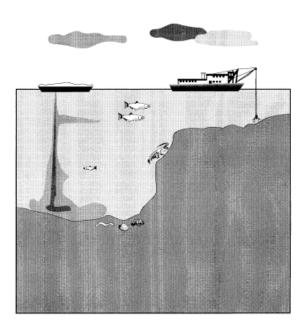
Testing Dredged Material and Disposal Options

- Background on sediment testing requirements and details on Searsport sediment testing and comparisons with other sites
- 2. Overlap of this project with the mercury contamination in the bay
- 3. Background on the selection of a disposal site for the proposed project

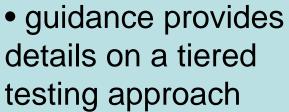
Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

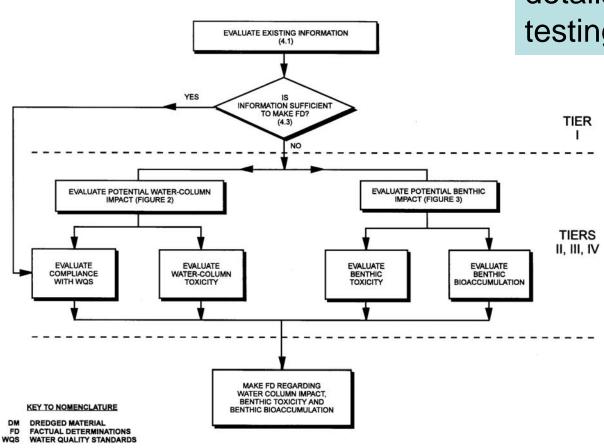

What type of sediment testing is required by law for dredged material disposal in Penobscot Bay?

EPA-823-B-98-004

United States Department of The Army Environmental Protection US Army Corps of Engineer Agency Office of Water (4305)

Evaluation of Dredged Material Proposed For Discharge in Waters of the U.S. - Testing Manual


Inland Testing Manual


 testing must provide data to allow assessment of compliance with Section 404(b)(1) of the Clean Water Act

- National guidance manual
 - Regional guidance manual provides New England specific information

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

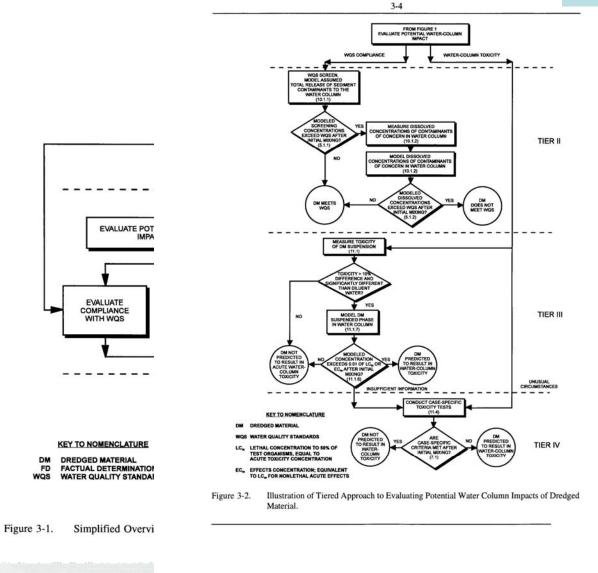
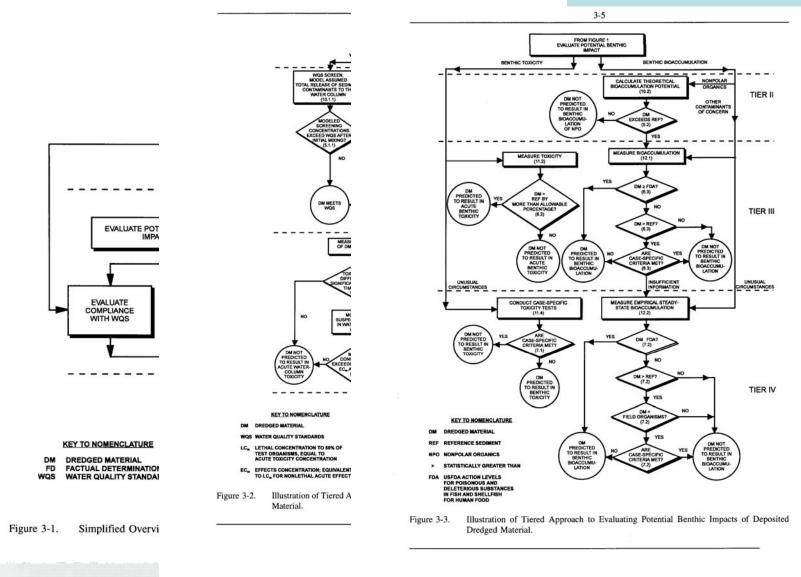

3-3

Figure 3-1. Simplified Overview of Tiered Approach to Evaluating Potential Impact of Aquatic Disposal of Dredged Material.

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

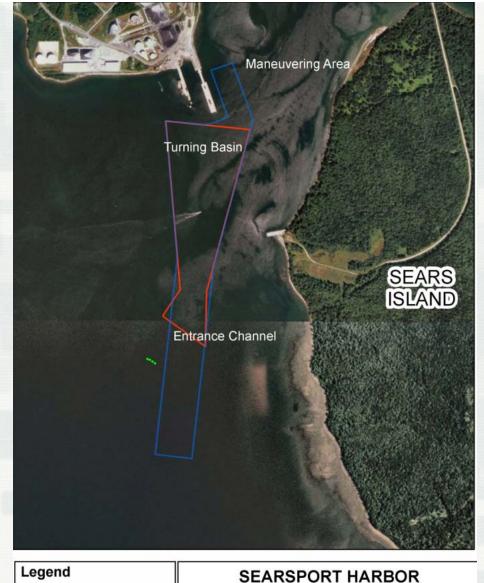

...and more detail


Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

BUILDING STRONG_ ${\ensuremath{\mathbb{R}}}$

...and more detail

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project



Step 1 – gather existing information

- map horizontal and vertical boundaries of proposed project
- map surrounding depths and currents
- record of previous dredging

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

PROPOSED PROJECT

1.000

1.000 500

Step 1 – gather existing information (continued)

- shoreline development and urban/agricultural runoff potential
- industrial/municipal discharges
- spills and hazardous waste sites
- biological resources

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

US Army Corps of Engineers®

New England District

Shipwreck Location

Exisiting Federal Channel

Proposed Project

and Turning Basin

Step 2 – make a plan for sediment sampling
define the list of analyses for the sediment samples
define any distinct areas of the project for separate samples

 select how deep the samples will be collected from

• physical properties (grain size, geotechnical)

• *metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc)*

• organics (PAHs, PCBs, pesticides)

Step 2 – make a plan for sediment sampling

• define the list of chemicals samples will be analyzed for

define any distinct areas of the project for separate samples

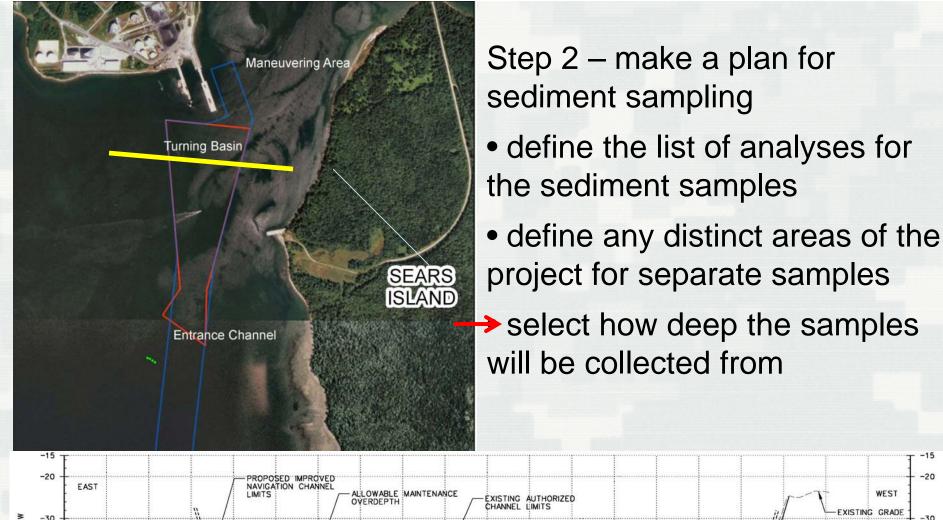
 select how deep the samples will be collected from

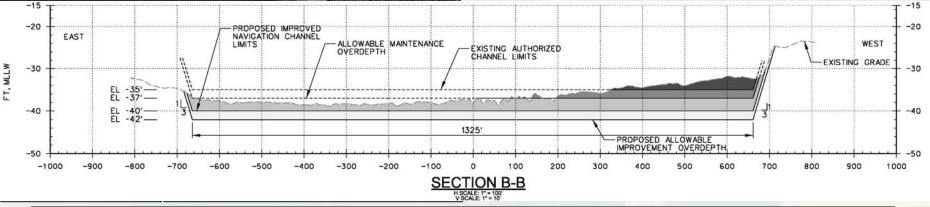
BUILDING STRONG®

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

US Army Corps of Engineers®

New England District


1.000 500


1.000

Proposed Project

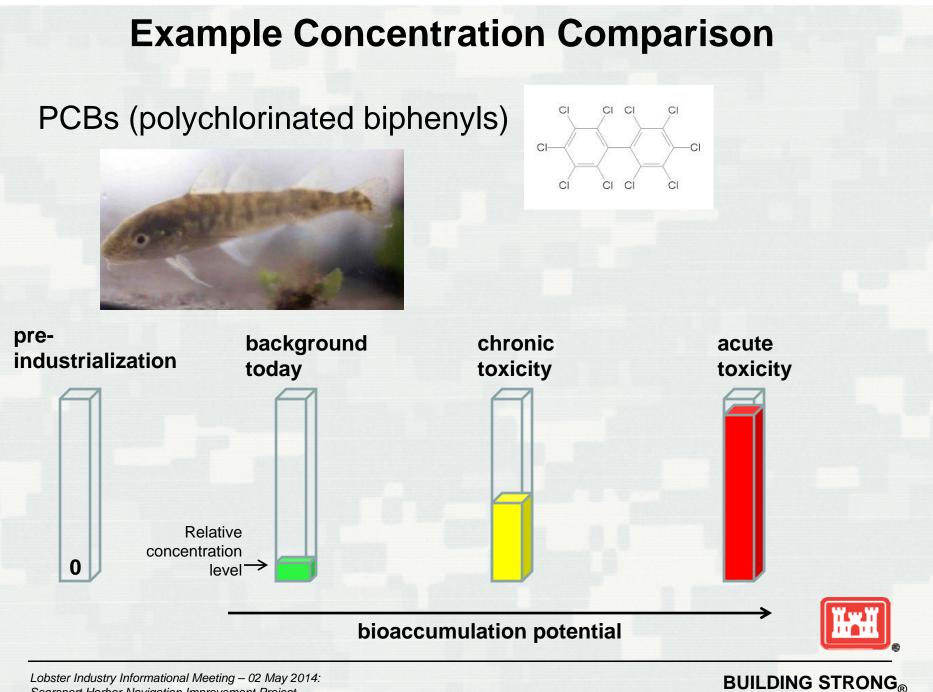
and Turning Basin

Exisiting Federal Channel

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Chemistry Background Information

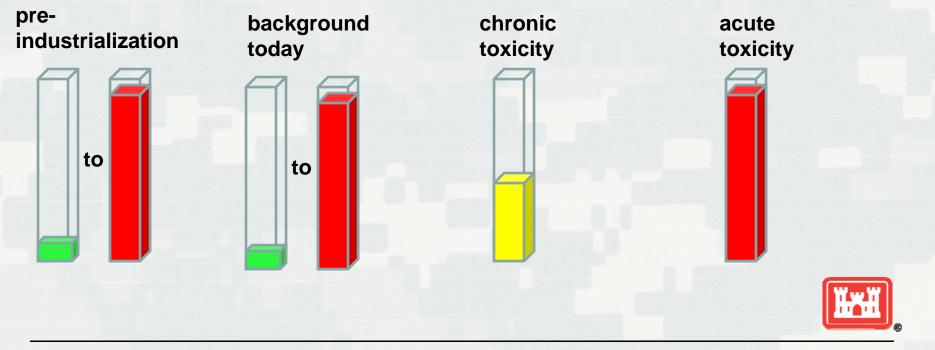
"Contaminant" has a clear definition...


Contaminant — [from Inland Testing Manual] – A chemical or biological substance in a form that can be incorporated into, onto or be ingested by and that harms aquatic organisms, consumers of aquatic organisms, or users of the aquatic environment, and includes but is not limited to the substances on the 307(a) (1) list of toxic pollutants promulgated on January 31, 1978 (43 FR 4109). Note: a contaminant that causes actual harm is technically referred to as a pollutant, but the regulatory definition of a "pollutant" is in the Guidelines is different, reflecting the intent of the Clean Water Act.

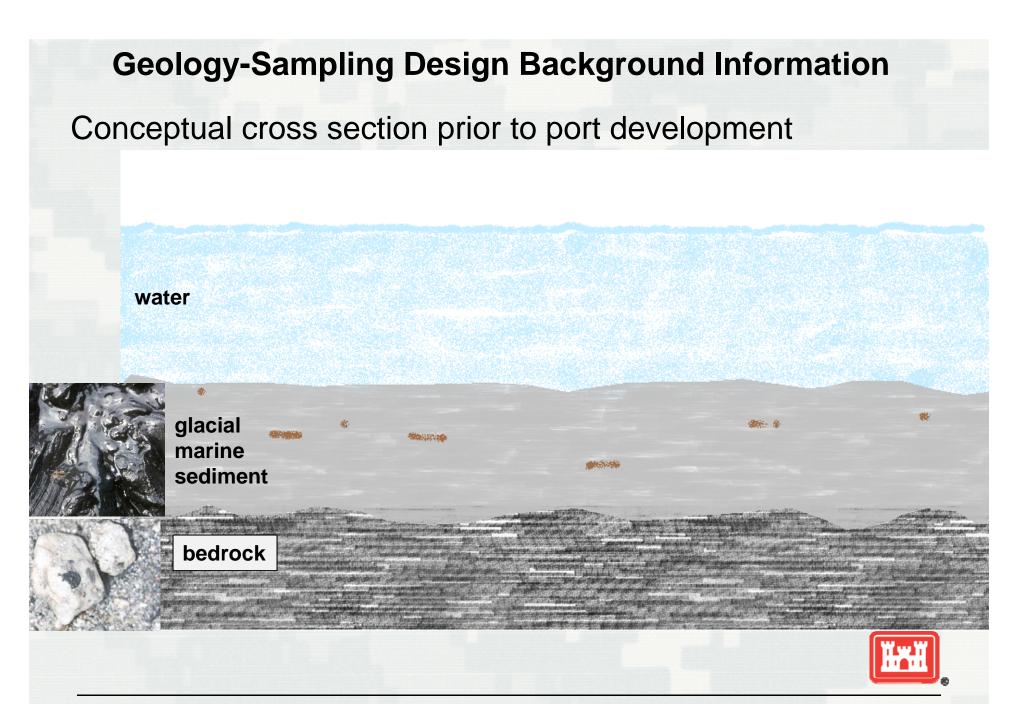
Contaminant – anything that you (or an organism) can ingest, inhale, or absorb that causes harm

CI

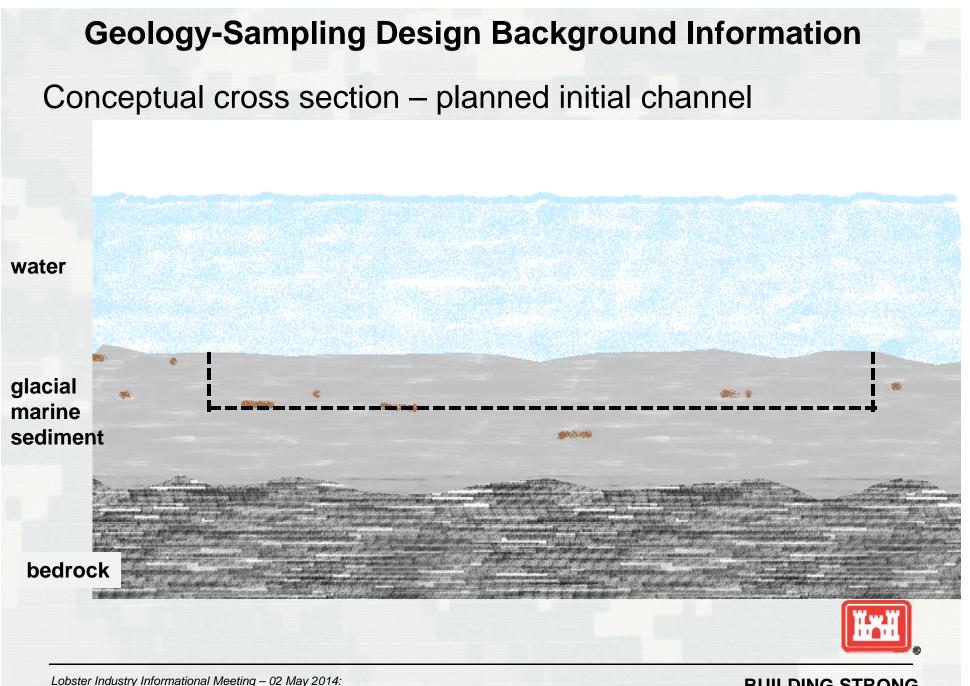
CI


"Contaminated" and "toxic" do not have a specific definition in environmental science, so we compare the measured concentrations with known levels and qualify the term: e.g. "contaminated above the required cleanup level" "acutely toxic to marine organisms"

Searsport Harbor Navigation Improvement Project

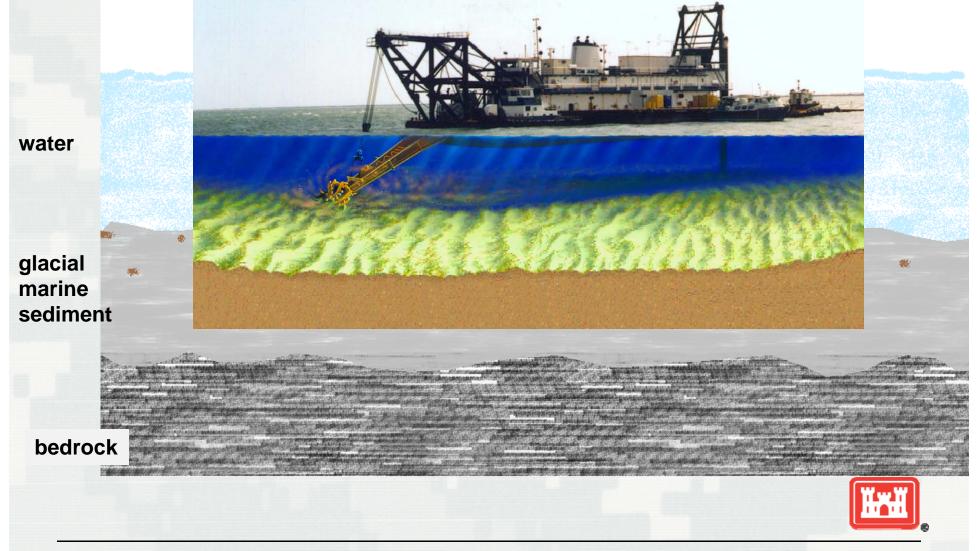

Example Concentration Comparison

Arsenic



Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

BUILDING STRONG_ ${\ensuremath{\mathbb{R}}}$


Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

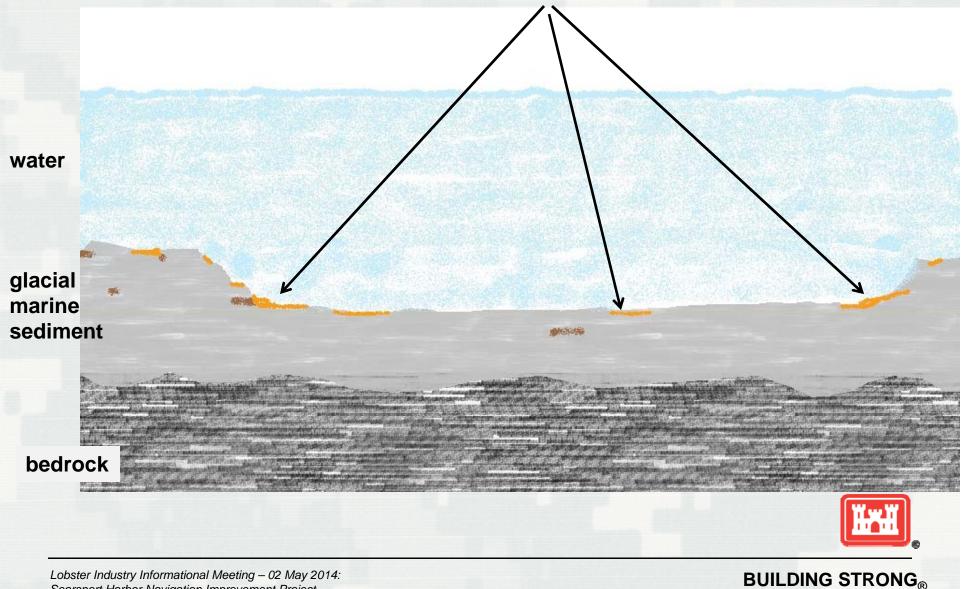
Searsport Harbor Navigation Improvement Project

Geology-Sampling Design Background Information

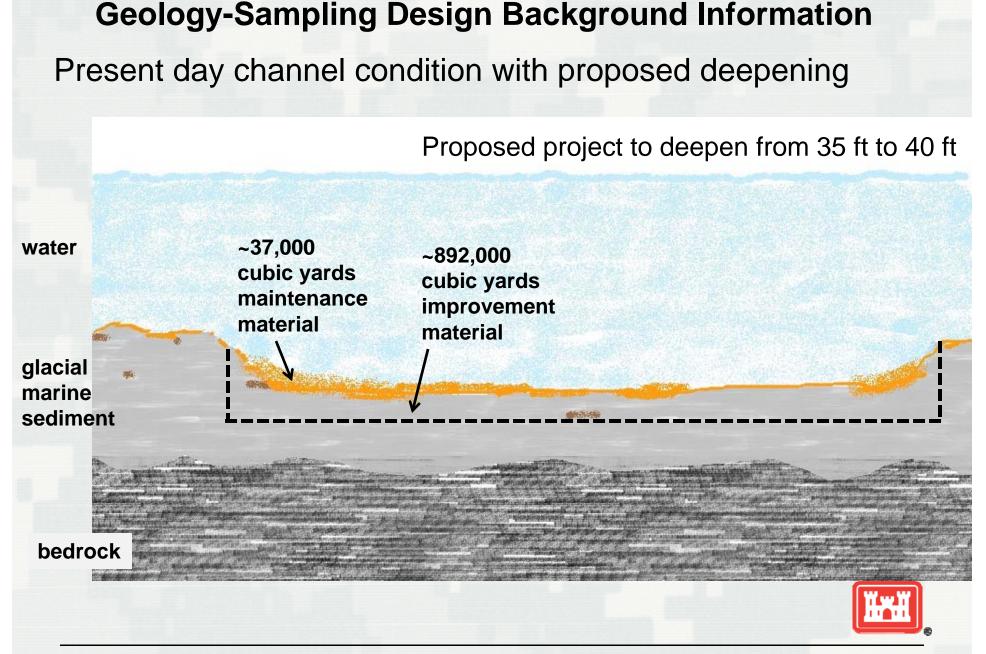
Dredging to project depth or slightly below

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

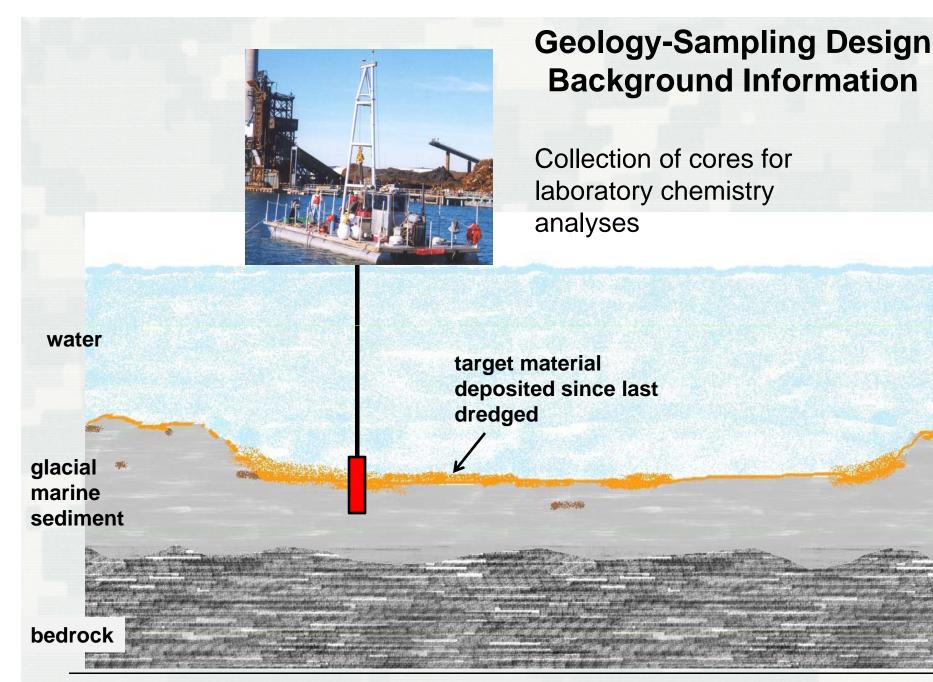
Geology-Sampling Design Background Information


Completed channel

1964 dredging of **Searsport Harbor** water removed ~500,000 cubic yards, deepening to 35 ft glacial marine sediment Marrie Al bedrock


Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Geology-Sampling Design Background Information


Completed channel within initial deposition of maintenance material

Searsport Harbor Navigation Improvement Project

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

BUILDING STRONG_ ${\ensuremath{\mathbb{R}}}$

PROPOSED PROJECT

1.000 500

1.000

Step 2 – make a plan for sediment sampling

 define the list of chemicals samples will be analyzed for

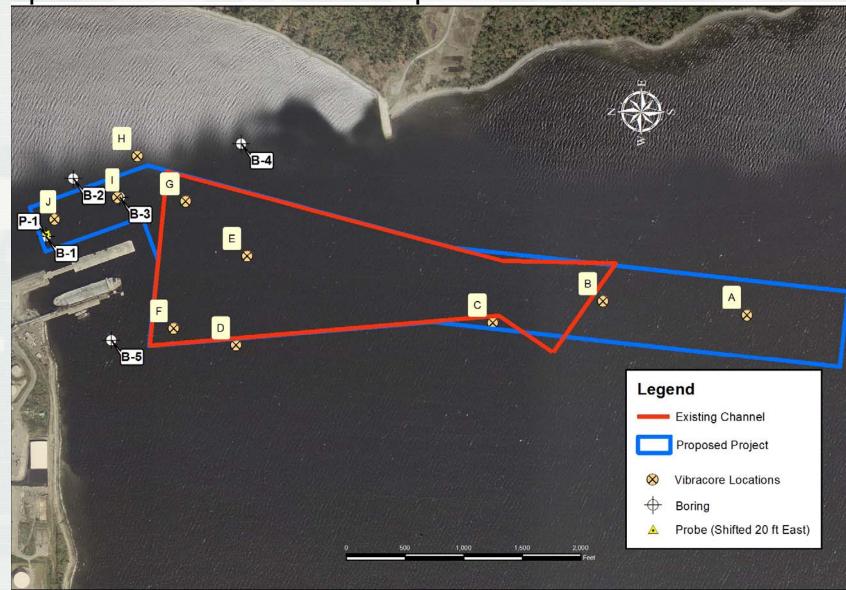
define any distinct areas of the project for separate samples

 select how deep the samples will be collected from

 coring locations selected in each of the general areas

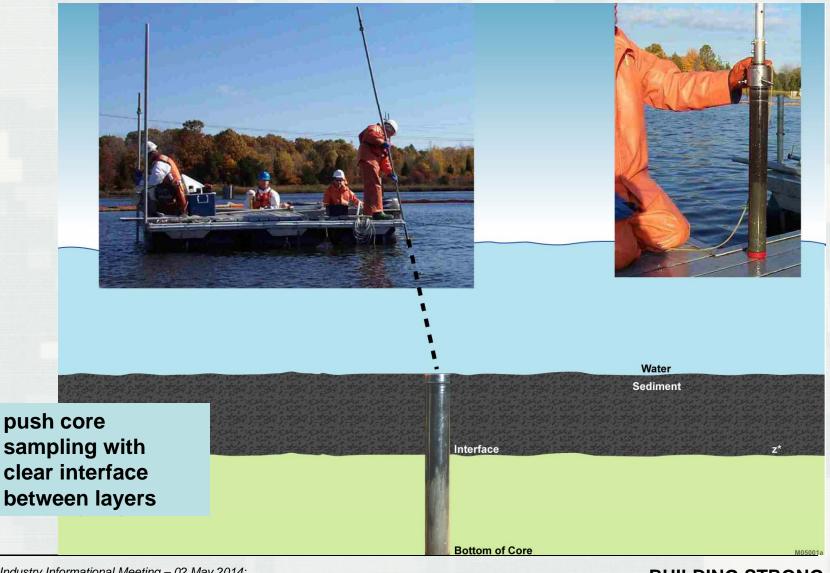
Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

US Army Corps of Engineers®


New England District

Shipwreck Location

Exisiting Federal Channel and Turning Basin

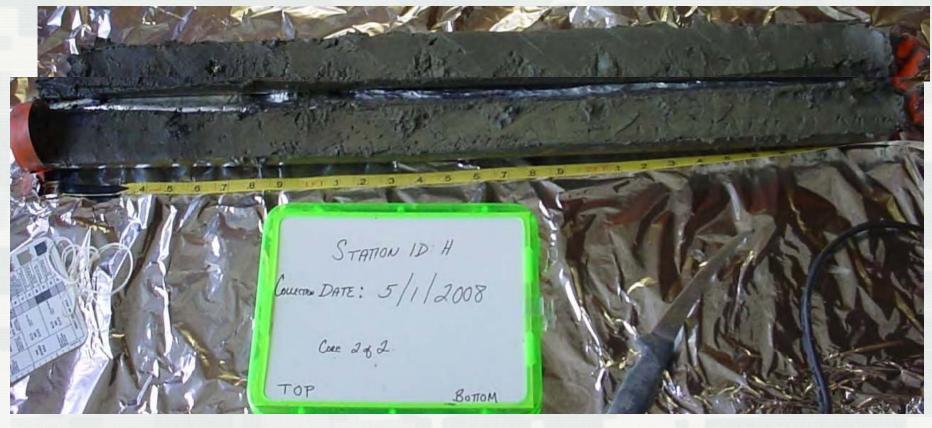

Proposed Project

Step 3 – Collect sediment samples

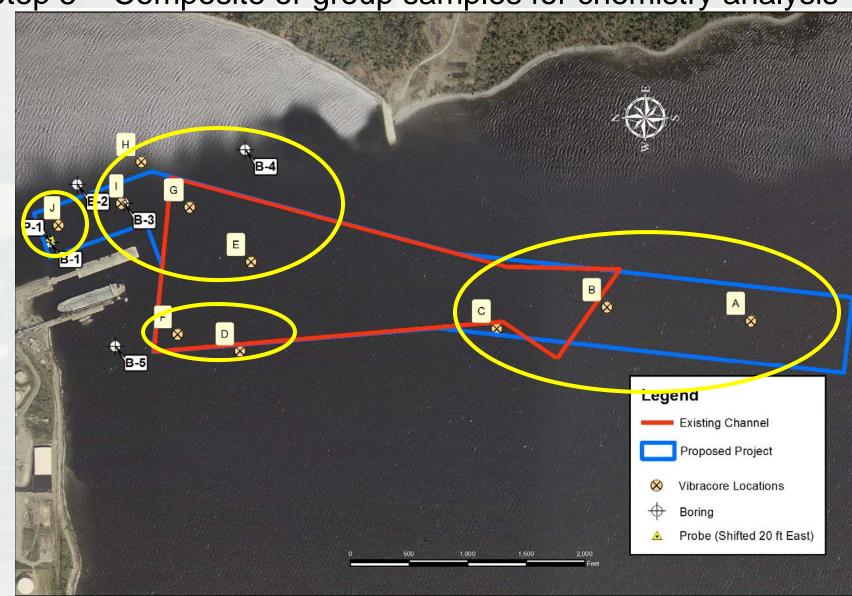

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Step 3 – Collect sediment samples at the dredge site and the potential disposal sites

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project


Step 3 – Collect sediment samples at the dredge site and the potential disposal sites

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project


Step 4 – process the cores

- cut the core liner and split the cores
- inspect/log the cores and subsample for physical analyses

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Step 5 – Composite or group samples for chemistry analysis

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Step 5 – Submit samples to lab for analyses

BATTELLE MARINE SCIENCES LABORATORIES	
Jill Brandenberger, Project Manager	
1529 West Sequim Bay Rd.	
Sequim, Washington 98382	
(360) 681-4564	

USACE NED - Searsport Harbor Metals in Sediment Samples Received on 05/15/08 (concentrations in ug/g, dry weight)

Sponsor ID	MSL Code	Site Description	Collection Date	Percent Moisture	As	Cd	Cr	Cu	Ni
			Ach	Instrument: CAS Monber: ieved MDL .18 x MDL)	ICP-MS 7440-38-2 0.18 0.5	<i>ICP-MS</i> 7440-43-9 0.0044 0.01	ICP-OES 7440-47-3 0.020 0.07	ICP-OES 7440-50-8 0.058 0.2	ICP-OES 7440-02-0 0.023 0.07
HAC-012	2891-3	Reference Sediment BBDS	05/02/08	62.4	13.5	0.0860	87.4	19.6	37.6
HAC-013	2891-4	Reference Sediment BBDS	05/02/08	60.6	14.2	0.0933	87.1	18.8	36.8
HAC-014	2891-5	Reference Sediment BBDS	05/02/08	62.7	14.3	0.0887	87.0	19.5	37.7
HAC-015	2891-6	Reference Sediment IDS	05/02/08	64.0	12.5	0.0723	82.0	17.5	36.9
HAC-016	2891-7	Reference Sediment IDS	05/02/08	62.4	12.5	0.0747	85.4	17.9	36.8
HAC-017	2891-8	Reference Sediment IDS	05/02/08	62.1	12.4	0.0784	84.3	17.7	36.3
HAC-017	2891-8 DU	P Reference Sediment IDS	05/02/08	62.1	13.0	0.0720	84.9	17.8	36.9
HAC-019	2891-9	Sediment from Station A,B,C	04/30/08	52.7	15.8	0.0913	81.8	17.0	36.9
HAC-020	2891-10	Sediment from Station D,F	04/30/08	57.5	18.0	0.172	75.7	16.2	34.0
HAC-021	2891-11	Sediment from Station E,G,H,I	04/30/08	42.5	14.9	0.118	63.3	15.8	30.5
HAC-022	2891-12	Sediment from Station J	05/01/08	30.2	17.0	0.159	47.4	8.76	19.8
Procedural B	lank								
MB	Blank 0530	08			0.0277 J	0.01 U	0.07 U	0.2 U	0.07 U
MB	Method Bla	ank R1							
MB	Method Bla	ank R2							
MB	Method Bla	ank R3							
		(Blank Spike)							
LCS	LCS 05300	8/LCS (Hg)			27.1	26.4	25.6	25.4	24.4
MB	Blank 0530	08/Method Blank (Hg)			0.0277 J	0.01 U	0.07 U	0.2 U	0.07 U
	Spike Conc				25	25	25	25	25
	Percent Red				108%	106%	102%	101%	98%
MATRIX SPI	KE RESULTS	s							
MS	2891-10 M	s			67.4	2.14	124	65.5	78.7
MSD	2891-10 M	SD			64.4	1.99	119	62.1	76.4
HAC-020	2891-10	Sediment from Station D.F	04/30/08	57.5	18.0	0.172	75.7	16.2	34.0
	Spike Conc	centration, MS			47.2	1.98	47.2	47.2	47.2
		centration, MSD			44.9	1.82	44.9	44.9	44.9
	Percent Red				105%	99%	102%	105%	95%
		covery, MSD			103%	100%	96%	102%	94%
	RP				1%	1%	6%	2%	0%

Searsport Harbor, Analytical Chemistry, Sediments and Rinsate Blanks

CERTIFICATION STATEMENT AND DATA RELEASE

Battelle Marine Sciences Laboratory is releasing the following data set:

SEARSPORT HARBOR SEDIMENT CHEMISTRY

METALS IN SEDIMENT AND RINSATE BLANK

We certify that the data contained within this data set is authentic:

JHB 6/20/2008 Date Jill M. Brandenberger

MSL Metals Chemistry Project Manager

6/20108 anna pun Janet Cloutier Date MSL QA Officer

Searsport Harbor, Analytical Chemistry, Sediments and Rinsate Blanks

Page 2 of 21

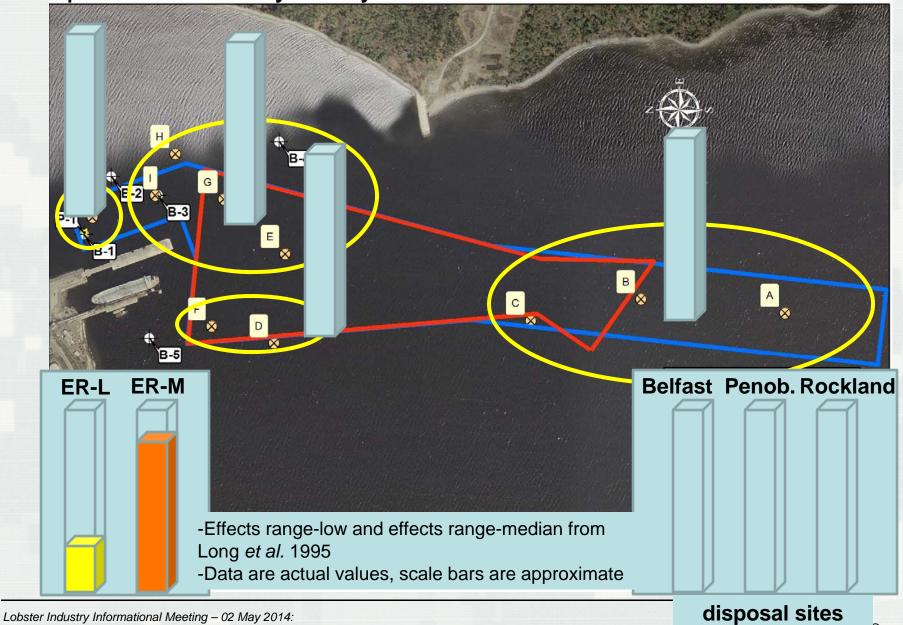
BUILDING STRONG_®

Step 6 – Compare the lab measured chemistry concentrations with existing standards to determine if the material is suitable or if additional testing is required

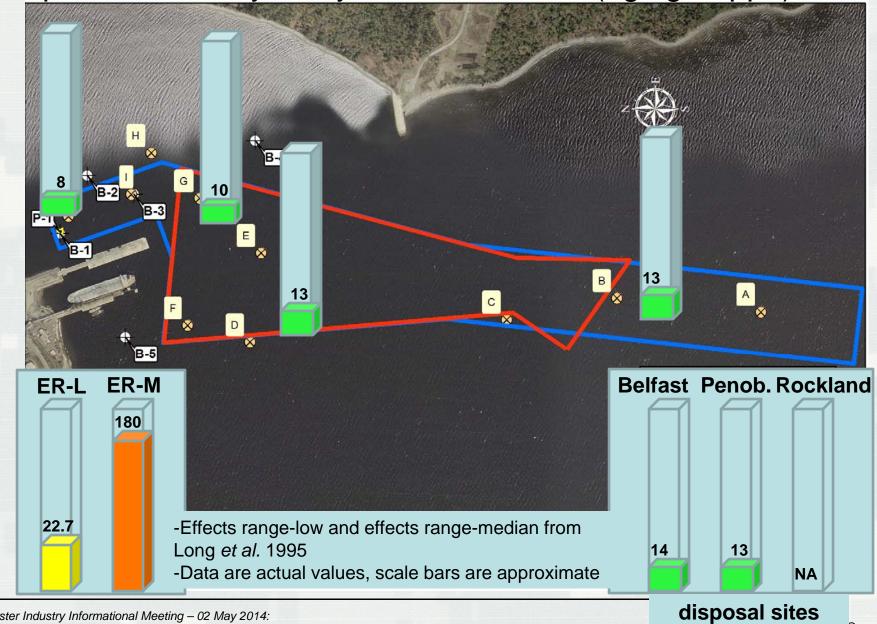
Jill Brandenberger, Project Manager 1529 West Sequim Bay Rd. Sequim, Washington 98382 (360) 681-4564

BATTELLE MARINE SCIENCES LABORATORIES

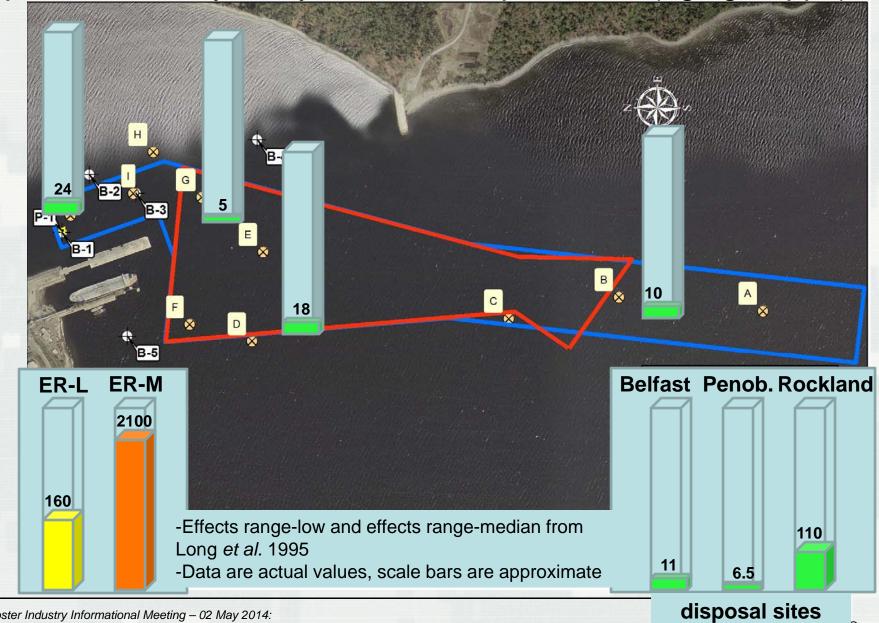
USACE NED - Searsport Harbor Metals in Sediment Samples Received on 05/15/08


(concentrations in ug/g, dry weight)

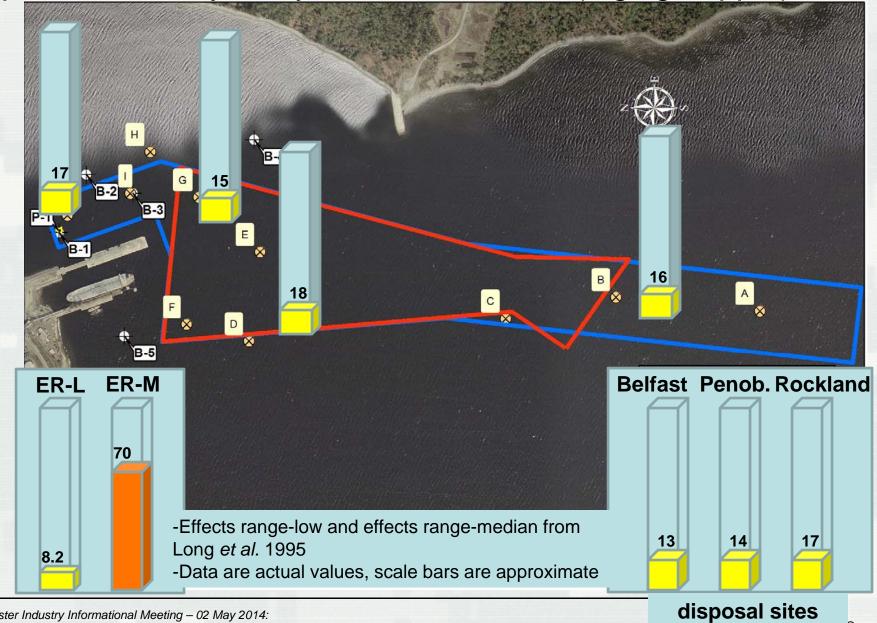
Sponsor ID	MSL Code	Site Description	Collection Date	Percent Moisture	As	Cd	Cr	Cu	Ni	РЬ	Zn	Hg
				Instrument: CAS Number: uleved MDL	ICP-MS 7440-38-2 0.18	ICP-MS 7440-43-9 0.0044	ICP-OES 7440-47-3 0.020	1CP-OES 7440-50-8 0.058	ICP-OES 7440-02-0 0.023	ICP-OES 7439-92-1 0.25	ICP-OES 7440-66-6 0.21	TD-CVAAS 7439-97-6 0.0020
			RLs (3.18 x MDL)	0.5	0.01	0.07	0.2	0.07	0.7	0.7	0.007
HAC-012	2891-3	Reference Sediment BBDS	05/02/08	62.4	13.5	0.0860	87.4	19.6	37.6	26.4	114	0.278
HAC-013	2891-4	Reference Sediment BBDS	05/02/08	60.6	14.2	0.0933	87.1	18.8	36.8	26.8	111	0.289
HAC-014	2891-5	Reference Sediment BBDS	05/02/08	62.7	14.3	0.0887	87.0	19.5	37.7	26.6	114	0.261
HAC-015	2891-6	Reference Sediment IDS	05/02/08	64.0	12.5	0.0723	82.0	17.5	36.9	22.5	106	0.136
HAC-016	2891-7	Reference Sediment IDS	05/02/08	62.4	12.5	0.0747	85.4	17.9	36.8	22.5	109	0.150
HAC-017	2891-8	Reference Sediment IDS	05/02/08	62.1	12.4	0.0784	84.3	17.7	36.3	23.3	107	0.150
HAC-017	2891-8 DUI	P Reference Sediment IDS	05/02/08	62.1	13.0	0.0720	84.9	17.8	36.9	23.7	108	0.156
HAC-019	2891-9	Sediment from Station A,B,C	04/30/08	52.7	15.8	0.0913	81.8	17.0	36.9	18.3	97.7	0.129
HAC-020	2891-10	Sediment from Station D,F	04/30/08	57.5	18.0	0.172	75.7	16.2	34.0	15.7	89.0	0.110
HAC-021	2891-11	Sediment from Station E.G.H.I	04/30/08	42.5	14.9	0.118	63.3	15.8	30.5	11.4	65.0	0.0440
HAC-022	2891-12	Sediment from Station J	05/01/08	30.2	17.0	0.159	47.4	8.76	19.8	10.1	48.4	0.0420
Procedural B												
MB	Blank 05300	08			0.0277 J	0.01 U	0.07 U	0.2 U	0.07 U	0.7 U	0.7 U	
MB	Method Bla										0.007 1	
MB	Method Bla										0.007 L	
MB	Method Blank R3							-				0.007 L
	ontrol Sample											
LCS	LCS 053008	S/LCS (Hg)			27.1	26.4	25.6	25.4	24.4	25.7	26.5	0.279
MB	Blank 05300			0.0277 J	0.01 U	0.07 U	0.2 U	0.07 U	0.7 U	0.7 U	0.007 L	
	Spike Conce			25	25	25	25	25	25	25	0.281	
	Percent Rec			108%	106%	102%	101%	98%	103%	106%	99%	
	KE RESULTS											
MS	2891-10 MS				67.4	2.14	124	65.5	78.7	60.5	185	0.664
MSD	2891-10 MS	D			64.4	1.99	119	62.1	76.4	57.4	177	0.594
HAC-020	2891-10	Sediment from Station D,F	04/30/08	57.5	18.0	0.172	75.7	16.2	34.0	15.7	89.0	0.110
	Spike Conce			47.2	1.98	47.2	47.2	47.2	47.2	94.3	0.552	
	Spike Conce			44.9	1.82	44.9	44.9	44.9	44.9	89.8	0.482	
	Percent Rec			105%	99%	102%	105%	95%	95%	102%	100%	
	Percent Rec			103%	100%	96%	102%	94%	93%	98%	100%	
	RPE				1%	1%	6%	2%	0%	2%	4%	0%
												Page 1
		r, Analytical Chemistry, Sedin										

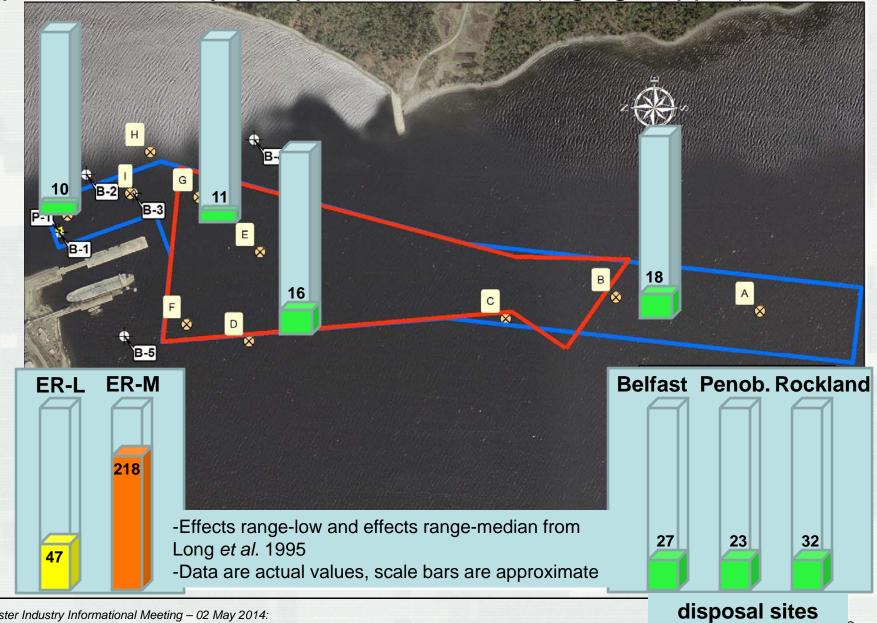

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

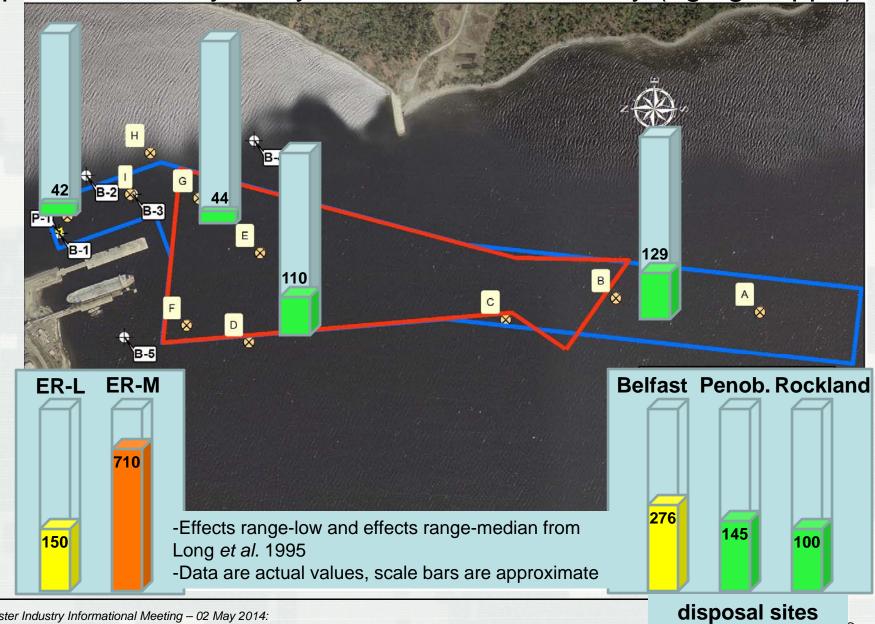
Step 5 – Chemistry analysis results

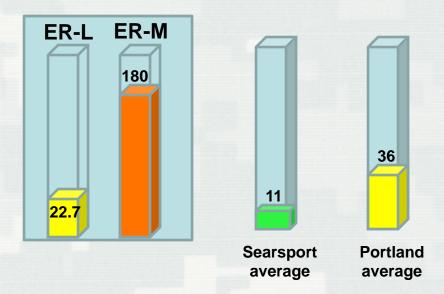


Searsport Harbor Navigation Improvement Project


Step 5 – Chemistry analysis results PCBs (ug/kg or ppb)

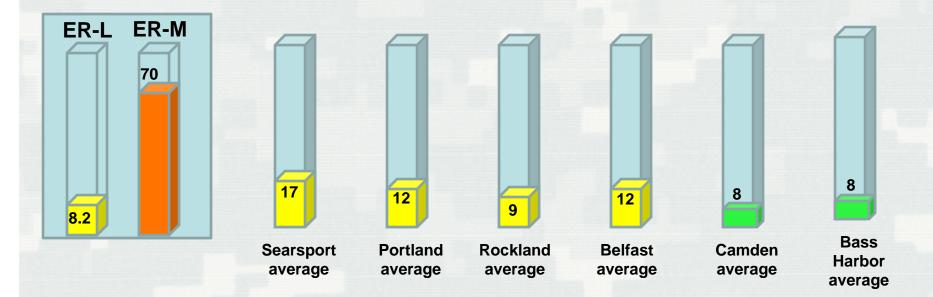

Step 5 – Chemistry analysis results naphthalene (ug/kg or ppb)


Step 5 – Chemistry analysis results arsenic (mg/kg or ppm)


Step 5 – Chemistry analysis results lead (mg/kg or ppm)

Step 5 – Chemistry analysis results total mercury (ug/kg or ppb)

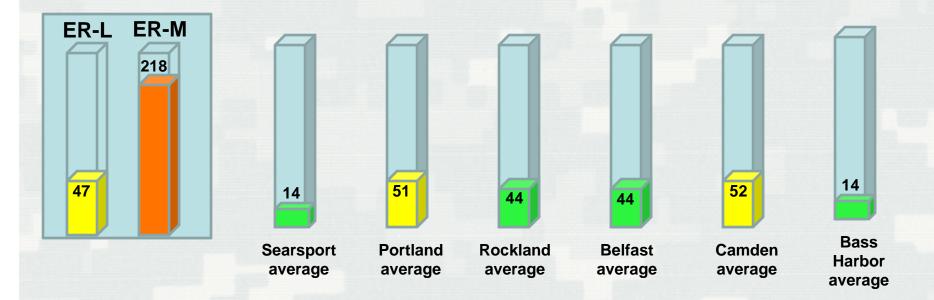
Comparison of Searsport chemistry results with other Maine harbors dredged within the past ~15 years PCBs (ug/kg or ppb)



-Effects range-low and effects range-median from Long *et al.* 1995 -Data are averages of concentrations presented in project Environmental Assessments, scale bars are approximate

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

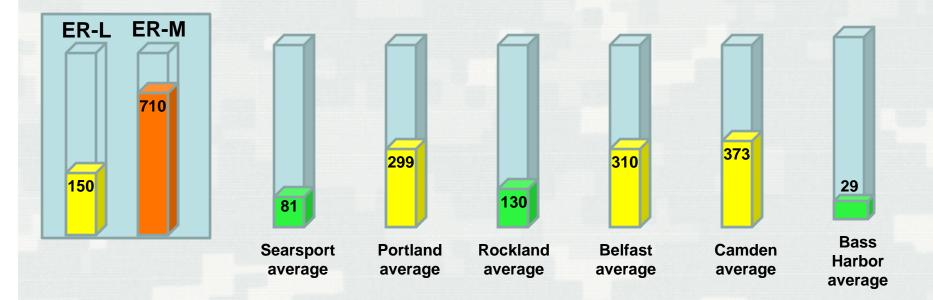
Comparison of Searsport chemistry results with other Maine harbors dredged within the past ~15 years Arsenic (mg/kg or ppm)



-Effects range-low and effects range-median from Long *et al.* 1995 -Data are averages of concentrations presented in project Environmental Assessments, scale bars are approximate

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Comparison of Searsport chemistry results with other Maine harbors dredged within the past ~15 years Lead (mg/kg or ppm)



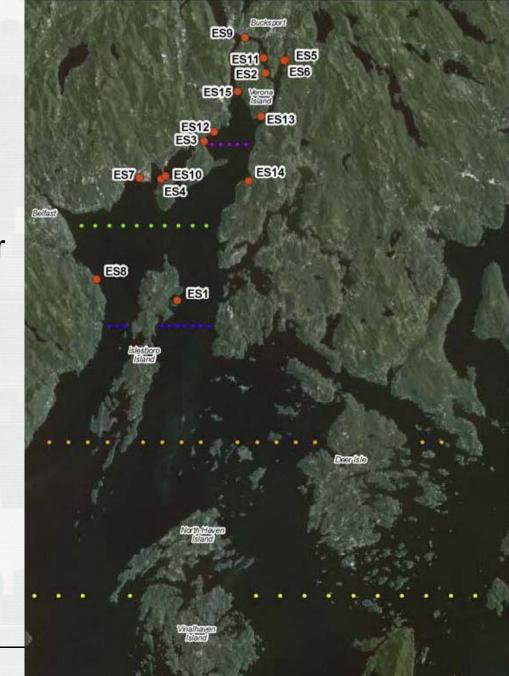
-Effects range-low and effects range-median from Long *et al.* 1995 -Data are averages of concentrations presented in project Environmental Assessments, scale bars are approximate

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Comparison of Searsport chemistry results with other Maine harbors dredged within the past ~15 years Total Mercury (ug/kg or ppb)

-Effects range-low and effects range-median from Long *et al.* 1995 -Data are averages of concentrations presented in project Environmental Assessments, scale bars are approximate

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project


How does the Searsport chemistry results compare with the overall Penobscot Bay mercury study?

Court ordered study: • covered the Penobscot River and the entire bay

- multiple stations sampled
- multiple media sampled
- multiple forms of mercury analyzed

Source: Figure 6 from Phase I Penobscot River Mercury Study, 2008

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Background on Mercury

- naturally occurring element (only metal that is liquid at room temperature)
- the organic form methyl mercury is a neurotoxin that can bioaccumulate

Source: LearnNC.org

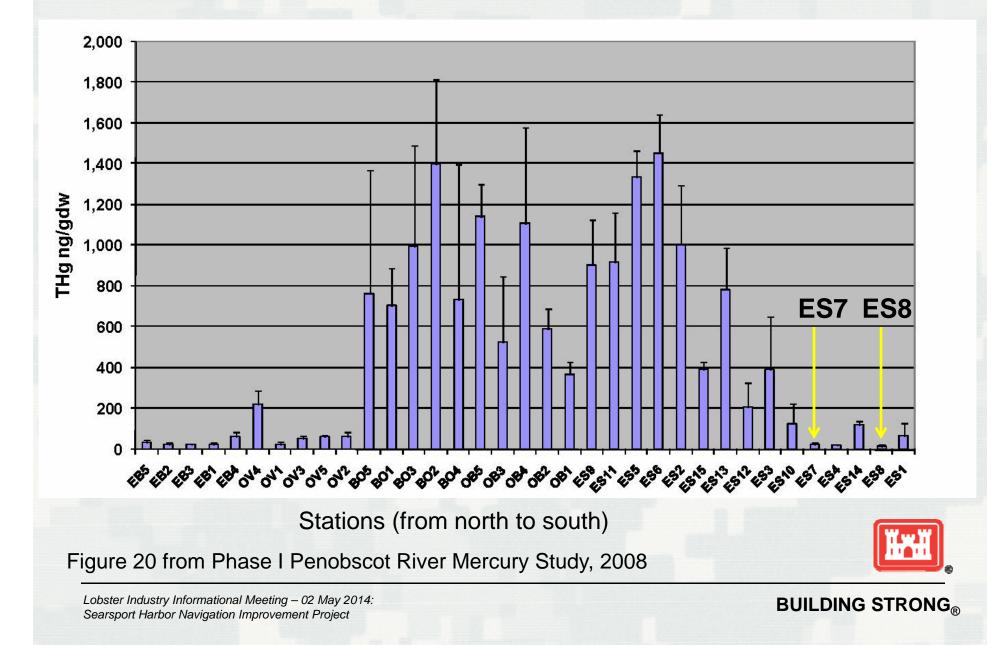
 undergoes complex cycling in natural systems with increased potential for methyl mercury formation in marsh systems

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

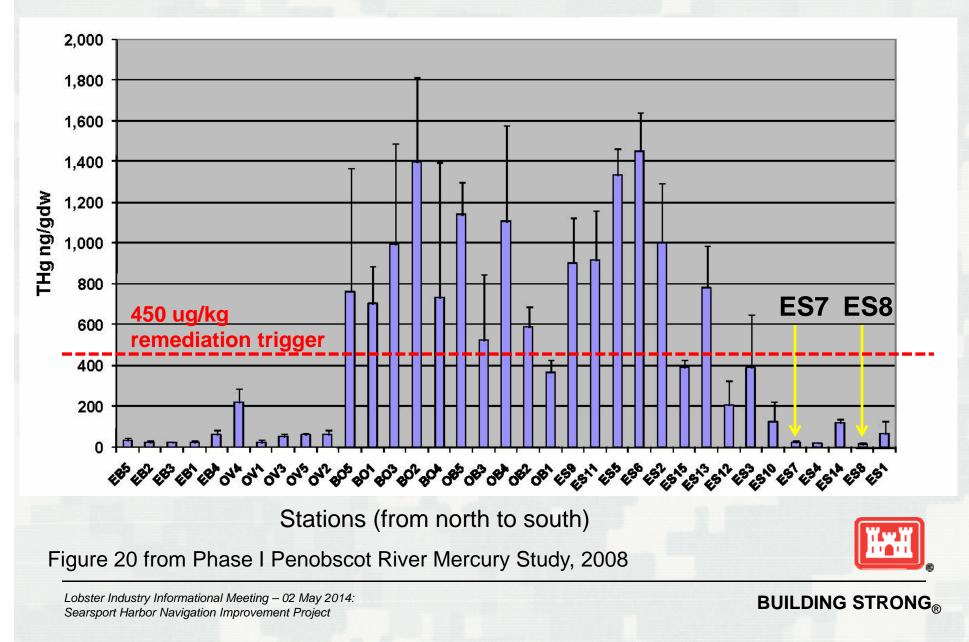
Estuary Aquatic Sampling Stations from Penobscot River Study

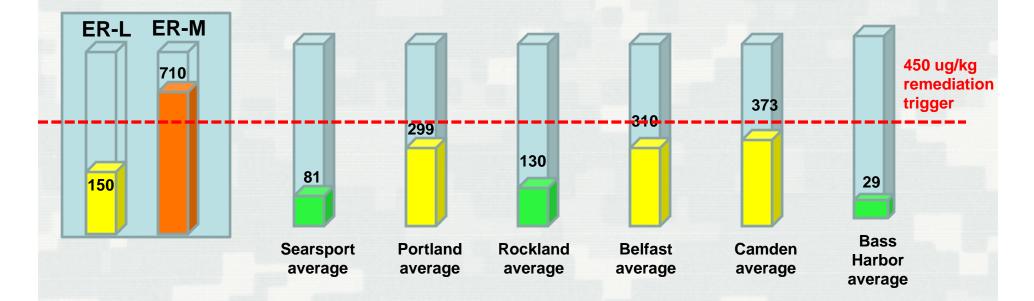

ES7 adjacent to port

ES8 west of proposed disposal site


Study analyzed for both total mercury and methyl mercury

Source: Figure 6 from Phase I Penobscot River Mercury Study, 2008


Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project


Total Mercury in Sediments Averaged from Four Sampling Rounds

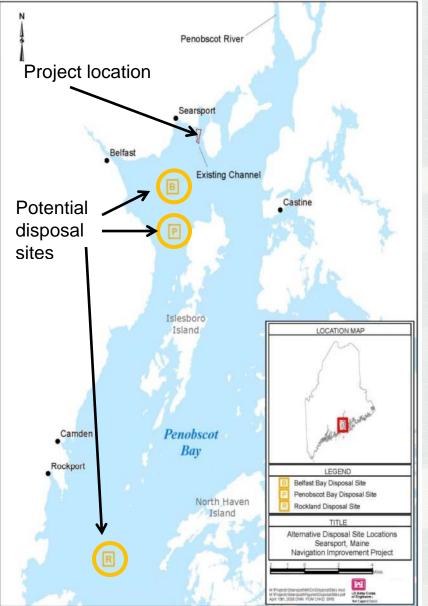
Study recommended an action limit of 450 ug/kg total mercury in sediment as a trigger for remediation

Comparison of Searsport chemistry results with other Maine harbors dredged within the past ~15 years Total Mercury (ug/kg or ppb)

-Effects range-low and effects range-median from Long *et al.* 1995 -Data are averages of concentrations presented in project Environmental Assessments, scale bars are approximate

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Step 7 – Submit results to EPA \rightarrow Based on the results, the material was deemed suitable by the EPA for placement at an in-water dredged material disposal site

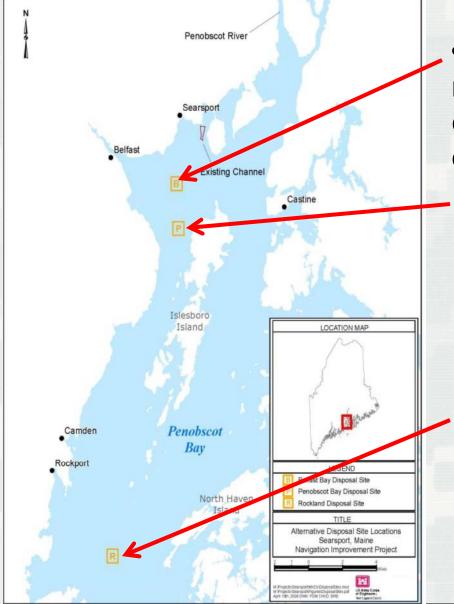

BATTELLE MARINE SCIENCES LABORATORIES Jill Brandenberger, Project Manager 1529 West Sequim Bay Rd. Sequim, Washington 98382 (360) 681-4564

USACE NED - Searsport Harbor Metals in Sediment Samples Received on 05/15/08 (concentrations in ug/g, dry weight)

Sponsor ID	MSL Code	Site Description	Collection Date	Percent Moisture	As	Cd	Cr	Cu	Ni	Pb	Zn	Hg
				Instrument: CAS Number:	ICP-MS 7440-38-2	ICP-MS 7440-43-9	ICP-OES 7440-47-3	ICP-OES 7440-50-8	ICP-088 7440-02-0	ICP-OES 7439-92-1	JCP-OES 7440-66-6	TD-CVAAS 7439-97-6
			Ad	ieved MDL	0.18	0.0044	0.020	0.058	0.023	0.25	0.21	0.0020
			RLs (3.18 x MDL)	0.5	0.01	0.07	0.2	0.07	0.7	0.7	0.007
HAC-012	2891-3	Reference Sediment BBDS	05/02/08	62.4	13.5	0.0860	87.4	19.6	37.6	26.4	114	0.278
HAC-013	2891-4	Reference Sediment BBDS	05/02/08	60.6	14.2	0.0933	87.1	18.8	36.8	26.8	111	0.289
HAC-014	2891-5	Reference Sediment BBDS	05/02/08	62.7	14.3	0.0887	87.0	19.5	37.7	26.6	114	0.261
HAC-015	2891-6	Reference Sediment IDS	05/02/08	64.0	12.5	0.0723	82.0	17.5	36.9	22.5	106	0.136
HAC-016	2891-7	Reference Sediment IDS	05/02/08	62.4	12.5	0.0747	85.4	17.9	36.8	22.5	109	0.150
HAC-017	2891-8	Reference Sediment IDS	05/02/08	62.1	12.4	0.0784	84.3	17.7	36.3	23.3	107	0.150
HAC-017	2891-8 DU	P Reference Sediment IDS	05/02/08	62.1	13.0	0.0720	84.9	17.8	36.9	23.7	108	0.156
HAC-019	2891-9	Sediment from Station A,B,C	04/30/08	52.7	15.8	0.0913	81.8	17.0	36.9	18.3	97.7	0.129
HAC-020	2891-10	Sediment from Station D,F	04/30/08	57.5	18.0	0.172	75.7	16.2	34.0	15.7	89.0	0.110
HAC-021	2891-11	Sediment from Station E,G,H,I	04/30/08	42.5	14.9	0.118	63.3	15.8	30.5	11.4	65.0	0.0440
HAC-022	2891-12	Sediment from Station J	05/01/08	30.2	17.0	0.159	47.4	8.76	19.8	10.1	48.4	0.0420
Procedural B	lank											
MB	Blank 0530	008			0.0277 J	0.01 U	0.07 U	0.2 U	0.07 U	0.7 U	0.7 U	
MB	Method Bla	ank R1										0.007 1
MB	Method Blank R2											0.007 1
MB	Method Bla				-						0.007 L	
		e (Blank Spike)				1223	12.00					
LCS	LCS 053008/ LCS (Hg)				27.1	26.4	25.6	25.4	24.4	25.7	26.5	0.279
MB	Blank 053008/Method Blank (Hg)				0.0277 J	0.01 U	0.07 U	0.2 U	0.07 U	0.7 U	0.7 U	0.007 L
	Spike Concentration				25	25	25	25	25	25	25	0.281
	Percent Re-	covery			108%	106%	102%	101%	98%	103%	106%	99%
	KE RESULT											
MS	2891-10 MS				67.4	2.14	124	65.5	78.7	60.5	185	0.664
MSD	2891-10 M	SD			64.4	1.99	119	62.1	76.4	57.4	177	0.594
HAC-020	2891-10	Sediment from Station D,F	04/30/08	57.5	18.0	0.172	75.7	16.2	34.0	15.7	89.0	0.110
	Spike Conc	centration, MS			47.2	1.98	47.2	47.2	47.2	47.2	94.3	0.552
	Spike Concentration, MSD				44.9	1.82	44.9	44.9	44.9	44.9	89.8	0.482
	Percent Recovery, MS				105%	99%	102%	105%	95%	95%	102%	100%
	Percent Recovery, MSD				103%	100%	96%	102%	94%	93%	98%	100%
	RPD				1%	1%	6%	2%	0%	2%	4%	0%
												Page 1
Se	Searsport Harbor, Analytical Chemistry, Sediments and Rinsate Blanks										P	age 3 of 21

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Selection of a Potential Disposal Site



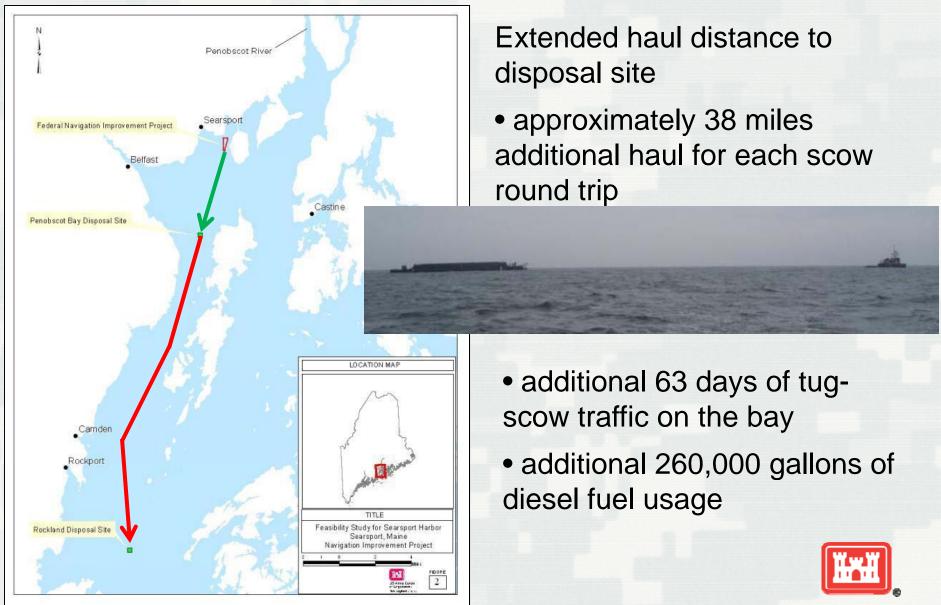
- Previously used for dredged material disposal?
- Capacity of the site
- Proximity to sensitive resources
- Distance from project location
- Other logistical issues

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

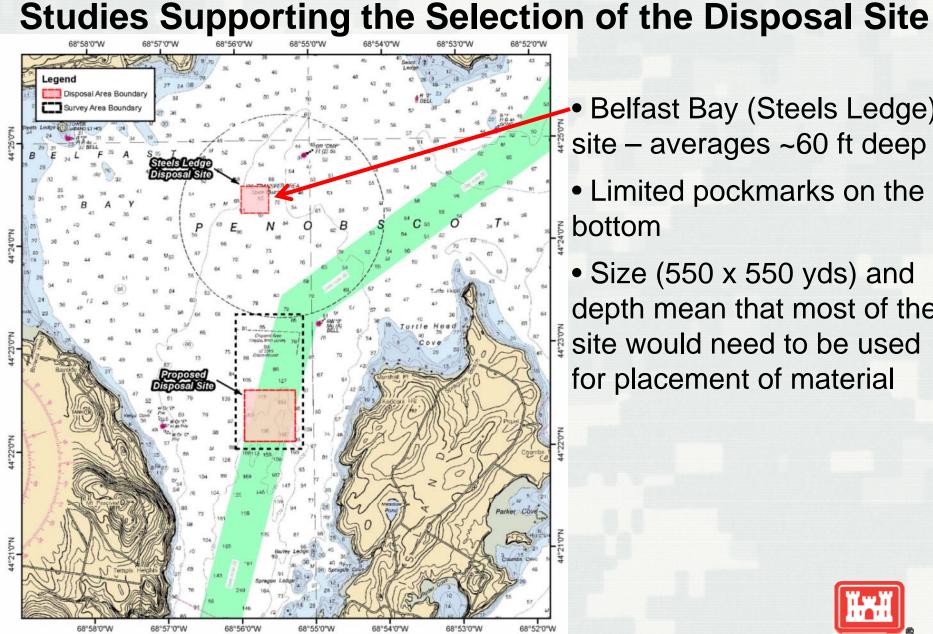
Studies Supporting the Selection of the Disposal Site

• Belfast Bay (Steels Ledge) site marked on charts (historical); evaluated in 2000, 2007-08 but no detailed record of use

 Penobscot site – nearby area marked on charts (historical)


- initial sampling in 2007-08
- bathymetry, imaging, benthic sampling in 2013

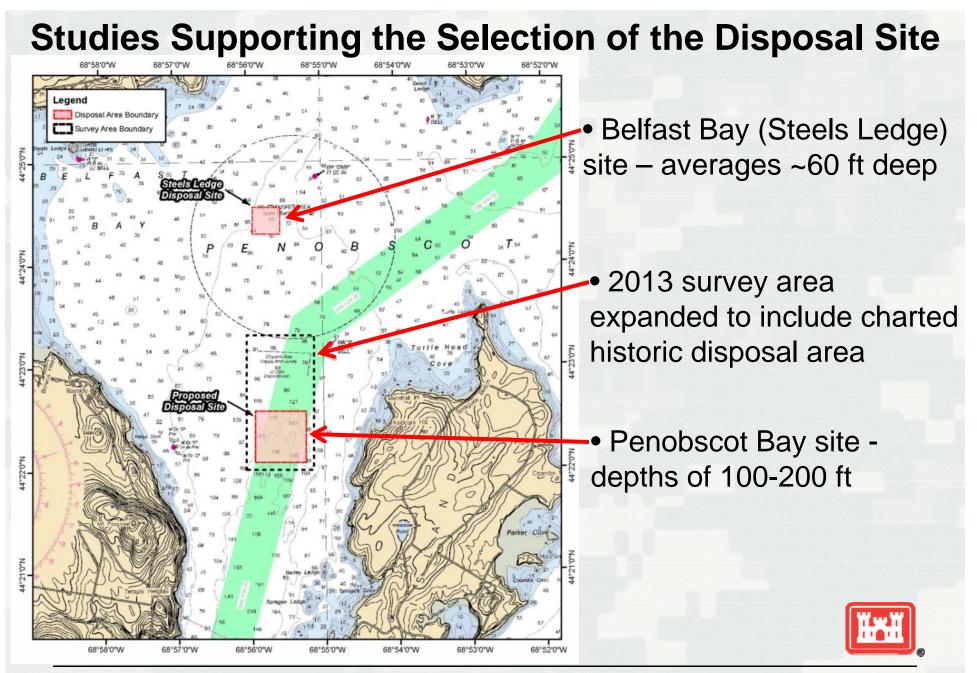
Rockland – established regional site with use dating back to 1973



Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

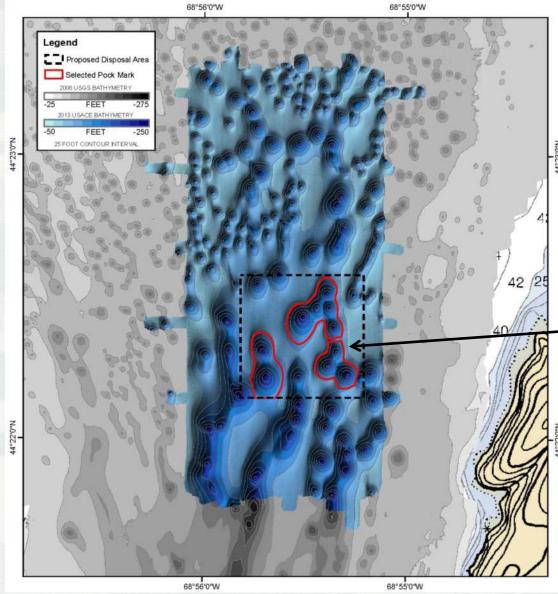
Concerns with Use of the Rockland Disposal Site

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project


 Belfast Bay (Steels Ledge) site – averages ~60 ft deep

 Limited pockmarks on the bottom

• Size (550 x 550 yds) and depth mean that most of the site would need to be used for placement of material

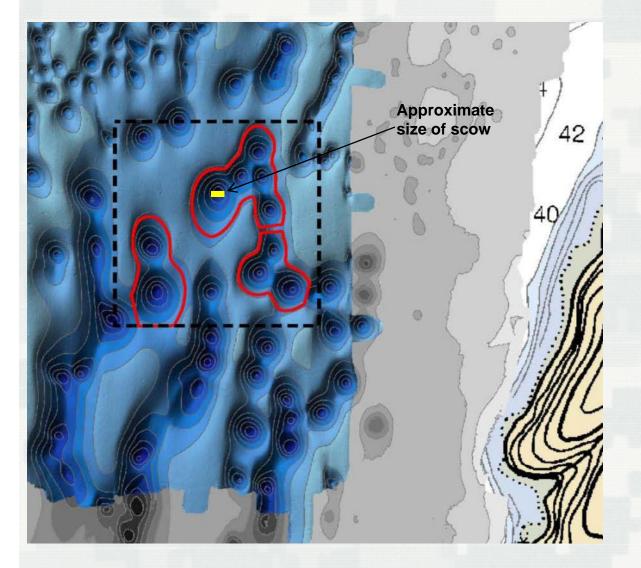


Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Studies Supporting the Selection of the Disposal Site

 bathymetry revealed pits with relatively steep sides and extending well below the surrounding seafloor


 uniform fine-grained sediments

 clusters of deep pits within the site appear ideal for limiting the footprint of the placed dredged material

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Studies Supporting the Selection of the Disposal Site

 one or two of the pit clusters could provide sufficient capacity for all the material from the project

 disposal would be targeted to cover less than ¼ of the site

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Limiting Impacts to Water Quality and Biota

- strict seasonal windows on when the work can be performed
- electronic tracking of every scow during loading, transport, disposal, and return
- water column monitoring at the startup of the project and for any major change in operations
- periodic bathymetry to track placement at the site
- long term monitoring to track the recovery of the biological community at the disposal site

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Concerns Addressed When Selecting a Disposal Site

- Can the material be accurately placed at the site and will it remain there?
- Will there be an unacceptable release of material to the water column during disposal?
- Will the disposed material cause an unacceptable impact to the benthic community?
- Other site-specific concerns? (e.g. mercury, lobster)

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project

Information

USACE Draft Feasibility Study and Environmental Assessment

http://www.nae.usace.army.mil/missions/ProjectsTopics/Searsport.aspx

USACE Disposal Area Monitoring System (DAMOS) reports http://www.nae.usace.army.mil/Missions/DisposalAreaMonitoringSystem(DAMOS).aspx

Maine DEP email <u>channeldredge.dep@maine.gov</u>

Lobster Industry Informational Meeting – 02 May 2014: Searsport Harbor Navigation Improvement Project