal (echinoid?) (cm)		OM>pen, overpenetrated, min. RPD 0-1 cm, S/M/pull-away lower 1/2
NWK 50W	A NO	0 0	0 0 0	6	BIOGENIC	Depth of fat 2 cm long worm (cm)	7.81	DM>pen, pull-away + pull-apart cracks
NWK 50W	B NO	0 0	0 0 0	5	PHYSICAL	NOADDM		DM>pen, S/M, lower 2/3 sL pull-away
NWK 50W	D NO	0 0			PHYSICAL		0	DM>pen, shell bits to depth, dark suit, patches deep
NWK 100W	A NO	0 0	0 0 0	6	BIOGENIC	NOADDM	0	DM>pen, S/M, sl. pull-away + pull-apart cracks
NWK 100W	B NO		0 0 0 0 0 0	4	BIOGENIC	Depth to 3 cm diameter echlhoid? (cm)		Depth of old surf? 11 cm
NWK 100W	CNO	0 0	0 0 0	5	BIOGENIC	NOADDM	0	DM>pen, pull-away in lower 1/2
NWK 150W	A NO			3	BIOGENIC	NOADDM		gray patches are ambient sediment, pull-apart cracks
NWK 150W	B NO	0 0 0		4	BIOGENIC	NOADDM	0	pull-away, sufflic below RPD except 1 dk gray area ambient sed at 8.5 cm
NWK 150W	C NO	0 0 0		3	BIOGENIC	Depth to shallowest part of grav patch (cm) 10.15	S/M, All Inc. in DM exc. gray area in lower rt.
NWK 150W	DINO	0 0	0 0 0	3	BIOGENIC	Depth inj. of ox. material by worm (cm)	6.74	DM>pen, worm tube on left, relic feeding voids in sulfitic layer
SF		مد <u>المجري الأس</u>						
SP 100E	AL NO	0 0	0 0 0	1 3	PHYSICAL	NOADDM	0	DM>pen
SP 100E	D NO	0 0	0 0 0 0 0 0 0 0 0	3	PHYSICAL	NOADDM	0	DM>pen, thin RPD outlined by hand, few Stage I tubes
SP 100E	E NO	0 0	0 0 0	9	BIOGENIC	Depth to worm (cm)	2.89	DM?, pull-away, 2 vert, burrows, max os shell in deep void
SP 50E	A NO		0 0 0		INDET	NOADDM	0	DM>pen, burrows, some pull-away
SP 50E	A NO D NO		0 0 0 0 0 0	99	INDET	NOADDM	0	DM>pen, mostly op, S/M, pull-apart voids, yellow shell conchiolin
SP 50E	E NO F NO	0 0			BIOGENIC			DM>pen, some sm. vert burrows under RPD javer
SP 50E	F NO	o o	0 0 0	4	PHYSICAL	NOADDM	0	DM>pen, amphipods?, sheller fabric voids
SPCTR	A NO	0 0	0 0 0	- 99	BIOGENIC	NOADDM		DM>pen, RPD>pen, well-washed sand, amphipod tubes
SP CTR	A NO B NO		ol ol o	1 5	PHYSICAL	NOADDM		DM>pen, ig. red. cl.7 deep, S/M/S, S at bottom+on top of cl, some pull-away
SP CTR	C NO		ol ol o	10	PHYSICAL	NOADDM		DM>pen
SP 50W			0 0 0	- 4	BIOGENIC	NOADDM	0	DM>pen, 1 sheller fabric void
SP 50W	A NO BI NO	0 0	0 0 0	8	BIOGENIC	Depth to dark suffic layer (cm)	9.05	DM>pen, S/M, deep dk sulf. layer c pull-apart voids? Fe rich patch, S patch
SP 100W	GNO		0 0 0	8	BIOGENIC	Alin, depth to ig, void (cm)	2.95	DM>pen, maldanids? suri. erosion, jo, void camera artifact
SP 100W	I NO	o o	0 0 0	4		Min. depth to large void (cm)	2.45	DM>pen, S/M/S
SP 100W	J NO		0 0 0	99	INDET	NOADDM	0	DM>pen, underpenetrated, RPD>pen, poor sorting
SP 100W	K NO	0 0	0 0 0	4	BIOGENIC	Min. depth to sand patch (cm)	7.05	DM>pen, chaotic fabric beneath RPD patches of phi 2 sand+dk blue mud
SP 150W	A NO			4	BIOGENIC	NOADDM	0	DM? large vold type?
SP 150W	B NO	0 0	0 0 0 0 0 0	8	BIOGENIC	Min. depth to large void (cm)		DM>pen, feeding voids small, ig, voids clumps pushed by carnera
SP 150W	C NO		0 0 0	5	BIOGENIC	NOADDM		DM? amphipods?
SOUTHEAST VALLEY								
VAL 150E	A NO	· 01 01	0 0 0	5	BIOGENIC	NOADDM	0	DM>pen, S/M, some burrows, pull-away + pull apart cracks in mud
VAL 150E	B NO	0 0	0 0 0	6	PHYSICAL	NOADDM		DM>pen, shell scour lag, pull-away on rt
VAL 75E	A NO		ŏ ŏ ö	99	PHYSICAL	NOADDM		DM>pen, chaotic fabric
VAL 75E	B NO			3	PHYSICAL	NOADDM	Č.	OM>pen, shell hash, bad pull-away
VAL 75E	C YES			a	INDET	NOADDM	ŏ	DM>pen, burrows, patchy RPD, pull-away
VALCIR	A NO			99	PHYSICAL			DM>pen, sandy, surf. too dist, to measure RPD, a lot of pull-away
VALCTR	BNO	o o		1 4	BIOGENIC	NOADDM		DM>pen, sm pull-apart crack
VALCTR	C NO	0 0			BIOGENIC	NOADDM	ň	DM>pen, burrows on left (end-on view), pull-apart cracks deep
VAL 75W	A NO		<u>ö ö ö</u>			Depth to sm burrow (cm)	-170	DM>pen, amphipod tubes, sm. burrow, pull-apart cracks deep
VAL 75W	B NO		o o o		BIOGENIC			DM>pen, ampripod tubes, sin. burrow, purrapan cracks deep DM>pen, RPD 1-1.5 cm can't distinguish RPD from rbd, burrows, pull-apai
		0 0		1	BIOGENIC		Ň	DM>pen, RFD 1-1.5 cm cant usunguish RFD nom tod, burrows, puil-apar DM>pen, puil-away
VAL 75W					INDET	NOADDM	<u> </u>	OM>pen, poll-away OM>pen, max gastropod shell frag, pull-away
VAL 150W	A NO B NO	0 0			BIOGENIC			
VAL 150W			-	3	BIOGENIC	NOADDH	<u> </u>	OM>pen, buttow, ox. layer beneath red.
VAL 225W	A NO			4	BIOGENIC	NOADDN		DM>pen, sm. burrows?, large pull-away cracks?
VAL 225W	B NO		<u>vi vi 0</u>	ð	DOUCENIC		0	DM>pen, burrows, feeding vold, pull-away crack

.

142 14 15

à,

ł

Appendix C Table 2

Dredged Material Thickness from REMOTS® Precap Survey (3-4 November 1993)

Station	Rep	Lat N	Long W	DM LAYER	Mean DM Layer
	•	da min	da min	(cm)	(cm)
550 E	A	41 9.093		ABSENT	(0.1.)
	C	41 9.094		ABSENT	2.0
	D	41 9.093		6	
475E	B	41 9.091		ABSENT	
	D	41 9.093		3	3.3
· · · ·	E	41 9.095		7	0.0
400E	A	41 9.095		ABSENT	
4000	B	41 9.092		9	9.7
<u>-</u>	Č	41 9.092		20	5.1
325E	Ă	41 9.094			
320E	<u>D</u>		72 53.215	15	40.0
	Ē			20	18.3
205141				20	
325W	<u>D</u>	41 9.101	72 53.682	12	40.5
	E	41 9.102		13	12.5
100141	F	41 9.103		12.5	
400W	A	41 9.095		ABSENT	
	8	41 9.092		6	8.2
	D	41 9.101	72 53.736	9	
	E	41 9.106		9.5	
475W	A	41 9.106		ABSENT	
	<u>B</u>	41 9.107	72 53.789	1	4.3
	С	41 9.108		1	
	D	41 9.096		11	
550W	A	41 9.098		ABSENT	
	В	41 9.094		1	0.3
	С	41 9.098	72 53.836	ABSENT	
550NE	A	41 9.302	72 53.167	ABSENT	
	В	41 9.302	72 53.162	ABSENT	
	C	41 9.309	72 53.162	ABSENT	
475NE	Α	41 9.270	72 53.200	10	
	B	41 9.278	72 53.201	12	9.7
	С	41 9.282	72 53.198	7	
400NE	A	41 9.253	72 53.251	20	
	В	41 9.261	72 53.236	15	16.7
	C	41 9.263	72 53.236	15	
325NE	·A	41 9.215	72 53.278	20	
	В	41 9.220	72 53.276	20	
	Ċ	41 9.224	72 53.269	17	19.4
	D	41 9.226	72 53,276	20	
	E	41 9.227	72 53.278	20	
325SW	Ā	41 8.969	72 53.604	11	
	B	41 8.975		20	15.5
	č		72 53 603	20	.0.0
	D		72 53.605	11	
400SW	Ā	41 8.948		8.5	
	B	41 8.943		7	8.2
	č	41 8.945		9	<u>ү.</u> с
475SW	Ă	41 8.912		ABSENT	
10000	B	41 8.912		ABSENT	
	- C				
		41 8.920		ABSENT	
FEODIAL	D	41 8.917		ABSENT	
550SW	A	41 8.888		ABSENT	
	B	41 8.890		CLUMP	
	C	41 8.893	72 53.710	CLUMP	

Appendix C Table 2 (cont.)

ç à

Station	Rep	Lat N		Long W		DM LAYER	Mean DM Layer
		dg	min	dg	min	(cm)	(cm)
550SE	A	41	8.883	72	53,170	ABSENT	· · · · · · · · · · · · · · · · · · ·
	В	41	8.881	72	53,163	ABSENT	0.0
	c	41	8.888	72	53.163	ABSENT	
475SE	Ā	41	8.919	72	53.214	ABSENT	
41000	B	41	8.922	72	53.210	ABSENT	0.0
	Ċ	41	8.923	72	53.202	ABSENT	0.0
400SE	Ā	41	8.952	72	53.202	ADSEINT	
4003E						8	8.0
	в	41	8,954	72	53.239		0.0
	C	41	8.950	72	53,232	8	
325SE	Α	41	8.977	72	53.280	17	
_	B	41	8.978	72	53.276	12	13.0
	С	41	8.974	72	53,264	10	
325NW	Α	41	9.218	72	53,608	5.5	
	В	41	9,216	72	53,603	10	8.2
	С	41	9.215	72	53.600	9	
400NW	Ā	41	9,239	72	53.643	4.5	
	B	41	9.245	72	53.647	6.5	4.7
	c	41	9.249	72	53.646	3	
475NW	Ă	41	9.268	72	53.677	<1	
4101444	B-	41	9.276	72	53.685	ABSENT	
	- C	41	9.281	72		ABSENT	
CCONNAL	+	41			53.681		
550NW	B		9.303	72	53.720	ABSENT	
	<u> </u>	41	9.310	72	53.719	ABSENT	
	D	41	9.252	72	53.722	ABSENT	
500N	A	41	9.393	72	53.440	CLUMP	
	В	41	9.393	72	53.437	CLUMP	•
	C	41	9.393	72	53.435	ABSENT	
475N	A	41	9.351	72	53.444	ABSENT	
-	8	41	9.352	72	53.438	PATCHY	
	C	41	9.352	72	53,435	ABSENT	
400N	A	41	9.306	72	53.437	3	
	8	41	9.311	72	53.435	2	2.3
	c	41	9.314	72	53.434	2	
325N	Ā	41	9.272	72	53.441	4.5	
04.011	В	41	9.272	72	53,440	7	6.2
	C	41		72		7	0.2
	-		9.271		53.440		
3255	A	41	8.915	72	53.436	11	
	В	41	8.921	72	53.433	5.5	7.2
	С	41	8.922	72	53.435	5	
400S	Α	41	8.878	72	53.441	ABSENT	
	В	41	8,880	72	53.432	6	4.3
	C	41	8.880	72	53,430	7	
475S	A	41	8.834	72	53.438	CLUMP	
	В	41	8.840	72	53,435	ABSENT	
	С	41	8.842	72	53,437	ABSENT	L
550S	A	41	8.803	72	53,444	ABSENT	
	В	41	8.802	72	53.441	ABSENT	
	Ċ	41	8.802	72	53,439	ABSENT	
400WSW	Ā	41	9.018	72	53,705	20	
	B	41	9.021	72	53,709	20	20.0
	Ċ.	41		72		20	20.0
1000014			9.021		53.699		
400SSW	A	41	8.901	72	53.547	ABSENT	
	В	41	8.901	72	53,543	ABSENT	
	C	41	8.904	72	53.546	ABSENT	

Appendix C Table 3

Station Locations and Results of the REMOTS® Postdisposal Survey Conducted 4 November 1993

STATION			LÀT	1	LONG	SUCC	GRAIN	SZE		MUD CLA	ST	PENET	RATION			DRED	GED MA	TERIA	[]	REDOX	REBOU	ND	REDOX F	OTENT	AL DISCO	NTINUITY
& REP		DEG	MIN	DEG	MIN	STAGE	MIN	MAX	MAJ MODE	COUNTAN	/G DIAM	MIN	MAX	RANGE	MEAN	AREA	MIN N	AAX M	IEAN	MIN	MAX	MEAN	AREA	MIN	MAX	MEAN
ŕνρ		_									_															
FVP 100E	A	41	9.386	72	51.612	ST_I	0		4 to 3	0	0	4.90	6.62	1.72	5.76	0	0	0	0	0	0	0	26.297	0.71	3.13	1.96
FVP 100E	₿	41	9.382	72			-1	4 .	4 to 3	0	0	10.56	11.41	0.86	10.98	0	0	0	0	0	0	0	25.711	1.01	3.08	1.99
FVP 100E	c	41	9.381	72			· · · ·		4 to 3	5	2.33	11.21	12.83	1.62		0	0	0	0	0	0	0	10.367	0.05	2.22	1.46
FVP 50E	A	41	9.383	72	÷		-1	Þ4	P4	0	0	9.44	10.15	0.71	9.80	0	0	0	0	0	0	0	9.289	0.30	2.17	1.42
FVP 50E	B	41	9.380	72	51.648			Þ4	>4	0	0	8.08	9.60	1.52		0	이	0	0	0	0	0	36.634	0.56	3.74	2.72
FVP 50E	<u> </u>		9.381	72			_		4 to 3	5	2.9	10.56	13.38	2.83		0	이		0	0	0	0	13.725	0.10	2.93	1.95
FVP CTR	<u>A</u>	41	9.386				- 1 - C	Þ4	4 to 3	Q	0	10.30	10.66	0.35		0	0	0	0	0	0	0	20.718	0.86	2.17	1.50
FVP CTR	В	41	9.383	•				Þ4	4 to 3	0	0	9.80	10.61	0.81	10.20	0	0	2	0	0	0	0	16.954	0.15	2.02	1.49
FVP CTR	<u> </u>	41	9.379	72				P4	4 to 3	0	0	7.47	8.08	0.61	7.78	0	<u> </u>	<u> </u>	0	0	0		7.904	0.05	1.21	0.71
FVP 50W	A	41	9.387	72				Þ4	P4	0	0	15.45	15.71	0.25		0	.0	°,	0	0	0	0	12.146	0.05	1.92	0.88
FVP 50W	B	41	.9.380	72		ST_I_ON_III		P4	24	0	U V	15.45	16.21	0.76				<u>اړ</u>	0	0	U	0	31.529	1.41	2.93	2.35
FVP 50W	ç	41	9.383					<u> 24</u>	>4 >4		<u> </u>	14.70		0.15				- 8	0		0		30.771	0.45	2.78 2.53	2.26
FVP 100W	B	41	9.384 9.384	72				24	1.		Ň	14.60	12.42	0.66				낅		0	Ň		21.731 25.387	0.05	2.33	1.64 1.86
	2	41						24	54		Ň	10,10						SI.	š		Ň		11.069	0.10		1.60
FVP 100W FVP 100N	Ă	<u>41</u> 41	9.385	1 72				Þ4 Þ4	4 to 3	<u> </u>		12.42	12.83	0.85					- 0	4.95	8.23	6.59	14.9	0.35	1.52	1.02
FVP 100N	_ ^	41	9.442	72		- · · · · · · · · · · · · · · · · · · ·		4	4 to 3		š	13.38	13.94	0.55				ارد ا	Ň	4.65	8.03	6.34	22.091	0.35	2.37	1.63
FVP 100N	č	41	9.443					4	4 to 3		ň	13.08	13.89	0.81	13.48	Ň	i și		ň	7.22	9.34	8.28	33.526	0.61	3.89	2.45
EVP 50N	Ă	41	9,420	72	51.691			4	4 to 3	ŏ		11.62	11.97	0.35		t ő	ňl-	<u>ñ</u> [-	0		0.04	- 0.20	24.45	0.91	2.63	1.80
FVP 50N	ŝ	41	9 4 10	72				64	4 to 3	Ň	ŏ	6.72	8.08	1.36		i ă	័		ŏ	Ň	ň	i ñ	12.01	0.10	2.53	1.80
EVP 50N	č	41	9.400	72				54	4 to 3	0	ŏ	11.67	12.32	0.66			o l	ŏ	ŏ	ő	ō	n n	22,425	0.81	2.63	1.64
FVP 50S	Ă	41	9.365					54	4 to 3	ŏ	ŏ	11.67	12.22	0.56		- ŏ	l of	-ŏl-	ŏ	ŏ	Ő		26.679	0.76	3.33	1.96
FVP 50S	ŝ	41	9.365					4	4 to 3	ō	ŏ	6.06	6.62	0.56		ŏ	l õl	ŏl	ŏ	ŏ	ŏ	-	16.416	0.05	1.72	1.27
FVP 100S	Ă	41	9.338					64	>4	ŏ	Ő	12.68	13,48	0.81	13.08	Ō	ŏ	- 6	ŏ	ŏ	0	0	27.364	0.25	3,13	2.00
FVP 100S	B	41	9.329	1 17				-4	>4	ō	ŏ	13.33	14.55	1.21	13.94	ō	l öl	ol	ō	ō	ō	Ō	21.603	0.81	2.88	1.59
EVP 100S	čl	41	9.330				2	>4	4 to 3	ŏ	ō	13.48	14.09	0.61	13.79	Ő	o j	ól	ō	ő	Ō	Ō	25.074	0.61	2.78	1.83

43

Appendix C Table 3 (cont.)

а.

۰.

	STATION				NE BUBBLE				SURFACE	ADDITIONAL MEASUREMENT		
	& REP		DISS 02	COUNT	AREA M	N MAX N	HEAN	OSI	TYPE	COMMENT (NOADDM)	VALUE	COMMENTS
FVP						_						
	FVP 100E	A	NO	0	0	0 0	Ó	4	PHYSICAL	NOADDM		DM>pen, sm burrows
	FVP 100E	В	NO	0	0	0 0	0	4	PHYSICAL	NOADDM	C	DM>pen, some shell hash, S/M/S
	FVP 100E	c	NO	0	0	0 0	0	3	PHYSICAL	NOADDM	C	DM>pen, S/M/S, some shell scour lag, shelter fabric
	FVP 50E	A	NO	0	0	0 0	0	3	PHYSICAL	NOADDM		DM>pen, shell scour lag, sm burrows, S/M/S, relic voids?
l I	FVP 50E	8	NO	0	{ 0{	0 0	0		PHYSICAL		0	DM>pen, S/M/S, sand at bottom?
	FVP 50E	C	NO	0	0	0 0	Q	4	PHYSICAL	NOADDM		DM>pen, S/M/S
	FVP CTR	A	NO	1 0	0	0 0	0	3	BIOGENIC	NOADDM		DM>pen, v sulf. just under RPD, max gastropod, pull-apart cracks in black sed
1	FVP CTR	B	NO	[0	0	0 0	0		BIOGENIC	NOADDM		DM>pen, chaotic fabric (gray lump on lower left), pull-apart cracks
	FVP CTR	C	NO		0	0 0	0			NOADDM _		DM>pen, bad pull-away
	FVP 50W	A	NO	0	0	0 0	0	3	BIOGENIC	NOADDM		DM>pen, wiper cl, max gastropod shell at depth, S/M/S, sand deep
	FVP 50W	В	NO	0	0	0 0	0	9	BIOGENIC	NOADDM	C	DM>pen, sm burrows in ox layer, pull-apart cracks deep, S/M/S
	FVP 50W	C	NO_	0	0	_0 _0	0		BIOGENIC		0	DM>pen, S/M/S, sand deep, pull-apart crack
	FVP 100W	A	NO	0	0	0 0	0		BIOGENIC			DM>pen, M/S, sand at depth, hor. pull-apart crack
	FVP 100W	8	NO	0	0	0 0	0	4	BIOGENIC	NOADDM	C	DM>pen, M/S, sand at bottom, Nephthys + its crescent shaped burrow
	FVP 100W	C	NO	0	0	0 0	0		BIOGENIC			DM>pen, vert. burrow on left
	FVP 100N	A	NO	0	0	0 0	0		BIOGENIC			DM>pen, sl. pull-away, It blue band betw. RPD + sulfitic layer
	FVP 100N	8	NO	0] 0]	0 0	0		BIOGENIC			DM>pen, pull-apart cracks
	FVP 100N	C	NO	0	0	0 0	0		BIOGENIC		0	DM>pen, si. pull-away at bottom
	FVP 50N	Ā	NO	1 0	0	0 0	0	4	BIOGENIC	NOADDM		DM>pen,lg. void=burrow?
	FVP 50N	B	NO	0	0	0 0	0		8IOGENIC		(DM>pen, ig. burrow, ig. shell in background
	FVP 50N	C	NO	0	0	0 0	0		BIOGENIC		0	DM>pen, void at bottom a pull-apart?, sl. pull-away
	FVP 50S	A	NO	0	0	0 0	0		BIOGENIC			DM>pen, burrow on rt, pull-apart cracks in center + left
	FVP 50S	В	NO	0	0	0 0	0		BIOGENIC		0	DM>pen, pull-apart cracks
	FVP 100S	A	NO	0	0	0 0	0		BIOGENIC			DM>pen, burrow? inj. ox. material down, pull-away at bottom
1	FVP 100S	В	NO	0	0	0 0	0	4	BIOGENIC	NOADDM	c	DM>pen, vert. burrow on rt, sm pull-apart cracks
	FVP 100S	C	NO	0	0	0 0	0	4	BIOGENIC	NOADDM	0	DM>pen, vert. burrow, S/M/S, sand at very bottom

٠

2

APPENDIX D

.

Sediment Cores and Grabs

Appendix D Sediment Cores and Grabs

Appendix D Table 1.	Location of Geotechnical Cores Collected for the New Haven Harbor Capping Project, September 1993 to March 1994
Appendix D Table 2.	Location of Sediment Grab Samples Collected During the Interim Disposal and Interim Cap Surveys
Appendix D Figure 1.	Location of the geotechnical cores collected during the predisposal (baseline) survey, 21 September 1993
Appendix D Figure 2.	Location of geotechnical cores collected during the precap survey superimposed on the precap mound, 10 November 1993
Appendix D Figure 3.	Location of geotechnical cores collected during the postcap survey superimposed on the postcap mound, 15 March 1994
Appendix D Figure 4.	Time series of geotechnical cores collected in the southwest quadrant of the NHAV 93 mound \cdot
Appendix D Figure 5.	Time series of geotechnical cores collected in the northeast quadrant of the NHAV 93 mound
Appendix D Figure 6.	Time series of geotechnical cores collected in the northwest quadrant of the NHAV 93 mound
Appendix D Figure 7.	Time series of geotechnical cores collected in the southeast quadrant of the NHAV 93 mound
Appendix D Figure 8.	Time series of geotechnical cores collected in the center of the NHAV 93 mound
Appendix D Figure 9.	Postcap geotechnical cores collected over the northeast and southwest flanks of the NHAV 93 mound

Appendix D Table 1

Location of Geotechnical Cores Collected for the New Haven Harbor Capping Project, September 1993 to March 1994

. ir

4

A. Predisposal Survey 21 September 1993

Core	Latitude	Longitude	
CLIS A	41°09.091' N	72°53.502′ W	
CLIS B	41°08.602′ N	72°53.923′ W	 * located outside the designated work area
CLIS C	41°09.181' N	72°53.401′ W	
CLIS D	41°09.172′ N	72°53.534′ W	
CLIS E	41°09.081′ N	72°53.395′ W	
CLIS F	41°09.098′ N	72°53.442′ W	* unsuccessful, reattempt at CLIS FF
CLIS FF	41°09.142′ N	72°53.438′ W	

B. Postdisposal/Precap Survey 10 November 1993

Core	Latitude	Longitude	
CLIS G	41°09.086' N	72°53.497′ W	Replicate of Core A
CLIS H	41°08.607′ N	72°53.929′ W	Replicate of Core B (outside designated work area)
CLIS I	41°09.1785′ N	72°53.397′ W	Replicate of Core C
CLIS J	41°09.168' N	72°53.536′ W	Replicate of Core D
CLIS K	41°09.080' N	72°53.398′ W	Replicate of Core E
CLIS L	41°09.132′ N	72°53.433' W	Replicate of Core FF
CLIS II	41°09.061′ N	72°53.520′ W	No replicate for station

Appendix D Table 2

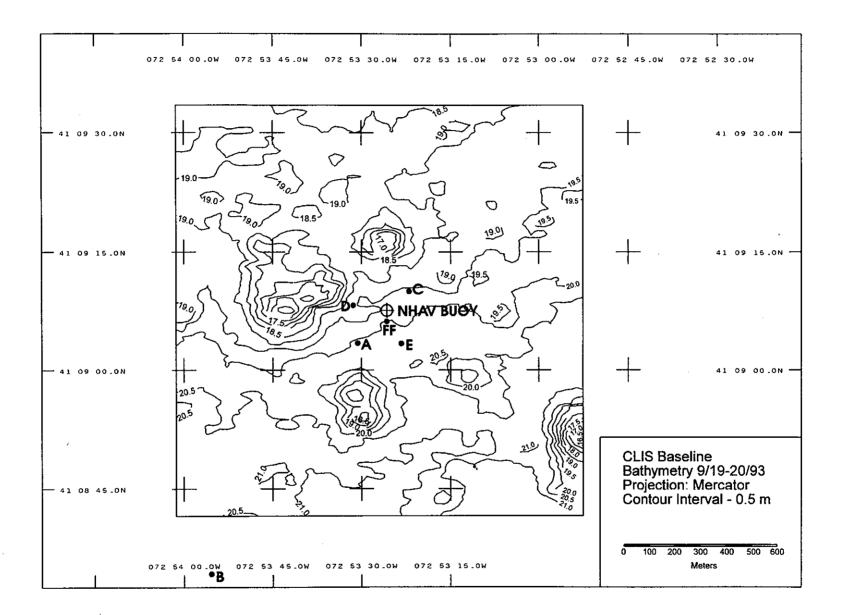
Location of Sediment Grab Samples Collected During the Interim Disposal and Interim Cap Surveys

A. Grabs Collected During the Interim Disposal Survey, October 25, 1993

/

200W	41°09.165′ N	72°53.580′ W
100W	41°09.129' N	72°53.511′ W
CTR	41°09.127' N	72°53.454′ W
100E	41°09.133′ N	72°53.379′ W
200E	41°09.131′ N	72°53.304′ W
200N	41°09.238' N	72°53.453′ W
100N	41°09.181′ N	72°53.452′ W
100S	41°09.079′ N	72°53.451′ W
2005	41°09.020′ N	72°53.451′ W

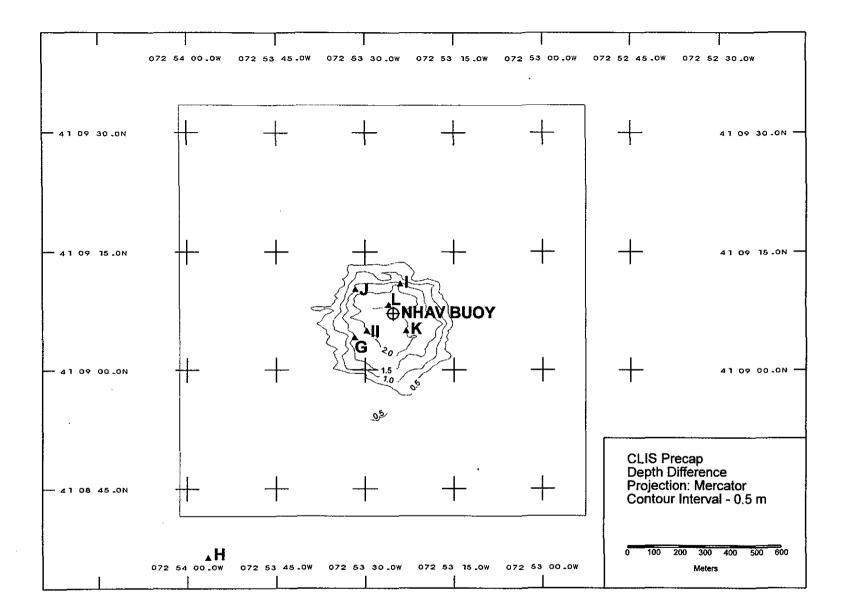
B. Grabs Collected During the Interim Cap Survey, November 24, 1993


200W	41°09.126′ N	72°53.585′ W	
100W	41°09.136′ N	72°53.518′ W	
CTR	41°09.132′ N	72°53.443′ W	
100E	41°09.117′ N	72°53.366′ W	
200E	41°09.122′ N	72°53.284′ W	
200N	41°09.229' N	72°53.454′ W	
100N	41°09.182′ N	72°53.436′ W	
100S	41°09.067′ N	72°53.452′ W	
2005	41°09.008′ N	72°53.437′ W	

Appendix D Table 1 (cont.)

Core	Latitude	Longitude	
CLIS-MM	41°09.173′ N	72°53.409′ W	Close to CLIS-C, I
CLIS-N	41°09.141' N	72°53.441′ W	Same location as CLIS FF, L
CLIS P	41°09.070' N	72°53.540′ W	Close to CLIS-II
CLIS Q	41°08.990' N	72°53.633′ W	SW flank of new mound
CLIS R	41°09.254′ N	72°53.322′ W	NE flank of new mound
CLIS-SS	41°09.093′ N	72°53.392′ W	Close to CLIS-E,K
CLIS-T	41°09.177' N	72°53.516′ W	Same location as CLIS-J
NOTE: Cores CLIS-Q, CLIS-R, and perhaps CLIS-SS penetrated into the base material.			

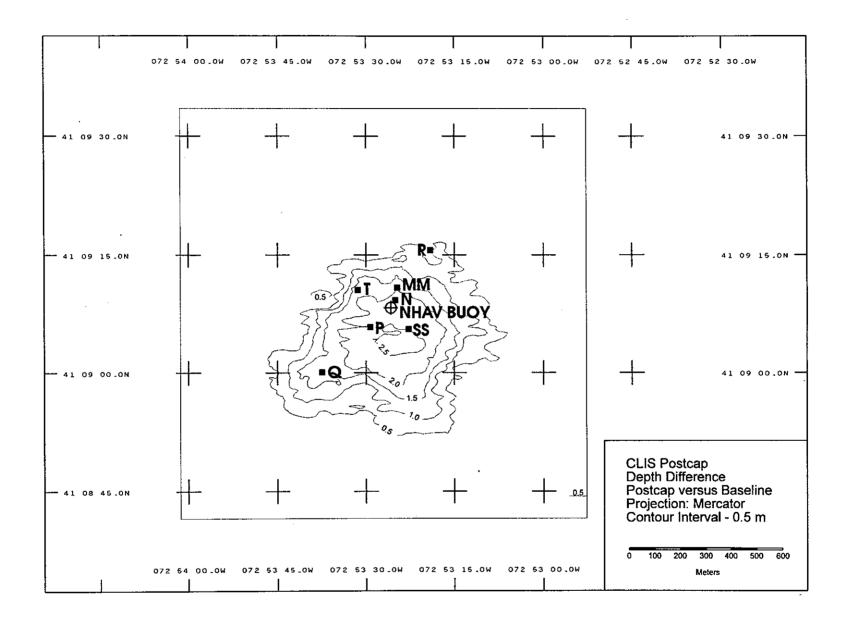
£


C. Postcap Survey 15 March 1994

6

.

Appendix D Figure 1. Location of the geotechnical cores collected during the predisposal (baseline) survey, 21 September 1993



Appendix D Figure 2. Location of geotechnical cores collected during the precap survey superimposed on the precap mound, 10 November 1993

\$3

٠

.

e.

<u>ا-</u>

Appendix D Figure 3. Location of geotechnical cores collected during the postcap survey superimposed on the postcap mound, 15 March 1994

1

r.